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Abstract

This dissertation summarizes my graduate research on exoplanets orbiting high-mass,

rapidly-rotating stars using NASA’s Kepler telescope. In the included research, I bridge

exoplanet observations with existing planet formation and evolution theories with the

goal of constraining the mechanisms that torque planet orbits away from their host star’s

rotation plane. This phenomenon, known as spin-orbit misalignment, occurs surprisingly

often around high-mass stars, suggesting that planet formation in these systems may be

fundamentally different than that for solar-type stars. While many explanations have been

put forth to explain spin-orbit misalignment, its root cause is still unknown. Observing

spin-orbit misalignment around high-mass stars helps address this problem by comparing

measurements against predicted spin-orbit distributions based on existing misalignment

hypotheses to shed light on the planet formation processes taking place around high-mass

stars.

This dissertation provides a detailed explanation of the gravity-darkening technique

that I use to measure orbit geometries from photometric datasets collected by the Kepler

spacecraft of planets transiting rapid rotators, and includes four published peer-reviewed

papers relating to spin-orbit misalignment and planet formation. In Chapter 1, I sum-

marize some of the outstanding questions regarding exoplanets and formation pathways

and explain how spin-orbit misalignment challenges conventional formation theory. In

Chapter 2, I discuss stellar gravity-darkening and explain how its photometric effects can

be used to constrain spin-orbit alignment values. In Chapter 3, I present the analysis

of the spin-orbit alignment value of Kepler Object of Interest 368 and demonstrate the

capabilities of the gravity-darkening technique. In Chapter 4, I present the published

project that measured the spin-orbit alignment of two-planet-system KOI-89 (now named

Kepler-462). This work shows that the two planets have orbits significantly misaligned

relative to their host star, but are well-aligned with each other, providing clues to the

system’s formation and evolution history. In Chapter 5, I show that gravity-darkened

stars can produce unusual insolation patterns on the planets that orbit them, potentially

driving atmospheric and surficial processes unlike anything seen in our solar system. In

Chapter 6, I provide an additional technique for analyzing transit photometry by resolving

and subtracting stellar seismic activity commonly seen in high-mass stars. This technique

provides a new avenue for extracting information from the transit light curves polluted

by stellar seismic activity and allows for the gravity-darkening technique to be applied to



iv

previously inaccessible datasets. The work described in Chapter 6 has been accepted for

publication. In Chapter 7, I discuss future work toward reconciling planet formation and

spin-orbit misalignment.
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Chapter 1: Introduction

With the first exoplanet orbiting a main sequence star discovered in 1995 (Mayor &

Queloz, 1995) and the majority of exoplanets discovered in the last ten years (Borucki,

2016), astronomers have only just begun exploring the rich and lush population of exo-

planets in our galaxy. With many thousands of planets in nearby planetary systems now

discovered, a growing realization about our galaxy is that planetary system architectures

can vary tremendously.

Before this recent boon of exoplanet discoveries, the widely accepted nebular hypoth-

esis described formation as a process that produces planetary systems with similar overall

structures as our solar system (e.g., Woolfson, 1993). As a result, the assumption in

astronomy was that our solar system serves as a blueprint for all other systems. Planets

inside a planetary system’s ice line likely form into small, rocky bodies, and planets outside

its ice line form into massive gas and ice giants (O’Brien et al., 2006; Batygin & Brown,

2010; Boss, 2002). Planets typically end up in mostly-circular orbits with none of them

extremely close to their host star, and all planet orbits should be relatively well-aligned

with the system’s invariable plane (Lissauer, 1993).

In the past two decades, exoplanet observations have proven every one of these as-

sumptions incorrect.

Extrasolar gas and ice giants very frequently reside inside their system’s ice line (Guil-

lot et al., 1996; Rice & Armitage, 2005), implying that giant planets form beyond their

system’s ice line and then migrate inward much more commonly than previously thought.

These close-in giants often reside far closer to their host stars than Mercury does in our

own, with orbital periods of only a few days.

Gas giants with orbital periods of shorter than 10 days, or “Hot Jupiters”, pose a

formidable challenge to conventional formation theory. Current estimates place approx-

imately 1% of all Sun-like host stars with at least one hot Jupiter, which implies that

planets often form in a turbulent environment that commonly produces large-scale planet

migration. The most likely way to produce close-in gas and ice giants is through res-

onances and dynamic interactions that drive up their eccentricities. Over time, tidal

interactions between the star and planet near its periastron recircularize the orbit into

much shorter-period orbits (Nagasawa et al., 2008). However, the possibility for some

mechanism existing that forms Jupiter-mass planets in inner planetary systems directly
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has not been ruled out (Batygin et al., 2016).

Many Jupiter- and Neptune-mass planets have been discovered not only interior to

the ice line in their system, but in much shorter-period orbits than anything seen in our

solar system. Figure 1.1 shows the orbital periods of the 3823 confirmed exoplanets to

date, 2998 of which have orbital periods shorter than Mercury’s and 1648 of which have

orbital periods of under ten days. For example, the gas giant KELT-9b orbits its host star

once every 1.48 days (Gaudi et al., 2017). Many systems contain several tightly-packed

inner planets that likely migrated inward because of resonances, aerodynamic drift, or

planet-planet scattering (Raymond et al., 2009; Boley & Ford, 2013; Boley et al., 2014;

Jackson et al., 2016). Kepler-11 is one such system, with five terrestrial-mass planets all

orbiting between 10 and 47 days around a Sun-like star (Lissauer et al., 2011). KELT-9,

Kepler-11, and many similar systems pose a serious challenge in understanding how they

stably form and evolve.

Unlike our solar system, many exoplanets orbit their host star in highly eccentric

configurations. For example, the gas giant HD 80806b orbits its solar-type host star every

112 days with an eccentricity of e = 0.927 (Naef et al., 2001). This planet’s timescale

for circularization is Gyr, and its orbit is likely slowly evolving toward circular (Winn

et al., 2009). In addition to being highly eccentric, the orbit of HD 80806b is significantly

misaligned from the spin axis of its host star, with a projected misalignment angle of

λ ∼ 50◦ (see Figure 1.2 for angle definitions).

Recent exoplanet discoveries such as HD 80606b have shown that planet orbits tilt

relative to the spin axis of their host star far more commonly than previously thought

(Winn et al., 2005, 2010; Rogers et al., 2012). This phenomenon, known as spin-orbit

misalignment, has been observed in over 100 extrasolar systems to date discovered by the

HATNet (Bakos et al., 2004), Hubble (e.g., Henry et al., 1999), KELT (Pepper et al.,

2007), Kepler (Borucki et al., 1997; Basri et al., 2005), MASCARA (Lesage et al., 2014),

TrES (O’Donovan et al., 2006), QES (Alsubai et al., 2014), WASP (Pollacco et al., 2006),

and XO (McCullough et al., 2005) telescopes. Together, these surveys have discovered

dozens of systems with severely misaligned or even retrograde orbits. Figure 1.3 displays

known extrasolar spin-orbit values to date.

Altogether, exoplanet discoveries over the last decade have revealed planetary system

architectures that drastically contradict canonical planet formation theories based on

the solar system. While exoplanets display a surprising diversity throughout our solar
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Figure 1.1: Orbital periods of 3823 confirmed planets in 2803 planetary systems. 2998
of those planets have orbital periods shorter than Mercury’s 88-day year, 741 of which
are ice/gas giants that likely formed beyond that system’s ice line. Data provided by
http://exoplanet.eu/catalog.
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Figure 1.2: Top left: The stellar obliquity ψ is defined as the axial tilt toward/away
the plane of the sky. The blue plane represents the plane of the sky. Top right: the
sky-projected alignment λ is the misalignment angle seen from Kepler’s point of view. It
represents the tilt of planet’s orbit vector relative to the star’s projected rotation axis in
the plane of the sky. Bottom left: the spin-orbit alignment ϕ is the angle between the
plane of an orbit and the star’s equatorial plane. Bottom right: the coalignment angle
α is the angle between two orbit planes. This figure is from Ahlers et al. (2015) and is
displayed again in Chapter 4.
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Figure 1.3: Absolute values of all measured spin-orbit alignments as a function of stellar
effective temperature. The size of each data point represents that planet’s radius. The
vertical line at 6200 K indicates the generally-used cutoff between “high-mass” and “low-
mass” stars in reference to spin-orbit misalignment although many new discoveries indicate
that low-mass stars may commonly host misaligned planets as well (e.g., Albrecht et al.,
2012). Most alignment values around low-mass stars were measured via the Rossiter
McLaughlin effect (Gaudi & Winn, 2007) or asteroseismology (Campante et al., 2016),
and around most high-mass stars using Doppler tomography (e.g., Collier Cameron et al.,
2010) or gravity-darkening (Barnes, 2009).
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neighborhood, the sample size of discoveries is actually quite small. The astronomy

community has only just begun exploring nearby systems for exoplanets, and significant

detection biases and challenges remain. The most prolific current method for finding

exoplanets is the transit method, which detects exoplanets when they pass in front of

their host star and block some of its light. This method requires the planet’s orbit to be

nearly perfectly aligned with the observer’s line of sight to the host star, which occurs a

very small fraction of the time. For example, a planet orbiting a sun-like star at 1 AU

has only a 0.47% probability of transiting, implying that transit surveys such as NASA’s

Kepler mission actually detects a small fraction of nearby planetary systems (Borucki

et al., 1985). This detection method also requires the planet to be large enough to block

a detectable amount of light, biasing detections toward larger planets. Additionally, the

telescope must actually be looking at the star during each planet’s brief transit in order to

detect it, biasing detections against finding long-period planets that transit less frequently.

The other existing methods for discovering exoplanets share similar biases. For ex-

ample, the spectroscopic radial velocity technique takes advantage of mutual gravitation

between a host star and an orbiting planet to detect Doppler shift in the star’s emission

spectrum (Cumming, 2004). As the star is gravitationally perturbed by an orbiting body,

it moves slightly in and out of the plane of the sky, causing its spectrum to alternate

between red- and blue-shifted. The larger amplitude and higher frequency of that mo-

tion, the more detectable its Doppler shift, biasing the radial velocity technique towards

discovering high-mass, short-period planets, ultimately discovering a very similar sample

of exoplanets as the transit method.

Overall, extrasolar systems are not well-sampled yet. At the time of this writing,

exoplanets.nasa.gov lists 3,735 confirmed exoplanets in 2,787 planetary systems and lists

another 2,723 current planet candidates. Best estimates suggest that there is at least one

planet per star in our galaxy (Cassan et al., 2012), and that number is trending upward

all the time, giving a reasonable estimate at one trillion total exoplanets in the Milky

Way alone. We have only discovered a tiny fraction of total planets even in the nearby

part of the galaxy, and the population we have found exhibits severe detection biases.

Finding terrestrial-scale exoplanets is still very challenging, and we know almost nothing

of the state of the outer part of extrasolar systems. We cannot claim to know the true

structure of a single planetary system – perhaps not even our own if Planet Nine exists

(Batygin & Brown, 2016). Although tremendous progress has been made in the field of
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exoplanets in the last 20 years, we have not yet produced robust exoplanet statistics. I

submit that neither theory nor observation have yet spelled out all the possible ways to

build a planetary system.

Both observation and theory have a long way to go toward constraining planet for-

mation pathways. Current big-picture challenges include explaining planet migration

mechanisms that form hot Jupiters/Neptunes or that produce spin-orbit misalignment.

Exoplanet observations must overcome strong detection biases and collect a large enough

of a discovery sample to properly test exoplanet statistics against formation theory. We

need to know bulk parameters such as planet mass distributions as a function of orbital

period and planet occurrence rates as a function of stellar type. We also need to better

constrain dynamic processes that can affect system architecture such as protoplanetary

disk interactions with stellar companions (Lai, 2014; Xiang-Gruess & Papaloizou, 2014)

and Lidov-Kozai resonance (Lidov, 1961; Kozai, 1962) or other resonances. Addition-

ally, we must better constrain planet occurrence rates as a function of stellar metallicity,

planetary system carbon/oxygen ratios, and protoplanetary disk compositions to better

understand formation and evolution processes.

This dissertation takes a small step toward the enormous task of bridging exoplanet

discoveries with solar system formation and evolution theories by connecting current the-

ories and observations of spin-orbit misalignment around high-mass stars. In Chapter

2, I discuss measuring spin-orbit misalignment around high-mass stars through transit

photometry. In Chapters 3 and 4, I detail the spin-orbit alignment values of planetary

systems KOI-368 and Kepler-462 and examine their possible formation scenarios. In

Chapter 5, I explore the surficial and atmospheric effects that spin-orbit misalignment

could have on exoplanets orbiting high-mass stars. In Chapter 6, I derive a technique for

overcoming stellar variability in high-mass stars. In Chapter 7, I discuss the impact of

my graduate work and further consider the importance of spin-orbit misalignment toward

understanding solar system formation.
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Chapter 2: Measuring Spin-Orbit

Misalignment via Gravity-darkening

High-mass stars (M? ≥ 1.3 M�) exhibit a different internal structure than low-mass

stars. Our own Sun’s primary radial zones are its core, its interior radiative zone, and

its outer convective zone. The Sun’s radiative zone transports energy radially outward

through radiative diffusion (Gough & McIntyre, 1998). In its convection zone, plasma

transports energy through bulk convective cycling (Christensen-Dalsgaard et al., 1996).

In general, stars less massive than the Sun have larger convective zones and smaller

radiative zones, and stars more massive than the Sun have larger radiative zones and

smaller convective zones (Toomre et al., 1976). However, at masses higher than ∼ 1.3M�

the star’s carbon-nitrogen-oxygen cycle of nuclear fusion produces an extremely high core

temperature, causing the core itself to become convective. This convective core resides

inside a radiative region that extends to the star’s surface. The result is that these

stars are effectively inside-out from their low-mass counterparts, with convective interiors

and radiative exteriors. Albrecht et al. (2012) identifies this inversion at a stellar surface

temperature of∼ 6200K. Throughout this dissertation, I use M? ≈ 1.3M� and Teff ≈ 6200

as approximate cutoffs for designating a star “high-mass” or “low-mass”.

As a consequence, high-mass stars have weak external magnetic fields. Solar dynamo

theory states that stellar magnetic fields are caused by the convection zone of the star

(Charbonneau, 2014), so the magnetic field in high-mass stars should be mostly internal

near its convective core. Recent observations using NASA’s Kepler telescope corroborate

this theory (e.g., Bagnulo et al., 2006; Boehm et al., 2015).

Without a strong external magnetic field, no stellar magnetic braking takes place,

allowing high-mass stars to maintain their primordial rotation rates throughout their

lifetimes (Mestel, 1968). All stars start off spinning quickly during their formation as pro-

tostellar material collapses inward (Hansen & Kawaler, 1994); however, low-mass stars’

external magnetic fields cause them to slowly decrease their rate of rotation over time.

This effect, called magnetic braking, occurs when the star’s magnetic field transfers an-

gular momentum into an escaping stellar wind. These outflows are stirred by the star’s

magnetic field, which transfers angular momentum from the star to the outflow, slowing

the star’s rotation rate. With little-to-no external magnetic field, magnetic braking does

not occur for high-mass stars, allowing them to keep their initial angular momentum and
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stay rotating rapidly throughout their lifetimes.

The second important difference between high- and low-mass stars is that stars with

radiative exteriors exhibit relatively weak tidal dissipation (Villaver et al., 2014). Stellar

tidal dissipation and planet orbit circularization occur primarily due to gravitational in-

teractions between the star’s convective region and the planet, which for high-mass stars,

is far beneath the stellar surface. A high-mass star’s outer radiative zone exhibits a higher

tidal quality factor and thus exchanges less angular momentum with its orbiting bodies

through tidal dissipation.

These two stellar properties, weak external magnetic fields and weak tidal dissipation,

result in high-mass stars commonly rotating rapidly throughout their lifetimes (Epstein &

Pinsonneault, 2013). Their rotation rate often hovers near their rotational break-up speed,

with equatorial rotational velocities reaching hundreds of kilometers per second. The

Darwin-Radau relation (Bourda & Capitaine, 2004, e.g.,) models how rotation distorts a

body’s hydrostatic equilibrium into an oblate spheroid,

C
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where C is the star’s moment of inertia about its rotation axis, Req and Rpole are the

star’s equatorial and polar radii, ζ ≡ (Rpole − Req)/Rpole is the stellar oblateness factor,

Ω? is the star’s rotation rate, and R? ≡ R(θ) is the stellar radius at a given polar angle

θ. The resulting high centrifugal force near its equator reduces the star’s effective surface

gravity,
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where J2 is the second-order gravitational harmonic term, and P2(µ) is a second-order

Legendre polynomial. The centrifugal force term 1
2
Ω2
?R

2
? sin2(θ) is negligible for slow ro-

tators like our Sun, but rapid rotation in high-mass stars can produce massively distorted

stellar surfaces. For example, the well-known rapid rotator Altair has an oblateness factor

of 0.177, meaning its polar radius is only 82.3% of its equatorial radius (Monnier et al.,

2007).

The smaller surface gravity near the star’s equator results in a lower stellar effective

temperature. The von Zeipel theorem (Von Zeipel, 1924) or “gravity-darkening law”

relates surface gravity with effective temperature:
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Teff = Tpole

(
geff

gpole

)β
(2.3)

where β is the so-called gravity-darkening exponent (GDE). Rapid rotation produces a

pole-to-equator temperature gradient across the stellar surface, resulting in the pole of

an oblate spheroid that can be several thousand Kelvin hotter than its equator. As

an example, Altair’s stellar effective temperature likely varies from ∼ 8500K to 6500K

between its hot poles and cool equator (Kervella et al., 2005).

Von Zeipel (1924) originally assumed that β = 0.25, invoking the assumption that stars

emit light as perfect black body radiators. However, more recent works have demonstrated

that this assumption is not always accurate. For example, Monnier et al. (2007) showed

that Altair’s true GDE lies somewhere between 0.19 and 0.25. In general, β approaches

0.25 as stellar masses increase due to the grown of the radiative exterior; however, the

true relationship between surface gravity and effective temperature is complicated and

remains somewhat unclear. Its deviation from a true blackbody may arise from the fact

that Altair’s outermost layer might not be purely radiative or might still maintain a small

convective envelope.

Work following in the footsteps of Von Zeipel (1924) has further shed light on the

nature of gravity-darkening. Kopal (1959) introduced and Martynov (1973) improved the

idea of using gravity-darkening coefficients to account for both bolometric and wavelength-

dependent quantities. More recently, several works calculated expected bandpass-integrated

gravity-darkening coefficients as a function of stellar properties for the Kepler, Spitzer, and

CoRoT space telescopes (Claret & Bloemen, 2011), as well as for NASA’s newly-launched

Transiting Exoplanet Survey Satellite (TESS ) (Claret, 2017).

An object transiting a rapidly-rotating star can block some of the pole-to-equator

luminosity gradient emitted by the star’s surface. When the object transits near the

stellar pole, it blocks a hotter, brighter part of the stellar surface than when it transits

near the equator. Barnes (2009) first modeled transit light curves of planets orbiting

rapidly-rotating stars and by the star’s latitudinal asymmetry can affect transit depth,

transit duration, overall transit light curve shape, and ingress/egress symmetry depending

on the planet’s transit properties.

Figures 2.1, 2.2, and 2.3 demonstrate the various ways in which gravity-darkening

can influence a transit light curve. They display transit light curves for various stellar
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obliquities, projected alignments, and impact parameters for transits across an extremely

rapidly-rotating star. To generate these light curves, I simulated a 1.0 RJup planet tran-

siting across a M? = 1.5 M� star with a Prot = 12 hr rotation period, a R? = 2.0R� equa-

torial radius, a Tpole = 8000 K polar surface temperature, a β = 0.25 gravity-darkening

exponent, and a derived oblateness factor of 0.202.

Note that the gravity-darkening effect on the transits in Figures 2.1, 2.2, and 2.3 than

typically observed in photometric datasets. These figures include an extremely gravity-

darkened star rotating near its break-up speed, an ideal β = 0.25 gravity-darkening

exponent that maximizes the star’s luminosity gradient (Equation 2.3), and specifically

chosen transit geometries that maximize the gravity-darkening anomalies. These effects

on known gravity-darkened transits have been much more subtle. For example, Kepler-

13Ab’s gravity-darkened transit light curve deviates only slightly away from a standard

transit shape (Figure 2.4). However, even from that small effect, orbit geometry param-

eters have been extracted (Barnes et al., 2013; Masuda, 2015).

The process of measuring spin-orbit misalignment from a gravity-darkened light curve,

first derived in Barnes (2009), involves fitting transit photometry to a transit model that

includes an oblate, rapidly-rotating star. In general, the expression describing the amount

normalized stellar flux (F ) blocked at any given time during a transit event is,

F = 1−
∫ R?

0

∫ 2π

0
I(r, θ) Γ(r, θ)r dθ dr∫ R?

0

∫ 2π

0
I(r, θ) r dθ dr

(2.4)

where I(r, θ) is the flux per unit area of the particular (r, θ) location on the stellar disk,

and Γ(r, θ) is a function that denotes the location of the transiting object by yielding 1 for

blocked locations and 0 everywhere else. Functionally, one can evaluate the θ portion of

the integral by finding both limbs of the planet at distance r by use of a root-finding routine

and then integrating I(r, θ) between these known limb locations. Note that Equation 2.4

calculates the instantanous flux blocked; when fitting a photometric light curve, one

must account for the averaging that occurs over each time bin. For example, the Kepler

telescope’s photometric cadences are one minute and thirty minutes for short- and long-

cadence data, respesctively (Borucki, 2016).

