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Abstract 

Diewert's quadratic approximation lemma is shown 

mathematically and graphically to be equivalent to a second

order Taylor's series expansion of a quadratic unit cost 

function. It is also shown to equal the geometric mean of 

the first-order "Laspeyres" and "Paasche" approximations of 

a cost function. Using Diewert's lemma and USDA/FEDS data, 

it is determined that there was no increase in cost 

efficiency among very-large, washington-Palouse, soft-white

wheat-following-fallow producers between 1974 and 1983. 
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I. cost Efficiency 

As new technology is introduced and adopted in 

agricultural production, a shift in the production and cost 

functions occurs. To measure this shift is to measure the 

effect of a new technology on total factor productivity or, 

its inverse, cost efficiency. Typically, the procedures for 

measuring technological change cluster at the poles of 

extreme simplicity and complexity. The simple procedures are 

appropriate for only the most narrowly defined production 

functions or circumstances. The complex approach is 

appropriate for general functional forms but requires a 

sUbstantial investment in the knowledge of econometric 

procedures. An advancement in measuring productivity 

developed by Diewert (1976) claims to be both simple and 

accurate. 

This article will examine four ways to estimate cost 

efficiency. All four techniques are variations of a Taylor 

series expansion for a quadratic function. 1 The first two 

approaches are "Laspeyres" and "Paasche" type, first-order 

approximations of cost efficiency. The third method uses a 

second-order Taylor series approximation to measure cost 

efficiency. Finally, Diewert's "quadratic approximation 

1 A Taylor's series expansion of a quadratic function is 

f(x) = f(a) + f' (a) (x-a) + !zf" (a) (x-a) 2 (Thomas, p. 786-

87) . 
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lemma" is presented as a simple and accurate alternative to 

the other three ways of estimating cost efficiency. It will 

be shown graphically and mathematically that the Diewert 

approximation is equal to either a second-order Taylor 

series approximation or the geometric mean of the Laspeyres 

and Paasche cost efficiency indexes. 

II. Estimating unit cost Functions 

A. First-order "Laspeyres ll Approximation 

Consider a quadratic unit cost function that is 

continuous, linearly homothetic, non-decreasing, and concave 

in input prices and subject to discrete changes in 

technology. 

(1) C = f(Pi, T) • 

C is the average cost per unit of output, 2 

P is the price of inputs i (i = 1 ... n) . 

T is the adoption of new technology through time. 

A first-order Taylor-series expansion of unit cost Cl 

is estimated from unit cost Co at price PO '· Where Pl > Po 

and 0 is the initial and 1 the subsequent period. 

Where SiO is the change in unit cost for a change in initial 

input prices and equals the factor share of total 

2 In this study, unit costs (C) equal total costs per acre 

(TC) divided by yield per acre (Y) , i.e., C = TC/Y. 
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expenditures on input i in the initial time period 

(Shephard, p. 11). 

aO is the change in unit cost from a change in initial 

technology. Equation (2) is a first-order approximation of 

Cl· 

( 3 ) ( C 1 -C 0 ) ~ L i (S i 0) (P i 1 - P i 0) + ( a 0) (T 1 -T 0 ) 

Equation (3) is a first-order "Laspeyres" approximation 

of change in unit cost in terms of a change in input prices 

and a change in cost efficiency between the initial and 

subsequent time periods. 

If technological change is constant, then equation (3) 

states that a change in unit costs is approximated by a 

change in input prices alone. Equation (3) can be rewritten 

as line segments (see figure 1) such that: 

(4) BPI-CPl ~ (CD/POPl) POPl; 

CB ~ CD; 

CB < CD. 

Where Cl = BPI; Co = APO = CP1; SiO = CD/POPl· 

CD is the Laspeyres index of the change in input prices 

in that it includes the subsequent higher input price Pl and 

the initial greater quantities of the subsequently more 

expensive inputs. It implies that no sUbstitution of 

relatively less costly inputs is made for the relatively 
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more costly input. l Using the Laspeyres approach, constant 

technology appears as a increase in cost efficiency. 

