Break-Even Analysis

GRay Pregge

Break-Even Analysis -- Cost of Operating
A 12-Foot Swather vs. Custom Hire
I. Assumptions:
a. Original cost $\$ 14,000$
b. Two cuttings of hay per season
c. Operating speed, 2 acres per hour on the average
d. Gasoline consumption, 3.5 gallons per hour
e. Oil changed every 50 hours (5 quarts)
f. Labor rate, $\$ 3$ per hour
II. Fixed Costs: Percent of original cost

Depreciation
10.0

Interest $(1 / 2 \times 9 \%) 4.5$
Taxes, Shelter, Insurance 2.5
Total 17.0 percent
$\$ 14,000 \times 17 \%=\$ 2,380$ annual fixed cost
III. Variable Costs:

Fuel (gasoline 3.5 gal. x \$.42)
Cost Per Hour Cost Per Acre
$\$ 1.47 \quad \$.74$
Oil (5 qts. x $\$.60=\$ 3.00 \div 50 \mathrm{hrs}$) . 06 . 03
Grease (estimate) . 02
. 01
Repairs and repair labor

$\frac{3.00}{\$ 4.55}$	$\frac{1.50}{\$ 2.28}$

A.E.E. Series \#328.
IV. Custom Rate: $\$ 8.00$ per acre per cutting
V. Estimated Costs of Owning and Operating a 12-Foot Swather Annual Fixed Costs of Owning Swather $\$ 800.00$
Variable Costs Per Acre of Swathing
2 Cuttings:

Machine $\$ 4.55$
Labor

3 Cuttings:
Machine \$ 6.83
Labor 4.50
$\$ 11.33$
VI. Break-Even Analysis
A. Develop the break-even points for owning and operating the

12 -foot swather under the following circumstances:

1. Using the algebraic solution:
a. 2 cuttings annually
b. 3 cuttings annually
2. Using the graphic method:
a. 2 cuttings annually
b. 3 cuttings annually
B. If you were considering the purchase of this machine:
3. To engage in custom operation, how many acres would you need to custom harvest annually at the custom rate given in order to break even?
4. To earn a 10 percent annual rate on your investment above all operating costs, how many acres would you need to custom harvest at the custom rate given?

Answers

Break-Even Analysis

A. Develop the break-even points for owning and operating a 12 -foot swather under the following circumstances:

1. Using the algebraic solution:
a. 2 cuttings annually
b. 3 cuttings annually

Let $P=$ custon charge per acre, per cutting
$Q=$ acreage processed
$\mathrm{F}=$ annual fixed costs of owning swather
$V=$ variable costs per acre of operating swather
Then: P. $\mathrm{Q}=\mathrm{F}+\mathrm{V} \cdot \mathrm{Q}$ $P \cdot Q-V \cdot Q=F$ $Q(P-V)=F$
$Q=\frac{F}{P-V}, Q$ at break-even acreage

Solution la: 2 cuttings:

$$
Q=\frac{\$ 2380}{\$ 16-\$ 7.55}=\frac{\$ 2380}{\$ 8.45}=281.7 \text { acres at break-even }
$$

Solution lb: 3 cuttings:

$$
\mathrm{Q}=\frac{\$ 2380}{\$ 24-\$ 11.33}=\frac{\$ 2380}{\$ 12.67}=187.8 \text { acres at break-even }
$$

2. Using the graphic method
a. 2 cuttings annually
b. 3 cuttings annually

SEE ATTACHED GRAPHS

f. Check:

$$
\begin{aligned}
& \text { Revenue -- } 580.6 \text { acres at } \$ 8.00 / \text { acre }=\$ 4644.80 \\
& \text { Costs: } \\
& \begin{array}{l}
\mathrm{F}= \\
\mathrm{V}=580.6(\$ 3.78)= \\
\text { Income over costs }=\$ 4644.80-3944.67=\$ 700 \\
\text { Rate of return on average capital investment } \frac{\$ 700}{\$ 7000}=1096 *
\end{array}
\end{aligned}
$$

*Calculation of the rate of return by this method is only an approximation of the internal rate of return. Calculation of the internal rate of return using capital budgeting procedures is beyond the scope of this exercise.

Cost - 12 ft . Swather; Own vs Custom Hire Three Annual Cuttings

B. 1. Acreage required to custom harvest annually at $\$ 8.00$ per acre to break even on ownership of the machine:
$Q=\frac{F}{P-V}=\frac{\$ 2380}{\$ 8.00-\$ 3.78}=\frac{\$ 2380}{\$ 4.22}=564$ acres
Check:
Revenue -- 564 acres at $\$ 8.00 /$ acre $=\$ 4512$
Costs:

$\mathrm{F}=$
$\mathrm{V}=564(\$ 3.78)=\begin{array}{r}\$ 2380 \\ 2132\end{array} 4512$

Income over costs $=\$ 4512-4512=0$
2. Acreage required to custom harvest annually at $\$ 8.00$ per acre to earn 10 percent annual rate on your investment:
a. Assume salvage value $=0$; useful life $=10$ years.

$$
\begin{gathered}
\text { Average value }=\frac{\text { Purchase Price }+ \text { Salvage Value }}{2} \\
\qquad \frac{\$ 14,000+0}{2}=\$ 7,000
\end{gathered}
$$

b. 10% net return on average investment capital $=$

$$
\$ 7000(.10)=\$ 700
$$

c. Fixed costs including recovery of depreciation:
$\$ 1750$ (2380 - \$630, 9\% interest charge)
700 (10% return on average investment capital) $\$ 2450$
d. Variable costs per acre:
$\$ 1.50$ labor
2.28 other
$\$ 3.78$
e. $Q=\frac{F}{P-V}=$ acreage needed to break even

$$
=\frac{2450}{\$ 8.00-\$ 3.78}=\frac{2450}{4.22}=580.6 \mathrm{acres}
$$

