Digus languaged

A STONEWORKER'S APPROACH TO ANALYZING AND REPLICATING THE LINDENMEIER FOLSOM

Folsom! This projectile point is one of the most remarkable forms of the many types of stoneworking art which depict the highly specialized techniques of the New World lithic industries. Yet it is probably the most misunderstood and controversial artifact of the New World Cultures. Its anomolous technique has placed it in a class by itself with its only remotely counterparts in the Old World being the Dorset Point* and the Nuceli from Gran Pressigny**. It has become a Stoneage enigma and, therefore, is probably the most underrated and - occassionally - the most over-rated artifact in typeology.

An analysis and explanation of the Folsom is attempted here because of the skill required in its fabrication, the many phases of its construction, and the unique techniques demonstrated in its manufacture.

But, primarily, because the discovery of this fully developed point,

^{*}Jorgen Meldgaard: "Arctic Institute of North A merica, Technical Paper #11
** Shown to my by Dr. Jacques Tixier of Museum National D Histoire Naturelle,
Paris, France

which made its appearance at a time early in the history of North

America, changed the whole aspect and countenance of Archaeology in

the Americas. Prior to 1927, the mention of mans'antiquity in America

could not extend beyond a few thousands of years. It was the Linden
meier Folsom that changed the entire concept of the prehistory of this

hemisphere. This point, then, should be familiar to anyone with an

interest in mans' development in the New World.

Most flintknappers, including the writer, consider this to be one of
the most beautiful, practical, highly specialized, and, admittedly, one
of the most difficult points to replicate. My experiments in flintknapping
have led me to conclude that the making of this point probably took more
time, patience and skill than any other projectile point of comparable
size. For example: a common Rocky Mountain side-notched point of some
length made on a flake can be done in five to ten minutes, whereas the
Folsom point may take several hours to complete the painstaking preparation
of its many stages of manufacture before the artifact is finally fluted
and completed.

Making a fluted point, such as a Clovis, is not too difficult a job - but replicating a Lindenmeier Folsom with all the character of the original is quite another story and only by using the same methods and techniques of the aborigional can we reproduce a true copy.

All my Folsom experiments have been an effort to reproduce the Lindenmeier type and, therefore, this paper will deal only with material from that site and is not to be confused with the Clovis, Folsomoid, basally-thinned, or other fluted point traditions. The Lindenmeier Folsom reflects uncanny working skill and reveals complete control of the cryptocrystalline quartz family minerals which was not attained by aborigional man before or after Folsom. For the benefit of those who are not too familiar with the classic Lindenmeier Folsom, an analysis is inserted here to indicate the many problems involved in its working technique. Description covers plastic cast model of Point

B22/83 of the Denver Museum of Natural History. This represents one of the finer specimans from the Lindenmeier site and is representative of the type of Folsom my experiments intend to produce. Following is a description of this particular projectile and reflects my interpretation of techniques used in its fabrication.

It is 1-7/8" long and 7/8" wide, however, some Lindenmeier points may be as much as 2-1/2" long and can average 3/4" in width. The shape of the point resembles the outline of a rowboat in form but is slightly constricted at the base and, unlike most projectile points, the tip(or the distal end) terminates abruptly.

Although some publications describe the tip of this projectile as being "snub-nosed" (Mewhinney: Manual for Neanderthals), it actually has a very thin, sharp edge, the result of a carefully controlled pressure retouch. This type of tip not only has strength, but also has piercing and penetrating qualities not inherent to a fragile, acuminated tip. The proximal end resembles the shape of a broad U, ordinarially with a slight convexity at the base of the U. This

convexity is usually a remnant of the platform left after removing the second channel flake. The base is also characterized by the two diagonal pressure flake scars on both sides of the bulbar scar. They represent a very definite Folsom characteristic. After removal of the second fluting flake, the bulbar scar was left with protuding ridges on both sides of the bulbar portion of the channel and this projecting material was removed by the application of these two pressure flakes. These diagonal flakes served to flatten the base to facilitate hafting. This same technique was also used after the detachment of the first channel flake, but, unfortunately in some cases, was obliterated when the platform was prepared for the second flute.

Upon examination with a 12% magnifying glass, I find that there is a total of 152 retouch flake scars on the perimeter and this number does not include the retouch on the base. The minuteness of the space where pressure was applied indicates that the pressure tool tip was no thicker than the fingernail. I am in no way suggesting that the fingernail was used as the tool, but employ the word only for descriptive purposes and for comparison in size. To have accomplished

this most remarkable feat, the worker was, no doubt, endowed with superb eyesight and had attained a high degree of manual dexterity. The eyesight and control required may be likened to that required to produce the Chinese forbidden stitch or some of the Peruvian textiles which incorporated the use of The minute retouch flakes have hundreds of strands per inch. parallel sides and the length of these tiny flake scars are about four or five times the ir width. The terminal ends of the flake scars were, in most cases, removed by the fluting flake, therefore, at the present time, their total length if unknown. For the first series of flakes, the micro-retouch flaking was worked from the tip to the base. Then the preform was turned over and the same technique used on the other side. The opposite side was then retouched from the base to the tip, then turned over and the other side retouched from the base to the tip. The spacing interval was kept constant by placing the pressure tool directly opposite the ridge left by the removal of the flake on the opposite side. Upon close inspection of the edge, one will notice a sinuous or undulating edge resembling a micro sawblade with denticulate edges. Because of the extreme accuracy in placement of the pressure tool and the attainment of maximum control of the downward and outward pressure, the flakes removed left an uncrushed, razor-sharp edge. Such meticulous care to placement and control of the pressure tool, resulted in the removal of the microbladelets and their adhering platforms from the edges of the Folsom. Such an edge has much strength and sharpness in spite of its obtuse angle.

On one edge, there remains a small area indicating the primary retouching between the channel flake and the secondary retouch.

As nearly all the primary flake scars have been erased by the secondary edge retouch, there is no way to determine the techniques used for the primary pressure flaking. However, before the fluting was done, the surface of the preform must have been made very smooth and regular, for any irregularity on the surface of the point would cause the channel flake scar to be erratic, misshapen or aberrant to the normal channel flake.

The platform of the first channel flake was placed slightly above the now existing tangs on the base. The first channel flake was

then removed from the base to the tip with a slight curvature of the flake, terminating to nothing or what can be called a feather edge. The two ridges on either side of the bulb of pressure (channel) were then removed by two well controlled diagonal flakes preparatory to the construction of a platform for the removal of the second channel flake on the opposite side. In the preparation of the second platform, small flakes are removed by pressure from the area between the tangs and to isolate the platform and position it midway on the base, directly in line with the tip. There is a small loss of platform material after removal of the first flute, so, when preparing the second platform, one must lower it between the two tangs. This deviation in platform preparation is necessary to the technique in order to obtain sufficient material to prepare a large enough and strong enough platform to withstand the amount of force necessary to remove the channel flake. The second platform must be positioned in such a manner that when it is removed the bulb of force will intersect, or nearly so, the bulbar scar left by the first channel flake. If all techniques are followed carefully, the base will be knife-edged, or

The removal of the second flake produces a wide longitudional channel corresponding with the one on the opposite side. The second channel flake is also slightly curved, resulting in a double convex cross-section. There are two ridges outlining the channel flake scar and parallel to the edges of the point, giving the artifact the desired additional strength. The midsection between the two fluting flake scars measures 5/64" in thickness, thus weakening the strength of the artifact, however, this weakness is compensated for by the ridge. The worker must exercise the ultimate amount of control in order to start the detachment of the fluting flakes at the base and terminate them at the tip, thus creating an arc on both flakes to leave such a small amount of material in the midsection.

It is indeed a remarkable achievement for man to have devised this most complex tool because of a functional need. Is it any wonder that Folsom is one of the most discussed, controversial and unique points of the Early Americas.

At times we tend to underrate this projectile point due, I believe, to a lack of understanding of the difficult mechanical problems involved in its fabrication and the common misconception that it is easily made by casually striking off the two flutes by the hand-held percussion method. I can only conclude that this is largely the theory of those who have never tried flintknapping and, therefore, are unable to evaluate the many problems that would be involved in the thinning of this point by the free-hand percussion method. Clovis and Folsom are both fluted points, but each is produced by the use of different techniques and each has its own and distinct character. Detachment of a channel flake by free-hand percussion can be accomplished, but the finished point will be larger, thicker, have different character, and will look more like a Clovis than a Lindenmeier Folsom. Using the pressure with rest and the indirect percussion with rest methods produces the true Folsom character and these techniques afford greater accuracy and control even though they are more time consuming.

Any misconceptions regarding these two distinct techniques may be

due to a lack of fine-line discrimination in typeology and technology of fluted point traditions and an overlaping and relating with Clovis, Folsomoid and other fluted and basallythinned point traditions. Artifacts produced by these two different techniques may sometimes be mislabeled due to a lack of workshop material (including the removed flakes) from other fluted point sites. Such collections would permit comparison and analysis of technology and identify the distinct difference between Folsom and other fluted tradtitions. I would be inclined to think that future typeology, in conjunction with technology, should be more definitive regarding character of Folsom fluting and flaking techniques and be more restricted in discriminating between Clovis and Folsom. When one has even a rudimentary knowledge of flintknapping, then these differences will be self-evident.

At present, the name Clovis encompasses such a wide array of tools of various sizes, forms, types of basal thinning and fluting, as well as many techniques of workmanship, that only a few may be compared to the Folsom. But the Folsom has some definite Hallmarks that set it apart from other fluted or semifluted points. The basal portion between the tangs is generally knife-edge thin after the removal of the second channel flake. This negative flake scar then make a slight curve from the base to the tip of the point, often feathering out to infinity. The negative bulb of force left by the last channel flake is purposely designed to be deep in order to thin the base. But this leaves surplus material projecting on both sides of the negative bulb. This surplus material is then removed by pressing off two diagonal flakes which leave the narrow diagonal flake scars just below each tang. This is done after the fluting to leave the projectile point with a flatter and more uniform base.

