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Abstract

While resonances determine the large-scale dynamical structure of planetary systems,

interactions among the small bodies in these resonances impact their orbital evolution.

We use numerical simulations to study the orbital evolution of interacting small bodies

orbiting within two different locations in Saturn’s rings, and of interacting equal-mass co-

orbitals. Modeling the clumps in Saturn’s D68 ringlet as co-orbital point-masses reveals

the fragility of low-mass co-orbital satellite systems. Simulations of multiple massive bodies

in a common corotation resonance site, such as the ring arc of Saturn’s moon Aegaeon,

reveal the importance of interaction timescales for multi-body orbital dynamics. We also

investigate the planetary normal mode spectra of Uranus and Neptune to predict where in

their rings we might expect to see resonant phenomena.
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CHAPTER 1

Introduction

1.1 The outer Solar system

The outer Solar system is a sandbox for the exploration of gravitational interactions and

resonances in ring-moon systems. In this Section, I comment briefly on many of the resonant

phenomena in the outer Solar system. In Section 1.2, I review the basics of orbits. In Section

1.3, I discuss the fundamentals of orbital evolution and resonances. Feel free, if necessary,

to read Sections 1.2 and 1.3 first and then return to this Section.

The three inner Galilean moons of Jupiter are in a three-body resonance such that Io

orbits twice for every time Europa orbits, and Europa orbits twice for every time Ganymede

orbits. This is called the Laplace resonance and can also be expressed in terms of mean

longitudes λ of the moons:

ϕ = λI − 3λE + 2λG ' 180◦. (1.1)

The resonant argument ϕ oscillates around 180◦ with an amplitde of 0.03◦ (Sinclair, 1975).

This relation makes a conjunction among all three moons impossible. Instead, whenever one

moon passes another, the third is at least 60◦ away from the conjunction of the other two

moons (Murray and Dermott, 1999). This fact helps the system remain stable, preserving

this resonance.

The Saturnian system, with its magnificent rings and significant number of mid-sized

moons, has the largest number of known resonances out of any orbital system. Titan,

Saturn’s only large moon, and Hyperion are in a 4:3 resonance, Enceladus and Dione are

in a 2:1 resonance, and Mimas and Tethys are in a 4:2 inclination resonance (Murray

and Dermott, 1999). Mimas’s 2:1 resonance produces a gap between Saturn’s A and B

rings, called the Cassini Division (Goldreich and Tremaine, 1978). The small moons Anthe,
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Methone, and Aegaeon are each confined along with an arc of ring material by corotation

eccentricity resonances with Mimas (Spitale et al., 2006; Hedman et al., 2007b; Hedman

et al., 2009b, 2010; Cooper et al., 2008). These, especially that of Aegaeon, are covered

in more detail in Chapter 2. The small moons Pan, Pandora, Prometheus, and Janus are

responsible for a number of resonant phenomena in the A ring. Janus and Epimetheus, of

comparable masses, are in a sort of 1:1 resonance that I discuss further in Chapter 5, and

their orbital swap every four years affects the outer edge of the A ring through a 7:6 Lindblad

resonance (El Moutamid et al., 2016). Other moons in 1:1 resonances include the Trojan

moons, which librate around a stable Lagrange point of another moon: Telesto and Calypso

are Trojans of Tethys, while Helene and Polydeuces are Trojans of Dione. The C ring has

several density waves and bending waves that have been tied to resonances with normal

modes of the planet Saturn itself, which have given rise to the field of kronoseismology

(Hedman and Nicholson, 2013; Hedman et al., 2014; French et al., 2016, 2019; Hedman

et al., 2019; French et al., 2021; Hedman et al., 2022), confirming predictions made by

Marley and Porco (1993).

Resonances influence several of the narrow Uranian rings. For example, the ε ring is

shepherded by Cordelia and Ophelia: its inner edge coincides with the 24:25 outer eccentric

resonance with Cordelia, while the outer edge coincides with the 14:13 inner eccentric reso-

nance with Ophelia (Goldreich and Porco, 1987; French et al., 1991; French and Nicholson,

1995; Nicholson et al., 2018). The 6:5 resonance with Ophelia falls within the γ ring and

affects its brightness (Showalter, 2011; Hedman and Chancia, 2021). Cressida affects the η

ring’s kinematics through a 3:2 inner Lindblad resonance (Chancia et al., 2017). The 23:22

resonance with Cordelia lies near the δ ring, but does not seem to strongly influence the ring

(Hedman and Chancia, 2021). Similarly, the small moons Rosalind and Cordelia are close

to a 5:3 resonance (Murray and Thompson, 1990). Although the innermost rings, from the

6 ring to the β ring, do not line up well with satellite resonances, a number of planetary

normal mode resonances fall in this region. This topic is explored specifically in Chapter 4.

Neptune’s ring arcs in the Adams ring, discovered through ground-based occultation

events (Hubbard et al., 1985, 1986; Manfroid et al., 1986), and then imaged by Voyager

(Smith et al., 1989), are confined longitudinally, likely by a resonance. Although several
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ideas have been proposed about the particular resonance of Neptune’s ring arcs, consensus

has not been reached. Initial studies suspected that a 42:43 resonance with Galatea confined

the ring arcs (Goldreich et al., 1986; Porco, 1991; Namouni and Porco, 2002). Deviations

from the exact rate of different types of a corotation resonance with Galatea, however,

support other possible explanations (Renner et al., 2014). Confinement due to shepherding

by undetected satellites that are co-orbital with the Adams ring arcs has been proposed

(Lissauer, 1985; Salo and Hanninen, 1998; Renner et al., 2014), though more recent investi-

gation claims to rule out that co-orbital satellites could be the source of the dust (Giuliatti

Winter et al., 2020). Another recent idea is that the Adams ring arcs are in a three-body

resonance with Galatea and Larissa (Showalter et al., 2017). Nevertheless, none of these

theories explain how two of the ring arcs could have faded since 1989, while the other two

have survived (de Pater et al., 2018; Souami et al., 2021). The contents of Chapter 2 are

likely relevant to Neptune’s ring arcs, though the exploration required to confirm this is

mentioned in Chapter 5 as possible future work. The possible perturbation of the Adams

ring by a Neptunian g-mode resonance is discussed in Chapter 4.

Rings have also been discovered around smaller bodies: the centaurs Chariklo (Braga-

Ribas et al., 2014) and possibly Chiron (Ortiz et al., 2015) as well as the dwarf planet

Haumea (Ortiz et al., 2017). These new ring systems have presented an opportunity for

new developments in ring theory (Sicardy et al., 2019; Sicardy, 2020; Madeira et al., 2022).

Sicardy et al. (2021) highlighted the importance of the 1:3 spin-orbit resonance for small

bodies.

The main chapters (2, 3, and 4) of this dissertation are structured only by order of pub-

lication. They treat a variety of topics related to gravitational interactions and resonances

in ring-moon systems. In Chapter 2, we investigate the dynamics of multiple masses in the

same corotation resonance site, including important consequences from energy conservation.

This has a specific application for the three ring arcs in the Saturnian system, especially

that of Aegaeon. In Chapter 3, we look at co-orbital systems with a specific application to

the clumps in Saturn’s D68 ringlet. The chapter will show how fragile and perhaps transient

the collection of D68 clumps may be. In Chapter 4, we examine the prospect of applying

ring seismology to the ice giants Uranus and Neptune. Finally, in Chapter 5, I summarize
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the work presented in this thesis, explain its significance, and remark on preliminary and

future projects related to this work.

The remaining sections of this introduction provide further theoretical background for

the studies that follow.

1.2 Orbit fundamentals

Kepler’s Third Law (1619) describes the relation between an orbiting object’s orbital period

T and its semi-major axis a in a two-body system:

a3 =
G (M +m)

4π2
T 2, (1.2)

where G is the gravitational constant, M is the mass of the central body, and m is the mass

of the orbiting body. By defining µ = G (M +m) and the mean motion n = 2π/T , we can

write Kepler’s Third Law as

µ = n2a3. (1.3)

Kepler’s Third Law, however it is written, is a good starting point for the scientific investi-

gations of orbits. Although it remains unknown how Kepler arrived at his Third Law before

Newton (Kozhamthadam, 1994), it can be derived directly from Newton’s Second Law of

Motion:

F = ma (1.4)

and Newton’s Universal Law of Gravitation (Newton, 1687):

F = G
Mm

r2
(1.5)

The gravitational field of a point-mass is described by

V (r) =
GM

r
(1.6)

where V (sometimes written as U or ϕ) is the gravitational potential.

Kepler’s First Law states that orbits are elliptical. The ellipticity of an orbit is measured
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by a quantity between 0 (a circle) and 1 (a parabola) called its eccentricity e. Orbits are

not always in-line with the equatorial plane of the central body. The angle between the

central body’s equatorial plane and the orbital plane is called the inclination i. A few

more angular quantities are needed for us to be able to specify an orbit’s configuration and

where the orbiting body is. For an inclined orbit, the location where the orbiting body goes

from below the equatorial plane to above the equatorial plane is called the ascending node.

The angle between a reference direction and the ascending node is called the longitude of

ascending node Ω. For an orbit with no inclination, the longitude of the ascending node

would be undefined, but in these cases, for computational purposes, it is normally set to

zero. Because what we call the central body is not found at the ellipse’s center but rather at

one of its foci, there is a special place in the orbit called the pericenter, where the particle

is closest to the central body. The orientation of the orbit with respect to some reference

frame can be described with an angular quantity. For this angle, some use the argument of

pericenter ω, which measures the angle from the ascending node to pericenter; while others

use the longitude of pericenter $, which is a dog-legged angle spanning from the reference

direction to the ascending node, and then from the ascending node to pericenter. Thus we

have $ = Ω + ω. I will use the longitude of pericenter $ in this dissertation. With the

previous five orbital elements, the shape of the orbit is fully defined, but we still need to

know where the orbiting body is in its orbit. A few slightly different parameters do this:

the true anomaly f defined as the angle at the central body between pericenter and the

orbiting body’s location, the true longitude θ = f+$, mean anomaly M = n (t− τ), where

the constant τ is the time of pericenter passage, and mean longitude λ = M + $. I will

use the mean longitude λ in this dissertation. For more details about orbital elements, see

Chapter 2 of Murray and Dermott (1999).

1.3 Orbital evolution and resonances

Real-world systems, however, are not as simple as the theoretical two-body system. The

introduction of a third mass into the system gives rise to the still not completely solved three-

body problem. Chapter 3 of Murray and Dermott (1999) discusses the “restricted three-
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body problem”, in which two of the bodies move in coplanar orbits about their common

center of mass, and the third body’s mass is small enough to be neglected. In such a

system, there are five special locations, called Lagrange points, where the negligible mass

could orbit the primary with the same period as the secondary. The first three Lagrange

points are collinear with the other two bodies. L1 is in between the two larger masses, while

L2 is exterior to the secondary. Both L1 and L2 share the same mean longitude λ as the

secondary. L3 is found on the other side of the orbit from the secondary (180◦ away). The

fourth and fifth Lagrange points involve the Coriolis force and are stationed at points that

form equilateral triangles with the primary and secondary: L4 is 60◦ ahead of the secondary,

while L5 is 60◦ behind it. With respect to equilibrium, the first three Lagrange points are

saddle points, i.e. stable for small oscillations in one direction, but not the other; while the

fourth and fifth Lagrange points are stable for small oscillations in any direction. Oscillatory

motion near one of these stable Lagrange points is referred to as “tadpole” motion. Another

type of motion, referred to as “horseshoe” motion, describes particles that pass alternate

between L4 and L5 via L3. See Section 5.3 for further discussion of tadpole and horseshoe

motion. As long as a particle is not found exactly at one of the Lagrange points, its orbit

will evolve over time, and not always in closed loops.

Orbital evolution also occurs when the system contains additional masses. This happens

especially when the periods or frequencies of the orbits of these masses are related through

an integer multiple. This is called an orbital resonance. Many examples of orbital resonances

were mentioned above in Section 1.1. Some orbital resonances foster stability under small

oscillations, such as the 3:2 resonance between Neptune and Pluto, which guarantees that

whenever Pluto crosses Neptune’s orbit, Neptune is not nearby. Other orbital resonances

drive instability, such as the Kirkwood Gaps, specific semi-major axes in the asteroid belt

where fewer asteroids orbit due to perturbations from Jupiter.

Orbital evolution will also occur if the central body is oblate. The gravitational field

influenced by oblateness of the central body becomes

V = −GM1

r

[
1−

∞∑
i=1

J2i

(
R

r

)2i

P2i (sinα)

]
, (1.7)
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where J2i are even gravitational harmonics, P2i (sinα) are Legendre polynomials of degree i

in sinα, α is the latitude of the particle. As a consequence of the J2i terms in this equation,

the mean motion n is no longer the only frequency that governs the motion; in addition, a

radial frequency κ and a vertical frequency ν become relevant. These quantities, according

to first-order theory in e and i, are given by partial first- and second-derivatives of the

gravitational potential (Murray and Dermott, 1999):

n2 =
1

a

(
∂V

∂r

)
0

(1.8)

κ2 =
3

a

(
∂V

∂r

)
0

+

(
∂2V

∂r2

)
0

(1.9)

ν2 =
1

a

(
∂V

∂r

)
0

+
1

a2

(
∂2V

∂α2

)
0

. (1.10)

This distinction results in precession of the pericenter and of the ascending node according

to the following relations (Murray and Dermott, 1999):

d$

dt
= n− κ (1.11)

dΩ

dt
= n− ν (1.12)

Orbital evolution as an effect of oblateness is relevant in all the chapters throughout this

dissertation, but especially in Chapter 2.

A resonance can also occur between an orbiting body and the rotating central body.

Resonances of this type that we will discuss at length in Chapter 4 are with planetary

normal modes, internal oscillations of the planet itself. Following Marley and Porco (1993),

we can write the total gravitational potential as a sum of an unperturbed component and

a perturbed component:

V = V0 + V ′ (t) , (1.13)
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where the unperturbed component is

V0 =
GM

r

[
1−

∞∑
`=1

(
R

r

)`
J`P` (cos θ)

+

∞∑
`=1

∞∑
m=1

(
R

r

)`
Pm` (cos θ)

× (C`m cosmφ+ S`m sinmφ)

] (1.14)

and the perturbed component is

V ′ =
GM

r

∞∑
n=0

[
−
∞∑
`=2

(
R

r

)`
J ′`P` (cos θ)

+
∞∑
`=2

∑̀
m=−`

(
R

r

)`
Pm` (cos θ)

×
(
C ′`m cosmφ+ S′`m sinmφ

)]
.

(1.15)

The harmonics are normalized to the equatorial radius R. The non-axisymmetric terms C`m

and S`m are zero for a fluid planet in hydrostatic equilibrium. The perturbed gravitational

harmonics, taking the integrals over the density perturbation, can then be reduced to

MR`J ′`n = −
(

4π

2`+ 1

)1/2

eiσ`0nt
∫ R

0
ρ′`n (r) r`+2dr (1.16)

for m = 0, and

MR`C ′`mn = (−1)
m+|m|

2

[
2`+ 1

4π

(
(`− |m|)!
(`+ |m|)!

)]1/2

× eiσ`mnt

∫ R

0
ρ′`mn (r) r`+2dr

(1.17)

for m 6= 0. Evaluation of these quantities can reveal the depths in the planet that give rise

to specific planetary normal modes, as is illustrated in Chapter 4.



9

CHAPTER 2

Dynamics of multiple bodies in a corotation resonance:

Conserved quantities and relevance to ring arcs

Joseph A. A’Hearn, Matthew M. Hedman, Maryame El Moutamid, “Dynamics of multiple

bodies in a corotation resonance: Conserved quantities and relevance to ring arcs”, The

Astrophysical Journal 882, 66, 2019

In this work I began my investigation of ring arcs and resonances. The project reported

here started as an exploration of what we called “the Aegaeon Four-Body Problem,” and

was one of several research avenues within the funding scope of the Cassini Data Analysis

and Participating Scientist Program grant to study the structure, composition, and history

of Saturn’s faint rings. Because I had previous experience from my final undergrad semester

with running Mercury6 code to investigate orbital evolution, this was an appealing project

to take on. The problem with Aegaeon was that, compared to Anthe and Methone, which

are the other moons in rings arcs confined by corotation eccentricity resonances with Mi-

mas, Aegaeon is both less dominant in its ring arc in terms of mass and also much closer to

the center of the corotation site. Our intuition told us that these two scientific facts must

be connected in some non-trivial way, which I set out to explore. It turned out that our

intuition was incorrect. What I discovered about how energy is conserved in corotation res-

onances makes it even more difficult to explain those two simultaneous facts about Aegaeon.

2.1 Abstract

The interactions among objects in a mean motion resonance are important for the orbital

evolution of satellites and rings, especially Saturn’s ring arcs and associated moons. In this

work, we examine interactions among massive bodies in the same corotation eccentricity

resonance site that affect the orbital evolution of those bodies using numerical simulations.

During these simulations, the bodies exchange angular momentum and energy during close
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encounters, altering their orbits. This energy exchange, however, does not mean that one

body necessarily moves closer to exact corotation when the other moves away from it.

Indeed, if one object moves towards one of these sites, the other object is equally likely to

move towards or away from it. This happens because the timescale of these close encounters

is short compared to the synodic period between these particles and the secondary mass

(i.e., the timescale where corotation sites can be treated as potential maxima). Because

the timescale of a gravitational encounter is comparable to the timescale of a collision, we

could expect energy to be exchanged in a similar way for collisional interactions. In that

case, these findings could be relevant for denser systems like the arcs in Neptune’s Adams

ring and how they can be maintained in the face of frequent inelastic collisions.

2.2 Introduction

In our solar system, both Saturn and Neptune have ring arcs. Saturn’s ring arcs are con-

fined longitudinally due to corotation eccentricity resonances with Saturn’s moon Mimas:

Aegaeon and its ring arc are in a 7:6 corotation resonance with Mimas (Hedman et al.,

2007c; Hedman et al., 2010) (see Figure 2.1), Anthe and its ring arc are in a 10:11 corota-

tion resonance with Mimas (Cooper et al., 2008; Hedman et al., 2009b), while Methone and

its ring arc are in a 14:15 corotation resonance with Mimas (Spitale et al., 2006; Hedman

et al., 2009b). Neptune’s ring arcs are also confined longitudinally (Smith et al., 1989)

and move at rates close to a 42:43 corotation resonance with Galatea, which may be the

explanation for their confinement (Goldreich et al., 1986; Porco, 1991; Namouni and Porco,

2002). Deviations from this exact rate, however, could support other explanations, like the

presence of undetected co-orbital satellites (Salo and Hanninen, 1998; Renner et al., 2014)

or a three-body resonance with Galatea and Larissa (Showalter et al., 2017).

The interactions among objects in a mean motion resonance are important for the or-

bital evolution of satellites and rings. For example, multiple authors have looked at the

importance of the nearby Lindblad resonance in maintaining energy among ring arc parti-

cles, since we would otherwise expect energy to dissipate due to collisions (Goldreich et al.,

1986; Porco, 1991; Namouni and Porco, 2002). Thus far, however, there have not been
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Figure 2.1: The geometry of a corotation eccentricity resonance. In the corotating frame
of each of six fixed points of the 7:6 corotation eccentricity resonance with Mimas, Mimas
traces out a rounded hexagonal shape (blue). This creates six corotation sites where material
can become trapped (within the gray boundaries). Aegaeon’s ring arc consists of trapped
material in just one of the six corotation sites (within the orange boundary). For illustration
purposes, we have exaggerated the eccentricity of Mimas by about a factor of 2 and we have
stretched the radial boundaries of the corotation sites as well as the distances the ring arc
particles appear from the semi-major axis of the fixed point (using a nonlinear function).
The real width and length of the corotation sites are defined in Equations 2.7 and 2.8. The
positions of Mimas (magenta) and the ring arc bodies (royal blue for the equal-mass bodies
and red for the larger-mass body) depicted here are from their initial positions in one of
our simulations (see Section 2.4). The phase space plots in other figures are parametric
projections of the single corotation site with the ring arc bodies.
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detailed investigations of interactions of multiple bodies within a corotation resonance. Re-

cent work has focused instead on the motions of individual objects in these resonances. For

example, El Moutamid et al. (2014) developed the CoraLin model providing a description

of a time-averaged Hamiltonian of the three-body system and showed that intermediate dis-

tances between the corotation and Lindblad resonances yield a region of chaotic motion. El

Moutamid et al. (2017) then studied the capture of massless particles into corotation eccen-

tricity resonances. Muñoz-Gutiérrez and Giuliatti Winter (2017) performed a study on the

long-term evolution (105 years) of Saturn’s moons Aegaeon, Methone, Anthe, and Pallene.

Sun et al. (2017) looked at the dynamics of small particles in corotation resonances with

Anthe and Methone. Madeira et al. (2018) examined the influence of Aegaeon on µm-sized

dust particles, acknowledging that larger particles (cm- to m-sized) could also be present.

Although these last studies have discussed satellite perturbations on dust, no study has

explored mutual interactions between ring arc bodies. In this work, we consider how inter-

actions among massive bodies in the same corotation eccentricity resonance site affect their

orbital evolution on short timescales. We find that the time-averaged Hamiltonian that is

so useful for describing three-body motion is no longer appropriate for mutual encounters,

which has implications for the stability of arcs where such interactions are common.

In Section 2.3, we cover the background of the three-body problem where the third

body is in a corotation eccentricity resonance with the secondary body. In Section 2.4, we

describe how we use numerical simulations to investigate the interactions between two or

more massive bodies trapped in the same corotation resonance. In Section 2.5, we consider

what happens when two or more massive bodies share the same corotation resonance site.

In Section 2.6, we describe the results of these simulations, which demonstrate that the

time-averaged energy defining the corotation resonance is not conserved.

2.3 Background

In this section, we review mean motion resonances around an oblate primary, body 1, and

then discuss the dynamics of the three-body problem where the secondary, body 2, holds a

third body, body 3, in a corotation eccentricity resonance. We assume a hierarchical system
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in which M1 �M2 �M3.

Mean motion resonances occur when the orbital motions of two objects in orbit around

a primary body are commensurate with each other. For objects in orbit around giant plan-

ets, however, the planet’s oblateness splits each resonance into multiple sub-resonances of

different types. For a test particle orbiting around an oblate central mass, the gravitational

potential is

V = −GM1

r

[
1−

∞∑
i=1

J2i

(
R

r

)2i

P2i (sinα)

]
(2.1)

where G is the gravitational constant, M1 is the mass of the primary body, r is the distance

between the test particle and the center of M1, the J2i terms are zonal gravity harmonic

coefficients, and the P2i terms are Legendre polynomials in sinα, where the angle α is

measured from the equatorial plane of the primary body. These terms in the potential alter

the expressions for the particle’s mean motion n and radial epicyclic frequency κ (Murray

and Dermott, 1999; Renner and Sicardy, 2006):
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where a is the semi-major axis of the test particle. These extra terms in n and κ cause

the locations of resonances with a secondary mass to split. Specifically, for any integer j, a

Lindblad eccentricity resonance occurs where

jnLER = (j + 1)n2 − $̇LER (2.4)

while the corresponding corotation eccentricity resonance occurs where

jnCER = (j + 1)n2 − $̇2 (2.5)

since the pericenter precession rate is given by

$̇ = n− κ (2.6)

Corotation eccentricity resonances exist when the perturbing body has non-zero eccen-
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tricity. The eccentricity of Mimas, e = 0.0196 (Jacobson, 2010), for example, is enough to

provide large corotation sites for Aegaeon, Anthe, and Methone. The main effect of the

corotation resonance is to drive oscillations in the perturbed body’s semi-major axis and

mean longitude around a series of points where Equation 2.5 is exactly satisfied. These

points correspond to j equally-spaced corotating longitudes λCER at the same semi-major

axis aCER.

It is useful to depict this motion as well as a body’s location with a phase space of

corotating longitude vs. semi-major axis, as shown in Figure 2.2. In this phase space,

bodies in the corotation resonance follow quasi-elliptical trajectories. The center of the

“ellipse” is the phase space location of exact corotation resonance. This is a local potential

maximum in a field that is time-averaged over the synodic period between the secondary

and tertiary bodies (Goldreich et al., 1986; Sicardy, 1991; Porco et al., 1995; Namouni and

Porco, 2002).

The width of a corotation eccentricity resonance (horizontal distance in Figure 2.2), for

sufficiently large j, can be approximated as (El Moutamid et al., 2014)

WCER ' 4.136

√
|j|e2

M2

M1

a3
CER

a2
(2.7)

where aCER is the semi-major axis of the corotation eccentricity resonance, a2 is the semi-

major axis of the secondary body, e2 is the eccentricity of the secondary, M2 is the mass of

the secondary, M1 is the mass of the primary (central) body, and the coefficient 4.136 has

absorbed constants as well as combinations of Laplace coefficients (Brouwer and Clemence,

1961).

The length of the corotation eccentricity resonance (vertical distance in Figure 2.2),

measured in degrees, is simply

LCER =
360◦

|j|
(2.8)

for an inner resonance (replace |j| with |j+ 1| for an outer resonance). From the width and

length, the resulting boundary of the corotation resonance can then be approximated as an

ellipse. We can calculate a normalized distance s from exact resonance in phase space to
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Figure 2.2: A body in a corotation resonance traces out a quasi-elliptical path in phase
space, moving in the clockwise direction. The paths traced out in phase space seen here
are from separate 4-year simulations in which the third body is initially placed 0, 5, 10,
15, 20, 25, and then 30 degrees of mean longitude behind the exact corotating longitude,
and at aCER = 167506.5 km. The dashed ellipse marks an approximate boundary for the
corotation resonance, though it can be seen that near the fringe of the resonance site bodies
trace out paths that resemble an American football rather than an ellipse. The curves do
not quite close on themselves at large distances from the resonance center due to additional
perturbations from the Lindblad resonance, which is located at about +19 km.
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help our analysis.

s2 =

(
a− aCER

0.62WCER

)2

+

(
λ− λCER

0.5LCER

)2

(2.9)

where s < 1 for bodies in the corotation resonance and s > 1 for bodies outside the

corotation resonance. The coefficients in the denominators apply to the 7:6 corotation

resonance and are empirically determined such that the phase space distance s remains

relatively constant over the course of librations in the corotation resonance.
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Table 2.1: Parameters of Saturn used for numerical simulations, from Jacobson et al. (2006)

Parameter Value

RY 60268 km

GMY 37931207.7 km3s−2

J2 1.629071×10−2

J4 -9.3583×10−4

J6 8.614×10−5

Table 2.2: Parameters of Mimas used for numerical simulations, corresponding to its posi-
tion at UTC 2010-100T00:00:00

Parameter Value

M 6.597×10−8MY
x 8.81807403961×10−4 AU
y 8.80075627975×10−4 AU
z 1.2509303717×10−5 AU
ẋ -5.70335493828×10−3 AU/day
ẏ 5.93108634437×10−3 AU/day
ż 2.10785127451×10−4 AU/day

2.4 Methods

To examine the dynamics of multiple bodies in a corotation eccentricity resonance, we

numerically simulated the motion of objects with orbits similar to Aegaeon, which orbits

Saturn within the 7:6 CER created by Mimas. For orbital simulations, we used Mercury6

code (Chambers, 1999). Our orbital simulations considered Saturn as the central mass and

included terms up to J6 in its gravitational field. The constants used for these simulations

were taken from Jacobson et al. (2006) and are found in Table 5.3. Mimas was included in all

simulations, with its initial state vectors from an arbitrary date (UTC 2010-100T00:00:00)

according to the SPICE kernel sat393.bsp (Acton 1996, Table 5.4).

