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Abstract

In this thesis, we discuss two different approaches to modulation classifiers: we

first propose a hybrid method for automatic modulation classification that lies in the

intersection between likelihood-based and feature-based classifiers. Specifically, the pro-

posed method relies on statistical moments along with a maximum likelihood engine.

We show that the proposed method offers a good trade-off between classification accu-

racy and complexity relative to the Maximum Likelihood (ML) classifier. Furthermore,

our classifier outperforms state-of-the-art machine learning classifiers, such as genetic

programming-based K-nearest neighbor (GP-KNN) classifiers, the linear support vector

machine classifier (LSVM) and the fold-based Kolmogorov-Smirnov (FB-KS) algorithm.

In the second part of thesis, we propose a distribution-based modulation classifier using

neural networks. We show that our proposed classifier outperform state-of-the-art classi-

fiers, even when the pool of possible candidate modulations are unknown to the receiver.
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CHAPTER 1

Introduction

1.1 Background

Automatic modulation classification (AMC) is the intermediate step between sig-

nal detection and demodulation. The term ”Automatic” is used to indicate that the

classification process is done automatically, as opposed to earlier modulation classifiers

where signals are processed manulally with the aid of signal observation and processing

equipment [1]. The problem of AMC was motivated by the its numerous applications in

both civilian and military fields. In civilian applications, we can find AMC used in rate

adaptation, where the transmitter exploits the channel conditions by choosing a modu-

lation scheme that provides more throughput (e.g. QAM-64) for strong channels, and

more reliability (e.g. QPSK or BPSK) for weak channels. In military applications, AMC

can be used to identify and correctly modulate alien signals, as well as in threat analysis.

AMC has attracted researchers’ attention over the last few decades. The nature of the

problem

1.2 Applications

Nowadays, communication systems rely heavily on higher order modulations to achieve

high data rate transmission. In wired transmission, the communication channel is rel-

atively stable, and the classifier does not need to adapt to the changes in the com-

munication channel. As a result, the channel estimation is done once at the system

initialization. In wireless transmission, the channel undergoes different types of fading

at different time instants, which promotes the need to continuously estimate the channel

state information (CSI) in order to accurately classify the modulation of the signal. In

Civilian applications, it is common to see AMC used in Link adaptation, which is the

process of adaptively selecting the type of modulation based on the acquired channel
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state information. Communication system can benefit from Link adaptation by choosing

a higher-order modulation for strong channels (AWGN or slow-fading channels), and a

lower-order modulation for weak channels (fast-fading channels), to increase the overall

communication capacity.

In military applications, AMC is essential in many different strategies. AMC can

be implemented to correctly detect and demodulate alien signals and to recover the

transmitted signal. This can be further exploited to properly transmit a jamming signal,

which are high power signals to override adversary communications in the same frequency

band, and prevent the communication between units.

Figure 1.1: AMC in Link Adaptation system

1.3 Likelihood-based Classifiers

Likelihood-based classifiers are the most popular amongst modulation classifiers. LB

classifiers are by far the most optimal in terms of classification accuracy when the channel

model and channel parameters are perfectly known to the receiver. LB classifiers work



3

first by defining a likelihood rule and set of hypothesis (Hi : modulation ωi is sent), then

maximizing the likelihood rule over all the set of hypothesis. despite their optimality,

LB classifiers suffer from two critical drawbacks: their computational complexity, and

the reliance on knowing the model of the signal as well as the channel estimation at

the receiver (CSI-R). Many approaches had been proposed to lower the computational

complexity of LB classifiers, as well as the adaptability in non-cooperative channels. The

most common LB Approach is the Maximum Likelihood classifier, which is an upper

bound of the performance of modulation classifiers in terms of classification accuracy.

Some of alternative approaches are the average likelihood ratio test (ALRT), generalized

likelihood ratio test (GLRT) and hybrid likelihood ratio test (HLRT). In this chapter,

we will mainly focus on the Maximum Likelihood approach.

1.3.1 Maximum Likelihood classifiers

Likelihood evaluation is equivalent to the calculation of probabilities of observed sig-

nal samples belonging to the models with given parameters. In a maximum likelihood

classifier, with perfect channel knowledge, all parameters are known except the signal

modulation. Therefore, the classification process can also be perceived as a maximum

likelihood estimation of the modulation type where the modulation type is found in a fi-

nite set of candidates [2]. The main focus will be to derive the likelihood function mainly

in the AWGN channel.

We start by defining a set of Hypothesis Hi such that,

Hi : observed signal sample y(n) belonging to the modulation ωi.

Given that the likelihood of the each hypothesis is equal to the probability of the signal

sample y(n) being observed in the AWGN channel modulated with M , then the following

equation holds.
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L(Hj|Y , σ) = p(Y |Hj, σ) (1.1)

L(Hj|Y , h) =
N∏
i=1

Mj∑
k=1

1

Mj

1

πσ2
exp

(
−
∣∣Y (i)− Sjk

∣∣2
σ2

)
, (1.2)

where (1.2) is derived using the complex form PDF of received signal in AWGN channel.