Therefore, a Laspeyres index of cost efficiency over-estimates 

the measure of technological changed because a change in unit 

cost from a change in input prices would be attributed to 

changes in efficiency. 

B. First-Order nPaaschen Approximation 

The reverse of the Laspeyres process results in a Paasche 

estimate of cost efficiency. This time a first-order Taylor-

series expansion of unit cost Co is estimated from unit cost 

Cl· 

(5) Co = Cl + Li(Sil) (Pio-Pil) + (al) (To-Tl) + remainder 

By multiplying both side of equation (5) by minus one and 

rearranging terms, results in an equation similar in form to 

equation (3). 

Sil is the change in unit cost for a change in subsequent 
-

input prices and equals the factor share of total expenditures 

on input i in the subsequent time period . . 

al iS ,the change in unit cost from a change in subsequent 

techno"o.gy . 

Equation (6) is also presented graphically in figure 2. 

1 Laspeyres price index is PIa = LiPilxio / LiPiOxiO, 

(i = 1 ... n) ). 



(7) APO - FPO ~ (FE/POPl) POPI 

AF ~ FE; 

AF > FE. 

Where Co = APO; Cl = BPI = FPO; SI = FE/POPI. 

FE (or GB) is the Paasche price index. Lesser quantities of 

the subsequently more expensive inputs continue to be used 

even at the lower initial prices. This again implies that 

there is no sUbstitution effect. 2 
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NOw, the Laspeyres result can be restating for a Paasche 

measure of cost efficiency. Using the Paasche approach, 

constant technology appears as a decrease in cost efficiency. 

Therefore, a Paasche index of cost efficiency under-estimates 

the measure of technological changed because the change in 

unit cost from a change in efficiency would be attributed to a 

change in input prices. This is just -the reverse of the 

Laspeyres case. Comparing equations (4) and (7) reveals that, 

(8) CD > BC > BG. 

Where AF = CB and FE = BG. See Figure 3. 

The first-order Laspeyres and Paasche approximations of a 

unit cost function will over- and under- estimate the change 

in cost efficiency, respectively. Neither approach takes the 

sUbstitution effect from changing input prices into account 

and thereby fail to accurately separates the change in unit 

2 Paasche price index is Ppa = LiPilxil / LiPiOxil • 



cost into the change in input prices and the change in 

efficiency from new technology_ (Perhaps an average of the 

two would work?) 

c. Second-Order Taylor Series Approximation 

In contrast to the simplicity and inaccuracy of the 

Laspeyres and Paasche approaches is the complexity and 

precision of an econometrically-estimated second-order 

Taylor series expansion of a quadratic cost function. 

consider a second-order expansion of cost function Cl 

expanded at CO-

(10) Cl = Co + LiSiO(Pil-Pio) + ~Li(oSi%PiO) (Pil-PiO)Z 

+~Lj (SSiO/oPjO) (Pil-PiO) (Pjl-PjO) 

+ ao(Tl-To) + ~(oa%To) (Tl-TO)Z 

+ ~Li(oSiO/oTO) (Pil-PiO) (Tl-TO)· 

A second-order approximation of a cost function 

requires estimating the coefficients for the first and 

second derivatives for each argument of the function. The 

large number of coefficients pose a degrees of freedom 

problem. A way to decrease the number of coefficients that 

need to be estimated at one time is to estimate the 

coefficients of the "factor share equations." 

(11) 6Cl/SPil = SiO + ~(6S0/6PiO) (Pil) 

+ ~(SSiO/6Pjo) (Pil) (Pjl) 

+ ~ (SSiO/6TO) (Pil) (Tl), i = 1 ••• n-l. 
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Equation (11) is the first derivative of the equation (10) 

with respect to the subsequent input price for each input. 

(12) Si1 = SiO + TiiPi1 + Tij Pi1Pj1 + ~iPi1T1. 

Where Tii = ~~i(oS%PiO), Tij = ~(oSiO/oPjO)' and ~i = 

~(oSiO/TO)' (SiO = ri if unknown). 

The coefficients of the factor share equation have to 

meet a set of restriction if they are to reflect to the 

underlying assumptions of a "well-behaved" cost function. 