For each simulation, we modified the initial state vectors of masses we placed in the

same 7:6 corotation resonance site with Mimas to set up a system similar to Aegaeon’s ring

arc. We used time-steps of 0.01 days in order to observe carefully what happens during a
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close encounter. After an initial test with the Bulirsch-Stoer integrator, we chose the hybrid

symplectic/Bulirsch-Stoer integrator with the changeover at 3 Hill radii. Since a libration in

the phase space of the 7:6 corotation resonance with Mimas takes about four years (Hedman

et al., 2010; Muñoz-Gutiérrez and Giuliatti Winter, 2017), and a close encounter between

any two bodies generally occurs twice each libration, ten-year simulations were sufficient to

observe an average of 15 close encounters per body per simulation.

Aegaeon’s ellipsoidal axes and inferred mean density (Thomas et al., 2013) give a mass

estimate of 1.0×1011 kg, but encounters with such small masses produce very small changes

in the phase space distance s. Hence, in order to better document the changes in the

particles’ orbits during a close encounter, we consider much larger mass objects: 10 objects

with masses of 2 × 1013 kg and (optionally) one object with a mass of 6 × 1014 kg. This

preserves the estimated mass ratio of 0.3 of the total mass of all the other bodies in Aegaeon’s

ring arc to the mass of Aegaeon (Hedman et al., 2010). We verified that increasing the

masses changes the results only quantitatively, not qualitatively, by experimenting with

smaller masses over larger timescales and by observing that changes in semi-major axis in

asymmetric mass interactions scale linearly with mass.

The initial positions of all bodies were distributed randomly in (ecos$, esin$) space

with 0.00001 < e < 0.0008 and (IcosΩ, IsinΩ) space with 0.00001◦ < I < 0.0917◦. For

every simulation with the more massive body, an additional simulation without the more

massive body was performed, but with the same initial positions and velocities given to the

other bodies.

After running each orbital simulation, we converted the state vectors at each time-step

to geometric orbital elements using the equations and iterative method found in Renner

and Sicardy (2006). Using the geometric elements is important when considering orbits

around an oblate planet like Saturn because they do not exhibit the artificial orbit-period

variations seen in osculating elements.
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Figure 2.3: A sample close encounter of equal-mass bodies. The result of this close encounter
is that one body (cyan) moves closer to exact corotation while the other (red) moves away
from exact corotation. The mass of each body in this close encounter is 2 × 1013 kg.
The eccentricity at the start of the close encounter, e0, was 8.078 × 10−4 for body 3 and
6.779×10−4 for body 4. The angular momentum at the start of the close encounter, L0, was
5.0217× 1025 kg m2/s for body 3 and 5.0221× 1025 kg m2/s for body 4. The total energy
at the start of the close encounter, E0, was −2.2495× 1021 J for body 3 and −2.2492× 1021

J for body 4. The semi-major axis at the start of the close encounter, a0, was 167511 km
for body 3 and 167534 km for body 4.



20

2.5 Results

If we add another body of comparable mass (i.e., M3 'M4) to the same corotation site, the

bodies in the corotation site, which we call body 3 and body 4, can have close encounters

with each other. Although they will have slightly different semi-major axes, the forcing

due to the nearby Lindblad resonance provides enough eccentricity for the bodies to have a

close encounter when they share the same mean longitude, which generally happens twice

per libration period. We describe how we quantify these interactions in Section 2.5.1, and

summarize the distribution of outcomes in Section 2.5.2.

2.5.1 Quantifying close encounters

We define a close encounter as any time one body is less than 6 Hill radii from another.

For each close encounter, we generate a series of plots documenting change in the orbital

properties of the two bodies (see Figure 2.3). These plots show the path of one body in

the fixed frame of the other, the bodies’ trajectories in phase space during the interaction,

their phase space distance from exact corotation defined in Equation 2.9, and their changes

in semi-major axis, eccentricity, angular momentum, and energy over the course of the

interaction.

The top left panel of these plots shows the encounter in the frame where body 3 is fixed,

with up being the direction of orbital motion. The dotted blue circle around the red body

marks its Hill radius. The dotted green circle around the red body marks 3 Hill radii, which

is the boundary inside of which the integrator uses the Bulirsch-Stoer algorithm. The cyan

path shows the motion traced out by body 4, with an arrow indicating the direction of

motion.

The next plot down shows the paths in phase space of body 3 (red) and body 4 (cyan)

during the close encounter. Again, the bodies can interact even though they are at different

semi-major axes because of their orbital eccentricities. In most cases, the change in semi-

major axis during a close encounter is small compared to the oscillations of semi-major axis

over the course of a libration period.

The first two plots of the second column show the evolution over time of the phase space
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Figure 2.4: Close encounter of symmetric masses in which both bodies move away from exact
corotation. The mass of each body in this close encounter is 2× 1013 kg. The eccentricity
at the start of the close encounter, e0, was 2.418 × 10−4 for body 3 and 6.32 × 10−4 for
body 4. The angular momentum at the start of the close encounter, L0, was 5.0216× 1025

kg m2/s for body 3 and 5.0219× 1025 kg m2/s for body 4. The total energy at the start of
the close encounter, E0, was −2.2496× 1021 J for body 3 and −2.2493× 1021 J for body 4.
The semi-major axis at the start of the close encounter, a0, was 167502 km for body 3 and
167523 km for body 4.
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distance from exact corotation. The top one (cyan) is for body 4; the bottom one (red) is

for body 3. For the interaction shown in Figure 2.3, body 3 (red) moves away from exact

resonance while body 4 (cyan) moves towards exact resonance.

The bottom plot in the second column shows the change over time in eccentricity.

The plots in the third column show the change over time in angular momentum, energy,

and semi-major axis. An equation for angular momentum in the context of the two-body

problem (cf. Equation 2.26 in Murray and Dermott 1999)

L = m
√
GMa(1− e2) (2.10)

shows that angular momentum is proportional to the square root of the semi-major axis.

This relation is reflected in the plots shown. When we compute angular momentum, how-

ever, we use a more fundamental equation (cf. Equations 2.128-129 in Murray and Dermott

1999):

L = m|~r × ~v| (2.11)

Total energy is conserved during these close encounters as long as it is computed in the

fundamental way:

E =
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)
−
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i 6=j

Gmimj

rij
(2.12)

where V1,i is the potential energy due to the oblate central body as computed in Equation

2.1. Note in Figure 2.3 the changes in L and E have opposite signs for bodies 3 and 4,

consistent with the two objects exchanging energy and angular momentum.

2.5.2 Probability of different outcomes

Given the standard three-body picture of the co-rotation resonance, where the sites of

exact corotation are treated as (time-averaged) potential maxima, one might expect that

conservation of energy would require that if the phase space distance s of one body decreases,

that of the other body must increase. In fact, however, we find encounters are equally likely

to cause objects to both move in the same direction relative to the resonance center. From

our simulations, about 5000 close encounters have been analyzed. In 49% of cases, one body
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Figure 2.5: Close encounter of asymmetric masses in which both bodies move towards exact
corotation. The mass of body 3 (red) is 6×1014 kg and the mass of body 4 (cyan) is 2×1013

kg. The eccentricity at the start of the close encounter, e0, was 1.1134 × 10−3 for body 3
and 1.6571× 10−3 for body 4. The angular momentum at the start of the close encounter,
L0, was 1.5065 × 1027 kg m2/s for body 3 and 5.0215 × 1025 kg m2/s for body 4. The
total energy at the start of the close encounter, E0, was −6.7484 × 1022 J for body 3 and
−2.2497 × 1021 J for body 4. The semi-major axis at the start of the close encounter, a0,
was 167513 km for body 3 and 167495 km for body 4.
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moves closer to exact resonance while the other moves away, like the interaction depicted

in Figure 2.3. In 26% of cases, both bodies move away from exact resonance. In 25%

of cases, both bodies move towards exact resonance. (With 5000 events the statistical

uncertainties in these fractions are all 2%.) Examples of these encounters are shown in

Figures 2.4 and 2.5. These encounters explicitly conserve energy and angular momentum,

so these unexpected results are not due to an error in the code. The conservation of energy

and angular momentum holds even in cases where the bodies have unequal masses, such as

the encounter shown in Figure 2.5.

We investigated whether any regions of phase space favored certain outcomes. No obvi-

ous dependence on any specific part of phase space for a certain type of encounter outcome

to occur can be seen in Figure 2.6. This randomness in outcomes suggests that the long-

term evolution of bodies in a corotation eccentricity resonance does not differ qualitatively

from the evolution observed in these ten-year simulations.

2.6 Discussion

The above simulations clearly show that close encounters between bodies within a corotation

resonance do not conserve the phase space distance s. To understand why this is the case, we

first examine the individual encounters shown in Figures 2.3-2.5, and show that the changes

in semi-major axis are consistent with the encounter geometries. We then argue that the

classical understanding of energy surfaces in corotation resonances is not applicable here

because the encounters occur on very short timescales. Finally, we highlight some potential

implications of these findings for the stability of ring arcs.

In the close encounter shown in Figure 2.3, body 4 (cyan) passes by ahead of body 3

(red) in their direction of orbital motion (up). Because of this, angular momentum and

energy are transferred from body 4 to body 3. This determines which direction the bodies

move in phase space. Since at the beginning of the interaction body 3 has a semi-major axis

greater than the semi-major axis of exact corotation, and then gains angular momentum

and energy, its semi-major axis increases, and it thus moves away from exact corotation.

Body 4 also begins the interaction with a semi-major axis greater than the semi-major axis
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of exact corotation, but because it loses angular momentum and energy, its semi-major axis

decreases, so it moves towards exact corotation.

In the close encounters shown in Figure 2.4 and in Figure 2.5, body 4 (cyan) passes

by behind body 3 (red), so angular momentum and energy are transferred from body 3 to

body 4. In Figure 2.4, body 3 begins the interaction with a semi-major axis less than the

semi-major axis of exact corotation, whereas body 4 begins with a semi-major axis greater

than that of exact corotation. Since body 3 is losing angular momentum and energy, its

semi-major axis decreases, and it moves away from exact corotation. Since body 4 is gaining

angular momentum and energy, its semi-major axis increases, so it also moves away from

exact corotation.

In Figure 2.5, body 3 begins the interaction with a semi-major axis greater than the

semi-major axis of exact corotation, whereas body 4 begins with a semi-major axis less

than that of exact corotation. Since body 3 is losing angular momentum and energy, its

semi-major axis decreases, and it moves towards exact corotation. Since body 4 is gaining

angular momentum and energy, its semi-major axis increases, so it also moves towards exact

corotation.

As we can see in these examples, then, it is the combination of the epicyclic phase of the

encounters and their locations in phase space that determines which direction the bodies

move relative to exact corotation.

In all of these encounters, we can see that energy is transferred from one body to the

other, but total energy is conserved. Thus we can see that there is a difference between

this energy and the energy maxima usually defined for corotation resonances (Goldreich

et al., 1986; Sicardy, 1991; Porco et al., 1995; Namouni and Porco, 2002). This is because

the classical picture of corotation resonances involves averaging over many terms in the

potential, while these encounters occur over a short timescale where those terms in the

potential cannot be ignored. This means that close encounters between bodies within

a corotation resonance will disperse particles in phase space in a manner that is largely

independent of the corotation sites.

This basic finding has important implications for the stability of ring arcs, particularly

dense arcs like those found in Neptune’s rings, where inter-particle collisions should be
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common, and inelastic interactions such as accretion can occur. On the one hand, such

interactions could be more apt to disperse material out of the stable corotation sites. On

the other hand, dissipative collisions might not necessarily require material to move away

from the exact corotation sites. Detailed numerical simulations of collisional ring arcs will

likely be needed to properly investigate these issues.
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Figure 2.6: Positions in phase space of each body at the beginning of an encounter, organized
by the outcome of the encounter. The uniformity in these distributions is evidence that there
is no strong trend for a certain outcome based on where the body is in phase space. The
randomness in outcomes throughout phase space suggests that the long-term evolution of
ring arc particles does not differ qualitatively from the evolution observed in these ten-year
simulations.
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CHAPTER 3

Modeling Saturn’s D68 clumps as a co-orbital satellite system

Joseph A. A’Hearn, Matthew M. Hedman, Douglas P. Hamilton, “Modeling Saturn’s D68

clumps as a co-orbital satellite system”, The Planetary Science Journal, 2, 74, 2021

This project was born during discussions with Matt Hedman about his paper Hedman

et al. (2019). I suspected that Salo and Yoder (1988)’s work on co-orbital satellite systems

could be applied to help us understand the clumps in Saturn’s D68 ringlet. It fell under

the Cassini Data Analysis and Participating Scientist Program grant to study the struc-

ture, composition, and history of Saturn’s faint rings. In practice, this project turned out

to be an application of Renner and Sicardy (2004) to a model that approximated the D68

clumps as point-masses. It revealed the fragility of the D68 system beyond our expectations.

3.1 Abstract

The D68 ringlet is the innermost feature in Saturn’s rings. Four clumps that appeared in

D68 around 2014 remained evenly spaced about 30◦ apart and moved very slowly relative to

each other from 2014 up until the last measurements were taken in 2017. D68’s narrowness

and the distribution of clumps could either indicate that we have a collection of source bodies

in a co-orbital configuration or imply that an outside force confines the observed dust and

any source bodies. In this paper we explore the possibility that these four clumps arose

from four source bodies in a co-orbital configuration. We find that there are no solutions

with four masses that produce the observed spacings. We therefore consider whether an

unseen fifth co-orbital object could account for the discrepancies in the angular separations

and approach a stable stationary configuration. We find a range of solutions for five co-

orbital objects where their mass ratios depend on the assumed location of the fifth mass.

Numerical simulations of five co-orbitals are highly sensitive to initial conditions, especially

for the range of masses we would expect the D68 clumps to have. The fragility of our
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D68 co-orbital system model implies that there is probably some outside force confining the

material in this ringlet.

3.2 Introduction: Four long-lived bright clumps in the D ring

A narrow ringlet referred to as D68 lies near the inner edge of Saturn’s D ring, about

67,630 km from Saturn’s center. From its discovery in Voyager images (Showalter, 1996)

through much of the Cassini mission, investigation of D68 focused on its radial profile

and phase angle properties (Hedman et al., 2007a). Later studies brought attention to its

longitudinal brightness variations (Hedman et al., 2014). In 2014-15, four bright clumps

formed and remained relatively evenly spaced with small longitudinal variations about mean

separations of 26◦, 32◦, and 29◦ (Hedman et al., 2019). Hedman et al. (2019) investigated

these clumps in depth and designated them T (trailing), M (middle), L (leading), and LL

(leading leading). The most likely explanation for the sudden increase in brightness in the

four clump regions of the ringlet is that fine material was released by collisions into or

among larger objects located near or within D68. These hypothetical larger objects are

called source bodies, whose minimum sizes can be constrained by estimating the amount of

material associated with each clump from phase-corrected normal equivalent area values,

and whose maximum sizes can be constrained by the fact that they have not been observed

directly. The range of masses that would correspond to these size constraints is 105 − 1010

kg. The narrowness of the D68 ringlet and the distribution of clumps could either indicate

that there is a collection of source bodies in a co-orbital configuration or imply that there is

some outside force confining this material. In this paper we test the first idea by modeling

the D68 clumps as a co-orbital satellite system.

The study of the dynamics of co-orbital systems is motivated by the many cases of co-

orbital systems we find in our solar system. We are especially interested here in systems

in which the co-orbitals have comparable masses. The best known of such systems are

the horseshoe orbits of Janus and Epimetheus (Dermott and Murray, 1981b). Co-orbital

asteroids have been suggested as the source of Venus’s zodiacal dust ring (Pokorný and

Kuchner, 2019). Finally, the ring arcs in the Neptunian system have been proposed to
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be confined by either a corotation resonance with a moon on a separate orbit (Goldreich

et al., 1986; Porco, 1991; Salo and Hanninen, 1998; Namouni and Porco, 2002) or a co-

orbital resonance with an undetected moon or even multiple moons sharing the same orbit

(Lissauer, 1985; Sicardy and Lissauer, 1992; Renner et al., 2014).

In Section 3.3, we analyze potential stable configurations. In Section 3.4, we describe

how we use numerical simulations to investigate these scenarios. In Section 3.5, we discuss

some remarks for co-orbital systems as well as the possibilities for D68.

3.3 Analysis of potential stable configurations

Here we first review the theory of stable co-orbital objects, and we then apply the theory

to the D68 clumps.

3.3.1 Theory

Salo and Yoder (1988) originally examined stationary configurations of equal-mass co-orbital

satellites for small N (N ≤ 9) using a simple first-order theory, neglecting terms of the order

(m/M)3/2, where m and M are the masses of the satellite and the primary. A numerical

search revealed three distinct types of stationary solutions, of which we are here concerned

with only one, which Salo and Yoder (1988) label Type Ia: an equilibrium where all the

N satellites are most concentrated on the same side of the common orbit. The case where

N = 2 is the well known Trojan configuration, with an angular separation of 60◦. Type

Ia configurations are stable for 2 ≤ N ≤ 8 but are not found for N ≥ 9 (Salo and Yoder,

1988). This study, motivated by the D68 clumps, focuses on configurations with N = 4

and N = 5. Renner and Sicardy (2004) generalized the work of Salo and Yoder (1988) for

similar but not necessarily equal masses, which is what we expect for the D68 clumps.

When we define φi as the longitude of satellite i and ξi = ∆ri/r0 as its relative radial

excursion with respect to its average radius r0, the relevant equations of motion become

(Renner and Sicardy, 2004)

φ̇i = −3

2
ξi (3.1)
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and

ξ̇i = −2
∑
j 6=i

mjf
′ (φi − φj) (3.2)

where mj is the mass of satellite j and

f (φ) = cosφ− 1

2| sin φ
2 |
. (3.3)

The derivative of f (φ) is

f ′ (φ) = sinφ

[
−1 +

1

8| sin φ
2 |3

]
. (3.4)

For a co-orbital stationary configuration (Renner and Sicardy, 2004),

ξ = 0 (3.5)

and ∑
j 6=i

mjf
′ (φi − φj) = 0. (3.6)

Equation 3.6 can be written in matrix form:



0 f ′12 . . . . . . f ′1N

−f ′12 0 f ′23 . . . f ′2N
... 0

...
. . .

−f ′1N 0





m1

m2

...

...

mN


= 0IRN (3.7)

Because theN×N matrix is antisymmetric and depends only on the longitudinal separations

φi between the bodies, for N ≥ 3 one can always find a set of relative masses that satisfies

these equations for any given set of angular separations. This solution, however, might not

be physical because one or more of the masses could be negative or zero.



32

3.3.2 Results

We first considered the observed configuration with four masses separated by angles of 29◦,

32◦, and 26◦ because these are the observed separations (Hedman et al., 2019). These

separations are closer than the expected separations for an equal-mass situation: 41.498◦,

37.356◦, and 41.498◦ (Salo and Yoder, 1988). We therefore solved the above equations

for arbitrary masses, using Gaussian elimination, which involved re-ordering the rows, and

found that the solution contains a mass ε that is calculated as either zero or a small negative

number on the order of 10−16− 10−19, depending on the order in which the rows are solved

(most likely a numerical issue involving the limit of double precision numbers):



m1

m2

m3

m4


=



mT

mM

mL

mLL


=



ε

0.55825

0.00635

0.4354


(3.8)

when we normalize the relative masses such that their sum is 1. Thus, there does not exist

a physical solution for the stationary configuration with four objects that would produce

four comparably bright clumps.

There are two possible ways that the clumps could still reflect a collection of co-orbital

source bodies: the four source bodies could have been librating around the equilibrium

location or there could be another massive body in the system that did not produce a visible

clump. It is certainly possible for there to be only four non-stationary clumps and for this

to be a transient phenomenon. In fact, Hedman et al. (2019) identified slow changes in the

clumps’ azimuthal separations over time that could be evidence for libration. It is unlikely,

however, for the clumps to be on the edge of a libration cycle, due to how azimuthally

compact the whole configuration is. The most compact state of a configuration of three is

in the symmetric mode when the outer bodies are at their closest approach to the middle

body. A similar symmetric mode in a system of four bodies would require the outer two

bodies to converge at a faster rate than the middle two bodies. The observed drift rates,

however, show the opposite trend, with the middle two clumps drifting at a faster rate than
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the outer clumps (Hedman et al., 2019).

Figure 3.1: The configuration of the four D68 clumps along with the two regions where a
fifth object could be. One region is leading, the other is trailing. The direction of orbital
motion is counterclockwise.

If, however, the dust around four source bodies was stirred up by an object that passed

nearby, it is certainly possible this object could have missed other source bodies in the D68

ringlet. We therefore consider whether there could be an unseen fifth object, whose mass

could account for the angular separations we observe between the four known clumps. We

explore the approximately 270-degree span of longitudes ahead of Clump LL and behind

Clump T. Using the same equations of motion (Renner and Sicardy, 2004), we find physically

realistic solutions in two regions, one centered 33◦ ahead of Clump LL and one centered

32◦ behind Clump T. These regions each span about 22◦ in longitude and are mapped out

in Figure 3.1. The relative masses of the clumps that correspond to these solutions are

plotted in Figure 3.2. The horizontal axis shows the longitude of Object 5 in the same

longitude reference system used by Hedman et al. (2019). The left-hand side of the split

horizontal axis corresponds to a configuration in which Object 5 is trailing the other D68

clumps; the right-hand side corresponds to a configuration in which Object 5 is leading

the other D68 clumps. In more compact configurations (when Object 5 is near longitudes

-80 and 55), the middle and outer masses are greater than the second and fourth masses.

In less compact configurations (when Object 5 is near longitudes -95 and 75), Object 5’s

mass would be more than double that of any other mass, and the clump farthest away from

Object 5 becomes the least massive while the other three would require comparable masses.
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Figure 3.2: This plot shows the relative masses of the five co-orbitals for each possible
configuration. Compact configurations are characterized by the more massive bodies in
positions 1, 3, and 5. Extended configurations, by contrast, have the most massive object
on one end, with the other masses tending to decrease with increasing distance.

3.4 Numerical investigations of the configurations’ stability

To further examine the dynamics of a co-orbital system at the semi-major axis of the D68

ringlet and to investigate stability limits, we numerically simulated the motion of point

masses at the longitudes of the clump peaks, adding in a fifth point mass at one of the

locations permitted by the methods found in Renner and Sicardy (2004). For orbital sim-

ulations, we used the hybrid symplectic/Bulirsch-Stoer algorithm in the Mercury6 package

(Chambers, 1999). Our orbital simulations considered Saturn as the central mass and in-

cluded terms up to J6 in its gravitational field. The constants used for these simulations

were taken from Jacobson et al. (2006) and Archinal et al. (2018), converted to the units

used in Mercury6, and are found in Table 5.3. We used a time step of 0.02 days, which for

D68 corresponds to about one tenth of an orbit.

For the sake of simplicity, we focused on one specific stable solution with the corre-

sponding angular separation of Object 5 in order to do numerical simulations, though other

configurations were also investigated, both on the leading and trailing sides, to ensure that

our conclusions are general. We focus on a configuration with Object 5 ahead of Clump LL
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Table 3.1: Parameters of Saturn used for numerical simulations, from Archinal et al. (2018)
and Jacobson et al. (2006)

Parameter Value

RY 60,268 km

GMY 37931207.7 km3 s−2

J2 1.629071×10−2

J4 -9.3583×10−4

J6 8.614×10−5

by 33◦, as specified in Table 5.4.

Table 3.2: Initial parameters of co-orbitals used for numerical simulations

a 67,627 km

Body Mean longitude Relative mass

T 122◦ 0.129
M 148◦ 0.069
L 180◦ 0.322

LL 209◦ 0.066
5 242◦ 0.414

Note: Relative mass is normalized such that the sum of all five masses equals 1.

We explored perturbations to this configuration in semi-major axis and longitude, mod-

ifying the initial semi-major axis or longitude for some of the bodies. We also varied their

absolute mass, while keeping their relative masses constant, as calculated above (Renner

and Sicardy, 2004). Although the highest mass range we expect for the clump source bodies

is 109−1010 kg because they have not been observed directly (Hedman et al., 2019), we also

consider much more massive configurations because these evolve more quickly and in this

way clarify how these systems respond to perturbations. Thus we consider three different

situations: one with extreme masses of 1020 − 1021 kg (i.e., similar to Enceladus, Tethys,

and Dione), one with with masses of 1013−1014 kg (i.e., similar to Polydeuces, Pallene, and

Daphnis), and one with masses of 108 − 109 kg, close to that expected for the D68 source

bodies.

In each simulation, we plot the longitudinal evolution of the bodies with respect to a
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reference longitude, which is calculated for each timestep as

λ0 = arctan

∑N
i sinλi∑N
i cosλi

(3.9)

where λi is the mean longitude of body i. This equation works well when the longitudinal

oscillations are small. This type of plot gives a quick sense of stability and of orbital

evolution.

We verify that the stationary points found using the method of Renner and Sicardy

(2004) are indeed stable by placing objects there and finding they do not evolve in 1000-

year simulations with high masses (1020 − 1021 kg; see Figure 3.3). Here we do not explore

perturbations in initial longitude or semi-major axis for the high-mass case because the

larger masses complicate scalings to the real system.

Figure 3.3: With extremely high masses and no perturbations (initial angular separations
of 33◦, 29◦, 32◦, and 26◦), the system is stable, consistent with the analytic theory.

We consider two types of perturbation, longitudinal and radial, in the medium-mass

case, 1013 − 1014 kg. The objects are massive enough that it is easier to demonstrate both
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stable libration and more chaotic mutual encounters. First, we consider a longitudinal shift

in which the system begins in a more compact configuration, and we find that the masses

oscillate stably around the solution (see Figure 3.4).