Y = [Y (1), . . . , Y (N)] is the received vector, Mj is the cardinality of modulation ωj, and

Sjk is k-th point of ωj, for k = 1, . . . ,Mj, and j = 1, . . . , K. The latter equation can

sometimes written in the form of a log-likelihood for analytical convenience, resulting in

the the following expression:

logL(Hj|Y , h) = log

(
N∏
i=1

Mj∑
k=1

1

Mj

1

πσ2
exp

(
−
∣∣Y (i)− Sjk

∣∣2
σ2

))

=
N∑
i=1

log

(
1

Mj

1

πσ2

Mj∑
k=1

exp

(
−
∣∣Y (i)− Sjk

∣∣2
σ2

))
. (1.3)

The likelihood function can also be derived from PDF of different aspects of received

signals. As an example, we can first derive the PDF for the real part of the received signal

in AWGN channel, and then construct the likelihood function shown in the equation:

L(Hj|Y , h) =
N∏
i=1

Mj∑
k=1

1

Mj

1√
πσ2

exp

(
−
∣∣<{Y (i)} − <{Sjk}

∣∣2
σ2

)
. (1.4)

1.4 Feature-based Classifiers

Feature-based classifiers are the most common approaches of designing modulation clas-

sifiers. Instead of dealing with the entire sequence of the received signal, the classifier

can reduce the computational demand by using a smaller set of key features. The choice

of the features used in classification should be adapted to the type of the problem. For
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example, if the pool of possible modulations used by the transmitter contains phase mod-

ulation, then using a feature that is a function of phase is desirable. One example of such

feature is standard deviation of the absolute phase σap, defined as follow:

σap =

√√√√ 1

N

( N∑
i=1

φNL(i)2
)
−
(

1

N

N∑
i=1

|φNL(i)|
)2

, (1.5)

where φNL denotes the non-linear part of the phase for the i-th symbol.

1.5 Machine Learning-based Classifiers

One of the drawbacks of LB and FB classifiers is the need of prior knowledge of the pool

of possible modulations used by the transmitter, as well as their statistical character-

istics. This prior knowledge may not be always available. As an example, in military

applications, where the classifier’s task is to classify the modulation of different alien

signals, the classifier can not acquire enough information about the possible modulations

used by the transmitter, rendering the classifier unable to use the LB or FB approach.

One other major drawback of FB classifiers is the need to design the decision trees with

multiple thresholds.

In order to overcome these issues, research has been focused toward designing various

machine learning algorithms. First, The machine learning engine can learn the structure

of the testing data set without the need of an exact model. Second, the machine learning

engine can can reduce the dimension of feature set, and provide decision trees that are

simpler and easier to implement.

In this section we are going to introduce some of the most widely-used machine learn-

ing algorithms, namely, the K-nearest neighbor (KNN), linear support vector machines

(LSVM) and genetic programming (GP).
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1.5.1 K-nearest Neighbor classifiers

The K-nearest neighbor classifier had been widely used to solve many different classifi-

cation problems. KNN works by assigning a class to a testing sample if the majority of

the K nearest reference samples also belong to that class. In modulation classification

problem, KNN can be used after converting the reference signals into a set of features

and establishing the feature space.

The classifier evaluates the distances between the testing signal and the reference

signals. The most common distance metric is the Euclidean distance. Assume a given

feature set F = {F1, F2, . . . , FL}, where L is the number of features, the Euclidean

distance between two feature sets, FA and FB can be calculated as:

D(FA,FB) =

√√√√ L∑
i=1

[FA
i − FB

i ]2. (1.6)

After the distances between the test signal and the all the reference signals are eval-

uated and recorded, the classifier proceeds with sorting them and selects the minimum

K reference signals with the minimum distances.

Figure 1.2: Two-class feature space K-nearest neighbor, K = 5.

The selection of K should follow a number of simple rules. Ideally, K should not be
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divisible by the number of classes, and should be large enough to avoid false-classification

caused by outliers. Moreover, the value of K should be less than the total number of

reference signals available. The K reference samples with minimum distances are the

basis of the classification, as the classifier decides in favor of the class with majority of

samples belonging to the set of K-nearest neighbors.

1.5.2 Linear Support Vector Machine Classifiers

Linear Support Vector Machine is another classification algorithm that uses the multi-

dimensional feature space. It works by finding a hyperplane that separates the reference

samples into two different classes on each side of the hyperplane. The hyperplane is

optimized by maximizing the distance to the signal samples of each class. LSVM have a

linear kernel that is defined as follows

K(F ,w) = F Tw, (1.7)

where F = {F1, F2, . . . , Fn} is the vector with input features F1, . . . , Fn, and w is the

weight vector that needs to be optimized. The decision rule in LSVM classifiers can be

formulated as follows

Ĥi =


H1, g(F ) = F Tw + w0 ≥ 0

H2, g(F ) = F Tw + w0 < 0

(1.8)

The hyperplane g(F ) = F Tw + w0 = 0 is found using an iterative optimization

process, which is exercised to solve the following problem:

maximize D(w,w0) =
2

||w||

2

subject to yi(w
Txi + w0) ≥ 1, i = 1, 2, . . . , L,

(1.9)

where yi is a class indicator for the i-th feature, such that, yi = 1 indicates that
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sample i belongs to class A, and yi = −1 indicates that sample i belongs to class B.

