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Abstract

The design and analysis phase of passive structures of high speed microelectronic

systems require suitable macromodels that capture the relevant electromagnetic prop-

erties that affect the signal and power quality. These models are constructed either

from direct measurements or electromagnetic simulations using macromodeling tech-

niques such as Vector Fitting. The raw data that are used for extraction of such

models have the form of discrete port frequency responses and they may be con-

taminated by errors due to noise, inadequate calibration techniques in case of direct

measurements or approximation and discretization errors in case of numerical sim-

ulations. Besides, these data are typically available over a finite frequency range as

discrete sets with a limited number of samples. All this may affect the performance

of the macromodeling algorithm. Often the underlying cause of such behavior is the

lack of causality in given data.

The dissertation conducts a study of system causality, starting from an overview

of macromodeling of microelectronics packages, signal and power distribution net-

works and simultaneous switching noise. Various system causality definitions, con-

ditions and requirements are presented. Different available methods for causality

verification in time and frequency domains are discussed.

Motivated by the limitations and drawbacks associated with conventional meth-

ods of causality verification and enforcement, in particular, that the frequency re-

sponses are available on a finite bandwidth in a discrete form, the dissertation presents

two new methods that check and enforce causality in the frequency domain. The

methods are based on Kramers-Krönig relations, also called dispersion relations. Both

methods construct a periodic continuation of the given frequency responses, so that

the resulting function is periodic on a wider domain.

The first method uses periodic polynomial continuation with the subsequent use

of Fast Fourier Transform to compute discrete Hilbert Transform and characterize
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causality. The second approach approximates frequency responses by a Fourier series

using Singular Value Decomposition (SVD) based method. Causality is imposed di-

rectly and exactly on Fourier coefficients. The two methods are successfully tested on

several analytic and simulated examples that represent interconnect macromodeling

systems to show excellent performance of the proposed techniques. Artificial causality

violations were imposed to demonstrate that both methods are able to detect them

successfully.
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Chapter 1

Introduction

1.1 Overview

Throughout this dissertation a discussion on Electronic Package Macromodels

System Causality is carried out trying to cover basic information about causality

definitions, requirements, and conditions. The dissertation addresses different top-

ics related to causality spanning from causality violation, non-casual problems, and

sources for causality violations. Toward estimating sources for causality violations, a

brief study of different methodologies for generating electronic packaging macromod-

els is carried out. The main part of the dissertation tackles different approaches of

causality verification in both time and frequency domain with a brief explanation of

different methods utilizing both approaches. Two new methods for causality charac-

terization in the frequency domains are introduced and presented in the dissertation.

1.2 Dissertation Objectives

The frequency responses data used to generate macromodels are usually given

as a discrete set of values on a finite bandwidth. Causality conditions in the fre-

quency domain can be written as integral equations over infinite domain. The fact

that the data are available only on a finite interval creates significant errors in the

boundary regions that pose difficulty in causality verification. Motivated by a goal

to remove such boundary artifacts, the dissertation develops two new methods for

causality verification and enforcement based on periodic continuations that could

avoid the limitations and drawbacks of existing conventional procedures for causality

verification and enforcement.
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1.3 Dissertation Organization

The dissertation is organized into seven chapters. After the introduction, Chap-

ter 2 presents a literature review about microelectronic packages macromodeling.

Chapter 3 overviews the system causality, methods for studying causality and their

difficulties, that motivates the current research. Chapters 4 and 5 present and test

the two new methods for causality verification and enforcement. Finally, Chapter

6 has the conclusions of the dissertation followed by a list of references used in the

research.
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Chapter 2

Microelectronic Macromodeling

2.1 Introduction

The continuous development in high performance digital systems in both speed

and complexity necessitates creating enhanced modeling and simulation techniques

for these digital systems. These modeling techniques must be both accurate and

scalable enough to capture all the parasitic effects in the system and to perform

system level simulation [1]-[3].

2.2 Electrical Integrity

Electrical integrity is a set of measures of the accuracy, quality and timing of data

and power signals that passes through or applied to electrical circuits. At high bit

rates various effects can degrade the electrical signal to the point that causes system or

device to fail. Electrical integrity engineering is the task of analyzing and mitigating

these effects. It is a major aspect in the process of design and fabrication of multi-

GHz bandwidth interconnect systems as it is a key factor in achieving optimum design

and subsequently best performance of high-speed board/system designs. Essentially,

electrical integrity covers two main tasks: Signal Integrity (SI) and Power Integrity

(PI) [4]-[6].

2.2.1 Signal Integrity (SI)

Signal Integrity (SI) [7]-[30] is an engineering practice and procedures with a

fundamental goal of ensuring reliable high-speed data transmission. For a long time,

SI was a major concern in long distance communications. Recently, SI has become

an important phase of shorter transmission paths designs. This comes from the fact
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that interconnects in Signal Distribution Network (SDN) can no longer be treated as

electrically transparent in the system design process due to the continuous and rapid

increases in clock frequencies and decreases in rise times. As the transmission speeds

become comparable with the signal edge-times, interconnects must be considered as

transmission lines with distributed properties, similar to microwave circuits. SI pro-

cedures optimize the design of the transmission lines in order to minimize distortion

of the signals at the receivers.

SI addresses two main concerns in the electrical design aspects: signal timing and

signal quality. SI ensures all transmitted signals are received correctly and in time,

signals do not interfere with one another in a way to degrade reception, signals do not

damage any device and finally signals do not pollute the electromagnetic spectrum.

Some of the main issues that damage both signal timing and signal quality are ringing,

distortion, noise, reflection noise and power/ground noise which in some cases is

called Simultaneous Switching Noise (SSN) [31]-[39] as it is due to parasitics of the

power/ground delivery system during drivers’ simultaneous switching output. Signal

integrity engineering is the task of analyzing and mitigating all these impairments.

Signal integrity is an important activity at all levels of electronics packaging and

assembly, starting from internal connections of an integrated circuit (IC), through the

package, the printed circuit board (PCB), the back-plane, and inter-system connec-

tions.

2.2.2 Power integrity (PI)

Power Integrity (PI) [40]-[44] of a system is the set of measures that are carried

out to verify and ensure that all the devices contained in this system have the proper

supply voltage to operate at their intended performance levels. The supply voltages

are provided to devices through a Power Delivery Network (PDN) which is a network

of interconnects that delivers power from power supply to devices through the PCB,
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the package, and the on-die routing. The rapid and continuous development of high

performance digital systems in both speed and complexity intensifies channel data

rate and interconnection density requirements of the PCB. As the interconnection

density and number of pins per device increase, the possibility of large supply noise

on the chip and in the package due to SSN increases as well. More and more chip

failures are being reported industry-wide, due to I/O simultaneous switching output

noise.

Simultaneous switching output noise (I/O SSO) is the noise that affects both

signal and supply power due to large number of output drivers switching occurring

at the same time. Obviously increasing the number of output pins in the system

increases the probability of I/O SSO induced noise. The simultaneous switching of

output drivers creates large current surges and voltage collapse that affect the signal

quality of the output drivers and the drivers in the vicinity. In addition, the supply

noise and current surge in the on-chip and the package power network can be coupled

into the signal, especially when the signal lines are referenced to the supply planes.

As designs move into advanced process technologies and using high-speed I/O

systems, the risk of I/O SSO induced chip failures increases. This comes from the fact

that in advanced process technologies supply voltages are reduced in order to lower

power and oxide thickness and I/O voltage is scaled down to ease the implementation

of driver circuits. These two main characteristics of advanced process technologies

increases circuit’s sensitivity to voltage changes due to decreasing supply voltage and

consequently, this degrades the system power integrity. Moreover, the large current

changes (di/dt) on the supply nets resulting from using of high-speed I/O systems

with fast signal transitions cause increased voltage drop on inductive components of

both package and on-chip supply nets.
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2.2.3 SI and PI Co-simulation

Conventional design systems carry out PDN design and SDN design separately

in the time and frequency domains respectively without taking into consideration the

mutual electronic interactions between them. This trend leads to more chip failures

reported industry-wide due to I/O simultaneous switching output noise. To overcome

this downside, a co-design methodology [45]-[50] is used to handle signal routing and

power network design simultaneously to satisfy both the power and signal integrity

constraints prior to a detailed layout. This co-design methodology employs a global

I/O SSO analysis that studies both direct effect and mutual interaction of chip,

package and PCB designs on power integrity.

2.3 Macromodeling

Macromodel is a black box representation that captures the electromagnetic

behavior of passive devices at the input/output ports to integrate it into circuit sim-

ulators. It can be constructed for a two port or a multi-ports device. The main

function of macromodeling is to replace the electromagnetic behavior of the circuit

with a reduced equivalent model that preserves the characteristics of the original

passive circuit at the input/output ports, captures the electromagnetic behavior ac-

curately and runs faster than the original circuit during time domain co-simulation

using computer-aided design (CAD) tools such as Simulation Program with Integrated

Circuit Emphasis software (SPICE).

For systems operating at high frequencies, the distributed and parasitic behav-

ior of interconnects structure can be extracted using several integral or differential

equation-based electromagnetic (EM) solvers or directly by measurements. Then,

a transformation technique is required to obtain time-domain transfer functions for

such passive structures from their frequency domain response [52]-[54].



7

The electromagnetic solvers use Maxwell’s equations to compute the frequency

response of the structure. On the other hand, the frequency response of the structure

can be directly measured using a vector network analyzer. Both techniques present

the response of the structure as frequency dependent data that represent transfer func-

tion of the structure in the form of scattering, admittance, or impedance parameters.

This representation captures the behavior of the device at the input-output ports

and is called a macromodel. There are different types of macromodels ranging from

scalable macromodels, passive macromodels, broadband macromodels to non-linear

macromodels. But since distributed interconnect networks are inherently passive, pas-

sive macromodel becomes the suitable type for modeling signal distribution networks

(SDN) and power distribution networks (PDN). A passive macromodel has to sat-

isfy the stability, passivity and causality conditions to enable time-domain simulation.

Unstable, non-passive, non-casual macromodels generate an unstable time-domain re-

sponse and can behave as an amplifier or an oscillator during time-domain simulation

which is a non-physical behavior.

Several macromodeling techniques [56], [57], [61], [62], [65] have been proposed

for converting the frequency domain response of the PDN into a format that can be in-

tegrated with the (SDN) in a time domain co-simulation. As both measurements and

simulations used to find frequency domain response of the (PDN) results in sampled

data over a limited frequency range, all macromodeling techniques use that band-

limited frequency response data of passive structures to compute the macromodels

that can be integrated into a time domain simulation.

Various macromodeling methodologies are currently available. Generally, elec-

trical macromodels are created by capturing the frequency dependent data that rep-

resents the port behavior of the circuit either from an electromagnetic simulator or

from measurements. This is done through two main steps. The first step is to acquire

the electromagnetic response of the interconnect structure; Snm(jwk). Normally, the
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electromagnetic response of the interconnect structure is in a band-limited, discrete

frequencies port parameters form. The second step is to generate package macromodel

H(jw) using these port parameters. Figure 2.1 illustrates these two main steps.

Figure 2.1: System macromodeling

Figure 2.2: Methods of generating electromagnetic packaging macromodels

There are three main methods for acquiring electromagnetic response of a pack-

age macromodel, namely computer modeling, measurements and capacitance and

inductive solver. They are shown in Figure 2.2. Computer modeling methods vary

among solving parametric equations, 2D field solvers (frequency dependent RLGC

tables), 2.5D field solvers or 3D full-wave electromagnetic field solvers. With this ap-



9

proach an electromagnetic response is acquired in the form of calculated frequency-

dependent port parameters. Measurements use modern vector network analyzers

(VNAs) with or without device under test (DUT) to generate measured frequency-

dependent port parameters. While the capacitance and inductive solvers use ca-

pacitance extractor and magneto-quasi static extractor to find the equivalent cir-

cuit’s lumped self and mutual capacitances, inductances and resistances. In all

these methods, the electromagnetic response of common network representations,

e.g. impedance, admittance and scattering, is obtained in a port parameter form

at a discrete set of frequencies covering the finite bandwidth of interest. Well-known

relationships allow the conversion from one port parameter representation to another.