The flux density I(r, θ) must account for the projected area of each part of the stellar

surface, and needs include a term for stellar limb-darkening. Ahlers (2016) accounts for

these properties by setting
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I(r, θ) = B(T (θ′))
I(µ)

I(1)
µR?(θ

′) sin2(θ′), (2.5)

where B(T (θ′)) is the stellar emission function, θ′ is the star’s polar angle, I(µ)/I(1)

is the stellar limb-darkening profile, and µ = cos(π − ε) describes the angle between the

line-of-sight and the normal vector of the star’s surface (see Figure 5.1). Also, I(r, θ)

must account for the photometric bandpass of the telescope in use. For example, Kepler’s

response function spans from about 420nm to 900nm (Van Cleve & Caldwell, 2016).

Barnes (2009) derives one approach to numerically evaluate Equation 2.4. This work

derives the effective oblateness – that is, the ratio of the long and short axes of the

projected disk – to be,

ζeff = 1−
√

(1− ζ)2 cos2(ψ) + sin2(ψ), (2.6)

where ζ is the true oblateness and ψ is the stellar obliquity. Figures 2.1, 2.2, and

2.3 show how the shape of the projected disk changes at different ψ values, with ψ = 0◦

yielding the highest effective oblateness and ψ = 90◦ yielding no effective oblateness.

Barnes (2009) uses the effective oblateness to account for the star’s shape through a

Cartesian coordinate transform,

y′ =
y

1− ζeff

, (2.7)

where y is the coordinate running parallel to the projected disk’s short axis. This

transform expands the stellar projected disk into a circle, making the integral in Equation

2.4 much easier to calculate.

With both the stellar luminosity gradient (Equation 2.3) and the oblate shape of the

star (Equations 2.6 and 2.7) included in a transit light curve model, the gravity-darkening

effect is fully accounted for. All of these effects are modeled using the fitting software

transitfitter (Barnes & Fortney, 2003).

In general, the fitting algorithm in transitfitter uses the parameters listed in Table

2.1 to model a transit light curve. The impact parameter b, the sky-projected alignment

λ and the stellar obliquity ψ constrain the planet’s spin-orbit alignment value (ϕ) via,

cos (ϕ) = sin (ψ) cos (i) + cos (ψ) sin (i) cos (λ) (2.8)
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Figure 2.1: Transit light curves across an oblate, rapidly rotating star. The star’s rotation
axis is positioned in the plane of the sky, meaning its obliquity (ψ) is 0◦ (see Figure 1.2 for
angle definitions). The blue, red, and green lines show transits with projected alignment
(λ) values of 30◦, 60◦, and 90◦, respectively. The solid lines indicate impact parameters
(b) of 0.0, and the dashed lines indicate b = 0.5. All transits occur left-to-right across the
stellar surface. Gravity-darkening produces very different effects on a transit light curve
depending on the viewing geometry. For example, the dashed blue light curve (λ = 30◦,
b = 0.5) is left-right asymmetric as the planet starts transiting near the star’s bright north
pole and then gradually blocks less light as it transits the star’s equator.
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Figure 2.2: Synthetic gravity-darkened transit light curves using the same transit geome-
tries as Figure 2.1 but with stellar obliquity ψ = 45◦. Now the north pole of the star is
tilted out of the plane of the sky, placing the brightest part of the star (the poles) closer
to the center of the projected disk. The star’s gravity-darkening now somewhat mimics
the luminosity gradient due to limb-darkening, resulting in transit light curve anomalies
somewhat different than for ψ = 0◦. For example, the solid green transit (λ = 90◦,
b = 0.0) now produces a highly asymmetric light curve, with the greatest transit depth
occurring near the stellar pole.
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Figure 2.3: Synthetic transit light curves with ψ = 90◦. Now, the star’s south pole is
located at the center of the stellar projected disk. Note that in this configuration, the
asymmetries caused by the stellar luminosity gradient and the stellar oblateness both
vanish, leaving a radially symmetric disk in the plane of the sky. Limb-darkening and
gravity-darkening are effectively additive from this viewing geometry, and the symmetric
stellar disk produces exclusively symmetric transit light curves. The planet’s projected
alignment (λ) has no effect on the shape of the light curve.
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Figure 2.4: Transit light curve of Kepler-13Ab, from Barnes et al. (2013). A best-fit model
that does not include gravity-darkening produces distinct, asymmetric residuals, due to
a slight left/right asymmetry caused by the star’s gravity-darkened, asymmetric shape.
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Parameter Definition Free/Constant

Rp/R? Ratio of planet radius and stellar radius Free

Tcent Time at center of transit Free

b Transit impact parameter Free

F0 Average stellar flux Free

λ Sky-projected alignment Free

ψ Stellar obliquity Free

M? Stellar mass Constant

Tpole Stellar effective temperature at its poles Constant

P Orbital period Constant

c1 First quadratic limb-darkening term Constant

c2 Second quadratic limb-darkening term Constant

v sin(i) Sky-projected rotational velocity Constant

β Gravity-darkening exponent Constant

ζ Stellar Oblateness Derived

Table 2.1: Standard parameters involved in fitting a transit light curve with a gravity-
darkened model. Parameters held constant or allowed to float are indicated. This table
does not include a planet’s eccentricity or argument of periapsis; ostensibly, fitting these
parameters is possible, but it requires extremely high photometric precision and can be
difficult to distinguish from the gravity-darkening signal.
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where the sky-projected inclination i is the angle between the planet’s orbital pole and the

plane of the sky, which is an alternate expression for impact parameter (b = a cos(i)/R?

for circular orbits, where a is the semi-major axis). Note that the gravity-darkening signal

a four-way degeneracy between λ and ψ. Works such as Barnes et al. (2011), Ahlers et al.

(2014), and Ahlers et al. (2015) assume 0◦ ≤ |λ| ≤ 90◦ and 0◦ ≤ ψ ≤ 90◦ in order

to overcome this degeneracy, producing spin-orbit angles of either ϕ or 2π − ϕ. The

gravity-darkening technique cannot distinguish between prograde/retrograde orbits.

The fitting software transitfitter employs the quadratic limb-darkening law to

model transit light curves,

I(µ) = 1− u1 cos(π − ε)− u2 cos2(π − ε) (2.9)

where ε is the angle between the line of sight and the normal vector of the star’s sur-

face (see figure 5.1) and c1 = u1 + u2 and c2 = u1 − u2. Table 2.1 lists c1 and c2 as

constants during light curve fitting; however, two different approaches exist. The first

approach is to use assumed values derived from works such as Claret & Bloemen (2011),

which provide best-estimates for limb-darkening coefficients as functions of stellar tem-

perature and mass. The second approach is to directly fit limb-darkening coefficients,

which ostensibly can work for high signal-to-noise datasets and as long as the stellar

obliquity isn’t too close to 90◦, where gravity-darkenening and limb-darkening become

degenerate. Barnes et al. (2013) fit the gravity-darkened Kepler-13Ab light curve us-

ing assumed limb-darkening coefficients of c1 = 0.49 and c2 = 0.0, following Brown

et al. (2001). However, the resulting fit of Kepler-13Ab’s sky-projected alignment differed

significantly from the spectroscopically-determined value measured by Johnson (2013).

Masuda (2015) found a possible reconciliation between Barnes et al. (2013) and Johnson

(2013) by fitting limb-darkening coefficients and instead holding the sky-projected align-

ment constant. Ultimately, the proper course of action for handling stellar limb-darkening

in gravity-darkened models remains an area for further exploration.

The stellar oblateness ζ is derived from Equation 2.1 using the stellar radius, stellar

mass, and v sin(i) value. The stellar luminosity gradient that ultimately drives gravity-

darkening anomalies in transit light curves is modeled by ζ and the gravity-darkening

exponent β (Equation 2.3).

The gravity-darkening technique serves as a useful tool for determining whether a

planet is well-aligned or misaligned from its host star. It targets planets orbiting high-
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mass stars, a particularly interesting population for spin-orbit alignment. It can constrain

the full spin-orbit angle, whereas other methods only constrain either the sky-projected

alignment or the stellar obliquity. The Kepler mission produced thousands of quality

transit light curves, many of which are from high-mass, rapidly rotating stars. The not-

fully-processed K2 mission yield will likely reveal dozens more gravity-darkened transiting

systems, and NASA’s new TESS mission is expected to find over a thousand planets

orbiting A/F-type stars (Barclay et al., 2018). This technique will therefore continue to

serve as a valuable tool for for exploring planet formation and for extracting valuable

information from existing transit light curves for the foreseeable future.
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Chapter 3: Spin-Orbit Alignment for

110-Day-Period KOI368.01 from

Gravity-darkening

“Spin-orbit alignment for 110 day period KOI368.01 from gravity-darkening.” The Astro-

physical Journal, vol. 786, no. 2, 2014, pp. 131-139.

This published article, co-authored by then-undergraduate Shayne Seubert and thesis

advisor Barnes, served to establish the capability of the gravity-darkening technique to

measure spin-orbit alignment. At the time of publication, the only other system to have

its spin-orbit alignment angle measured through gravity-darkening was that of Kepler-13Ab

(Barnes et al., 2011), and the full extent of gravity-darkening’s usefulness was still largely

unestablished among the astronomy community. Hirano et al. (2012) state that “asymme-

tries in the transit light curve may be used to determine the [alignment] parameters only

if the spin-orbit angle is large.”, referring to the asymmetry that gravity-darkening can

produce in misaligned transit light curves that can reveal a planet’s geometry. However,

we demonstrate that the gravity-darkening technique can constrain well-aligned values as

well from a transit’s lack of asymmetry. We chose the high signal-to-noise system Kepler

Object of Interest (KOI) 368 due to its high-quality photometry and very-nearly symmetric

transit light curve. This system, consisting of a rapidly-rotating A star and an eclipsing

M-dwarf, served as an ideal target to establish gravity-darkening as a useful tool for con-

straining orbit geometries. At the time of publication, the planet was listed as a “planet

candidate” and not yet identified as an eclipsing binary.

While preparing the below manuscript for publication, the KOI-368 system was ef-

fectively scooped from us via Zhou & Huang (2013). That work constrained KOI-368’s

spin orbit angle via gravity-darkening, but their approach (and consequently their result)

was quite different from ours. I discuss the differences between the two works in the

manuscript.

3.1 Abstract

We fit the Kepler photometric light curve of the KOI-368 system using an oblate,

gravity-darkened stellar model in order to constrain its spin-orbit alignment. We find
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that the system is relatively well-aligned with a sky-projected spin-orbit alignment of λ =

10◦±2◦, a stellar obliquity of ψ = 3◦±7◦, and a true spin-orbit alignment of ϕ = 11◦±3◦.

Although our measurement differs significantly from zero, the low value for ϕ is consistent

with spin-orbit alignment. We also measure various transit parameters of the KOI-368

system: R? = 2.28± 0.02R�, Rp = 1.83± 0.02RJup, and i = 89.221◦ ± 0.013◦. This work

shows that our gravity-darkened model can constrain long-period, well-aligned planets

and M-class stars orbiting fast rotators, allowing for measurement of a new subcategory

of transiting bodies.

3.2 Introduction

Main-sequence stars earlier than spectral type ∼F6 are expected to rotate rapidly

due to their radiative exteriors (Barnes, 2009). This induces the stellar figure to become

oblate, which causes the star’s photosphere to be up to several thousand Kelvin hotter

at the poles than at the equator, leading to higher polar luminosity. This effect, called

gravity-darkening, was first predicted by Von Zeipel (1924). Gravity-darkening causes

asymmetric light curves for misaligned transiting candidates (Barnes, 2009), and has been

used to constrain spin-orbit alignments for significantly misaligned candidates (Barnes

et al., 2011). This work will show that this method can also constrain spin-orbit aligned

systems with relatively symmetric transit light curves for eclipsing objects.

The measurement of the angle between the inclination of a planet’s orbit normal and

parent star’s spin axis, spin-orbit alignment (ϕ), can tell us more about the formation

and evolution of that system. Evidence shows that a wide variety of planetary system

types exist, including many short and long period spin-orbit misaligned planets (Wright

et al., 2011; Pont et al., 2010; Triaud et al., 2009; Guenther et al., 2012)1. We can use

constrained spin-orbit alignments to compare planetary formation of extrasolar planets

to that in our own planetary system. We propose an improved method for finding the

spin-orbit alignment based off of Barnes et al. (2011), allowing for constraint of previously

unmeasurable systems.

There are several existing methods for calculating the stellar obliquity and the sky-

projected spin-orbit alignment, including the Rossiter-McLaughlin effect, stroboscopic

starspots, Doppler tomography, asteroseismic determination of obliquity and gravity-

darkening. The Rossiter-McLaughlin technique uses Doppler shifts in radial velocity

measurements during the eclipse of the primary star. (Rossiter, 1924; McLaughlin, 1924).
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Stroboscopic starstpots can be used to constrain an aligned system because the planet

will cross the same starspot each time the planet transits. However, if the system is

misaligned, the planet will cross the starspot very infrequently (Désert et al., 2011), and

the method will fall short. Doppler tomography is able to achieve similar results to those

possible from gravity-darkening, but this method needs high signal-to-noise radial velocity

follow up measurements (Gandolfi et al., 2012). Asteroseismic determination of obliquity

can constrain the obliquity, but not the projected spin-orbit alignment (Chaplin et al.,

2013), so other measurements are required to find the spin-orbit alignment.

Gravity-darkening constrains both the stellar obliquity and the sky-projected spin-

orbit alignment simultaneously. Barnes et al. (2011) used gravity-darkening to establish

the spin-orbit misalignment in Kepler Object of Interest number 13 (KOI-13) system.

Hirano et al. (2012) state that ”For such rapid rotators, asymmetries in the transit light

curve may be used to determine the parameters only if the spin-orbit angle is large;”

however, we show here that we can constrain such rapid rotating systems, even if the

spin-orbit angle is small.

In this paper, we show that our gravity-darkened model can constrain long-period,

well-aligned planets and M-class stars orbiting fast-rotators, allowing for measurement of

a new subcategory of transiting bodies. In §2, we describe our steps for data collection and

preparation. In §3, we outline the gravity-darkened model that we use to fit the Kepler

transit curve, and In §4 we list our constrained parameters for the KOI-368 system.

We discuss implications of this work In §5. In §6 we compare our results to Zhou &

Huang (2013). This work can be applied to the formation and evolution of intermediate-

period planets orbiting fast-rotating stars and eclipsing binary systems; however, actual

application of these concepts is beyond the scope of this paper.

3.3 Preparing the KOI-368.01 Light Curve

Borucki et al. (2011) first noted KOI-368.01 as a transiting planet candidate. This

KOI is particularly interesting because of the parent star, KOI-368’s, early spectral type

(Teff = 9257 K); because the star’s brightness (mKepler = 11.375) leads to a high total

signal-to-noise ratio (SNR) for the transit (SNR=1866.4); and because of the relatively

long orbital period for its companion of 110 days. We summarize the original star and

planet candidate parameters in Table 3.1.

More recently, follow-up spectroscopy of KOI-368 from the Kepler Community Follow-



23

up Observation Program (CFOP) showed a high degree of rotational broadening of the

stellar absorption lines. That broadening allows measurement of the star’s projected rota-

tional velocity, conventionally denoted v sin(i) (v cos(ψ) using our parameter definitions,

where ψ is the star’s obliquity relative to the plane of the sky). The CFOP-measured

v sin(i) value is 90 km/s, as measured by the TRES Echelle Spectrograph of the Smith-

sonian Astrophysical Observatory. Hence, KOI-368 is a rapid rotator, and may therefore

show sufficient gravity-darkening to allow us to measure the relative alignment angle ϕ

between the stellar rotation pole and the orbit normal.

To do so, we first acquire SAP FLUX photometric timeseries for KOI-368 from the

Mikulski Archive for Space Telescopes (MAST) Kepler database, including both short-

cadence (60 second integration time) and long-cadence (30 minute integration time) pho-

tometry. We use Kepler Quarter 0 (Q0) through Quarter 16 (Q16) public data, totalling

67601 short-cadence and 60491 long-cadence data points. During Q0-Q7 and Q10-Q16

the spacecraft only used long-cadence for KOI-368, but during Q8 and Q9 it used short

and long-cadence mode. When using both the long-cadence and available short-cadence

data from Q0-Q16 we keep track of the specific integration time used for each data point.

Transiting planet candidate KOI-368.01 shows a total of 11 long-cadence and 2 short-

cadence transits within the 17 quarters. One transit is missing because it is in a data gap.

This missing transit is the eighth in the sequence.

We performed several steps to prepare both the short and long-cadence data for fitting.

We first normalize each quarter’s flux by dividing each point by its quarter’s median value.

We then glue all short-cadence quarters together and all long-cadence quarters together,

and use a median boxcar filter with a period of triple the transit duration (42 hours) to

correct for long-term instrument response variations. We show the full processed Q0-Q16

timeseries in Figure 3.1.

We fold the short and long-cadence data sets on their 110-day orbital periods (Borucki

et al., 2011) and crop to a window 26.6 hours long centered on the time of inferior con-

junction to arrive at a light curve for fitting. We then average the long-cadence data into

30 minute bins and the short-cadence data into 5 minute bins, and combine the two data

sets into a single light curve. We perform this binning process to increase computational

time; we compared an analytical fit of the binned vs. unbinned data to ensure no vital

information was lost. We then clean the data to remove any remaining outliers, and begin

the fitting process.
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Figure 3.1: A boxcar-filtered version of all of the KOI-368 photometry that we use in this
paper, combined into a single dataset before period folding. The vertical extent of each
data point indicates its error bar. The noisier data in 2011 correspond to short-cadence
observations, which use a time integration of 1 minute rather than the 30 minutes used
in the long-cadence observations. The typical photometric precision of the long-cadence
data is 4.0× 10−5, and for the short-cadence data is 2.3× 10−4.
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Parameter Previously

Reported Value

T0 130.6345 days ±0.00015

Period 110.32160 days ±0.00005

a 0.581 AU

Teq 754 K

Duration 13.32 h

Depth 7270 ppm

d
R?

51.19 ±0.14

SNR 1658.2

Teff 9257 K

mKepler 11.375

log(g) 4.13

v sin(i)1 90 km/s

Table 3.1: Transit parameters provided by the Mikulski Archive for Space Telescopes for
the KOI-368 system. The time of transit center is denoted as T0, the semi major axis of
orbit is denoted as a, the equilibrium surface temperature of the planet is denoted as Teq,
the duration is the transit duration, the depth is transit depth at center of transit, the
ratio of the planet-star separation at the time of transit to the stellar radius is denoted by
d/R?, SNR is the signal to noise ratio, the stellar effective temperature is denoted by Teff ,
and the log of stellar surface gravity is denoted by log(g). 1From the Kepler Community
Follow-up Observing Program, v sin(i) is the projected stellar rotational velocity.
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3.4 Model

We model the KOI-368 transit using an algorithm developed by Barnes & Fortney

(2003) and modified to treat rapidly-rotating, oblate stars (Barnes, 2009). The asymmetry

of the non-uniformity in flux coming from a gravity-darkened stellar disk drives the use of

explicit numerical integrals to compute eclipsed flux rather than an analytical expression

(Mandel & Agol, 2002).

Our transitfitter program (Barnes & Fortney, 2003; Barnes, 2009) computes this

integral for the stellar flux F in polar coordinates R (the projected distance from the

center of the star) and θ (azimuthal angle counterclockwise from right) as

F = 1−
∫ R?

0

∫ 2π

0
I(r, θ) Γ(r, θ)r dθ dr∫ R?

0

∫ 2π

0
I(r, θ) r dθ dr

(3.1)

where I(r, θ) is the flux per unit area of the particular (r, θ) location on the stellar

disk, and Γ(r, θ) is a function that denotes the location of the transiting object by yielding

1 for blocked locations and 0 everywhere else. Functionally we evaluate the θ portion of

the integral by finding both limbs of the planet at distance r by use of a root-finding

routine and then integrating I(r, θ) between these known limb locations.

We fit this model to the Kepler data using a Levenberg-Marquardt χ2 minimization

algorithm (Press et al., 2007). Because of the need for explicit numerical integrals, each

fit takes several days to complete.

3.5 Results

We measured seven different parameters for KOI-368 by fitting its Kepler transit light

curve. We measured the stellar and planet radii (R? and Rp, respectively), the inclination

of the orbit relative to the plane of the sky, i, the time of inferior conjunction, T0, the

out-of-transit normalized stellar flux, F0, the sky-projected spin-orbit alignment, λ, and

the stellar obliquity, ψ, measured as the tilt of the stellar north pole away from the Kepler

field of view.

We also derive three parameters based off of our best-fit values. We calculated the

impact parameter, b, the stellar rotation period, Prot, and the stellar oblateness fKOI−368.

