ANALYSIS OF FLAKES RELATIVE TO FLINTWORKING TECHNIQUES

Primary step in the study of flintworking and surface character of stone artifacts
Outline does not deal with form.

MATERIALS:

TYPE OF STONE Flint and Flint-like Materials (silica forms) Obsidian Ignumbrite Rhyolite (basalt Lava Opa1 Chalcedony Hornstone Jasper Agate Petrified Wood Quartsite Silicified Sediments Quartz Crystal Desirable GRADE Undesirable Clevage Plane Inclusions Vesicules Crystal Pockets Under Stress and Strain Cracks Checks SOURCE Quarries Cobbles Veins Ledges Surface, etc.

Ce. 31.3.1.

TEXTURE

Luster Granular

COLOR

Fine Medium Course

FLAKES

CHIPS SPALLS

Portions of material detached by per cussion or pressure, or both, from a core or a larger piece of material

than the original flake

DETACHED BY:

EXTERNAL

MAN

HOOVED ANIMALS

ELEMENTS

Natural expansion, contraction & di-

INTERNAL PRESSURE

TIDES

Exfoliation Dehydration SHRINKAGE Expansion & Contraction

EARTH Mouran TALUS

WATERWAYS

THERMAL FRACTURES

Forrest Fires Range Fires

Overheated in Household Fires

FLAKES

PERCUSSION, PRESSURE

OR BOTH

Fine retouching, notching & serrating

Micro Plakes

Small

micro flapes

Blades (Prismatic) (MICRO)

Medium

Specialized Flakes One Dorsal Ridge

Parallel Sides

Large

Two Dorsal Ridges Micro Blades Burin Blades

Short

Medium

Long

Length = Width

2 x Length = Width

3 x Length = Width

Sidestruck Flakes

Uniface, European Channel Flakes

Extra Long 4 or More x Length = Width

HINGE. REVERSELLINGE

EAAHURE

Thin

Normal

Thick - Tabular

Right angular sides

Sections of cleaved flakes

Sections of pebbles

Sections of cobbles

Sections of nodules

Straight

Percussion

Sections of nodules

Curved

Spiral

One Dorsal Ridge

Two or More Dorsal Ridges

DORSHI SOURCE OF FLAKE

Ventral SHAPE OF FLAKE

Block tegunio

PosoBile Heat Trialmut.

Proximal End

Size of Platform

Preparation of Platform

Character of bulb or pressure or percussion (ERAILURE)

Direction of Force Scars (Striations)

Presence of bulbar scar

Angle of Platform

Polished

Abraided

Order of Flaking

Distal End

Feather Edge

Hinge Fracture

Step Flake

Undulations
Shock Fracture

Shock Fracture End Character

Planned Thermal Treatment (Quartz Family)

Heated Unheated

Overheated

Color change (Cortex) for identification

Help motorte TEQUNICAUS

Crazed

REVERSE HINCE

Checked, potlids, exfoliation,

No bulbs of force

Cores

All flaked stone artifacts are cores if the surface of one or more sides are covered with flake scars. Cores will produce flakes and blades

Conical

Cylindrical

Rectangular

Uniface

Turtle back, not European

Biface Turtle back, not Europea

Multiface

Multiface

Utalized Cores

METHOD TYPEOLOGY SURFACE Dorsal Ventral Irregular - Random Preform Precussion and indiscriminal present Regular Wide Medium Relative to length Narrow Parallel (Right Angle) Oblique Number of flakes per inch Double oblique Chipped from one edge only Order of Flake Removal Radial Scars indicate direction of force Angle Thinning Hinge Fractures Ripple Released at Center Depth of flutes No Flutes Bulbs of Force Unflaked Surfaces With flats indicative of Thermal Treatment Edges: Can indicate function Irregular shearing Regular Beveled Sharp Dul1 Sinuous Alternating Ground

Deep Shallow Medium

Manner of Removal

Polished Serrated

Crushed
One Side
Both Sides
Alternate
Serrated as tool is

BASAL ASPECTS

Thinning Fluting Grinding Polishing Hafting Technique or Notching side Preparation corner Single Flakes on both sides basal < Narrow Multiple Flakes on Both Sides Widening of Notch after narrow opening Concave Convex Specialized Hafting Straight

cross section

Doubte Course

Recurved

Strength may Indust function

TIPS

SHARPENING METHODS

DIRECTION OF FLANCS.