To execute the second step, different macromodeling methods have been devel-

oped for building packaging macromodels using the band-limited, discrete frequency

electromagnetic response data obtained from an electromagnetic simulation or mea-

surements. These methods range from using the rational approximations of power

series [56]-[58], least squares approximation [59]-[61], orthogonal polynomials [62], [63]

to vector fitting [64] or by constructing of multiport broadband passive macromodels

[65].

Various errors are introduced during this process. These errors may be due to

noise, inadequate calibration techniques or imperfections of the test set-up in case

of direct measurements or approximation errors due to the meshing techniques, dis-

cretization errors and errors due to finite precision arithmetic occurring in numerical

simulations. These errors jeopardize the stability, passivity and causality of the pro-

duced macromodel or even accuracy of the obtained macromodel. To be stable, the

produced macromodel need to generate bounded outputs for all bounded inputs. The

passivity nature of macromodel conveys the fact that passive circuits are not capable

of generating energy. If the passivity condition is not satisfied at all frequency points

the passive circuit behaves as an amplifier or an oscillator during time-domain simu-
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lation and generates an unstable time-domain response. On the other hand a system

is called a causal system if it does not show any change in its output until its input

signal is changed.

Microelectronic macromodels of passive interconnect circuits have to satisfy the

system stability, passivity and causality conditions to enable proper time-domain

simulations. Unstable, non-passive, or non-casual macromodels generate an unsta-

ble time-domain response and can behave as an amplifier or an oscillator during

time-domain simulation which is non-physical and does not reflect correct electric

properties of the system.
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Chapter 3

System Causality

3.1 Overview

Throughout this chapter a discussion of causality of microelectronic package

macromodel systems is carried out. It presents basic information about this topic in-

cluding causality definition, causality requirements and causality conditions imposed

on the system. It also addresses causality violations, sources for causality violations

and problems arise from causality violation. To identify reasons for causality vio-

lations, a brief study of different methodologies for generating electronic packaging

macromodels is carried out. The rest of the chapter describes various approaches

and methods of causality verification and enforcement in both time and frequency

domains.

3.2 Introduction

System causality is essential for extracting reliable and correct equivalent macro-

models. Causal systems do not show any change in their output until their input

signal changes, i.e. its output at any time t0 is dependent only on its input for t ≤ t0.

In other words a causal system can not anticipate changes in its input signal and its

output reacts according to these changes before their occurrence, and therefore causal

systems are called non-anticipatory systems. The presence of output signal proceeds

input signal is called causality violation. All passive distributed interconnect net-

works are inherently causal and any causality violation in its equivalent macromodels

results from and during the macromodel generation process itself due to numerical

approximation and/or measurement errors.
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3.3 Linear Time-Invariant Systems

Physical systems are modeled as linear time-invariant (LTI) systems which have

two main properties. First, LTI system is a linear system i.e its response to the sum of

two inputs is the sum of the responses to each input separately. Second, LTI system is

a time-invariant system which implies that delaying the system input by any constant

D delays the system output by the same amount.

Consider a LTI system with an impulse response function h(t, t′) and an input

function x(t) then the output response y(t) can be written as a convolution of the

input x(t) and the impulse response h(t− t′) [66]:

y(t) =

∫ ∞
−∞

h(t− t′)x(t′)dt′ = h(t) ∗ x(t). (3.1)

where (∗) is the convolution operator.

The Fourier transform F of the impulse response function h, denoted by H(w),

is called the transfer function and it is

F [h](w) =

∫ ∞
−∞

h(τ) e−iwτdτ ≡ H(w) (3.2)

For multi-input/output system, the transfer function generalizes to the transfer ma-

trix.

The primitive causality principle, stated in the time domain, says that no change

in the output y(t) can occur before the input x(t) or, in other words, no effect can

precede its cause. This implies that if x(t) = 0 for t < T , then the same is true for

y(t). As a consequence, the impulse response function has to satisfy the condition

h(t) = 0, t < 0 (3.3)



13

and the transfer function in Equation (3.2) becomes

H(w) =

∫ ∞
0

h(τ) e−iwτdτ. (3.4)

Since the integral is Equation (3.4) is extended only over a half-axis, function H(w)

has a regular analytic continuation in lower half w-plane.

3.4 Causality Definition

A system is causal if its output at any time t0 is dependent only on its input for

t ≤ t0, i.e. the system does not show any change in its output until its input signal

changes, which means that its cause (output) cannot precede its effect (input). A

non-causal system is manifested in the time domain as signal detected at its output

before the system time delay.

3.4.1 Causality Definition in Time Domain

In time domain, a system with impulse response h(t) is causal if:

h(t) = 0 for t < 0 (3.5)

In practical cases, there is a propagation time associated with each circuit for

the signal to travel from one input port (input) to another port (output). This time

is called base delay time td and for general a system with impulse response h(t) is

causal if:

h(t) = 0 for t < td (3.6)

Figure 3.1 shows time domain impulse response h(t) of causal and non-causal

systems with base delay time td = 22 nsec. Clearly, the red and blue curves represent

non causal systems as they show non-zero values before td. On the other hand the
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Figure 3.1: ”Base time delay” causality violation

green curve represents causal systems as it shows zero output before td.

In this work, we assume for simplicity that the time delay is zero, i.e. td = 0.

3.4.2 Causality Definition in Frequency Domain

A system with a time domain impulse response h(t) has a frequency domain

transfer function H(w), which is the Fourier transform of h(t), and it can be written

as:

H(w) = HR(w) + jHI(w) (3.7)

where HR(w) and HI(w) are the real and imaginary parts of H(w), respectively.

In the frequency domain, the system is causal if HR(w) and HI(w) are related by

dispersion relations [66, 67] or Kramers-Krönig conditions, namely, they satisfy

HR(w) =
1

π
−
∫ ∞
−∞

HI(w
′)

w − w′
dw′ (3.8)

HI(w) = − 1

π
−
∫ ∞
−∞

HR(w′)

w − w′
dw′ (3.9)
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where

−
∫ ∞
−∞

= PV

∫ ∞
−∞

= lim
ε→0

(∫ w−ε

−∞
+

∫ ∞
w+ε

)
denotes Cauchy’s principal value. The dispersion relations (3.8), (3.9) are derived

under assumption that h(t) ∈ L2(R) is a square integrable function, i.e.

∫ ∞
0

|h(t)|2dt < C

where C is some constant. This assumption also implies that H(w) is a square

integrable function [90, 95]. Kramers-Krönig conditions indicate that HR at one

frequency is related to HI for all frequencies, and vice versa. Choosing either HR

or HI as an arbitrary square integrable function, then the other one is completely

determined by causality.

Recalling that the Hilbert Transform (HT) of F (w) is defined as

H{F (w)} =
1

π
−
∫ ∞
−∞

F (w′)

w − w′
dw′, (3.10)

allows one to write equations (3.8), (3.9) as

HR(w) = H{HI(w)} (3.11)

HI(w) = −H{HR(w)} (3.12)

i.e. HR and HI are Hilbert transforms of each other. For this reason, dispersion

relations (3.8), (3.9) are also called the Hilbert transforms integration pair. Therefore,

the real and imaginary parts of a complex-valued function (transfer function) that

describes electrical network properties (S-parameters, admittance, impedance, etc.)

for causal systems have to be related to each other by the Hilbert transform.
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3.5 Kramers-Krönig Relations

Dispersion relations were formed to reflect the causal nature of the response

of materials, bodies, particles and electromagnetic fields as well. Originally, these

relations were derived to prove that the light propagation is a dispersive medium

[96, 97]. The classic example of a dispersion relation is the Kramers-Krönig relations

that couples the real and imaginary parts of the complex transfer function of causal

system.

Kramers-Krönig relations can be deduced using Fourier transform pairs. Gen-

erally, any time domain function can be represented as a sum of its even and odd

parts. Thus, a system with time-domain response h(t) can be represented by

h(t) = he(t) + ho(t),

where he(t) and ho(t) are even and odd components of h(t), respectively. Recalling

that in general he(t) and ho(t) are complex valued functions and separating their real

and imaginary parts

he(t) = heR(t) + jheI(t), ho(t) = hoR(t) + jhoI(t)

we can write

h(t) = heR(t) + jheI(t) + hoR(t) + jhoI(t). (3.13)

In the frequency domain, the corresponding transfer function H(w) is

H(w) = HeR(w) + jHeI(w) +HoR(w) + jHoI(w) (3.14)

where

He(w) = HeR(w) + jHeI(w), Ho(w) = HoR(w) + jHoI(w)
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are even and odd components of the transfer function H(w) in the frequency domain,

respectively.

Recalling that:

• the Fourier transform of a real even function is a real even function.

• the Fourier transform of a purely imaginary even function is a purely imaginary

even function.

• the Fourier transform of a real odd function is a purely imaginary odd function.

• the Fourier transform of purely imaginary odd function is a real odd function.

Thus the different components of H(w) can be related to their correspondings in time

domain of h(t) through the following Fourier Transform F relationships:

HeR(w) = F{heR(t)}

HeI(w) = F{heI(t)}

HoR(w) = F{hoI(t)}

HoI(w) = F{hoR(t)}

(3.15)

Since a causal system is a real system, its impulse response function h(t) is real.

Hence,

heI(t) = 0, hoI(t) = 0,

which implies

HeI(w) = 0, HoR(w) = 0.

Therefore, for real systems

H(w) = HeR(w) + jHoI(w)
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and

h(t) = heR(t) + hoR(t),

where heR(t) and hoR(t) can be written as

heR(t) =
1

2
[h(t) + h(−t)], hoR(t) =

1

2
[h(t)− h(−t)]

For a causal system h(t) = 0, t < 0, and to satisfy this condition:

hoR(t) =


−heR(t) t < 0,

heR(t) t > 0.

Using sgn(t) function

sgn(t) =


−1 if t < 0,

0 if t = 0,

1 if t > 0.

one can write

hoR(t) = sgn(t)heR(t).

Thus,

h(t) = heR(t) + sgn(t)heR(t)

In frequency domain this is equivalent to

H(w) = F{heR(t) + sgn(t)heR(t)}

H(w) = F{heR(t)}+ F{sgn(t)heR(t)} (3.16)

H(w) = F{heR(t)}+ F{sgn(t)} ∗ F{heR(t)} (3.17)
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H(w) = HeR(w) +
1

jπw
HeR(w), (3.18)

Writing the Hilbert transform H{He(w)} of He(w) as

H{He(w)} =
1

πw
∗He(w), (3.19)

that is equivalent to

H{He(w)} = − 1

π
−
∫ ∞
−∞

He(w
′)

w − w′
dw′ (3.20)

Thus, equation (3.18) can be rewritten as

H(w) = He(w)− jH{He(w)} (3.21)

Comparing equation (3.21) with equation (3.7) implies that

HR(w) = He(w) HI(w) = −H{He(w)} (3.22)

which implies that the imaginary part of causal system transfer function is related to

the real part through the Hilbert transform function

HI(w) = −H{HR(w)} (3.23)

Similarly, we can verify that

HR(w) = H{HI(w)} (3.24)

Equations (3.23) and (3.24) are equivalent to

HI(w) = −H{HR(w)} = − 1

π
−
∫ ∞
−∞

HR(w′)

w − w′
dw (3.25)
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and

HR(w) = H{HI(w)} =
1

π
−
∫ ∞
−∞

HI(w
′)

w − w′
dw, (3.26)

which are the same equations as (3.9), (3.8), respectively.