These include (1) linearly homogeneous in input price 

restrictions: Liri = 1, ~i~i = ~i.Tij = ~.iTij = Li~iTij = 0 

and (2) symmetry restrictions: Tij = Tji. 

Once estimated the coefficients are then substituted 

into equation (10) and solved for the change in cost 

efficiency. 

(13) aO(T1-TO) + ~(oaO/oTO) (T1-TO)% = C1-CO - (LiSiO(Pi1-

Pia) + LiTii(Pi1-PiO)% + ~jTij(Pi1-PiO) (Pj1-P jO) 

+ ~i(Pi1-Pio) . (T1-TO»· 
-

It is possible to show this result graphically if 

equation (10) is simplified to one input and assuming 

constant technology. 

(14) C1-CO = SO(P1-PO) + ~(oS%Po) (P1-PO)l. 

Where, oSO = SO-S1; and oPO = -(PI-PO) = -PIPO· 

Substituting the appropriate line segments, (see figure 3), 

(15) BPI-APO = (CD/PIPO) (PIPO) - ~(SO-Sl) «P1P O» (PIPO)2; 

BC = CD - ~(CD-FE); 
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2BC = 2CD - (CG+GB+BD-GB) 

2BC = 2CD - CG - BD 

2BC = 2CG + 2GB + 2BD - CG - BD 

2BC = CG + 2GB + BD 

2BC = BC + GO 

BC = GO. 

Estimating a second-order Taylor expansion of a cost 

function, constant technology results in a measure of 

constant cost efficiency. Therefore, a second-order index of 

cost efficiency correctly estimates the measure of 

technological changed because the change in unit cost are 

proportioned correctly between changes in input prices and 

changes in efficiency. 

D. Diewert's Quadratic Approximation 

Diewert's quadratic approximation lemma for a quadratic 

function f is 

(16) f(z1)-f(zO) = ~[Vf(z1)+Vf(zO)]T(z1-z0) 

Vf(zr) is the first derivative of f evaluated at r (Diewert, 

p 118). This lemma claims that the second derivatives can be 

dropped and, using only the geometric mean of the first 

derivatives, a second-order or quadratic approximation of a 

function can still be obtained. 

Applying Diewert lemma to the cost function, 
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(17) f(Pi1,T1)-f(Pio,TO) = 

CI-CO = 

~i \ (Sil +Sio) (Pil-PiO) + \ (a1 +aO) (TI-TO) · 

For Diewert's claim to be true equation (17) must equal a 

second-order Taylor series expansion, i.e., equation (14), 

under the same set of assumptions. By substituting oSO = So-

Sl; and oPO = -(PI-PO) = -PIPO into (14) and rearranging 

terms, 

(18) 

= So (Pl-PO) - \ (SO-Sl) (PI-PO) ; 

= So (Pl-PO) - !z (SO) (PI-PO) + !z (S1) (PI-PO) 

= ~ (So) (PI-PO) + ~ (SI) (PI-PO) 

= ~ (SI+S0) (Pl- PO). Q.E.D. 

Equation (18) shows that Diewert's lemma applied to a cost 

function is corresponds one to one with a second-order 

Taylor series expansion of the function. 

This lemma is also equal to the geometric mean of the 

Laspeyres and Paasche estimates of the cost function. The 

sum of equations (3) and (6) equals, 

(19) 2(CI-CO) = Li(Si1+SiO) (Pi1-PiO) + (a1+a O) (T1-TO) 

C1-CO = Li~(Si1+SiO) (Pil-PiO) + \(a1+aO) (TI-TO)· 

The expression ~(al+aO) (TI-TO) is a Diewert index of cost 

efficiency. In equation (19), the change in unit costs is 

proportioned correctly between changes in input prices and 

the change in efficiency. 

9 



Graphically, it has been shown that, (see figure 3) 

(20) CD > BC = GD > BG. 

GD is the Fisher input price index between costs Cl and Co 

as derived by Diewert's lemma. By dividing both GD and Be by 

AC, the slope of AB is equals the slope of ED. When these 

slopes are equal, then Diewert's quadratic lemma becomes a 

Lagrange remainder for a zero-order Taylor's expansion, 

which is an exact measure of the price index of the cost 

function (Chiang, p. 272-3). 