The retouching on the margins of the Lindenmeier Folsom is equally as skillful an accomplishment as the channel flake removal, but it cannot be compared as the retouch technique is very different than that necessary to remove the fluting flake. These parallel marginal retouch flakes are as close as one twenty-sixth of an inch in width. Their length must be estimated and evaluated for they have been intersected by the channel flake and, therefore, we cannot be sure of their original length before fluting. Infinite skill is required to remove each of these diminutive micro-flakes, for each flake removal requires the same platform preparation, the same spacing, the same downward and outward pressure and the force must be applied each time at exactly the same angle.

The cross-section of both the length and the width of the Folsom is one of the attributes useful for distinguishing between Folsom and other fluted points. After fluting, it is thinner - with the channel scar extending almost the width of the artifact. The cross-section of the length is also thinner and doubly concave, with the channel scar starting and terminating almost to infinity.

All of these things are pertinent to the manufacture of Folsom. It would appear logical, therefore, that there is a great need to separate the Folsom from the other fluted point traditions by a more careful examination of the technology involved and a comparison of the techniques characteristic to each. The unfluted Folsom has, no doubt, equally diagnostic flake scars, however, I have never had a chance to examine such material.

At times we tend to overrate this point because we sometimes lose sight of the fact that it represents only a single example of the many fine types of art which are evident on other types of stone tools. There is international interest in Folsom because of the technique involved in the removal of its two channel flakes and this concern has resulted in many theories regarding its manufacture function, etc. Yet the distribution or geographical range of this classic type is not great and its appearance in prehistory covers only a relatively short period of time. If and when a similar interest is shown in the technology of other artifacts which incorporate the removal of hundreds of flakes from one single tool, these, too, will be just as distinctive. Consider the parallel flaking work such as that found on Eden, but much finer - a different technique, but almost as difficult as the Folsom workmanship and certainly requiring an equal amount of control.

Admittedly, the Folsom technique is classic, but there are many other techniques of equally exacting and difficult workmanship such as the Egyptian knives and bracelets; the Danish Daggers; the reversally fluted Dorset points from the Arctic; the Mayan eccentrics; the Polyhedral cores from Mescamerica; the flaked spheres of Algeria; the very thin bifacial Soluteran types of the Old and New worlds; and last, but not least, the magnificient pressure retouch done on some of the Early New World points.

The faceted spheres from Algeria are fantastic creations, but they cannot be compared to the fluting flakes of the Folsom as the working techniques are not comparable. However, the reversally fluted Dorset points do have a relationship to the fluting of the Folsom. The Dorset pointmaker had problems confronting him that were quite different but equally as difficult as that of the Folsom toolmaker. According to Jorgen Meldgaard (Artic Institute of North America, Technical Paper #11)

"After careful chipping on both sides two long blades were pressed off from the pointed end on the same side, each removing approximately one-half of the chipped surface, and resulting in a keeled appearance of this side of the blade. This process is parallel to the fluting

of the Folsom blades, but the purpose was primarily to obtain sharp edges, secondarily to make the blade thinner". Consider the mechanics involved - the very gragile tip of the Dorset had to serve as the platform for removal of the two parallel flakes requiring the worker to demonstrate infinite skill when applying the necessary pressure to prevent crushing or breaking this point. After these two parallel flakes had been removed, they left a ridge down the median line and a razor edge on both sides. When one considers the problems of mechanics of fracture in relation to the amount of platform material on the fragile tip then he realizes that this is indeed a remarkable accomplishment. Folsom and Dorset have a similar relationship, but there is little doubt that different techniques were used. Who is to judge the most skillful?

The blades removed from the Gran Pressigny cores are a remarkable achievement and may be compared favorably to the dimunitive channel flake of the Folsom. However, these grandices blades were detached from a thick stable core and from only one side, whereas the blades removed from both sides of the Folsom were only slightly thicker than the point itself. The Polyhedral cores from Mesoamerica also display

much skill, as a single error or miscalculation would ruin the core.

But, again, one has a massive core from which to remove the long narrow blades, making this manufacturing job less difficult.

The Egyptian knives illustrate a series of flake removal comparable to the fluting of the Folsom for they demonstrate the ability of repetition and duplication of flake removal - the skill and accuracy of detachment - but, again, they are removed from a greater mass of stone.

There are many other examples of work comparable to the Folsom technique, but these will serve as a few to illustrate the many complexities that confront one when making comparisons and they may serve to better explain why the Folsom is, at times, both underrated and overrated. The list is far from complete but, for the present, these known types with their controlled precision s surface flaking are outstanding to the discerning eye of a flint-knapper. Perhaps the Folsom is the most difficult artifact to replicate, but one must not discount the skillful and critical techniques of the many other types of stoneage art.

I first became aware of the Polsom point sometime around 1928 when a tourist from Colorado, knowing of my interest in flintknapping, told me about this peculiar projectile point. He described it as having on both the dorsal and ventral sides "blood grooves" to permit the animal to bleed after the weapon had been inserted, and he further believed that the grooves had been ground cut. From this description, it was difficult for me to conjur up a mental picture of this point that - at that time - had no name. However, several years later I came into posession of one of these mysterious artifacts. Then, for the next ten years, I made numerous, futile attempts to successfully replicate the Lindenmeier Folsom. I had little success - but I did gain much experience in what not to do and filled my files with broken and misshapen projectiles.

In 1941, I met Dr.E.B.Renaud at a Museum Congress in Columbus where

I was working with Dr. H.C.Shetrone on lithic experiments and where

I was able to study some of the Ohio fluted points. Dr.Renaud was

working on typeology and it was during a discussion of tool analysis

that I obtained my first accurate information on the Folsom. When

I had completed my work at the Museum, I went to Washington, D.C. to

talk with Dr.Roberts and was then able to view a collection of Folsom points and their channel flakes from the Lindenmeier site.

My study of this collection was brief, but it gave me immeasurable assistance in the technology of the Folsom point.

In 1063, Dr. Marie Wormington of the Denver Museum of Natural History allowed me to examine some of their Folsom material and, after studying these artifacts. I revised my thinking on working techniques. collection included some partly finished artifacts which gave me my first opportunity to analyze the actual phases and steps of preparation for removal of the fluting flake. Principally, I noticed that the distal end of the preform was polished and left with excess stone, making the tip end of the preform thicker in relation to the design of the finished artifact. This technique was employed, no doubt, to provide better support and to lessen the shock received by the preform from the force necessary to remove the channel flake. This further strengthened my belief that either the pressure method using clamp and anvil, or the indirect percussion method with clamp and anvil, was used as the means of fluting. Logically, this excess material would be of no conceivable help or use when employing the use of the

free-hand percussion or free-hand pressure technique and, in fact, it could be detrimental. Further, the polish would serve no purpose whatever.

After seeing this, I had to revise my thinking, for I reasoned that the polish on the tip was to strengthen the stone and the excess material was purposely left there to permit the artifact to withstand the great amount of force during the manufacturing stage whether by pressure or percussion. I did some experimenting with this technique of point support and tried a new method of placing the artifact in the holding device. Previously, I had felt the tip of the artifact should not be touching on solid material, for I felt this would cause crushing or compression of the channel flake. But the excess material left on the tips of the Wormington collection indicated that the aborigional rested the tip of his preform directly on the support. Thereafter, my artifact was placed in the holding device in such a position that it rested on the leading edge of the anvil and in such a way that the leading edge of the tip of the preform was supported by the antler block (anvil) Therefore, when force was applied on the platform and the fluting flake was being

detached, it would clear the antler support and still flute the projectile point to the tip without the customary end snipping. The use of this method resulted in better replicas and I did not snip off the tips as often as without the support. I also found when using this method that fluting flakes removed in this fashion had the same characteristics as those removed by Folsom Man. To further test this theory. I advised Gene Titmus, a very competent flintknapper, of my thinking and he, too, found that he had much better results and that this Folsom had the same character of the genuine. My experiments with this technique - whether using pressure with rest or indirect percussion with rest - have been quite successful and have produced points with the character of the Lindenmeier Polsom.

There seems to be an erroneous opinion that the Folsom was made for beauty and its flutes for decoration or due to the desire of the worker to reserve for posterity a record of his knapping skill.

I do not believe the aborigional had beauty in mind - or art for art's sake - but, rather, was designing a practical and functional tool of extreme quality. As a stoneworker, I consider this point

to be structurally and mechanically the best designed for its purpose of any weapon conceived in this period of time. When this point was manufactured and used, North America was inhabited by large game, prey for the many carnivors both man and test beast. Not only did Folsom Man have to gather his own food, but he also had to compete with his carniverous associates, many of which were formidable competitors, having superior toenails and dentition. He was not only a dedicated hunter, but was also the hunted; and, in order to defend himself and kill his game, he had to design an adequate and dependable weapon in the form of a projectile point that could be cast by the throwing stick thereby multiplying the momentum and flattening the trajectory. This projectile must be designed to permit easy withdrawal from the beast and must provide for repeated stabbings to insure the kill. The shaft of the spear must also be of sufficient strength and diameter to penetrate between the ribs and deep into the body cavity and permit the hunter to manually make repeated thrusts through the thick, touch epidermis of The Folsom point filled these needs most admirably. the animal. The shape of this projectile was designed for strength, having a tip that was razor-sharp because of the minute delicate, denticulate

retouch - yet it was not the fragile constricted tip of the later periods. The toolmaker, no doubt, purposely designed it to have a broad tip so it would be less likely to break if it struck bone. Its design makes it one of the strongest of all projectile points for, when properly hafted, the cutting edge was about all that was exposed. I do not believe that the Folsom was simply lashed on the end of a split stick, for its design would indicate that it was fitted to a shaft with care and precision. Logically, it would seem that the shaft was designed to fit the fluted channel in such a manner that only the cutting edge of the projectile would be exposed. Possibly, the serving included the use of gums, resins, or other dopping cements to insure stability after the final serving to the projectile. The basal portion of this point is slightly constricted, or tapered, to provide clearance for lashing or serving to the shaft. This allows the shaft to be served in such a manner that it will cover the constriction and make the sides of the flint point slightly wider but parallel with the shaft. The base of the artifact should be the same width as the diameter of the shaft, otherwise there would have been no need for the toolmaker to constrict the basal portion of the point. The tangs and the convex portion of the base between these

tangs (remant of the tit) serve as a holding device to more firmly secure the point and make it immobile when it is finally secured to the shaft. The finished product would then allow for repeated insertions and stabbings. After the Folsom is hafted in this manner, there is no stemmed point made that will have its resistance to breakage.