3.6 Causality Violation Problems

It is important to study the harmful effects of dealing with system causality

violations, and in order to explain these effects some facts must be clarified. In the

frequency domain, the lack of causality in discrete port frequency responses may

affect the process of generating the system macromodel resulting in non-convergence

or inaccurate models [92]. Using such macromodels in a time-domain analysis may

cause serious problems, such as non-physical transient responses and/or simulation

failures. Moreover, causality has a great effect on system stability in the discrete

domain where the practical workplace sampled data gets analyzed [68], noncasual

system may produce a non-stable system in the discrete domain which complicates

and prevents time domain analysis of the system. In addition, causality problems

lead to large errors in predicting performance of interconnects which increases the

Bit Error Rate (BER) of the system. Obviously, this occurs as the system shows

output that precede the correct sampling points.

Possible sources and reasons for causality violations depend on the method that

was used to create a macromodel that represents interconnects, how this macromodel

was developed and what kind of data was used to produce it. In order to determine

possible sources resulting in causality violations and consequently eliminate and pre-

vent their effects, a good study of a system macromodeling process should be carried

out.
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3.7 Possible Sources of Causality Violation

Sources of causality violations vary depending on the method used for macro-

modeling. The approach that utilizes computer modeling and capacitance and induc-

tive solvers for acquiring electromagnetic response suffers from introduced simulation

approximation errors. These errors are due to using meshing techniques, intrinsic

discretization of equations, finite precision of the computing implementation, and

post-processing of the data. In addition, neglecting the frequency dependence of ma-

terial properties is one of the major sources of simulation approximation errors that

cause a violation of the Kramers-Krönig relationship that describes the relationship

between the real and imaginary parts of the permittivity of the model. At least one

or both real and imaginary components of the material properties must be frequency

dependent in order to satisfy the Kramers-Krönig relationship.

In case of using vector network analyzers for acquiring electromagnetic response

through measurements, errors span from measurement accuracy, calibration tech-

niques and accuracy to the possible imperfection of the test set-up. On the other

hand, post-processing of the obtained data using interpolation and curve fitting of

PDN frequency domain response may lead to inaccurate and probably non-causal

systems.

3.8 Causality Verification and Enforcement Techniques

Generally, there are two main approaches to verify and enforce system causality:

the time domain approach and the frequency domain approach [68] as it appears in

Figure 3.2.

The time domain approach utilizes the primitive time domain definition of

causality through studying the signal flow graph of an impulse response that rep-

resents the system performance (Eye diagram) to make sure that there is no nonzero
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value of the output signal found before starting time. For more details, please see

the next section. The frequency domain approach is based on the frequency domain

definition of causality through dispersion relations, i.e. verifying that the real and

imaginary parts of a causal function are related by Hilbert Transform integration pair.

Hilbert transform can be implemented via both direct numerical integration and in-

direct interpolations using various kernels like Hermitan, sinc and rational functions

as well as Fourier series that we use in Section 5 where we discuss our causality en-

forcement method based on spectral continuation. Another method that belongs to

the frequency domain approach is the minimum phase and all-pass decomposition

method.

Figure 3.2: Main approaches for causality verification.
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3.9 Time Domain Approach

The time domain approach utilizes the time domain definition of causality

through studying the output waveform in time domain. A system is called non-

causal in a nonzero value of h(t) is found before the base delay time td [69]. The base

delay of a component is the propagation time that passes before an input signal with

certain frequency reaches the output port. Therefore, it is more accurate to check for

“base delay” causality rather than checking for absolute time zero causality.

This approach is carried out through three main steps, and it is illustrated in

Figure 3.3.

1. Reconstruct output waveform from its Fourier coefficients.

2. Estimate component base time delay for each input/output port pair and dif-

ferent operating frequency.

3. Perform causality verification by studying the waveform eye diagram to deter-

mine if there is no output before the base time delay.

Figure 3.3: Time domain causality verification.

3.9.1 Eye Diagram

Eye diagram is a visual tool for wide system performance measures and a common

indicator of the quality of signals in high-speed digital transmissions. Essentially, eye
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diagram is an oscilloscope display in which a digital data signal from a receiver is

repetitively sampled and applied to the vertical input, while the data rate is used to

trigger the horizontal sweep. This process results in a synchronized superposition of

all received bits of the signal of interest viewed within a particular signaling interval.

Ideal eye diagrams appears as rectangular boxes. In reality, communications are

imperfect, so the bit transitions do not line perfectly on top of each other, and an

eye-shaped pattern results.

Eye diagram is used as an experimental tool for the evaluation of the com-

bined effects of channel noise and inter-symbol interference on the performance of a

base-band pulse-transmission system. In addition it can be used in system causality

verification by visually inspecting the produced diagram and assure that no output

signal precedes the base time delay.

Figure 3.4: Non-causal system eye diagram.

Figures 3.4 and 3.5 show how the eye diagram is used in causality check where a

signal flow graph of several PRBS (pseudorandom binary sequence) patterns running

at 10 Gbps are displayed. The black waveforms in figures represent the component’s

“base delay”.

In Figure 3.4 the red waveform represents non-causal system as it shows output

before base time delay in black. The causality violation appears in the blue box and
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Figure 3.5: Causal system eye diagram.

the eye pattern does not display the expected “shark fin” wave shape. Whereas, the

blue waveform in Figure 3.5 represents a causal system due to the absence of output

before base time delay as it clearly appears in the red box.

Unfortunately, this approach suffers from Gibbs phenomenon due to using trun-

cated Fourier series for discontinuous functions as we demonstrate in the next Section.

3.9.2 Gibbs Phenomenon

Gibbs phenomenon illustrated in Figure 3.6 is inherent in Fourier analysis for

functions that are not smooth enough and have discontinuities, which is typical for

transfer functions of interconnects.

The transfer function of an interconnect is usually highly discontinuous due

to delayed reflections and it is often composed of series of spikes. In addition, its

values are available only on a finite sample frequency interval. Reconstructing, for

example, a square pulse signal with a finite number of jump discontinuities, which is a

piecewise constant function, in the time domain using a truncated Fourier series leads

to a signal waveform that very close to the original signal except with rippling around

the discontinuities. The more Fourier coefficients are used, the more the constructed

signal begins to resemble the original signal. At the same time, the ripples get narrow,
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but do not disappear (see the right panel of Figure 3.6). For a discontinuous function

even when the large number of Fourier coefficients used, the main undershoot and

overshoot will alway exist and their height will remain about 9% of the pulse height

jump.

Figure 3.6: Square signal Fourier series approximation.

The pre-cursor ripples in an impulse response function are the combination of

Gibbs oscillations and possible non-casual signals. Thus time domain approach for

causality check is practically difficult to be implemented because it is hard to separate

a true causality violation from Gibbs errors. Windowing is the classical technique to

reduce Gibbs error but unfortunately it only compresses Gibbs oscillations rather than

completely eliminates them [75]. Another limitation of this approach is that it is a

method of causality verification only and it is not capable of causality enforcement.

3.10 Frequency Domain Approach

Frequency domain approach utilizes the fact that the real and imaginary parts

of a casual transfer function H(w) are related through Hilbert transforms or satisfy

Kramers-Krönig relations (3.8), (3.9). For more details, please see Section 3.4.2.

Therefore, causality verification is done by checking whether the real and imaginary

parts of the frequency response of interconnects satisfy Kramers-Krönig relations
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(3.8), (3.9).

Verifying causality using frequency domain approach is a preferred method since

the data representing interconnects are usually given in the frequency domain [70].

Generally this data is a set of frequency response values that have been measured or

simulated over a set of discrete frequency points that covers a band-limited frequency

range.

Frequency domain approach for causality verification is normally carried out

through calculation of the Hilbert Transform of, say, the real part of H and then

comparing the result with the imaginary part of H, or vice versa, using equations

(3.8), (3.9). Since the Hilbert Transform is an integral operator, the implementation

of this approach can be done by applying numerical integration methods [64, 71]

via either direct numerical integration [71, 72], indirect interpolations using various

kernels like Hermitan [73], sinc [74], or using rational functions [64]. In our causality

characterization method based on spectral continuation that is presented in Section

5, we do not compute Hilbert Transform numerically. Instead, we impose causality

condition directly and exactly on Fourier coefficients used to approximate the transfer

function.

3.10.1 Direct Numerical Integration Method

In this method the Hilbert Transform is used as a tool to assess the consistency

of measured or numerically computed network transfer functions with respect to the

causality conditions [71]. The Hilbert transform is a commonly used technique for

relating the real and imaginary parts of a causal spectral response. It is found in both

continuous and discrete forms. A direct numerical integration of Hilbert Transform is

applied by computing the integration in Equations (3.25) and (3.26) using the linearity

properties of these relations that enables simplifying the complicated integrations by

breaking them down into pieces and compute them individually [71, 72].
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3.10.2 Indirect Interpolations Methods

Hilbert transform can be implemented via indirect interpolation using various

kernels like Hermitan, sinc and rational functions as it is explained in the next sub-

sections.

Hermitan Series Expansion Method

The time-domain response of a passive structure is modeled as an associate Her-

mite series expansion [73]. Using the isomorphism of the associate Hermite function

and its Fourier transform, the frequency-domain response can be expressed as a scaled

version of the time-domain expansion. Using early-time and low-frequency data, this

method demonstrates simultaneous expansion in both domains. Expansions with only

10 - 20 terms give good enough extrapolation in both time and frequency domains.

The computation involved in this method is minimal.

Sinc Series Expansion Method

This algorithm permits the reconstruction of a band-limited function from sam-

ples taken at not necessarily regularly spaced intervals, and also the recovery of the

Hilbert transform of the function [74]. It enables the reconstruction of the real or

the imaginary parts of the dielectric permeability by means of the Kramers-Krönig

relations. Regardless of the given sampling values, the algorithm converges in L2 as

well as point-wise. In contrast to popular methods that implement Kramers-Krönig

relations, this algorithm requires no computation of Fourier integrals. Only a sys-

tem of linear equations has to be solved in each iteration step. The approximating

functions are distinguished by minimal energy.
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Rational Functions Approximation Method

This method is the most widely used tool for causality verification. It uses a gen-

eral methodology - known as vector fitting - for approximating measured or calculated

frequency domain responses by a rational function. The vector fitting is an iterative

procedure in which an initial set of poles is replaced with an improved set of poles via

a scaling procedure [64], and the corresponding residues are computed. Frequency

domain approach for causality verification using rational function approximations is

normally carried out through two main steps, which are illustrated in Figure 3.7.

1. Fit the measured or simulated band-limited discrete frequency system parame-

ters Snm(jwk) to a rational function representation H(w) [64]:

H(w) = am
(jw − Z1)(jw − Z2)(jw − Z3) · · · (jw − Zm)

(jw − P1)(jw − P2)(jw − P3) · · · (jw − Pn)
(3.27)

where Z1, Z2, . . . , Zm are zeros and P1, P2, . . . , Pn are poles of the transfer func-

tion H(w), respectively.

2. Calculate the Hilbert Tranform integration pair using dispersion equations (3.8),

(3.9) with the rational function representation (3.27) produced in Step 1 by

applying numerical integration methods [64, 71].

Figure 3.7: Conventional frequency domain causality verification and enforcement
method.
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3.10.3 Minimum Phase and All-Pass Decomposition Method

This method is based on the minimum-phase and all-pass decomposition tech-

nique from classical digital signal processing practices [68]. Compared with other

methods based on Hilbert transform, this method demonstrates fewer requirements

to the frequency band. Fast implementation of Hilbert transform based on FFT/IFFT

is used but Gibbs errors are not found problematic.