Figure 1.3: Two-class feature space with linear support vector machine.

Compared with the KNN classifier, the SVM classifier only needs to use the training

signal when establishing the separating hyperplane. Once the hyperplane is optimized,

there is no need to involve the training signal in any sort of further calculation. The

benefit is that the computation needed at the testing stage is relatively inexpensive com-

pared with KNN. However, the SVM classifier is most natural for two-class classification.

There are implementations of a multi-class classification using SVM. However, the im-

plementation is much less intuitive than in the two-class case.
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CHAPTER 2

MOMENTS-BASED CLASSIFICATION

2.1 Motivation

Most modulation classification algorithms suffer from a clear trade-off between compu-

tational complexity and classification performance. In ML classification, which provides

the upper limit in terms of classification performance, the computational complexity is

significantly demanding. On the other hand, FB-based classifiers are less computation-

ally demanding, but they fall behind in term of classification accuracy. This motivated us

to look for a classification algorithm that combines between the simplicity of FB-based

classifiers and the accuracy of ML classifiers. Motivated by the fact that moments of

the received signal are easy to compute and can provide a simple way to automatically

classify the modulation of the transmitted signal, we propose a hybrid method for auto-

matic modulation classification that lies in the intersection between likelihood-based and

feature-based classifiers. The proposed classifier uses statistical moments via an ML en-

gine and provides a good accuracy-complexity trade-off. It is worth noting that moments

were chose over other statistical features due to a number of reasons: calculating mo-

ments is relatively simple, which in turn lowers the complexity of the system. Moments

also offer robustness to AWGN noise by averaging the signal over its symbols.

In this study, our main contribution is to propose an algorithm that obtains the opti-

mal accuracy from a set of moments while maintaining a significantly lower computational

complexity than the ML classifier and a competitive complexity with the state-of-the-art.

Note that we do not claim optimality in the choice of moments used for classification but

we claim optimality in combining a given set of moments, where optimality is in terms

of probability of correct classification.

This chapter is divided into four sections. In the system model section, we discuss

the channel effects on the received signal and its interaction with the signal model. In
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the next section, we present our proposed algorithm, and derive the moment-based like-

lihood maximization classifier. In the results section, We present a comparison between

our method and state-of-the-art methods. We also show that the proposed method offers

a good trade-off between classification accuracy and complexity relative to the ML clas-

sifier. Finally, we show that our classifier outperforms state-of-the-art machine learning

classifiers, such as genetic programming-based K-nearest neighbor (GP-KNN) classifiers,

the linear support vector machine classifier (LSVM) and the fold-based Kolmogorov-

Smirnov (FB-KS) algorithm.

2.2 System Model

Regardless of the transmitter setting and modulation selection, the transmitted signals

are subject to the same channel conditions. Here we give a signal model that includes

a majority of the channel effect a single wireless radio frequency may encounter. The

received signal is given by:

Y (i) = Aej(2πfoiT+θi)
∞∑

l=−∞

X(l)p(lT − iT )h(iT − lT + εTT ) + Z(i), (2.1)

where A is the amplitude of the signal, fo is carrier frequency offset, T is the symbol

duration, h(·) is the baseband channel effect, p(·) is the pulse shaping, θi is the phase

jitter varying from sample to sample, X(l) is the symbol sequence, εT is the timing error,

and g(i) is the additive white gaussian noise (AWGN).

Under common circumstances, assumptions are made that the pulse shaping and

channel response is known to the receiver. Therefore, the signal model after matching

the filter could be simplified as:

Y (i) = Aej(2πfoiT+θi)X(i) + Z(i), (2.2)
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equation 2.2 can be further simplified such that the baseband waveform at the receiver

can be modeled as:

Y (i) = hX(i) + Z(i), (2.3)

We assume a quasi-static channel model where h is constant during T and changes

randomly during the next coherence time T . Furthermore, we assume perfect channel

state information at the receiver (CSI-R) as in [3–6]. We assume that, at the beginning

of classification, the receiver has acquired CSI via training or via the sequence itself.

2.3 Proposed Method

Our proposed approach is based on maximizing the likelihood that a modulation has

been used at the transmitter, but using a finite number of moments only, instead of a

received sequence of symbols of length N , Y . We evaluate the likelihood as a function

of the moments of the received sequence. Let M̃ be the set of empirical moments of Y

such as:

M̃ = {M̃p1q1 , M̃p2q2 , . . . , M̃pLqL}, (2.4)

where L is the cardinality of M̃. M̃piqi(Y ) is the empirical moment used as an approxi-

mation of the exact moment Mpiqi(Y ). M̃pq can be obtained by:

M̃pq ,
1

N

N∑
i=1

Y (i)p−qY ∗(i)q. (2.5)

Note that the empirical moment M̃pq converges to the statistical moment Mpq for

large N due to the law of large numbers. Once the moments M̃pi,qi are evaluated, the

ML engine proceeds by formulating the hypothesis testing problem as follows: Hj :