The impact parameter was derived using the orbital inclination angle. The stellar rotation

period was derived using our assumed vsin(i) value and the stellar obliquity. The stellar
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oblateness was derived from R? and Prot. We held our limb-darkening parameter c1

constant at 0.49, as explained In §5. We list the best-fit and derived values along with

their 1σ uncertainties in Table 2.

We display the orbital inclination i, sky-projected spin-orbit alignment λ, and stel-

lar obliquity ψ in Figure 3.2. With the stellar obliquity and sky-projected spin-orbit

alignment constrained, we calculated the spin-orbit alignment using

cos (ϕ) = sin (ψ) cos (i) + cos (ψ) sin (i) cos (λ) (3.2)

(Barnes et al., 2011). We calculated its uncertainty using a Monte Carlo numeric error

propagator.

Parameter Best Fit Values

χ2
reduced 1.41

R? 2.28± .02 R�

Rp 1.83± 0.02 RJup

Rp

R?
0.0823

i 89.221◦ ± 0.013◦

b 0.697

c1 0.49

T0 7520550± 40 s

F0 1.000024± 5 ∗ 10−6 s

λ 10◦ ± 2◦

ψ 3◦ ± 7◦

ϕ 11◦ ± 3◦

Prot 30.73 hr

f? 0.0275

Table 3.2: Transit parameters for the KOI-368 system. Rp is in units of equitorial Jupiter
radii at one bar level. The time at the center of transit, T0, is measured in seconds
after BJD 2454900, after Borucki et al. (2011). Throughout the fitting process, the limb-
darkening coefficient and gravity-darkening parameter were held constant at c1 = 0.49
and β = 0.25 to remove further degeneracies from our model (see Figure 3.4).
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Figure 3.2: Definitions of angular geometric quantities. The planet candidates’s projected
orbital inclination is i. The candidates’s projected spin-orbit angle is λ, as measured
clockwise from stellar east. The coordinate system axes are provided, where Y is the
direction of the observer’s view. The stellar obliquity, ψ, is measured as the angle that
the north stellar pole is tilted away from the plane of Kepler’s view.
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The fitted data are plotted in Figure 3.3, along with the residuals. While the light

curve appears relatively symmetric, we know that the star is rotating with a vsin(i) = 90

km/s, which implies that there must be some gravity-darkening occurring. It does not

show in the light curve due to the transit geometry, which we demonstrate in Figure 3.4.

3.6 Discussion

KOI-368.01 has the longest period of any candidate with measured spin-orbit align-

ment, and is second overall next to HD 80606 (Pont et al., 2009). Our results show that

KOI-368.01 has the longest orbit that has been proven to be spin-orbit aligned (Albrecht

et al., 2012), as HD 80606 is misaligned. This work opens up a whole new population of

planets that could be studied via gravity-darkening. In particular, we provide a method

to determine the possible ways that candidates such as these evolved. It could be that

KOI-368 formed in its present location, or it could have migrated inward by some mech-

anism, while its spin-orbit alignment was left unaffected. This work is the first step in

establishing a trend for the evolution and formation of late-type stars, giant planets, and

brown dwarfs orbiting hot stars.

Based on how large the R? and Rp values are, it is also possible that our fit is assuming

that KOI-368.01 was transiting during apoapsis, thus assuming that the candidate was

having to transit across a larger star in order to still hold the vsin(i) at a constant of 90

km/s. We can compensate for this by assuming it is in an eccentric orbit. For instance,

with an eccentricity of 0.1, we see an R? = 2.4864R� and Rp = 2.0435RJup. When we

assume an eccentricity of 0.3, we see an R? = 3.0633 and Rp = 2.5176. Finally, if we were

to assume an eccentricity of 0.5, we see an R? = 3.1374 and Rp = 2.4363. However, for our

best-fit model, we assumed negligible eccentricity and assumed the transiting companion

to be an M-Dwarf star, following Zhou & Huang (2013).

We represented the stellar limb-darkening with a single limb-darkening parameter, c1,

equal to the sum of the two quadratic limb-darkening parameters such that c1 = u1 + u2,

following Brown et al. (2001). In our best fit model, we held c1 constant in order to

obtain an accurate measure of the stellar obliquity because if c1 were allowed to float,

the degeneracy between it and the stellar obliquity would cause the stellar obliquity’s

uncertainty to greatly increase (Barnes, 2009). By holding c1 constant, we were able to

better constrain the stellar obliquity. While fitting, we used assumed c1 values that varied

from 0.43 to 0.56 and found that the best-fit values for the floating parameters varied by
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Figure 3.3: Photometry and fits for the 2013 KOI-368 light curve. We plot the data on
top with the gravity-darkened fit in blue. The residuals of this fit are shown below. We
recognize a slight asymmetry in the light curve, as first identified by Zhou & Huang (2013).
Our gravity-darkened model does a reasonable job of reproducing ingress and egress at
the bottom of the light curve. The residuals from the fit are shown at the bottom. The
gravity-darkened model does a reasonable job of reproducing the ingress and egress at the
bottom of the light curve.
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Figure 3.4: The four possible transit geometries of the KOI-368 system. We enhance the
effects of gravity-darkening and limb-darkening to make the varying surface luminosity
more evident. All four scenarios produce identical transit light curves; therefore, these
geometries are perfectly degenerate. This arises from the inability to differentiate between
prograde and retrograde values for the sky-projected spin-orbit alignment (λ) and the
stellar obliquity (ψ). Conservatively, we assume prograde values with the north pole
tilted toward our point of view (upper left image).
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less than 1σ. We found that our reduced χ2 value was lowest at c2
1 ≈ 0.50, and thus

chose c1 = 0.49 based off of the similarity between the stellar radii and temperatures of

KOI-386 and KOI-13 (Barnes et al., 2011).

We intend to use this technique to survey other systems with intermediate period

orbits, and attempt to constrain their spin-orbit alignments. This will allow us to see if

KOI-368 is a good model for these types of systems, or if it is atypical. As future work

we will expand the types of systems we analyze, such as smaller radius exoplanets and

multiplanetary systems.

3.7 Comparison To Zhou & Huang (2013)

Zhou & Huang (2013) recently published constraints for the KOI-368 system using

a gravity-darkened model, based off of Barnes (2009). However, Zhou & Huang (2013)

claims that the KOI-368 system is significantly misaligned (ϕ=69+9◦

−10◦), which is contrary

to our result that the system is close to alignment.

This discrepancy may arise from differences between the Zhou & Huang (2013) model

and ours. Most notably is our handling of the gravity-darkening parameter (β), which

relates the effective local gravity to the effective local temperature of a star by Maeder

(2009):

T = Tpole

(
g

gpole

)β
(3.3)

β represents the strength of the stellar gravity-darkening: higher β values allow for

larger variations in luminosity between the pole and equator given the same stellar pa-

rameters. We use β = 0.25 for our fit, which represents blackbody radiation. Zhou &

Huang (2013) used a dynamic fit for β that arrived at β = 0.05, removing virtually all

gravity-darkening effects. With such a low β value, the stellar obliquity and sky-projected

alignment can drastically vary without causing significant asymmetry in a best-fit model.

The sky-projected alignment, stellar obliquity, limb-darkening coefficient, and the

gravity-darkening parameter are interdependent parameters. Kepler photometric data

of the KOI-368 system are not sufficiently precise to allow for constraint of all four, so we

held β constant at 0.25 and c1 constant at 0.49 during the fitting process.

To show the effects of β on the fit, we also held β constant at other values and

constrained λ and ψ, as shown in Figure 3.5. This figure shows that the sky-projected

alignment and stellar obliquity do not vary extensively except at very low values of β.
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Figure 3.5: This figure shows the β dependence of the sky-projected alignment (in red)
and of the stellar obliquity (in blue). Doppler tomography of KOI-368 will determine β,
which will allow for better constraint of the spin-orbit alignment. The error bars were
determined using constant χ2 boundaries as confidence limits.
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Even at β = 0.05, we find a relatively aligned system, which is fundamentally different

from Zhou & Huang (2013) due to c1.

Our assumption of β = 0.25 is based off of Barnes et al. (2011), which compares the

best-fit model of KOI-13 using the theoretical value of β = 0.25 (Von Zeipel, 1924) and

the experimental value of β = 0.19 (Monnier et al., 2007). Barnes et al. (2011) found that

the best-fit values varied less than 1σ between the two β values. Barnes et al. (2011) and

Figure 3.5 suggest that our gravity-darkened model is not significantly varied for small

changes in β. We used the theoretical β value, as there currently is no experimental β

value for the KOI-368 system. A better determination of the star’s mass could help to

constrain β empirically in the future. Various outside measurements would also help to

constrain the system, such as a Rossiter-Mclaughlin measurement of the sky-projected

alignment, and an asteroseismic determination of the stellar obliquity.

The Zhou & Huang dynamical fit for both limb-darkening and gravity-darkening pa-

rameter β represents an overfit to the Kepler data for KOI-368. The resulting fit is un-

physical and unreproducible given that Zhou & Huang do not report the limb-darkening

parameters that they used. Barnes (2009) showed that transits of an aligned planet

around a gravity-darkened star lead to anomalies in the best-fit limb-darkening coeffi-

cients — particularly the quadratic coefficient u2.

Our fit is grounded in the Barnes (2009) model, which has been shown to to agree

with Doppler tomography in the case of KOI-13 (Barnes et al., 2011; Johnson, 2013).

Barnes et al. (2011) constrained the spin-orbit alignment to λ = 24◦ ± 4◦, and Johnson

(2013) constrained it to be λ = 21.3◦ ± 0.2◦. With an outside confirmation of our model,

we think that our measurement of KOI-368 is robust. Future Doppler tomography of

KOI-368 could confirm our result.

3.8 Conclusion

By fitting all available short and long-cadence Kepler photometry for KOI-368.01, we

measured a sky-projected spin-orbit alignment of λ = 10◦ ± 2◦ and a stellar obliquity of

ψ = 3◦ ± 7◦. While the limb-darkening parameter is assumed to be c1 = 0.49 (Barnes

et al., 2011), other fits using different assumed c1 limb-darkening values while holding β

constant show that the spin-orbit angle, ϕ = 11◦ ± 3◦, is not substantially affected by

plausible limb-darkening variations.

The gravity-darkened model allows for determination of the true spin-orbit alignment
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of a system, not just its sky-projected spin-orbit alignment. This work presents one of

the first extrasolar systems to have its spin-orbit alignment constrained (Winn et al.,

2007; Sanchis-Ojeda & Winn, 2011; Nutzman et al., 2011). The spin-orbit alignment of

KOI-368.01 does not suggest that bodies orbiting more massive stars are more likely to

be spin-orbit misaligned, contrary to (Winn et al., 2010).

We show that KOI-368.01 is well aligned with a spin-orbit alignment ϕ = 11◦ ± 3◦.

KOI-368 is a rapidly rotating star, and therefore the light curve displays the effects of

gravity-darkening. However, because our system is well aligned, KOI-368.01 transits

across lines of equal brightness; therefore, the light curve displays only nominal asymme-

try.

This system could have formed via one of several mechanisms. The most likely is

fragmentation, in which the protostellar disc fragments due to rotational instabilities.

This mechanism allows for spin-orbit aligned binary systems of less than 1 AU (Bonnell

& Bate, 1994). The formation of close-in binary systems is still somewhat unexplained

(Bonnell & Bate, 1994; White & Ghez, 2001); the ability to constrain the spin-orbit

alignment of such systems will contribute to understanding them.

The unique nature of the KOI-368 system allows for new insight in studying photomet-

ric light curves. With the high precision of Kepler photometry, we are for the first time

able to constrain systems such as these, which provides new understanding of the forma-

tion of extrasolar systems. The knowledge we gained from this system will be applicable

to a wide variety of transiting objects in the future.
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Chapter 4: Spin-Orbit Misalignment of

Two-Planet-System KOI-89 Via

Gravity-darkening

“Spin-Orbit Misalignment of Two-Planet-System KOI-89 Via Gravity-darkening.” The

Astrophysical Journal, vol. 814, no. 1, 2015, pp. 67-78.

This project, led by me and co-authored by thesis advisor Jason Barnes and Rory

Barnes (University of Washington), focused on constraining the formation and evolution

history of two-planet-system KOI-89 (now named Kepler-462). Specifically, we measured

the spin-orbit alignment values of both planets and tested our results against existing

hypotheses to explain misalignment. This work served as one of the only multiplanet

systems to date to have its alignment value measured and provided one of the first ever

tests of possible misalignment mechanisms.

4.1 abstract

We constrain the true spin-orbit alignment of the KOI-89 system by numerically fitting

the two Kepler photometric light curves produced by transiting planets KOI-89.01 and

KOI-89.02. The two planets have periods of 84.69 days and 207.58 days, respectively.

We find that the two bodies are low-density giant planets with radii 0.45± 0.03 Rjup and

0.43 ± 0.05 Rjup and spin-orbit misalignments 72◦ ± 3◦ and 73◦+11
−5 , respectively. Via

dynamic stability tests, we demonstrate the general trend of higher system stability with

the two planets close to mutual alignment and estimate their coalignment angle to 20◦±20◦

– i.e. the planets’ orbits are misaligned with the star but may be aligned with each

other. From these results, we limit KOI-89’s misalignment mechanisms to star-disk-

binary interactions, disk warping via planet-disk interactions, planet-planet scattering,

Kozai resonance, or reorientation of the star’s rotation via gravity waves.

4.2 Introduction

Recent studies show that exoplanetary systems around early-type stars display a wide

diversity in planet radii, planet densities, periods, eccentricities, and inclinations. (Brandt

et al., 2014; Borucki, 2012; Howard, 2013). Exoplanet orbits exhibit a wide variety of spin-
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orbit alignments, with highly misaligned and even retrograde orbit geometries (Bourrier

& Hébrard, 2014; Albrecht et al., 2012; Winn et al., 2011). At the time of this work, most

known misaligned systems are short-period; only HD80806b (Naef et al., 2001), Upsilon

Andromedae (Deitrick et al., 2015), and Kepler 56 (Huber et al., 2013) have periods

≥ 10 days.1 This work adds to the list of long-period spin-orbit misaligned planets KOI-

89.01 and KOI-89.02.

There are several methods for constraining a system’s alignment, including gravity-

darkening (J. Barnes et al., 2011; Ahlers et al., 2014), the Rossiter-McLaughlin effect

(Ohta et al., 2005), Doppler tomography (Gandolfi et al., 2012), asteroseismology (Chaplin

et al., 2013; Van Eylen et al., 2014), photometric amplitude distribution (Mazeh, 2015),

and stroboscopic starspots (Désert et al., 2011; Hirano et al., 2012). We applied the

gravity-darkening method first suggested by J. Barnes (2009) and later applied to Kepler

Object of Interest (KOI) 13 (J. Barnes et al., 2011) and KOI-2138 (J. Barnes et al.,

2015). This method constrains both the star’s polar tilt toward/away from the observer

(stellar obliquity) and the planet’s misalignment angle as seen relative to the observer

(sky-projected alignment).

The gravity-darkening effect, first predicted by Von Zeipel (1924), results in a pole-

to-equator gradient in stellar luminosity driven by rotation. As an object transits a

gravity-darkened star, it can move across areas of unequal brightness; this luminosity

gradient can affect the light curve in various ways, depending on its transit geometry (J.

Barnes, 2009). J. Barnes et al. (2011), J. Barnes et al. (2013), Zhou & Huang (2013), and

Ahlers et al. (2014) all showed that the asymmetry in such light curves (or lack thereof)

can be utilized to constrain the spin-orbit alignment of a transiting system.

The causes of frequent misalignment around fast rotators are still under investigation.

Planets probably do not form with initially misaligned orbits – their angular momenta

must be conserved with the stellar nursery they formed in. In this case, such planets must

migrate to their misaligned positions. KOI-89 is one such system that does not conform to

the traditional nebular hypothesis with two planets whose orbits are severely misaligned

from the spin axis of their host star.

There are several ideas for processes that might create spin-orbit misalignment. Lai

et al. (2011) and Spalding & Batygin (2014) demonstrated that magnetic torques can push

the stellar spin axis away from the circumstellar disk’s angular momentum vector over

very long timescales. This would specifically explain spin-orbit migration in very young
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systems with low-mass stars (M? ≤ 1.3M�), where exterior stellar magnetic fields are

strongest. Rogers et al. (2012) showed that internal gravity waves can produce angular

momentum transport between the convective interior and radiative exterior of early-type

stars that turn the stellar spin axis away from the system’s invariant plane.

There are also several ideas that explain how spin-orbit migration might develop via

more dynamic means. Libert & Tsiganis (2009) discussed Kozai resonance in a 2-planet

system and its effects on mutual inclination between the planets. This is almost certainly

the origin of misalignment for HD 80806b (Naef et al., 2001). Chatterjee et al. (2008),

Ford et al. (2005), Raymond et al. (2008), and Nagasawa et al. (2008) all demonstrated

how planet-planet scattering can drive misalignment in a multiplanet system. Levison

et al. (1998) showed that planet-embryo collisions during planet formation can lead to

high mutual inclination. Terquem (2013), Teyssandier et al. (2013), and Batygin (2012)

analyze gravitational disk-warping events that lead to misalignment.

On the observational side, Winn et al. (2010) showed a correlation between hot stars

(Teff & 6250) and misalignment. Batygin & Adams (2013) showed an interdependence

between stellar rotation rates and spin-orbit misalignments. These works imply that a

large number of planets orbiting early-type stars are commonly misaligned.

Huber et al. (2013) employed asteroseismology to measure the stellar obliquity of

multiplanet system Kepler 56 and showed that spin-orbit misalignment is possible in

multiplanet systems with low-mass, long-period planets. Benomar et al. (2014) found mild

misalignment in Kepler-25 via a joint analysis of asteroseismology, light curve analysis,

and the Rossiter-Mclaughlin effect.

This work provides another example of a long-period multiplanet system with sig-

nificant misalignment: KOI-89. In §4.3, we outline our data preparation process and

list previously known system characteristics. In §4.4, we introduce new techniques to

the J. Barnes et al. (2011) fitting method. In §4.5, we show our best-fit parameters

and constraints on misalignment. We test KOI-89’s dynamic stability and constrain the

coalignment angle between the two orbits in §4.6. In §4.7, we discuss possible formation

and migration mechanisms for the KOI-89 system and test the dynamical stability of the

system in order to constrain the planets’ mutual alignment.
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4.3 Observations

4.3.1 Data Preparation

The Mikulski Archive for Space Telescopes (MAST) Kepler Input Catalog (KIC) pro-

vided the Kepler photometry that we analyze for the KOI-89 system. We employ each of

the 16 available quarters of KIC data, combining them into a single dataset. We incor-

porate only long-cadence data (30-minute integrations) because both planets have transit

durations of over 12 hours. Therefore, ingress and egress are well-sampled by the 30-

minute time cadence, and inclusion of short (1-minute) cadence data would not provide

additional constraints.

After concatenating all available long-cadence photometry, we apply a median box

filter with a window of 44 hours (three times KOI-89.01’s transit duration) to reduce

long-term astrophysical and instrumental variability. Figure 4.1 displays the filtered time-

series. We then identify which transits correspond to which transiting body based on their

KIC orbital periods, and separate them accordingly into individual datasets.

We adjust the center-of-transit times of each transit light curve according to their

measured transit timing variations (TTV ) (Rowe et al., 2014) in our phase-folding process.

We perform this adjustment for each measured TTV in Rowe et al. (2014), including

thirteen transits for KOI-89.01 and five transits for KOI-89.02. These transits exclude

the double transit identified in Figure 4.1.

With all TTV accounted for and the individual transits evenly separated by 84.69 days

and 207.58 days, respectively, we fold all KOI-89.01 transits on top of the epoch 34960800±
400 s transit and fold all KOI-89.02 transits on top of the epoch 25041400± 700 s transit.

We then combine the two resulting light curves back in a single dataset. With the Kepler

photometry represented by a single light curve with two transit events, we bin the data

at 15 minutes to improve the computation time of our fit. We determine the error bars

of the binned data from the standard deviation of the flux values in the bin.

4.3.2 Previously Measured KOI-89 Parameters

We build our work upon previous research of the KOI-89 system. We obtain the KOI-

89 stellar mass, stellar temperature, and transit periods from the Community Follow-

up Observation Program (CFOP). Figure 4.2 shows the spectroscopic determination of

v sin(i). We list these and other relevant system parameters in Table 4.1.
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Figure 4.1: Kepler photometry of the KOI-89 system. The vertical lengths of the data
points represent their uncertainties. Transits of two planets are visible, displaying peri-
odicities of 84.69 days and 207.58 days, respectively. In mid-2011 (arrow), both planets
transited simultaneously.
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Figure 4.2: Spectroscopic determination of v sin(i) for the KOI-89 system, measured with
the Tillinghast Reflector Echelle Spectrograph on the 1.5 m telescope at the Whipple
observatory. These data were provided by David Latham of the Kepler Science Team and
retrieved from the Community Follow-up Observing Program (CFOP).

Rowe et al. (2014) confirmed 715 new systems – including KOI-89 – via multiplicity.

The two planets have a period ratio near the 5:2 mean-motion resonance (2.45). Follow-up

observations of these phenomena could confirm/deny the existence of additional orbiting

bodies, and could further constrain this system’s formation and evolution.