ILLUSTRATE

With a point of this design, it would be possible to resharpen it on the hunt if there was accidental breakage of the stone tip as the result of a misplaced shot or from impact with the animal bone. Then, when the hunter returned to camp he could discard the broken point and place a new and whole one in the shaft.

Points thus broken provide material to evaluate these past great hunters. In the future, it would be a most interesting project to study and compare the points that were broken on the hunt - those broken in the process of manufacture and, upon rare occassions, those that were, perhaps, taken as playthings by the curious children and subsequently lost. It would seem unlikely that perfect points would be discarded casually.

Enigmatic and difficult indeed are the working techniques of Folsom, however, this manufacturing problem is not confined to just the present-day flintknappers, but, many times, defeated even the Folsom toolmaker. This is quite evident from an inspection of the tools found in the workshops that show they were broken during the fluting process and also by a close inspection of even the perfect, unbroken points. Even the perfects show Folsom man's evident failure to reproduce, time after time, the exact same fluting size and shape. In other traditions we sometimes find a repeated manufacture of tools with exact duplication of size and shape of flakes even to such an extent that we wonder if the same knapper did not make all the tools for the tribe. Not so with Folsom. We find the toolmaker at one time removing a beautiful channel flake that spreads across almost the entire surface of the point and terminates almost to infinity at the distal end, and then again - we find the flake scar narrow and hinged off before it intersected the tip. Some are broken in manufacture due to the tip adhering to the channel flake, others break in two pieces, and some show multiple fractures.

My experiments lead me to believe that such convicted average and the convicted and the conv

outward force and from improper support of the distal end of the preform. We find the stubby type Folsom that appears to be the result of the aborigionals reclaiming his broken tools and retouching the tips - evidently, the rejuvenation of a point that was broken by snipping off the distal end during the fluting process.

These show the same character of working techniques, but the variance of size and length of the channel flake seem to indicate that even old Folsom Man was having his problems fluting his projectile point.

The number of completed points cannot be estimated from the amount of debitage and channel flakes found in an occupation zone, as many of these flakes were broken as they were removed from the point - others were, no doubt, utalized as cutting implements. Therefore, of channel flakes of points the amount/broken during manufacture gives no clue to the amount/that were actually finished: Also, points broken on the hunt and then returned to the camp for replacement, will give no clue to the percentage that were finished and lost at the hunting ground. It would seem that all points broken in the manufacturing stage would remain where they were fabricated.

When a full assemblage of the discarded, broken and resharpened points can be examined, it will, no doubt, reveal how the point was broken and provide a means of further study of the type of fracture. A study of the relationship of the flakes to the artifacts should help resolve whether they were removed by percussion or pressure the order in which they were detached - the rhythms and muscular behavior patterns of the worker - and what type of preparation was provided for the removal of the flakes. When one has an understanding of the working techniques that produce flakes, then he can make comparisons with other flakes and flake scars. Certain mechanical conditions produce a definite scar on the breaks thereby making it possible to determine whether the point was broken in manufacture or shattered when the shot made impact with the animal bone. The character of the break is similar if the conditions that caused the break remain the same. The same is true of breaks that occur during flake removal; for example, the removal of the channel flake has certain diagnostic traits that are distinctive to the Folsom which are not characteristic to the Clovis. For instance, fluting by simply

hand-held percussion has an entirely different appearance than that made by pressure. These differences are described more fully and completely under percussion and pressure experiments.

Before a flintknapper can attempt to replicate a technique, he must analyze the artifact and his analysis must include an examination of the flake scars and a mental reconstruction of the processes and techniques involved to produce a flake that would fit each particular scar. If he has only the flake for this reconstruction process, he must then make a mental picture of the negative flake scar left on the artifact and calculate at what stage of fabrication it was removed and further decide what part it played in the completion of the tool. When examining an artifact, the student of flintknapping, studies the edges for remnants of platforms which may reveal diagnostic traits pertinent to certain types of platform preparation. He attempts to compute the angles at which force applied and determine whether the pressure or percussion method of force was used. He tries to determine why certain artifacts have flake scar conformation and regularity while others show irregular and disordered flaking. He studies the edges,

width of the flake scars in relation to their length. Also important is the size and form of the artifact relative to the type of flake scars. The general eye-appeal of the form may have little bearing on the amount of skill necessary to produce this certain tool. A lenticular cross-section would, by necessity, have curved flakes, whereas the diamond-shaped cross-section will result from the removal of flat flakes.

Appraisal of artifacts should include comparison of the different degrees of the toolmaker's skill and the multiple techniques required to produce these stone tools. Each must be evaluated according to the individual's ability to produce a flake of the desired dimensions under certain set conditions and, further, must be related to the quality of material. To be considered are the isotropic and homogeneous qualities of the material, whether the stone had been altered by the heat treatment, and whether undetected flaws or inclusions caused a higher ratio of breakage in partity completed points. These are a few check points to be considered to help the knapper understand the many phases of manufacturing methods employed. It is unfortunate that only the final

stages of the flaking are represented by the flake scars left on the completed artifact. There were, no doubt, several pressure retouchings done before the final, but, without a complete assemblage of the flakes, there is no means of being infalliable regarding the pressure or percussion techniques used. When such assemblages are available for interpretation of all stages of production - from the rough to the finished tool - then, perhaps, we will discover some of the more elusive points of their manufacture that are now nebulous. Then, perhaps, certain diagnostic traits may be followed through time and space.

Folsom is sometimes misunderstood because few have taken the time to recapitulate the technological aspects of the several techniques involved in its making. In order to make a qualified appraisal, one must first have a knowledge of certain specific identifying features of flake scars such as - the inherent qualities of the channel flake that produce the scar. What sort of termination did it have and what was the production technique - was it caused by a step-fracture, or did it feather out to infinity. Was it straight or was it curved? Did it undulate, leaving ripple marks on the channel, or was it smooth the entire length of the

projectile point? What was the depth of the bulb? Was the flake scar flat or concave? Without the flake, the scar will only tell part of the story. The proximal end of the flake will reveal much about the methods of flake detachment, i.e. the type of platform, the area of surface contacted by the implement used to remove the flake, etc.

When populations and assemblages of both the artifacts and their flakes can be grouped for study and comparison, then the student of stoneage tools will be able to reconstruct the steps and stages of the techniques involved in making their final judgement of true types and sub-types.

The Folsom which is, no doubt, a refinement of the earlier Clovis types has, indeed, provided archaeology with a stage in the development of Early Man in the Americas. It not only provides a pretty clear picture of the evolution of type or types of Clovis to the refined techniques of Folsom, but also indicates several types of flaking that may be traced into more recent times. Fluting disappeared when a need for this particular specialized point vanished. It, no doubt, had proven adequate to the need of that particular time and its manufacture ceased with the disappearance of the larger game. The fluted point may have been Folsom

Man's answer to an auxilliary weapon that was both a heavy dart for throwing and a lance for thrusting and, therefore, he had no need to develop blade industries to produce microliths for insertions into antler and bone projectiles, spears and lances.

To my knowledge, no present-day flintknapper has ever really mastered the Folsom techniques, but my experiments have helped eliminate, for me, some of the methods purpotedly used. Many of these methods I abandoned because the character of the flakes do not replicate the Folsom techniques, however, they will be listed here and explained for purposes of elimination. Before one can reasonably accept any suggested technique, the channel flake removed by Folsom Man and the one removed in the experiment must duplicate all features and aspects of the flake scars of the original point - it is not enough just to successfully accomplish removal. I have trie every conceivable method of producing this fluted artifact and have, finally, accepted two methods and find that a third technique has merit but needs further experimentation. Accepted methods are: (1) Fluting by direct pressure with rest (2) Fluting by indirect percussion with anvil and clamp (3) Combination of both.

Following is a list, explanation, description and analysis of methods and techniques used in experiments to replicate the Lindenmeier Folsom.

Emphasis will be placed primarily on the fluting technique for detailed

preliminary work prior to fluting (preforming, surface flaking, form, size, etc.) is similar up to this stage of manufacture regardless of the method of flute removal and will be covered in detail in the preforming and pressure technique chapters.

List of experiments on Folsom Techniques:

- Direct free-hand percussion using a hand-held hammerstone, billets, or rods, of bone, antler or wood; hafted stone, antler or bone hammer.
- 2. Direct percussion by securing preform in holding device and striking on anvil.
- 3. Direct percussion with preform placed on anvil.
- 4. Indirect percussion, free-hand without rest.
- 5. Indirect percussion with rest.
- 6. Pressure, free-hand with tool either hafted or unhafted to a short handle.
- 7. Pressure, free-hand with tool hafted to a long handle.
- 8. Pressure, free-hand with short shoulder crutch and rest.
- 9. Pressure with chest crutch and clamp
- 10. Pressure with chest crutch, clamp and anvil rest.
- 11. Combination of pressure and indirect percussion with clamp and anvil.

Eollowing is a series of conditions relative to producing Folsom:

- 1. Quality of material.
- 2. Method of removing blanks from the mass without establishing stress.
- 5. Percussion preforming.
- 4. First pressure retouch.
- 5. Second pressure retouch.
- 6 Sectional profile.
- 7. Longitudional profile .
- d. General design of form for fluting.
- 9. Swelling mid-section with a constricted base.
- 10. Regular or ground edges.
- 11. Preparation of the base.
- 12. Very thin basal portion between the tangs.
- 13. Preparation of the first platform.
- 14. Angle of the platform.
- 15. Position of the platform.
- 16. Freeing of the platform.

- 17. Size of the platform.
- 18. Grinding and polishing of the platform.
- 19. Diagonal thinning flakes at the base.
- 20. Preparation of the tip.
- 21. Angle of the beveled tip.
- RR. Polishing the tip.
- 23. Correct lateral position in the clamp.
- 24. Correct longitudional position in the clamp.
- 25. Correct lateral and vertical angle of the artifact in the clamp.
- 26. Correct side and downwa rd pressure of the clamp.
- 27. Correct support of the tip.
- 28. The amount of downwa rd force necessary to flute.
- 29. The amount of outward force necessary to flute.
- 50. The angle at which the force is applied.
- 31. The correct longitudional angle of force.
- 32. Correct intersecting of the bulbs of force at the base.
- 53. Correct intersection of the channel flakes at the tip.
- 34. Removal of the second flake using the same preparation as the first.
- 55. Final retouch with chara cter distinctive to Folsom.