Figure 3.4: Including an initial perturbation to longitudes to start the system in a more
compact configuration (with initial angular separations of 28◦, 24◦, 27◦, and 21◦), the bodies
oscillate around the stable solution, which is indicated by the dashed lines.

Second, we consider radial perturbations in which we modify the initial semi-major axis.

We define a critical semi-major axis separation ∆acrit which separates small oscillatory

motion like that shown in Figure 3.5 from the sort of motion shown in Figure 3.6. We

explored through simulations the allowable perturbations to semi-major axis using the mode

in which Clump LL is given a positive ∆a and Clump M is given a negative ∆a, just as in

Figure 3.5. We found that, for these relative masses in this specific perturbation mode, the

critical semi-major axis separation’s relation to absolute mass is best represented as

∆acrit

a
' 1.06

(
mclumps

Mplanet

)0.49

(3.10)

For the medium-mass case, ∆acrit = 75.8 m, which occurs in between the cases shown
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in Figures 3.5 and 3.6, namely, 50 m and 200 m. Perturbations of ∆a = 50 m are small

enough that when two of the bodies approach each other, they exchange energy and angular

momentum in such a way as to begin receding from each other, similar to the periodic orbital

swap of Janus and Epimetheus. Perturbations of ∆a = 200 m are too much for a stable

configuration, which results in bodies looping around to approach the other side of the

co-orbital system and eventual spreading into multiple orbits via gravitational interactions

with the other bodies.

Figure 3.5: With sufficiently small initial perturbations to semi-major axes (50 m for
Daphnis-scale co-orbitals), the bodies oscillate around a stable solution, which is indicated
by the dashed lines.

To apply our numerical simulations to the D68 clumps, however, we must also consider

the dynamics in a low-mass case, 108−109 kg. For the low-mass case, ∆acrit = 27 cm, which

is confirmed by Figure 3.7. With only 1-m perturbations (a 2-m separation in semi-major

axis), the point masses drift by each other, with the three closest approaches between the

centers of any two bodies as 266 m, 365 m, and 400 m.1 With a density of 0.5 g/cm3, spher-

1We re-examined with a time step of 2 × 10−4 days any approach of two bodies within 1 km from each
other, which corresponds to about 15 Hill radii for the largest mass.
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Figure 3.6: With large enough initial perturbations to semi-major axes (200 m for Daphnis-
scale co-orbitals), the system becomes unstable when some of the bodies encounter each
other.

ical bodies of these masses would have radii ranging from 49 to 89 m. Thus, although these

closest approaches would not be collisions, they would still be close enough gravitational

encounters to provide significant perturbations, in a range of 4 to 6 Hill radii for the largest

mass. We consider such a system to be fragile.

3.5 Discussion and implications

To emphasize how fragile the system is, we can estimate the impulse required to perturb a

moonlet’s semi-major axis by 1 m, similar to what has been done in Hedman and Bridges

(2020). For nearly circular orbits, the standard orbital perturbation equations can describe

the rate of change of semi-major axis over time as (Burns, 1976; Hedman, 2018)

δa

δt
= 2na

Fp
FG

(3.11)
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Figure 3.7: With realistic masses, even semi-major axis perturbations of one meter result
in system instability. Although low-mass co-orbital systems are fragile, stability could be
achieved with the help of an external force.

where the mean motion n =
√
GM/a3 ' 1751.7◦/day, Fp is the azimuthal component of

the perturbing force, FG = GMm/a2 = n2am is the gravitational force on the moonlet from

the planet’s center, M is the planet’s mass, and m is the moonlet’s mass. The moonlet will

thus undergo a semi-major axis change δa upon receiving an azimuthal impulse

Fpδt =
FG
2na

δa =
1

2
nmδa. (3.12)

With the range of masses we use for our low-mass case, the impulse required to perturb

a moonlet’s semi-major axis by 1 m ranges from 4.2 × 104 kg m/s to 2.7 × 105 kg m/s.

For any collision between a moonlet and interplanetary debris, the impact speed would be

comparable to the D68 orbit speed v = na ' 24 km/s. Dividing the range of impulses by

this orbit speed, we get a range of masses roughly from 2 kg to 10 kg for the interplanetary

impactor. Assuming a density of 0.5 g/cm3, the piece of interplanetary debris would need to
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be 0.1 m to 0.2 m in radius. The estimated cumulative influx rate Φ for debris of this size is

around 10−17/m2/s (Tiscareno et al., 2013). Thus the rough timescale t ' 1/ΦA on which

we can expect such a collision, using the cross-sectional area A for moonlets with radii of

49 m to 89 m, corresponds to a range from 130,000 years to 420,000 years, but this is the

impact timescale for just one of the objects. Because an impact into any of the objects can

break the system, we can adjust the system timescale to about 40,000 years by adding their

cross-sectional areas together. We therefore cannot expect a co-orbital configuration at D68

to last longer than a few tens of thousands of years. For this reason we call the system

fragile and find it unlikely that a co-orbital system could explain the orbital evolution of

the clumps or the ringlet.

Consequently, we look for other resonances that could drive the orbital evolution of

the clumps or the ringlet. It is unlikely that a corotation resonance with any satellite is

responsible for the clumping of material into ring arcs. A 30◦ separation between clumps

would be the result of a 12-fold pattern at the D68 semi-major axis. A 12-fold pattern

could be caused by a 13:12 corotation resonance with an external perturber or an 11:12

corotation resonance with an internal perturber. A 13:12 corotation resonance with an

external perturber would require a perturber at a semi-major axis of 71,300 km, which is

not as far out as D72, the structure closest to D68. An 11:12 corotation resonance with an

internal perturber would require a perturber at a semi-major axis of 63,800 km, which is a

few thousand km away from Saturn’s equatorial radius (60,268 km). There is no evidence for

any moons or ringlets in these regions. Moreover, no results came from a numerical search

for corotation resonances up to fourth-order between D68 and Janus, Mimas, Enceladus,

Tethys, Dione, Rhea, or Titan.

It is possible that a resonance of some sort with Saturn itself could be responsible for

the D68 clumping. The outer Lindblad resonance of Saturn’s ` = 5, m = 3 oscillation mode

is located in the D68 region, reported first at 67,625 km ± 550 km (Marley and Porco,

1993) and more recently at roughly 67,550 km (Marley, 2014). Although Lindblad reso-

nances do not confine material, each such resonance can be associated with a corotation

resonance, which can confine material. To locate these corotation resonances, we computed

the radii at which the mean motion (using the second-order equation from Renner and
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Table 3.3: Predicted corotation resonance locations, the rM14 column corresponding to
our predictions based on the pattern periods reported in Marley (2014), the rM19 column
corresponding to our predictions based on the pattern speeds reported in Mankovich et al.
(2019)

` m rM14 (km) rM19 (km)

8 6 67,852 67,663
3 3 67,732 67,932
2 2 66,132 67,235

Sicardy 2006) matches the pattern speeds associated with the modes reported in Marley

(2014) and Mankovich et al. (2019). The modes that produce corotation resonances near

D68 are listed in Table 3.3. Because the pattern speed is dependent on Saturn’s structure,

any of these modes could possibly be responsible for providing a corotation resonance to

confine D68 material. Mode splitting or mixing could also be involved (Fuller, 2014), al-

lowing the locations of these resonances to fall at slightly different radii than what we can

compute. For a corotation resonance of one of these modes to explain the D68 clumping, it

would require a planet-based angle that moves at a speed comparable to D68’s mean mo-

tion. Although the set of angular separations among the clumps favors a 12-fold pattern,

it is also possible for them to be confined to within the libration longitude of one or a few

stable points of a lower m mode, and then be spaced out within that external potential.

Perhaps there is a set of co-orbital moonlets that are trapped together and librating within

a larger potential, similar to Renner et al. (2014)’s model of the Neptune ring arcs. Radial

oscillations of ± 10 km have been observed for the D68 ringlet with an estimated period

of 14-15 years (Hedman et al., 2014), though the clumps are drifting more slowly than the

rest of the ringlet (Hedman et al., 2019). These radial oscillations could be evidence for

that libration.

In conclusion, we have tested and ruled out long-term stable co-orbital configurations

as an explanation for the spacing of the D68 clumps. We therefore predict that either the

clumping is a transient phenomenon, or that an external mechanism is trapping the clumps

in this region.
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CHAPTER 4

Ring Seismology of the ice giants Uranus and Neptune

Joseph A. A’Hearn, Matthew M. Hedman, Christopher R. Mankovich, Hima Aramona,

Mark S. Marley, “Ring Seismology of the Ice Giants Uranus and Neptune”, submitted to

The Planetary Science Journal on March 7, 2022, reviewer reports returned on April 12,

2022, in revision

This project had been discussed for years by Matthew Hedman and Mark Marley. As

I was wrapping up other projects, it was decided that I could take the lead on this one.

This project was supported by two separate Solar System Workings grants, initially one

on Uranian ring dynamics and constraints on Uranus’s internal structure from occultation

data, and later by one on seismological studies of the ice giants, which this project more

directly addresses. For this project I needed to learn how to run the stellar oscillation code

GYRE, and Chris Mankovich had recently used it for Saturn, so he became a guide for me

through much of this project. Chris produced the shallow Uranus model and the Neptune

model, as well as a Saturn model that I used early on for testing. Hima worked under Chris

during the summer of 2021 and produced thin, medium, and thick Uranus models. When

I picked up the pace on this project in order to submit it for publication before requesting

to proceed with my dissertation, my co-authors were able to support me and make many

suggestions that improved the text of this paper.

4.1 Abstract

We assess the prospect of using ring seismology to probe the interiors of the ice giants

Uranus and Neptune. We do this by calculating normal mode spectra for different interior

models of Uranus and Neptune using the stellar oscillation code GYRE. These spectra provide

predictions of where in these planets’ ring systems the effects of interior oscillations might

be detected. We find that f-mode resonances with azimuthal order m = 2 or 7 ≤ m ≤ 19
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fall among the inner rings (6, 5, 4, α, and β) of Uranus, while f-mode resonances with

2 ≤ m ≤ 12 fall in the tenuous ζ ring region. In addition, f-mode resonances with m = 2

or 6 ≤ m ≤ 13 may give azimuthal structure to Neptune’s tenuous Galle ring. We also find

that g-mode resonances may fall in the middle to outer rings of these planets. Although an

orbiter is most likely required to confirm the association between any waves in the rings and

planetary normal modes, the diversity of normal mode spectra implies that identification of

just one or two modes in the rings of Uranus or Neptune would eliminate a variety of interior

models, and thus aid in the interpretation of Voyager observations and future spacecraft

measurements.

4.2 Introduction

Three decades after the Voyager flybys of Uranus and Neptune, our knowledge of their

internal structure and composition is still quite limited (Helled and Fortney, 2020). The ice

giants Uranus and Neptune represent a distinct class of planets with radii between those of

terrestrial worlds like Earth and Venus and gas giants like Jupiter and Saturn. The recent

discovery that Neptune-mass exoplanets are common (Suzuki et al., 2016) motivates the

exploration of the ice giants in our own solar system.

The deep interiors of the ice giants Uranus and Neptune are of special interest because

their internal structure and composition are distinct from the gas giants Jupiter and Sat-

urn. Their measured densities suggest that Uranus and Neptune have substantial amounts

of carbon, nitrogen, oxygen, sulfur, and silicon, which form compounds like water, ammonia,

methane, and silicate minerals (Podolak et al., 2019). At the high pressures and tempera-

tures of planetary interiors, these “rocks” and “ices” display interesting properties. Water,

for example, can enter a superionic state where the oxygen atoms become a lattice and the

hydrogen nuclei are free to move, which may play a role in explaining the non-axisymmetric

non-dipolar magnetic fields of Uranus and Neptune (Cavazzoni et al., 1999; Wilson et al.,

2013). Although numerical calculations and laboratory experiments are providing better

constraints on these exotic phases of these materials (Knudson et al., 2012; Bethkenhagen

et al., 2017; Millot et al., 2018, 2019; French and Nettelmann, 2019), there remain many
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uncertainties regarding important parameters such as the mixing properties of the various

compounds. In addition, both the overall breakdown and spatial distributions of hydrogen,

helium, water, ammonia, methane, and silicates within the planets are poorly constrained.

While the interiors of Uranus and Neptune remain largely hidden, their ring systems are

available for easier observation. Recent analyses of Saturn’s rings have demonstrated that

certain ring features are likely generated by resonances with normal modes inside the planet

(Hedman and Nicholson, 2013; Hedman et al., 2014; French et al., 2016, 2019; Hedman et al.,

2019; French et al., 2021; Hedman et al., 2022), confirming predictions made by Marley and

Porco (1993) and providing new insights into that planet’s interior. Furthermore, Marley

et al. (1988) performed preliminary calculations and found that resonances with a few

Uranian normal modes could potentially fall close to some of the Uranian rings (see Table

5.5 in the Appendices). This paper therefore seeks to build upon that work and establish

which planetary normal modes are most likely to fall close to the rings of Uranus and

Neptune and thus are the most promising candidates for performing ring seismology at the

ice giants.

In Section 4.3, we provide a brief overview of ring seismology and summarize the current

state of knowledge about the ring systems. In Section 4.4, we describe the interior models

that we use, and then we explain how we analyze the gravitational potential and calculate

the resonance locations. In Section 4.5, we report the locations of these resonances and

compare them with relevant structures in the ring systems of the two planets. In Section 4.6,

we discuss which of the planetary normal mode resonances are most likely to be detectable

in the rings, with remarks on several individual rings of interest. Complete tables of mode

frequencies and associated resonance locations are provided in the Appendices.

4.3 Background

Before describing our methods for computing normal mode resonance locations, we first

provide a brief overview of giant planet seismology in Subsection 4.3.1 and the relevant

features in the rings of Uranus and Neptune in Subsection 4.3.2.
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4.3.1 Overview of ring seismology

Planetary oscillations can be decomposed into a set of normal modes, each of which oscillates

at a frequency that depends on the planet’s profiles of density, adiabatic sound speed, and

rotation frequency. Familiar families of oscillation modes include g-modes, whose restoring

force is buoyancy, and p-modes, whose restoring force is pressure. Three numbers charac-

terize planetary normal-mode oscillations: the number of radial nodes n, the spherical har-

monic degree `, and the azimuthal wavenumber m. In this paper, we adopt the convention

that m > 0 correspond to prograde modes, i.e. modes that propagate in the same direction

as the planet’s rotation. While the mode amplitude spectrum is generally unknown, for

the simplest assumption of energy equipartition, the strongest perturbations in the planet’s

gravitational field are produced by the fundamental modes (n = 0; f-modes), which can

arise from a combination of predominantly gravity but also pressure as the restoring force

(Unno et al., 1979). Saturn’s f-modes, for example, produce the most obvious features in its

rings (Hedman and Nicholson, 2013; Hedman et al., 2014; French et al., 2016, 2019, 2020;

Hedman et al., 2019), as predicted by Marley and Porco (1993). For this reason, we will

primarily consider the f-modes here.

Because the oscillation frequencies depend on the planet’s density profile, measurements

of these frequencies can probe the planet’s internal structure. Efforts to detect oscillations

with visible photometry, which were apparently successful for Jupiter (Gaulme et al., 2011),

have not yet been successful for the ice giants (Rowe et al., 2017; Gaulme, 2017). Friedson

(2020) found that for reasonable amplitudes, detection of pressure or temperature varia-

tions due to ice giant normal modes is not as promising as the prospect of detecting their

gravitational influence on an orbiting spacecraft.

Fortunately, we can potentially also detect planetary normal modes by treating the ring

material that orbits the planet as a seismograph. Any even `−m mode is symmetric about

the equator and would generate a Lindblad resonance in ring material, which excites density

waves; whereas any odd `−m mode is antisymmetric about the equator and would generate

a vertical resonance, which excites bending waves. The ` = m modes are the modes that

are expected to be the most easily observable at their Lindblad resonance locations because
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the amplitude of the gravitational perturbation in the ring plane suffers no destructive in-

terference due to latitudinal variations in the phase of the planetary oscillation. Because

Saturn’s rings are the largest in our solar system and the dataset on them was the most

extensive, they were naturally the first target for ring seismology. Voyager images and ra-

dio occultation profiles of Saturn’s rings revealed spiral density waves and bending waves.

Some of these waves could be explained in terms of resonances with Saturn’s moons, but

other waves in the C ring were far from any known satellite resonance (Rosen et al., 1991).

Meanwhile, Marley (1991) and Marley and Porco (1993), building upon ideas from Steven-

son (1982), showed that certain normal modes in Saturn’s interior could cause gravitational

perturbations in the C ring, and proposed potential correlations between some of the waves

and specific planetary f-modes. Once the Cassini mission arrived at Saturn, new waves were

detected (Baillié et al., 2011) and several features were confirmed to be generated by reso-

nances with planetary oscillations and asymmetries (Hedman and Nicholson, 2013; Hedman

et al., 2014; French et al., 2016, 2019; Hedman et al., 2019; French et al., 2021; Hedman

et al., 2022). These studies yielded the azimuthal wavenumber and the precise frequency for

a set of planetary normal modes that provide evidence for a stably stratified layer within the

planet (Fuller, 2014), an estimate for Saturn’s bulk rotation rate (Mankovich et al., 2019),

evidence for a diffuse core (Mankovich and Fuller, 2021), and constraints on differential

rotation (Dewberry et al., 2021).

4.3.2 The rings and inner moons of Uranus and Neptune

Table 4.1 displays the semi-major axes and eccentricities of the eight innermost Uranian

moons and the five innermost Neptunian moons. Table 4.2 shows the semi-major axes and

widths of the inner Uranian and Neptunian rings.

The Uranian ring system includes three broad rings (ζ, ν, and µ) and ten narrow rings

(6, 5, 4, α, β, η, γ, δ, λ, and ε). The innermost Uranian moons, Cordelia and Ophelia,

each with diameters of ∼ 40 km (Karkoschka, 2001), flank the λ and ε rings and play a

role in shepherding the ε ring (French et al., 1991). The narrow rings except the λ ring are

optically thick at visible wavelengths and are expected to be dominated by centimeter- to

meter-sized particles (Nicholson et al., 2018). Several small moons of diameters 40-135 km
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moon a (km) e

moons of Uranus
Cordelia 49,752 0.00026
Ophelia 53,763 0.00992
Bianca 59,166 0.00092
Cressida 61,767 0.00036
Desdemona 62,658 0.00013
Juliet 64,358 0.00066
Portia 66,097 0.00005
Rosalind 69,927 0.00011
Cupid 74,392 -
Belinda 75,256 0.00007
Perdita 76,417 0.00329
Puck 86,004 0.00012
Mab 97,736 0.00254

moons of Neptune
Naiad 48,228 0.00014
Thalassa 50,075 0.00019
Despina 52,526 0.00027
Galatea 61,953 0.00020
Larissa 73,548 0.00121
Hippocamp 105,253 0.00001
Proteus 117,647 0.00047

Table 4.1: Semi-major axes a and eccentricities e of the inner moons of Uranus, from
Jacobson (1998) and Showalter and Lissauer (2006); and of Neptune, from Brozović et al.
(2020).

(Ophelia, Bianca, Cressida, Desdemona, Juliet, and Portia; Karkoschka 2001) are located

between the ε and ν rings, and several more, of diameters 20-160 km (Rosalind, Cupid,

Belinda, Perdita, Puck, and Mab Karkoschka 2001; Showalter and Lissauer 2006), between

the ν and µ rings. Portia and Puck are the largest moons in these regions, with diameters

of 135 and 160 km, respectively. Beyond Mab are the five largest Uranian moons: Miranda,

in a class of its own with a diameter of 470 km; and then Ariel, Umbriel, Titania, and

Oberon, with diameters of 1150-1580 km (Thomas, 1988).

With such a quantity of moons exterior to the narrow rings, it is important to distinguish

planetary normal mode resonances from resonances with satellites. A wave generated by a

Lindblad resonance with an exterior moon propagates outward, whereas a wave generated

by a Lindblad resonance with an interior moon or with most planetary normal modes

propagates inward. Because we know where the moons are, we can calculate where their
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ring ā (km) āe (km)

narrow rings of Uranus
6 41,838 43
5 42,235 80
4 42,572 45
α 44,719 34
β 45,661 20
η 47,176 -
γ 47,627 5
δ 48,301 -
λ 50,024 -
ε 51,150 406

broad rings of Uranus W (km)
ζ (Voyager) 38,300 2500
ζ (Keck) 39,600 3500

ν 67,300 3800
µ 97,700 17,000

rings of Neptune W (km)
Galle 42,000 2,000

Le Verrier 53,200 100
Lassell 55,200 4,000
Arago 57,200 -

Galatea co-orbital 61,953 -
Adams 62,933 15 (in arcs)

Table 4.2: Parameters of the rings of Uranus, from Nicholson et al. (2018); and of Neptune,
from de Pater et al. (2018). ā is the mean semi-major axis.
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Lindblad resonances fall. Some of these line up nicely with some of the outer rings of

Uranus, but none of them line up well with the inner rings (Hedman and Chancia, 2021). For

example, the 6:5 resonance with Ophelia falls within the γ ring (Porco and Goldreich, 1987;

Hedman and Chancia, 2021), even though its kinematics also includes m = 0 and m = 1

normal modes (French et al., 1991). The ε ring is shepherded by Cordelia and Ophelia: its

inner edge coincides with the 24:25 outer eccentric resonance with Cordelia, while the outer

edge coincides with the 14:13 inner eccentric resonance with Ophelia (Goldreich and Porco,

1987; French et al., 1991; French and Nicholson, 1995; Nicholson et al., 2018). The η ring’s

kinematics are influenced by a 3:2 inner Lindblad resonance with Cressida (Chancia et al.,

2017). Finally, the δ ring’s kinematics are well modeled by a single m = 2 normal mode of

the ring itself (French et al., 1991). Nevertheless, no known satellite resonances are found

close to the 6, 5, 4, α, and β rings.

Neptune has one large moon, Triton, which orbits with a high inclination and in the

retrograde direction. Proteus orbits Neptune about one third the distance to Triton and is

less than 1/500 the mass of Triton (Davies et al., 1991; Stooke, 1994), but is Neptune’s next

largest moon and can be considered the outermost of the inner moons. The other inner

moons, from outward in, are the recently discovered 35-km diameter moon Hippocamp

(Showalter et al., 2019); then three moons of diameters of 150-200 km, namely, Larissa,

Galatea, and Despina; and finally Thalassa and Naiad, which have diameters of 60-80 km

(Karkoschka, 2003).

de Pater et al. (2018) recently reviewed the current state of our knowledge of Neptune’s

rings. Neptune has two broad faint rings, the Galle ring and the Lassell ring, and four

narrow rings: the Le Verrier ring, the Arago ring, an unnamed ring that is co-orbital with

Galatea, and the Adams ring (see Table 4.2). The optical depth of the Le Verrier ring is

comparable to that of the Adams ring outside of the arcs, while the optical depth of the

Galle and Lassell rings is two orders of magnitude lower (Porco et al., 1995). It is still not

entirely clear how any of these narrow rings are confined, and the rings seem to lack the

fine-scale structure that Saturn’s rings have.
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4.4 Methods

In this Section, we first describe the interior models we use in Subsection 4.4.1. Then we

show how we identify the sources of gravitational potential perturbations in Subsection

4.4.3. Last, we describe how we calculate the resonance locations in Subsection 4.4.4.

4.4.1 Interior models
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Figure 4.1: Density (solid lines) and Brunt-Väisälä frequency (dotted) for models of Uranus
(top) and Neptune (bottom) as functions of the fractional radius r/R. The scales of the
y-axes are set equal for both the top and bottom panels for easier comparison between
Uranus and Neptune models.

The adiabatic normal mode spectrum for a star or planet depends on the profile of mass

density ρ, adiabatic sound speed c, and rotation rate Ω. The adiabatic sound speed c is
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defined (Unno et al., 1979)

c2 = Γ1
P0

ρ0
, (4.1)

where P0 and ρ0 are the pressure and density of the unperturbed state, and the adiabatic

exponent Γ1 is

Γ1 =

(
∂ lnP

∂ ln ρ

)
ad

. (4.2)

Non-adiabatic regions are characterized by a non-zero Brunt-Väisälä frequency N :

N2 = −GMr

r

(
d ln ρ

d ln r
− 1

Γ1

d lnP

d ln r

)
, (4.3)

where G is the gravitational constant, Mr is the mass interior to the radius r. For clarity,

M without the subscript r will refer to the total mass of the planet. The Brunt-Väisälä

frequency N quantifies the angular frequency with which a small parcel of gas oscillates

radially with positive or negative buoyancy under local pressure balance with its surrounding

gas (Unno et al., 1979).

Here we consider spherically symmetric models so that ρ = ρ(r), c = c(r), and make the

further assumption of rigid rotation so that Ω(r) = Ω = constant. Although the cloud-level

jet streams alone guarantee some degree of differential rotation in Uranus and Neptune

(Kaspi et al., 2013), the uncertainty in their underlying bulk rotation rates means that

rigidly rotating models are sufficient for our purposes.

The system of equations required to solve for the frequencies of the normal mode spec-

trum is found in classic works like Unno et al. (1979), and there is now a publicly available

and extensively validated asteroseismology software package called GYRE that solves these

equations (Townsend and Teitler, 2013). This code has recently been used successfully for

Saturn (Mankovich et al., 2019; Markham et al., 2020).

Most models of the interiors of the ice giants make a number of simplifying assumptions,

such as a three-layer structure: a rock-rich core, a water-rich envelope, and a hydrogen-rich

atmosphere. Many models also assume an adiabatic interior (see, for example, Scheibe
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et al. 2019). Thermal evolution models, however, suggest that the classical assumption

of an adiabatic interior is inconsistent with the luminosities of Uranus and Neptune, and

for this reason, models are being explored that are not fully adiabatic, but instead have a

thermal boundary layer (see, for example, Scheibe et al. 2021; Stixrude et al. 2021). The

gravitational harmonics determined by the Voyager flybys and observations of the dynamics

of rings and moons as well as theoretical considerations based on laboratory experiments

work together to constrain the properties of the planets’ layers. Some fundamental aspects

of ice giant interiors, such as the ice-to-rock mass fraction, are poorly constrained (Helled

et al., 2020; Podolak et al., 2019). Even the rotation rates measured by Voyager for Uranus

(Desch et al., 1986; Warwick et al., 1986) and Neptune (Warwick et al., 1989) have been

called into question (Helled et al., 2010). Given these uncertainties, it is worth considering

a relatively broad range of models.