4.4 Model

We update the transitfitter program (J. Barnes, 2009) to fit multiple-planet tran-

siting systems. The Levenburg-Marqhardt χ2 minimization technique remains the fitting

method, but now transitfitter can constrain the orbital parameters of additional tran-

siting bodies. These extra parameters cause an increased sensitivity to the photometric

signal-to-noise ratio, so χ2 minimization must be approached with additional caution.

The individual parameters of additional planets have the same degeneracies as a single-

planet fit. There is a degeneracy between eccentricity and stellar radius, for instance: an

eccentric orbit can have the same transit duration as a circular orbit around a smaller

star. Also, fitting transit light curves in isolation cannot determine stellar mass, so we

apply an assumed stellar mass from CFOP and fit the eccentricity around it. A transit

around a fast-rotator has degenerate limb-darkening and gravity-darkening effects in the

case of high stellar obliquity. We discuss this degeneracy further in §4.5.

Fitting for both planets simultaneously rather than fitting each light curve separately
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Figure 4.3: Top left: The stellar obliquity ψ is defined as the axial tilt toward/away the
plane of the sky. Top right: the sky-projected alignment λ is the misalignment angle seen
from Kepler’s point of view. Bottom left: the spin-orbit alignment ϕ is the angle between
the plane of an orbit and the star’s equatorial plane. Bottom right: the coalignment angle
α is the angle between two orbit planes.
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Parameter Values

P1 84.69 days

P2 207.58 days

Teff 7717± 225 K

M? 1.965± 0.256 M�

v sin(i) 90 km/s

Vmag 11.731

KOI-89.01 SNR 93.8

KOI-89.02 SNR 68.1

Table 4.1: Previously measured parameters of the KOI-89 system. We incorporated all
parameters as assumed values when fitting the KOI-89 light curve.

forces the stellar radius R? and the stellar obliquity ψ (shown in Figure 4.3) to agree for

both planets, which has two advantages. First, a simultaneous two-planet fit requires two

fewer parameters to be fit, increasing the overall accuracy and decreasing computation

time of the other parameters. Second, it applies light curve geometries of both planets

toward the constraint of R? and ψ, producing a coherent physical system. In our fitting

model, ψ is particularly sensitive to the light curve geometry; using multiple light curves

simultaneously allows ψ to be constrained by more data points, decreasing its uncertainty.

4.5 Results

4.5.1 Light curve Fits

The light curves of KOI-89.01 and KOI-89.02 (Figure 4.4) display unusual shapes.

KOI-89.01 has the asymmetry expected of a misaligned body orbiting a fast-rotator (J.

Barnes, 2009) . KOI-89.02 does not display this asymmetry, possibly due to lower photo-

metric precision. Both transits show sloped ingresses/egresses and entirely non-constant

transit depths, producing dominant V-shaped light curves. A typical light curve is sym-

metric with a steep ingress and egress with a relatively flat bottom, rounded only by

limb-darkening.

KOI-89’s V-shaped light curves can arise in one of two ways. First, planets only

grazing their star during transit rather than fully eclipsing it block constantly changing



44

sky-projected areas. This effect creates sloped ingresses/egresses. However, this situation

is improbable for KOI-89 as both planets would require similar, high impact parameter

values despite having significantly different semi-major axes.

The second way KOI-89 could generate V-shaped light curve geometries is by having a

gravity-darkened star with a very high stellar obliquity ψ – i.e. pole-on. In this case, the

planets transit near a stellar pole and the gravity-darkened equator surrounds the outer

edge of the star. The limb-darkening and gravity-darkening effects combine together to

create a significant center-to-edge luminosity gradient. At ingress, the planet blocks a

continuously increasing total flux as it moves closer toward the center of the star, and

vice versa during egress. This produces a V-shaped transit light curve for each planet (J.

Barnes (2009), Figure 4), consistent with the lack of the typical ingress-egress asymmetry

expected in a misaligned gravity-darkened transit. We test for the possibility of grazing

transits by fitting the system with impact parameters nearly at and slightly above 1.0.

We find that we cannot match the system’s light curve with grazing transits: such an

event can not reproduce the proper ingress-egress asymmetry seen in KOI-89.01.

Figure 4.4 shows our best-fit light curve using grazing transits in blue. We apply

grazing transits to both spherical and gravity-darkened models. We hold the stellar

obliquity at zero in the gravity-darkened model to test the system for possible spin-orbit

alignment. The poor fit of χ2
reduced = 1.94 (adjusted to account for holding the stellar

obliquity constant) motivates us to investigate a model with a high stellar obliquity and

rapid stellar rotation.

Using the Levenberg-Marqhardt χ2 minimization technique, we fit for thirteen param-

eters:

• The stellar equatorial radius (R?)

• The stellar obliquity (ψ)

• The stellar normalized flux (F0)

• The radii of KOI-89.01 and KOI-89.02 (Rp1 , Rp2)

• The orbital inclinations of KOI-89.01 and KOI-89.02 (i1, i2)

• The sky-projected alignments (λ1, λ2)

• The orbital eccentricities (e1 , e2)
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• The center-of-transit times (T01 , T02)

We display the best-fit light curve of our gravity-darkened model in Figure 4.4 as the

red line.
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Figure 4.4: Best-fits and residuals of the KOI-89.01 and KOI-89.02 light curves. Red rep-
resents the gravity-darkened model, and blue represents grazing transits in the spherical
model. The KOI-89.02 data are significantly noisier because of KOI-89.02’s much longer
orbital period, resulting in fewer total transits. We fit the two light curves simultaneously,
resulting in a single best-fit line. The two light curves were placed side-by-side for visual
comparison.

4.5.2 Testing For TTV Systematics

We test the TTV ephemeris reported in Rowe et al. (2014) for systematic errors by

fitting the KOI-89 series as two epochs. The first epoch is comprised of KOI-89.01’s first

seven transits and KOI-89.02’s first two transits. The second epoch is comprised of KOI-

89.01’s remaining six transits and KOI-89.02’s remaining three transits. For each half, we

adjust all transits with respect to their TTV and fold the transits in the same fashion as

described in §4.3.1.

We apply our gravity-darkening model to both epochs and find that the resulting

parameters of each fitted dataset have overlapping 1σ values with our best-fit values
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Parameter Best Fit Values

χ2
reduced 1.52

R? 2.3± 0.2 R�

ψ 69◦ ± 3◦

c1 (fixed) 0.56

c2 (fixed) -0.15

β (fixed) 0.25

F0 1.000009± 3 ∗ 10−6

Prot (derived) 8.81+1.9
−1.8 hr

f? (derived) 0.19+0.04
−0.03

Rp1 0.45± 0.03 Rjup

Rp2 0.43± 0.05 Rjup

e1 ≥ 0.056± 0.019

e2 ≥ 0.50± 0.09

i1 89.340◦ ± 0.05◦

i2 90.64◦ ± 0.06◦

b1 (derived) 0.61+0.08
−0.07

b2 (derived) −0.57+0.12
−0.14

T01 34960800± 400 s

T02 25041400± 700 s

λ1 −32◦ ± 11◦

λ2 −32◦ ± 40◦

ϕ1 (derived) 72◦ ± 3◦

ϕ2 (derived) 73◦+11
−5

Table 4.2: Best-fit results for the KOI-89 system. We calculated stellar period of rotation
Prot from v sin(i), R?, M?, and ψ. We derived the stellar oblateness f from the Darwin-
Radau relation. The impact parameters b1 and b2 were found using P1 and P2, i1 and i2,
and R?. We set our limb-darkening parameters c1 = u1 + u2 and c2 = u1 − u2 according
to Sing (2010).
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using the full timeseries (Table 4.2). We therefore detect no evidence of systematics in

the TTV ephemeris listed in Rowe et al. (2014).

4.5.3 Testing Limb-darkening Assumptions

Results fro mthe gravity-darkening technique are especially susceptible to uncertain-

ties in limb-darkening. Via Doppler Tomography, Johnson et al. (2014) measured the

sky-projected alignment of KOI-13.01 and found it to differ significantly from the gravity-

darkening measurement performed in J. Barnes et al. (2011). Masuda (2015) proposed

a solution to this discrepancy by demonstrating that the gravity-darkening model pro-

duces concurring measurements with Doppler Tomography when using a nonzero second

quadratic limb-darkening term (c2). This limb-darkening term is also a possible explana-

tion for KOI-368’s different spin-orbit misalignment values measured in Zhou & Huang

(2013) (Ahlers et al., 2014). These works motivated us to update our gravity-darkening

model to include both quadratic terms, c1 and c2.

KOI-89’s very high stellar obliquity brings about an additional challenge in resolving

limb-darkening. With the stellar pole near the center of the sky-projected stellar disk,

the gravity-darkening and limb-darkening luminosity gradients behave nearly identically

and are essentially additive. The resulting combined effects on a transit light curve are

therefore degenerate with a stellar obliquity near 90◦.

KOI-89’s spectroscopically-determined effective temperature of 7717 ± 225 K corre-

sponds to an approximate range of 0.55 to 0.57 for c1 and −0.165 to −0.135 for c2 (Sing,

2010). We test the robustness of our assumed limb-darkening values by refitting using

(0.55,−0.135) and (0.57,−0.165) for c1 and c2, respectively.

Applying the (c1, c2) values (0.55,−0.135), we measure a slight increase in KOI-89.02’s

impact parameter; however, this increase vanishes when adjusting the gravity-darkening

value β to match Altair’s value of 0.19 (Monnier et al., 2007). We detect no significant

changes in our best-fit results when employing the limb-darkening values (0.57,−0.165).

We cannot resolve the accuracy of our limb-darkening parameters without higher precision

data, and therefore elect to apply the assumed values of β = 0.25 (Von Zeipel, 1924) and

(c1, c2) values of (0.56,−0.15) (Sing, 2010).

4.5.4 Eccentricities

We constrain the lower limits of eccentricity to 0.056 ± 0.019 and 0.50 ± 0.09, re-

spectively. We address the degeneracy between eccentricity and argument of periapsis
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following Price et al. (2015). Our eccentricities do not vary significantly for |ω| ≤ 150◦

away from center-of-transit, consistent with Price et al. (2015) and J. Barnes (2007). To

find the lower limit for eccentricity, we set the center-of-transit at periapsis for both plan-

ets fit for the eccentricities using our gravity-darkened model. We analyze the plausibility

of our eccentricity values in §4.6.2.

4.5.5 Spin-Orbit Alignment

Our gravity-darkened model results in a degeneracy in the sky-projected alignments

between the values λ and 180 − λ (Ahlers et al., 2014). We assume a prograde orbit for

KOI-89.01, constraining λ to a single value. This allows us to produce single, nondegen-

erate values for the obliquity (ψ) and each planet’s inclination (i) in our best-fit model,

which we allow to float in the full range of 0◦ − 360◦.

We find that KOI-89 is highly misaligned with a stellar obliquity ψ of 69◦ ± 3◦, in-

clinations i1 and i2 of 89.340◦ ± 0.05◦ and 90.64◦ ± 0.06◦ respectively, and sky-projected

alignments λ1 and λ2 of −32◦ ± 11◦ and −32◦ ± 40◦ respectively. The high uncertainty

of λ2 is due to the apparent lack of asymmetry in KOI-89.02’s light curve because of its

photometrically imprecise data. We show our constraint of λ2 in §4.6, which removes

prograde/retrograde degeneracy via dynamic stability tests.

With these constraints we calculate the true spin-orbit misalignments ϕ1 and ϕ2 from

the equation (Winn et al., 2007),

cos(ϕi) = sin(ψ) cos(ii) + cos(ψ) sin(ii) cos(λi) (4.1)

modified for our parameter definitions. We calculate spin-orbit alignment angles of 72◦±
3◦ and 73◦+11

−5 for the two planets, respectively. Table 4.2 lists all of KOI-89’s parameter

constraints.

4.5.6 Double Transit

KOI-89.01 and KOI-89.02 simultaneously transit halfway through 2011, causing a

significantly larger transit depth. We indicate this event with the arrow in Figure 4.1

and show the double transit and its synthetic light curve in Figure 4.5. Our best-fit

parameters produce a synthetic light curve that adequately models this event. We do not

find evidence of a mutual event in the Kepler dataset.
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Figure 4.5: Light curve of both planets transiting simultaneously. During the double
transit, the depth is roughly double of a typical transit. Our best-fit model (in red)
correctly reproduces the time of this event and the general shape of the light curve.
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4.5.7 Oblateness

We test the feasibility of KOI-89’s oblateness value of 0.19+0.04
−0.03 by analyzing its breakup

rotation period,

Prot = 2π

√
R3
?

GM?

, (4.2)

We find that the star is rotating at 55% − 76% of its break-up speed by calculating

its rotation period, listed in Table 4.2:

P? =
2πR? cos(ψ)

v sin(i)
, (4.3)

This explains KOI-89’s highly oblate shape and its gravity-darkened gradient, which

are discussed in §5.3. This star’s oblateness is comparable to the fast-rotator Achernar

with oblateness ∼ 0.36 (Carciofi et al., 2008) or other well-known oblate stars such as

Altair (∼ 0.2) (Monnier et al., 2007). Hence, our model produces physically plausible

stellar parameters.

4.6 Dynamic Stability

4.6.1 Coalignment Integrations

Equation 4.1 gives a planet’s spin-orbit alignment ϕi dependence on the sky-projected

alignment λi. We fit for KOI-89’s λi in our gravity-darkening model but are unable to

resolve λ2 due to its low photometric resolution and the host star’s high stellar obliquity

ψ. With gravity-darkening-driven asymmetry absent in KOI-89.02’s light curve, we could

not fully constrain its transit geometry.

To estimate KOI-89.02’s sky-projected alignment, we tested the system for dynamic

stability for various transit geometries. Using our gravity-darkening model, we constrained

KOI-89’s orbital elements with various assumed λ2 values. We then used the orbit inte-

grator Mercury from Chambers (1999) to test each orbit geometry for dynamic stability.

Using Mercury, we perform mixed-variable symplectic (MVS) integrations of KOI-89

over 108 years using 0.5 day timesteps. Using a spherical star allows for physically sound

integrations that obey the conservation of angular momentum with minimal sacrifice; the

stellar J2 ∼ 10−4 value (calculated following Murray & Dermont (2008)), coupled with
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the planet’s long orbital periods, cause nodal precession on a timescale that would not

significantly affect the system’s stability. We assume ice-giant densities of ρ = 1.64 g/cm3

for both planets.

We define an angle α of coalignment between the two orbits, defined relative to their

angular momentum vectors:

α ≡ cos−1

(
~L1 · ~L2

|~L1||~L2|

)
(4.4)

Figure 4.6 shows the survival time of KOI-89 as a function of the coalignment angle

α and conjuction longitude. By varying KOI-89.02’s longitude of periapsis, we vary the

conjuction longitude between the two planets. We define system instability as a planet

ejection or collision event. None of our 360 simulations produced a stable orbit for 108

years, indicating we have not found a physically viable system yet. In general, survival

times are longer for lower α, but the longest-lived architectures are non-planar.

The coalignment angle α is approximately the difference between the two planets’

sky-projected alignment angles. Using the results of our orbital integrations, we estimate

the difference between the sky-projected alignment angles α ≈ |λ2 − λ1| to be 20◦ ± 20◦.

This is a conservative estimate based on our results in Figure 4.6; follow-up observations

would provide a much better calculation of this parameter.

Our 1332 orbit integrations resulted in a maximum survival time of 5.1 × 107 years.

The lack of stable configurations suggests that this system is not yet fully understood. If

the system is in resonance and is non-planar, it may evolve chaotically (R. Barnes et al.,

2015), and hence long-lived configurations may only exist in small “islands” of parameter

space. Alternatively, KOI-89’s stability could be brought about by unknown additional

bodies in the system. We show in §4.6.2 that KOI-89 could be stable if KOI-89.02’s

eccentricity is lower than our best-fit value of 0.50 ± 0.09. A better characterization of

this system’s stability could be understood via TTV analysis or Rossiter-McLaughlin

measurements, but such work is outside the scope of this project.

4.6.2 Eccentric Integrations

In addition to our coalignment/mean longitude stability tests, we also test the stability

of KOI-89.02’s eccentricity of 0.50±0.09 in a coplanar configuration. Van Eylen & Albrecht

(2015) demonstrated that, in general, multiplanet systems have low eccentricities, making

KOI-89 a potential exception to the rule. See §4.5.4 for an explanation of our treatment
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Figure 4.6: Survival times for various initial configurations of the KOI-89 system. Darker
color indicates longer survival time, with the longest survival time 5.1 × 107 years. Be-
yond α = 20◦, ejection/collision events occur very quickly for all initial configurations,
suggesting that the KOI-89 system is more stable near coalignment.
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of longitude of periapsis.

We perform a series of integrations in Mercury (Chambers, 1999) using assumed e2

values ranging from 0.0 to 0.95 and a 0.05 step size. All e2 ≤ 0.35 are stable, roughly

consistent with Petrovich (2015). We show the results of these integrations in Figure 4.7.

Not surprisingly, lower e2 values yield longer lifetimes and overall higher stability.

This result suggests three possibilities. The first (and least likely) possibility is that this

system is in fact not coplanar. If the fitted e2 value of 0.50± 0.09 is correct, then perhaps

higher stabilities are found in slightly non-coplanar orbits. While higher stability in such

a configuration is counterintuitive, it does at least reduce the odds of a close encounter

between the two planets, limiting the chances of a violent collision/ejection event.

The second possibility is that our eccentricity measurement contains systematics. A

grazing transit would reduce the transit duration time similarly to an eccentric orbit

transiting near periapsis, and could produce a V-shaped light curve like we see in Figure

4.4. KOI-89.02’s low signal-to-noise ratio, coupled with the degeneracy between impact

parameter and planet radius that arises in all grazing transits, prevents us from resolving

whether KOI-89.02 is in fact fully eclipsing its host star. KOI-89.02’s TTVs could also

drive up our eccentricity measurement if they are not fully accounted for (Van Eylen &

Albrecht, 2015). High-precision follow-up photometry could better determine KOI-89.02’s

orbit parameters, including its eccentricity.

The third possibility is that unknown bodies in the system provide stability to these

orbits. Antoniadou & Voyatzis (2015) demonstrated that highly eccentric orbits in or

near mean-motion resonance can exhibit long-term stability. Additional bodies could

help stabilize KOI-89.01 and KOI-89.02, explaining why our best-fit parameters do not

display dynamic stability through 108 years in our orbit integrations.

4.7 Discussion

The KOI-89 system is highly misaligned with spin-orbit alignment angles of 72◦±3◦ and

73◦+11
−5 for the two planets respectively. Our preliminary dynamical analysis of the system

§4.6 failed to find a stable solution, so at this time we cannot rigidly constrain the mutual

inclination. However, we recognize that survival times are longer in general for lower α.

Of ten misalignment mechanisms suggested in the literature, five are consistent with

our results. We rule out the other five mechanisms based on three criteria:

1. Consistency with KOI-89’s fundamental parameters such as orbital period, stellar
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Figure 4.7: KOI-89 survival times using various assumed e2 values in a coplanar configura-
tion. Our N-body integrations are stable through 108 years for all e2 ≤ 0.35, which is less
than two σ of our best-fit value. The dashed line marks our best-fit value of 0.50± 0.09.
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radius, etc.

2. The capability to cause extreme misalignment

3. Conformance with mutually aligned planets

We compare our results to each mechanism in Table 4.3.
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Mechanism Relevant Works Criterion 1 Criterion 2 Criterion 3

Star-disk-binary interactions Lai (2014), Xiang-Gruess & Papaloizou
(2014), Batygin (2012)

Yes Yes Inconclusive

Inclination driven by a warped
disk

Terquem (2013) Yes Yes Inconclusive

Planet-planet scattering Chatterjee et al. (2008), Ford et al.
(2005), Raymond et al. (2008), Nagasawa
et al. (2008)

Yes Yes Inconclusive

Kozai resonance Libert & Tsiganis (2009), Thies et al.
(2011), Payne et al. (2010) Kaib et al.
(2011)

Yes Yes Inconclusive

Internal Gravity Waves Rogers et al. (2012), Fuller et al. (2015) Yes Yes Inconclusive

Planet-embryo collisions Levison et al. (1998), Charnoz et al.
(2001)

Yes No No

Chaotic evolution of stellar spin Storch et al. (2014), Valsecchi & Rasio
(2014)

No Yes Yes

Magnetic torquing Lai et al. (2011), Spalding & Batygin
(2014)

No Yes Yes

Coplanar high-eccentricity mi-
gration

Petrovich (2014) Yes No Yes

Inclination Resonance R. Barnes et al. (2015) No Yes Inconclusive

Table 4.3: Possible spin-orbit misalignment mechanisms for the KOI-89 system. We list ten possible causes of spin-orbit
misalignment that have been put forward in the literature and rule out five of them based on our best-fit results and our
estimation of the two planets’ orbital coalignment. The three criteria are: (1) consistency with KOI-89’s fundamental parameters,
(2) the capability to cause extreme misalignment, and (3) the production of mutually aligned planets.
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4.7.1 Star-Disk-Binary Interactions

Batygin (2012) first showed that a stellar companion could warp a star’s protoplanetary

disk into misalignment. Planets could then form in the plane of the disk, resulting in

primordial spin-orbit misalignment (Lai, 2014; Xiang-Gruess & Papaloizou, 2014; Batygin,

2012). This mechanism requires a binary companion in the KOI-89 system, which has not

been reported, but fundamentally agrees with our results in that it could produce highly

misaligned, coplanar orbits.