1. Direct Free-hand Percussion:

It is not impossible to flute an artifact by the use of this method, but it will not produce a true replica of Folsom. With the worker in a sitting position. the flute removal is accomplished by placing the artifact in the left hand, resting on the undersite of the four fingers, the long edge of the preform parallel with the inside of the little and index fingers and the platform projecting beyond the thumb and the index finger and the preform held securely in place by the thumb. (illustrate) For support, the hand holding the preform is then rested against the inside of the left thigh. Percussion tool(either a hammerstone, or a hafted or unhafted billet of horn antler or wood) is held hammerlike in the right hand and blow delivered to the prepared platform at an angle vertical to the artifact. Amount of force necessary cannot be estimated for it must be related to the material of the preform and size of flute desired. This knowledge can only be acquired by experiment and experience. "When using obsidian for percussion work, use tree wood not antler. Antler is too hard - box wood or any moderately hard and dense wood should do the trick" (Personal correspondence with Francois Bordes)

The momentum of the hammer may be increased by the use of a long billet or by hafting the horn, stone or antler to a handle. "Holding the tool by its extreme end will increase the momentum and overcome the inertia Problem. It is tricky,

but it gives the blow a better momentum that you cannot get if you hold the antler shorter". (Personal correspondence with Francois Bordes). However, the use of the longer billet or handle does multiply the margin of error. The force must be mentally calculated to control the flake and restrain or restrict it from travelling the full length of the point otherwise the tip will be remove. Since material from the Lindenmeier site indicates the fluting flake terminated to (or almost to) infinity, this would seem to eliminate this method as their technique. When using this method, the character of the channel flake will be one of many undulations, due to the compression resulting from the sharp impact of the hammer and it will terminate the flute in a step or hinge fracture. This method may have been used to produce some of the Clovis points, but it does not produce the same character of flakes and scars that are found on Folsom.

When using the hand-held percussion method for removal of the first channel flake, the platform is prepared across the base by pressing off a series of small flakes to remove sufficient material on each side of the center to leave a projection called a "nib" or "tit"(platform) which receives the impact from the striking tool. The tit(platform)

is then rounded by abrasion to prevent it from shattering. If and when the first channel flake is successfully removed, the base is then reflaked to make a second tit for removal of the second channel flake. When preparing for percussion detachment, the first tit must be prepared high above the base in order to leave enough material to prepare a second tit. The second tit will be even with, or slightly higher than, the base. Platform preparation must be worked in this manner, otherwise the percussion tool would strike the corners(tangs) of the artifact before it hit the tit. Artifacts made using this method will have a flat or only slightly concave base and the base will be thick when compared to the Folsom. Further, the finished artifact will be almost devoid of tangs.

ILLUSTRATE PLATFORM PHOTO NO 8

Points made by hand-held percussion must necessarily be heavier than the Folsom, for the lighter point, lacking sufficient weight, will move with the impact from the striking of the hammerstone or billet. My initial fluting experiments were done using this method and I used every conceivable type of percussion tool and tried various tool-holding methods. For thinning or making a Clovis, longitudional flakes removed by the hand-held percussion method are not uncommon, however, this technique is not compatible to the fluting of a Folsom.

When rough-shaping a preform, it seemed to be a common practice SEEFG for the aborigional toolmaker to leave it thick so that it would with-stand the shock from the impact of striking. He would then use the hand-held percussion method to remove a flake from both the dorsal and ventral sides. However, the removal of these two flakes was only to rid the preform of the surplus material before the final thinning and retouching and not to design the point for hafting. This basal thinning is ordinarially done on points of more than two inches in length and larger than most Folsoms in their completed form.

I discarded this hand-held percussion method of replicating a Lindenmeier Folsom because the space between the two barbs at the base of
the artifact is so small that it prohibits striking with sufficient
speed, accuracy and required force to permit removal of a flake from the
base to the tip. To execute this fluting fete, the percussion tool must
be large enough and have sufficient and necess ry weight to remove a
flake almost as large as the artifact itself and, logically, this size
tool will not fit in the restricted area between the tangs. When

using this method, the margin of error is so great that the accuracy required would defeat man's attempt to remove a series of fluting flakes. If this method permits one to detach a fluting flake from one side, then the artifact is so weakened that it is practically impossible to repeat the operation on the opposite side without fracturing the preform. The first blow would have removed not only the flute, but also the platform and, therefore, it would be necessary to prepare a new platform for the second flute. Loss of original platform material would require preparing the second tit deep and well inside the barbs and, therefore, it would be practically impossible to reach with the percussion tool. The force of the percussion blow also causes shock on the distal end of the artifact which will tend to remove the tip. Basal thinning may be accomplished by percussion, but it does not provide the control, and accuracy needed to produce a projectile point with the inherent character of a classic Lindenmeier Folsom.

The physical and mechanical aspects of the percussion method create conditi ns not condusive to permit the literal trisecting of a point (split into three pieces). To date, I cannot agree that the Lindenmeier

Folsom was made by the hand-held percussion methods.

2. Hand-Held Percussion Striking Anvil:

A method whereby the preform is secured in a holding device and struck in such a manner that the prepared platform on the proximal end of the artifact will make contact with a hard object. Insert the preformed artifact (with prepared platform) between two strips of flat wood that have been securely lashed together in such a manner as to provide a handle at one end and, at the same time, hold the projectile at one end point securely at the other. This device is then held/in the same manner as one would hold a hammer and swung in an arc with sufficient force so that the platform of the artifact, held in the other end of the device. will strike against a hard cobble which has been partly buried to stabilize and prohibit movement of the anvil. For the anvil, select a cobble having some sort of a ridge and then bring the holding device down in such a manner as to permit the platform of the artifact to make striking contact with the ridge of the anvil.

My experiments with this method have, to date, resulte in complete failure. However, the results have led me to believe it merits

further experiments. End results of my experiments have been:

the shattering of the base, heavy undulations, loss of the tip

and other breakage. The Levallois flake removal has a relation
ship to this method, but its core is much more massive and, there
fore, it lends itself well to this method.

No. 3 Direct Percussion With Preform placed on Anvil:

This is accomplished by placing the preform on an anvil and striking the prepared platform with a percussion implement. The tip of the preform is polished to avoid crushing under impact. Preform is then placed on the anvil , with the tip resting directly on the anvil and the preform held by the left hand in a vertical position. A vertical blow is then delivered on the basal platform of the artifact. The result is a bi-polar compression which is caused by one force directed against the other. These two cones of force are in opposition with each other and, under impact, they will collapse, thereby shattering the point. If the angle of force is changed to correspond with the angle of the cone, preform then the thumb and fingers of the/holding hand cannot provide sufficient resistance to the blow to allow a channel flake to be removed.

I have had little or no success with this method. However, this technique can be used for removing a blade from a core.

4. Indirect Percussion. Free-hand without rest:

(A) This method can encompass the use of several techniques. Each can be used with some degree of success for either the preforming of a bifacial artifact or to make a tool provided it is large enough and has sufficient weight or mass to provide enough inertia for a flake to be removed. My experiments in using this method to remove a Folsom channel flake have resulte in little success.

For the flute removal, I placed the artifact between the knees - which are protecte with a leather pad, using as tools the time of a Deer antler for a punch and an antler billet as the striking tool. Then seat the punch at the proper angle on the prepared platform and strike hard with the billet using the proper amount of force. It is more difficult to strike a single blow and retain the correct angle of the punch than it is to execute a series of blows for, if the first hit is successful, the remaining flakes can be removed by just keeping the same angle and using the same amount of force. A fluting flake detached in this manner

will undulate and ripple excessively and it will either hinge off
short or will carry through and remove the tip. I also find that
this method requires the artifact to be quite thick to permit the
removal of a flake from both sides. This technique produces a
projectile point that has none of the character of the classic Folsom.
The percussion shock is too great to produce a thin point and the end
result is generally a broken artifact. Also, there is no means of
controlling the amount of downward and outward force.

B. A second method may also be included in this category which is much the same as the first with the exception of the manner of holding. Difference of holding involves placing the point to be fluted on sand or soil and holding it in place with the left foot and, with the punch held in the left hand, to strike with the billet held in the right hand. But this technique will invariably remove the tip or will drive the point under the foot.

A third method is to place the point to be fluted in the palm of the left hand which is protected with a leather pad. The base of the preform is pointed toward the heel of the hand and the tip rests between the index and second finger. The punch is held between the fourth and the little finger of the same hand and is placed at such an angle that the tip of the punch rests on the prepared platform of the preform. Artifact is held in place by the pressure exerted between the punch and the palm of the hand. Punch is then struck hard by the billet which is held in the right hand. But it is difficult to retain the proper angle of the punch, for it cannot be held firmly enough against the platform due to insufficient rigidity of the hand holding the preform. Holding is insufficient to keep the artifact from moving with the force delivered by the percussion blow. Also, the left hand suffers unduly from the striking impact. The preformed Folsom is not condusive to this technique for it does not have sufficient mass or weight to provide enough inertia for this flake removal.

D. A fourth approach and similar method is to have a second person strike the punch which is held by the first person. This eliminates the cumbersom method of trying to hold both punch and preform in the same hand and, at the same time, deliver the blow. Manner of holding the artifact is the same as above, but the punch is held in the right hand. First person holds the preform in his left hand and the punch in his right hand. The second person delivers the blow. This method of using indirect percussion increases the accuracy of placing the punch and also of retaining the angle. This technique has not been fully explored by the writer because of the lack of a second person with sufficient experience in *x gaugeing the proper amount of force relative to the material and the amount necessary to remove a flake of a given dimension. This method provides no support for the tip and usually results in end-snipping.