Diewert has also shown that his quadratic lemma is 

generalized to non-homothetic functions as well (pp. 122-

23). This is important since non-homothetic functions allow 

for factor bias. Diewert's quadratic lemma for a non

homothetic function includes the geometric mean of the 

change in factor shares due to factor bias, i.e., the same 

procedure used to adjust for factor sUbstitution alone- in ' 

linearly homogeneous functions (p. 122). 

III. A General Model of Cost Efficiency 

Consider now a continuous, twice differentiable, 

concave, non-decreasing, non-homothetic cost function in 

which per-unit average cost is a function of input prices 

~nd discrete variables for time, region, and enterprise 

size. 

(21) Cjtru = f(Pitru, T, R, U). 
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Where Cjtru is unit average cost of commodity j in time t, 

region r, and enterprise size u; T is time; R is region, and 

U is enterprise size; Pitru is price per unit of input i to 

produce commodity j in time t, region r, and size u; i is 

the input category for capital (k), labor (1), energy (e), 

fertilizer (f), materials (m), and land (a); all inputs 

within input categories are complements; input categories 

may be either complements or substitutes; all input 

categories are variable. 

Equation (16) can be expressed in translog form and 

approximated using Diewert's quadratic lemma as the 

geometric mean of C1 and Co expanded around points 0 and 1 

respectively. 

(22) In (Cjtru1/CjtruO) = 

~Li(Sitru1+SitruO)ln(Pitru1/PitruO) 

+ ~(at1+atO) (T1-TO) + ~(ar1+arO) (R1-RO) 

+ \ (au1+auO) (U1-UO)· 

Where si is the factor share of expenditure on input i, and 

at is the first partial derivative of the cost function with 

respect. to time, e.g., at1 = 6lnCl/6Toi and similarly for 

regions (ar ) and enterprise size (au). 

Solving equation (21) · for the measures of cost 

efficiency by time, region, and size 
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(23) ~(at1+CltO) (T1-TO) + ~(ar1+ClrO) (R1-RO) 

+ ~(aU1+CluO) (U1-UO) = In(Cjt~1/CjtruO) 

- ~Li(Sitru1+Sitruo)ln(Pitru1/Pitruo)· 

Equation (22) can be interpreted as meaning that any 

difference between per unit costs and input prices is 

credited to differences in cost efficiency across time, 

region and size of enterprise. 

By holding the region and size variables constant 

equation (22) can be rewritten as: 

(24) ~ (at1 +CltO) (T1-TO) = 

In(Ct1/CtO) - Li~(Sit1+SitO)ln(Pit1/PitO)· 

Equation (23) can be rewritten in antilogs, 

(25) e~(Clt1+atO) (T1-TO) = 

Ct1/CtO + ~i(Pitl/PitO)~(Sitl+SitO) 

Equation (24) measures changes in cost efficiency from 

differences in technology across time. 

IV. An Empirical Measure of Intertemporal cos~ Efficiency 

To determine cost efficiency using Diewert's lemma, 

data are needed on total expenditures per acre, yield per 

acre, individual input expenditures per acre, and the input 

prices per unit of input. The original survey data for wheat 

from the USDA/Farm Enterprise Data System (FEDS) survey of 

1983 were used. EnterPrise data were selected from 

Washington Palouse (area 400) for soft white winter wheat, 

following fallow produced in 1974 and 1983. The data were 

12 



sorted by total planted acres and, using a budget generator, 

generated two representative enterprise budgets from a 

composite of data for the 91-100 percentiles, the 

enterprises which we designated as "very large" for this 

region. These two representative budgets for the "initial" 

1974 and the "subsequent" 1983, very large wheat enterprises 

in Washington are used to illustrate Diewert's method of 

measuring changes in intertemporal cost efficiency. 

See table 1. Rows (1) and (2) give the expenditures on 

inputs per acre. The sum of these rows equals total cost for 

the respective enterprises. Rows (3) and (4) present factor 

shares as the percent of an input's cost to total cost. Row 

(5) is the average of the factor shares. 