4.7.2 Inclination Driven By A Warped Disk

A planet in the potential of a warped protoplanetary disk can be driven to very high

misalignment values (Terquem, 2013). Teyssandier et al. (2013) found that Jupiter-mass

planets misaligned from a warped disk experience dynamic friction that realigns the planet

in timescales shorter than the lifetime of the disk. However, Neptune-mass planets can

remain misaligned and have their eccentricities driven up by orbital perturbations from

the disk’s gravitational potential. This mechanism has only been considered for single-

planet systems, so criterion 3 is inconclusive. However, this mechanism agrees with the

first two criteria and cannot be ruled out based on our results.

4.7.3 Planet-Planet Scattering

Our results cannot entirely rule out planet-planet scattering, which is orbit migration

due to close encounters between high-mass objects (e.g. Chatterjee et al., 2008; Ford et al.,

2005; Raymond et al., 2008; Nagasawa et al., 2008). With KOI-89’s net orbital angular

momentum highly misaligned from the star’s spin angular momentum, conservation of an-

gular momentum would require additional planet(s) to scatter the two transiting planets.

In this scenario it is highly unlikely that the two planets would end up near mutual align-

ment. However, if a sufficiently large unknown body exists in this system, then our orbit

integrations may not accurately represent the system and our coalignment constraint for

this system is invalid. We therefore deem this mechanism consistent as a possible cause

of KOI-89’s misalignment. Further studies of KOI-89’s TTV s could confirm the existence

of additional planets.
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4.7.4 Kozai Resonance

Kozai resonance in the KOI-89 system requires an unknown body that is significantly

misaligned with the planets’ orbital plane (Libert & Tsiganis, 2009; Thies et al., 2011;

Payne et al., 2010). Such an event would likely not produce coplanar orbits for KOI-89.01

and KOI-89.02. However, Kaib et al. (2011) suggests that coplanar, inclined orbits might

arise as a result of this mechanism. We therefore deem this method consistent.

4.7.5 Internal Gravity Waves

Rogers et al. (2012) showed that angular momentum transport between the convective

interior and radiative exterior of hot, early-type stars can change the observed stellar

spin axis, resulting in spin-orbit misalignment. This misalignment mechanism happens

independently of orbiting bodies and does not affect coplanarity. The 2-D simulations

performed in Rogers et al. (2012) found that this mechanism can occur on a timescale as

short as tens of years and can explain retrograde orbits. Whether this mechanism can

produce spin-orbit misalignments near 90◦ is still under investigation.

4.7.6 Planet-Embryo Collisions

Planet-embryo collisions can occur in any standard formation model, and they can

drive migration in various ways (Levison et al., 1998; Charnoz et al., 2001). However, this

mechanism can produce large spin-orbit misalignment angles only for small rocky bodies

and does not apply to the highly misaligned giant planets KOI-89.01 and KOI-89.02.

Additionally, this mechanism likely could not produce coplanar misaligned orbits because

the collisions driving this mechanism are unique to each planet.

4.7.7 Chaotic Evolution of Stellar Spin

Storch et al. (2014) and Valsecchi & Rasio (2014) demonstrated that strong tidal dis-

sipation can cause chaotic evolution of stellar spin. This mechanism requires hot Jupiters

with periods . 3 days. Such a body in the KOI-89 system would have to be drastically

misaligned from the plane of the other two orbits; therefore, this mechanism cannot be the

standalone cause of misalignment because some other mechanism would have to misalign

the hot Jupiter. If there was a non-transiting hot Jupiter that were misaligned, it could

torque the star into misalignment with the other planets. If said hot Jupiter fell into its

host star because of tidal decay, it could change both KOI-89’s rotation axis and rotation
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rate (Jackson et al., 2009). However, early-type stars such as KOI-89 are thought to have

weak tidal interactions in general (Ogilvie & Lin, 2007).

4.7.8 Magnetic Torquing

Magnetic torquing between a stellar magnetic field and a protoplanetary disk can

cause misalignment by torquing the disk away from the star’s equatorial plane (Lai et al.,

2011; Spalding & Batygin, 2014). KOI-89 is an early-type star with a weak magnetic

field (Bagnulo et al., 2002), so this mechanism likely could not cause KOI-89’s high mis-

alignment. We note that the magnetic fields of fast-rotators are still under investigation

(Ibañez-Mejia & Braithwaite, 2015); a better understanding of these magnetic fields may

reveal this to be a possible misalignment mechanism for KOI-89.

4.7.9 Coplanar High-Eccentricity Migration

Coplanar high-eccentricity migration can occur in mutually aligned multiplanet sys-

tems with at least one highly eccentric orbit. Secular gravitational effects excite the inner

planet’s eccentricity to very high values, and planetary tidal dissipation during periapsis

reduces the orbit’s semi-major axis. This mechanism occurs primarily in the planets’ or-

bital plane, predominantly maintaining the system’s original spin-orbit alignment angles

(Petrovich, 2014).

4.7.10 Inclination Resonance

If the planets are in resonance and possess a mutual inclination, then the orbital

inclinations can be driven to very large values (R. Barnes et al., 2015). In that case we

may expect to find at least one planet in a misaligned orbit. This phenomenon can also

produce very large eccentricities. However, this mechanism depends on stellar torquing

from tidal interactions for both planets to be discovered in a misaligned state. Such

tidal interaction is weak around early-type stars (Ogilvie & Lin, 2007). While this is

a possible cause of KOI-89’s extreme misalignment, it requires an external mechanism

to bring about an initial mutual inclination. More work is needed to understand if this

scenario is possible and could apply to KOI-89.

4.8 Conclusion

We constrain the individual spin-orbit alignments of multiplanet system KOI-89. With

our gravity-darkened model, we found significant spin-orbit misalignment with angles of
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72◦ ± 3◦ and 73◦+11
−5 for KOI-89.01 and KOI-89.02, respectively. We also constrain other

fundamental parameters of the KOI-89 system and estimate the mutual alignment between

KOI-89.01 and KOI-89.02. We show these results in Table 4.2.

While our measurements alone do not uniquely assign a misalignment mechanism to

KOI-89, the large spin-orbit alignment angles ϕi and low coalignment angle α of this

system limit the possible mechanisms for planet migration. These values, the measured

TTV s, the near 5:2 resonance, and the fast rotation of the star itself all imply a dynamic

formation history.

KOI-89 is of of particular interest because it can experimentally constrain the numer-

ous outstanding hypotheses that have been proposed to generate misalignment. We limit

possible causes to star-disk-binary interactions, disk warping via planet-disk interactions,

planet-planet scattering, or internal gravity waves in the convective interior of the star.

Follow-up observations searching for additional bodies could provide evidence for any of

these hypotheses, including internal gravity waves if no additional bodies are found.

Much could still be learned about the KOI-89 system. Asteroseismic determination of

the star’s oscillation modes could confirm various stellar properties such as stellar radius,

mass, and obliquity. Doppler tomographic observations could constrain the individual

ascending nodes of the two planets. Analysis of the TTV could confirm/deny the existence

of undiscovered planets in the system. High-precision photometry could better constrain

the two planets’ eccentricities and impact parameters and help resolve the degeneracy

between limb-darkening and gravity-darkening. Any of these follow-up observations would

shed new light on the formation of solar systems dissimilar to our own.

The constraints provided in this work add to the sample of known misaligned systems

– particularly misaligned multiplanet systems, of which only a small number are currently

known. The unique nature of the KOI-89 system provides new insight for studying system

formation and evolution. It also adds to the surprising diversity of exosystems discovered

to date. Future studies can apply the knowledge gained from this work to a wide variety

of misaligned and dynamic systems.

We would like to thank the Kepler Science Team for making this work possible –

particularly Dr. David Latham for providing the v sin(i) measurement of this system. JPA

and JWB are funded by NASA Proposal #13-ADAP13-213. RB acknowledges support

from NSF grant AST-1108882.
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Chapter 5: Gravity-Darkened Seasons:

Insolation Around Rapid Rotators

“Gravity-Darkened Seasons: Insolation Around Rapid Rotators” The Astrophysical

Journal, vol. 832, no. 1, 2016, pp. 93-101.

I carried out this sole-author project as a preliminary exploration of the atmospheric

and surficial processes occurring on planets orbiting high-mass stars. While studying

Kepler-462, I wondered about what it would be like to stand on the surface of one of the

planets in that system. I realized that, for those planets, the sun in the sky would change

in shape and color throughout their year due to the star’s oblate shape and the planets’

tilted orbits. This idea struck me as curious, as that situation likely has huge effects on a

planet’s climate and no previous works had ever explored this idea. I built an insolation

model to take a preliminary look at what I call “gravity-darkened seasons”; the following

manuscript serves as an introduction to the in-depth planetary science analysis to be done

on planets orbiting rapid rotators.

5.1 abstract

I model the effect of rapid stellar rotation on a planet’s insolation. Fast-rotating stars

have induced pole-to-equator temperature gradients (known as gravity-darkening) of up

to several thousand Kelvin that affect the star’s luminosity and peak emission wavelength

as a function of latitude. When orbiting such a star, a planet’s annual insolation can

strongly vary depending on its orbit inclination. Specifically, inclined orbits result in

temporary exposure to the star’s hotter poles. I find that gravity-darkening can drive

changes in a planet’s equilibrium temperature of up to ∼ 15% due to increased irradiance

near the stellar poles. This effect can also modify a planet’s exposure to UV radiation by

up to ∼ 80% throughout its orbit as it is exposed to an irradiance spectrum corresponding

to different stellar effective temperatures over time.

5.2 Introduction

A planet’s climate is heavily influenced by the type of star it orbits. For example,

stellar type determines a planet’s exposure to cosmic rays and UV radiation (Bruzual A

& Charlot, 1993; Grießmeier et al., 2009), as well as the system’s ice line and habit-

able zone (Traub, 2011). Planetary atmospheric and climatic behaviors are driven by
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insolation patterns, which in the right circumstances can result in seasons unlike any in

our solar system. This work models insolation around fast-rotating early-type stars and

demonstrates potential effects rapid rotation can have on a planet’s climate.

Early-type stars with effective temperatures ≥ 6200K possess radiative exteriors and

almost no magnetic field. As a result, their primordial rotation rates are not magnetically

damped (Albrecht et al., 2012). Early-type stars therefore often rotate rapidly, which

induces pole-to-equator temperature gradients of up to several thousand Kelvin (Harring-

ton & Collins, 1968; Frémat et al., 2005). This gradient affects both the star’s luminosity

and peak emission wavelength as a function of stellar latitude (Von Zeipel, 1924).

When orbiting such a star, a planet’s seasonal insolation pattern can strongly vary

depending on orbit geometry. Specifically, an inclined orbit results in more exposure to

the host star’s hotter poles, affecting temperature variations over the course of the planet’s

year. The pole-to-equator stellar flux gradient, called gravity-darkening, can also affect

chemical processes in a planet’s atmosphere as it is exposed to irradiance corresponding

to different stellar effective temperatures over time. This effect could play a major role

in the thermal structure, photochemistry, and photoionization of planetary atmospheres

(Lammer et al., 2003; Ribas et al., 2005; Yung, 2005).

Exoplanets orbiting early-type stars are frequently misaligned from their host star’s

rotation plane (Winn et al., 2010; Barnes, 2009; Ahlers et al., 2014; Ahlers et al., 2015).

Therefore, gravity-darkened seasons likely occur on a significant number of exoplanets or-

biting early-type stars. Understanding this phenomenon is an important step in revealing

exoplanet atmospheric and surficial properties in the regime of early-type systems.

In this Chapter, I demonstrate how spin-orbit misalignment and gravity-darkening can

combine to produce unusual seasonal patterns. In §5.2, I derive the insolation model, in

§5.3, I calculate the insolation of a spin-orbit misaligned planet orbiting a gravity-darkened

star and demonstrates its effects on planet equilibrium temperature and received UV flux,

and in §5.4, I discuss implications for climate and atmospheric behavior.

5.3 Model

I model gravity-darkened seasons by including the gravity-darkening effect (Von Zeipel,

1924) in my insolation model and test a planet’s insolation in various orbit configurations.

I use traditional blackbody radiation as the star’s emission function because early-type,

fast-rotating stars have radiative exteriors and are well-modeled as blackbody radiators
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Figure 5.1: Definitions of vectors and angles used in the derivation of Equation 5.1. The
stellar surface vector (~R�) is not constant in magnitude due to the star’s oblateness.

The angle (π − ε) describes the angle between the planet’s line-of-sight vector (~S) a
given location on the stellar surface, which appears in the limb-darkening and rectilinear
projection terms in Equation 5.1.

(Albrecht et al., 2012). The total irradiance as a function of wavelength on a planet at

any given time is,

K(λ) =

∫
φ

∫
θ

B(λ, T (θ))
I(µ)

I(1)
µR� sin2(θ)dθdφ (5.1)

where B(λ, T (θ)) is the stellar emission function, I(µ)/I(1) is the normalized stellar

limb-darkening profile, and µ is a factor to represent the star as a projected disk in the

plane of the planet’s sky. The integral limits φ and θ are traditional azimuthal and polar

angles, respectively, with the XY plane defined as the stellar equator. A two-dimensional

integral with proper limits of azimuthal angle φ and polar angle θ yields the instantaneous

stellar output per wavelength as seen by the orbiting planet. I explain how to handle each

element of the above equation in the following subsections and in §5.6 and list static values

of the model in Table 5.1.

5.3.1 Stellar Emission

The stellar emission function B(λ, T (θ)) is the function most appropriate to the star

being modeled (e.g. blackbody radiation). The type of emission function in Equation

5.1 can be interchanged straightforwardly because the star’s gravity-darkening effect is
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handled entirely within the effective temperature function T (θ).

A star’s rotation induces a pole-to equator gradient in effective surface gravity due to

centrifugal force. For fast-rotators, the centrifugal force is enough to significantly lessen

the effective gravity near the equator, resulting in oblate stars. This change in surface

gravity also produces a temperature gradient across the surface, described by the von

Zeipel theorem:

T (θ) = Tpole

(
g(θ)

gpole

)β
(5.2)

where g(θ) is the effective surface gravity as a function of latitude, g(0) ≡ gpole is the

surface gravity at the rotation pole, and β is the so-called gravity-darkening parameter.

This parameter is 0.25 for ideal blackbody radiators and decreases toward zero depending

on the radial extent of a star’s convective envelope. I derive the stellar temperature

function T (θ) in §5.6.1.

Stars of spectral type ∼F6 or earlier are expected to have radiative exteriors and

are well-modeled by blackbody emission; hence, β = 0.25 is a reasonable assumption.

However, recent observations suggest that β can deviate significantly from theory. For

example, Monnier et al. (2007) measured Altair’s gravity-darkening parameter at 0.190±
0.012.

5.3.2 Limb-Darkening

Stellar limb-darkening is a brightness effect that stems from the star’s optical depth

and scale height, which results in the outer limb of a star appearing dimmer than the the

center for a given point of view. This effect is well-reproduced with the emperical formula

I(µ)

I(1)
= 1−

∞∑
k=1

ak(1− µk/2), (5.3)

where µ = cos(π−ε) describes the angle between the line of sight and the normal vector of

the star’s surface (see Figure 5.1). The constants ak represent limb-darkening coefficients

unique to each star; however, several works provide estimates of these coefficients as

functions of stellar effective temperature (Sing, 2010; Claret & Bloemen, 2011; Claret

et al., 2013).

Typically, linear or quadratic approximations of Equation 5.3 are employed in stellar

models. As long as µ is known, then any limb-darkening law can be used in Equation 5.1.
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Figure 5.2: Example of how the total stellar surface area exposed to the planet changes
for different orbital distances. The colored region of the star represents the area that
contributes to the planet’s instantaneous irradiance. The border of this area is defined
by the region where the line-of-sight vector ~S is tangential to the stellar surface. At 2R�,
the planet is exposed to 28% of the stellar surface (S�), and at 3R� the planet is exposed
to 36%.
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I derive µ for my chosen coordinate system in §5.6.2.

5.3.3 Integral Limits

Evaluating Equation 5.1 depends sensitively on the choice of the integral limits (φ, θ).

The rotation-induced asymmetry of the star adds two-fold difficulty to a traditional in-

solation model: the star is no longer spherically symmetric and its effective temperature

varies as a function of stellar latitude. Figure 5.2 shows how the planet’s location in the

system determines what part of stellar surface must be integrated. In general, the limits

of integration are set by all (φ, θ) that satisfy the inequality,

~R� · ~r ≥ R2
� (5.4)

which I derive in §5.6.3. This inequality is valid for any position in any orbit configuration,

except for the limit of extremely close-in orbits (r/R� . 2.2), where the planet’s size

becomes relevant in determining insolation by latitude.

5.4 Results

I apply the gravity-darkened insolation model to a synthetic system using the param-

eters listed in Table 5.1. I demonstrate how gravity-darkened seasons are affected by

stellar rotation rate in Figure 5.3. I demonstrate possible seasonal patterns for various

orbit configurations in Figure 5.4 and show how the planet’s irradiance by wavelength can

change in Figure 5.6.

Planets experiencing gravity-darkened seasons exhibit two insolation characteristics

unique from planets orbiting solar-type stars. First, nonstandard patterns in the planet’s

total received solar flux and equilibrium temperature occur throughout its year; the na-

ture of these patterns depends on the planet’s inclination and direction of axial tilt, or

precession angle. Second, the insolation’s spectral energy distribution varies over time due

to being exposed to emission corresponding to the hotter stellar poles or cooler equator.

Using a blackbody emission function and quadratic limb-darkening, I find that the

equilibrium temperature for a planet on an inclined orbit can vary by as much as ∼ 15%

throughout the course of its orbit. This would, for example, correspond to variations in

equilibrium temperate between∼ 300K−345K on a planet near the habitable zone. Figure

5.3 shows how stellar rotation rate drives planetary temperature change for inclined orbits.

This change in temperature is caused purely by gravity-darkening and stellar oblateness;
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Stellar Parameters Value

M� 2.0 M?

Req 2.1 R?

Tpole 7700 K

a1 0.19

a2 0.36

ζ 0.23

β 0.25

Planet Parameters Value

a 0.5AU

e 0

i 90◦

ω 0◦

Ω 0◦

A 0

Table 5.1: Static parameters (unless otherwise indicated) used when calculating the
planet’s insolation in Figures 5.3, 5.4, and 5.6. §5.7 lists definitions of all variables.
The planet’s semimajor axis and inclination and the star’s rotation rate are listed with
each simulation. The stellar limb-darkening coefficients a1 and a2 follow Sing (2010).
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Figure 5.3: Fractional change in the planet’s equilibrium temperature versus stellar ro-
tation rate throughout the course of the planet’s orbit for various inclinations and orbit
distances. The fractional change in temperature corresponds to the planet being primarily
exposed to the hotter poles or cooler equator due to its orbit geometry. In general, close-in,
highly inclined planets experience the strongest induced temperature changes, but even
modestly inclined planets in the outer solar system can undergo significant temperature
variations. Early-type stars frequently rotate near their break-up speed; for example,
Vega and Regulus both rotate at near 90% of their break-up speeds (Yoon et al., 2010;
McAlister et al., 2005).
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effects such as planet albedo or orbital eccentricity were not considered in this study.

The gravity-darkening effect can combine with traditional seasonal effects brought

about by a nonzero planet obliquity, resulting in more complex seasons. Traditionally,

a planet’s obliquity causes more/less light exposure for a given latitude throughout its

orbit. However, planets on inclined orbits around gravity-darkened stars receive more total

irradiance each time they pass over one of the stellar poles – twice per orbit. Gravity-

darkening produces planetary temperature changes at twice the frequency of the planet’s

traditional seasons. These two effects combined can result in unusual seasonal behaviors

(Figure 5.4). I compare gravity-darkened seasons with obliquity-driven seasons in Figure

5.5 and derive the relevant calculations in §5.6.5.

The rotation-induced temperature gradient across the stellar surface results in the

planet receiving different emission intensities throughout its orbit. This shift is especially

evident in the ultraviolet for early-type stars. Figure 5.6 displays an inclined planet’s

normalized wavelength-dependent insolation when exposed to the stellar equator and

stellar pole.

5.5 Discussion & Conclusion

5.5.1 Climate Effects

The equilibrium temperature of an inclined planet around a gravity-darkened star can

vary by as much as ∼ 15% throughout its year due to changing total solar irradiance. This

effect is additive with traditional seasons – hemispherical temperature changes brought

about by a planet’s obliquity. Traditional seasons occur once per orbit, but gravity-

darkened seasons occur twice per orbit – how these two effects coincide plays a large role

in determining the planet’s seasonal behaviors.