Implementation of this method starts with decomposing the z-transform H(z) of

a real, causal and stable impulse response h(t) into the product of a minimum-phase

term and an all-pass terms:

H(z) = Hmin(z)Hap(z) (3.28)

where Hmin(z) is the minimum-phase term with its zeroes and poles within the unit

circle, and Hap(z) is the all-pass term that has its poles and zeros forming conjugate

reciprocal mirrors across the unit circle.

Recalling the fact that a noncasual sequence and its causal counterpart have

an identical z-transform with different regions of convergence (ROC) as the only

difference to set them apart. A noncasual sequence has its ROC extending inward

from the innermost pole while a causal sequence has its ROC extending outward from

the outermost pole. Then, the causality check problem is translated into a problem

of searching for unstable poles in the frequency response of interconnect. This can be

done by examining the phase plot of the corresponding all-pass function.

3.11 Frequency Domain Approach Difficulties

The frequency domain approach for causality characterization also has a number

of drawbacks and potential errors [70]. Causality in the frequency domain is defined

through dispersion relations (3.8), (3.9) that are integral equations with integration
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extended over an infinite domain (or semi-infinite if spectral symmetry of transfer

functions as Fourier transforms on real-valued impulse response function is used).

However, the port responses are typically available as a discrete set of system param-

eter values obtained from measurements or simulations over a set of discrete frequency

points that covers a band-limited frequency range from wmin ≥ 0 to wmax.

3.12 Research Target

Motivated by the desire of avoiding the limitations and drawbacks associated

with the conventional existing procedures for causality verification and enforcement

(Gibbs phenomenon, approximation errors, truncation errors, discretization errors,

finite band frequency interval and time consumption) this research investigates the

possibility of deducing new methods for causality verification and enforcement in the

frequency domain that will deals with the problem of having frequency responses

over a finite frequency interval that causes significant boundary artifacts when the

dispersion relations (3.8), (3.9) are used to verify and enforce causality.
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Chapter 4

Causality Verification and Enforcement

Using Periodic Polynomial Continuations

4.1 Introduction

As was mentioned in Chapter 3, causality condition in the frequency domain

can be expressed via dispersion relations or Kramers-Krönig conditions (3.8), (3.9). If

the impulse response function h(t) (time-domain function) is real-valued, then HR(w)

and HI(w) are even and odd functions, respectively. Using these symmetries in (3.8),

(3.9) produces

HR(w) =
2

π
−
∫ ∞
0

w′HI(w
′)

(w′)2 − w2
dw′, (4.1)

HI(w) = −2w

π
−
∫ ∞
0

HR(w′)

(w′)2 − w2
dw′. (4.2)

Practical application of dispersion relations (3.8), (3.9) or (4.1), (4.2) poses some

difficulties. The transfer function H(w) is usually available only at a discrete set of

frequencies over a finite bandwidth [wmin, wmax], with wmin ≥ 0, while the range

of integration in (4.1), (4.2), for example, extends from zero to infinity. Dispersion

relations require numerical evaluation of the singular integrals but the bandwidth may

not be sufficiently wide for convergence. Dispersion relations (3.8), (3.9) were derived

under an assumption that the transfer function H(w) is square integrable. However,

in some cases H(w) may not be square integrable at all and may only be bounded

or behave as O(wn), when |w| → ∞, n = 0, 1, 2, . . .. Direct application of dispersion

relations (4.1), (4.2) may result in a significant truncation error in boundary regions

of the given frequency interval [wmin, wmax] producing significant boundary artifacts.

The generalized dispersion relations or dispersion relations with subtractions [98,
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66] can be used to increase the convergence of the dispersion integrals by making

integrands less sensitive to the high-frequency behavior of H(w), and, thus, reduce

the reconstruction errors caused by the finite bandwidth. This approach has been

successfully used in [67, 70, 99] to develop a causality verification tool for bandlimited

tabulated frequency responses. A recent paper [100] employes the dispersion relations

with subtractions to improve accuracy of vector network analyzer (VNA) scattering

parameter device characterization. However, even using the dispersion relations with

subtractions does not completely remove the boundary artifacts.

In general, for a decaying impulse response function h(t), the asymptotic be-

havior of its Fourier transform H(w) may approach a constant H∞ as |w| → ∞. This

would imply that the impulse response function h(t) has a delta function present at

t = 0. For impulse response functions that do not contain such singularities, H∞ = 0.

Writing H∞ = R∞ + iI∞, the dispersion relations become [101]

HR(w) =
1

π
−
∫ ∞
−∞

HI(w
′)

w − w′
dw′ +R∞, (4.3)

HI(w) = − 1

π
−
∫ ∞
−∞

HR(w′)

w − w′
dw′ + I∞. (4.4)

Because of the odd symmetry of HI and its uniqueness, I∞ = 0. Hence, (4.3), (4.4)

become

HR(w) =
1

π
−
∫ ∞
−∞

HI(w
′)

w − w′
dw′ +R∞, (4.5)

HI(w) = − 1

π
−
∫ ∞
−∞

HR(w′)

w − w′
dw′. (4.6)

Generalized dispersion relations (4.5), (4.6) imply that HI can be determined

from HR, while HR is determined from HI to within a constant. This suggests that

when it is not known that H(w) should decay to zero as |w| → ∞, causality can

be verified by reconstructing HI from HR and comparing the result with the given

HI , while reconstructing HR from HI would require the knowledge of R∞. For this
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reason, in what follows we will use HR to reconstruct HI . Equations (4.5), (4.6) can

be used to reconstruct HR to reconstruct HI or their analogues of (4.1), (4.2) with

constant R∞ added to the right hand side of (4.1). Therefore, to verify causality,

one would need to truncate the domain of integration and integrate singular integrals

numerically.

An alternative formulation can be obtained using convolution operation. Indeed,

we can write (4.5), (4.6) as

HR(w) =
1

πw
∗HI(w) +R∞, (4.7)

HI(w) = − 1

πw
∗HR(w). (4.8)

Convolution can be computed using Fourier transform F and its inverse F−1

via convolution theorem to give

HR(w) = F−1
[
F
[

1

πw

]
· F [HI(w)]

]
+R∞, (4.9)

HI(w) = −F−1
[
F
[

1

πw

]
· F [HR(w)]

]
. (4.10)

Equations (4.9), (4.10) provide another way of reconstructing HI from HR and

vice versa. Discrete Fourier transform and its inverse can be computed employing

FFT/IFFT subroutines. However, these techniques are designed for periodic func-

tions while the transfer functions H(w) are not periodic in general. Direct application

of FFT/IFFT to non-periodic data may result in significant boundary errors. To over-

come this difficulty, we construct a smooth polynomial periodic continuation C(HR)

of HR(w) on a wider domain. Then this periodically continued function can be used

to reconstruct HI employing FFT and IFFT routines. HI can be also be used to

reconstruct HR, however, as can be seen from equation (4.9), this would require the
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knowledge of R∞. For this reason, it makes sense to reconstruct HI from HR unless

it is known that R∞ = 0. The idea of using periodic continuation was motivated by

an example of the function H(w) = e−iaw, a > 0, that is not square integrable and

only bounded but satisfies the dispersion relations and has periodic real and imagi-

nary parts. Indeed, HR = cos(aw), HI = − sin(aw) and H(cos(aw)) = sin(aw) and

H(sin(aw)) = − cos(aw).

In this work, we propose a method for causality characterization based on the

dispersion relations and smooth periodic polynomial continuation of the transfer func-

tion. The approach significantly (by a several of orders of magnitude) decreases re-

construction errors caused by the finite bandwidth compared to the direct application

of the dispersion relations without any continuation. The method is also capable of

detecting small localized causality violations. The details are presented next.

4.2 Periodic Polynomial Continuation

In applications, the transfer function H(w) is available on a finite bandwidth

[wmin, wmax], wmin ≥ 0, with a limited number of discrete values. We start with the

baseband case when wmin = 0. The approach can be generalized to the bandpass

case when wmin > 0 as we show later. Using spectrum symmetry, we can define

H(w) for [−wmax, 0], since HR and HI are even and odd functions, respectively. For

convenience, we rescale H(w) to H(x) defined on x ∈ [−0.5, 0.5] by substitution

x = 0.5
wmax

w. Starting from HR, we construct a new function C(HR), the periodic

continuation of HR, that is the same as HR on the interval [−0.5, 0.5] and defined

by an mth degree polynomial Pm(x) on [0.5, 0.5 + 2b] in such a way that this new

function is periodic in the extended domain of length 1+2b. In addition, this function

and its derivatives up to order m/2+ 1 inclusively are continuous at x = ±0.5. Given

a function HR(x), available at a discrete set of points in a unit-length interval, its
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periodic mth degree polynomial continuation C(HR) is defined by

C(HR) =



HR(x), x ∈ [0, 0.5]

HR(−x), x ∈ [−0.5, 0]

Pm(x) =
m∑
l=0

αl(x− x0)l, x ∈ [0.5, 0.5 + 2b], x0 = 0.5 + b

(4.11)

where function H(x) was reflected to [−0.5, 0] as an even function and 1 + 2b is the

period of the continuation. Since HR is the even function, the polynomial Pm should

be of even degree m and the polynomial
m∑
l=0

αlx
l should be an even function as well.

Hence, all coefficients αl with odd indices are zero. The remaining coefficients αl with

even indices are computed by requiring Pm(x) and its derivatives to match function

HR and its corresponding derivatives at points ±0.5. By symmetry, it is enough to

consider only the point x = 0.5. For example, for P2(x) = a2(x−x0)2+a0 the unknown

coefficients are a2 and a0 and they are computed by requiring P2 and d
dx

(P2), to match

HR and d
dx

(HR), respectively, at x = 0.5. For P4(x) = a4(x− x0)4 + a2(x− x0)2 + a0,

the unknowns a4, a2 and a0 are computed by requiring P4,
d
dx

(P4),
d2

dx2
(P4) to match

HR, d
dx

(HR), and d2

dx2
(HR) at x = 0.5, respectively. A polynomial P2k has k + 1

unknown coefficients that are found by requiring P2k and its derivatives up to order k

inclusively to have the same values as HR and its corresponding derivatives at x = 0.5.

To compute coefficients αl of the polynomial Pm(x), one needs to know function

HR and its derivative(s). However, only discrete values of HR are available. Deriva-

tives of HR can be approximated, for example, using one-sided finite differences [102],

since only values of H(x) to the left from point x = 0.5 are available. Higher or-

der approximations of derivatives can be constructed using, for instance, Richardson

extrapolation [102].

In Figure 4.1, as an example, we show function 4x4 + 4x2 + 1 and its periodic

8th degree polynomial continuation with b = 0.1. The resulting continuation and its
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derivatives up to 4th order are continuous at x = ±0.5.

0.5 0 0.5 1
1

1.5

2

2.5

3

3.5

 

 

HR
C (HR)

Figure 4.1: Function 4x4+4x2+1 and its periodic 8th degree polynomial continuation
with b = 0.1.