Figure 4.1 shows profiles of density and Brunt-Väisälä frequency of Uranus and Neptune

interior models that we use in this work. What we have labeled the adiabatic model is from

Scheibe et al. (2019). Adiabatic oscillation calculations in GYRE require the thermodynamic

derivatives Γ1 (Eq. 4.2) and

∇ad =
1

Γ1

(
∂lnT

∂lnρ

)
ad

, (4.4)

which we calculate numerically from the adiabatic model’s ρ(P ) and T (P ). Because this

model assumes a three-layer structure and features density discontinuities owing to sudden

composition changes, double mesh points were inserted at the core-envelope and inner-outer

envelope boundaries (r/R ∼ 0.07 and r/R ∼ 0.75, respectively, where R is the planetary

radius) in order for GYRE to apply the appropriate jump conditions at those locations.

We considered a Saturn model from Mankovich and Fuller (2021) and confirmed that

our mode calculation reproduced results consistent with theirs, up to the expected error

associated with our first-order treatment of rotation (see below).

We have also constructed new models of Uranus and Neptune using the method described

in Mankovich and Fuller (2021). In brief, these models are calculated using the fourth-

order theory of figures (Nettelmann, 2017), assuming H-He-H2O mixtures modeled using
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the MH13-SCvH equation of state for hydrogen and helium (Militzer and Hubbard, 2013;

Saumon et al., 1995; Miguel et al., 2016) and Mazevet et al. (2019) for water, combined in

an additive-volume approximation. The Mazevet et al. (2019) equation of state for water

transitions to that of an ideal gas below T = 800 K, following Scheibe et al. (2019). Rather

than the common practice of imposing discontinuous changes in composition, these models

impose a gradient in the water abundance between a homogeneous H-He dominated outer

envelope and a homogeneous H2O-dominated interior. Denoting the H, He and H2O mass

fractions by X, Y , and Z so that X + Y + Z = 1, we fix Y/(X + Y ) = 0.275 throughout

the model following the protosolar value estimated by Asplund et al. (2009), and for Z(r)

assume a sigmoid function with four free parameters specifying the inner and outer radii of

the gradient region and the Z values at those boundaries (see Mankovich and Fuller 2021

for details). One of these parameters is eliminated by the condition that the model satisfy

each planet’s equatorial radius.

Despite the stabilizing influence of the composition gradient, these models assume for

simplicity that temperature is adiabatically stratified, subject to the boundary condition

that T = 150 K at P = 10 bar, consistent with atmosphere models (Fortney et al., 2011).

We present mode calculations for three Uranus models, one fitting J2 and J4 exactly,

and two that are offset in J4 relative to the observed value by approximately ±1 times the

measurement uncertainty σJ4 = 1.30× 10−6 (Jacobson, 2014). The models achieve this by

varying the width of the Z gradient region and are accordingly labeled “thin”, “medium”

and “thick”, corresponding to J4 offsets of −0.89, 0, and +0.79 times σJ4 , respectively.

Another Uranus model we label ‘shallow’ has a Z gradient region closer to the planet’s

surface. For Neptune we present a single model that fits J2 and J4. These models are

summarized in Table 4.3 and their interior structures shown in Figure 4.1, where the stably

stratified composition gradient regions are visible as regions with positive Brunt-Väisälä

frequency. Although we are primarily focusing our discussion on f-modes, the models with

stably stratified composition regions also generate g-modes, which in principle can mix with

the f-modes, and can also be associated with their own resonances.
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4.4.2 Normal mode frequency calculation

Because the ratios of rotation rate to breakup frequency of Uranus and Neptune,

Ω√
GM
R3

=


0.175± 0.004, Uranus

0.155± 0.006, Neptune

(4.5)

(with uncertainties dominated by uncertainties in the bulk rotation rate; see Desch et al.

1986; Warwick et al. 1986, 1989; Helled et al. 2010) are significant, Coriolis accelerations

are not negligible compared to the other terms in the momentum equation. For this reason,

the oscillation frequencies given by GYRE are corrected to first order in the planet’s rotation

rate Ω (Ledoux, 1951; Unno et al., 1979). These corrections account for the Doppler shift

and the approximate intrinsic perturbation to mode frequencies due to the Coriolis force.

GYRE evaluates an integral to provide the rotation splitting coefficient β that is involved

in the Coriolis perturbation for solid-body rotation. β can also be calculated for a given

mode with the equation (cf. Unno et al. 1979)

β = 1−
∫ R

0

(
2ξrξh + ξ2

h

)
ρr2dr∫ R

0

[
ξ2
r + ` (`+ 1) ξ2

h

]
ρr2dr

(4.6)

where ξr and ξh are the radial and horizontal components of the displacement eigenfunction

(Unno et al., 1979), which is given by

ξ (r, θ, φ, t) =

[
ξr (r) r̂ + ξh (r)

(
θ̂
∂

∂θ
+ φ̂

1

sin θ

∂

∂φ

)]

× Y m
` (θ, φ) eiσ`mnt,

(4.7)

We did verify that the β values returned by GYRE are consistent with this formula.

Because Uranus and Neptune rotate more slowly than Jupiter and Saturn, we do not

include second-order terms associated with oblateness and the centrifugal force, which to-

gether tend to decrease the frequencies (Vorontsov and Zharkov, 1981). For this reason, our

uncertainties in calculated mode frequencies, and thus resonance locations, are one-sided.

We calculate the moment of inertia for each model, assuming spherical symmetry, by
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integrating

I

MR2
=

8π

3

∫
ρ (r) r4dr

MR2
(4.8)

Table 4.3 shows the parameters that were used for each model, as well as each model’s

calculated moment of inertia.

4.4.3 Sources of gravitational potential perturbations

Following Marley and Porco (1993), we can write the total gravitational potential as a sum

of an unperturbed component and a perturbed component:

Φ = Φ0 + Φ′ (t) , (4.9)

where full expressions for the unperturbed component Φ0 and for the perturbed component

Φ′ (t) can be found in Marley and Porco (1993). The integrals for the perturbed gravitational

harmonics are taken over the Eulerian density perturbation

ρ′`mn = ρ′`n (r)Y m
` (θ, φ) e−iσ`mnt (4.10)

instead of over the unperturbed density ρ. In the above equation, σ`mn is the oscillation

frequency in the reference frame that rotates with the planet, r is the radius, θ is the

colatitude, and φ is the azimuthal angle. The surface spherical harmonics Y m
` are defined

in terms of the associated Legendre polynomials Pm` . The displacement eigenfunction is

given by

ξ (r, θ, φ, t) =

[
ξr (r) r̂ + ξh (r)

(
θ̂
∂

∂θ
+ φ̂

1

sin θ

∂

∂φ

)]

× Y m
` (θ, φ) eiσ`mnt,

(4.11)

where ξr and ξh are the radial and horizontal components of the displacement eigenfunction

(Unno et al., 1979). The equations for the gravitational harmonics that appear in the

equations for Φ′ (t) can be reduced to
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MR`J ′`n = −
(

4π

2`+ 1

)1/2

eiσ`0nt
∫ R

0
ρ′`n (r) r`+2dr (4.12)

for m = 0, and

MR`C ′`mn = (−1)
m+|m|

2

[
2`+ 1

4π

(
(`− |m|)!
(`+ |m|)!

)]1/2

× eiσ`mnt

∫ R

0
ρ′`mn (r) r`+2dr

(4.13)

for m 6= 0. S′`mn can be made to vanish by an appropriate choice of phase (Marley and

Porco, 1993).

The radial displacement eigenfunctions of ` = 2, 6, 10, and 14 from our medium model

are plotted in the top panel of Figure 4.2, normalized to ξr = 1 at r = R. We also show the

normalized Brunt-Väisälä frequency N as a dotted line to highlight its correlation with the

warp in the radial displacement eigenfunctions. The middle panel of Figure 4.2 shows the

Eulerian density perturbation of the same modes ` = 2, 6, 10, and 14. The bottom panel of

Figure 4.2 shows the integrand of Equations 4.12 and 4.13, ρ′r`+2, for each of these modes.

These plots illustrate how the modes of lower spherical harmonic degree ` can probe deeper

into the planet, whereas the modes of higher spherical harmonic degree ` are more sensitive

to the outer layers and to the parts of the planet that are stably stratified.

Only the spherical harmonic Y 0
` contributes to the J ′`n term due to the orthogonality

of the spherical harmonics. Likewise, for m 6= 0, the contribution to each C ′`mn term is

only from the Y m
` harmonic. Each oscillation mode thus contributes to a single perturbed

gravitational harmonic. The planet’s rotation, however, can mix modes slightly. For Saturn,

no more than 15% of the rotationally corrected radial displacement eigenfunction could be

attributed to mode mixing (Marley and Porco, 1993); for Uranus and Neptune, which rotate

more slowly than Saturn, we can expect mode mixing to influence the radial displacement

eigenfunction to an even lesser extent.

4.4.4 Resonance calculation

We calculate the pattern frequency Ωpat of each normal mode seen from inertial space,
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model R (km) M (×1025 kg) Ω (×10−4 s−1) J2 (×10−4) J4 (×10−4) I/MR2

Uranus shallow 25,559 8.68009 1.0527 35.1068 -0.341705 0.2279
Uranus thin 25,559 8.68009 1.0527 35.1068 -0.330171 0.2204
Uranus medium 25,559 8.68009 1.0527 35.1068 -0.341705 0.2202
Uranus thick 25,559 8.68009 1.0527 35.1069 -0.351949 0.2200
Uranus adiabatic† 25,559 8.68009 1.0124 35.107 -0.342 0.2266
Neptune 24,764 10.24092 0.9996 34.0843 -0.334 0.2509

Table 4.3: Parameters of the planetary models. Equatorial radii R are from Archinal et al.
(2018). M , J2, and J4 of Uranus are from Jacobson (2014), while M , J2, and J4 of Neptune
are from Jacobson (2009). The classical Uranus spin rate Ω is from Voyager 2 radio data
(Desch et al., 1986; Warwick et al., 1986) and is used only in the adiabatic model, while
alternate spin rates Ω based on the shapes and gravitational coefficients of the planets are
from Helled et al. (2010) and are used in the other models. The classical Neptune spin rate
Ω, not used in any of our models, is 1.0834×10−4 s−1 (Warwick et al., 1989). The moments
of inertia are calculated using Equation 4.8.
† Scheibe et al. (2019)

Ωpat =
1

m

(
σ0
`n +mβΩ

)
, (4.14)

where σ0
`n is the oscillation frequency in the non-rotating limit for the mode specified by `

and n and β is the rotation splitting coefficient defined in Equation 4.6. Our models for

Uranus assume the rotation rate provided in Helled et al. (2010), called the fast rotation

rate, corresponding to a period of 16.58 hours. The adiabatic model assumes the classical,

or slow, rotation rate, corresponding to a period of 17.24 hours (Desch et al., 1986; Warwick

et al., 1986). Our Neptune model likewise uses the rotation rate from Helled et al. (2010),

corresponding to a period of 17.46 hours, which in contrast is slower than the classical

rotation rate provided by Voyager 2 radio data, corresponding to a period of 16.11 hours

(Warwick et al., 1989). In general, resonance locations of a faster rotator fall further inward

than those of a slower rotator. Thus the rotation rate of these planets is another parameter

that ring seismology could help constrain, similar to how Mankovich et al. (2019) calculated

a seismological rotation rate for Saturn.

Then we calculate the resonance location numerically. Lindblad resonances occur at

locations where the following relationship is satisfied (Goldreich and Tremaine, 1979):

m (n− Ωpat) = ±qκ, (4.15)
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where the upper sign corresponds to an inner Lindblad resonance and the lower sign cor-

responds to an outer Lindblad resonance, q is a positive integer, and n and κ are the

resonance location’s mean motion and horizontal epicyclic frequency, respectively. These

are calculated according to the second-order equations from Renner and Sicardy (2006).

Similarly, vertical resonances occur at locations where

m (n− Ωpat) = ±bµ, (4.16)

where the upper sign corresponds to an inner vertical resonance and the lower sign cor-

responds to an outer vertical resonance, b is a positive integer, and µ is the resonance

location’s vertical epicyclic frequency, which is found using the equation from Shu et al.

(1983):

µ2 + κ2 = 2n2 (4.17)

We are focusing only on first-order resonances, which have q = b = 1, though higher-order

resonances are possible (Marley, 2014).

Corotation resonances are potentially interesting to consider in the context of Neptune’s

Adams ring (see Section 4.6.4). Hence we compute corotation resonance locations for Nep-

tune following the same procedures as in A’Hearn et al. (2021). That is, we find the radii

where the mean motion n matches the pattern frequencies Ωpat associated with the ` = m

modes we have calculated from our Neptune model.

4.5 Results

Figures 4.3 and 4.4 show the calculated resonance locations with f-mode oscillations for

all our Uranus models. Figure 4.3 shows the Lindblad resonances, while Figure 4.4 shows

the vertical resonances. We show the resonance locations up to ` = 25. For every mode,

the resonance location of the medium model falls in between those of the thin and thick

models. The resonance location of the thick model typically falls further outward (and the

resonance location of the thin model falls further inward), the ` = m = 2 mode being the

sole exception. This general trend is set by the models’ different predictions for density in
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the outer envelope, which the higher m modes are more sensitive to (cf. Figure 4.2).

The region of particular interest that we find spans from the 6 ring to the β ring. Satellite

resonances do not line up with these inner rings (Hedman and Chancia, 2021), but several

high-m mode resonances from our models do fall in this region. The predictions from our

models as well as from Marley et al. (1988) include resonance locations that fall in the ζ

ring for the modes with ` ≤ 5. The ζ ring, however, has low optical depth, and would not

be expected to sustain a wave.

Lindblad resonances that fall among the inner rings are listed in Table 4.4, whereas

vertical resonances are listed in Table 4.5. The resonance locations are given in general

ranges, based on all our models as well as the frequency uncertainty from our calculations

with first-order rotation corrections. Predictions based on individual interior models are

found in the Appendices. We group the 6, 5, and 4 rings together, and the α and β rings

together, in these tables, because the uncertainty associated with a mode’s frequency or

resonance location is comparable to the distance between these narrow rings. Differential

rotation confined to the outer layers of the interior will have a greater effect on the higher-

degree modes.

Among the 6, 5, and 4 rings, we expect that a Lindblad resonance with m = 2 or

7 ≤ m ≤ 13, or a vertical resonance with 9 ≤ m ≤ 14, could be from a planetary normal

mode. Among the α and β rings, we expect that a Lindblad resonance with 11 ≤ m ≤ 18,

or a vertical resonance with 13 ≤ m ≤ 19, could be from a planetary normal mode.

Although planetary normal mode resonances with m > 15 may fall among the η, γ, δ,

λ, and ε rings, we expect the dynamics of these rings to be influenced more by the moons

Cordelia and Ophelia. The case has been made that while Cordelia is the outer shepherd

of the δ ring and the inner shepherd of the ε ring, Ophelia is the outer shepherd of both the

ε and γ rings (Porco and Goldreich, 1987). Recently, the η ring was found to be influenced

by Cressida (Chancia et al., 2017). Nevertheless, at Saturn the ` = m = 10 mode was found

to be anomalously strong (Hedman et al., 2019), and with this precedent the influence of

planetary normal modes on the outer rings cannot be ruled out.

At Neptune, modes with ` = m = 16, ..., 21 fall among the moons Naiad and Thalassa.

Naiad and Thalassa are themselves in a 73:69 resonance (Brozović et al., 2020), made
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` m Ωpat (deg/day) rres (km)

6, 5, or 4 ring 41,838; 42,235; 42,572
2 2 1995.2-2360.4 38571-43142
7 7 1585.4-1753.2 39244-41963
8 8 1517.2-1666.7 40166-42760
9 9 1460.4-1591.0 41088-43498

10 10 1412.3-1525.1 41981-44184
12 10 1506.0-1605.7 40565-42334
13 11 1450.1-1537.1 41532-43175
14 12 1402.8-1479.3 42409-43935
16 12 1466.5-1537.2 41338-42655
17 13 1419.4-1482.8 42176-43420

α or β ring 44,719; 45,661
11 11 1370.9-1467.8 42827-44822
12 12 1334.6-1418.1 43618-45417
13 13 1301.1-1375.0 44350-46012
14 14 1271.6-1337.3 45024-46562
15 15 1245.4-1304.3 45644-47070
16 14 1326.8-1387.5 43933-45262
17 15 1295.6-1350.5 44598-45850
18 16 1267.7-1318.0 45211-46397
19 15 1342.5-1395.1 43644-44776
20 16 1310.5-1359.2 44294-45382
21 17 1281.9-1327.2 44897-45949
22 18 1256.1-1298.6 45460-46480

Table 4.4: Predicted Lindblad resonance locations among the inner rings of Uranus. The
ranges in frequencies and locations take into account the two most extreme models and
include the error in the range given.
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` m Ωpat (deg/day) rres (km)

6, 5, or 4 ring 41,838; 42,235; 42,572
10 9 1517.1-1642.0 40245-42420
11 10 1460.6-1566.9 41241-43216
12 11 1412.5-1503.4 42159-43945
14 11 1486.3-1569.6 40966-42481
15 12 1435.2-1508.5 41868-43281
17 12 1496.8-1565.4 40850-42086
18 13 1446.7-1508.4 41704-42882
19 14 1403.1-1459.4 42486-43614

α or β ring 44,719; 45,661
14 13 1332.1-1402.8 43769-45302
15 14 1299.6-1362.7 44471-45896
16 15 1270.9-1327.7 45115-46446
18 15 1319.4-1373.0 44117-45303
19 16 1289.4-1338.8 44748-45881
20 17 1262.6-1308.4 45333-46422
21 16 1331.0-1379.2 43872-44922
22 17 1300.7-1345.8 44491-45511
23 18 1273.4-1315.8 45069-46063
24 19 1248.7-1288.8 45612-46582

Table 4.5: Predicted vertical resonance locations near the inner rings of Uranus.

possible by Naiad’s high inclination (4.7◦). Should it be found that this resonance does not

fully account for their orbits, perturbations from planetary normal modes may be part of

the solution. Furthermore, it is not known how Naiad reached its high inclination. The

most likely explanation is passage through a previous resonance with Despina (Banfield and

Murray, 1992). Another possibility, however, is that Naiad’s inclination was excited instead

by a vertical resonance with a Neptunian normal mode.

The above calculations focused exclusively on the f-modes (n = 0). It is also interesting,

however, to consider the ` = m, n = 1 g-modes for the non-adiabatic models because these

can also fall among the ring systems. In the Uranian system (Figure 4.6), ` = m, n = 1

g-mode resonances are likely to fall in the mid- to outer-ring system as well as the innermost

moons. The spread in resonance location predictions is greater for g-modes than for f-modes

because the g-mode spectrum is sensitive mainly to the Brunt-Väisälä frequency N(r). The

thin-medium-thick triplet of models diverges more for higher `, where the eigenfunctions

have higher amplitudes in the g-mode cavity.
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In the Neptunian system (Figure 4.7), ` = m, n = 1 g-mode resonances are likely to

fall among the inner moons and middle to outer rings. There is even a g-mode resonance

that falls near the Adams ring, which we discuss in Section 4.6.4. G-modes at higher order

(n ≥ 2) are at lower frequency, and so their outer Lindblad resonance locations would fall

farther out. Nevertheless, their gravity perturbations might be too small to matter because

they are more effectively confined deep down than the n = 1 g-modes.

Note that the mean absolute model uncertainty, due to the approximate treatment of

rotation, in the resonance locations for all the f-modes we calculated is δr = 610 km for

the Uranus models and δr = 450 km for the Neptune model. The maximum uncertainty

in f-mode resonance locations is δr = 805 km for the Uranus models and δr = 557 km for

the Neptune model. These both correspond to the ` = m = 2 f-mode. The uncertainty

generally decreases with increasing m.

To decrease the uncertainty, frequency-correction calculations may be carried out to

second-order using the perturbation theory techniques described in Vorontsov and Zharkov

(1981) and summarized in the Appendix of Marley (1990). We leave the second-order

calculations for possible future work. Further knowledge of the planets’ interior structure,

thermodynamic state, and rotational state can also improve the precision of resonance

location predictions.

4.6 Discussion

We have found that planetary normal modes likely fall among the rings of Uranus and

Neptune. The next question is whether normal mode resonances would be detectable in the

Uranian and Neptunian rings. Potential signatures of such resonances could include wave-

like structures in the dense Uranian rings, cross-correlations with Uranus’s many narrow

ring features, and longitudinal structures in more dusty rings. Each of these methods is

discussed in more detail below.

Note that we do not attempt to compute the explicit amplitudes of the gravitational

perturbations associated with these perturbations. While Marley and Porco (1993) esti-

mated the strengths of the perturbations needed to produce the observed waves in Saturn’s
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rings, more recent kronoseismology studies did not find strong correlations between the

anticipated and the observed amplitudes of normal mode resonances (Hedman et al., 2019).

Although it is expected that torques decrease as the oscillation degree ` increases because a

smaller quantity of mass participates in the oscillation (Marley and Porco, 1993), the intrin-

sic amplitude spectrum of normal modes in the planet is unknown but the subject of much

current research (Marley and Porco, 1993; Markham and Stevenson, 2018; Wu and Lith-

wick, 2019; Markham et al., 2020). For example, Markham and Stevenson (2018) examined

mode excitation mechanisms in giant planet interiors. They found that moist convective

storms associated with water condensation were not energetically feasible for Jupiter, but

it remains to be seen whether that mechanism could excite Uranian or Neptunian modes

to observable levels. Given all these theoretical uncertainties, we leave the computation of

amplitudes for future work.

4.6.1 Occultations of narrow dense rings

One way to identify resonant perturbations would be the detection of density waves similar

to those seen in Saturn’s rings. This would best work in Uranus’s narrow dense rings,

where the search can be guided by predictions for the locations of resonances with a

given m, which corresponds to the number of spiral arms. Note that the resolution

achievable with an occultation is limited by the Fresnel scale: λF ∼
√
λD. At λ = 0.2µm,

the great distances D of Uranus (19.2 AU) and Neptune (30 AU) from Earth prevent

ground-based or Earth-orbit-based stellar occultations from obtaining better resolution than

about 750 m and 950 m, respectively. Given that wave-like variations in the dense rings

have sub-kilometer wavelengths (Chancia and Hedman, 2016; Horn et al., 1988), we expect

resolutions of order 200 m is needed to see any planet-generated waves. This resolution

threshold, combined with the number of cuts required to uniquely determine the number

of arms, which is of order the relevant m (about 20 for the waves of interest here), implies

that the detection of planetary normal modes via wave identification will have to await an

orbiter of Uranus or Neptune. An orbiter can observe occultations in ultraviolet, visible,

near-infrared, and radio parts of the spectrum at a much closer distance, and it would

be expected to produce radial profiles of the rings at a range of longitudes with sufficient
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resolution to determine the number of spiral arms in a wave. Observation of the ring plane

from different incidence angles will also allow bending waves to be easily discerned from

density waves.

While the overall shapes of the Uranian rings are dominated by factors that can be

attributed to free modes in the rings themselves, this does not exclude the possibility that

these rings can also preserve signals from planetary normal modes. The Uranian α and

β rings are considered analogs of the Saturnian Maxwell and Colombo ringlets (Porco,

1990; Chiang and Culter, 2003). These rings are considered in Chiang and Culter (2003),

who present a proof, relying on first steps taken by Borderies et al. (1983), that circular,

nodally locked rings are linearly stable to perturbations to their inclinations and nodes.

The Colombo ringlet, also named the Titan ringlet because it is in a 1:0 apsidal resonance

with Saturn’s moon Titan (Porco et al., 1984; Nicholson et al., 2014), is located near several

planetary normal modes: 6 ≤ ` ≤ 15, 5 ≤ m ≤ 11 (Mankovich et al., 2019). The Maxwell

ringlet inside the Maxwell Gap in Saturn’s C ring is perturbed by an ` = m = 2 mode

(French et al., 2016; Cuzzi et al., 2018), as predicted by Fuller (2014). For this reason, we are

also hopeful that either the α or β rings, or both, are likewise perturbed by planetary normal

modes. The Uranian ε ring is also considered to have similar properties to the Maxwell

ringlet (French et al., 1991, 2016): sharp edges, a freely precessing elliptical shape, and a

linear width-radius relation. The mean optical depth of the Maxwell ringlet is τ̄ = 0.968

(French et al., 2016).

Horn et al. (1988) identified an inward-propagating density wave in the δ ring, which

they interpreted to be evidence of a moonlet interior to the δ ring. Because no moonlet has

yet been discovered interior to the δ ring, we consider that such a density wave could be a

candidate planetary normal mode resonance. Horn et al. (1988) constrained the azimuthal

wavenumber m of the resonance that generated this wave to be 48 ≤ m ≤ 112, based on

three conditions: that the torque exceed a critical value (Goldreich and Porco, 1987) for

nonlinearity and the moonlet still remain undetected in the Voyager Imaging search (Smith

et al., 1986), that the moonlet lie between the γ and δ rings, and that the separation in

radius between first-order resonances be greater than half the width of the δ ring (Horn

et al., 1988). The range of possible m values was thus not constrained by an m-lobed
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pattern detected in the ring itself. If instead the inward-propagating density wave in the

δ ring is driven by a planetary normal mode resonance, none of the conditions given by

Horn et al. (1988) would apply, though their measurement of the product of the wavelength

and the distance from the resonance λd = 0.84 ± 0.07 km (Horn et al., 1988) makes it

difficult for m to be less than 10. From our resonance location predictions, we can instead

expect 17 ≤ m ≤ 23, should the density wave in the δ ring be from an f-mode resonance.

In addition to density waves, Lindblad resonances with satellites can perturb ring edges,

generating non-circular shapes like those observed for the outer edge of Saturn’s A and

B rings (Goldreich and Tremaine, 1978; Nicholson et al., 2014; El Moutamid et al., 2016;

Tajeddine et al., 2017) and for Uranus’s ε ring (French et al., 1991) and η ring (Chancia

et al., 2017).

4.6.2 Correlating Uranian ring features and resonance locations

Another potential way to identify these resonances would be to correlate the locations of

multiple narrow ring features with expected resonant locations. For example, Figure 4.8

shows the brightness of the inner rings of Uranus as a function of radius, from a high-

phase image (C2685219; see Hedman and Chancia 2021) that showed many more narrow

ring features than the named rings. These features could potentially reflect additional

locations where material is confined by resonances. Vertical dash-dotted lines show Lindblad

resonance locations calculated from the medium model. Due to the uncertainty of our

calculations, lining up ring features with resonances in this way is to be taken only as a

demonstration of a way to correlate the models with ring features. Nevertheless, the way

that the ` = m = 8, 9, 10, 11, 12 modes line up with either peaks or troughs in the ring

brightness is suggestive of a role they may play in perturbing ring material radially.