5. Indirect Percussion with Rest:

This involves the process of resting the preformed projectile on an anvil or any substance that may provide the necessary support for the tip of the point. Anvil may be of medium soft stone, antler, bone, horn, wood, ivory or any material that is semi-yielding without being harsh or severe. The intermediate tool may be hafted or unhafted and may be made of ivory, degreased bone, well-calcified antler, jade or any similar tough stone and can include certain metals. The Striking tool may be hafted or unhafted and be of any material as long as it can be propelled with sufficient accuracy, precision and control. In my experiments. I found that a billet of bone, wood or antler was preferable to an unhafted hammerstone. A hafted stone hammer or section of hafted antler will increase the needed momentum which is not obtainable with a hand-held hammerstone.

As do most techniques, the indirect free-hand percussion with rest method involves a good many physical problems. Initially, I used this method to overcome the inaccuracy encountered in direct percussion such as thinning a large bifacial tool. (This is more fully covered in chapter on thinning)

Method"A"

Preform is placed on the underside of the middle, fourth and little fingers of the left hand and punch is resting on the index finger and held in place by the thumb. The tip of the preform(on which proper platform has been prepared) is placed on a heavy piece of antler which is resting against the inside of the left thigh and held in place by the pressure exerted between the thigh and the preform in the left hand. Punch is held in the left hand, its tip placed on the platform of the preform. Blow is delivered to the punch by an antler billet held in the right hand.

But, it is exceedingly difficult to hold the artifact and also the punch in the left hand. Unless the left hand can exert enough pressure through the punch to the platform, a deep bulb of force will be the result, with the flake undulating excessively. Unless a second person is available to do the striking, better results will be obtained by eliminating the intermediate tool and using direct percussion. Then one can only expect to remove channel flakes which are characteristic to certain Clovis points and not to Folsom.

Method "B"

Another experiment in using indirect percussion with rest is: With the worker in a sitting position, the preformed, prepared but unfluted Folsom is held firmly between the heels of the operator and the polished tip is placed on the anvil which is resting on the ground between the feet. The intermediate tool(or punch) is held in the left hand and its tip rested on the prepared, polished platform of the preform. At the moment of detachment, pressure is exerted with the left hand as the right hand delivers a blow of sufficient intensity and momentum to detach the channel flake. The amount of force necessary is relative to the material being used and the desired size of the channel flake.

The use of the heels will suffice as a poor substitute for a second party and if one wants to develop dexterity with this type of holding, he should start at an early age to develop suppleness and strength in the feet. Dr. Desmond Clark has shown me examples and pictures of gunflints made by the natives of Africa by using this method. However, they used a metal punch to remove the flakes. This method works well for the type of product they wished to make and can be compared to this experiment, but cannot be compared to the removal of the Folsom channel flake.

I have not been too successful with this method for I am unable to immobalize the point in order to remove the flute. Also, I cannot hold the punch against the platform and, at the same time, exert enough downward force on the platform of the preform to prevent the rebound from percussion striking. The rigors of modern civilization have left my joints with much to be desired for a successful use of this method. Because of this lack of control, the ratio of breakage is excessive. Perhaps a more limber person could explore this technique further.

Method "C":

The indirect percussion with rest technique is a method I did not explore until after I had viewed the Wormington collection and learned of the tip support. I conferred with Gene Titmus, an expert flintknapper with a scientific approach to the subject, and we spent many hours together, and separately, working on this technique. Our results were usually the same and we agreed on all phases of the manufacture. Mr. Titmus has contributed his notes for description of this method and a major part of the coverage of Method "C" is taken almost verbatim from his writings. I agree with his conclusions unequivocally and credit must be given here to his contribution to the writing of Method "C".

The most successful style of indirect free-hand percussion with support is with the use of a clamp and anvil. The clamp holds the prefashioned point securely in place and also affords support for a means of pressure on the tip of the point which rests on the anvil. When preforming, in preparation for using this method, the tip of the point is beveled and this is done to allow clearance between the point and the anvil which permits the fluting to be completed without the channel flake contacting the anvil or support. The bevel is prepare on the side opposite that to be fluted. By beveling I mean the removal of a series of small pressure flakes from the tip of the preform until the desired angle is obtained. The foremost or distal edges of the bevel is then polished to help withstand the force applied on the basal platform. This allows the fluting flake to terminate at the base of the bevel.

But let us consider this method step-by-step: A suitable piece of material (obsidian or heat-treated silica material free of imperfections) is roughed out to approximate shape - usually by direct percussion if made directly from a core. If flake is derived from a core, pressure flaking is generally suitable for roughing out to approximate shape. Collateral parallel flaking with each flake feathering out to slightly over half the width of preform is used in further shaping into the desired form. The preform

should be lenticular in cross-section as this is one control factor in the the getting/desired width and depth of/channel flake. A lenticular cross-section helps to spread the channel flake to the desired width. If preform cross-section is sub-lenticular, the channel flake may spread out to each edge until it will almost cleave the preform into two equal longitudional pieces, or it will take off the distal end even though it is supported. SEEF19 @

Since the distal end of the preform is supported on an anvil during the fluting process, it should not be left too thin in cross-section and SEE F19-7 should be rather blunt. This strengthens the tip and helps withstand the force of the blow used to remove the channel flake. The basal end of preform(before platform preparation) can be made slightly convex or squared. The shape of the channel flakes is controlled by the outside 566 F198+9 surfaces, or faces, of the preform. Therefore, the smoother and more uniform the flaking, and the more symmetrical the cross-section of the preform, the more uniform will be the channel flake and the scar. A high spot or ridge on the preform face, in relation to the rest of the facial surface, will cause the channel flake to spread and follow this high place. A low spot will cause a narrowing of the channel flake in the vicinity of the low area.

Preparation of First Platform:

The proximal, or basal, edge of preform would normally be in the center, but the first step in platform preparation is to change, or move, this edge from the center(by removing short flakes from basal edge opposite the face you wish to flute - Fig.la) over until it is vertically in line, or almost in line, with the face you are going to flute. These short flakes are removed until the proximal end is almost squared off. (Fig.lB) This leaves basal end almost flat or at right angles to long axis of preform. This flattening of the base will give punch a better seat and allow platform to be almost directly in line with the face when its preparation is completed.

Next step is to segregate the striking platform from rest of basal edge, positioning it in the center of the base. (Fib.4C) This is done by each removing flakes starting at the extreme edge of the base, in turn, on the face you are going to flute. The flakes are removed starting from each basal edge toward the center. The flakes removed from the outside edges need not be too long, but as you progress toward the center they should be made longer with the longest flake immediately beside the projection(platform). (Fig 4A,C). This frees the platform from the

basal part of the face. This procedure also leaves the platform projecting above the rest of the basal edge.

Next - on the opposite side of the face to be fluted, material must be removed to free the platform. This is done by removing a flake on each side of the platform as in Fig. 4B, arrows 1 and 2. This leaves an equa-lateral triangular shaped platform. The freeing of the platform on this side established where the channel flake will free itself from the preform when it is removed. Generally, it will come free immediately behind the apex of the triangular shaped portion of the platform (Fig. 4D, red line and arrow) When the channel flake comes free immediately behind the apex of the triangular shaped platform, it leaves the small basal projection characteristic of the classic Folsom. (Fig. 2) In some cases, if the platform is not freed sufficiently from the rest of the preform, the flake will free itself further behind the triangular shaped portion of the platform and leave a flake scar similar to Fig. 6 and there will be no basal projection.

The top of the platform is then polished until completely smooth. This is done so that the platform will withstand the force used to remove the channel flake. If the platform were not polished, it would collapse

or shatter when force was applied, resulting in breaking the preform or not removing the channel flake properly.

In all cases, the platform must be prepared as described so that the characteristics of the classic Lindenmeier Folsom will be present when the channel flake is removed. The main purpose of the platform is to facilitate easy removal and permit better control of the removal of the channel flake.

The distal end(or tip) must be beveled as previously described and polished and it must be supporte on an anvil when placed in the vise. The edges of the preform are also slightly polished at the base to withstand the pressure of the vise. This is a safeguard against crushing the edges in the vise.

Fluting:

A wooden vise is employed to hold the preform during the fluting process.

(Fig 3) The preform is placed in the vise at an angle of approximately

80 with the distal end resting on a small piece of deer or elk horn anvil.

Deer or elk horn is not necessarily the only substance that could be used for an anvil - soft stone or possibly hard wood would be a suitable substitute. The vise must be capable of holding the preform firmly by its

edges and also capable of exerting downward pressure sufficient to hold the distal end of preform firmly against the anvil. This firm support of the distal end in the vise is necessary so that the channel flake will feather out when it is detached. If support of the distal end is not sufficient, fluting will not allow the channel flake to feather out, and the preform will break. (Fig. 5) "Feathering out" is a term used to describe the way the channel flake comes off, or frees itself from the preform face (Fig 7), and is defined as the lessening of the thickness and the narrowing of the width of the channel flake as it is nearing the distal end of the preform. This narrowing and lessening continues until the channel flake reaches the distal end and is detached. The angle, at which the force is directed into the preform, determines where the channel flake will feather out. The amount of force used is also a factor involved in removal. If insufficient force is applied, the channel flake will step-fracture at the point where the amount of applied force is exhausted.

after preform is placed in the vise, the intermediate tool, which is a copper-tipped wooden handled kakk instrument of about one pound in weight and approximately one foot long(punch)(Fig8), is placed with the copper

punch must be held firmly against the platform and the entire punch must be directly in line vertically with the preform(Fig.9B) with the punch angled back approximately 10° as in Fig.9A. The punch must be directly in line vertically; that is, the punch, the platform, and the center of distal end must all be in line. This is to insure that the channel flake will be removed from the center of the preform. If these conditions are not met and the punch is not in line vertically and is angled off slightly to one side or the other, the channel flake will come off one edge or the other, depending on which way the punch is angled off center and leave a flake scar as in Fig.10. 4 Fig.20

The next step is the striking of the blow against the punch to remove the channel flake. To strike this blow, I use an elk antler billet approximately one foot long and weighing slightly in excess of one pound. The blow must be struck directly in line with the punch. The magnitude of the blow cannot be said to be any exact amount, as the degree of force needed to remove the channel flake varies with the material and the size of the preform. But, the blow must be sufficient to carry the channel flake to the distal end where it should feather out if all preparation prerequisits are fulfilled.