Once C(HR) is constructed, it can be employed to compute C(HI) on [−0.5, 0.5+

2b] using equation (4.10) and FFT/IFFT to compute direct and inverse discrete

Fourier transforms. The result is then compared with HI on the original interval

[−0.5, 0.5]. Denote by EC the absolute error in reconstructing HI from HR using a

polynomial continuation:

EC = HI −H[C(HR(x))], x ∈ [−0.5, 0.5]. (4.12)

For completeness, we also introduce the absolute error E of reconstructing HI from

HR without any continuation used:

E = HI −H[HR(x)], x ∈ [−0.5, 0.5]. (4.13)

Given a tolerance ε > 0, and computing some norm ||EC || (l∞ or l2 norm, for

example) of the reconstruction error EC , a decision can be then made whether the

given transfer function H(x) is causal or not depending if ||EC || < ε or not.
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The above approach can also be generalized to the bandpass regime with wmin >

0. In this case, H(w) is available at a discrete set of points in [wmin, wmx]. Similarly

to the baseband case, we rescale H(w) to H(x) by substitution x = 0.5
wmax

w. Then

H(x) is defined on [a, 0.5], where a = 0.5wmin
wmax

> 0. Since HR is an even function, we

have values of HR on [−0.5,−a] by spectrum symmetry. To define missing values of

HR in [−a, a], we construct an even degree polynomial P̃m0 using a similar approach

as for construction of Pm, in which we require P̃m0 and its derivatives to match HR

and its corresponding derivatives at x = ±a. The degree m0 may be same as m or

different. Then the periodic continuation C(HR) is defined as follows.

C(HR) =



HR(x), x ∈ [a, 0.5],

HR(−x), x ∈ [−0.5,−a],

Pm(x) =
m∑
l=0

αl(x− x0)l, x ∈ [0.5, 0.5 + 2b], x0 = 0.5 + b,

P̃m0(x) =

m0∑
k=0

βkx
k, x ∈ [−a, a].

(4.14)

The bandpass case is considered in a transmission line example 4.3.2, where the

transfer function H(w) is only available for w > 0.

In the next section, we test the polynomial continuation method for causality

verification on several analytic and simulated causal and non-causal examples. Causal

transfer functions are used for validation of the method and they present so called

ideal causality test. We also impose localized causality violations and show that the

approach is capable of detecting them even when the amplitude of such violations is

small.
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4.3 Numerical Examples

In this section, we apply the causality characterization technique based on peri-

odic polynomial continuation described in the previous section to several analytic and

simulated examples that are causal or non-causal. The causal transfer functions pro-

vide ideal causality test cases that would validate the method. For non-causal transfer

functions, the approach should be able to detect the causality violation locations and

indicate how far the function is from being causal.

4.3.1 Study Case I: Two-pole Transfer Function

We consider a transfer function with two poles defined by

H(w) =
r

iw + p
+

r̄

iw + p̄
. (4.15)

with r = 1 + 3i and p = 1 + 2i. This function was used in [91] to study extraction of

time delay that is set to zero in the current work. Since the poles of H(w) are located

in the upper half w-plane at ±2+ i, this function is causal as it is a sum of two causal

transforms. H(w) was sampled on [0, wmax] with wmax = 10 GHz. The frequency

interval is scaled to [0, 0.5] by the substitution x = 0.5/wmax to obtain a rescaled func-

tion H(x). The real HR(x) and imaginary HI(x) parts of H(x) are shown in Figure

4.2. Using the spectrum symmetry, HR was reflected to [−0.5, 0] as an even function.

Its graph is shown in Figure 4.3. Superimposed is a 8th degree periodic polynomial

continuation C{HR(x)} with b = 2. An FFT/IFFT procedure using equation (4.10) is

applied to C{HR(x)} to compute its Hilbert transform H[C{HR(x)}] and reconstruct

HI . The result is depicted in Figure 4.4 together with the original HI(x), x ∈ [0, 0.5].

For comparison, we also show the Hilbert transform of HR(x) computed using Mat-

Lab built-in function hilbert that uses the same FFT/IFFT procedure but without

periodic continuation. Clearly the reconstruction H[C{HR(x)}] of HI(x) using the
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Figure 4.2: Study Case I: HR(x) and HI(x), x ∈ [0, 0.5].
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Figure 4.3: Study Case I: HR(x) and its periodic 8th degree polynomial continuation
C[HR](x).
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periodic polynomial continuation defined in (4.11) is very close to the original HI on

[0, 0.5], whereas MatLab built-in function hilbert produces large boundary errors.

0 0.1 0.2 0.3 0.4 0.53.5

3

2.5

2

1.5
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0.5
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0.5

x

 

 

HI

H [C (HR)]

H [HR]

Figure 4.4: Study Case I: HI(x) vs. H[C{HR(x)}] and H[HR(x)] computed using
MatLab built-in function hilbert (with no continuation).

In Figure 4.5 we plot the absolute error EC between HI(x) and its reconstruction

using polynomial periodic continuations of degrees p = 2, 4, 6 and 8. We can see

that the error, especially in the boundary regions, decreases as the degree of the

polynomial increases, though not monotonically in this example. For comparison, we

also plot the error E with using MatLab function hilbert that does not use periodic

continuation. We can see that this error is about 5 times larger than that with

the polynomial continuation of degree p = 2 and 100 times larger than with 8th

degree polynomial continuation. Figure 4.6 shows the error EC with using 8th degree

polynomial continuation. This error is at most 2 · 10−3 in the boundary regions

and smaller away from the boundary. Hence, we clearly see that using polynomial

continuation decreases the boundary errors and the smoother continuation is, the

smaller reconstruction error is.
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Figure 4.5: Study Case I: Error EC with polynomial continuations of degree p = 2,
4, 6, 8 superimposed with the error E with no continuation.
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Figure 4.6: Study Case I: Error EC using 8th degree polynomial continuation and
b = 2.
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4.3.2 Study Case II: Transmission Line Transfer Function

In this study case we use the polynomial continuation method to verify causality

of a uniform transmission line transfer function. The transmission line segment under

test has the following per-unit-length parameters: L = 4.73 nH/cm, C = 3.8 pF/cm,

R = 0.8 Ω/cm, G = 0 and length L = 10 cm. The set of frequency points used to

construct the discrete transfer function is sampled from the interval (0, 5.0] GHz. This
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Figure 4.7: Study Case II: Real and imaginary parts of H(x).

example was used in [67] to analyze causality using generalized dispersion relations

with subtractions. The scattering matrix S of the structure was computed using

MatLab function rlgc2s. Then we consider the element H(w) = S11(w). Due to

limitation of the model used in the MatLab function rlgc2s, we can not obtain the

value of the transfer function at w = 0 but we can sample it from any small nonzero

frequency wmin > 0. However, the value of H(w) at w = 0 is finite, so we have

bandpass case. Again, we rescale the frequency interval to (a, 0.5]. We know that

the HI(w) equals 0 at w = 0 due to odd symmetry of HI . Since HR is an even

function, we have its values on [−0.5,−a]. The missing values of HR in [−a, a] can be

approximated by constructing an even degree polynomial defined in (4.14). The real

and imaginary parts of H(x) are shown in Figure 4.7. HR together with its 8th degree

polynomial continuation C{HR(x) are presented in Figure 4.8. Figure 4.9 shows HI ,
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its reconstruction H[C{HR(x)}] and H[{HR(x)}] without periodic continuation. The

absolute errors EC and E are presented in Figure 4.10.

Results indicate that polynomial continuation allows one to reduce the error

inside the original interval by at least two orders of magnitude and around one order

of magnitude at the boundary. Even though the error in the boundary region depends

primarily on the order of polynomial continuation and not so much on the mesh

frequency size, the accuracy in reconstruction in the region near x = 0 depends on

resolution. As the number N of samples increases, thus, wmin decreases, the error in

reconstruction near x = 0 also decreases as a function of N . We experimented with

N ranging from 70 to 2000. The logarithmic graph plotted in Figure 4.11 shows that

for small N , the error decreases as a function of N−3, while for large values it behaves

as 1/N .
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Figure 4.8: Study Case II: HR(x) and its periodic polynomial continuation.
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Figure 4.9: Study Case II: HI(x) vs. H[C{HR(x)}] and H[HR(x)].
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Figure 4.10: Study Case II: Errors EC with 8th degree polynomial continuation and
E (with no continuation).
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Figure 4.11: Error EC near x = 0 as a function of N with 8th degree polynomial
continuation.

Next we artificially impose a localized causality violation modeled by a Gaussian

function

a exp

(
−(x− x0)2

2σ2

)
, 6σ = 10−2,

where a and x0 are an amplitude and location of a perturbation. A symmetric per-

turbation is imposed at −x0. The results with x0 = 0.1, a = 10−2, 10−3 and 10−4

are shown in Figure 4.12. We note that the approach with a polynomial periodic

continuation give superior results over the approach without a continuation. While

for larger amplitude a = 10−2 both methods allow to detect the causality violation,

the method with continuation maintains much smaller error away from the region

where the violation was imposed while when there is no continuation, the error is not

small essentially everywhere. When a = 10−3, the approach with continuation de-

tects successfully the violation, while the error with the method without continuation

produces spikes in the error similar to the approach with continuation but the error

at the spikes and around is quite away from zero and about the same magnitude, so

in this case (without continuation) it not possible to distinguish causality violation

from the reconstruction error. With even smaller amplitude a = 10−4, the approach
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with a polynomial continuation is still able to detect causality violation by developing

spikes in the reconstruction error but these spikes are of about the same magnitude as

the rest of the surrounding error, so in such a case causality error is indistinguishable

from the reconstruction error. If no continuation is used, the results are even worse.
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Figure 4.12: Study Case II: Error EC with imposed causality violation with amplitude
a = 10−2 using 8th degree polynomial continuation and the error E without any
continuation used.

4.3.3 Study Case III: DDRAM Package Macromodel

This study case uses a scattering S-matrix of a DRAM package with 110 input

and output ports, which was generated by a Finite Element Method. The values

of the scattering matrix are available at N = 100 equally spaced frequency points

ranging from wmin=0 to wmax = 5 GHz. We apply the technique to the S-parameter

H(w) = S(100, 1) that relates the output signal from port 100 to the input signal

at port 1 as a function of frequency w. The procedure can be extended to other

elements of S by applying the method to every element of the scattering matrix.

After rescheduling frequencies to [−0.5, 0.5] we obtain function H(x). The real and

imaginary parts of H(x) is plotted in Figure 4.13.
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Figure 4.13: Study Case III: Real and imaginary parts of H(x).
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Figure 4.14: Study Case III: HR(x) and its periodic 8th degree polynomial continua-
tion with b = 0.2.
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Figure 4.15: Study Case III: HI(x) vs. H[C{HR(x)}] and H[{HR(x)}].
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Figure 4.16: Study Case III: Errors EC with 8th degree polynomial continuation and
E (with no continuation).
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Figure 4.17: Study Case I: Error EC with 8th degree polynomial continuation and b
varying from b = 0 (no continuation) and b = h, 2h, 4h and 8h.

Figures 4.14 shows HR(x) together with its 8th degree polynomial continuation

C{HR(x)} and b = 0.2. The Hilbert transform of the continued functionH[C{HR(x)}]

is illustrated in Figure 4.15. For comparison, we also show H[{HR(x)}] is no periodic

continuation was used. The absolute errors EC and E are presented in Figure 4.16.