Ultimately, the nature of gravity-darkened seasons is driven by the phase difference

between the planet’s precession angle and longitude of ascending node. If traditional sum-

mer/winter occurs near the stellar poles, the planet experiences hot summers and mild

winters. If traditional summer/winter instead occur near the stellar equator, mild sum-

mers and extreme winters occur, with unusually warm spring/autumn seasons. In fact,

Figure 5.3 shows that the gravity-darkening effect can overpower seasonal temperature

changes caused by obliquity such that traditional spring and autumn are hotter than a

hemisphere’s summer, producing two distinct peak heating seasons.
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Figure 5.4: Insolation at 45◦ north latitude throughout an orbit for different precession
angles. The blue, red, and cyan plots respectively correspond to precession angles of 0◦,
45◦, and 90◦ relative to the planet’s longitude of ascending node. All three configurations
have obliquities of 30◦ and include gravity-darkening induced changes in flux for orbit
inclinations of 0◦, 30◦, and 90◦. For all configurations, variations away from traditional
insolation patterns scale with inclination and stellar rotation rate (see Figure 5.3). The
different precession angles produce significantly different seasonal patterns due to com-
bining with the gravity-darkening effect at different phases. A precession angle of 90◦

results in mild winters and extreme summers, while a precession angle of 0◦ produces
mild summers and extreme winters and, at high inclinations, two distinct hottest times
of the year. Figure 5.5 demonstrates the effect of multiple insolation peaks at different
planet obliquities.
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Figure 5.5: Annual normalized flux at 45◦ North latitude excluding (left) and including
(right) gravity-darkening effects. Both plots include yearly insolation values with respect
to 0◦, 30◦, 60◦, and 90◦ planet obliquity values. For both sets of integrations, I set the
planet’s precession angle at ρ = 0◦ and inclination at i = 90◦ (see Figure 5.4). The left
plot shows traditional insolation patterns around a spherically symmetric star. The right
plot demonstrates that gravity-darkened seasons occur at all obliquity values. At low
obliquities, irradiance varies as a sinusoid, effectively producing seasons at twice the orbit
frequency.
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Figure 5.6: Normalized irradiance across the surface of a planet undergoing gravity-
darkened seasons. The solid and dashed lines show irradiance by planet latitude when
closest to the stellar pole and stellar equator, respectively. The incoming stellar flux is less
at all wavelengths when the planet is near the stellar equator. The most drastic change
in flux is in UV wavelengths, where intensity can change by as much as 80% throughout
the planet’s orbit. These changes in UV irradiance occur at twice the orbit frequency.



73

This temporal heterogeneity in total solar irradiance would likely drive radiative forc-

ing on an Earth-like planet, directly impacting its sea surface temperature and hydro-

logical cycle. For example, as the climate warms, its atmosphere would hold more water

vapor, increasing greenhouse gases and further increasing the planet’s temperature (Held

& Soden, 2000; Forster et al., 2007). The reverse would hold true when the climate cooled.

Changes in total irradiance could also affect giant planet deflation/inflation rates (Podsi-

adlowski, 1993; Fortney et al., 2011). This starkly contrasts with insolation in our solar

system, where total solar irradiance varies by only ∼ 0.2% over 11-year cycles (Haigh,

2007).

The equilibrium temperature changes due to gravity-darkening shown in Figure 5.3

are maximum values – in reality, this effect would be mitigated by the planet’s albedo,

thermal inertia, and atmosphere. The planet would likely not be able to circulate heat

globally as quickly as its total irradiance changed, especially for close-in planets. For

example, 55 Cancri e is an exoplanet with observed poor global heat transport (Demory

et al., 2016). However, the general trends in Figure 5.3 would still be driven by the

planet’s changing exposure to sunlight intensity.

Figures 5.4 and 5.5 demonstrate how a planet’s precession angles and obliquities can

affect seasonal insolation patterns when orbiting a gravity-darkened star. These values

can change throughout a planet’s lifetime. For example, Earth’s rotation axis precesses

every 26,000 years and oscillates in magnitude every 41,000 years (Lissauer et al., 2012;

Barnes et al., 2016a). A spin-orbit misaligned planet undergoing these changes in axial tilt

would be driven through the different insolation scenarios in Figure 5.4 on its precession

timescale. Obliquity variations could drive Milankovich cycles whose nature depends on

orbit geometry. Future studies of these phenomena could help reveal planetary processes

driven by gravity-darkened seasons for the first time.

Recent works on habitable planet Proxima Centauri b (Anglada-Escudé et al., 2016)

offer a path for characterizing exoplanets in detail. By constraining the planet’s formation

and migration history, high-energy irradiance, incoming stellar particle winds, and tidal

interactions, along with the host star’s evolution history, one can estimate the planet’s

atmospheric loss rate, its water budget, and its overall climate regime (Ribas et al., 2016;

Turbet et al., 2016). Barnes et al. (2016b) and Meadows et al. (2016) demonstrate that

a planet’s geologic behavior can be explored by modeling its orbit evolution and tidal

history, as well as heavy element abundances in the planets core. Such works provide
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possible next steps toward characterizing the nature of exoplanets in early-type systems.

5.5.2 Atmospheric Effects

Figure 5.6 shows how the irradiance by wavelength on a spin-orbit misaligned exo-

planet orbiting a gravity-darkened star can vary throughout its orbit. These changes

occur at all wavelengths, with the strongest variations occurring at wavelengths lower

than the peak emission wavelength (near UV-violet for early-type stars). The total UV

irradiance can vary by as much as 80% throughout an exoplanet’s year, with the changes

occurring near-sinusouidally at twice the orbit frequency.

Variations in a planet’s UV irradiance play a significant role in its photochemistry

(Forster et al., 2007). UV light drives the production of ozone in the Earth’s stratosphere

(Caldwell & Flint, 1994). UV irradiation also plays a significant role in the atmosphere

of Saturn’s moon Titan, driving much of the organic chemistry in its atmosphere and

producing large amounts of aerosols (Szopa et al., 2006). Extreme UV irradiation can drive

loss processes in an exoplanet’s atmosphere. Hydrogen-rich exoplanets under extreme

ultraviolet radiation may evaporate down to their cores (Lammer et al., 2003).

Forster et al. (2007) shows how even very small changes in UV irradiation on the Earth

can have significant impacts on the structure of its atmosphere. Gravity-darkening can

cause massive changes in UV irradiance throughout an inclined planet’s orbit; future pho-

tochemical and radiative tranfer models could reveal the full impact of gravity-darkening

on a planet’s atmopshere.

5.5.3 Conclusion

With rapid stellar rotation and planet spin-orbit misalignment common in early-type

systems (Winn et al., 2010; Albrecht et al., 2012), gravity-darkened seasons likely occur in

a significant number of exoplanets. This work quantifies how this phenomenon scales with

stellar rotation rate, planet inclination, and semi-major axis and shows that a planet’s

equilibrium temperature can nominally vary by as much as 15%.

Such a planet’s total solar influx varies at twice its orbit frequency. This work shows

how traditional seasons caused by planet obliquity can combine with its changing ir-

radiance and demonstrates how planet obliquity and gravity-darkening can combine to

produce unusual seasonal patterns. In early-type systems, these effects are strongest in

UV irradiance, which can have profound impacts on a planet’s atmosphere.

The insolation patterns modeled in this work represent a preliminary investigation into
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the nature of planets orbiting fast-rotating stars. As planet detection and characterization

techniques improve, more and more planets undergoing gravity-darkened seasons will

likely be revealed. Future atmospheric models could reveal how gravity-darkened seasons

can affect a planet’s climate and photochemistry, shedding new light on planets orbiting

stars dissimilar to our own.

5.6 Derivations

5.6.1 Effective Temperature Function

To second order, the stellar effective surface gravity is the gradient of the total surface

potential,

~g = −~∇
[
−GM�
R�

(
1−

J2R
2
eqP2(µ)

R�

)
− 1

2
Ω2
�R

2
� sin2(θ)

]
(5.5)

where Req is the star’s equatorial radius, J2 is the second-order gravitational harmonic

term dictated by the star’s oblateness, P2(µ) is a second-order Legendre polynomial, and

Ω is the star’s rotation rate. This gradient produces a two-component vector:

~g = grr̂ + gθθ̂ (5.6)

Converting these terms to Cartesian coordinates,

gx = gr cos(φ) sin(θ)− gθ sin(θ)

gy = gr sin(φ) sin(θ) + gθ cos(θ)

gz = gr cos(θ)

(5.7)

The total effective gravity does not depend on the azimuthal angle φ, so g ≡ g(θ) =√
g2
x + g2

y + g2
z . With g(θ), the star’s effective temperature distribution is known through

Equation 5.2. The expression for temperature can then be inserted into any stellar emis-

sion function.
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5.6.2 Limb-Darkening and Rectilinear Projection

Figure 5.1 shows the angle ε between the planet’s line of sight and a given location on

the stellar surface. The law of cosines gives µ = cos(π − ε) as

µ =
r2 −R2

� − S2

2R�S
(5.8)

The planet’s orbit vector is:

~r = r


cos(Ω) cos(ω + f)− sin(Ω) sin(ω + f) cos(i)

sin(Ω) cos(ω + f) + sin(Ω) sin(ω + f) cos(i)

sin(ω + f) sin(i)

 (5.9)

Modeling the star as an oblate spheroid gives the stellar radius:

~R� =
Req√

sin2(θ) + cos2(θ)
(1−ζ)2


cos(φ) sin(θ)

sin(φ) sin(θ)

cos(φ)

 (5.10)

where ζ is the star’s oblateness and Req is the star’s equatorial radius. The stellar

oblateness can be derived via the Darwin-Radau relation (e.g., Bourda & Capitaine, 2004).

S can be expressed in terms of r and R� via,

S = r2 +R2
� − 2rR� cos(α) (5.11)

where

cos(α) =
~r · ~R�
|~r|| ~R�|

(5.12)

Backsolving, the limb-darkening angle µ can be expressed in terms of the stars polar and

azimuthal angles (φ, θ) and the planet’s orbital elements. This same factor µ appears

again in Equation 5.1 outside of the limb-darkening term. This extra factor projects the

stellar area of the parameters as a rectilinear disk in the plane of the planet’s sky, and

is necessary to properly represent the stellar projected area exposed to the planet at any

given moment.
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5.6.3 Integral Limits

The limits of (φ, θ) are determined by the line-of-sight vector ~S. From the planet’s

point of view, the stellar edge of visibility is set according to where ~S is tangential to the

stellar surface (~S · ~R = 0). The angle (π− ε) is constrained to −π/2 ≤ π− ε ≤ π/2. With

|π − ε| ≥ π/2, the following inequality

r2 ≥ R2
� + S2 (5.13)

is true for the region of the star exposed to the planet. Using the law of cosines,

S2 = r2 +R2
� − 2(~r · ~R�) (5.14)

Inputting Equation 5.14 into Equation 5.13, a useable inequality describing the limits of

(φ, θ) is obtained (Equation 5.4). Equations 5.9 and 5.10 can be employed to evaluate

this inequality. Depending on the type of numerical integrator being used, this inequality

can be applied to Equation 5.1 as a boolean statement or, more elegantly, by inserting

dynamic functions (φ(θ), θ(φ)) as limits of integration.

5.6.4 Planet Equilibrium Temperature

Traditionally, a planet’s equilibrium temperature is straightforward to calculate. How-

ever, the gravity-darkening effect can cause a planet to be exposed to different stellar

effective temperatures and stellar projected areas throughout the course of its orbit –

therefore, the stellar luminosity (as seen by the planet) can change over time. An ap-

proximate value of the instantaneous “effective” stellar luminosity can be expressed as an

integral of Equation 5.1 over all wavelengths of the exposed part of the star,

L̂� =

∫ ∞
0

K(λ)dλ (5.15)

The integral limits given by Equation 5.4 apply to this integral. The total effective

luminosity as seen by the planet is then,

L� = L̂�
S

Ŝ
(5.16)
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where S is the total stellar surface area of the oblate spheroid and Ŝ is the stellar surface

area exposed to the planet. The effective luminosity can then be used to approximate the

planet’s equilibrium temperature for a given part of its orbit,

Teq '
(
L�(1− A)

16σπr2

)1/4

(5.17)

where A is the planet’s albedo and σ is the Stefan-Boltzmann constant.

5.6.5 Insolation and Planet Obliquity

Figures 5.4 and 5.5 show normalized irradiance at 45◦ north latitude for different orbit

geometries and axial tilts. I account for planet obliquity (η) and precession angle (ρ) by

adopting the derivation from McGehee & Lehman (2012). I start with a point u on the

surface of the planet in spherical coordinates,

u =


cos(ϕ) cos(γ)

cos(ϕ) sin(γ)

sin(ϕ)

 (5.18)

where ϕ is planet latitude and γ is planet longitude. I rotate this point on the surface by

planet obliquity η and planet precession angle ρ,

û =


cos(ρ) − sin(ρ) 0

sin(ρ) sin(ρ) 0

0 0 1




cos(η) 0 sin(η)

0 1 0

− sin(η) 0 cos(η)

u (5.19)

which gives the incident angle of any point on the planet’s surface. I combine the

effective luminosity seen by the planet at any time with its obliquity to find the incoming

flux F (ϕ, γ) of the planet as a function of planet latitude and longitude via,

F (ϕ, γ) =

∫
L�(r̂ · û)

4πr2
dγ (5.20)

where L� is given by Equation 5.16 and r̂ is the unit vector of the planet’s orbit, given

by Equation 5.9.

To generate Figure 5.4, I set the planet latitute to 45◦ and integrate equation 5.20
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with respect to all longitudes receiving irradiation. I perform this calculation at different

points in the planet’s orbit to find its normalized flux. Planet rotation rate does not affect

this calculation because the integration includes all substellar longitudes.

5.7 Parameter Definitions

Parameter Definition

A Planet’s albedo

a Planet’s semi-major axis

B(λ, T (θ)) Stellar emission function

e Planet’s eccentricity

f Planet’s true anomaly

I(µ) Stellar limb-darkening profile

i Planet inclination (spin-orbit

misalignment)

J2 Gravitational harmonic con-

stant

M� Stellar mass

R� Stellar radius (Eq. 5.10)

Req Star’s equatorial radius

u Planet coordinates (Eq.

5.18)

~r Planet’s orbit radius (Eq.

5.9)

~S Line-of-sight vector (Fig.

5.1)

S� The star’s surface area

α angle between ~r and ~R� (Fig.

5.1)

Parameter Definition

β Gravity-darkening parame-

ter (Eq. 5.2)

γ Planet’s longitude (Eq. 5.18)

ε angle between ~S and ~R�

(Fig. 5.1)

ζ Star’s oblateness

η Planet’s obliquity (Eq. 5.19)

θ Star’s polar angle

λ Stellar emission wavelength

µ Rectilinear projection factor

(Eq. 5.8)

ρ Planet’s precession angle

(Eq. 5.19)

σ Stefan-Boltmann constant

φ Star’s azimuthal angle

ϕ Planet’s latitude (Eq. 5.18)

Ω Planet’s longitude of ascend-

ing node

Ω� Star’s angular rotation rate

ω Planet’s argument of peri-

centre
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Chapter 6: LASR-Guided Stellar

Photometric Variability Subtraction:

The Linear Algorithm For Significance

Reduction

“LASR-guided stellar photometric variability subtraction - The Linear Algorithm for

Significance Reduction”, Astronomy & Astrophysics, vol. 615, no. 1, pp. 128-139

For this project, I took my research in a new direction out of necessity. I wanted to

continue measuring spin-orbit alignment values around high mass stars; however, many

of the most interesting unexplored Kepler datasets were contaminated with stellar seismic

activity. The star’s varying brightness drastically affected the overall shape of the transit

light curves I wanted to analyze, rendering them inaccessible. Instead of giving up on

them, I decided to try subtracting the star’s variable signal in order to separate the tran-

sit event from seismic activity. I first tried using existing programs for resolving stellar

variability, but I found that with my chosen target system, KOI-976, these programs fell

into degeneracies and could not properly fit the 100+ oscillations buried within the pho-

tometry. I therefore developed a tool specifically for subtracting stellar variability from

rapidly-rotating pulsators such as δ-Scuti and γ-Doradus stars. This technique, which I

call the Linear Algorithm for Significance Reduction – LASR – subtracts oscillations one

at a time in frequency space, removing the issue of “too many frequencies”. I publish this

technique with the intent of using it to clean transit photometry around variable stars in

the future in order to perform detailed analyses of the transit events.

6.1 Abstract

We develop a technique for removing stellar variability in the light curves of δ-Scuti

and similar variable stars. Our technique, which we name the Linear Algorithm for

Significance Reduction (LASR), subtracts oscillations from a time series by minimizing

their statistical significance in frequency space. We demonstrate that LASR can subtract

variable signals of near-arbitrary complexity and can robustly handle close frequency pairs

and overtone frequencies. We demonstrate that our algorithm performs an equivalent fit
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as prewhitening to the straightforward variable signal of KIC 9700322. We also show

that LASR provides a better fit to seismic activity than prewhitening in the case of the

complex δ-Scuti KOI-976.

6.2 Introduction

Recent observing programs such as the Kepler mission have demonstrated that stellar

variability in high mass stars often renders transit light curves unusable. (Basri et al.,

2010). Additionally, high-mass stars often rotate rapidly, inducing an oblate shape and a

pole-to-equator luminosity gradient across the stellar surface (Barnes, 2009; Barnes et al.,

2011; Ahlers et al., 2015; Ahlers, 2016). These two effects add challenges to traditional

light curve analysis, radial velocity measurements, Doppler tomography, and Rossiter

McLaughlin measurements (Udry et al., 2007; Gimenez, 2006).

Approximately 60% of stars in the Kepler field of view display more stellar variability

than the Sun (McQuillan, 2013). Such variability in transit light curves make traditional

fitting challenging or impossible. Many of these targets are low-mass stars with vari-

ability caused by non-sinusoidal effects such as sunspots in their convective exteriors.

Techniques for analyzing non-sinusoidal or non-periodic signals in the light curves such

as the autocorrelation function (McQuillan et al., 2014) and Gaussian processes (Aigrain

et al., 2016) produce strong results when applied to such stars. However, high-mass stars

behave quite differently. At ∼ 6250K and hotter, stars invert to become radiative rather

than convective at their surface (Winn et al., 2010). These stars have weak or nonexistent

sunspots, and commonly rotate rapidly as a mostly-rigid body throughout their lifetimes.

High-mass stars in the classical instability strip pulsate with radial and nonradial modes

at high amplitudes. Therefore, analysis of stellar variability in the light curves of high-

mass stars comes with a unique set of challenges and must be handled differently than

variability in low-mass stars.

For classical pulsators such as Delta Scuti (δ-Scuti) and Gamma Doradus stars, the

technique of “prewhitening” serves as the traditional method of asteroseismic analysis of

transit light curves (e.g., Hernández et al., 2009; Poretti et al., 2009). Prewhitening fits

sinusoids to photometry in an iterative process. This algorithm performs least-squares

fits of several of the highest-amplitude oscillations in the time domain, determining ap-

proximate frequency, amplitude, and phase values for those oscillations. Prewhitening

then fits several next-highest amplitude oscillations as a running total with the original
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fit, repeating this process until stellar variability has been resolved.

Prewhitening often serves as an adequate method for removing stellar variability and

determining the frequencies of oscillation in classical pulsators. However, we explore an

alternate route out of necessity: we found that prewhitening provided an inadequate fit of

the complex signal of Kepler Object of Interest (KOI) 976. KOI-976 is a high-amplitude,

rapidly rotating δ-Scuti star with a complex variable signal. We tried to remove stellar

variability from the transit light curve of KOI-976 by applying prewhitening, but we found

that the complex signal contained too many oscillations for an accurate least-squares fit

in the time domain. This roadblock led us to explore removing stellar variability in

frequency-space instead through a new process that we call the Linear Algorithm for

Significance Reduction (LASR).

In this paper we develop a frequency-domain method for removing the asteroseismic

signal of high-mass pulsators. In §6.3 we detail the LASR technique. In §6.4 we apply

LASR to a synthetic dataset and to δ-Scutis KIC 9700322 and KOI-976 to compare our

technique against prewhitening. In §6.5 we discuss how LASR compares with existing

techniques for analyzing variability in photometric data.

6.3 Methods

The Linear Algorithm for Significance Reduction (LASR) serves as an alternate method

to prewhitening for signal reduction. It resolves a linear combination of oscillations in

a time series by minimizing each oscillation’s significance in the frequency domain. The

algorithm operates iteratively: it reduces the highest-amplitude frequency, subtracts it

from the time series, and then reduces the new highest-amplitude frequency.

The LASR technique has two primary advantages over traditional prewhitening. First,

because it operates in frequency space, LASR’s fitting process treats every oscillation as

independent and avoids the degeneracies and complex parameter space that prewhiten-

ing encounters for datasets containing many oscillation modes. Second, the computer

code behind LASR is extremely simple to run and requires very little knowledge of sig-

nal processing, making it an accessible technique for inexperienced researchers. In §6.3.1

we detail the algorithm for significance reduction. In §6.3.2 we discuss handling interde-

pendent frequencies including close frequency pairs and integer-multiple frequencies. In

§6.3.3 and §6.3.3, we detail our best-fit error analysis. In Appendix 6.7 we mathematically

derive that LASR’s straightforward approach to subtracting stellar oscillations is robust
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for sinusoidal variability.