Modulation ωj is used, for j = 1, . . . , K. Since the received symbols Y (i) in (2.5) are

independent and identically distributed (i.i.d.), then, conditioned on the channel h, the

central limit theorem can be invoked to show that the probability density function (pdf)
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of each conditional moment fM̃pq |Hj
(m|Hj) converges to a Gaussian distribution as the

number of samples N increases, i.e.,

lim
N→∞

Pr
(
M̃pq ≥ x|Hj

)
= Q

(
x− µ(j)

pq

σ
(j)
pq

)
, (2.6)

where Q(·) is the Q-function, and µ
(j)
pq and σ

(j)
pq are the mean and the standard deviation

of the empirical moment M̃pq given the hypothesis Hj. The use of the CLT is justified

since a typical sequence length N is larger than or equal to 128. The summands in (2.5)

are i.i.d.; hence, the mean of M̃pq can be obtained as:

µ(j)
pq , E[M̃pq|Hj, h]

= E
[ 1

N

N∑
i=1

Y (i)p−qY ∗(i)q
∣∣∣Hj, h

]
(2.7)

= E
[
Y p−qY ∗q

∣∣∣Hj, h
]

for j = 1, . . . , K, (2.8)

where (2.7) follows from the definition of empirical moments in (2.5), Y , Y (i) and

(3.10) follows from that Y (i), i = 1, . . . , N are i.i.d. since the channel is memoryless

(c.f. subsection 3.2). To completely define the pdf of M̃|Hj, we also need its covariance

matrix K(j) of size L× L. The entries K
(j)
mn of the covariance matrix K(j) can therefore

be obtained by:

K(j)
mn = E[(M̃pmqm − µ(j)

pmqm)(M̃pnqn − µ(j)
pnqn)∗|Hj, h]. (2.9)

computing the covariance matrix in 2.9 can be further simplified as shown in (ap-

pendix A).

The joint conditional pdf fM̃|Hj
(M̃|Hj) of moments (with each moment itself being

normally distributed) can simply be obtained by the general equation of the multivariate
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complex Gaussian distribution:

fM̃|Hj
(M̃|Hj)

=
1

πL
∣∣K(j)

∣∣ exp
{
− (M̃ − µ(j))(K(j))−1(M̃ − µ(j))H

}
, (2.10)

where
∣∣K(j)

∣∣ is the determinant of K(j), and µ(j) = [µ
(j)
p1q1 , . . . , µ

(j)
pLqL ]. We know from the

Bayesian rule that the likelihood function can be written as:

L(Hj|M̃) = f(Hj|M̃) = f(M̃|Hj)
f(Hj)

f(M̃)
. (2.11)

We are interested in maximizing the probability of correct classification. This can be

achieved by maximizing the likelihood function using the pdf function derived in (2.10).

The classifier decides that hypothesis Hj is correct if the likelihood function L(Hj|M̃) is

maximized for all j = 1, . . . , K. Assuming that all the candidate modulations are equally

probable, maximizing L(Hj|M̃) boils down to maximizing f(M̃|Hj) over the set of all

hypotheses.

2.3.1 Numerical Results and performance analysis

In this section, we present a variety of simulation experiments to demonstrate the per-

formance of our proposed algorithm. For our method, we use five moments, namely:

M̃ = {M̃40, M̃42, M̃61, M̃63, M̃82}. (2.12)

The SNR γ in dB is defined as γ = 10 log10(Es/σ
2), where Es is the signal energy. We

classify between five different modulations given in: Ω = {BPSK,QPSK, 8PSK, 16QAM, 64QAM}.

The selection of these modulations is mainly because they are included in the IEEE

802.11a standard. All results are based on 10,000 Monte Carlo trials for each modula-

tion, i.e., 50,000 trials for modulation set Ω. We express the average probability of correct
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Table 2.1: Comparison of moments for higher order modulations.

64QAM 256QAM Absolute Value of Relative Difference (%)
M4,0 -0.619 -0.6047 2.3%
M4,2 1.3810 1.3953 1%
M6,1 -1.2980 -1.2890 0.69%
M8,4 4.1910 3.9630 5.4%
M12,6 17.3775 15.2692 12.3%
M16,8 68.9592 86.7237 25.8%

classification, Pc, as the average of individual probabilities of correct classification, i.e.,

Pc =
1

K

K∑
m=1

Pr

(
argmax
i=1,...,K

L(Hj|M̃) = m|Hm

)
. (2.13)

We simulate Pc to measure the performance of five classifiers: the ML classifier, the

proposed classifier, the well-known LSVM classifier [7], the GP-KNN classifier [8], and

the fold-based Kolmogorov-Smirnov (FB-KS) classifier in [3].

Note that cumulants are polynomial functions of moments [5]; hence, while the CLT

holds for moments, it does not hold in general for cumulants since polynomials of Gaussian

random variables are not necessarily Gaussian. In addition, we note that a set of moments

of Y and a set of cumulants of Y of the same size and order carry the same amount of

information about the modulation to be classified. To see this, let H be a random variable

whose support is the set of modulations Ω and SS(Y ) denote the sufficient statistic of

Y . Consider the mutual information between a sequence of moments {Mp1q1 , . . . ,MpLqL}

and the modulation hypothesis H, denoted by I(H;Mp1q1 , . . . ,MpL,qL), and that of a

sequence of cumulants {Cp1q1 , . . . , CpLqL} and H, where pi = pi−1 + 1 for i = 2, . . . , L,

and p1 = 1. Then,

I(H;Y ) = I(H;SS(Y )) (2.14)

= I(H;Mp1q1 , . . . ,MpLqL) (2.15)

= I(H; f(Mp1q1 , . . . ,MpLqL)) (2.16)
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(f) N = 512.