The results indicate that periodic continuation allows one to maintain a small

uniform error (on the order of 10−5) away from the boundary unlike the approach

without continuation that produces the error of by about two orders of magnitude

bigger. However, the error at the boundary in this example is bigger with b > 0

compared to b = 0. This can be explained by the fact that both HR(x) and HI(x)

have steep slopes at the end points that are most likely signs of a discontinuity that

is typical for transfer functions of real life high speed interconnects. In Figure 4.17

we analyze the absolute error of reconstruction of HI(x) as a function of the length

b of the extended domain. As b increases from b = 0 to b = 8h with h = 0.0051, we

observe that the error away from the boundary decreases and reaches its minimum

(optimal value) around b = 4h and then starts to increase. The error at the boundary

increases monotonically with b.
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Chapter 5

Causality Verification and Enforcement

via SVD-Based Fourier Continuations

5.1 Introduction

A new method, presented in this Chapter, is an alternative approach for causal-

ity verification and enforcement. This approach is based on Fourier continuation of a

transfer function H(w) under investigation. The discrete data of the transfer function

are typically available only on a finite bandwidth. These data are not periodic in gen-

eral. Direct application of dispersion relations in equations (3.8) and (3.9) using Fast

Fourier Transform produces significant errors in the boundary regions mainly because

if the values of H(w) at endpoints are not the same, the transfer function is treated as

discontinuous periodic function with the discontinuity at endpoints. To overcome this

difficulty, we construct a spectrally accurate periodic continuation of H(w) in an ex-

tended domain using the truncated singular value decomposition (SVD) method and

impose causality directly on Fourier coefficients. A method for constructing a periodic

continuation, also known as Fourier continuation or Fourier extension, based on reg-

ularized singular value decomposition (SVD), is proposed in [77]-[80]. This method

allows one to calculate Fourier series approximations of non-periodic functions such

that a Fourier series is periodic in an extended domain. The Fourier coefficients

need to be determined by solving an overdetermined or underdetermined and regu-

larized least square problem since the system suffers from numerical ill-conditioning.

Fourier continuation based SVD was studied further in [81]-[83] and used to construct

efficient algorithms for the numerical solution of linear [84], and nonlinear partial dif-

ferential equations [85]-[87]. In [88], the SVD-based Fourier continuation method has
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been extended to unevenly spaced data. Sobolev smoothed Fourier continuations are

proposed in [89] where the approach allows one to construct dramatically smoothed

Fourier continuation in the sense that the Fourier coefficients exhibit a prescribed

rate of decay as the wave number increases. The smoothing does not significantly

affect the accuracy of the Fourier series approximations on the original interval and

may even yield better accuracy than the standard regularized SVD-based Fourier

continuation.

Once the Fourier series is written for the Fourier continuation, the causality

conditions are imposed directly on the Fourier coefficients producing a causal Fourier

continuation. After computing the Fourier coefficients, the Fourier continuation is

reconstructed and the resulting causal periodic continuations are then compared with

the given discrete data on the original bandwidth of interest and a decision about

whether the given data is causal or not is made depending on an error threshold.

The chapter is organized as follows. In Section (5.2) we derive causal spectrally

accurate Fourier continuation using singular value decomposition (SVD). We also

discuss the effect of using Sobolev smoothing proposed in [89]. In Section (5.3), the

technique is applied to several analytic and simulated causal and non-causal examples

to analyze performance of the method.

5.2 Causal Fourier Continuation

In practice, the transfer function is obtained either from numerical computations

or direct measurements, and it is available only at a set of discrete frequencies in the

range [wmin, wmax], where wmin ≥ 0. We first consider the baseband case when

wmin = 0. Since equations (3.8) and (3.9) are homogeneous in the frequency variable

we can rescale [0, wmax] to [0, 0.5] using the transformation x = 0.5/wmax as we did

in Chapter 4.

As we discussed in Chapter 4, the time domain impulse function h(t) is often
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real-valued. In this case, the real and imaginary parts of H(w) are even and odd

functions, respectively. This implies that the values of the transfer function H(w) are

available on the interval x ∈ [−0.5, 0.5] by spectrum symmetry, so that the discrete

set of rescaled frequencies is contained in the unit length interval. In some cases, the

data is available only from a non-zero, low-frequency cutoff, i.e. the data window is

[wmin, wmax], where wmin > 0, which corresponds to the bandpass case. For example,

in optical experiments, only a part of the electromagnetic spectrum is accessible [90].

The new procedure can be generalized to the bandpass case as well. The idea

is to construct an accurate Fourier series approximation of H(w) by allowing the

Fourier series to be periodic and causal in an extended domain. The result is the

Fourier continuation of H(w) that we denote by CF (H(w)), and it is defined by

CF (H(x)) =

M/2∑
k=−M/2+1

αk e−
2πi
b
kx (5.1)

for even values of M , whereas when M is odd, the index k varies from −M−1
2

to

M−1
2

. Throughout this paper we will take M to be even for simplicity. All presented

results have analogues for odd values of M . Here b is the period of approximation.

Note that in the previous chapter on polynomial continuation, b denoted the length

of the “added” region, not the entire period. For SVD-based periodic continuations b

is normally chosen as twice the length of the domain on which function H(x) is given

[79]. For causal Fourier continuations we find that b can be varied to get best results,

ranging, for example, from b = 1.1 to b = 10. It is assumed that the function H(x)

is known at N discretization points {xj}, j = 1, · · · , N , x ∈ [−0.5, 0.5]. Note that

CF (H(x)) is a trigonometric polynomial of degree at most M/2.

Since HR(x) and HI(x) are even and odd functions of x, respectively, the Fourier
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coefficients αk are real, where

αk =
1

b

∫ b/2

−b/2
H(x)φk(x)dx, j = 1, . . . ,M

and ¯ denotes the complex conjugate.

Functions φk(x) = e−
2πikx
b , k ∈ Z, are orthogonal and, in particular,

∫ b/2

−b/2
φk(x)φk′(x)dx = b δkk′

where δkk′ is the Kronecker delta. In addition φk(x) = e
2πikx
b = φ−k(x). For a function

e−iax, a > 0, the Hilbert transform is

H{e−iax} = i sgn(a) e−iax,

hence, for function φk(x) = e
−2πi
b

kx, we have

H{e
−2πi
b

kx} = i sgn(k) · e
−2πi
b

kx

i.e

H{φk(x)} = i sgn(k)φk(x). (5.2)

This implies that the functions {φk(x)} are the eigenfunctions of the Hilbert transform

(HT) with associated eigenvalues ±i. We use relations (5.2) to impose causality

conditions on the coefficients of CF (H(x)). We can write CF (H(x)) as a Fourier series

CF (H(x)) =
∞∑

k=−∞

αkφk(x)

We will truncate this series at the end to get a Fourier continuation in the form (6.1).
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Let

CF (H(x)) = Re{CF (H(x))}+ j Im{CF (H(x))}

and

φk(x) = Re{φk(x)}+ j Im{φk(x)}.

Since

Re{φk(x)} =
1

2
(φk(x) + φk(x))

and

Im{φk(x)} =
1

2i
(φk(x)− φk(x))

we obtain

Re{CF (H(x))} =
∞∑

k=−∞

αk Re{φk(x)} =
1

2

∞∑
k=−∞

αk(φk(x) + φk(x))

and, since φk(x) = φ−k(x) we have

Re{CF (H(x))} =
1

2

∞∑
k=−∞

αk(φk(x) + φ−k(x)).

By changing the order of summation, we obtain

Re{CF (H(x))} =
1

2

∞∑
k=−∞

(αk + α−k)φk(x).

Similarly, the imaginary part

Im{CF (H(x))} =
∞∑

k=−∞

αk Im(φk(x)) =
1

2i

∞∑
k=−∞

αk(φk(x)− φk(x))
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and, since φk(x) = φ−k(x) we have

Im{CF (H(x))} =
1

2i

∞∑
k=−∞

αk(φk(x)− φ−k(x))

and after changing the order of summation we get

Im{CF (H(x))} =
1

2i

∞∑
k=−∞

(αk − α−k)φk.

For a causal periodic extension, we need Im{CF (H(x))} to be the Hilbert transform

of −Re{CF (H(x))}. Hence,

1

2i

∞∑
k=−∞

(αk − α−k)φk(x) = −H

[
1

2

∞∑
k=−∞

(αk + α−k)φk(x)

]
.

Using linearity of the Hilbert transform, we get

1

2i

∞∑
k=−∞

(αk − α−k)φk(x) = −1

2

∞∑
k=−∞

(αk + α−k)H{φk(x)}.

Using (5.2), we can write

1

2i

∞∑
k=−∞

(αk − α−k)φk(x) = −1

2

∞∑
k=−∞

(αk + α−k)i sgn(k)φk(x).

Hence, we obtain

1

2i
(αk − α−k) = −1

2
(αk + α−k)i sgn(k) for any k ∈ Z

or

αk − α−k = (αk + α−k) sgn(k), k ∈ Z

that implies αk = 0 for k < 0. Hence, the Fourier continuation (6.1) can be written
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as

CF (H(x)) =
∞∑
k=0

αkφk(x)

Hence, the Fourier continuation (5.1) can be written as

CF (H(x)) =

M/2∑
k=0

αkφk(x), (5.3)

where we truncated the infinite sum to obtain a trigonometric polynomial. Evaluating

H(x) at points xj, j = 1, . . . , N , xj ∈ [−0.5, 0.5] produces a complex valued system

C(H)(xj) =

M/2∑
k=0

αkφk(xj) (5.4)

with N equations for M/2 + 1 unknowns αk, k = 1, . . . ,M/2 + 1. Separating the real

and imaginary parts, we get

Re(CF (H(xj))) =

M/2∑
k=0

αk Re(φk(xj)),

Im(CF (H(xj))) =

M/2∑
k=0

αk Im(φk(xj)).

(5.5)

To ensure that the Fourier coefficients αk are real, instead of solving system of

equations (5.4), one can solve the system (5.5). This produces 2N equations (N

equations for real parts and N equations for imaginary parts) and unknowns αk.

Typically the system is overdetermined and has to be solved in the least squares

sense. We also consider the case of the underdetermined system when the number of

data samples 2N is less than the number of Fourier coefficients M/2 + 1. Introduce

the following notation:

~f =
(
ReH(x1), . . . ,ReH(xN),− ImH(x1), . . . ,− ImH(xN)

)T
~α =

(
α0, . . . , αM/2

)
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and introduce matrix A whose entries are:

Ajk = Re{e
−2πi
b

kxj} for j = 1, . . . , N, k = 0, . . . ,M/2

A(j+N),k = Im{e
−2πi
b

kxj} for j = 1, . . . , N, k = 0, . . . ,M/2.

Then the coefficients αk, k = 1, . . . , N , are defined as a least-squares solution that

minimizes the Euclidean norm of the residual:

min
{αk}

2N∑
j=1

∣∣∣∣∣∣
M/2∑
k=0

αkAjk − fj

∣∣∣∣∣∣
2

(5.6)

This least-squares problem is extremely ill-conditioned, as explained in [81] using

the theory of frames. However, it can be regularized using a truncated SVD method

when singular values below some tolerance ξ close to the machine precision are being

discarded. It was shown that this approach produces very accurate solutions for

evenly spaced points [77, 79, 83] or even unstructured grids [79].

In this work we use ξ = 10−13 as the threshold to filter the singular values.

The ill-conditioning increases as M increases by developing rapid oscillations in the

extended region. These oscillations are typical for SVD-based Fourier continuations.

Once the system reaches a critical size that does not depend on the function being

approximated, the coefficient matrix becomes rank deficient and the regularization of

the SVD is required to treat singular values close to the machine precision. Because

of the rank deficiency, the Fourier continuation is no longer unique. Applying directly

the SVD method produces the minimum norm solution {αk}, k = 1, . . . ,M/2 + 1,

i.e. the set of Fourier coefficients whose Euclidean norm is minimized, for which the

corresponding Fourier continuation is oscillatory. The oscillations in the extended

region do not affect significantly the causality of the Fourier continuation and we

show that varying the length of the extended domain helps in reducing the effect of
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high gradient regions on the error between the given data and causal continuation on

the original interval.