Now, assuming you have successfully removed the channel flake - and by no means is every attempt a complete success, due mostly to human error - the preform is removed from the vise and you are now ready to atart preparation of the striking platform for the second channel flake.

Second platform Preparation:

The second platform is prepared similar to the first except that the basal projection left from the first flute can be utilized in its preparation. First, the basal edge is moved over until it is in line with the face you are going to flute and is slightly flattened as in Fig. 1, A, B). The basal projection left from the first flute should still be projecting higher than the rest of the base as it was higher at its inception. Now the platform is completed as in the first channel flake preparation, building it around the basalpprojection. The extreme edges of the base need not be flaked down this time, leaving the artifact with tangs characteristic of the Folsom. Then the bevel is worked on the tip, below the flute and the point turned and - by using the same method - the flute is removed from the other side. This bevel creates a shearing process between the base platform and the polished beveled tip and provides a medium by which the flake removal may be controlled with precision and accuracy. This eliminates the compression and opposition of forces and

allows the channel flake to feather out SEEFIG 18

allows the channel flake to feather out without removing the tip. It also makes the resulting channel flake much flatter and reduces, but does not eliminate, the undulations and pressure ridges, but the distal end of the flake. By using this method, the proximal end of the channel flake has all of the identifying characteristics of the Folsom, yet the ripple marks or undulations at the distal end of the flake appear to be more obvious than those on a Lindenmeier Folsom. Intensive study and comparison of the two is necessary before a final appraisal can be made. SEE F13 10 and F13 17

It is possible that this method of indirect percussion could have been used, therefore, it must be considered as one of the three possible true techniques. But, in the final analysis, it would appear that we must narrow this number and, ultimately, resolve and accept only one as the true technique used by this culture. If and when one technique is recognized and accepted and these methods are separated by either time or space, then it will be possible to separate types and sub-types.

6. Pressure, Free-hand with Tool either Hafted or Unhafted to a Short Hendle

Directions for fluting with this method are: The preformed artifact with previously prepared platform is placed on the folded leather pad in the palm of the left hand and held in place by griping with the four fingers. The distal and proximal ends of the preform are positioned in line with the middle finger of the left hand. The proximal end of the preform rests at the base of the palm with the tangs on the base placed on either side of the concavity of the hollow of the palm. This hollow provides space for the flake when it is detached from the underside of the projectile point. The right hand holds the pressure tool which is a piece of bone or antler sharpened to a point and either hafted to a short handle or it can be used unhafted. Inward pressure is first applied on the prepeared platform at the base of the preform towards the middle fingers. Then, as the inward pressure attains the necessary intensity, a downward pressure is applied to pull the flake loose from ordinated. When one is attempting to replicate as thin a projectile as the Lindenmeier Folsom, the basal corners(tangs) are likely to be broken unless the downward pressure is applied very carefully.

A rudimentary fluting flake to accomplish basal thinning may be removed by this method, but this is not to be confused with the Folsom technique. Some of my initial experiments and attempts to flute a projectile were done by using the hand-held pressure method. It is no problem to thin the base on both sides, but to remove a channel flake that extends from the base to the tip of the artifact - the end result of which will be a perfect and thin point - involves a completely new set of problems that cannot be overcome when the point is hand-held.

On the classic Lindenmeier Folsom, the fluting flake is almost the full width of the artifact and the amount of pressure necessary to remove such a flake is beyond the muscular power of most modern men. The width, not the length of the flake determins the amount of force that must be applied for successful detachment. A flake 5/8" wide is about the maximum size one can remove by hand-held pressure using the short hand pressure tool. Yet

Folsom flutes are commonly in excess of % 5/8" in width. This would seem to eliminate this technique as that used by the Folsom toolmaker.

The advantage of this method is that it allows one to place the pressure tool accurately on the platform and it also permits maximum control of the inward and downward pressures. The disadvantage is that the hand is not sufficiently firm and cannot be held rigidly enough to control the proper angles. As a result, the flakes will go to the left or right and not follow the parallel sides of the point. It also results in excessive undulations of the channel flake because of the poor support and it affords no means of affixing a rest or stop to prevent the tip from being removed. I cannot produce a true replica when using this method for the hand is much too yielding to allow success This method can only be successful if the channel with this technique. flakes are stopped before reaching the tip and if the preform is thicker than that which would be used for a normal Folsom. A point made in this manner, starting with a thicker preform, must then be thick in crosssection with either step or hinge fractures at the termination of the channel flake. This technique is also hazardous to the worker and can cause severe injury to the hand if the pressure tool slips or if a flake

should collapse and penetrate the protective pad. Conclusions based on much experimenting with this method lead me to believe that it is not acceptable as a Folsom technique. My results indicate that the physical and mechanical problems are too great to be overcome by to have success with this method. I believe Folsom man's hands were too precious to his survival to risk their serious injury by using this technique. $SEEFig_1/2$

No. 7. Pressure, free-hand with tool hafted to a long handle:

Technique of detaching the channel flake by this method is the same as that described in number six except that a long-handled hafted antler or bone tip is substituted as the pressure tool. The long handle is substituted for the shorter one, as it will allow greater pressure to be exerted. The finished, long-handled tool will be of sufficient length to reach from the tip of the middle finger to the elbow. The artifact is held in the left hand which is resting on the inside of the The right hand, holding the pressure tool, is placed so left knee. that the back of the hand is resting on the inside of the right knee with the antler tip of the pressure tool placed on the prepared platform of the artifact. The handle of the pressure tool rests on the inside of the right elbow and against the right side o

this position, leverage is increased over the short tool described in No. 6. The long-handled tool is very satisfactory for heavy pressure flaking and does not unduly tire the wrist muscles. However, because of the difficulties encountered in holding the results are comparable to Method No. 6.

No. '8: Pressure, Free-hand with short shoulder crutch and rest: Preform is held in the palm of the left hand on the protective leather pad. It is resting on the hollow of the palm and held in place by the pressure of the four fingers of the same hand. The right hand is curled around the outside of the fist of the left hand in much the same manner as one would hold a ball. The horizontal portion of the crutch is placed on the shoulder in a manner similar to holding a rifle, with the sharpened antler tip of the staff placed on the platform of the preform. Pressure is then exerted by pressing with the shoulder on the horizontal portion of the crutch to the platform of the preform. The use of the shoulder crutch provides the worker with the ultimate pressure that may be exerted when hand-holding the preform. This maximum amount of pressure is obtained because it allows the hands to press the artifact against the

antler or bone tip while the shoulder is simultaneously exerting pressure against the crutch through to the platform of the artifact.

I am a little apprehensive about this method because of some experimental Folsom work I did for the Ohio State Museum in 1940, using this technique. In an effort to develop sufficient pressure to remove a true Folsom fluting flake, I tried this short crutch method. When the pressure was applied, the unfluted preform collapsed and I drove the antler tipped pressure tool through the palm of my left hand. No doubt, this was accidental, but it does serve to illustrate some of the hazards involved. This considerably dampened any enthusiasm I might have for the use of this method.

B. In order to overcome the possibility of injury, I developed a series of clamps and holding devices for the preform. They not only prevent injury, but provide a means of immobalizing and securing the material being worked. By using such a device, preforms may be held secure so that in each experiment the force may be applied in the same degree and the angles remain constant - conditions prevailing. One can repeatedly remove the same type of channel flakes if the operator's coordination and motor habits remain the same. To date, my experiments

do not indicate that the Folsom was produced by using either the hand-held pressure or the hand-held percussion methods.

Results of my past experiments withthe fluting technique of the Lindenmeier Folsom have resulted in certain, definite conclusions:

- 1. This very thin projectile must be immobilized and supported, but it must be gripped by something other than the hands or feet, for these do not allow the necessary amount of rigidity.
- 2. One worker can complete all the stages of manufacture.
 - 5. To produce, as the final result, an accurate replica of the fluting channel, the degree of accuracy in placing the pressure or percussion tool on the platform between the tangs is very critical.
- 4. To allow the fluting flake to terminate at the distal tip of the projectile, the angle of the long, vertical axis from the base to the tip of the point, must be computed with extreme accuracy when placing the preform in the vise.
- 5. When placing the point in the vise in preparation for fluting, the short, or lateral, axis must also be estimated with the same degree of accuracy to insure the channel flake following the median line of the preform.

6. The worker must consider and compensate for the fragility of the thin preform when applying the fluting force.

The difficulty of fluting a Folsom may be compared to a nearly exhausted core, worked down to such a small size that it will allow for only the removal of two remaining blades. A larger core, having more mass and weight, is more receptive to the hand-held percussion removal of blades, but the smaller, reduced core, lacking weight and, therefore, stability, embraces a whole new set of mechanical problems that can only be overcome by the use of a clamp which will provide the rigidity and firmness that is inherent in the larger core.

Some may raise an eyebrow when the use of a vise, clamp or holding device is mentioned. Why? Any aborigional who was able to master the complex mechanics of the fluting technique of the Folsom projectile was certainly able to devise and design something as simple as a method of holding his preform. A vise made of a strip of hide, a few thongs, or cordage, and two pieces of wood long enough to provide adequate leverage would most certainly suffice (See previous chapter on tools) My experiments have resulted in the conclusion that this clamp is an integral part of the fluting technique, and could have been contemporaneous with the

development of this particular artifact.

often we do not consider the feet as being dexterious enough to be a contributing factor in any way to the foolmaker. It is doubtful if they played a part in the manufacture of Folsom but could have given much assistance in the tool industry when using other techniques. The use of the feet and toes could have substituted for a needed third hand, thus eliminating the need of a second party. Even today, one may observe some of the natives of Mexico and South America using their feet and toes for holding and braiding cordage. It is certainly possible that Early Man also took advantage of these appendages to assist him in the making of his tools.

JESF 1915

The use of the shoulder crutch and viselike clamp has been useful for experimental work, however, it will not allow one to develop sufficient pressure to produce a normal size Folsom flute.

No.9 Pressure Free Hand Using a Chest Crutch with a Clamp and Anvil:

This method will be covered in greater detail for it is one of my

accepted techniques which will replicate a Lindenmeier Folsom. Following is a list of factors that are pertinent to obtaining satisfactory results.