Figure 2.1: Comparison between the probability of correct classification versus SNR (dB) of
five different classification methods under different channel assumptions: AWGN (a)–(c), and
normalized Rayleigh fading (d)–(f), for various sequence lengths. The modulations used are
BPSK, QPSK, 8PSK, 16QAM and 64QAM.

= I(H;Cp1q1 , . . . , CpLqL), (2.17)

where (a) follows because sufficient statistics preserve mutual information; (b) follows

from that {Mp1q1 , . . . ,MpLqL} are in general not a sufficient statistic, with equality if

and only if {Mp1q1 , . . . ,MpLqL} are a sufficient statistic of Y ; (c) follows if and only if

f : RL → RL is a one-to-one mapping; and (d) follows due to the fact that cumulants

are indeed one-to-one functions of moments since there is a one-to-one relation between

the moment-generating function M(t) = E[etY ] and the cumulant-generating function

K(t) = logE[etY ]. Hence, a sequence of moments and a sequence of cumulants of the

same order and size carry the same information about H.

Figure 2.1 shows the accuracy of correct classification for different sequence lengths

in the AWGN channel and the normalized Rayleigh fading channel. First, as shown

by Figures 2.1a–2.1c, in the AWGN channel, at SNRs higher than or equal to 3 dB,
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our proposed classifier performs similarly to the LSVM classifier and outperforms the

GP-KNN and FB-KS classifiers by considerable margins. But, for a sequence length of

only 128 modulated symbols (in Fig.2.1a), our proposed classifier achieves a classification

accuracy of 100% at an SNR of 18 dB, while the LSVM classifier achieves a 100% accuracy

at 30 dB. Further, when normalized Rayleigh fading is considered, our proposed method

outperforms the LSVM, the GP-KNN, and the FB-KS classifiers over all SNR values, as

shown by Figures 2.1d–2.1f. For a sequence of 128 symbols (in Fig.2.1(d)), our proposed

classifier achieves a classification accuracy of 90% at 15 dB, while the LSVM classifier

achieves the same accuracy at 20 dB.

The reason our algorithm outperforms the LSVM is twofold. First, when two families

of modulations, namely QAM-type and PSK-type, need to be classified, there is no clear

linear hyperplane that would separate these two classes in the feature space. Second, the

performance of the LSVM classifier is sensitive to mismatch between the SNRs of the

training and testing data. Thus, when fading is considered, the difference between the

training and testing SNRs increases, thus deteriorating the accuracies of the LSVM clas-

sifier, as illustrated by Figures 3.3(d)–3.3(f). On the other hand, our proposed classifier

uses moments and the likelihood function in (2.11), whose computation does not require

any training. Hence, our proposed method still performs well and classifies with higher

accuracies than the LSVM, the GP-KNN, and the FB-KS classifiers in the presence of

fading.

2.3.2 Complexity analysis

The number of different operations required by different classifiers is listed in Table 2.2.

The implementation of the ML classifier requires exponential and logarithmic operations

of order N , unlike our proposed, the LSVM, the GP-KNN, and the FB-KS classifiers.

Furthermore, the proposed, the LSVM, the GP-KNN, and the FB-KS classifiers all offer

lower computational complexities in terms of numbers of additions and multiplications
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Table 2.2: Complexity comparison between the ML, Proposed, LSVM, GP-KNN, and FB-KS
classifiers. Recall that pi is the order of the moment Mpiqi , i = 1, . . . , L. Note that R represents
the number of training samples, the approximate equality ≈ denotes the order of an expression,
and the FB-KS classifier also requires 2N

∑K
j=1

√
Mj computations of the error function erf(·).

Multiplications Additions Exponentials Logarithms Comparisons

ML NK + 3NK
∑K

j=1Mj ≈ 106 3NK
∑K

j=1Mj ≈ 106 NK
∑K

j=1Mj ≈ 105 NK ≈ 103 K − 1 = 4

Proposed 3N
∑L

i=1(pi − 1) ≈ 104 N
∑L

i=1(pi + 1) ≈ 104 0 0 K − 1 = 4

LSVM (K − 1)N/2 ≈ 103 (K − 1)N/2 ≈ 103 0 0 N logN ≈ 104

GP-KNN 3N
∑L

i=1(pi − 1) ≈ 104 N
∑L

i=1(pi + 1) + RK ≈ 104 0 0 RK log(RK) ≈ 103

FB-KS 0 8N
∑K

j=1

√
Mj ≈ 105 0 0 10N ≈ 104

required than the ML classifier. The number of multiplications required by the five algo-

rithms discussed is a linear function of N , i.e., O(N), but their slopes with respect to N

differ significantly. In the ML classifier, the slope depends on the set of modulations to

be classified and the cardinality of each modulation. Moreover, the number of multipli-

cations and additions required by the LSVM classifier scales linearly with the number of