Another way to have some control on the Fourier coefficients of the continuation

is to use a Sobolev smoothing technique proposed in [89]. It allows one to compute

corrections βk to the Fourier coefficients αk, so that the modified Fourier series (the

smoothed Fourier continuation) Cs(H(x)) become:

CS(H(x)) =

M/2∑
0

(αk + βk) e
−2πi
b

kx (5.7)

is smoothed by taking into account the contribution of each Fourier coefficient to

the Hp Sobolev norm of the Fourier continuation but maintains the accuracy of the

original Fourier continuation with using only αk given by (6.24). Coefficients βk are

computing using the discarded singular values, i.e the singular values σk < ξ, and the

corresponding right singular vectors from the null space of matrix A [89]. The effect of

including the coefficients βk in the Fourier continuation can be seen by looking at the

magnitudes of the coefficients of the smoothed Fourier continuation CS(H) compared

with the Fourier coefficients of the original CF (H). While the magnitudes of the

Fourier coefficients of CF (H) barely decays at all, the coefficients of the smoothed

function CS(H) decay quickly, at the rate of O(|k|−p). The effect of the smoothing is

proportional to the filter level ξ.

5.3 Numerical Experiments: Causality Verification

In this section we employ the causal spectral continuation method to verify

causality of the same test functions used in the previous chapter where the polynomial

continuation method was developed and applied to characterize causality, as well as

analyze other functions.
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5.3.1 Study Case I: Two-pole Transfer Function

In this study case the new approach is applied on a system with two-pole transfer

function [91] with the time delay To = 0. The transfer function is defined by

H(w) =
r

iw + P
+

r

iw + P̄
(5.8)

where r = 1 + 3i, P = 1 + 2i, so the poles of this function are in the upper half

plane at ±2 + i. Therefore, the transfer function is causal as a linear combination

of causal transforms. We sample data on the interval from w = 0 to wmax = 6,

use the spectrum symmetry to obtain data on [−wmax, 0) and scale the frequency

interval from [−wmax, wmax] to [−0.5, 0.5] by using substitution x = 0.5w/wmax. The

real and imaginary parts of H(x) plotted on [−0.5, 0.5] are shown in Figures 5.1

and 5.2. Superimposed there are their causal Fourier continuations obtained using

M = 500, N = 1000 and b = 4 and solving the complex system (5.4) and its real

counterpart (5.5). As can be seen, there is no essential difference in using complex

or real formulation. The data and the causal Fourier continuations are essentially

undistinguishable on [−0.5, 0.5].

Denote by ER and EI the absolute errors in the reconstruction of HR(x) and

HI(x), respectively:

ER(x) = ReH(x)− Re C(H)(x), EI(x) = ImH(x)− Im C(H)(x).

We find that in this example both errorsER and EI are at the order of 10−14.

In Figures 5.3 and 5.4 we plot the real and imaginary part of the data together

with their causal Fourier continuations using the same M = 500, N = 1000, b = 6

in the extended domain to show the nature of these continuations. It is obvious that

the continuations oscillate in the extended region outside [−0.5, 0.5]. The frequency
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Figure 5.1: Study Case I:HR(w) and its Fourier continuation withM = 500, N = 100,
b = 4 shown on [−0.5, 0.5].
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Figure 5.2: Study Case I: HI(w) and its Fourier continuation with M = 500, N = 100,
b = 4 shown on [−0.5, 0.5].
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Figure 5.3: Study Case I: Fourier continuation of HR(w) with M = 500, N = 1000,
b = 6.

4 2 0 2 415

10

5

0

5

10

15

20

25

x

 

 

HI

complex contn
real formuln

Figure 5.4: Study Case I: Fourier continuation of HI(w) with M = 500, N = 1000,
b = 6.
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of these oscillations increases with M . At the same time, continuations become more

and more accurate in approximations in the original interval [−0.5, 0.5].

In Figures 5.5 and 5.6 we plot the errors ER and EI in the original region

[−0.5, 0.5] for various values of M . As M increases from M = 10 to M = 100, the

order of the error decreases from 10−1 to 10−14 for both real and imaginary parts.

The errors ER and EI for M = 500, N = 1000, b = 6 are presented in Figures 5.7

and 5.8.
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Figure 5.5: Study Case I: Semilogy plot of the error ER(x) on the original scaled
frequency interval [−0.5, 0.5] with M = 10, 20, 50, 100, 200 and 500, N = 2M , b = 4.

The above results demonstrate that the method is capable of verifying causality

of causal functions with the accuracy close to the machine precision.

Next we alter the causal data by adding a small non-causal perturbation

P (x) = a exp

(
−(x− x0)2

2σ2

)
, a = 10−10, σ = 10−2/6 (5.9)

to HR(x) and demonstrate that the proposed method is capable of detecting such

violation of causality. The perturbation is a Gaussian function centered at x0 = 0.1

with an amplitude of a = 5 · 10−13 and standard deviation 10−2/6, so its effect is

concentrated on the interval of length 10−2 and outside this interval the values of this
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Figure 5.6: Study Case I: Semilogy plot of the error EI(x) on the original scaled
frequency interval [−0.5, 0.5] with M = 10, 20, 50, 100, 200 and 500, N = 2M , b = 4.
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Figure 5.7: Study Case I: Semilogy plot of the error ER(x) on the original scaled
frequency interval [−0.5, 0.5] with M = 500, N = 1000, b = 4.
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Figure 5.8: Study Case I: Semilogy plot of the error EI(x) on the original scaled
frequency interval [−0.5, 0.5] with M = 500, N = 1000, b = 4.

perturbation are very small and close to 0. The amplitude of the added perturbation

is much smaller (by 10−13) compared with the magnitude of HR and HI of the original

data (the maximum values of HR and HI are about 3.5 and 6, respectively). The

errors ER and EI are shown in Figures 5.9 and 5.10. It is clear that the errors have

spikes at x = ±0.1 due to symmetry that corresponds to the location of Gaussian

perturbations. The amplitude of these spikes is of the order of 10−13, whereas the

rest of the error has magnitude 10−14, i.e. 10 times smaller than in the perturbation

regions.

For larger perturbation, the results are similar. For example, with a = 10−8,

the error at x = ±0.1 is of the order of 10−9 and the rest of the interval has the error

about 10 times smaller. If a = 10−6, the spikes in the error at x = ±0.1 are of the

order of 10−7 and the rest is of 10−8 as shown in Figures 5.11 and 5.12.

Effect of Lower Number of Data Points

It is not always possible to sample data with a desired frequency step. In certain

cases, one is given a discrete set of data of fixed size N . But M is a free parameter

that can be varied. When N is fixed and M varies, the systems (5.4) or (5.5) may
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Figure 5.9: Study Case I: Error ER when a non-causal perturbation with a = 5 ·10−13

is added, M = 500, N = 1000, b = 4.
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Figure 5.10: Study Case I: Error EI when a non-causal perturbation with a = 5·10−13

is added, M = 500, N = 1000, b = 4.
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Figure 5.11: Study Case I: Error ER when a non-causal perturbation with a = 10−6,
M = 500, N = 1000, b = 4.
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Figure 5.12: Study Case I: Error EI when a non-causal perturbation with a = 10−6,
with M = 500, N = 1000, b = 4.
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become underdetermined. We show that in these cases it is still possible to compute

accurate minimum norm least squares solution. With the same function as above, we

fix M = 500 and analyze the l∞ norms of errors ER and EI in reconstructing HR(x)

and HI(x) when M is fixed and N decreases from N = 2M to N = M/10 on the

original interval [−0.5, 0.5]. This is equivalent of having fixed N and increase M . The

results are shown in Table 5.1. They indicate that both errors slightly decrease as N

uncreases. We also find that as N decreases, the Fourier continuation become less

M N ||ER||∞ ||EI ||∞
500 2M = 1000 5.2069 · 10−14 8.1268 · 10−14

500 M = 500 4.835 · 10−14 4.452 · 10−14

500 M = N/2 = 250 6.3394 · 10−14 6.3838 · 10−14

500 M = N/5 = 100 2.5979 · 10−14 2.8422 · 10−14

500 M = N/10 = 50 6.8834 · 10−15 3.5527 · 10−15

Table 5.1: Study Case I: Errors ER and EI with fixed number of Fourier coefficients
M and decreasing number N of data samples.
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Figure 5.13: Study Case I: HR(w) and its Fourier continuation with M = 500, N =
M/10 = 50, b = 4.

oscillatory and it does not oscillate at all for N = M/10 as can be seen in Figures

5.13 and 5.14. The singular values do not decay to 0 but instead slowly decay from

19.7990 to a constant value 14.
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Figure 5.14: Study Case I: HI(w) and its Fourier continuation with M = 500, N =
M/10 = 50, b = 4

5.3.2 Study Case II: DDRAM Package Macromodel

The second study case is an S-parameter data set that was generated through

a Finite Element Modeling (FEM) of a DRAM package considered in Section 4.3.3.

Here we use H(w) = S(100, 1) and scale it to H(x) defined on [0, 0.5] as before.

The number of the data points is fixed at N = 100, so to construct a causal Fourier

continuation we can only vary the number of Fourier coefficients M and the length of

the extended region b. Computing a causal Fourier continuation with M ≤ N does

not give the required accuracy and as the error can not be made smaller than 10−4.

Therefore, we try increasing the number of Fourier coefficients M while keeping the

number of sample points N fixed. This corresponds to the under-sampling of the

Fourier transform but it is found to be very effective in signal processing. Because of

the symmetry, the number of data points is 2N − 1 = 199. We choose to use b = 1.1.

Slightly higher values of b give similar results while using too large b does not produce

small enough error. This is most likely because the resolution becomes lower with

using a larger domain and the fixed number of points. We vary values of M from

100 to 500 and find that the error decreases from 10−4 with M = 100 to 10−8 with
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M = 400 and becomes very small at the order of 10−18 with M = 500. The details

are shown in Table 5.2.

M ||ER||∞ ||EI ||∞
100 1.5 · 10−4 2 · 10−4

200 1.5 · 10−5 1 · 10−5

300 8 · 10−7 1 · 10−6

400 5 · 10−8 8 · 10−8

500 8 · 10−18 8 · 10−18

Table 5.2: Study Case II: Errors ER and EI with N = 100, b = 1.1 and M varying
from 100 to 500.
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Figure 5.15: Study Case II: HR(x) and its Fourier continuation with M = 500,
N = 100, b = 1.1.

In Figures 5.15 and 5.16 we plot HR(x) and HI(x) together with their causal

Fourier continuations obtained with M = 500 and b = 1.1. The errors ER and EI

on the original interval are on the order of 10−18 and are plotted in Figures 5.17 and

5.18, respectively.

5.3.3 Study Case III: Transmission Line Transfer Function

We consider a uniform transmission line segment with per-unit-length parame-

ters L = 4.73 nH/cm, C = 3.8 pF/cm, R = 0.8 Ω/cm, G = 0 and length L = 10
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Figure 5.16: Study Case II: HI(x) and its Fourier continuation with M = 500, N =
100, b = 1.1.
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Figure 5.17: Study Case II: Error ER(x) with M = 500, N = 100, b = 1.1.
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Figure 5.18: Study Case II: Error EI(x) with M = 500, N = 100, b = 1.1.

cm. The frequency is sampled from the interval (wmin, 5.0] GHz. This example was

studied in Section 4.3.2. We use the element H(w) = S11(w). As was explained in

that section, we can not obtain the value of the transfer function at w = 0 but we

can sample it from any small nonzero frequency wmin>0 that we choose to be the

mesh size h = wmax/N in our data. Using spectrum symmetry we reflect the values

of the transfer function for negative frequencies. We know that the HI(0) = 0 since

HI is an odd function but HR(0) is unknown. For this reason, our frequencies at

which the values of the transfer function are available have a gap at w = 0. Nev-

ertheless, our approach is still applicable since it does not require the data points

to be equally spaced. Alternatively, we can use a polynomial interpolation to find a

value of HR(w) at w = 0 as was done in Section 4.3.2. The value of the imaginary

part HI(0) = 0 by symmetry. This second approach is not very accurate since it

does not take into account causality when the polynomial interpolation of HR(w) for

small w is constructed, and produces a larger error compared with just skipping the

values at w = 0. As before, we rescale the transfer function to H(x), x ∈ (0, 0.5].