6.3.1 LASR Algorithm

LASR combines two well-known tools for signal processing: the Lomb-Scargle normal-

ized periodogram, and the downhill simplex routine. To remove a single oscillation from

a time series, LASR creates a window of the power spectrum of the time series around

the peak of that oscillation (Figure 6.1). It then applies the downhill simplex routine to

minimize that peak’s significance.

We use the traditional Lomb-Scargle normalized periodogram (Press, 2007) for spec-

tral analysis. The variations in brightness in high-amplitude δ-Scuti stars correspond

to ∼5% variations in luminosity. We test whether these variations in uncertainty affect

LASR by comparing the traditional Lomb-Scargle normalized periodogram with the gen-

eralized periodogram (e.g., Zechmeister & Kürster, 2009; Vio et al., 2010), which applies

weights to each time bin according to its photometric uncertainty. We find no noticeable

differences between the two methods for δ-Scuti stars KOI-976 and KIC 9700322. In

the case of different noise properties and instrument systematics, more computationally

expensive techniques that better handle time bin uncertainty may provide better results

in the significance reduction process. Such systematics do not appear in this analysis; we

therefore favor the traditional Lomb-Scargle periodogram,

P (ω) =
1

2σ2

∑
φ=0,π

2

|
∑

j(hj − h̄) sin(ω(tj − τ) + φ)|2∑
j sin2(ω(tj − τ) + φ)

(6.1)

where hj is the photometric flux value at time tj, σ is the standard deviation in the

dataset, φ is a phase offset that includes the values 0 and π/2, and ω = 2πf is the angular

frequency being sampled. The offset τ is defined as,

tan(2ωτ) =

∑
j sin(2ωtj)∑
j cos(2ωtj)

(6.2)

Several works exist to explain the statistical significance of frequency peaks in a peri-

odogram (e.g., Press, 2007; Baluev, 2008). We represent the statistical significance of an

oscillation in our dataset by sampling a window of frequencies around the peak. LASR

evenly samples frequencies in a window approximately three times the full width of the

peak.



84

LASR’s adjustable window width depends on the width of frequency peaks; in general,

a longer time series means narrower peaks in a periodogram. For KOI-976’s short-cadence

photometry discussed in §3, we sample P (ω) 40 times in a window width of 0.7µHz. We

sum P (ω) values and use the resulting value to represent the significance Si(ω,A, δ) of

the ith oscillation in our dataset as a function of frequency ω, amplitude A, and phase δ.

The goal of LASR is to find the (w,A,δ) values that minimize S(ω,A, δ). To do this,

LASR uses a downhill simplex routine (Nelder & Mead, 1965; Press, 2007) to find the

minimum of S(ω,A, δ). We choose this minimization routine over more robust routines

such as Powell’s Method (Brent, 2013) because of the well-behaved parameter space that

results from minimizing oscillations in the frequency domain (see Appendix 6.7). In

Appendix 6.6.1, we list the necessary inputs to operate LASR and discuss computation

times for running the algorithm, and in Appendix 6.6.2, we provide pseudocode for writing

this routine in any computer programming language.

6.3.2 LASR and Interdependent Frequencies

In general, LASR removes oscillations from a dataset one at a time because they are

linearly independent of one another. However, two scenarios arise where this assumption

fails: close frequency pairs and overtone frequencies.

We define close frequency pairs as oscillations close enough together in frequency

space that spectral analysis cannot resolve them individually (Figure 6.2), which can

cause problems for prewhitening. If two frequencies exist close enough together that their

periodogram windows (described in §6.3.1) overlap, then Si(ω,A, δ) cannot be properly

minimized. Close frequency pairs are common both for complex datasets with many

independent oscillations and for short time series that yield wide frequency peaks in

their periodograms. LASR’s solution, however, is simple: just remove both peaks at

once. LASR can remove any number of peaks simultaneously by minimizing a combined

Si(ω,A, δ) function that samples P (ω) values for all relevant peaks, and then minimizing

that function within a single large simplex.

Overtone frequencies can be more challenging because they are not mathematically

independent. The power spectrum of an oscillation can be changed dramatically by inte-

ger multiple frequencies. Therefore, minimizing Si(ω,A, δ) for a single frequency in this

scenario will result in a poor determination of its (w,A,δ) values.

The solution is again to simply remove both peaks simultaneously. The underlying
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Figure 6.1: A periodogram window for the highest-amplitude peak in the synthetic time
series discussed in §6.4.1. We set LASR to sample the spectral power of this peak 25
times. The black and red points show the Pi(ω) before and after LASR minimized the
peak’s significance. The unreduced oscillation shows a clear peak with aliasing on either
side. The dashed line marks the true frequency of this oscillation. LASR successfully
reduces this oscillation and yields correct measurements of its (w,A,δ) values (see Table
6.2.)
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challenge stems from recognizing that this behavior is occurring in the first place. In our

analysis of KOI-976, we identify all relevant frequencies through spectral analysis before

applying the LASR technique to search for such resonances. We find scant evidence of this

scenario arising in KOI-976, but we test simultaneous subtraction in an idealized dataset

in §6.4.1 and show its successful determination of (w,A,δ) for overtone frequencies (Table

6.2).

Synthetic Time Series Quantity Value

Length of synthetic dataset 90 days

Photometric cadence 1 min

Flux normalization constant 1.0

Transit gap start times
∑4

n=1 20n days

Transit gap lengths 10 hr

Large gap start time 4.5× 106 s

Large gap length 3.0× 105 s

Gaussian uncertainty 5.0× 10−4

Lag correlation coefficient 0.5

Injected transit depth 1.2× 10−4

Injected transit period 15 days

Table 6.1: Global parameters of the synthetic data we generate to test LASR. We choose
these parameters based on typical quantities of Kepler short-cadence photometry. The
lag correlation coefficient sets the lag-1 autocorrelation between successive time samples,
transforming Gaussian noise to correlated noise (Haykin, 2006).
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Figure 6.2: Log-scale plot of the power spectrum of two close frequencies (f2 and f3

in Table 6.2). The two oscillations appear in frequency space as a single asymmetric
peak (black). LASR minimizes the significance of both peaks simultaneously (red) and
accurately determines the (w,A,δ) of both oscillations. LASR samples frequencies of a
periodogram window for each frequency; for close frequency pairs these two windows
overlap.
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Figure 6.3: Total power spectrum of the synthetic time series before (black) and after
(red) LASR reduction of its seven oscillations. As we show in Table 6.2, LASR reduces all
oscillations by over 99.9% of their original significance and yields accurate (w,A,δ) values.
The injected transit causes no noticeable effect on the power spectrum.
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f#

fstart

(µHz)

fresult

(µHz)

factual

(µHz)

astart

(10−3)

aresult

(10−3)

aactual

(10−3)
δstart δresult δactual

1 228.68 228.7±5e-6 228.7 10.0 20.0013±0.0014 20.0 3.000 3.99998±0.00014 4.000

2 252.44 252.5±1.1e-5 252.5 1.0 7.5026±0.0015 7.5 3.000 2.9838±0.0003 3.00

3 252.63 252.6±1.7e-5 252.6 1.0 4.9985±0.0016 5.0 3.000 2.0011±0.0005 2.00

4 99.930 100.0±1.5e-5 100.0 1.0 7.4997±0.0014 7.5 3.000 0.0006±0.0004 0.000

5 199.965 200.0±1.3e-5 200.0 1.0 7.4993±0.0014 7.5 3.000 0.9987±0.0004 1.000

6 299.97 300.0±1.0e-5 300.0 1.0 7.4998±0.0014 7.5 3.000 2.0009±0.0003 2.000

7 181.194 181.1994±0.0002 181.2 0.1 0.4975±0.0014 0.5 3.000 5.013±0.006 5.000

Table 6.2: Oscillations added to a synthetic dataset to test LASR’s ability to subtract variability. We list the seven oscillations
in the order of: a single high-amplitude frequency (1), two close frequency pairs (2,3), three overtone frequencies (4,5,6), and a
low-amplitude frequency whose amplitude matches the 1σ Gaussian noise of the dataset (7). For every oscillation, we list initial
guesses, resulting best-fit values, and actual values for frequency (f), amplitude (A), and phase (δ). To simulate handling a
real dataset, we set our starting frequency values to the peak values measured in frequency space. We set starting amplitudes
to reasonable guesses based on the photometry, and we choose the random phase value 3.0 for all oscillations.
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6.3.3 Error Analysis

We find the uncertainty in our best-fit parameters by calculating the covariance matrix

of our dataset. Following Andrae (2010), we estimate that the likelihood function L of our

model is nearly Gaussian at its maximum, allowing us to calculate the model’s covariance

matrix using the Fisher information matrix I,

Ii,j =

(
−∂

2 logL
∂θi∂θj

)
(6.3)

where θi is the ith model parameter and logL ∝ χ2. We numerically approximate

these second derivatives in each element of the Fisher matrix as,

Ii 6=j =
χ2
i+,j+ + χ2

i−,j− − χ2
i+,j− − χ2

i−,j+

4∆θi∆θj
(6.4)

where χ2
i±,j± = χ2(θi ± ∆θi, θj ± ∆θj) and ∆θi is a very small step away from that

parameter’s best-fit value. In our calculations we use a frequency step size of ∆f =

10−10Hz, a normalized amplitude step size of ∆A = 10−6, and a phase step size of ∆p =

10−4.

We calculate the covariance matrix Σ̂ of our best-fit model by taking the inverse of

the Fisher matrix Σ̂ = I−1. We test whether Σ̂ is positive definite by checking that all

of its eigenvalues are positive. We take the diagonal elements of the covariance matrix to

be the 1σ variance of our model parameters.

6.4 Results

We demonstrate the LASR technique by applying it to a synthetic time series and

to δ-Scuti KOI-976’s short-cadence Kepler photometry. We establish LASR’s ability

to measure the frequency, amplitude, and phase (w,A,δ) of oscillations in a time series

containing Gaussian noise, time gaps, overtone frequencies, and close frequency pairs in

§6.4.1. We demonstrate that LASR provides a much better fit to KOI-976’s complex

variable signal than traditional time-domain prewhitening in §6.4.3.

6.4.1 LASR Subtraction of Synthetic Oscillations

We create a synthetic time series containing seven oscillation modes commonly seen in

a δ-Scuti variable star. We list the global parameters of the synthetic data in Table 6.1.
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We create a 90-day time series with a 1-minute cadence and add Gaussian noise and data

gaps that would commonly occur in Kepler photometry. We include five data gaps: four

periodic gaps that represent masked-out transits, and one large gap representing the gaps

commonly seen in short-cadence Kepler photometry. The synthetic time series includes

correlated noise commonly seen in Kepler data. We generate Gaussian noise using a Box-

Muller transform (Box & Muller, 1958; Press et al., 1992) and weight each uncertainty

with a lag-1 autocorrelation between successive time samples (Haykin, 2006).

We include a small periodic transit in our synthetic time series to test its effects on

our output code. The transit represents an Earth-radius planet orbiting a δ-Scuti star

with a transit depth smaller than Kepler’s detection limit. We list the transit parameters

in Table 6.1. When testing its effects on our fitting process, we find this injected transit

causes no significant influence on our results. In general, we find that transits do not

influence the LASR algorithm until their transit depths grow larger than its photometric

1-σ uncertainty. At that limit, transits are readily visible in the time series and should

be removed. We include this transit to show that low-amplitude transits at or below the

detection limit do not noticeably effect our fitting results. In our algorithm, we treat

removing time bins affected by transits as a standalone prerequisite before applying our

significance reduction routine.

We add seven oscillation modes to the synthetic data to test LASR’s capabilities.

We include a single high-amplitude oscillation at 228.7µHz as an example of a stand-

alone mode in the dataset. We add a close frequency pair at 252.5µHz and 252.6µHz to

test LASR’s ability to reduce oscillations that cannot be individually subtracted through

spectral analysis. Additionally, we include three frequencies at integer multiples of one an-

other to test LASR’s ability to remove resonant, interdependent frequencies. We also add

one oscillation whose photometric amplitude matches the synthetic data’s 1σ uncertainty

value to test our algorithm’s ability to remove frequencies near the limit of statistical

significance.

We subtract oscillations in order of highest-significance peak to lowest-significance (see

Table 6.2 and Figure 6.3). LASR subtracts the single large peak (f1) quickly and without

difficulty. For the close frequency pair f2 and f3, we imitate a real time series by falsely

identifying it as a single peak (see Figure 6.2). We tried a single starting frequency value

of 252.53µHz and could not reduce the window’s significance below 67.4%. We then set

LASR to remove two close frequencies and immediately found the values listed in Table
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6.2. LASR also yielded accurate (w,A,δ) values for the resonant f4, f5, and f6 frequencies

in a simultaneous fit.

6.4.2 LASR Comparison to Prewhitening: KIC 9700322

We subtract variability from the δ-Scuti star KIC 9700322 and compare our results

to Breger et al. (2011), who fit stellar variability using the statistical package period04.

Following Breger et al. (2011), we use incorporate Kepler’s third quarter short-cadence

photometry in our fit and measure 76 frequencies. We show our best-fit of the stellar

variability in Figure 6.4 and compare the five highest-amplitude and five lowest-amplitude

oscillations to Breger et al. (2011) in Table 6.3.

f#

fLASR

(µHz)

fPERIOD04

(µHz)

aLASR

(10−3)

aPERIOD04

(10−3)

1 145.473±1.8e-5 145.472 29.391±0.003 29.463

2 113.339±2e-5 113.339 27.268±0.003 27.266

3 258.811±8e-5 258.812 4.899±0.003 4.902

4 290.945±0.00015 290.945 2.665±0.003 2.663

5 32.1338±0.0002 32.133 2.637±0.003 2.633

... ... ... ... ...

72 727.361±0.014 727.362 0.015±0.003 0.019

73 263.59±0.02 263.588 0.014±0.003 0.015

74 392.96±0.02 393.002 0.0141±0.003 0.015

75 289.09±0.02 289.096 0.0135±0.003 0.016

76 598.96±0.02 598.982 0.0126±0.003 0.014

Table 6.3: Stellar frequencies and amplitudes of δ-Scuti KIC 9700322 measured using our
algorithm and using the prewhitening program period04 (Breger et al., 2011). We find
that LASR and prewhitening produce almost identical results with little or no discrep-
ancy between frequency and amplitude values. Breger et al. (2011) lists their frequency
uncertainty as 0.001µHz and amplitude uncertainty as 0.003 for all modes of oscillation.

Our best-fit using LASR agrees almost completely with the frequencies and amplitudes

found in Breger et al. (2011). We successfully model KIC 9700322’s stellar variability

throughout Kepler’s Q3 short-cadence time series. We obtain a reduced χ2 value of 1.13

for our fit; KIC 9700322’s slightly reddened noise and its photometric outliers were the

main causes for this value’s deviation from unity. In the case of relatively straightforward
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Figure 6.4: Sample of KIC 9700322’s stellar variability (black) and our best-fit of the
variable signal (red) using LASR. Our fit yields a reduced χ2 value of 1.13.
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Figure 6.5: Lomb-Scargle Periodogram of KOI-976’s short-cadence photometry before
(black) and after (red) subtracting stellar variability. LASR reduced the spectral power of
all oscillations from ∼ 104 at the max to ∼ 1.0. We reduce the representative significance
of all subtracted oscillations by at least 98% and find that all significant oscillations are
well-modeled as sinusoids.

variability, LASR and prewhitening are equally reliable, with the added bonus for LASR

of only ever fitting a small parameter space at any time.

6.4.3 LASR Subtraction of KOI-976

We perform the same variability subtraction process as that described in §6.4.1 on

Kepler Object of Interest (KOI) 976, a rapidly rotating δ-Scuti star that hosts an eclips-

ing binary companion. KOI-976 displays typical seismic activity for a δ-Scuti variable,

possessing a few dominant nonradial modes between ∼ 100µHz − 300µHz, as well as

many low-amplitude oscillations spanning ∼ 0µHz − 500µHz. In this analysis, we treat

the star as a rigid rotator whose variable signal is well-modeled as a linear combination

of sinusoids, which typically serves as an adequate assumption for δ-Scuti stars.

We perform this analysis on KOI-976’s two available quarters of 1-minute Kepler

photometry available on the Mikulski Archive for Space Telescopes. We use KOI-976’s

presearch data conditioning data (PDC) available through the Kepler analysis pipeline

(Smith et al., 2012) and find no relevant differences between the PDC and raw-data

versions of the photometry. KOI-976’s time series contains a single transit by its stellar

companion, as well as several significant data gaps. We mask out the transit and treat it

as another gap in the time series. These gaps produce significant aliasing in periodograms.

As we show in Figure 6.1, LASR subtraction of an oscillation removes both a peak and
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its aliases, so even very large data gaps are surmountable through this technique.

We follow the process detailed in §6.3 and remove KOI-976’s oscillations from the time

series one at a time, except in the cases of close frequency pairs and overtone frequencies.

We start with the highest-significance peak and work our way down to the significance

detection limit based on KOI-976’s photometric uncertainty of ∼ 10−4. In total, we

subtract off 319 frequencies. Figure 6.5 shows the original and reduced frequency power

spectrum of this dataset.

LASR successfully minimizes all significant frequencies present in KOI-976’s short-

cadence photometry. Figure 6.6 contrasts LASR with prewhitening and shows that LASR

provides a better fit of KOI-976’s oscillations than prewhitening through linear regression.

We obtain a log-likelihood ratio between the two methods of −2 log(LPW/LLASR) =

33806, indicating a superior resolution of KOI-976’s variability using our technique. We

perform error analysis following §6.3.3.

6.5 Discussion & Conclusion

Our results show that LASR successfully removes stellar variability commonly seen in

classical pulsators. Our technique can remove oscillations from photometry of arbitrary

complexity so long as they are well-modeled as sinusoids. We find that for the rapidly-

rotating δ-Scuti KOI-976, LASR serves as a superior method for variability subtraction

over the traditional prewhitening approach of linear regression in the time domain. In

particular, we find that LASR more accurately fits the frequencies of individual oscilla-

tions. It also better-resolves close frequency pairs that can be very difficult to identify

when fitting in the time domain. Combined with LASR’s reliability, relatively low com-

putation cost, and ease-of-use, we consider our technique to be a useful tool for spectral

analysis in asteroseismology.

We develop LASR out of necessity: we originally attempted to subtract variability from

KOI-976 following traditional prewhitening methodology that has successfully resolved the

oscillations of other δ-Scuti stars (Breger et al., 2011, 2012). We found, however, that

for KOI-976, we could not obtain accurate frequencies using this technique. We observed

several undesired aliasing effects occurring in the low-frequency range of our dataset due to

these imperfect fits. We demonstrate that for this dataset, LASR successfully minimizes

significant frequencies without producing aliasing effects (Figure 6.5) and provides a better

fit of KOI-976’s variable signal than prewhitening (Figure 6.6).
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Figure 6.6: A comparison of variability subtraction using LASR (red) and traditional
prewhitening (blue). We fit all KOI-976 short-cadence photometry and display a ∼ 1
day sample of KOI-976’s short-cadence photometry with best-fit (top) and its best-fit
residuals (bottom). LASR produces a superior fit of KOI-976’s seismic activity with a
log-likelihood ratio of −2 log(LPW/LLASR) = 33806, which illustrates our motivation to
create this technique, as it better-reduces complex seismic signals of classical pulsators.
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We put forth LASR as one of many tools available for analyzing photometry. Existing

tools such as Period04 (Lenz & Breger, 2004) and others (Akritas & Bershady, 1996;

Vio & Wamsteker, 2002; Rohlfs & Wilson, 2013) provide robust and well-established

techniques for signal processing of photometry. Additional techniques exist for analyzing

stellar variability that contains non-sinusoidal or pseudo-periodic signals. These methods

include modeling signals as multivariate random variables through Gaussian processes

(MacKay, 1998; Rasmussen & Williams, 2006; Aigrain et al., 2016), detecting signals

through autocorrelation functions (Edelson & Krolik, 1988; McQuillan et al., 2014), and

analyzing time-variable signals through wavelet analysis. These techniques are important

tools for transit detection, denoising signals, and removing pseudo-periodic stellar signals

or oscillations that vary with time. They are particularly useful for analysis of dwarf

stars, where solar flares, sunspots, and non-rigid stellar rotation produce complex variable

signals in photometry that must be modeled as random events. These techniques produce

reliable results in subtracting stellar variability but often come with the complications

of being computationally expensive or from treating stellar variability as a random. The

LASR routine serves as an inexpensive and straightforward tool for analyzing high-mass

stars, which typically do not possess sunspots or flares (Didelon, 1984), whose surfaces

behave as rigid rotators (Suarez et al., 2005), and whose oscillations commonly remain

constant over long timescales when on the main sequence (Breger & Pamyatnykh, 1998).

LASR currently subtracts stellar variability that is well-modeled as a linear combina-

tion of sinusoids. Future works can expand this technique to combine LASR’s significance

reduction with Gaussian processes or wavelet analysis to analyze other forms of stellar

variability. Such an approach could resolve a stellar signal without sacrificing information

by treating seismic activity as a random process. Additionally, wavelet analysis could

expand LASR’s purview to the variable signal of heartbeat stars (Hambleton et al., 2013;

Smullen & Kobulnicky, 2015) in the future.