The 6th and 7th rows give the input prices as -$/hour 

for capital and labor, $/gallon for energy, $/pound for 

fertilizer, $/wt ave unit for materials, and $/acre for 

land. The 8th row is the input price ratio in logs for the 

two enterprises. The 9th row is the product of rows (5) and 

(8). The last element in row (9) is the sum of the elements 

in that row and equals a Fisher input price index in logs. 

Rows (10) and (11) present the five-year average yields 

per acre for wheat in the Palouse from 1972 to 1976 and 1981 

to 1985. The 12th row is the log of the yield ratio. Row 

(13) is the log of the total expenditure ratio. Row (14) is 

the log of the unit cost ratio and is equal to row (13) 

13 



minus row (12). Row (15) is intertemporal cost efficiency in 

logs and equals row (14) minus the Fisher price index in row 

(9). Row (16) is the index of intertemporal cost efficiency 

in the Palouse for winter wheat following fallow between 

1974 and 1983 and equals the antilog of row (15) multiplied 

by 100. 

The Washington Palouse intertemporal cost efficiency 

index between 1974 and 1983 is 100. This means that "the 

change in unit costs is proportioned correctly between 

changes in input prices and the change in efficiency." In 

this case, total costs increased 217%, yields increased 

14.5%, average cost per unit increased 177%, and input 

prices increased by 177%. Thus, all of the "change in unit 

costs are explained by changes in input prices. 

Consequently, Palouse wheat producers have increased inputs 

use at "the same rate as yield increased resulting in no 

increase in cost efficiency. 

v. warranted Assertions 

The Laspeyres, Paasche, second-order Taylor-series, and 

Diewert quadratic approximation ways of estimating cost 

efficiency were presented graphically and mathematically. It 

has been shown that the Diewert's and second-order Taylor

series indexes are equivalent and equal to the geometric 

mean of the Laspeyres and Paasche procedures. 
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Finally, in an empirical example, Diewert's lemma was 

used in conjunction with USDA/FEDS enterprise data to 

determine that very large Palouse wheat enterprises did not 

increase their the cost efficiency between 1974 and 1983. 
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Table 1. Intertemporal Cost Efficiency for Very Large Washington Wheat Enterprises! 1974 to 1983 

Capital Labor Energy Fert. Mat'ls Land Total 

--Cost ---------------------------------------------------------------------------------------------

1 WA VL 1983 ($/acre) 60.93 9.85 8.31 

2 WA VL 1974 ($/acre) 16.70 14.11 1.94 

16.31 

9.03 

22.01 

24.09 

189.48 

40.91 

306.89 

96.78 

---Cost Share --------------------------------------------------------------------------------------

3 WA VL 1983 e% ) .20 .03 .03 .05 .07 .62 1.00 

4 WA VL 1974 (%) .17 .04 .02 .09 .25 .42 1.00 

5 %(S83+S]4) (%) .19 .04 .02 .07 .16 .52 1.00 

---Price &; Price Index -----------------------------------------------------------------------------

6 WA VL 1983 e$/Unit) 

7 WA VL 1974 ($/Unit) 

8 Ln(P83/P74) ($/Unit) 

9 %(S83+S74)Ln(P83/P74) 

36.41 

12.26 

1.09 

.22 

S.13 

2.S1 

.71 

.03 

1.11 .28 

.33 .20 

1.21 .31 

.03 .02 

5.19 

8.68 

-.51 

-.08 

88.54 

19.06 

1.54 

.80 1.02 

---Yield, Cost &; Results ---------------------------------------------------------------------------

10 WA VL 1981-85 (Ave Bu/Acre) 

11 WA VL 1972-76 (Ave Bu/Acre) 

12 Ln(Q83/Q74) (Bu/Acre) 

13 LneTC83/TC74) (Cost/Acre) 

14 Ln(C83/C74) (Cost/Bu) 

15 %(~83+a74)(T83-T74) 

16 10081/2(~83+~74)(T83-T74) Index of Cost Efficiency (1974 - 100) 

39.98 

34.92 

.13 

1.15 

1.02 

.00 

100 
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