modulations, K, whereas in case of the proposed method, it does not. This suggests that

for large K, the complexity of our proposed method will be significantly lower than that

of LSVM. The implementation of the LSVM algorithm also requires a sorting process of

the vector of features of size N (i.e., requires O(N log(N)) comparison operations), in

addition to the complexity required to extract these features. On the other hand, our

method and the ML classifier only require K−1 comparisons. It can be noticed that the

computational complexity of our proposed classifier does not depend on the cardinality

of the modulation in making its decision as is the case in the ML classifier. Furthermore,

the complexity of our method can be reduced by adapting the number of moments used

for classification with the SNR. Indeed, at low SNR values, it is enough to use a single

moment in order to maintain low complexity of the proposed classifier since at low SNRs

the upper bound on the performance (ML classifier) is poor anyway; hence, using multi-

ple moments will only provide marginal accuracy gains, but will enhance the complexity

extensively. At high SNR values, it is favorable to increase the number of moments used

(five in our case) to maintain a good balance between accuracy and complexity.
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2.4 Conclusion

We proposed a modulation classifier that uses the moments of the received signal to esti-

mate the likelihood of each modulation being sent. The motivation of choosing moments

is that they are easy to extract from the signal and have relatively low computational de-

mands. In terms of probability of correct classification, we were able to achieve accuracies

close to those of the ML classifier at high SNR values using only moments of the received

signal. The proposed method outperforms the state-of-the-art machine learning classifi-

cation algorithms, in AWGN and fading channels at all SNR values of practical interest.

Our complexity analysis shows a significant complexity reduction compared with the ML

classifier, and a competitive complexity with that of the LSVM classifier. Therefore, the

proposed classifier offers an excellent trade-off between accuracy and complexity.
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CHAPTER 3

DISTRIBUTION-BASED CLASSIFICATION USING

NEURAL NETWORKS

3.1 Motivation

Despite their optimality when the signal model and channel state information is know

at the receiver, Likelihood based classifiers suffer from a major drawback: they require

prior knowledge of the pool of modulations sent by the transmitter, as well as accurate

estimation of channel state information. In practical application, it is unlikely that the

classifier can acquire such prior knowledge.

In order to solve this problem, extensive research is directed toward machine learn-

ing algorithms capable of classifying the signal by its modulation without requiring a

signal model. This can be achieved by training the classifier to detect specific patterns

in received signals and build its decision based on them. In this Section, we propose

our novel approach for modulation classification using Neural Networks. We will show

that our method achieves comparable classification accuracy compared to Maximum-

Likelihood classifiers even in the absence of prior knowledge of the pool of modulations

used. We also show that our method outperforms state-of-the-art algorithms using Ma-

chine Learning in all Signal-to-Noise ratios. In part II, We extend our work and propose

an algorithm that automatically builds the regions using training data set. We show that

our self-constructed regions achieves comparable results with our manual-built regions.

3.2 System Model

The baseband waveform at the receiver can be modeled as Y (i) = hX(i) + Z(i), for

i = 1, . . . , N , where Y (i) is the received signal at time instance i, X(i) is the transmitted

signal, Z(i) is a complex white Gaussian noise with power density σ2, and h is the channel
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gain during coherence time T = NTs, where Ts is the symbol duration. We assume that

the channel undergoes slow fading such that h is relatively constant during the coherence

time T .

3.3 Back-propagation Neural Networks

Despite their high performance, likelihood-based classifiers run into the problem of their

reliance on perfect knowledge of the system model, as well as the channel state infor-

mation. Back-propagation Neural Networks is a powerful tool to deal with the case of

unknown channel information. The BPNN classifier has several layers. The first layer is

the input layer. Each node in this layer receives the input signals and transmits them

to the next layer. The layers in the middle are called hidden layers, and they receive

the data from the previous layer and transmit the calculated results to the next layer.

A typical BPNN usually has one or two hidden layers. The nodes in the output layer

process the received data and yield the network’s outputs. There are many functions

for the nodes to process the received data, and the most commonly used is the Sigmoid

function.

S(x) =
1

1 + e−x
(3.1)

For classification problems, the cross-entropy loss function is given by

L =
M∑
i=1

ti ln(yi) (3.2)
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3.4 Distribution-based classification

Consider n regions in the complex plane C, with Ri denoting the number of received

symbols in each region. The symbols of the received signal Y are distributed over the n

regions with the probability mass function (pmf) p(R|Hj,Γ), given by:

p(R|Hj, γ) =

(
L

R1, R2, . . . , Rn

)
pR1
1 pR2

2 . . . pRn
n , (3.3)

where R = 〈R1, R2, . . . , Rn〉, and pi is the probability that a specific symbol is located

in the i-th region, given by (3.8). It is worth noticing that
∑
pi = 1 for regions that are

exhaustive and non-intersecting.
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Figure 3.1: Proposed regions for classifying modulations in the set Ω

We define the optimization parameters ε = 〈ε1, ε2, . . .〉 which alter the shape and

dimensions of our regions. In order to optimize these parameters, a likelihood rule is

derived and optimized by maximizing it over all values of ε. The likelihood function can

be formalized as:

L(Hj|R, γ) = p(R|Hj, γ), (3.4)

where γ is the received signal’s SNR. This likelihood is only a function of the SNR and
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pi =

∫ φu(θ)

φl(θ)

∫ ru(ε)

rl(ε)

r

Mπσ2

M∑
k=0

exp

(
(r cos θ −<{Ajk})2 + (r sin θ −={Ajk})

σ2

)2

drdθ

(3.7)

for 1 ≤ i ≤ n.

the regions, with the later being a function of the different optimization parameters,

so, in order to maximize the Likelihood function, it is required to optimize the regions’

parameters. This problem can be expressed mathematically as:

εopt(γ) = argmax
ε1,ε2,...