6.6 LASR Algorithm

6.6.1 Inputs and Usage

LASR uses inputs to control its downhill simplex routine that customize its behavior

to the target time series. We list the global parameters that typically remain constant

throughout the subtraction process:
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1. Frequency scale factor to set initial downhill step sizes. When working with KOI-

976’s high-precision photometry, we use a scale factor of 10−3µHz.

2. Amplitude scale factor. Within an order of magnitude of the highest-significance

oscillation’s amplitude is typically adequate as an initial guess. This value can be

set smaller as LASR subtracts smaller oscillations in the dataset.

3. Phase scale, typically set to 1.0.

4. Number of downhill steps for LASR to take. Convergence typically occurs within

50-100 steps for an independent oscillation but requires about twice as many steps

for close frequency pairs or overtone frequencies.

5. The half-width of the peak of the highest-significance frequency in the dataset. This

value determines the width of the periodogram window for LASR to sample during

each subtraction. For KOI-976 we used a halfwidth of 0.35µHz.

6. The number of frequencies to sample in the periodogram window. We find that 10

points provide an adequate sampling of the periodogram window in our analysis,

but because of LASR’s relatively low computational cost, we use 25 points.

LASR requires the following inputs to subtract an oscillation:

1. Starting guess for frequency. Easily obtained via periodogram with sufficient accu-

racy.

2. Starting guess for amplitude. Order-of-magnitude values serve an adequate guess,

as shown in Table 6.2.

3. Starting guess for phase. Any value between 0 and 2π typically suffices.

6.6.2 LASR Pseudocode

We write this algorithm in c++ using established techniques for periodograms and

downhill simplex routines following (Press, 2007). Our program includes proprietary

optimization code and personalized libraries that make direct sharing of this program

impractical. However, the LASR routine is straightforward to create. We provide an

outline below that uses a periodogram window as a black-box function in a downhill
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simplex routine to minimize significance and determine an oscillation’s (w,A,δ) values.

We also make an open-source version of our code available for download at https://

github.com/jpahlers/LASR.

Data: G = (T, U, δU) time series
Result: G′ = (T, V, δV ) time series with highest-amplitude oscillation

subtracted
Function: S(G|ω,A, δ) calculates significance in periodogram window (§6.3.1)
centered on frequency to subtract.
begin

Remove all time bins affected by transits or other discrete events
Set downhill simplex scale factors: {fsc, asc, psc}
Set number of downhill steps to take: N
Set number of samples in periodogram window: npts
for # frequencies do

Set starting guesses for of oscillation values to be fit: {fstart, astart, pstart}
Calculate initial significance of periodogram window before subtraction
for n ∈ N do

Take step in downhill simplex using S(G|ω,A, δ) as black-box function
(Press, 2007)
Update (w,A,δ) best estimates

end
for t ∈ T do

Subtract oscillation from flux value: V = U − A sin(ωx+ p)
end
G←− G′

Store best-fit (w,A,δ) results

end
Calculate best-fit confidence intervals (§6.3.3)
Propagate uncertainty of oscillation subtraction into reduced timeseries.

end

https://github.com/jpahlers/LASR
https://github.com/jpahlers/LASR
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6.6.3 Benchmark Results

We list benchmark performance results of the LASR routine below using the KOI-976

short-cadence data set. The computation time scales with the size of the time series and

the desired precision, driven mainly by the cost of calculating periodogram significance

values. To speed up our computation time, we compute trigonometric recurrences of

the periodogram (Press, 2007) using two processors in parallel. In general, we find that

N = 100 downhill steps is typically enough to determine the best-fit (w,A,δ) values of

an oscillation to six significant figures and that 25 periodogram window samples robustly

represents a frequency’s significance.

Benchmark Quantity Value

Number of downhill steps (N) 100

Time series data points 91235

Periodogram window samples 25

Computation time 12.58 s

Table 6.4: Quantities describing the LASR’s computation time using KOI-976’s short-
cadence photometry. Our algorithm typically fits the frequency, amplitude, and phase
of a single oscillation in a timeseries in approximately 100 downhill steps that each take
∼ 0.1 seconds when applied to KOI-976’s 91235 short-cadence time bins.

The computation time is primarily dedicated to calculating periodograms. Press

(2007) shows how, depending on the choice of algorithm, Lomb-Scargle periodograms

scale as N log(N), where N is the number of points in the time series. The fitting pre-

cision is controlled by the LASR’s downhill simplex algorithm. The rate of convergence

can vary largely between datasets, but we find that when fitting one oscillation (three pa-

rameters) in KOI-976’s short-cadence photometry, we typically achieve four significance

figures after ∼ 50 downhill steps and six significant figures after ∼ 100 downhill steps.

6.7 Derivation: One Minimum Per Parameter

The oscillation significance S(ω,A, δ) is a black box function that represents the signif-

icance of the residuals of a subtracted oscillation. In this section we provide a derivation

showing that S(ω,A, δ) has only one minimum per parameter (i.e. that S(ω,A, δ) is U-

shaped in each dimension over all values) so long as the actual frequency and subtracted
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frequency are relatively close (|(ω1 − ω2)/(ω1 + ω2)| . 0.1).

We start with two sine waves ψ1 = A1 sin(ω1t + δ1) and ψ2 = A2 sin(ω2t + δ2), where

Ai, ωi, and δi represent the amplitude, frequency, and phase of each function. A standard

oscillation subtraction is therefore represented by,

ψ = ψ1 − ψ2 = A1 sin(ω1t+ δ1)− A2 sin(ω2t+ δ2) (6.5)

Assuming ω1 ≈ ω2, equation 6.5 can be expanded as,

ψ = A1 sin(ω1t+ δ1)−A2 sin(ω1t+ δ2) +A2(ω1−ω2)t cos(ω2t+ δ2) +O((ω1−ω2)3) (6.6)

Utilizing the Harmonic Addition theorem (e.g., Nahin, 2001), the zeroth-order terms

(A1 sin(ω1t+ δ1)−A2 sin(ω1t+ δ2)) can be expressed as a single sine wave A sin(ω2t+ δ),

where

A =
√
A2

1 + A2
2 − 2A1A2 cos(δ1 − δ2) (6.7)

and

δ = atan

(
A1 cos(δ1)− A2 sin(δ2)

A1 sin(δ1)− A2 sin(δ2)

)
(6.8)

Therefore, this subtraction can be represented as,

ψ = A sin(ω2t+ δ) + A2(ω1 − ω2)t cos(ω2t+ δ2) +O((ω1 − ω2)3) (6.9)

Because S(ω,A, δ) is roughly proportional to the square of the amplitude of ψ, min-

imizing Equation 6.9 minimizes S(ω,A, δ). The oscillation residual ψ is minimized via

minimizing A and ω1 − ω2. A is minimized via minimizing A1 − A2 and δ1 − δ2. These

are the only minima that appear in ψ; therefore, only one global minimum per parameter

exists.
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Chapter 7: Summary and Conclusions

This dissertation summarizes my graduate research on exoplanets orbiting high-mass

stars using NASA’s Kepler telescope. The preceding chapters include a detailed expla-

nation of the gravity-darkening technique used to measure orbit geometries from photo-

metric datasets of planets transiting rapid rotators, as well as four publications relating

to spin-orbit misalignment and planet formation.

In Chapter 2, I derive the phenomenon of gravity-darkening due to rapid stellar ro-

tation. High-mass stars have weak external magnetic fields, allowing them to maintain

their primordial rotation rates throughout their lifetimes and not slow down from magnetic

braking the way low-mass stars do. These rapid rotators possess two stellar properties

that can significantly affect transit light curves: an oblate spheroidal shape and a pole-

to-equator luminosity gradient. I demonstrate the wide range of effects gravity-darkening

can induce on transit photometry, and I describe how those effects can be used to con-

strain transit geometry. Ultimately, gravity-darkened transit light curves allow for the

constraint of the angle between a planet’s orbit normal and the star’s spin axis (i.e., the

system’s spin-orbit alignment).

The gravity-darkening technique of measuring orbit geometries has several advantages,

particularly that it depends primarily on transit photometry, the most readily available

type of exoplanetary data to date. Exoplanet surveys such as NASA’s Kepler mission have

provided precision photometry of hundreds of thousands of stars, making this technique

applicable to potentially hundreds of planets transiting high-mass stars (Barclay et al.,

2018). Although the gravity-darkening signal in a transit light curve can often be quite

subtle, Barnes et al. (2013) and others (Ahlers et al., 2014; Ahlers et al., 2015; Barnes

et al., 2015; Masuda, 2015; Howarth & Morello, 2017) have demonstrated this technique’s

ability to measure transit geometry values from such anomalies.

The challenges of the gravity-darkening technique lie primarily with the parent star.

Modeling the gravity-darkening and limb-darkening gradients across a stellar surface is

not an exact science because neither stellar quality is fully understood; however, with

more experience applying this technique and especially with more collaboration with

alternate techniques for measuring orbit geometries such as asteroseismology or Doppler

tomography, we will gain a better understanding of what gravity-darkening and limb-

darkening coefficients best represent these A/F-type rapid rotators.
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Chapter 3 measures the spin-orbit alignment value of Kepler Object of Interest (KOI)

368. This system is an eclipsing binary consisting of a rapidly-rotating A star and an

eclipsing M dwarf and a mostly well-aligned configuration. This project established that

the gravity-darkening technique can constrain spin-orbit angles for well-aligned systems by

measuring the lack of gravity-darkening anomaly in their transit light curves. This work

also provided a small step toward comparing spin-orbit misalignment in planets against

spin-orbit misalignment in binary systems. With more analyses such as Barnes et al.

(2011), the similarities and differences between planet formation and binary formation

will become more clear, namely in whether one or the other more frequently produces

spin-orbit misalignment.

Chapter 4 details the work in Ahlers et al. (2015), which measured the spin-orbit align-

ment value of a particularly interesting system in KOI-89 (now named Kepler-462). This

system contains two Neptune-sized planets orbiting at 85 days and 207 days, respectively.

The orbital planes of both planets are misaligned from their host star by about 70◦, but

are well-aligned with each other.

With Kepler-462’s two planets misaligned but coplanar, the mechanism that caused

misalignment in that system must have either affected both planets simultaneously or

torqued the rotation axis of the host star itself. Only some of the proposed explana-

tions for spin-orbit misalignment currently in the literature are capable of producing such

a configuration. Planet-embryo collisions (Levison et al., 1998; Charnoz et al., 2001),

chaotic evolution of stellar spin (Storch et al., 2014; Valsecchi & Rasio, 2014), magnetic

torquing (Lai et al., 2011; Spalding & Batygin, 2014), coplanar high-eccentricity migration

(Petrovich, 2014), and inclination resonance (Barnes et al., 2015) either cannot produce

severe spin-orbit misalignment values, does not result in coplanar orbits, or disagrees

with Kepler-462’s fundamental parameters. Only star-disk-binary interactions (Lai, 2014;

Xiang-Gruess & Papaloizou, 2014; Batygin, 2012), inclination driven by a warped disk

(Terquem, 2013), planet-planet scattering (Ford et al., 2005; Chatterjee et al., 2008),

Kozai resonance (Libert & Tsiganis, 2009; Thies et al., 2011), and internal gravity waves

(Rogers et al., 2012; Fuller et al., 2015) are consistent with Kepler-462’s present-day con-

figuration. The Kozai and planet-planet scattering mechanisms are unlikely, but could

not be ruled out in the event of additional planets in the system.

The Kepler-462 system exhibits significant transit timing variations (TTVs. Its two

known planets are very near a 5:2 resonance (2.45), which may be the cause of its TTVs.
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Additionally, with the orbits misaligned and the host star significantly oblate, the two

planets likely precess on a timescale of tens-of-thousands of years. N-body integrations

suggest that the system only appears stable in nearly-circular, coplanar orbital configu-

rations.

Interestingly, a cursory examination of Kepler-462’s known TTVs as observed by the

Kepler telescope reveal them to be significantly non-sinusoidal, implying that additional

bodies may be dynamically interacting with the two observed transiting planets. However,

because Kepler-462c’s orbital period is so long, Kepler only observed five transits for that

planet. Working with advisor Barnes and Los Cumbres Observatory (LCO) team member

Julian van Eyken, I was awarded observing time on the LCO global telescope network in

the summer of 2016 to measure additional TTVs and hopefully perform an analysis to

reveal additional planets in that system; unfortunately, the weather did not cooperate and

Kepler-462 remains unsolved. This system is a promising target for follow-up observations

to further explore its dynamic behavior.

Chapter 5 explores the influence of rapid stellar rotation on an exoplanet’s climate.

This sole-author project found that both stellar oblateness and the gravity-darkened stel-

lar surface can majorly impact a planet’s atmospheric and surficial processes. When in

a spin-orbit misaligned configuration, an exoplanet is sometimes exposed to a rapid rota-

tor’s hotter poles or cooler equator throughout its orbit. If standing on the surface of such

a planet, one would see the sun in the sky change both in shape and color throughout the

year. Ahlers (2016) dubs the planetary effects brought about by orbiting such an extreme

star “gravity-darkened seasons”.

When a planet undergoing gravity-darkened seasons is located near its host star’s

equatorial plane, it is primarily exposed to the star’s dimmer, cooler equator. Additionally,

the projected disk of the star as seen by the planet is at its most oblate and therefore

is smallest in projected surface area. When near the poles, the planet is more directly

exposed to the hotter, brighter part of the stellar surface, and sees a less-oblate (and

therefore larger) projected disk in the sky. As the planet revolves around its host star, its

stellar irradiance changes drastically twice each orbit.

When combined with traditional seasons (i.e. seasons driven by planet obliquity),

gravity-darkened seasons can produce yearly insolation patterns unlike anything seen in

our solar system. One interesting gravity-darkened insolation pattern occurs when tra-

ditional summer and winter occur when the planet is near the stellar equatorial plane.
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Around a slow rotator, the upper and lower hemispheres of the planet would receive the

most/ the least stellar irradiance at this time, producing the hottest/ the coldest tem-

peratures throughout its year. However, around a rapid rotator, the misaligned planet’s

traditional summer and winter occur near the dim stellar equator, when the planet re-

ceives the least stellar irradiance. The summer’s high temperatures would therefore be

mitigated, and the winter’s low temperatures exaggerated. Also, in this configuration,

traditional spring and autumn occur near the star’s hotter poles, when the planet’s stel-

lar irradiance is highest. Both spring and autumn would therefore be much hotter than

normally seen by traditional seasons. For planets orbiting extremely gravity-darkened

stars, traditional spring and autumn could actually be significantly hotter than summer,

producing two distinct hottest times of the year.

Ahlers (2016) showed that the nature of gravity-darkened seasons depends strongly

on the planet’s orbital configuration. When a planet is well-aligned with a rapid rotator,

its irradiance as a function of time is not affected by its host star’s asymmetric shape and

experiences traditional seasons. The more misaligned a planet is, the higher the potential

for gravity-darkened seasons to occur. Also, different planet obliquities force traditional

seasons to combine with gravity-darkened seasons in different ways. For example, when

traditional summer and winter occur near the stellar poles instead of its equator, summers

can be extremely hot, and winters much warmer than usual. Additionally, misaligned

planets orbiting rapid rotators would likely undergo axial precession for nonzero planet

obliquities, causing the planet to be driven between various insolation scenarios over time.

One aspect of gravity-darkened seasons that certainly begs further exploration is that

a star’s emission spectrum changes with temperature. A rapid rotator’s emission is much

redder near its cooler equator than at its hotter, bluer poles. Interestingly, for hot high-

mass stars with polar surface temperatures in the range of 7000k-9000k, the emission

wavelength that changes the most in fractional intensity between the star’s poles and its

equator is in the ultraviolet range. A planet undergoing gravity-darkened seasons is not

only much hotter near the star’s poles, it specifically receives far more UV irradiation,

which could destabilize a planet’s ozone layer or drive other atmospheric proceses unlike

anything observed in our solar system.

Further analysis of gravity-darkened seasons, such as applying global circulation or

radiative transfer models to planets receiving these unusual insolation patterns, could

better constrain the atmospheres, surfaces, and overall climatic effects of planets orbiting
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high-mass stars.

Chapter 6 describes an additional tool for analyzing transit photometry of planets

orbiting high-mass stars. In addition to often rapidly rotating, A/F-types stars commonly

exhibit high-amplitude seismic activity that can obfuscate a transit light curve. Ahlers,

John P. et al. (2018) developed a software tool specifically designed to subtract stellar

variability from transit light curves of rapid rotators in order to allow for detailed analysis

of the transit itself. The Linear Algorithm for Significance Reduction, or LASR, subtracts

oscillations from a time series one at a time by fitting the frequency, amplitude, and

phase of that oscillation in frequency space. It produces comparable or superior results

in variability subtraction to commonly-used time-domain approaches in the scenarios of

hundreds or more statistically significant oscillations embedded in a dataset and when

dealing with correlated noise. Ultimately, LASR provides a new avenue for extracting

information from transit light curves polluted by stellar seismic activity and allows for

the gravity-darkening technique to be applied to transit light curves previously obstructed

by stellar variability.

The content of this dissertation provides new techniques and observations for analyzing

spin-orbit misalignment via transit photometry, and offers new insights to the formation,

evolution, and current-day processes of planets orbiting high-mass, rapidly rotating stars.

This subset of exoplanets remains largely unexplored, partially because of the observa-

tional challenges high-mass stars pose, and partially because the habitable zone of these

stars are out at orbital periods we as a community are not yet adept at exploring. Their

formation pathways and habitability remain largely unexplored, but current findings in-

dicate that a diverse and interesting group of exoplanets wait to be discovered. At the

advent of NASA’s TESS mission, which will likely discover over a thousand exoplanets

orbiting high-mass stars (Barclay et al., 2018), the discovery, characterization, and anal-

ysis of high-mass systems will undoubtedly flourish, continuing and expanding upon the

works presented here.
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Christensen-Dalsgaard, J., Däppen, W., Ajukov, S., et al. 1996, The current state of solar

modeling, Science, 272, 1286

Claret, A. 2017, Limb and gravity-darkening coefficients for the TESS satellite at sev-

eral metallicities, surface gravities, and microturbulent velocities, Astronomy & Astro-

physics, 600, A30

Claret, A., & Bloemen, S. 2011, Gravity and limb-darkening coefficients for the Kepler,

CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems, Astronomy &

Astrophysics, 529, A75

Claret, A., & Bloemen, S. 2011, Gravity and limb-darkening coefficients for the Kepler,

CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems, Astronomy &

Astrophysics, 529, A75

Claret, A., Hauschildt, P. H., & Witte, S. 2013, New limb-darkening coefficients for

Phoenix/1d model atmospheres. II. Calculations for 5000 K ≤ Teff ≤ 10 000 K Kepler,



113

CoRot, Spitzer, uvby, UBVRIJHK, Sloan, and 2MASS photometric systems, Astron-

omy & Astrophysics, 552, A16

Collier Cameron, A., Guenther, E., Smalley, B., et al. 2010, Line-profile tomography of

exoplanet transits - II. A gas-giant planet transiting a rapidly rotating A5 star, Monthly

Notices of the Astronomical Society, 407, 507

Cumming, A. 2004, Detectability of extrasolar planets in radial velocity surveys, Monthly

Notices of the Royal Astronomical Society, 354, 1165

Deitrick, R., Barnes, R., McArthur, B., et al. 2015, The Three-dimensional Architecture

of the υ Andromedae Planetary System, Astrophysical Journal, 798, 46

Demory, B.-O., Gillon, M., De Wit, J., et al. 2016, A map of the large day–night temper-

ature gradient of a super-Earth exoplanet, Nature, 532, 207

Désert, J.-M., Charbonneau, D., Demory, B.-O., et al. 2011, The hot-Jupiter Kepler-17b:

discovery, obliquity from stroboscopic starspots, and atmospheric characterization, The

Astrophysical Journal Supplement Series, 197, 14

Désert, J.-M., Charbonneau, D., Demory, B.-O., et al. 2011, The Hot-Jupiter Kepler-17b:

Discovery, Obliquity from Stroboscopic Starspots, and Atmospheric Characterization,

The Astrophysical Journals, 197, 14

Didelon, P. 1984, Stellar magnetic fields, Astronomy and Astrophysics Supplement Series,

55, 69

Edelson, R., & Krolik, J. 1988, The discrete correlation function-A new method for ana-

lyzing unevenly sampled variability data, The Astrophysical Journal, 333, 646

Epstein, C. R., & Pinsonneault, M. H. 2013, How good a clock is rotation? The stellar

rotation-mass-age relationship for old field stars, The Astrophysical Journal, 780, 159

Ford, E. B., Lystad, V., & Rasio, F. A. 2005, Planet–planet scattering in the upsilon

Andromedae system, Nature, 434, 873

Forster, P., Ramaswamy, V., Artaxo, P., et al. 2007, in Climate Change 2007. The Physical

Science Basis



114

Fortney, J. J., Demory, B.-O., Désert, J.-M., et al. 2011, Discovery and atmospheric char-

acterization of giant planet Kepler-12b: An inflated radius outlier, The Astrophysical

Journal Supplement Series, 197, 9
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