4.6.3 Longitudinal variations in diffuse rings

The Uranian ζ ring and the Neptunian Galle ring have low optical depth. Although many

mode resonances fall within them, these rings are so tenuous that we do not expect them to

be capable of sustaining a wave. Longitudinal structure can be driven by resonances with

the planet’s magnetic field, as is the case at magnetic Lindblad resonances in Saturn’s D
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Ring (Hedman et al., 2009a; Chancia et al., 2019), and we encourage future work exploring

potential resonances between the Uranian and Neptunian magnetic fields and their ring

systems. Nonetheless, planetary normal modes, particularly the stronger ` = m = 2 modes,

should be kept in mind in studies of longitudinal structures in diffuse rings.

4.6.4 Neptune’s Le Verrier and Adams rings

Finally, we can consider whether planetary normal mode resonances could influence the

dynamics of Neptune’s narrow dusty rings in a detectable way.

While normal mode resonances could potentially play a role in confining the Le Verrier

ring (Brooks et al., 2020), testing this idea is challenging. For one, the ring appears ho-

mogeneous in the Voyager images (Ferrari and Brahic, 1994), which limits our ability to

identify signatures of external perturbations. Furthermore, this ring is also close to other

resonances, including Thalassa’s 21:23 resonance (Gaslac Gallardo et al., 2020). In addi-

tion, the 2:1 resonance with Neptune’s rotation frequency, whose value is known with less

certainty, falls in the Le Verrier ring region. Simply applying Kepler’s Third Law to find

the 2:1 resonance location, neglecting Neptune’s oblateness, yields

ares =

(
GM

n2

)1/3

=


52, 607 km, fast

55, 507 km, slow

(4.18)

where the mean motion n = 2Ω, and “fast” and “slow” refer to estimates for Neptune’s

rotation rate given in Table 4.3. The Le Verrier ring is located at 53,200 km (de Pater et al.,

2018), in the middle of the resonance locations according to the two different rotation rates

(Warwick et al., 1989; Helled et al., 2010).

It is also worth noting that n = 1 g-mode resonances can occur near Neptune’s Adams

ring, because this could potentially mean that these resonances may be relevant to under-

standing the arcs in that ring. The ring arcs in the Adams ring comprise the most studied

part of Neptune’s rings (see for example Porco et al. 1995; de Pater et al. 2018). Ring

arcs in the Saturnian system are confined longitudinally by orbital resonances with moons

(Spitale et al., 2006; Hedman et al., 2007b; Hedman et al., 2009b, 2010; Cooper et al., 2008;
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A’Hearn et al., 2019). Although several ideas have been proposed about the particular

resonance of Neptune’s ring arcs, consensus has not been reached. Initial studies suspected

that a 42:43 resonance with Galatea confined the ring arcs (Goldreich et al., 1986; Porco,

1991; Namouni and Porco, 2002). Deviations from the exact rate of different types of a

corotation resonance with Galatea, however, support other possible explanations (Renner

et al., 2014). Confinement due to shepherding by undetected satellites that are co-orbital

with the Adams ring arcs has been proposed (Lissauer, 1985; Salo and Hanninen, 1998;

Renner et al., 2014), though more recent investigation claims to rule out that co-orbital

satellites could be the source of the dust (Giuliatti Winter et al., 2020). Another recent

idea is that the Adams ring arcs are in a three-body resonance with Galatea and Larissa

(Showalter et al., 2017).

One potential way to test whether planetary normal modes could be confining material

in the Adams ring is to take another look at the distribution and extent of the arcs. A

consequence of the initial 42:43 corotation resonance theory of confinement was that each

of the 42 corotation sites, also called “pockets”, spans only ∼ 9◦. This posed a problem

for the Fraternité arc, whose longitudinal extent is greater, and so it was assumed that

Fraternité occupies two corotation sites.

Should the ring arcs instead be the effect of a corotation resonance with an oscillation

degree m < 42 , the corotation site would span a greater longitudinal extent θ, because

θ =
360◦

m
, (4.19)

which for low enough m could encompass the entirety of Fraternité in one corotation site.

Although Lindblad resonances do not confine material, each Lindblad resonance can be

associated with a corotation resonance, which can confine material. The planetary coro-

tation resonance from the ` = m = 19, n = 1 g-mode is calculated to fall in the range

62, 844-63, 230 km, which encompasses the Adams ring. The m = 19 corotation site would

span approximately 19◦, over twice as much as an m = 42 corotation site, and could thus

encompass the entirety of the Fraternité arc. We hope to explore this possibility further in

a future work.
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4.6.5 Conclusion

While none of the structures in the rings around Uranus and Neptune has yet been firmly

attributed to a planetary normal mode, the above considerations indicate that ring seismol-

ogy of the ice giants could be done when the appropriate data becomes available. To the

extent that different interior models affect normal mode resonance locations, the detection

of planet-driven ring waves or perturbations to moon orbits would allow a variety of interior

models to be ruled out. These may provide evidence for or against a stably stratified layer

or a diffuse core. Stable stratification, which occurs in all our interior models except the

adiabatic model, allows the presence of g-modes, which could possibly be detected if they

fall in or near rings (Fuller, 2014; Friedson, 2020). Should Uranus or Neptune additionally

have a diffuse core, for example, the f-mode and g-mode resonances would be modified

compared to our results here, particularly those corresponding to the ` = 2 modes most

sensitive to ρ(r) and N(r) in the deep interior.

To evaluate these predictions, attempts can be made with Voyager and ground-based

observations. Nevertheless, we expect results from such observations to be inconclusive,

and an orbiter with a primary mission duration of at least a year or two to measure pattern

speeds to within around 0.1◦/day would likely be required to make the observations nec-

essary to determine effects from planetary normal mode resonances in the rings of Uranus

and Neptune.
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Figure 4.2: (Top) Radial displacement eigenfunctions for ` = 2, 6, 10, and 14, normalized
to ξr = 1 at r = R, from the medium Uranus model. The Brunt-Väisälä frequency N ,
normalized to peak at 1, is shown with dotted lines. (Middle) Eulerian density perturbation
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Figure 4.3: Normal mode outer Lindblad resonance (OLR) location predictions from all
five Uranus models. The azimuthal order m (equivalent to the number of spiral arms) is
the vertical axis, and distance from the center of Uranus is the horizontal axis, shown in
Uranus radii on the bottom and in km on the top. OLRs can excite inward-propagating
spiral density waves. The typical uncertainty of these resonance locations is shown by one
bar on the left.
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Figure 4.4: Normal mode outer vertical resonance (OVR) location predictions from all five
Uranus models. The azimuthal order m (equivalent to the number of spiral arms) is the
vertical axis, and distance from the center of Uranus is the horizontal axis, shown in Uranus
radii on the bottom and in km on the top. OVRs can excite outward-propagating bending
waves. The typical uncertainty of these resonance locations is shown by one bar on the left.



74

1.0 1.2 1.4 1.6 1.8 2.0 2.2
 [ ]

3

6

9

12

15

18

21

24

sy
n
ch

ro
n
o
u
s 

o
rb

it

Le
 V

e
rr

ie
r 

ri
n
g

G
a
lle

 r
in

g

La
ss

e
ll 

ri
n
g

N
a
ia

d

T
h
a
la

ss
a

D
e
sp

in
a

=
= 1
= 2
= 3
= 4
= 5

25 30 35 40 45 50 55
 [  km]

Figure 4.5: Normal mode resonance location predictions for Neptune. The azimuthal order
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Figure 4.7: Resonance location predictions for Neptunian g-modes. The azimuthal order m
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Figure 4.8: Radial scan of Uranian rings compared to Lindblad resonance predictions from
the medium model. The cyan curve shows the mean ring normal I/F as a function of
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the azimuthal order m of the mode.
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CHAPTER 5

Avenues for future work

In this thesis, I have shown how interactions among small bodies inside of resonances

impact their orbital evolution, with special relevance to the Saturnian system. I have also

calculated where to look in the Uranian and Neptunian rings for evidence of planetary

normal mode resonances. Below are a number of possible avenues for future work related

to these topics. In addition, I also present in Section 5.2.2 an excerpt about tidal evolution

in the Saturnian system that I contributed to a multi-authored paper about Saturn’s small

moon Pallene, Muñoz-Gutiérrez et al. (2021).

5.1 Dynamics of Neptune’s ring arcs

Neptune’s ring arcs were introduced in Chapter 1. In Chapter 2, it was mentioned that the

basic finding about energy conservation in corotation resonances has important implications

for the stability of ring arcs in general, including dense arcs like those found in Neptune’s

Adams ring (A’Hearn et al., 2019). Due to the high density of particles, inter-particle

collisions are expected to be common, and inelastic interactions such as accretion can occur.

Numerical simulations of Neptune’s ring arcs are likely needed to distinguish whether such

interactions would tend to eject material out of the stable corotation sites.

To carry out these simulations properly, however, the specific mechanism that confines

them ought to be known. Although several ideas have been proposed about the particular

resonance of Neptune’s ring arcs, we do not have certainty about which one is responsible.

It was first suggested that they could be shepherded at a Lagrange point by an undiscovered

moon (Lissauer, 1985). Goldreich et al. (1986) then proposed a corotation resonance as their

explanation, even before the discovery of Galatea. Galatea was then found in the Voyager

2 images (Smith et al., 1989) of the same order of magnitude predicted by Goldreich et al.

(1986). The Adams ring has several ring arcs that move at rates close to a 42:43 corotation

resonance with Galatea. At first, it was suspected that the Adams ring arcs were in a

corotation inclination resonance (Porco, 1991) Later, evidence was put forward that it is
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rather a corotation eccentricity resonance that explains the ring arcs’ confinement (Namouni

and Porco, 2002). Deviations in the observed motion of the arcs from the predicted rate of

either type of corotation resonance, however, support other possible explanations (Renner

et al., 2014). The presence of undetected satellites that are co-orbital with the Adams ring

arcs has been proposed (Salo and Hanninen, 1998; Renner et al., 2014), though more recent

investigation claims to rule out that co-orbital satellites could be the source of the dust

(Giuliatti Winter et al., 2020). Another recent idea is that the Adams ring arcs are in a

three-body resonance with Galatea and Larissa (Showalter et al., 2017). Nevertheless, none

of these theories explain how two of the ring arcs could have faded since 1989, while the

other two have survived (de Pater et al., 2018).

One way this can be done is with an impulse from an interplanetary rock. Similar to a

derivation I have previously laid out (A’Hearn et al., 2021), for nearly circular orbits, the

standard orbital perturbation equations can describe the rate of change of semi-major axis

over time as (Burns, 1976; Hedman, 2018)

δa

δt
= 2na

Fp
FG

(5.1)

where the mean motion n =
√
GM/a3 ' 819.8◦/day, Fp is the azimuthal component of the

perturbing force, FG = GMm/a2 = n2am is the gravitational force on the ring arc from

Neptune’s center, M is Neptune’s mass, and m is the mass of the ring arc, which we can

rewrite in terms of surface mass density and area m = σA. The ring arc particles will thus

undergo a semi-major axis change δa upon receiving an azimuthal impulse

Fpδt =
FG
2na

δa =
1

2
nσAδa. (5.2)

Because the width of the ring arc is approximately 15 km (de Pater et al., 2018), the δa

required to disrupt the ring arc must be greater than half its width. For a collision between

a ring arc and an interplanetary rock, we can estimate the impact speed as comparable to

the ring arc’s orbit speed v = na ' 10.4 km/s. We can then divide the impulse by this orbit

speed to get a lower bound mass estimate for the interplanetary rock. An upper bound
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mass estimate can also be found because we require the other ring arcs not to be disrupted.

This could then be tested with numerical simulations.

Another possibility that could explain the disappearance of the rings arcs is that the

dust has re-coagulated onto the source bodies that had previously provided the ring arcs

with dust. If neither of the above scenarios are deemed plausible, perhaps the fading of

the arcs could be explained simply by dissipation through solar radiation pressure and

Poynting-Robertson drag (Foryta and Sicardy, 1996; Giuliatti Winter et al., 2020).

5.2 Orbital migration

5.2.1 Tidal evolution

Tides are a result of objects not being point-masses but bodies with three spatial dimensions

(Murray and Dermott, 1999). Torques produced by tides eventually drive changes in the

orbits especially of moons. Retrograde moons such as Neptune’s Triton as well as prograde

moons that orbit faster than their host planet spins are doomed to migrate inward until

they cross the Roche limit and are eventually torn apart. Prograde moons that orbit more

slowly than their host planet spins are migrating away from it. Such is the case of our Moon

and of most major moons in the Solar system. The rate at which moons migrate, however,

is difficult to know with much certainty.

Recent tidal evolution studies have called into question the assumption that many of

the moons of our Solar system are primordial (Lainey, 2016; Ćuk et al., 2016). Instead, a

cyclic process between moons and rings may be at play, in which an inward migrating moon

is disrupted by tidal forces. While a portion of the disrupted moon falls into the planet,

another portion forms a ring system, and eventually the outer part of the ring system

accretes into new moons, which will migrate inward and continue this process as long as

they are inside the corotation radius (Hesselbrock and Minton, 2017, 2019). Not only can

determination of tidal evolution rates help us constrain the history of satellite systems, but

it can also tell us about the interiors of these planets (Lainey, 2016).

We have learned lessons about tidal evolution from the Jovian and Saturnian systems

(Park et al., 2019). The volcanic activity of Jupiter’s moon Io is tied to the evolution of



80

its eccentricity and semi-major axis (de Kleer et al., 2019), and gravitational effects on Io

have led to detection of dynamical tides in Jupiter, which are expected to elucidate the

existence of a dilute core in Jupiter (Idini and Stevenson, 2021). Jupiter’s moon Europa

and Saturn’s moon Enceladus are both icy satellites with subsurface oceans that are tidally

heated, and these tidal interactions influence their thermal, rotational, and orbital evolution

(Matsuyama et al., 2018; Rovira-Navarro et al., 2019).
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5.2.2 Mimas, Enceladus, and Pallene

Reproduced below in this Subsection is an excerpt from a published journal article of which

I am a co-author:

M.A. Muñoz-Gutiérrez, A.P. Granados Contreras, G. Madeira, G., J.A. A’Hearn, S.

Giuliatti Winter, “Long-term Dynamical Evolution of Pallene (Saturn XXXIII) and Its

Diffuse, Dusty Ring” Monthly Notices of the Royal Astronomical Society, stab3627, 2021

The paper sought to carry out a comprehensive study of the long-term dynamics of

Pallene, as well as of the possible origin and dynamical evolution of its diffuse dusty ring,

formed by micrometer-sized particles subject to gravitational and non-gravitational forces.

My contribution to the paper was mainly the tidal evolution section, along with summaries

of this section that appeared in the introduction and conclusion. Considering the tidal

evolution of Pallene set limits on timescales over which to consider long-term evolution

using Mercury6, which does not include tides in its orbital integration. It also presented a

plausible previous resonance from which Pallene may have escaped.

Tables 5.1 and 5.2 appeared in between the paper’s Introduction and Methods sections,

but are included below because the text I have excerpted refers to them. Note also that al-

though Figure 5.1 did not appear in the final published version of the paper, I have decided

to include it here.

From the Introduction:

To examine the big picture of Pallene’s tidal evolution, we use a simple model based

on Murray and Dermott (1999), which assumes a linear tidal dissipation mechanism and a

constant Q, independent of frequency. We only examine the tidal evolution of Pallene and

the large moons in its vicinity, Mimas and Enceladus, in order to look at resonances that

may have been crossed in the recent past, as well as to establish a time limit of the validity

of the current orbital configuration of the system for the longer-term simulations.
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Tidal evolution Section:

To gain an appropriate perspective on the timescales of Pallene’s dynamical evolution,

we first look at Pallene’s tidal evolution in between Mimas and Enceladus. Although more

complex analyses of tidal evolution in the Saturn system have recently been done (e.g.

Fuller et al. 2016; Lainey et al. 2020), here we employ a simpler model to gain a general

understanding of the context in which Pallene may have evolved. Using Equation 4.213

from Murray and Dermott (1999), we can calculate previous semi-major axes

a = a0

[
1−

(
k2

Q

39MmR
5
S

2a
13/2
0

√
G

MS
t

)]2/13

, (5.3)

assuming that the tidal dissipation mechanism is linear and thatQ is frequency-independent.

For our tidal evolution calculations, we take our value for Saturn’s Love number, k2 =

0.390, from Lainey et al. (2017). We estimate a quality factor Q = 2000 also based on Lainey

et al. (2017) and similar to what is used in Ćuk et al. (2016), which was based on the earlier

work of Lainey et al. (2012), though there is less agreement on this value and it is meant

to apply only near the semi-major axes roughly around Mimas and Enceladus. Previous

estimates of Q an order of magnitude higher were due to the assumption that Mimas was

primordial (Murray and Dermott, 1999; Meyer and Wisdom, 2008). However, recent studies

that argue Saturn’s rings and the mid-sized moons are probably young, use a Q value in

the range we have assumed (Ćuk et al., 2016; Fuller et al., 2016; Lainey et al., 2017; Neveu

and Rhoden, 2019; Hesselbrock and Minton, 2019). Other values for this calculation are

given in 5.1 and 5.2.

Using these values, we measured the change in semi-major axis with respect to today’s

semi-major axis value ∆a
a over the past five million years for Mimas, Pallene, Enceladus,

Tethys, and Dione. Out of these measurements, Mimas has ∆a
a = 0.0017, which is the largest

among these moons. Because this change in semi-major axis due to tidal evolution is small,

we expect our long-term simulations of 5 Myr without the inclusion of tidal evolution to be

accurate enough.
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Table 5.1: Saturn’s physical parameters.

Parameter Value Reference

RS [km] 60 330 Kliore et al. (1980)
GMS [km3 s−2] 3.793120749865220E+07 gm de431.tpc a

J2 1.6290573E-02 Iess et al. (2019)
J4 -9.35314E-04 Iess et al. (2019)
J6 8.6340E-05 Iess et al. (2019)
ΩS [rad s−1] 1.65269E-04 Helled et al. (2015)

a Available at https://naif.jpl.nasa.gov/pub/naif/generic kernels/pck/gm de431.tpc

Table 5.2: Summary of physical parameters of the six large moons in our system.

Name GMm
a ρm Rm

b

[km3 s−2] [g cm−3] [km]

Mimas 2.503522884661795E+00 1.152 198.2
Enceladus 7.211292085479989E+00 1.606 252.6
Tethys 4.121117207701302E+01 0.956 537.5
Dione 7.311635322923193E+01 1.469 561.4
Rhea 1.539422045545342E+02 1.233 763.8
Titan 8.978138845307376E+03 1.880 2574.7

a GMm values are taken from the planetary constant kernel gm de431.tpc.

b Radius values, Rm, are taken from the planetary constant kernel pck00010.tpc (available at

https://naif.jpl.nasa.gov/pub/naif/generickernels/pck/pck00010.tpc, Archinalet al. 2011).
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Figure 5.1: Tidal evolution of Enceladus, Pallene, and Mimas over the past 175 Ma based
on Equation 5.3 (Murray and Dermott, 1999) with Q = 2000 and k2 = 0.390 (Lainey
et al., 2017). Pallene may have recently crossed the 4:5 resonance with Mimas and the
7:6 resonance with Enceladus. If Pallene were trapped in a resonance like one of these, it
could have migrated with the larger moon for some period of time. Ultimately, Pallene’s
orbit may have crossed that of Enceladus, suggesting that Pallene could be a fragment from
Enceladus.
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From the semi-major axis calculations, if Pallene is old enough, it may have recently

escaped the 4:5 resonance with Mimas (40 Myr ago with Q = 2000). Prior to escape,

Pallene could have migrated with Mimas for a substantial period of time. For this reason,

it becomes difficult to project Pallene’s previous tidal evolution with much certainty. If

Pallene was not captured in any resonance with Mimas for a significant period of time,

which is unlikely because their orbits are converging, then further in the past Pallene’s

orbit may have crossed that of Enceladus (400 Myr ago with Q = 2000), suggesting that

Pallene could be a fragment from Enceladus, similar to the way Showalter et al. (2019)

propose that Hippocamp could have fragmented off of Proteus, possibly from a cometary

impact.

Hippocamp is close to the orbit that is synchronous with Neptune’s rotation, which,

together with the fact that it is the least massive of Neptune’s moons, implies that the

rest of Neptune’s moons are diverging from Hippocamp. In contrast, Pallene’s orbit is

converging with Mimas’s orbit. For this reason, Pallene is expected to have been captured

into resonance with Mimas at each resonance crossing, but it is difficult to determine the

duration of the capture in each resonance.

Proteus and Hippocamp have mean radii of 203.8 km and 17.4 km (Showalter et al.,

2019), while Enceladus and Pallene have mean radii of 252 km and 2.23 km (Roatsch et al.,

2009; Thomas et al., 2013). Using these mean radii and masses of 1.08×1020 kg for Enceladus

(Jacobson et al., 2006) and 4.4× 1019 kg for Proteus (multiplying the volume from Stooke

(1994) by an assumed density of 1.3 g/cm3), the escape velocity vesc =
√

2GMm/Rm from

the surface of Enceladus is 240 m/s, while for Proteus it is 170 m/s. Pallene has a smaller

size ratio to Enceladus than Hippocamp has to Proteus, but perhaps Pallene is evidence of

the proposed impactor in the south polar terrain of Enceladus (Roberts and Stickle, 2017).

Not too long in the past, however, is the Mimas-Enceladus 3:2 resonance crossing

(115 Myr ago with Q = 2000). Meyer and Wisdom (2008) studied a triplet of Mimas-

Enceladus 3:2 resonances and found that Mimas’s eccentricity can be explained either by

passage through the 3:2 e-Mimas resonance or the 6:4 ee′-mixed resonance (but not the 3:2

e-Enceladus resonance), and found dynamical escape to be possible for both of these reso-

nances. Ćuk et al. (2016) proposed that Tethys, Dione, and Rhea all formed in one event
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about 100 Myr ago, and suggests that Mimas and Enceladus could have formed during the

same epoch or could be even younger. Neveu and Rhoden (2019), however, have suggested

that Mimas could be significantly younger than Enceladus. This last scenario allows for the

possibility of Pallene migrating away from Enceladus after an impact before the formation

of Mimas.

Thus, given a constant Q tidal model, it looks like Pallene has crossed some resonances,

which, especially if it had been trapped in any of them for some period of time, could have

affected its eccentricity and inclination. However, the new tidal models indicate the evo-

lution of the satellites could be more complex than previously thought (Fuller et al., 2016;

Lainey et al., 2020). Still, small moons such as Pallene are likely sensitive probes of this

tidal evolution (see, for example, El Moutamid et al. 2017) and so should be considered in

those contexts.

From the Conclusion:

We used a simple tidal evolution calculation for Mimas, Pallene, and Enceladus in

order to set the context for our longer-term simulations. We made note that the most

recent resonance Pallene may have escaped from is the 4:5 resonance with Mimas. Pallene’s

current eccentricity or inclination could be signs of this or another past resonance crossing.

From the Acknowledgements:

J. A’Hearn thanks M. Hedman, M. Tiscareno, and M. Showalter for useful discussions;

and also thanks NASA for partial support through the Cassini Data Analysis and Partici-

pating Scientist Program grant NNX15AQ67G.

5.2.3 Inner Neptunian system

The Neptunian system provides an opportunity for us to apply lessons we have learned

and to increase our understanding of tidal evolution. While the dynamics of the Neptunian

system have thus far been only partially explored (see for example Banfield and Murray

1992; Porco et al. 1995), recent discoveries in the Neptunian system (Showalter et al.,
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2019; Brozović et al., 2020) as well as developments in tidal modeling (Fuller et al., 2016;

Hesselbrock and Minton, 2019) have opened up the door for the Neptunian system to play

a role in enlightening our understanding of tidal evolution.

Tidal evolution draws the inner prograde moons further inward, and resonance crossings

can leave signatures on orbital parameters such as eccentricity and inclination, though for

the Neptunian system the eccentricity damping timescale is significantly shorter than the

inclination damping timescale (Zhang and Hamilton, 2007).

Naiad’s high inclination (4.7◦) has allowed it to be captured into a 73:69 resonance

with Thalassa (Brozović et al., 2020). In particular, this means that the resonant argu-

ment 73λThalassa − 69λNaiad − 4ΩNaiad librates around 180◦, where the orbital parameters

λ represents the corresponding moon’s mean longitude, and Ω represents the longitude of

its ascending node. This is the only fourth-order resonance known between moons of the

outer planets, and results in increasing the stability of the Naiad-Thalassa pair despite their

proximity in semi-major axis because, whenever Naiad passes Thalassa, they have greater

vertical than radial separation (Brozović et al., 2020). Naiad’s inclination was most likely

excited by a previous resonance (Banfield and Murray, 1992).

Multiple studies have looked at the past tidal evolution of Neptune’s moons with a

simple approach, using a constant, frequency-independent tidal dissipation parameter Q

(Banfield and Murray, 1992; Zhang and Hamilton, 2007, 2008). I have reproduced this

simple calculation (see Figure 5.2) with Equation 5.3, using k2 = 0.127 (Gavrilov and

Zharkov, 1977; Lainey, 2016), Q = 12, 000 (Banfield and Murray, 1992; Showalter et al.,

2019), R = 24, 764 km (Archinal et al., 2018), M = 1.024126 × 1026 kg (Jacobson, 2009),

and satellite masses m from Brozović (2020).

Banfield and Murray (1992) identified 35 candidate resonances and calculated the proba-

bilities that Naiad had been captured in them, isolating three of these candidate resonances

as the most probable, but they did not perform numerical orbital simulations.

Since these studies, Neptune’s moon Hippocamp has been discovered in between the

orbits of Larissa and Proteus (Showalter et al., 2019), and our understanding of tidal evo-

lution has developed, including the cases of coupled ring-moon systems (Hesselbrock and

Minton, 2017, 2019), of two moons in a resonance lock with each other (Gomes, 1997, 1998),
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Figure 5.2: Semi-major axis vs. time into the past according to a simple tidal model. Only
first- and second-order resonance crossings with m < 10 are shown. One or a number of
previous second-order resonances are expected to have excited Naiad’s inclination.

and of a moon in a resonance lock with a planetary normal mode (see below; Fuller et al.

2016). These advances have been applied in studies of the systems of Mars (Hesselbrock and

Minton, 2017; Ćuk et al., 2020), Saturn (Fuller et al., 2016; Lainey et al., 2020), and Uranus

(Hesselbrock and Minton, 2019). The locations of planetary normal mode resonances are

dependent on the interior model, especially for low azimuthal order m. Some interior mod-

els place Neptunian normal mode resonances close to Naiad (see Chapter 4). Thus, how a

moon might interact with a planetary normal mode resonance is a relevant question for the

orbital evolution of Neptune’s inner moons, especially Naiad and Thalassa.