Pc(γ)

= argmax
ε1,ε2,...

1

K

K∑
m=1

Pr

(
argmax
j=1,...,K

L(Hj|R, γ) = m|Hm

)
, (3.5)

Where Pc(γ) is the average probability of correct classification at a certain SNR. Now

the optimization parameters are known, we can proceed into training the neural network

using a number of training data at each SNR. Since the BPNN classifier is designed to

process the values of the data close to 1, we need to normalize the received signal as:

ỹ(n) =
y(n)√
E[y2]

(3.6)

3.4.1 Known CSI-R

Here we assume that, at the beginning of classification, the receiver has acquired Chan-

nel State Information (CSI) via training or via the sequence itself. Given the CSI-R

assumption, the fading channel can be seen as an AWGN, simply by multiplying the

received signal y with h∗

|h|2 . Thus, embedding the channel coefficient in the noise. The

received signal now has the form y′(n) = x(n) + z(n)
h

, where y′(n) is just affected by
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Figure 3.2: Self built regions

AWGN noise. This model is isomorphic to the AWGN channel model, i.e., for z′ = z(n)
h

,

z′ ∼ CN (0, σ2/|h|2). Therefore, the assumptions made for classifying signals in AWGN

channel can also be used to classify signals undergoing fading channel.

3.4.2 Unknown CSI-R

Here we assume that the receiver has no knowledge of the CSI. Unlike what has been

discussed previously where CSI is known, the receiver has to estimate the CSI in order to

be able to classify effectively. A number of algorithms were proposed for blind estimation

of CSI-R at the receiver, including []; In this section we propose a simplified algorithm that

is tailored to our classifier in the absence of CSI. We start by estimating the magnitude

of h:

E[y2] = E[(hx+ n)2] = E[h2] + E[n2], (3.8)

The phase component can be estimated by minimizing
∑128

i=1[(φa + Φs)− φd]2.
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(b) N = 256.
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(c) N = 512.
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(e) N = 256.
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Figure 3.3: Comparison between the accuracy of correct classification versus SNR (dB) of
four different classification methods under different channel assumptions: AWGN (a)–(c), and
Rayleigh fading (d)–(f), and various sequence lengths. The modulations used are BPSK, QPSK,
16QAM and 8PSK.
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3.5 Conclusion

We proposed a modulation classifier that uses the moments of the received signal to esti-

mate the likelihood of each modulation being sent. The motivation of choosing moments

is that they are easy to extract from the signal and have relatively low computational de-

mands. In terms of probability of correct classification, we were able to achieve accuracies

close to those of the ML classifier at high SNR values using only moments of the received

signal. The proposed method outperforms the state-of-the-art machine learning classifi-

cation algorithms, in AWGN and fading channels at all SNR values of practical interest.

Our complexity analysis shows a significant complexity reduction compared with the ML

classifier, and a competitive complexity with that of the LSVM classifier. Therefore, the

proposed classifier offers an excellent trade-off between accuracy and complexity.



26
References

[1] Z. Zhu and A. K. Nandi, Automatic Modulation Classification: Principles, Algo-

rithms, and Applications. John Wiley & Sons, Ltd, 2014, pp. 1–17.

[2] ——, Likelihood-based Classifiers. John Wiley & Sons, Ltd, 2014, pp. 35–47.

[Online]. Available: http://dx.doi.org/10.1002/9781118906507.ch3

[3] F. Wang, O. A. Dobre, C. Chan, and J. Zhang, “Fold-based Kolmogorov–Smirnov

modulation classifier,” IEEE Signal Process. Lett., vol. 23, no. 7, pp. 1003–1007, Jul.

2016.

[4] Z. Zhu, M. W. Aslam, and A. K. Nandi, “Genetic algorithm optimized distribution

sampling test for M-QAM modulation classification,” Signal Process., vol. 94, pp. 264

– 277, 2014.

[5] A. Swami and B. M. Sadler, “Hierarchical digital modulation classification using

cumulants,” IEEE Trans. on Commun., vol. 48, no. 3, pp. 416–429, Mar 2000.

[6] S. Huang, Y. Yao, Z. Wei, Z. Feng, and P. Zhang, “Automatic modulation classifica-

tion of overlapped sources using multiple cumulants,” IEEE Trans. on Veh. Technol.,

vol. PP, no. 99, pp. 1–1, 2016.

[7] L. Han, F. Gao, Z. Li, and O. A. Dobre, “Low complexity automatic modulation

classification based on order-statistics,” IEEE Trans. on Wireless Commun., vol. 16,

no. 1, pp. 400–411, Jan 2017.