1. Lithic Material:

Since there is evidence at the Lindenmeier site that Folsom Man altered the natural material by application of heat, let us consider here, briefly, the merit of alteration relative to Folsom manufacture. Select material having the qualities adaptable for the manufacturing technique of Folsom. Preferably one of the cryptocrystalline varieties of quartz, such as chalcedony or jasper, with a greasy or vitresous lustre similar to glass or obsidian. Material must be homogenious and free of strains, flaws and inclusions. When it is necessary to use stone lacking these qualities, the thermal treatment will make the stone more receptive to fluting. Heat treatment gives to the quartz family minerals the vitreaous quality necessary for fine pressure flaking and channel flake removal. Further, treated material loses much of its tenacity, cohesiveness and toughness, but still retains its hardness. Alteration also enchances the flexibility of the stone and, therefore, allows the flake to bend and increases the worker's

control for pressure retouch and in guiding the fluting flake. This

treatment also greatly prohibits the hinge fracture possibility. Folsom

can be made and attractive retour materials, but supplies of such material

are limited and the heating increases the amount of usuable material.

For experimental purposes, glass is a good substitute, for it has consistent homogenity and much the same fracture, the physical chara cteristics and similar mechanics as that of stone, however, glass has more fragility and this must be compensated for accordingly. 5 = Fig. 14

In order to allow the channel flake to be removed without snapping the preform, one should use material of a vitreous texture instead of rock with intertwining micro-crystals which create undue tenasity. The natural cohesion present in lithic material is much easier to overcome if the material is glassy - either naturally or made so by annealing - Such a material gives more control over guiding the fluting flake. If the quartz family material is to be heat-treated, I remove large flakes' or blades (which will be called blanks) from a core by means of percussion.

After the blades are detached, they are then terhmal treated. This is my method, but I have found that some of the aborigional's flakes reveal that the toolmaker first altered his core and then detached the flakes from the core. Ancient man apparently used both methods - tempering the stone before the flakes were removed and tempering the flakes after they were removed from the core - but I find that there is less waste from heat fracture if the blanks are removed from the core first, The larger the mass, the more difficult it is to control the expansion and contraction of the core in order to prevent heat fractures. The larger the mass, the more slowly it must be heated and cooled. The aborigionals who used this technique apparently understood the nature of these materials and were able to overcome the variables in composition, water content and impurities. A fix full understanding of the heat-treating of these materials is still to be explored, and we still have much to learn about what changes take place in the minerals, the chemistry, and in the monecular structure when subjected to heat.

2. BLANKS AND PREFORMS

Initial steps in replicating a Folsom are: Start with a block of stone of a sufficient size to permit removal of large flakes or blades from the mass, which will be called the core. This is done for the sake of economy and to provide one with a supply of blades for preforming. A series of blades may be removed from the perimeter of the core until it is exhausted. These blades, or flakes, will be referred to as blanks - then worked into preforms and, ultimately into artifacts. Blanks are removed from the core by the direct free-hand percussion method, using a medium soft hammerstone to eliminate end shock and avoid inherent stresses and strains that result from the use of a hard hammerstone. This is called the blade and core technique. The blanks must be thicker, longer and wider than the finished preform. A nother method is to use the core as the blank - a technique common where there is a shortage of material of the size necessary to use the core and blade method. When the core method is used, the surplus material is removed by using a hammerstone and free-hand percussion until it is sufficiently reduced in size for percussion retouching. The bla The blank made by the core method is then further reduced by free-hand percussion with an antler billet until the proper conformation is reached - such as the general

form, thickness, and absence of irregularities. The antler tool allows the worker to remove flatter flakes, permits greater accuracy and subjects the preform to a minimum of shock and bruising. The core tool preform is now ready for pressure retouch.

We shall now return to the blanks that have been struck from the core.

Most blades have a slight curve extending from the proximal to the distal end and this curve must be removed in order to straighten the flake. The curve, or slight arc, is straightened by percussion striking with an antler billet to remove the bulb of percussion and the underside of the distal end of the flake, until the long axis is straight.

Then the worker continues the percussion retouch until the flake is preformed in the same fashion as the preform made from the core. At this stage of manufacture, one cannot identify which of the two percussion techniques were used for preforming - the core method or the blade method.

The percussion preforms are now ready for pressure flaking. Tools consist of a thick leather pad to protect the palm of the left hand which will hold the unfinished point and the time from the antler of a mule deer, which has been sharpened to a blunt point. This may be used as is, or hafted.

For experimental purposes, I substitute a wooden handle with a copper tip in place of the antler. It is a time-saver for it retains its tip form longer than the antler tool. The preform is placed in the palm of the left hand held tight by the four fingers of the same hand, - the thumb is not used. The base, or the tip - depending on whether one starts retouch at the base or tip - rests on or near the heel of the hand(or the big muscle of the thumb) in such a manner that one side and one edge of the preform is exposed to the knapper. The four fingers exert enough pressure on the preform to hold it securely, but not too much or the preform will break when it is being flaked by the pressure tool. The pressure tool is gripped in the right hand with the four fingers around the handle and the thumb The handle is held in line with the knuckles so that the point of the pressure tool projects just beyond the knuckle of the first finger. This manner of holding the pressure tool allows the worker to increase the leverage and aids in control. The wrist is held immobile. The right hand holding the point to be pressure flaked is normally rested on the thigh of the left leg near the knee. 3EE Figure 89414

The edges of the preform are then trimmed by applying the side of the pressure tool vertically on the edge in a wiping motion called shearing.

Shearing provides a regular, uniform edge and, at the same time, creates a platform on which to seat the pressure tool. The first pressure flaking is not an attempt to produce uniformity, but is merely to remove any irregularities or step fractures left by the percussion work. The preform must then be retouched again to make regular, uniform flakes over the entire surface of the artifact to provide the smoothness and regularity necessary for the channel flake removal.

The most suitable type of flaking is either diagonal or collateral parallel flaking - the flakes extending from the edge to beyond the median line, terminating to infinity(feathering) with no step fractures. The pressure flake scars should be shallow and the bulbs of pressure disfused. More detailed coverage is given under pressure techniques.

There are many kinds of pressure retouching, depending on how the hand is held, the support of the preform, the position of the pressure tool, and the types of platform preparation. Each technique will produce a different surface character, and may represent different cultural groups.

There appears to be a difference in the technique of preparing and fluting of points from the Lindenmeier site, the fluted points from Texas, and some

from the Eastern United States. A further study of the different fluted point traditions will, no doubt, reveal the use of many different techniques for preparation and fluting.

The contours of the surface on both sides of the preform are of prime SEE F19 16 importance for satisfactory fluting flake removal. The lateral crosssection should be doubly convex(or lenticular) or it can be diamondshaped. The degree of convexity, or the steepness or flatness of the diamond-shape, is the governing factor in controlling the width and the depth of the channel flake. When the convexity is increased, the fluting flake will be narrow, and the finished point will be thick. When the ridge of the diamond-shaped cross section is steep, the fluting flake will SEEFIG CO These problems may be partly overcome by placing the platform closer to the center of the base, but this increases the amount of necessary force, as the flake scar area has been increased. When the cross section of the preform has only a slight convexity, the flake will spread to the edge and the point will be severed, in spite of the use of an anvil. This results because the amount of material at the center of the artifact is insufficient to contain the force and it radiates resulting in a chonchoidal fracture, thus destroying the point. The surface as well as the contour of

the point regulates the shape and design of the fluting flake. Any irregularities on the surface will cause the channel flake to undulate, constrict and expand, and have different degrees of thickness. A surplus of material on the face will cause the flake to expand, and a depression on the surface will cause the flake to constrict or fracture before the channel is completed. SEE FIG. 19

Using a tool with a very fine point, the edges are then pressure retouched by removal of a series of narrow, minute, parallel flakes. This results in an edge that is thick but very sharp, which serves a dual purpose. First, it will withstand the pressure of a holding device and, second, it provides strength to the projectile when it is finally completed. The edge at the basal portion of the artifact may be ground smooth for additional strength and also to avoid breakage from the pressure of the clamp and to, later, prevent the edge from cutting the lashings when it is secured to the shaft.

The distal end of the artifact should be left rather blunt and almost as thick as the mid-section to provide for the beveling and polishing of the tip and still have enough strength to support the force of removing the fluting flake. It is this part of the point that will rest on the antler

anvil during the fluting process and it must withstand the force necessary to remove the flute.

3. First Channel Flake Platform Preparation:

The next stage of flute removal is the preparation of the first platform. which is sometimes called the "spur", "tit" or "projection". The base of the preform has been left either square or with a convexity and the worker must now isolate the platform from the tangs. It is most important that the platform be prepared in a definite manner to provide the necessary clearance for the fluting flake to be separated from the artifact without breaking the point. The first step is to flatten the base by the use of F197 pressure. Pressure is applied from the same side of the proposed first channel flake. Repeated small flakes are then removed glong the base until the leading edge is in line with the face of the point. The angle of the? base is now slightly less than that of a right angle to the long axis. The base now has an appearance similar to that of a n edge backed blade. The center portion of the base will be used for seating the pressure tool when the platform is completed. Theplatform must now be freed by applying the pressure tool on the opposite side of the base to remove, by a series of graduating pressure flakes, the material between the lateral edges and the area on which the fluting tool will rest(platform). A series of graduating

flakes are removed by pressure from the side to be fluted, starting from the proposed tangs with the last, and longest, flake terminating at the median line to form a spine directly in line with the tip. The same procedure is repeated on the opposite side. The platform should then be left projecting slightly less than a quarter of an inch above the two concavities between the tangs and the platform. The projection must then be freed on the side opposite the face to be fluted. done by removing a series of small flakes on each side of the projecting platform to form a sharp ridge or "V" on the backside of the platform which will part easier than a flat surface. The top of the platform is then polished to prevent crushing from the application of force. Top of the completed platform should be about an eighth of an inch in width and should have the surface shape of a dimunitive "U". The position of the platform will govern the final appearance of the base of the completed artifact. If one of the two platforms - that is, platform for first flute removal and platform for second flute removal - is accidentally broken or crushed, it can sometimes be re-established. But, because the second preparation removes more material, the platform would, by necessity, be lowered, resulting in long projecting tangs. The variety of basal forms is the result of a lack of uniform orientation of the platforms.

base type changes could also be due to preference of the individual or for purpose of identifying his particular point.