The theory of resonance capture has focused on first- and second-order resonances,

because these are the strongest and most common (Borderies and Goldreich, 1984; Dermott

et al., 1988; Champenois and Vienne, 1999; Luan, 2014; Batygin, 2015; El Moutamid et al.,

2017). The recent discovery of Naiad and Thalassa’s fourth-order resonance (Brozović et al.,

2020) provides a motivation to extend the theory of resonance capture to fourth order.
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Using an equation for resonance width that is intended to apply to first-order resonances

(El Moutamid et al., 2017; A’Hearn et al., 2019), I have estimated the width of the Naiad-

Thalassa resonance to be only about 4 km, but derivation of an equation that is specific

to fourth-order resonances can clarify this quantity. Capture probability depends on the

order of the resonance, resonance width, drift rate, and initial eccentricity and inclination

(Quillen, 2006; Namouni and Morais, 2017). The development of theory for fourth-order

resonances and the analysis through numerical simulations constitute an avenue for possible

future research. Understanding the conditions that allowed capture into the Naiad-Thalassa

resonance will help constrain tidal evolution rates in the Neptunian system, which can shed

light on Neptune’s interior and the history of the Neptunian system.

An investigation starting with Equation 5.3 and also taking into account resonances

between moons (Gomes, 1997, 1998) is all that may be required to examine tidal evolution

through the three most probable candidate resonances that are thought to have excited

Naiad’s inclination to its current value: the 12:10, 11:9, and 10:8 inclination resonances

(Banfield and Murray, 1992). In addition to resonances between moons, other factors that

can affect tidal evolution are feedbacks between rotational, orbital, and thermal evolution

(Park et al., 2019). Furthermore, other interactions that can be important include ring

torques (Hesselbrock and Minton, 2017, 2019) and resonances with planetary normal modes

(Fuller et al., 2016).

Neptune’s current ring system is much less massive compared to Saturn and Uranus,

but it may have been larger in the past. Modeling the interaction between ring torques

and moons can be done with a code called RINGMOONS (Hesselbrock and Minton, 2017),

which approximates the gridspace of the ring as a one-dimensional Eulerian series of bins,

extending from the surface of the planet to the fluid Roche limit. RINGMOONS has recently

been integrated into a more general N-body code called Swiftest (Duncan et al., 1998;

Minton et al., 2021). Looking at these interactions can help us constrain how ring torques

may have played a role in the evolution of Neptune’s inner moons, and likewise how the

inner moons could constrain the history of Neptune’s current rings.

So far there exists theory concerning how planetary normal mode resonances interact

with rings (Marley and Porco, 1993). There is room to further develop the theory of how
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planetary normal mode resonances interact with moons on short timescales, which can be

applied to Neptune’s rings and inner moons to improve our understanding of the recent past

tidal evolution of the Neptunian system. A particular test is to see if Naiad’s inclination

could have been excited by a vertical resonance with a planetary normal mode instead of

by an inclination resonance with Despina, as mentioned in Chapter 4.

Figure 5.3: Semi-major axis vs. time into the future according to a simple tidal model. A
few hundred million years into the future, Despina will approach Thalassa and Naiad to
form what we expect to be an increasingly unstable tightly packed system. Note that this
Figure is an extension that continues further to the right from where Figure 5.2 leaves off.

Despina is evolving inward via tides faster than other nearby moons due to its larger

mass. In the future, Despina’s perturbations on Naiad and Thalassa could destabilize the

inner Neptune system sometime in the next few hundred million years, according to a simple

tidal model calculation (see Figure 5.3). Thus, a detailed investigation of how we can expect

the disruption of Neptune’s inner moons to play out is of interest. Many studies of closely

packed planetary systems will be relevant for this investigation (Wisdom, 1980; Gladman,

1993; Smith and Lissauer, 2009; Funk et al., 2010; Quillen, 2011; Deck et al., 2013; Boley

et al., 2014; Hussain and Tamayo, 2020; Petit et al., 2020; Lissauer and Gavino, 2021).
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5.2.4 Resonance locking

Orbits of moons and planets change over time due to many factors, including tidal inter-

actions with their host bodies and resonant interactions with other orbiting bodies. Tidal

heating and coupled orbital migration are key to the evolution and habitability of worlds,

including several moons in the outer Solar system as well as exoplanets (Park et al., 2019).

Nevertheless, we still have a poor grasp on the origin of tidal energy dissipation required for

this orbital evolution around giant planets and stars. A variety of mechanisms can produce

accelerated tidal migration. Standard mechanisms are interaction with rings (Goldreich and

Tremaine, 1980) and resonances with other moons (Gomes, 1998). These two mechanisms

can often be in competition with each other (Dawson and Murray-Clay, 2013). Recent

work, however, shows that another mechanism, resonance locking with the planet’s internal

oscillation (normal) modes, can also produce rapid tidal migration (Fuller et al., 2016).

Without disregarding the importance of ring-satellite interactions or resonances between

moons, we must improve our understanding of resonance locking with planetary normal

modes to better understand orbital evolution around giant planets and small stars.

As a planet or star ages, its oscillation mode frequencies evolve. Resonance locking

occurs when the coupled evolution of the oscillation mode frequency of the central body

and the orbital frequency of the perturbing body allows the perturber to remain near

resonance with the oscillation mode. Resonance locking predicts a migration timescale

that is similar to tidal evolution with constant tidal quality factor Q, but with a different

effective Q governing each moon or planet’s migration (Fuller et al., 2016). Planetary

contraction alone would lead to spin-up, due to conservation of angular momentum. Over

time, however, planetary interiors cool (Fortney and Nettelmann, 2010). Cooling as well as

transfer of angular momentum from the planet to its moons can allow the planet’s rotation

rate to slow down, which moves the inertial wave frequencies outward. So far, no interior

evolution studies have been performed of inertial waves in evolving planets (Fuller et al.,

2016).

One avenue for possible future research, therefore, is to explore how internal oscillation

modes evolve with the planet and how this might affect satellite orbital evolution. In Figure
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Figure 5.4: Internal oscillation mode resonance locations that fall in Saturn’s C ring based
on an interior model from C. Mankovich. Oscillation order m is plotted against radial
distance r. Filled-in square points correspond to resonance locations using Saturn’s cur-
rent rotation rate; whereas empty diamond points correspond to resonance locations using
a slower rotation rate (80% of Saturn’s current rotation rate). This demonstrates how
resonance locations can change as a planet evolves, and in particular, that the resonance
locations do not all change by the same amount. For modeling resonance locking dynamics,
however, a more comprehensive and self-consistent interior evolutionary model is desirable.

5.4, I show the difference in resonance locations by modifying only the planet’s rotation rate,

which is merely one quantity that changes as a planet evolves. The resonance locations of

different oscillation orders m change by different amounts. To model resonance locking

dynamics, a more comprehensive and self-consistent interior evolutionary model is desired.

The first step would be to generate a suite of models that correspond to an evolving giant

planet at different time steps to investigate the evolution of planetary normal modes. To

do this, it may be possible to use the new planetary evolution code planetsynth (Müller

and Helled, 2021) that was designed specifically for giant planets. Otherwise, following

the methods outlined in Mankovich and Fuller (2021) to generate these models would be

sufficient. Orbital evolution rates that result from different planetary evolution models can

then be explored in order to test and refine resonance locking theory.

A second step would be to examine how planet-driven migration and satellite resonances

interact. This investigation could include resonance locks of moons with planetary normal

modes (Fuller et al., 2016), resonances between moons (Gomes, 1997, 1998), and coupled

ring-moon systems (Hesselbrock and Minton, 2017, 2019). The combination of all three
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of these processes could be analyzed in order to produce an improved model. This could

be done by considering the cases of Neptune, as explained previously, and of Saturn and

exoplanets, as explained below. In these cases a comparison can be made between the effects

on a rocky moon vs. a moon with a subsurface ocean.

The orbital evolution of the Saturnian system is an active field, with different theories

about the ages and migration of Saturn’s inner mid-sized moons: Mimas, Enceladus, Tethys,

Dione, and Rhea (Ćuk et al., 2016; Asphaug and Reufer, 2013; Neveu and Rhoden, 2019).

Numerical simulations of these moons that couple thermal, geophysical, and simplified

orbital evolution have reproduced the observed characteristics of their orbits and interiors,

as long as the outer four moons are old (Neveu and Rhoden, 2019). Mimas’s proximity to

Saturn’s rings generates interactions that cause such rapid orbital expansion that Mimas

must have formed 108-109 years ago if it postdates the rings (Neveu and Rhoden, 2019).

Saturn’s mid-sized moons each evolve with a different effective tidal Q (Fuller et al., 2016;

Lainey, 2016; Lainey et al., 2020). Although Mimas has long been considered a dead world,

a case has recently been made that Mimas may in fact be a “stealth” ocean world (Rhoden

and Walker, 2022). The application of resonance locking studies to the Saturnian system

could also shed light on this unsettled issue.

All the relevant mechanisms must be included to explain how the Saturnian system

has evolved. Ring torques are important due to the mass of Saturn’s rings (Hesselbrock

and Minton, 2019; Nakajima et al., 2020). Many of Saturn’s moons are in resonances,

including the Mimas-Tethys 4:2 resonance and the Enceladus-Dione 2:1 resonance (Murray

and Dermott, 1999), and recent work has shown that also three-body resonances, which have

been neglected in past studies, must be taken into account for an accurate investigation

of the Saturnian system’s past (Ćuk and El Moutamid, 2022). Resonance locking with

normal modes in the planet can allow subsurface oceans to persist even in small moons like

Enceladus and can also serve as the mechanism to drive rapid tidal expansion in Saturn’s

large moon Titan (Fuller et al., 2016; Park et al., 2019; Lainey et al., 2020). The combination

of these mechanisms should be studied in order to provide a more detailed model of how

the system has evolved.

Exoplanet systems are then left as the final case to be explored based on insights from the
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previous two case studies. The study of nonradial oscillations developed first for stars before

giant planets (Unno et al., 1979). With the developments contributed first for giant planets,

these can then be extended primarily to small stars, such as M dwarfs. Rotation rates of a

minority but still significant amount of M dwarfs are not too different from those of our Solar

system’s giant planets (Reiners et al., 2018). Many exoplanetary systems around a broader

range of stellar spectral types have planets that are just wide of resonance (Fabrycky, 2010;

Fabrycky et al., 2014), indicating that resonances between planets are insufficient to explain

the dynamics that are at play.

For this research avenue, one can run M dwarf system simulations that evolve both the

star and what orbits it. MESA code (Paxton et al., 2011) has been widely used for stellar

evolution. For orbital evolution, one could use a combination of RINGMOONS, SIMPL, and

MERCURY6. RINGMOONS can best model the final stages when a protoplanetary disk is still

present, thus involving disk-planet torques, analogous to the ring-moon torques among the

outer planets of our Solar system. SIMPL simulations can explore resonance locking with

internal oscillation modes and resonant dynamics between planets. MERCURY6 simulations

can be used to investigate small timescales if planets become tightly packed and would

experience close encounters with each other (SIMPL does not handle close encounters). The

objective of these simulations would be to produce orbital architectures that are similar to

what we observe today among the population of M dwarf exoplanetary systems (Fabrycky,

2010; Fabrycky et al., 2014).

5.3 Further co-orbital satellite dynamics studies

In Chapter 3 I presented an application of co-orbital dynamics to Saturn’s D68 clumps.

Here I share additional topics that I have begun to explore related to co-orbital satellite

dynamics.

The study of the dynamics of co-orbital systems is motivated by the many cases of

co-orbital systems we find in our solar system as well as the potential for finding cases of

co-orbitals among exoplanetary systems. We are especially interested here in systems in

which the co-orbitals have comparable masses. The best known system this would apply to
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would be the horseshoe orbits of Janus and Epimetheus (Dermott and Murray, 1981a).

5.3.1 Janus and Epimetheus

Saturn’s moons Janus and Epimetheus are co-orbital. Though one of them is almost always

closer to Saturn than the other, they swap orbits every four years. A demonstration I have

simulated of this orbital swap is shown in Figure 5.5. Janus is 3.6 times more massive

than Epimetheus (Jacobson et al., 2008), which is directly proportional to how much their

semi-major axes change during an orbital swap: ∼ 21 km for Janus and ∼ 76 km for

Epimetheus, preserving the ratio of 3.6 (El Moutamid et al., 2016). When Epimetheus is

closer to Saturn than Janus, it has a shorter orbital period and approaches Janus from

behind. The closer they approach each other, the stronger their gravitational interaction,

and the faster the rate of angular momentum transfer. Janus pulls Epimetheus forward,

while Epimetheus pulls Janus backward. As Janus slows down, it falls toward Saturn in its

orbit, now taking an inside track, while Epimetheus speeds up and thus rises away from

Saturn in its orbit, moving to an outside track. In this manner they swap their orbits. The

same procedure happens, though switching “Janus” for “Epimetheus” and vice versa in the

above explanation, when Janus approaches Epimetheus from behind.

5.3.2 Discovery of horseshoe-like trajectories for N = 3 co-orbitals

This Section presents a discovery I have made and presented at a conference, but have not

yet finished writing up as a scientific journal article.

Although no co-orbital systems have yet been found among exoplanets, it is expected

that they should exist. Granados Contreras and Boley (2018) suggest that in some cases

co-orbitals can form from tightly packed systems. Veras et al. (2016) state that co-orbital

configurations of nearly equal-mass objects may be produced upon the fragmentation or

disintegration of objects orbiting near the disruption radius of their host star. Moreover,

planetary system formation models predict the formation of some co-orbital systems (Laugh-

lin and Chambers, 2002; Beaugé et al., 2007). If such a system were to be found, it would

be necessary to distinguish the system of N co-orbitals orbiting once per period T from a

hypothetical planet orbiting N times per period T .
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Figure 5.5: Semi-major axis vs. time for a simulation I ran of Janus and Epimetheus,
showcasing their periodic orbital swap.

Some studies have considered the detectability of co-orbitals from radial velocity data

(Laughlin and Chambers, 2002; Giuppone et al., 2012; Leleu et al., 2015). Others have

also investigated the effect of co-orbitals on transit-timing variations (Vokrouhlický and

Nesvorný, 2014; Leleu et al., 2017). Most work on co-orbital systems has focused on the

case with N = 2 co-orbitals. In this Section I build on previous work, but focus my attention

on the case of N = 3 co-orbitals. Verrier and McInnes (2014) grouped into families some

of the periodic orbits for N = 3 and N = 4 co-orbitals. Here I report a new family of

horseshoe-like orbits for N = 3 equal-mass co-orbital systems. I also investigate preferred

longitudinal separations, which is relevant for breaking the degeneracy for transit-timing

variations.

Salo and Yoder (1988) originally examined stationary configurations of equal-mass co-
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orbital satellites for small N (N ≤ 9) using a simple first-order theory, neglecting terms

of the order (m/M)3/2, where m and M are the masses of the satellite and the primary.

A numerical search revealed three distinct types of stationary solutions, of which we are

here concerned with only one, which Salo and Yoder (1988) label Type Ia: an equilibrium

where all the N satellites are most concentrated on the same side of the common orbit. The

case where N = 2 is the well known Trojan configuration, with an angular separation of 60

degrees. Type Ia configurations are stable for 2 ≤ N ≤ 8 but are not found for N ≥ 9 (Salo

and Yoder, 1988). With increasing N , each angle in the Type Ia configuration becomes

more compact until N = 8. For N = 8 the angular separations between the middle six

co-orbitals are more compact, as expected, but the angular separations are more expanded

between the leading and second co-orbitals and between the trailing and penultimate co-

orbitals, probably because the leading and trailing co-orbitals are extended beyond the

semi-circumference (180 degrees) centered on the mid-point between the middle two co-

orbitals. This study focuses on configurations with N = 3.

Figure 5.6: The stable compact configuration (Type Ia) for N = 3 co-orbitals.

The fact that co-orbital exoplanets have not yet been discovered may be partially due to

observational bias, because near certain equilibrium points the difference in transit timing

may be attributed to a perturbation from a planet on a different orbit (Leleu et al., 2017).

Leleu et al. (2015) showed that the precision required to identify a pair of co-orbital planets

depends only on the libration amplitude and the planets’ mass ratio.

Salo and Yoder (1988) spoke of different modes of motion around the fixed solutions. The

first mode they speak of we call the symmetric expansion mode. This became our approach

for looking for periodic orbits. It’s the simplest to implement because all N bodies begin
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Table 5.3: Parameters used for numerical simulations, based on a typical M1 dwarf
(Kaltenegger and Traub, 2009) .

Parameter Value

R 0.49R�
M 0.49M�

with the exact same semi-major axis and differ only in longitude. Also, because Salo and

Yoder (1988) say that all the modes mix in the symmetric expansion mode, this mode also

serves as the best test for stability.

Verrier and McInnes (2014) studied periodic orbits for three and four co-orbital bodies.

They find three different families of orbits for three co-orbitals and six different families of

orbits for four co-orbitals. Their approach involves small oscillations from equilibrium. We

didn’t limit our initial longitudes to small oscillations. Instead, we ran orbital simulations

with initial longitudes through the entire longitude range, with a longitude step of 5 degrees.

We carried out our simulations using Mercury6 code (Chambers, 1999) for a range of

masses for N = 2 and N = 3. Plots we found useful for analyzing the stability and evolution

of different initial configurations include an aerial view in a co-rotating frame and a plot of

relative longitude over time.

My initial orbital simulations used Saturn as the central mass, though in order to present

this discovery more fittingly to the exoplanet community, I later changed the radius and

mass of the central body to that of a typical M1 dwarf (Kaltenegger and Traub, 2009) (see

Table 5.3) and neglected gravitational harmonics (J2 = J4 = J6 = 0).

To express our results in a more general way, however, we convert time to orbits, we use

mass ratios rather than absolute masses, and we express distances in terms of either the

common semi-major axis of the co-orbitals or the Hill radius of each co-orbital mass. The

highest mass we used was m = 2.0 × 1020 kg, which corresponds to a mass ratio of each

co-orbital mass mi to the central body’s mass M of mi
M = 3.5 × 10−7. Orbital oscillations

and evolution happen faster at higher masses.

Using Kepler’s 3rd Law n2a3 = µ = GM , we calculated the semi-major axis that would

correspond to a period of one day if the masses of the co-orbitals are ignored, and rounded

this result to a = 2, 308, 120 km. We used a time step of 0.1 days, a tenth of the orbital
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Table 5.4: Parameters of co-orbitals used for numerical simulations

Parameter Value

a 2,308,120 km

period.

To explore how a transiting co-orbital exoplanet might appear to observers, we created

synthetic transit data from some of our orbital simulations. This was done by choosing

an arbitrary reference angle from which an observer might observe the star at an infinite

distance. We produce an output file with time and normalized flux data, including random

noise of ±0.001 in the normalized flux data. What remains to be done is to then use the

exoplanet code for transit-fitting.

We explored variations in two parameters: mass and perturbations in initial longitude.

When we start the bodies out at their equilibrium points, we can see that their relative

longitude stays pretty much constant throughout the whole simulation. When we expand

their initial longitudes, we can see small oscillations in a tadpole-like region, and then

a chaotic zone, and at the very end a small horseshoe-like region. The horseshoe- and

tadpole-like regions scale differently with mass, though more work is required to confirm

the exponents that describe these relations. We get larger horseshoe-like regions for smaller

masses.

This simulation was closest to the edge of the tadpole-like region. The middle body

remains in the middle. The leading and trailing bodies exhibit pretty symmetric features.

Far from equilibrium and beyond the chaotic zone, we find a horseshoe-like region.

Because it’s N = 3 and not N = 2 we don’t get a completed horseshoe, but we call

it horseshoe-like because the bodies swap orbits with an exchange of energy and angular

momentum, like Janus and Epimetheus.

Kaplan and Cengiz (2020) observe that the maximum semi-major axis libration range

is found in horseshoe-type co-orbitals. We observe this also in our simulations. Horseshoe-

type co-orbitals also have the greatest difference between points of closest approach and

farthest distance away. For lower masses we ran longer simulations and confirm that the

horseshoe-like region is larger because it scales differently with mass than the tadpole-like
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Figure 5.7: An example simulation with the initial longitudes close to the edge of the
tadpole-like region.

region. The specific scaling of these regions still needs to be confirmed.

With a little bit wider initial angular separation than the tadpole region, we are on

the fringe of the chaotic zone. With the next simulation, we know we’re well into the

chaotic zone. The middle body changes and becomes the trailing body. Salo and Yoder

(1988)’s Type II configuration for N = 3 where the bodies begin with an equiangular

distance between them, 120 degrees apart, is an unstable equilibrium. This simulation was

the closest one to that unstable equilibrium. We can see that the bodies like to be about

120 degrees apart (see Figure 5.10), but when they start crowding in, they do that fast,

and then go out again. The middle body switches among all three bodies. As we continue

to increase the initial angular separation between the leading body and middle body and

between the middle body and trailing body, we find several simulations in which the middle

body is intended to be a certain one of them, but from the beginning, it becomes a different

one. Then we get back to more chaos in which the middle body switches. In no simulations

do we get a body on a different orbit so that it drifts by the other bodies. They all maintain

co-orbital status no matter how chaotic the simulation becomes.
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Figure 5.8: An example simulation with the initial longitudes far from equilibrium points.
The results are horseshoe-like orbits.

Salo and Yoder (1988) provide an important investigation into coorbital satellite sys-

tems. For a system of N coorbital bodies, there are N − 1 modes. For example, a system

with N = 3 coorbitals has a symmetric mode and an asymmetric mode. Thus for each ad-

ditional co-orbital, the system acquires a new dimension of complexity. For simplicity, we

focus on the mode of symmetric expansion (or contraction), which Salo and Yoder (1988)

found to mix the other modes and to be the most unstable.

Our findings are consistent with Laughlin and Chambers (2002) and Ćuk et al. (2012).

With the largest masses that we used, 2.0 × 1020 kg each, and with Saturn as the central

mass, the highest mass ratio of satellites to the whole system is

µmax =
2m

2m+M
= 7.0× 10−7 (5.4)

which is well below the stability limits for an equal-massN = 2 co-orbital system determined

by Laughlin and Chambers (2002): µ < 4 × 10−4 for horseshoe configurations and µ <

3.812× 10−2 for equilateral (tadpole) configurations.

To summarize our simulations, we can look at radial oscillation amplitude with respect
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Figure 5.9: An example simulation with the initial longitudes close to the unstable equilib-
rium points.

to initial separation between the bodies (see Figure 5.13). Radial oscillation amplitude

is defined as the maximum of any of the N bodies, and the initial separation is between

the leading body and second body. Note that the scale for radial oscillation amplitude is

logarithmic. The big dip happens close to equilibrium. This inflection point near the edges

is due to the horseshoe-like region. The other dip is probably just due to the simulation not

being long enough because the libration timescale is larger close to the region of unstable

equilibrium.

To sum up, here are a few highlights. We found a new horseshoe-like family of periodic

orbits far from equilibrium. We found a chaotic zone associated with the unstable equally

spaced initial configuration. We confirm that the horseshoe-like and tadpole-like ranges

scale differently with mass.

I have also performed simulations with N = 4 and N = 5 and have observed similar

dynamics. Instead of investigating each case separately, however, I see this as an opportunity

to apply machine learning techniques for arbitrary N , especially large N .
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Figure 5.10: Histogram of the longitudinal separations for the simulation closest to the
N = 3 unstable equiangular initial configuration. The bodies spend more time close to the
equiangular configuration.
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Figure 5.11: An example simulation with the initial longitudes in the chaotic region. The
middle body ends up being one that was intended to be the trailing body.
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Figure 5.12: Masses smaller than a certain threshold maintain their initial longitudinal
separation. Large masses exhibit regions of tadpole motion and regions of horseshoe motion.
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Figure 5.13: Radial oscillation amplitude, defined as the maximum of any of the N bodies,
vs. initial separation between the leading body and second body. The equilibrium point at
47.4◦ is the dominant influence on the trends. Near 180◦ are inflection points that mark a
transition to a horseshoe-like region. The trough particular to the cyan line near 120◦ is
likely due to a single simulation being not long enough to observe libration.
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R. Luque, H. Magán Madinabeitia, U. Mall, L. Mancini, H. Mandel, E. Marfil, J. A.
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Appendix A: Supplemental figures concerning the dynamics of multiple

bodies in a corotation resonance

In this Appendix I present additional figures relating the the Aegaeon project (see

Chapter 2).

Two characteristics of Aegaeon’s corotation resonance distinguish it from those of Anthe

and Methone. One is that Aegaeon is closer to exact resonance than Anthe and Methone

are, as shown in Figure 5.14. The other is that the ratio of total mass in Aegaeon’s ring

arc apart from Aegaeon is comparable to Aegaeon’s own mass, as shown in Figure 5.15.

If these two phenomena were causally connected, as Hedman et al. (2010) suspected, then

Aegaeon’s orbital evolution would have been linked to interactions with other masses in

its corotation resonance. As we showed, however, the simultaneous occurrence of these two

phenomena is a coincidence (A’Hearn et al., 2019), which makes Aegaeon’s presence so close

to the deepest part of its corotation resonance site all the more surprising.

Figure 5.16 summarizes changes that occur to a body’s orbit when it experiences forces

in certain directions. Let us consider the time derivatives of eccentricity and longitude of
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Figure 5.14: Resonant arguments for Aegaeon, Anthe, and Methone from an eight-year
simulation, starting from their locations on April 10, 2010 according to the SPICE kernels.
Aegaeon’s resonant argument ϕ = 7λMimas− 6λAegaeon−$Mimas oscillates around 180 degrees
because it is interior to Mimas. Anthe’s resonant argument ϕ = 11λAnthe−10λMimas−$Mimas

and Methone’s resonant argument ϕ = 15λMethone − 14λMimas −$Mimas oscillate around zero
because they are exterior to Mimas. Since the amplitude of oscillations is much smaller for
Aegaeon, it is closer to exact resonance with Mimas than Anthe and Methone are.

pericenter (Hedman, 2018), approximated for low-eccentricity, low-inclination orbits:

de

dt
= n

(
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FG

sinf + 2
Fλ
FG

cosf

)
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e
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FG
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A close encounter with body 3 can alter body 4’s eccentricity and longitude of pericenter

at any location in its orbit, but is twice as effective when the tug is in a longitudinal direction.

The effect of a close encounter on eccentricity and longitude of pericenter depends on

where in each body’s orbit the closest approach occurs. If body 4 is at apocenter at closest

approach, a prograde tug will decrease its eccentricity (and increase its semimajor axis),

whereas a retrograde tug will increase its eccentricity (and decrease its semimajor axis). At

pericenter, on the other hand, a prograde tug will increase its eccentricity, and a retrograde
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Figure 5.15: The size of both Anthe and Methone compared to the area that the material
in their ring arcs take up. Aegaeon is the smallest of these three moons, and the material
in its ring arc takes up more area compared to the ring arcs of Anthe and Methone.

tug will decrease its eccentricity.