[8] M. W. Aslam, Z. Zhu, and A. K. Nandi, “Automatic modulation classification using

combination of genetic programming and KNN,” IEEE Trans. on Wireless Commun.,

vol. 11, no. 8, pp. 2742–2750, August 2012.



27

Appendix A

The covariance matrix in 2.9 is evaluated as follows:

K(j)
mn

=E
[
(M̃pmqm − µ(j)

pmqm)(M̃pnqn − µ(j)
pnqn)∗|Hj, h

]
(a)
=E

[( 1

N

N∑
i=1

Y (i)pm−qmY ∗(i)qm − µ(j)
pmqm

)( 1

N

N∑
i′=1

Y (i′)pn−qnY ∗(i′)qn − µ(j)
pnqn

)∗
|Hj, h

]
(b)
=

1

N
E
[
(Y pm−qmY ∗qm − µ(j)

pmqm)(Y pn−qnY ∗qn − µ(j)
pnqn)∗|Hj, h

]
(c)
=

1

N

(
E
[
(Y pm−qm+qn)(Y qm+pn−qn)∗|Hj, h

]
− µ(j)

pmqmµ
∗(j)
pnqn

)
(3.9)

where (a) follows from the definition of M̃pq in 2.5; (b) follows from the fact that Y (i), i =

1, . . . , N are all i.i.d.; and (c) follows from a simple algebraic manipulation.

The µpiqi is computed via 2.7 and 3.10. Now, consider evaluating the term E
[
(Y pm−qm+qn)

(Y qm+pn−qn)∗|Hj, h
]
. This term is tedious to evaluate in general for any pm and qn. For

our method, we use five moments to provide a good trade-off between accuracy and com-

plexity. Namely, we use M40, M42, M61, M63, and M82. Then, K
(j)
mn is the covariance

between moments given hypothesis Hj, for m,n = 1, 2, . . . , L, where L is the number of

moments used for classification (which is five in our case). Hence, the covariance matrix

K(j) is given by

K(j) =



Var(M40) Cov(M40,M42) Cov(M40,M61) Cov(M40,M63) Cov(M40,M82)

Cov(M42,M40) Var(M42) Cov(M42,M61) Cov(M42,M63) Cov(M42,M82)

Cov(M61,M40) Cov(M61,M42) Var(M61) Cov(M61,M63) Cov(M61,M82)

Cov(M63,M40) Cov(M63,M42) Cov(M63,M61) Var(M63) Cov(M63,M82)

Cov(M82,M40) Cov(M82,M42) Cov(M82,M61) Cov(M82,M63) Var(M82)


.
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For instance, consider evaluating the covariance between M40 and M61 Cov(M40,M61),

which is obtained as follows:

Cov(M40,M61)

=E
[
(M̃40 − µ(j)

40 )(M̃61 − µ(j)
61 )∗|Hj, h

]
(a)
=

1

N

(
E
[
Y 5Y ∗5|Hj, h

]
− µ40µ

∗
61

)
,

where (a) follows from the result in (3.9). Now the term E
[
Y 5Y ∗5|Hj, h

]
is computed as

follows:

E
[
Y 5Y ∗5|Hj, h

]
= E

[
(hX + Z)5(h∗X∗ + Z∗)5|Hj, h

]
=E
[
(h5X5 + 5h4X4Z + 10h3X3Z2 + 10h2X2Z3 + 5hXZ4 + Z5)

× (h∗5X∗5 + 5h∗4X∗4Z∗ + 10h∗3X∗3Z∗2 + 10h∗2X∗2Z∗3 + 5h∗X∗Z∗4 + Z∗5)|Hj, h
]

=|h|10E
[
|X|10

∣∣Hj

]
+ 25|h|8E

[
|X|8|Z|2

∣∣Hj

]
+ 100|h|6E

[
|X|6|Z|4

∣∣Hj

]
+ 100|h|4E

[
|X|4|Z|6

∣∣Hj

]
+ 25|h|2E

[
|X|2|Z|8

∣∣Hj

]
+ E

[
|Z|10

∣∣Hj

]
=|h|10E

[
|X|10

∣∣Hj

]
+ 25|h|8E

[
|X|8

∣∣Hj

]
E
[
|Z|2

]
+ 100|h|6E

[
|X|6

∣∣Hj

]
E
[
|Z|4

]
+ 100|h|4E

[
|X|4

∣∣Hj

]
E
[
|Z|6

]
+ 25|h|2E

[
|X|2

∣∣Hj

]
E
[
|Z|8

]
+ E

[
|Z|10

]
. (3.10)

Now, since we are given h, the expectations in (3.10) are straightforward to compute.

For Z ∼ CN (0, σ2) and n ∈ Z, E
[
|X|2n

∣∣Hj

]
=

1

Mj

∑Mj

k=1 |Sjk|2n, where Sjk ∈ ωj is the k-

th modulation symbol belonging to the modulation ωj, and Mj = |ωj|, for j = 1, . . . , K.

Further, since the noise variance is known at the receiver, we compute the moments of

Z using the fact that E[|Z|2n] = n!× σ2n. A similar procedure has been used to find the

remaining entries of the covariance matrix K(j).