When the platform is prepared, it is extended away from the body of the artifact. This is done to segregate a miniature cone of force and allow for more direct downward force to remove the flute without the channel flake removing a deep bulb from the apex of the base. If the platform is not sufficiently freed, it will be crushed, the tangs broken, or the artifact will shatter. SEEFIG 2/

3. METHOD OF HOLDING :

The methods of holding are many and various and may be left to the discretion of the worker (See chapter on tools). For this experiment,

I use a clamp made of two strips of white pine wood about two inches wide and one inch thick with the length to suit. A wedge is placed at the back end with the fulcrum(lashings, a bolt, or any securing device) as close to the projectile point as is necessary to get the correct amount of pressure to immobalize the artifact. The preform is then clamped at the front end between the two strips of wood and is positioned about 10 degrees from vertical, in such a manner that the platform on the

side to be fluted will be vertical to the long axis in order to intersect the basal portion of the beveled tip. The distal end of the polished, beveled tip will rest on the leading edge of the anvil. The anvil may be of any resilient material, but one must not use an unyielding material. For the anvil, I have used bone, ivory, hard wood, or softer grades of stone. The polished distal end of the artifact must be held firmly against the anvil by means of the downward pressure from the tightened vise or clamp. If it is not held firmly on the anvil, the fluting force will cause a rebound - in turn, causing - or allowing - space to develop between the pressure tool and the platform; or space between the tip and the anvil, which will cause the artifact to be severed by a hinge fracture or remove the entire tip. Fig. 12 + 21

The length of the channel flake is controlled and determined by the combination of the downward and outward fluting pressure. When excessive outward pressure is used, the fluting flake will feather out rapidly, leaving an embyronic short flake with no hinge or step fracture. If no outward pressure is used, the platform will collapse or the projectile will disintegrate or be crushed. If insufficient downward pressure with enough outward pressure to free the platform is used, a step fracture with a right

56681913

angle break will be the result. If insufficient downward pressure and too much outward pressure is exerted, the channel flake will terminate in a hinge fracture with a rounded end. The worker must calculate the proper amount of downward and outward pressure relative to the material used and size of the preform. This knowledge of necessary amount of force can only be gained by practice and experience. In the future, I hope to resolve the ratio of downward and outward pressure by proper calculations under controlled laboratory experiments.

The preform with prepared platform is now secured in the clamp, ready for removal of the first channel flake. The pressure tool used is made from a piece of hard wood thick enough to be fairly inflexible - yet not be cumbersom. A pointed piece of antler or a rod of copper is affixed at the one end of the staff, secured by a ferrule or serving to hold it tight. This immobilizes the tip of the pressure tool and also prevents the shaft from splitting. The other end of the shaft is fitted with a short flat piece of wood, shaped to the size and comfort of the worker, to be placed against the chest. The length of the shaft is determined by measuring the distance between the tip of the index finger and the chest. Place the shaft on the chest, bend over and place the tip of the shaft on

the platform of the artifact, and the distance between the chest and the tip of the index finger will give the correct length. It is important that the crutch be no longer, as the index finger must place and guide the point of the pressure tool to the tip of the platform.

To hold the vise stationary, the flaker must now stand on the clamp. with the chest crutch in place and the worker in a bending position. Using the index finger of the right hand, place the point of the staff on the platform of the artifact. The tip of the pressure tool must be checked and cleared of any contamination caused by previous work, as any imbedded fragments of stone may cause the platform to crush before the maximum amount of pressure can be applied. The weight of the upper portion of the body rests directly on the crutch, which is resting on the platform of the artifact. The shaft of the pressure tool must be vertical and directly in line with the median line of the artifact. The opposing axis of the crutch must then be positioned in such a manner that the pressure will intersect the forward portion of the tip of the artifact. If this is not done, there will be an opposition of forces that will cause the point to crush. Both hands are then placed on the shaft of the crutch at a position just opposite the knees.

knees may then assist the hands in controlling the outward pressure. Outward pressure is then gradually increased by the weight of the body and pressure from the knees until the platform parts with the base and the channel flake is pressed off to the tip of the projectile point. The downward pressure must have sufficient force to prevent the pressure tool from slipping on the platform when the outward pressure is increased. If the flake is tenacious and unyielding, the operator has to slightly lift the fore part of the body and drop it and, at the same time, exert the proper amount of outward pressure by flexing the knees against the hands. The body movement must have perfect coordination with the movement of the knees.. If all conditions have been considered and coordinated, a flake will have been removed from the base to the tip. The channel flake will have a slight arc and will feather out at its distal end.

We will now assume that the first channel flake has been removed in a satisfactory manner resulting in a flake scar on the artifact having the same character as that of a Lindenmeier Folsom. The half-fluted point is then removed from the clamp and a second platform is prepared on the opposite side in the same manner as the first. This second

platform will, however, be slightly lower than the first. It is the removal of this second channel flake which constitutes an identifying characteristic of the Lindenmeier Folsom, which is not as pronounced in other fluted point traditions. The Lindenmeier point has a thin, almost knife-like, edge at the base between the tangs, with - at times - a bare remnant or trace of the last platform. This very thin basal area is the result of the proper positioning of the second platform.

When the second platform is properly positioned, the channel flake will, upon its removal, almost intersect the fluting flake scar left by the first fluting flake. The exact position of the second platform is determined by the worker, and a knowledge of positioning can only come from experience.

The tip is then re-beveled and polished in the same manner as the first channel flake except it is done on the opposite edge of the tip. After the second platform is prepared and the tip reconstructed and polished, the half-fluted point is then placed in the clamp for the removal of the second flake. The worker's odds have been increased by the removal of the first flake, for the first fluting removed considerable material from the opposite face of the artifact, thereby reducing the thickness and thus

weakening the point.

Upon examination of the channel left by theremoval of the second flake, one will note that the size of the flake scar is many times the area of that of the cross-section of the completed artifact. It would appear that the law of mechanics would forbid the fluting of a Folsom projectile. SEE Fig. 23

We will assume that the second flake has been successfully removed and the point is now complete except for minor retouching by pressure flaking of the tip and the base. The final retouching on the base is distinctive because of the two narrow diagonal pressure flakes following along the line of the channel from the base. These are applied to remove the ridges left by the negative bulbs of force of both channel flakes. These particular diagonal flakes seem to be characteristic to the Lindenmeier Folsom.

Pressure retouching done after the fluting can usually be determined by examining the intersection of the flakes or their overlapping with the channel flake scar. Projectiles made of the finer-textured materials will show more detail of the flake character than those of courser-textured materials.

11. Combination of Pressure and Indirect Percussion:

Method of operation and preparation of the preform is the same as in Method No.10 except a different technique is used for fluting and crutch is of a different design. The shaft is much the same as the chest crutch used in No.10 except that it is made from a young sapling of hard wood. The sapling selected must have a lower branch, which will form the crotch. This lower branch is cut off to form the crotch for striking. Stub of lower branch should be left about one and one-half inches in length measured from the main body of the staff and it should be about four inches from the tip or distal end of the crutch.

Fluting involves the participation of two persons - one to seat the pressure tool as well as induce the downward and outward pressure - while the second person delivers a blow of the right intensity to the shaft. The downward and outward pressure must be applied by the first person and be coordinated with the blow delivered to the apex of the crotch by the second person. Blow delivered by second person is reflected to the body of the shaft and is directed towards the tip of the shaft.

Intensity of blow should be sufficient to break the cohesion between the flake and the core, or artifact.

Since this paper is only concerned with the technology of the Lindenmeier Folsom, there can be only a remote possibility that this method was used. Experiments, to date, would lead one to believe that it could be of use in making the long channel flakes on some types of Clovis points and some fluted points known as the Cumberland from Ohio and the Eastern United States. Because of the surface area of these large fluting flakes, it is not likely that they were removed by pressure alone.

This method was initially attempted by H. Holmes Ellis and myself in 1940 in an attempt to replicate some core and blade techniques. More recently, Gene Titmus and myself experimented with it to remove large blades from obsidian. There is a possibility that it could be adopted to remove large flutes, but it appears to have no place in the fluting of the Lindenmeier Folsom.

The combination of pressure and percussion is only mentioned here to project the need of further experiments. There are other experiments

that also need to be explored under controlled laboratory conditions in order to eliminate the many variables encountered in making a Lindenmeier Folsom. The variable factors involved in making a Folsom are coordination of muscular behavior and the ability to control materials that have the complex qualities of wave mechanics.

Initially, there was a quest to discover the trick used to flute a Folsom. Now it would seem that there are several bags full with more to come. One can only conclude that the Folsom people deserve the greatest respect and admiration for the capabilities and skills they developed to produce a projectile point that would satisfy, so well, their functional needs. I am still trying to resolve some of their more elusive techniques — and I have a model of their projectile before me — while, unaided, they conceived and executed this technique.

I am left with the disquieting fact that I can replicate the Lindenmeier Folsom by the use of two techniques and the nagging thought that, at this time, I cannot discard either method - yet it is unlikely that this point

was made by the use of two different techniques. My experiments indicate that this projectile point was made by either the indirect percussion with rest method or the pressure with clamp and anvil technique. I am inclined to think that one of these two methods was the means of fabrication and it would seem that one method, with perhaps slight variations, will be resolved and deciphered when more examples from the Lindenmeier site are available for study.

The indirect percussion method leaves something to be desired, for when using this to flute, the normal results are a removed channel flake that is broken into two or more pieces. Also, the percussion blow produces flakes that are straighter, with less are from the base to the tip than those that are removed by pressure. Indirect percussion also causes slightly more undulations on the distal ends of the channel flakes than does the pressure method.

The pressure method generally allows the recovery of the channel flake unbroken. It also produces a curved channel flake and there are less undulations on the distal end of the flake.

The writer hopes that this series of experiments will help to reconstruct and restore a few knots in this nebulous quipu of the past. By further experiments and, if I am given an opportunity to review and study additional Folsom material, I hope to resolve the exact technique.