If pericenter is on the left and apocenter is on the right, then to increase eccentricity,

we require a downward force at any place in its orbit. An upward force at any place in its

orbit would decrease eccentricity. Downward and upward forces are longitudinal (and thus

can be twice as effective) at pericenter and at apocenter.

One example given in Hedman (2018) is that a radial force applied near apocenter will

delay body 4’s inward motion, and thus cause the pericenter to shift forward in longitude.

Clocking the longitude of pericenter forward can be done at any point in the orbit as long

as the force is to the right. In contrast, a force to the left shifts the longitude of pericenter

backward. Since right and left are longitudinal halfway between pericenter and apocenter,

we can expect the most significant alterations to the longitude of pericenter to occur during

close encounters at these locations.

Figure 5.17 illustrates how far Aeageon is from completely dominating its own corotation

resonance site, despite it being the largest mass in its ring arc.

Using the spice kernels from April 10, 2010 for Mimas and Aegaeon, we were able to



137

Figure 5.16: On an elliptical orbital trajectory (green dashed line) around a primary (cyan)
body at one focus of the ellipse, a body that experiences an external force in the direction
of the red arrow undergoes changes in its orbital elements: e+ indicates an increase in
eccentricity, e− a decrease in eccentricity, $+ an increase in the longitude of pericenter,
$− a decrease in the longitude of pericenter.

reproduce similar plots of Aegaeon’s resonant arguments and their Fourier spectra to those

found in (see Figures 5.18 and 5.19; Hedman et al. 2010). In our Fourier analyses, we

used a brute force technique that allowed for custom determination of the sample period

bounds and number of samples. To investigate the space of the corotation and Lindblad

eccentricity resonances, we varied Aegaeon’s initial semimajor axis and mean longitude with

step-sizes of 0.5 km and 0.5 degrees over the range of the expected resonance space. Since

Mercury6 uses the osculating orbital elements, for each simulation, the initial geometric

orbital elements were converted to state vectors using the equations found in Renner and

Sicardy (2006). After each eight-year simulation, the resonant argument of the corotation

eccentricity resonance was fit to a least squares sine wave with a linearly time-dependent

amplitude. The mean amplitude of the fit sine wave was then mapped to a color in order

to produce a map of the corotation eccentricity resonance, displayed in Figure 5.20. For

2.08% of the simulations, the sine fit produced by our algorithm did not match up with
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Figure 5.17: This plot shows the relationship between a body’s mass, radius, and Hill radius,
compared to the width of the 7:6 corotation resonance with Mimas.

the resonant argument. This happened mostly on the fringe of the resonance. For these

cases, the amplitude value given by the sine fit was discarded, and an amplitude value was

interpolated from surrounding mean longitude steps in the resonance map. The map of the

corotation eccentricity resonance produced in Figure 5.20 is consistent with the expected

shape for a CER that appears in El Moutamid et al. (2014). The width of the CER seen

in the map is approximately 60 km, and the calculated value using the equation given in

El Moutamid et al. (2016) is 58 km. Using colors to indicate the libration amplitude of the

resonant argument, it becomes evident that proximity to the location of exact resonance is

strongly correlated with the resonant argument’s libration amplitude.

Two different criteria were employed to make Lindblad resonance maps. For the Lind-

blad resonance shown in Figure 5.22, the number of times the resonant argument crossed

the ±180◦ limits was counted, and the standard deviation from zero was computed in or-

der to produce maps of the Lindblad eccentricity resonance. An alternate way to map the

Lindblad resonance is shown in Figure 5.21. The first map (see Figure 5.21) uses colors

to indicate the resonant argument’s deviation from zero. The next map (see Figure 5.22)
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Figure 5.18: (Top) Corotation eccentricity resonant argument vs. time. Blue dots are data
points from a 20-year simulation with the initial values equivalent to those given by the
SPICE kernels for April 10, 2010. These data were fit to a sine function (red), which yields
the best-fit amplitude and period, listed in the legend. (Bottom) Fourier spectrum of the
data from the top panel, with an amplitude and period listed in the legend.

shows by colors how many times the resonant argument crossed over the ±180◦ limit. The

Lindblad resonance maps also show that around a mean longitude 0◦ away from the location

of exact resonance the resonant argument tends to oscillate around some value other than

zero.
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Figure 5.19: (Top) Lindblad eccentricity resonant argument vs. time. Blue dots are data
points from a 20-year simulation with the initial values equivalent to those given by the
SPICE kernels for April 10, 2010. (Bottom) Fourier spectrum of the data from the top
panel, with an amplitude and period listed in the legend.
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Figure 5.20: A map of one corotation eccentricity resonance site. The axes are zeroed at
Aegaeon’s initial location when the SPICE kernels of April 10, 2010 are used. The black
regions are outside of the corotation resonance, which was determined to be the case if
the maximum and minimum values of the resonant argument during the eight-year orbital
simulation differed by more than 354◦. This was taken as an indication that the resonant
argument was likely not oscillating around 180◦, but cycling through all 360◦. The colors
of the region inside the resonance correspond to the amplitude of the resonant argument’s
librations.



142

Figure 5.21: This map of the Lindblad eccentricity resonance uses colors to indicate the
resonant argument’s deviation from zero.

Figure 5.22: This map of the Lindblad eccentricity resonance uses colors to indicate the
number of times the resonant argument crossed over one of the ±180◦ limits during the
eight-year simulation.
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Appendix B: Supplemental figures concerning the D68 clumps

In this Appendix I present additional figures relating the the D68 project (see Chapter

3).

Figure 5.23: This image, taken on 2 February 2016, shows a region of the D68 ringlet
without observable clumps, representative of the whole ringlet before 2014 (Hedman, 2019).
D68 is the narrow ring near the center of the image.

Figure 5.24: This image, also taken on 2 February 2016, shows one of the bright clumps in
the D68 ringlet. D68 is the narrow ring near the center of the image. The bright feature is
located near the ansa. (Hedman, 2019)



144

Appendix C: Supplemental figures concerning the Uranian and Neptunian

rings

In this Appendix I present additional figures relating the the ice giant ring seismology

project (see Chapter 4). Appendices C.1. and C.2. were submitted for publication along

with the paper, though with slightly different formatting and labeling. Appendix C.3.

contains Voyager images of the Uranian and Neptunian rings, but was included in the

submission for publication.

Appendix C.1. Extended Tables of f-mode frequencies and resonance lo-

cations

In this appendix, we present all the calculated f-mode frequencies and resonance locations

for all the models. Table 5.5 shows the initial estimates by Marley et al. (1988). Our

Lindblad resonance calculations are provided in tables: the Uranus thick model in Table

5.6, the Uranus medium model in Table 5.7, the Uranus thin model in Table 5.8, the Uranus

adiabatic model in Table 5.9, the Uranus shallow model in Table 5.10, and the Neptune

model in Table 5.11. Similarly, our vertical resonance calculations are then provided in

tables: the Uranus thick model in Table 5.12, the Uranus medium model in Table 5.13, the

Uranus thin model in Table 5.14, the Uranus adiabatic model in Table 5.15, the Uranus

shallow model in Table 5.16, and the Neptune model in Table 5.17. Error bars are one-sided

because the frequencies and resonance locations are only calculated to first order. Second-

order calculations would universally lower the frequencies, which would cause the resonance

locations to be more distant from the planet.
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` m model Ωpat (deg/day) rres (km)
2 2 6 1683 48,300

5 1718 47,700
4 1767 46,800

3 3 6 2015 39,600
5 2025 39,500
4 2054 39,100

4 4 6 2005 38,100
5 2010 38,000
4 2030 37,800

5 5 6 1941 37,900
5 1941 37,900
4 1950 37,800

Table 5.5: Predicted Lindblad resonance locations among the inner rings of Uranus from
Marley et al. (1988).
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Table 5.6: Pattern frequencies and Lindblad resonance locations of the thick Uranus model

Uranus Thick model
` m Ωpat (deg/day) rres (km)

` = m
2 2 2218.7 - 62.4 40196 + 772
3 3 2228.9 - 59.9 37054 + 678
4 4 2077.7 - 53.6 37198 + 653
5 5 1922.5 - 47.8 38123 + 644
6 6 1788.3 - 42.9 39263 + 641
7 7 1677.2 - 39.1 40418 + 639
8 8 1586.7 - 35.9 41503 + 638
9 9 1513.3 - 33.4 42481 + 636

10 10 1453.5 - 31.4 43345 + 634
11 11 1404.4 - 29.7 44106 + 632
12 12 1363.3 - 28.3 44780 + 629
13 13 1328.1 - 27.0 45386 + 626
14 14 1297.5 - 26.0 45939 + 623
15 15 1270.5 - 25.0 46451 + 620
16 16 1246.2 - 24.2 46928 + 617
17 17 1224.3 - 23.4 47377 + 614
18 18 1204.3 - 22.7 47802 + 611
19 19 1185.9 - 22.1 48205 + 608
20 20 1169.0 - 21.5 48589 + 605
21 21 1153.2 - 21.0 48955 + 602
22 22 1138.6 - 20.5 49305 + 600
23 23 1125.0 - 20.0 49640 + 597
24 24 1112.2 - 19.6 49962 + 594
25 25 1100.2 - 19.2 50271 + 592

`−m = 2
4 2 3755.8 - 107.2 28306 + 551
5 3 2919.8 - 79.6 30955 + 575
6 4 2460.7 - 64.4 33234 + 592
7 5 2166.4 - 54.7 35208 + 604
8 6 1961.7 - 47.9 36916 + 613
9 7 1812.2 - 43.0 38388 + 618

10 8 1699.1 - 39.2 39654 + 621
11 9 1610.9 - 36.3 40749 + 623
12 10 1540.2 - 33.9 41705 + 623
13 11 1482.1 - 32.0 42553 + 622
14 12 1433.1 - 30.3 43314 + 621
15 13 1391.1 - 28.9 44007 + 619
16 14 1354.5 - 27.6 44644 + 617
17 15 1322.1 - 26.6 45234 + 615
18 16 1293.3 - 25.6 45784 + 613
19 17 1267.3 - 24.7 46299 + 611
20 18 1243.8 - 23.9 46784 + 609
21 19 1222.4 - 23.2 47242 + 606
22 20 1202.7 - 22.5 47675 + 604
23 21 1184.6 - 21.9 48087 + 602
24 22 1167.9 - 21.3 48478 + 599
25 23 1152.3 - 20.8 48852 + 597

`−m = 4
7 3 3307.8 - 91.1 28487 + 535
8 4 2711.8 - 71.9 31153 + 562
9 5 2350.3 - 60.1 33349 + 581

10 6 2108.3 - 52.3 35187 + 593
11 7 1935.4 - 46.6 36743 + 602
12 8 1805.6 - 42.4 38080 + 607
13 9 1704.4 - 39.1 39246 + 610
14 10 1622.9 - 36.4 40278 + 612
15 11 1555.6 - 34.1 41203 + 613
16 12 1498.8 - 32.3 42041 + 614
17 13 1450.1 - 30.6 42807 + 613
18 14 1407.7 - 29.2 43512 + 612
19 15 1370.5 - 28.0 44165 + 611
20 16 1337.4 - 26.9 44772 + 610
21 17 1307.8 - 25.9 45340 + 608
22 18 1281.1 - 25.0 45873 + 607
23 19 1256.9 - 24.2 46375 + 605
24 20 1234.7 - 23.5 46849 + 603
25 21 1214.4 - 22.8 47298 + 601
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Table 5.7: Pattern frequencies and Lindblad resonance locations of the medium Uranus
model

Uranus Medium model
` m Ωpat (deg/day) rres (km)

` = m
2 2 2207.8 - 62.1 40328 + 774
3 3 2234.6 - 60.1 36991 + 678
4 4 2096.0 - 54.2 36981 + 651
5 5 1949.2 - 48.6 37774 + 641
6 6 1819.6 - 43.9 38812 + 636
7 7 1710.1 - 40.0 39899 + 634
8 8 1618.6 - 36.8 40956 + 632
9 9 1542.1 - 34.2 41951 + 630

10 10 1477.8 - 32.0 42870 + 629
11 11 1423.3 - 30.1 43714 + 627
12 12 1377.0 - 28.6 44481 + 626
13 13 1337.5 - 27.3 45174 + 624
14 14 1303.6 - 26.1 45797 + 621
15 15 1274.3 - 25.1 46358 + 619
16 16 1248.7 - 24.3 46867 + 616
17 17 1226.0 - 23.5 47335 + 614
18 18 1205.5 - 22.8 47771 + 611
19 19 1186.8 - 22.1 48180 + 608
20 20 1169.7 - 21.5 48568 + 605
21 21 1153.9 - 21.0 48937 + 602
22 22 1139.2 - 20.5 49289 + 600
23 23 1125.4 - 20.0 49626 + 597
24 24 1112.6 - 19.6 49949 + 594
25 25 1100.5 - 19.2 50259 + 592

`−m = 2
4 2 3792.6 - 108.4 28123 + 548
5 3 2963.8 - 81.0 30649 + 571
6 4 2506.6 - 65.8 32828 + 587
7 5 2210.9 - 56.0 34735 + 598
8 6 2002.6 - 49.1 36413 + 606
9 7 1847.7 - 43.9 37895 + 612

10 8 1728.0 - 40.0 39211 + 616
11 9 1633.0 - 36.8 40381 + 618
12 10 1556.0 - 34.3 41424 + 619
13 11 1492.6 - 32.2 42352 + 620
14 12 1439.9 - 30.5 43178 + 619
15 13 1395.4 - 29.0 43917 + 618
16 14 1357.2 - 27.7 44584 + 617
17 15 1324.0 - 26.6 45192 + 615
18 16 1294.6 - 25.6 45753 + 613
19 17 1268.4 - 24.7 46275 + 611
20 18 1244.6 - 23.9 46764 + 609
21 19 1223.1 - 23.2 47224 + 606
22 20 1203.3 - 22.5 47660 + 604
23 21 1185.1 - 21.9 48073 + 602
24 22 1168.3 - 21.4 48466 + 599
25 23 1152.7 - 20.8 48840 + 597

`−m = 4
7 3 3379.5 - 93.3 28084 + 528
8 4 2770.6 - 73.6 30711 + 555
9 5 2397.7 - 61.5 32909 + 574

10 6 2145.0 - 53.3 34785 + 587
11 7 1962.4 - 47.3 36406 + 597
12 8 1824.4 - 42.9 37819 + 603
13 9 1716.8 - 39.4 39058 + 608
14 10 1630.7 - 36.6 40150 + 611
15 11 1560.4 - 34.3 41117 + 612
16 12 1501.9 - 32.3 41983 + 613
17 13 1452.2 - 30.7 42766 + 613
18 14 1409.2 - 29.3 43481 + 612
19 15 1371.6 - 28.0 44140 + 611
20 16 1338.3 - 26.9 44752 + 610
21 17 1308.6 - 25.9 45323 + 608
22 18 1281.8 - 25.0 45858 + 607
23 19 1257.4 - 24.2 46361 + 605
24 20 1235.2 - 23.5 46836 + 603
25 21 1214.9 - 22.8 47286 + 601
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Table 5.8: Pattern frequencies and Lindblad resonance locations of the thin Uranus model

Uranus Thin model
` m Ωpat (deg/day) rres (km)

` = m
2 2 2191.7 - 61.6 40525 + 777
3 3 2235.0 - 60.1 36986 + 678
4 4 2108.1 - 54.6 36840 + 650
5 5 1968.8 - 49.3 37524 + 639
6 6 1843.2 - 44.7 38481 + 634
7 7 1735.2 - 40.8 39514 + 631
8 8 1643.7 - 37.6 40538 + 629
9 9 1566.4 - 34.9 41517 + 627

10 10 1500.6 - 32.6 42435 + 626
11 11 1444.4 - 30.7 43288 + 624
12 12 1395.9 - 29.1 44080 + 622
13 13 1353.6 - 27.6 44814 + 620
14 14 1316.7 - 26.4 45494 + 618
15 15 1284.2 - 25.3 46121 + 616
16 16 1255.6 - 24.4 46695 + 615
17 17 1230.6 - 23.6 47216 + 612
18 18 1208.5 - 22.8 47691 + 610
19 19 1188.9 - 22.2 48125 + 608
20 20 1171.2 - 21.6 48528 + 605
21 21 1155.0 - 21.0 48906 + 602
22 22 1140.0 - 20.5 49264 + 600
23 23 1126.2 - 20.0 49605 + 597
24 24 1113.2 - 19.6 49931 + 594
25 25 1101.1 - 19.2 50243 + 592

`−m = 2
4 2 3818.5 - 109.2 27996 + 547
5 3 2997.4 - 82.1 30419 + 568
6 4 2542.4 - 67.0 32520 + 583
7 5 2246.1 - 57.1 34371 + 594
8 6 2035.9 - 50.1 36015 + 602
9 7 1878.4 - 44.8 37482 + 608

10 8 1756.0 - 40.8 38794 + 612
11 9 1658.0 - 37.5 39974 + 614
12 10 1577.8 - 34.9 41040 + 615
13 11 1511.0 - 32.7 42008 + 616
14 12 1454.5 - 30.8 42888 + 616
15 13 1406.3 - 29.2 43690 + 616
16 14 1364.8 - 27.9 44418 + 615
17 15 1329.0 - 26.7 45077 + 614
18 16 1297.9 - 25.7 45675 + 613
19 17 1270.6 - 24.8 46220 + 611
20 18 1246.2 - 24.0 46724 + 609
21 19 1224.3 - 23.2 47194 + 606
22 20 1204.3 - 22.6 47635 + 604
23 21 1185.9 - 22.0 48052 + 602
24 22 1169.0 - 21.4 48447 + 599
25 23 1153.3 - 20.9 48824 + 597

`−m = 4
7 3 3438.3 - 95.2 27763 + 524
8 4 2820.2 - 75.1 30350 + 551
9 5 2440.1 - 62.8 32527 + 569

10 6 2181.5 - 54.4 34396 + 583
11 7 1993.7 - 48.2 36024 + 592
12 8 1850.8 - 43.6 37459 + 599
13 9 1738.3 - 39.9 38734 + 604
14 10 1647.5 - 37.0 39876 + 607
15 11 1572.8 - 34.6 40902 + 610
16 12 1510.4 - 32.5 41825 + 611
17 13 1457.8 - 30.8 42656 + 612
18 14 1412.9 - 29.4 43405 + 612
19 15 1374.1 - 28.1 44087 + 611
20 16 1340.1 - 27.0 44713 + 610
21 17 1309.9 - 26.0 45292 + 608
22 18 1282.8 - 25.1 45833 + 607
23 19 1258.3 - 24.3 46340 + 605
24 20 1236.0 - 23.5 46818 + 603
25 21 1215.5 - 22.8 47270 + 601
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Table 5.9: Pattern frequencies and Lindblad resonance locations of the adiabatic Uranus
model

Uranus Adiabatic model
` m Ωpat (deg/day) rres (km)

` = m
2 2 2360.4 - 67.0 38571 + 747
3 3 2150.9 - 57.5 37943 + 692
4 4 1963.4 - 50.2 38627 + 672
5 5 1820.2 - 44.8 39537 + 662
6 6 1710.1 - 40.7 40451 + 655
7 7 1623.0 - 37.6 41314 + 649
8 8 1552.2 - 35.0 42115 + 645
9 9 1493.3 - 32.9 42858 + 640

10 10 1443.4 - 31.1 43547 + 637
11 11 1400.4 - 29.6 44189 + 633
12 12 1362.9 - 28.3 44787 + 630
13 13 1329.8 - 27.1 45349 + 626
14 14 1300.2 - 26.1 45876 + 623
15 15 1273.7 - 25.1 46373 + 620
16 16 1249.6 - 24.3 46843 + 617
17 17 1227.7 - 23.5 47289 + 614
18 18 1207.7 - 22.8 47712 + 611
19 19 1189.3 - 22.2 48115 + 608
20 20 1172.2 - 21.6 48499 + 605
21 21 1156.4 - 21.1 48866 + 602
22 22 1141.7 - 20.6 49217 + 600
23 23 1127.9 - 20.1 49553 + 597
24 24 1115.0 - 19.7 49876 + 594
25 25 1102.9 - 19.2 50187 + 592

`−m = 2
4 2 3534.8 - 100.4 29473 + 571
5 3 2755.2 - 74.6 32175 + 594
6 4 2347.7 - 61.1 34291 + 607
7 5 2093.3 - 52.6 36022 + 615
8 6 1917.5 - 46.7 37481 + 620
9 7 1787.6 - 42.3 38739 + 623

10 8 1687.0 - 38.9 39843 + 624
11 9 1606.3 - 36.2 40826 + 624
12 10 1539.9 - 33.9 41711 + 623
13 11 1484.1 - 32.0 42515 + 622
14 12 1436.3 - 30.4 43251 + 621
15 13 1394.8 - 29.0 43930 + 619
16 14 1358.3 - 27.8 44559 + 617
17 15 1326.0 - 26.7 45145 + 615
18 16 1297.1 - 25.7 45694 + 613
19 17 1271.1 - 24.8 46209 + 611
20 18 1247.4 - 24.0 46694 + 609
21 19 1225.9 - 23.3 47153 + 606
22 20 1206.1 - 22.6 47587 + 604
23 21 1187.9 - 22.0 48000 + 602
24 22 1171.0 - 21.4 48392 + 599
25 23 1155.3 - 20.9 48767 + 597

`−m = 4
6 2 4260.5 - 122.2 26026 + 509
7 3 3190.8 - 87.6 29179 + 546
8 4 2648.1 - 70.0 31649 + 570
9 5 2317.2 - 59.2 33665 + 585

10 6 2092.9 - 51.9 35359 + 596
11 7 1929.9 - 46.5 36813 + 603
12 8 1805.5 - 42.4 38083 + 607
13 9 1706.9 - 39.1 39208 + 610
14 10 1626.7 - 36.5 40215 + 612
15 11 1559.9 - 34.3 41126 + 613
16 12 1503.3 - 32.4 41957 + 613
17 13 1454.6 - 30.8 42719 + 613
18 14 1412.1 - 29.4 43422 + 612
19 15 1374.7 - 28.1 44074 + 611
20 16 1341.5 - 27.0 44682 + 610
21 17 1311.7 - 26.0 45251 + 608
22 18 1284.8 - 25.1 45785 + 607
23 19 1260.4 - 24.3 46288 + 605
24 20 1238.2 - 23.6 46763 + 603
25 21 1217.7 - 22.9 47212 + 601
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Table 5.10: Pattern frequencies and Lindblad resonance locations of the shallow Uranus
model

Uranus Shallow model
` m Ωpat (deg/day) rres (km)

` = m
2 2 2052.5 - 57.2 42337 + 805
3 3 2162.1 - 57.9 37812 + 690
4 4 2073.0 - 53.7 37254 + 657
5 5 1959.5 - 49.2 37642 + 643
6 6 1851.0 - 45.1 38373 + 636
7 7 1753.2 - 41.6 39244 + 633
8 8 1666.7 - 38.5 40166 + 631
9 9 1591.0 - 35.9 41088 + 629

10 10 1525.1 - 33.6 41981 + 628
11 11 1467.8 - 31.6 42827 + 626
12 12 1418.1 - 30.0 43618 + 625
13 13 1375.0 - 28.5 44350 + 623
14 14 1337.3 - 27.2 45024 + 621
15 15 1304.3 - 26.1 45644 + 618
16 16 1275.3 - 25.1 46214 + 616
17 17 1249.4 - 24.2 46741 + 613
18 18 1226.3 - 23.4 47229 + 611
19 19 1205.4 - 22.7 47685 + 608
20 20 1186.4 - 22.1 48112 + 605
21 21 1169.0 - 21.5 48514 + 603
22 22 1153.0 - 20.9 48895 + 600
23 23 1138.2 - 20.4 49256 + 598
24 24 1124.3 - 20.0 49601 + 595
25 25 1111.5 - 19.5 49930 + 593

`−m = 2
4 2 3753.5 - 107.3 28318 + 553
5 3 2986.2 - 82.0 30495 + 570
6 4 2557.7 - 67.7 32390 + 584
7 5 2274.2 - 58.2 34088 + 594
8 6 2068.9 - 51.4 35631 + 602
9 7 1912.1 - 46.1 37041 + 607

10 8 1788.2 - 42.0 38327 + 612
11 9 1688.0 - 38.7 39500 + 614
12 10 1605.7 - 35.9 40565 + 616
13 11 1537.1 - 33.7 41532 + 617
14 12 1479.3 - 31.7 42409 + 617
15 13 1430.0 - 30.1 43206 + 616
16 14 1387.5 - 28.7 43933 + 615
17 15 1350.5 - 27.4 44598 + 614
18 16 1318.0 - 26.4 45211 + 612
19 17 1289.1 - 25.4 45778 + 611
20 18 1263.2 - 24.5 46306 + 609
21 19 1239.8 - 23.7 46799 + 606
22 20 1218.5 - 23.0 47263 + 604
23 21 1199.1 - 22.4 47701 + 602
24 22 1181.1 - 21.8 48115 + 600
25 23 1164.6 - 21.2 48508 + 598

`−m = 4
7 3 3490.0 - 97.1 27489 + 521
8 4 2873.3 - 77.1 29975 + 547
9 5 2490.0 - 64.6 32091 + 566

10 6 2226.7 - 56.0 33930 + 580
11 7 2034.1 - 49.7 35547 + 591
12 8 1887.1 - 44.9 36978 + 598
13 9 1771.4 - 41.1 38252 + 603
14 10 1678.1 - 38.1 39391 + 607
15 11 1601.4 - 35.6 40414 + 609
16 12 1537.2 - 33.5 41338 + 610
17 13 1482.8 - 31.7 42176 + 611
18 14 1435.9 - 30.1 42942 + 611
19 15 1395.1 - 28.8 43645 + 610
20 16 1359.2 - 27.6 44294 + 609
21 17 1327.2 - 26.5 44897 + 608
22 18 1298.6 - 25.6 45460 + 606
23 19 1272.8 - 24.7 45988 + 605
24 20 1249.3 - 23.9 46484 + 603
25 21 1227.9 - 23.2 46953 + 601
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Table 5.11: Pattern frequencies and Lindblad resonance locations of the Neptune model

Neptune model

` m Ωpat (deg/day) rres (km)

` = m
2 2 2292.5 - 45.4 41555 + 557
3 3 2251.9 - 42.6 38883 + 498
4 4 2088.3 - 38.1 39168 + 483
5 5 1940.9 - 34.3 40024 + 478
6 6 1821.9 - 31.3 40973 + 475
7 7 1726.4 - 28.9 41890 + 474
8 8 1648.6 - 27.0 42747 + 472
9 9 1583.8 - 25.4 43541 + 471