Using our spectral continuation technique with wmax = 5.0 GHz, M = N = 3000 and

b = 4 we are able to construct a causal Fourier continuation accurate within 3 · 10−15.



73

The graphs of HR(x) and HI(x) together with their causal Fourier continuations are

presented in Figures 5.19and 5.20. The corresponding reconstruction errors ER and

EI on the original interval is shown in Figures 5.21 and 5.22.

With smaller values of wmax, it is enough to use smaller values of M and N

to get the same order of accuracy. For example, to get an error in approximation of

the transfer function on the original interval at the order of 10−14 and wmax = 3.0

GHz, it is enough to use M = N = 1500, while for wmax = 1 GHz one could use

M = N = 500. This can be explained by the fact that when the number M of Fourier

coefficients increases, the least squares problem (3.16) or (3.17) to compute Fourier

coefficients becomes more ill-conditioned and the effect of round-off errors increases.

Moreover, with smaller N we get regularization by discretization and fewer Fourier

coefficients are required.
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Figure 5.19: Study Case III: HR(x) and its causal Fourier continuation with M =
N = 3000, b = 4.

To verify the capability of the spectral continuation method to detect non-

causality, we perturb the real part of H(x), as in Study Case I, by a Gaussian

function ε exp
(
− (x−x0)2

2σ2

)
centered at x0 = 0.1, with amplitude ε = 10−6 and stan-

dard deviation σ = 10−2/6, so that the perturbation is localized to approximately

(0.1− 10−2, 0.1 + 10−2). A symmetric perturbation is placed at x = −0.1. The error
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Figure 5.20: Study Case III: HI(x) and its causal Fourier continuation with M =
N = 3000, b = 4.
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Figure 5.21: Study Case III: Error ER(x) with M = N = 3000, b = 4.
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Figure 5.22: Study Case III: Error EI(x) with M = N = 3000, b = 4.
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Figure 5.23: Study Case III: Error ER(w) with M = N = 3000, b = 4 with non-casual
Gaussian perturbation with ε = 10−6.



76

0.5 0 0.55

4

3

2

1

0

1

2

3

4 x 10 7

x

 

 

HI

complex contn

Figure 5.24: Study Case III: Error EI(x) with M = N = 3000, b = 4 and non-casual
Gaussian perturbation with ε = 10−6.
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Figure 5.25: Study Case III: Error ER(x) with M = N = 3000, b = 4 and non-casual
Gaussian perturbation with ε = 5 · 10−13.
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Figure 5.26: Study Case III: Error EI with M = N = 3000, b = 4 and non-casual
Gaussian perturbation with ε = 5 · 10−13.

in approximation with causal Fourier continuation is shown in Figures and (5.24. We

can see very pronounced spikes in both real and imaginary parts of H(x) at x = ±1

with amplitude 4.5 ·10−7 while the rest of the error is on the order of 2 ·10−8, approxi-

mately one order smaller. We tested the method further by decreasing the amplitude

ε of the non-causal perturbation to see how small causality violations we can detect.

The results are summarized in Table 5.3 where ε was varied from 10−6 to 10−14. We

are able to detect a causality violation of amplitude up to ε = 5 · 10−13 and we show

the errors for this case in Figures 5.25 and 5.26.

ε
ER(x)

at x = ±0.1
EI(x)

at x = ±0.1
Error on the rest

of [−0.5, 0.5]
10−6 4.5 · 10−7 3 · 10−7 2 · 10−8

10−7 4.5 · 10−8 3 · 10−8 2 · 10−9

10−10 4.5 · 10−11 3 · 10−11 2 · 10−12

10−13 4.5 · 10−14 3 · 10−14 3 · 10−15

5 · 10−14 2.5 · 10−14 1.5 · 10−14 3 · 10−15

10−14 6 · 10−15 4 · 10−15 3 · 10−15

Table 5.3: Study Case III: Error in reconstruction of HR(x) and HI(x) with M =
N = 3000, b = 4 and Gaussian perturbation with amplitude varying from 10−6 to
10−14.
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5.3.4 Study Case IV: Delayed Gaussian Transfer Function

In this study case we test the performance of the spectral continuation method

on an example of a delayed Gaussian function that was used in [68] to check causality

of interconnects through minimum-phase and all-pass decomposition. We consider

the impulse response function modeled by a Gaussian with the center of the peak at

td and standard deviation σ:

h(t, td) = exp

[
−(t− td)2

2σ2

]
.

If td = 0, the Gaussian function h(t, 0) is even, so it can not be causal. As td increases,

the center of the peak moves to the right and for td > 3σ the impulse response function

h(t, td) gradually becomes causal. The corresponding transfer function is

H(w, td) = exp
[
−2(πwσ)2 − 2iπw td

]
which is a periodic function damped by an exponentially decaying function. We

consider two regimes. One has a very small value of td < 3σ to give an example of

a non-causal function. In the second regime, the delay td > 3σ to give a big enough

decay of the Gaussian and make the transfer function H(w, td) causal. We fix b = 4,

σ = 2 and sample w from the interval [0, 4 · 108] Hz and consider first the case with

td = 0.1σ. The real and imaginary parts of H(w, td) are shown in Figures 5.27 and

5.28. The errors ER(x) and EI(x) are shown in Figures 5.29 and 5.30. As the results

indicate, the error is on the order of 10−4 and varying b or M (smaller or larger) does

not essentially affect the error, its order remains the same.

In the second case, we set td = 6σ, which should give a causal enough function.

Its real and imaginary parts are shown in Figures 5.31 and 5.32 and the corresponding

errors that drop to the order of 2 · 10−15 are presented in Figures 5.33 and 5.34.
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Figure 5.27: Study Case IV: HR(x) with its Fourier continuation with M = N = 500,
b = 4, td = 0.1σ in a non-causal case.
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Figure 5.28: Study Case IV: HI(x) with its Fourier continuation with M = N = 500,
b = 4, td = 0.1σ in a noncausal case.
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Figure 5.29: Study Case IV: ER(x) with M = N = 500, b = 4, td = 0.1σ in a
non-causal case.
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Figure 5.30: Study Case IV: EI(x) with M = N = 500, b = 4, td = 0.1σ in a
non-causal case.
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We do observe a gradual change of the non-causal Gaussian function into a

causal function. Making td = γσ and varying γ among 1, 2, 4, and 5, we find that

the errors in approximation of the transfer function decay with γ and they are on

the order of 5 · 10−6, 10−7, 3 · 10−12 and 10−14, respectively, as expected. Thus, this

example also demonstrates an excellent performance of the new method.
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Figure 5.31: Study Case IV: HR(x) with its Fourier continuation with M = N = 500,
b = 4, td = 6σ in a causal case.
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Figure 5.32: Study Case IV: HI(x) with its Fourier continuation with M = N = 500,
b = 4, td = 6σ in a causal case.
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Figure 5.33: Study Case IV: ER(x) with M = N = 500, b = 4, td = 6σ in a causal
case.
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Figure 5.34: Study Case IV: EI(x) with M = N = 500, b = 4, td = 6σ in a causal
case.
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Chapter 6

Conclusions

The design of high-speed interconnects, that are common on chip and at the

package level in digital systems, requires systematic simulations at different levels in

order to evaluate the overall electrical system performance and avoid signal integrity

problems. To conduct such simulations, one needs suitable models that capture the

relevant electromagnetic phenomena that affect the signal and power quality. These

models are often obtained either from direct measurements or electromagnetic sim-

ulations in the form of discrete port frequency responses that represent scattering,

impedance, or admittance transfer functions or transfer matrices in multidimensional

cases, respectively. Once frequency responses are available, a corresponding macro-

model can be derived using several techniques such as the Vector Fitting and the

Orthonormal Vector Fitting among others. However, if the data are contaminated by

errors, it may not be possible to derive a good model. These errors may be due to

a noise, inadequate calibration techniques or imperfections of the test set-up in case

of direct measurements or approximation errors due to the meshing techniques, dis-

cretization errors and errors due to finite precision arithmetic occurring in numerical

simulations. Besides, these data are typically available over a finite frequency range

as discrete sets with a limited number of samples. All this may affect the performance

of the macromodeling algorithm resulting in non-convergence or inaccurate models.

Often the underlying cause of such behavior is the lack of causality in a given set of

frequency responses. A system is causal if a frequency response given by the transfer

function H(w) satisfies the dispersion relations also known as Kramers-Krönig rela-

tions. The dispersion relations characterize the causality in the frequency domain.

They represent the fact that the real and imaginary parts of a causal function are

related through Hilbert transform. The Hilbert transform may be expressed in both
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continuous and discrete forms and is widely used in circuit analysis, digital signal

processing, remote sensing and image reconstruction. The Hilbert transform that

relates the real and imaginary parts of a transfer function H(w) is defined on the

infinite domain which can be reduced to [0,∞) by symmetry properties of H(w) for

real impulse response functions. However, the frequency responses are usually avail-

able over a finite length frequency interval, so the infinite domain is either truncated

or behavior of the function for large w is approximated. This usually creates large

errors in the boundary regions. The generalized dispersion relations or dispersion

relations with subtractions can be used to increase the convergence of the dispersion

integrals by making integrands less sensitive to the high-frequency behavior of H(w),

and, thus, reduce the reconstruction errors caused by the finite bandwidth.

We take another approach and instead of approximating the behavior of H(w)

for large w, truncating the domain or using the generalized dispersion relations with

subtraction, we construct causal periodic polynomial and Fourier continuations of

H(w) by requiring the transfer function to be periodic and causal in an extended

domain of finite length. The polynomial continuation approach allows the use of

FFT/IFFT routines to compute discrete Hilbert transform and enforce causality in

the frequency domain. The accuracy of the method is shown to depend primarily on

the order of the polynomial, i.e. the degree of smoothness of the continuation at the

end points of the given frequency domain. This in turn allows one to significantly

reduce the boundary artifacts compared to the use of the function hilbert from the

popular software Matlab that also implements discrete Hilbert transform but does

not use any periodic continuation.

The second approach is also based on dispersion relations but it constructs

SVD-based Fourier continuations. This is done by calculating accurate Fourier series

approximations of transfer functions, not periodic in general, and allowing the Fourier

series to be periodic in an extended domain. The causality is imposed directly on
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Fourier coefficients using the Kramers-Krönig dispersion relations that require real

and imaginary parts of the transfer function to be a Hilbert transform pair. This

approach eliminates the necessity of approximating the behavior of the transfer func-

tion at infinity, which is known to be a source of significant errors in computation of

the Hilbert transform defined on an infinite domain (or semi-infinite due to spectrum

symmetry) with data available only on a finite bandwidth. In addition, this procedure

does not require direct numerical computation of the Hilbert transform integral or

using FFT/IFFT. The Fourier coefficients are computed by solving an oversampled

or undersampled regularized least squares problem via a truncated SVD method to

have the ill-conditioning of the system under control. Fourier continuations with the

large number of Fourier coefficients are typically oscillatory in the extended domain

but this does not essentially affect the quality of reconstruction and their effect can

be minimized by varying the length of the extended domain.

Both methods are applicable to baseband and bandpass regimes and allow the

user to verify causality and detect causality violations. They were tested on sev-

eral analytic and simulated examples. While polynomial continuation method only

reduces the boundary errors, the spectral continuation method is capable of eliminat-

ing boundary artifacts completely. It has much higher accuracy and can detect much

smaller causality violations of the magnitude close to the machine precision.
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