10 10 1529.0 - 24.1 44279 + 470
11 11 1481.7 - 22.9 44966 + 469
12 12 1440.4 - 21.9 45608 + 468
13 13 1404.0 - 21.0 46211 + 467
14 14 1371.5 - 20.2 46779 + 466
15 15 1342.2 - 19.5 47315 + 465
16 16 1315.7 - 18.9 47823 + 463
17 17 1291.5 - 18.3 48306 + 462
18 18 1269.4 - 17.8 48765 + 461
19 19 1249.0 - 17.3 49203 + 460
20 20 1230.1 - 16.9 49622 + 459
21 21 1212.6 - 16.5 50023 + 457
22 22 1196.3 - 16.1 50407 + 456
23 23 1181.0 - 15.7 50776 + 455
24 24 1166.7 - 15.4 51131 + 454
25 25 1153.3 - 15.1 51472 + 453

`−m = 2
4 2 3803.1 - 76.1 29659 + 402
5 3 2969.9 - 57.1 32337 + 421
6 4 2526.1 - 46.9 34505 + 433
7 5 2247.0 - 40.5 36304 + 442
8 6 2053.6 - 36.0 37832 + 448
9 7 1910.6 - 32.6 39154 + 452

10 8 1799.8 - 30.1 40319 + 455
11 9 1711.0 - 28.0 41358 + 457
12 10 1637.8 - 26.3 42297 + 458
13 11 1576.2 - 24.8 43152 + 459
14 12 1523.4 - 23.6 43938 + 460
15 13 1477.6 - 22.5 44664 + 460
16 14 1437.4 - 21.6 45338 + 460
17 15 1401.6 - 20.8 45969 + 460
18 16 1369.6 - 20.0 46560 + 459
19 17 1340.8 - 19.4 47116 + 459
20 18 1314.6 - 18.7 47642 + 458
21 19 1290.6 - 18.2 48140 + 457
22 20 1268.7 - 17.7 48612 + 457
23 21 1248.4 - 17.2 49062 + 456
24 22 1229.7 - 16.8 49491 + 455
25 23 1212.2 - 16.4 49901 + 454

`−m = 4
6 2 4638.9 - 93.8 25983 + 356
7 3 3461.9 - 67.4 29198 + 385
8 4 2863.8 - 54.0 31739 + 405
9 5 2498.8 - 45.7 33825 + 418

10 6 2251.3 - 40.1 35586 + 428
11 7 2071.3 - 36.0 37104 + 436
12 8 1933.8 - 32.9 38436 + 441
13 9 1824.9 - 30.4 39620 + 445
14 10 1736.2 - 28.3 40684 + 448
15 11 1662.3 - 26.6 41650 + 451
16 12 1599.6 - 25.2 42533 + 452
17 13 1545.6 - 24.0 43345 + 454
18 14 1498.5 - 22.9 44097 + 454
19 15 1457.0 - 21.9 44797 + 455
20 16 1420.1 - 21.1 45451 + 455
21 17 1387.0 - 20.3 46064 + 455
22 18 1357.2 - 19.6 46641 + 455
23 19 1330.0 - 19.0 47186 + 455
24 20 1305.2 - 18.4 47702 + 454
25 21 1282.4 - 17.9 48191 + 454
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Table 5.12: Pattern frequencies and vertical resonance locations of the thick Uranus model

Uranus Thick model
` m Ωpat (deg/day) rres (km)

`−m = 1
3 2 3166.5 - 89.8 31763 + 613
4 3 2637.1 - 71.5 33162 + 611
5 4 2296.5 - 59.7 34825 + 615
6 5 2057.3 - 51.5 36463 + 621
7 6 1881.0 - 45.6 37981 + 625
8 7 1747.4 - 41.1 39344 + 628
9 8 1644.1 - 37.6 40545 + 629

10 9 1562.7 - 34.8 41593 + 629
11 10 1497.3 - 32.6 42507 + 628
12 11 1443.7 - 30.8 43311 + 627
13 12 1398.7 - 29.3 44029 + 625
14 13 1360.1 - 28.0 44680 + 623
15 14 1326.5 - 26.8 45276 + 620
16 15 1296.7 - 25.8 45828 + 618
17 16 1270.2 - 24.9 46344 + 615
18 17 1246.2 - 24.1 46827 + 612
19 18 1224.4 - 23.3 47284 + 610
20 19 1204.4 - 22.7 47715 + 607
21 20 1186.1 - 22.0 48125 + 605
22 21 1169.2 - 21.5 48514 + 602
23 22 1153.4 - 20.9 48886 + 599
24 23 1138.8 - 20.4 49241 + 597
25 24 1125.2 - 20.0 49581 + 594

`−m = 3
5 2 4166.5 - 119.4 26475 + 515
6 3 3133.2 - 85.9 29574 + 551
7 4 2594.4 - 68.3 32113 + 575
8 5 2261.8 - 57.5 34235 + 591
9 6 2036.4 - 50.1 36027 + 602

10 7 1874.5 - 44.8 37549 + 609
11 8 1752.9 - 40.8 38853 + 614
12 9 1658.2 - 37.7 39983 + 616
13 10 1582.1 - 35.1 40977 + 617
14 11 1519.4 - 33.1 41863 + 618
15 12 1466.5 - 31.3 42664 + 617
16 13 1421.1 - 29.8 43394 + 616
17 14 1381.5 - 28.5 44067 + 615
18 15 1346.7 - 27.3 44689 + 613
19 16 1315.7 - 26.2 45269 + 612
20 17 1287.9 - 25.3 45812 + 610
21 18 1262.7 - 24.5 46322 + 608
22 19 1239.9 - 23.7 46803 + 606
23 20 1218.9 - 23.0 47257 + 603
24 21 1199.7 - 22.4 47688 + 601
25 22 1182.0 - 21.8 48097 + 599

`−m = 5
8 3 3461.8 - 95.8 27679 + 520
9 4 2821.1 - 75.2 30374 + 550

10 5 2435.7 - 62.7 32590 + 570
11 6 2178.8 - 54.4 34444 + 584
12 7 1995.2 - 48.4 36022 + 594
13 8 1857.3 - 43.9 37386 + 600
14 9 1749.4 - 40.4 38583 + 605
15 10 1662.5 - 37.6 39648 + 608
16 11 1590.6 - 35.2 40606 + 609
17 12 1530.0 - 33.2 41476 + 610
18 13 1478.1 - 31.5 42271 + 610
19 14 1433.1 - 30.0 43004 + 610
20 15 1393.6 - 28.7 43683 + 609
21 16 1358.5 - 27.5 44314 + 608
22 17 1327.2 - 26.5 44904 + 607
23 18 1299.0 - 25.6 45457 + 606
24 19 1273.4 - 24.7 45977 + 604
25 20 1250.1 - 23.9 46469 + 602
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Table 5.13: Pattern frequencies and vertical resonance locations of the medium Uranus
model

Uranus Medium model
` m Ωpat (deg/day) rres (km)

`−m = 1
3 2 3175.4 - 90.1 31704 + 612
4 3 2661.6 - 72.2 32959 + 608
5 4 2329.7 - 60.7 34494 + 611
6 5 2094.4 - 52.7 36031 + 615
7 6 1918.8 - 46.6 37482 + 619
8 7 1783.2 - 42.0 38818 + 621
9 8 1675.8 - 38.4 40033 + 623

10 9 1589.0 - 35.5 41133 + 624
11 10 1517.7 - 33.1 42127 + 624
12 11 1458.4 - 31.2 43021 + 623
13 12 1408.6 - 29.5 43823 + 622
14 13 1366.5 - 28.1 44541 + 621
15 14 1330.5 - 26.9 45184 + 619
16 15 1299.3 - 25.9 45767 + 617
17 16 1271.9 - 24.9 46301 + 615
18 17 1247.4 - 24.1 46796 + 612
19 18 1225.3 - 23.4 47259 + 610
20 19 1205.2 - 22.7 47695 + 607
21 20 1186.7 - 22.0 48107 + 605
22 21 1169.7 - 21.5 48499 + 602
23 22 1153.9 - 20.9 48872 + 599
24 23 1139.3 - 20.4 49228 + 597
25 24 1125.6 - 20.0 49569 + 594

`−m = 3
5 2 4231.9 - 121.5 26202 + 511
6 3 3193.5 - 87.8 29202 + 545
7 4 2649.1 - 70.0 31670 + 568
8 5 2309.8 - 58.9 33760 + 584
9 6 2076.8 - 51.2 35559 + 596

10 7 1906.7 - 45.7 37125 + 604
11 8 1777.1 - 41.4 38500 + 609
12 9 1675.3 - 38.1 39711 + 613
13 10 1593.5 - 35.4 40782 + 615
14 11 1526.6 - 33.2 41731 + 616
15 12 1471.0 - 31.4 42576 + 616
16 13 1424.0 - 29.9 43335 + 616
17 14 1383.5 - 28.5 44025 + 615
18 15 1348.1 - 27.3 44658 + 613
19 16 1316.8 - 26.3 45245 + 611
20 17 1288.7 - 25.3 45792 + 610
21 18 1263.4 - 24.5 46305 + 608
22 19 1240.5 - 23.7 46787 + 606
23 20 1219.5 - 23.0 47243 + 603
24 21 1200.2 - 22.4 47675 + 601
25 22 1182.4 - 21.8 48085 + 599

`−m = 5
8 3 3538.6 - 98.1 27279 + 514
9 4 2879.0 - 76.8 29967 + 543

10 5 2478.6 - 63.9 32214 + 564
11 6 2209.5 - 55.2 34125 + 579
12 7 2016.1 - 49.0 35773 + 590
13 8 1870.8 - 44.3 37205 + 598
14 9 1757.9 - 40.6 38459 + 603
15 10 1667.7 - 37.7 39564 + 607
16 11 1594.0 - 35.3 40549 + 609
17 12 1532.3 - 33.3 41435 + 610
18 13 1479.7 - 31.5 42241 + 610
19 14 1434.3 - 30.0 42980 + 610
20 15 1394.5 - 28.7 43663 + 609
21 16 1359.3 - 27.6 44297 + 608
22 17 1327.9 - 26.5 44888 + 607
23 18 1299.6 - 25.6 45443 + 606
24 19 1274.0 - 24.7 45965 + 604
25 20 1250.6 - 24.0 46457 + 602
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Table 5.14: Pattern frequencies and vertical resonance locations of the thin Uranus model

Uranus Thin model
` m Ωpat (deg/day) rres (km)

`−m = 1
3 2 3176.8 - 90.2 31695 + 612
4 3 2678.2 - 72.8 32823 + 607
5 4 2354.5 - 61.6 34252 + 609
6 5 2122.9 - 53.6 35709 + 612
7 6 1948.1 - 47.6 37106 + 616
8 7 1811.8 - 42.9 38409 + 618
9 8 1702.9 - 39.2 39608 + 619

10 9 1614.1 - 36.2 40706 + 620
11 10 1540.5 - 33.8 41710 + 620
12 11 1478.6 - 31.7 42628 + 619
13 12 1425.8 - 29.9 43470 + 619
14 13 1380.3 - 28.4 44244 + 618
15 14 1340.8 - 27.2 44952 + 617
16 15 1306.6 - 26.0 45598 + 615
17 16 1276.7 - 25.1 46185 + 614
18 17 1250.6 - 24.2 46717 + 612
19 18 1227.5 - 23.4 47204 + 609
20 19 1206.7 - 22.7 47655 + 607
21 20 1187.9 - 22.1 48076 + 605
22 21 1170.6 - 21.5 48474 + 602
23 22 1154.7 - 21.0 48851 + 599
24 23 1139.9 - 20.5 49210 + 597
25 24 1126.1 - 20.0 49553 + 594

`−m = 3
5 2 4283.1 - 123.2 25994 + 508
6 3 3241.6 - 89.3 28914 + 541
7 4 2693.2 - 71.4 31325 + 564
8 5 2349.6 - 60.1 33379 + 580
9 6 2112.4 - 52.3 35160 + 591

10 7 1938.3 - 46.6 36722 + 599
11 8 1804.9 - 42.2 38105 + 605
12 9 1699.2 - 38.7 39339 + 608
13 10 1613.3 - 35.9 40448 + 611
14 11 1542.3 - 33.6 41449 + 613
15 12 1482.6 - 31.7 42355 + 613
16 13 1432.0 - 30.0 43173 + 614
17 14 1388.8 - 28.6 43913 + 613
18 15 1351.6 - 27.4 44581 + 612
19 16 1319.1 - 26.3 45191 + 611
20 17 1290.4 - 25.4 45752 + 609
21 18 1264.7 - 24.5 46274 + 608
22 19 1241.5 - 23.8 46762 + 606
23 20 1220.3 - 23.0 47222 + 603
24 21 1200.9 - 22.4 47656 + 601
25 22 1183.0 - 21.8 48069 + 599

`−m = 5
8 3 3604.4 - 100.2 26948 + 509
9 4 2931.5 - 78.5 29609 + 538

10 5 2521.9 - 65.2 31845 + 560
11 6 2245.4 - 56.3 33761 + 575
12 7 2045.8 - 49.8 35427 + 586
13 8 1894.6 - 44.9 36894 + 594
14 9 1776.2 - 41.1 38195 + 600
15 10 1681.0 - 38.0 39356 + 604
16 11 1603.0 - 35.5 40396 + 607
17 12 1538.3 - 33.4 41328 + 608
18 13 1483.7 - 31.6 42167 + 609
19 14 1437.0 - 30.1 42927 + 609
20 15 1396.4 - 28.8 43623 + 609
21 16 1360.7 - 27.6 44266 + 608
22 17 1329.0 - 26.6 44863 + 607
23 18 1300.5 - 25.6 45422 + 606
24 19 1274.7 - 24.8 45946 + 604
25 20 1251.3 - 24.0 46440 + 602
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Table 5.15: Pattern frequencies and vertical resonance locations of the adiabatic Uranus
model

Uranus Adiabatic model
` m Ωpat (deg/day) rres (km)

`−m = 1
3 2 3051.9 - 86.3 32550 + 626
4 3 2487.2 - 66.9 34478 + 631
5 4 2170.8 - 56.0 36153 + 634
6 5 1965.1 - 48.9 37591 + 635
7 6 1818.9 - 43.8 38839 + 635
8 7 1708.7 - 40.0 39935 + 634
9 8 1622.1 - 37.0 40911 + 633

10 9 1551.7 - 34.6 41789 + 631
11 10 1493.1 - 32.5 42587 + 629
12 11 1443.4 - 30.8 43318 + 627
13 12 1400.5 - 29.4 43992 + 625
14 13 1363.0 - 28.1 44616 + 622
15 14 1329.9 - 26.9 45199 + 620
16 15 1300.4 - 25.9 45743 + 617
17 16 1273.8 - 25.0 46255 + 615
18 17 1249.8 - 24.2 46737 + 612
19 18 1227.9 - 23.4 47193 + 610
20 19 1207.8 - 22.8 47625 + 607
21 20 1189.4 - 22.1 48035 + 605
22 21 1172.3 - 21.6 48426 + 602
23 22 1156.5 - 21.0 48799 + 600
24 23 1141.8 - 20.5 49155 + 597
25 24 1128.0 - 20.0 49496 + 595

`−m = 3
5 2 3924.0 - 112.0 27549 + 534
6 3 2985.3 - 81.4 30539 + 566
7 4 2504.9 - 65.7 32871 + 586
8 5 2209.7 - 56.0 34769 + 599
9 6 2008.3 - 49.3 36362 + 607

10 7 1861.0 - 44.4 37730 + 612
11 8 1747.9 - 40.7 38926 + 615
12 9 1657.9 - 37.7 39987 + 617
13 10 1584.4 - 35.2 40938 + 617
14 11 1522.8 - 33.2 41800 + 617
15 12 1470.5 - 31.4 42587 + 617
16 13 1425.2 - 29.9 43310 + 616
17 14 1385.7 - 28.6 43978 + 615
18 15 1350.8 - 27.4 44599 + 613
19 16 1319.7 - 26.4 45179 + 611
20 17 1291.7 - 25.4 45722 + 610
21 18 1266.4 - 24.6 46232 + 608
22 19 1243.4 - 23.8 46714 + 606
23 20 1222.3 - 23.1 47170 + 604
24 21 1203.0 - 22.5 47601 + 601
25 22 1185.1 - 21.9 48012 + 599

`−m = 5
8 3 3378.7 - 93.3 28129 + 528
9 4 2780.7 - 74.0 30667 + 555

10 5 2417.7 - 62.2 32751 + 573
11 6 2172.6 - 54.2 34509 + 585
12 7 1995.1 - 48.5 36023 + 594
13 8 1860.2 - 44.0 37347 + 600
14 9 1753.7 - 40.5 38521 + 604
15 10 1667.3 - 37.7 39572 + 607
16 11 1595.5 - 35.3 40522 + 609
17 12 1534.9 - 33.4 41388 + 610
18 13 1482.9 - 31.6 42182 + 610
19 14 1437.6 - 30.1 42914 + 610
20 15 1397.9 - 28.8 43592 + 609
21 16 1362.7 - 27.7 44224 + 608
22 17 1331.1 - 26.6 44815 + 607
23 18 1302.8 - 25.7 45369 + 606
24 19 1277.0 - 24.8 45891 + 604
25 20 1253.6 - 24.1 46383 + 602
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Table 5.16: Pattern frequencies and vertical resonance locations of the shallow Uranus
model

Uranus Shallow model
` m Ωpat (deg/day) rres (km)

`−m = 1
3 2 3069.0 - 86.9 32429 + 625
4 3 2633.1 - 71.6 33195 + 613
5 4 2344.5 - 61.5 34349 + 612
6 5 2133.7 - 54.2 35589 + 614
7 6 1970.3 - 48.5 36828 + 616
8 7 1839.1 - 44.0 38029 + 618
9 8 1731.5 - 40.4 39172 + 620

10 9 1642.0 - 37.3 40245 + 621
11 10 1566.9 - 34.8 41241 + 621
12 11 1503.4 - 32.7 42159 + 621
13 12 1449.3 - 30.9 43000 + 620
14 13 1402.9 - 29.3 43769 + 619
15 14 1362.7 - 27.9 44471 + 618
16 15 1327.7 - 26.8 45115 + 616
17 16 1296.8 - 25.7 45707 + 614
18 17 1269.4 - 24.8 46254 + 612
19 18 1244.9 - 24.0 46762 + 610
20 19 1222.8 - 23.2 47237 + 607
21 20 1202.6 - 22.5 47683 + 605
22 21 1184.2 - 21.9 48103 + 602
23 22 1167.2 - 21.4 48501 + 600
24 23 1151.5 - 20.8 48879 + 598
25 24 1136.9 - 20.3 49239 + 595

`−m = 3
5 2 4269.7 - 123.0 26049 + 510
6 3 3264.4 - 90.3 28780 + 541
7 4 2730.1 - 72.8 31043 + 563
8 5 2390.7 - 61.7 32997 + 578
9 6 2152.9 - 53.8 34719 + 590

10 7 1976.1 - 48.0 36253 + 598
11 8 1839.4 - 43.5 37627 + 604
12 9 1730.8 - 39.9 38859 + 608
13 10 1642.5 - 37.0 39967 + 611
14 11 1569.6 - 34.6 40966 + 613
15 12 1508.5 - 32.6 41868 + 613
16 13 1456.6 - 30.9 42686 + 613
17 14 1411.9 - 29.4 43433 + 613
18 15 1373.0 - 28.1 44117 + 612
19 16 1338.8 - 27.0 44748 + 611
20 17 1308.4 - 26.0 45333 + 609
21 18 1281.1 - 25.1 45879 + 607
22 19 1256.5 - 24.2 46390 + 606
23 20 1234.1 - 23.5 46870 + 604
24 21 1213.6 - 22.8 47323 + 602
25 22 1194.8 - 22.2 47753 + 600

`−m = 5
8 3 3677.8 - 102.8 26590 + 505
9 4 2995.8 - 80.7 29186 + 535

10 5 2577.5 - 67.2 31387 + 556
11 6 2293.6 - 58.0 33288 + 572
12 7 2088.0 - 51.3 34949 + 584
13 8 1932.4 - 46.3 36412 + 592
14 9 1810.6 - 42.3 37711 + 598
15 10 1712.7 - 39.1 38869 + 602
16 11 1632.5 - 36.5 39910 + 605
17 12 1565.4 - 34.3 40850 + 607
18 13 1508.5 - 32.4 41704 + 608
19 14 1459.4 - 30.8 42486 + 608
20 15 1416.8 - 29.4 43206 + 608
21 16 1379.2 - 28.2 43871 + 607
22 17 1345.7 - 27.1 44491 + 606
23 18 1315.8 - 26.1 45069 + 605
24 19 1288.8 - 25.2 45612 + 604
25 20 1264.2 - 24.4 46123 + 602
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Table 5.17: Pattern frequencies and vertical resonance locations of the Neptune model

Neptune model

` m Ωpat (deg/day) rres (km)

`−m = 1
3 2 3211.4 - 63.9 33238 + 447
4 3 2659.9 - 50.8 34830 + 449
5 4 2326.8 - 42.8 36470 + 454
6 5 2103.6 - 37.5 37953 + 457
7 6 1943.3 - 33.7 39264 + 460
8 7 1822.2 - 30.8 40423 + 462
9 8 1726.8 - 28.6 41458 + 463

10 9 1649.4 - 26.7 42391 + 464
11 10 1584.9 - 25.2 43241 + 464
12 11 1530.1 - 23.9 44021 + 464
13 12 1482.9 - 22.8 44741 + 464
14 13 1441.6 - 21.8 45411 + 463
15 14 1405.1 - 20.9 46036 + 463
16 15 1372.5 - 20.2 46623 + 462
17 16 1343.1 - 19.5 47175 + 461
18 17 1316.6 - 18.9 47697 + 460
19 18 1292.3 - 18.3 48191 + 459
20 19 1270.1 - 17.8 48660 + 459
21 20 1249.7 - 17.3 49107 + 458
22 21 1230.8 - 16.8 49534 + 457
23 22 1213.2 - 16.4 49941 + 455
24 23 1196.8 - 16.0 50332 + 454
25 24 1181.5 - 15.7 50706 + 453

`−m = 3
5 2 4256.1 - 85.7 27568 + 374
6 3 3230.4 - 62.5 30610 + 400
7 4 2702.6 - 50.6 33013 + 417
8 5 2377.7 - 43.2 34983 + 429
9 6 2155.7 - 38.1 36645 + 437

10 7 1993.3 - 34.4 38079 + 443
11 8 1868.6 - 31.5 39336 + 448
12 9 1769.4 - 29.2 40455 + 451
13 10 1688.1 - 27.3 41462 + 453
14 11 1620.2 - 25.8 42377 + 455
15 12 1562.3 - 24.4 43215 + 456
16 13 1512.2 - 23.3 43987 + 457
17 14 1468.5 - 22.3 44703 + 457
18 15 1429.8 - 21.4 45370 + 457
19 16 1395.3 - 20.6 45994 + 457
20 17 1364.2 - 19.8 46580 + 457
21 18 1336.2 - 19.2 47132 + 457
22 19 1310.6 - 18.6 47655 + 456
23 20 1287.2 - 18.1 48150 + 455
24 21 1265.6 - 17.6 48620 + 455
25 22 1245.7 - 17.1 49068 + 454

`−m = 5
7 2 4980.5 - 101.1 24839 + 340
8 3 3673.9 - 71.9 28103 + 371
9 4 3013.5 - 57.1 30708 + 393

10 5 2612.4 - 48.1 32860 + 409
11 6 2341.5 - 42.0 34684 + 420
12 7 2145.3 - 37.6 36262 + 429
13 8 1995.9 - 34.2 37648 + 435
14 9 1878.1 - 31.5 38881 + 440
15 10 1782.3 - 29.3 39990 + 444
16 11 1702.8 - 27.5 40996 + 447
17 12 1635.6 - 26.0 41915 + 449
18 13 1577.8 - 24.7 42760 + 451
19 14 1527.6 - 23.5 43543 + 452
20 15 1483.5 - 22.5 44270 + 453
21 16 1444.3 - 21.6 44949 + 453
22 17 1409.2 - 20.8 45585 + 454
23 18 1377.6 - 20.1 46183 + 454
24 19 1348.9 - 19.4 46748 + 454
25 20 1322.8 - 18.8 47282 + 453
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Appendix C.2. Extended tables of g-mode frequencies and resonance lo-

cations

In this appendix, we present all the calculated g-mode frequencies and resonance locations

for all the models. Table 5.19 displays the ` = m, n = 1 Lindblad resonance locations for

Uranus. Table 5.18 shows the ` = m, n = 1 Lindblad resonance locations and the corotation

resonance locations associated with them for Neptune.

Table 5.18: ` = m, n = 1, g-mode pattern frequencies and Lindblad resonance locations of
the Neptune model

`,m Ωpat (deg/day) rres (km) rcor (km)

1 1808.1 - 34.7 58959 + 766 37170 + 481
2 1683.1 - 28.2 51058 + 578 38986 + 441
3 1566.6 - 24.6 49518 + 526 40893 + 433
4 1462.1 - 21.9 49668 + 502 42815 + 432
5 1369.0 - 19.7 50502 + 489 44732 + 432
6 1287.1 - 17.7 51646 + 480 46611 + 432
7 1215.6 - 16.1 52917 + 472 48417 + 431
8 1153.8 - 14.7 54217 + 465 50129 + 429
9 1100.5 - 13.5 55495 + 458 51736 + 426

10 1054.3 - 12.5 56722 + 451 53235 + 423
11 1014.1 - 11.6 57888 + 444 54630 + 418
12 979.0 - 10.8 58988 + 437 55927 + 414
13 948.2 - 10.1 60022 + 429 57132 + 408
14 920.9 - 9.5 60992 + 422 58253 + 402
15 896.7 - 8.9 61902 + 415 59299 + 396
16 875.0 - 8.5 62757 + 407 60274 + 390
17 855.5 - 8.0 63560 + 400 61186 + 385
18 837.9 - 7.6 64315 + 393 62041 + 379
19 821.9 - 7.3 65027 + 386 62843 + 373
20 807.3 - 6.9 65698 + 379 63597 + 367
21 793.9 - 6.6 66331 + 373 64308 + 361
22 781.7 - 6.4 66931 + 366 64978 + 355
23 770.4 - 6.1 67498 + 360 65612 + 349
24 759.9 - 5.9 68036 + 354 66211 + 344
25 750.2 - 5.7 68547 + 348 66779 + 339
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Appendix C.3. Voyager images of the Uranian and Neptunian rings

Figure 5.25: Voyager image of the Uranian rings.

Figure 5.26: Voyager image of the Neptunian rings.
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