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Abstract

Software testing is an important step in the software development life cycle. It focuses

on testing software functionalities, finding vulnerabilities, and assuring the software is

executing as expected. Fuzzing is a software testing technique which feeds random input

to programs and monitors for abnormal behaviors such as a program crash. Fuzzing

can be automated and does not require access to the source code compared to manually

reviewing the source code which requires a huge amount of time and cost. It can trigger

vulnerabilities that the programmers overlooked while programming, such as buffer

overflow, off by one error, etc. One of the limitations of fuzzing is that most programs

require highly structured input or certain input patterns and therefore the fuzz testing

may be terminated at an early stage of program execution because of not meeting the

input format requirements. Some previous studies resolve this problem by manually

creating program specific input grammars to help guide fuzzing, which is tedious, error

prone, and time consuming. However, this solution cannot work efficiently when testing

multiple programs which require different input patterns. To solve this problem, a general

grammar-based fuzzing technique is proposed and developed in this dissertation. The

new fuzzer can extract grammar from the sample input files of a program, and then

generate effective fuzzing files based on the grammar. This fuzzing tool is able to work

with different programs by extracting grammars from them automatically and hence

generating program specific fuzzing files. The goal of this research includes developing an

algorithm to extract grammars from sample input files, generating effective fuzzing files to

test the programs, and implementing a fuzzing tool using Python programming language.

The main contribution of this research is helping software developers and security experts

in revealing vulnerabilities in various programs automatically by using the developed
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fuzzing tool.
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Chapter 1: Introduction

Nowadays, software security plays an important role in the field of computer science.

There are millions and millions of software products on the market which provide services

to end users. The security of the software has become more and more critical because

people rely on some software to accomplish certain tasks. If vulnerable software gets

attacked, it may lead to problems such as leakage of personal information, abnormal

function execution, or abruption of services. Moreover, software bugs cost a lot of money

to fix and can lead to losses of millions of dollars and even lives [1]. Some kinds of bugs

are simple and harmless; others can be more risky. For example, severe bugs can cause

a system to stop working for legitimate users (denial of service) or allow an attacker to

inject a malicious program and run it, which can lead to the disclosure of confidential

data such as credit card information. Another example that cost people lives is Boeing

737 MAX 8 crashes resulting in about 350 deaths [2]. The main cause was a bug in a new

system called Manoeuvring Characteristics Augmentation System (MCAS), which is an

anti-stall system to prevent the airplane from falling [3]. This system was difficult for a

pilot to control and override it [3].

Software testing has been widely used to reduce the number of bugs in the software.

Software testing is a process of evaluating a software application to find whether the

specifications and requirement are met and to identify any errors or defects to ensure

the quality of the product before final delivery [4]. Researchers have proposed different

approaches to support automated software testing. Fuzzing is one of the approaches.

Fuzzing was first attempted by Barton Miller in 1988 to fuzz Unix utilities [5]. Since that

time, fuzzing has become an interesting topic.

Fuzzing is an automated technique that supports discovering vulnerabilities and

weaknesses in a target program by using malformed input data from files, network
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protocol, etc. [6]. The idea behind fuzzing is generating a large number of invalid or bad

inputs and feeding them to the target program to cause a crash or trigger errors. In

general, a fuzz testing consists of user inputs (seeds), a target program, fuzzing techniques

that use the seeds to generate new malformed inputs, and abnormal behavior monitor.

First, user input is an important component of the fuzzing process that serves as the

route of discovery for bugs or flaws in a software/system. Second, the target program is

the software under test that is needed to conduct fuzzing process on. Third, a fuzzing

technique is a strategy for creating fuzzing input files which are malformed inputs that

could trigger vulnerabilities in the target program. In the end, the abnormal behavior

monitor waits for any exception wheb running the target program with the malformed

inputs.

1.1 Software Vulnerability

There are many definitions or descriptions for “vulnerability”. In NIST Glossary

of Key Information Security Terms, the definition of vulnerability is “Weakness in an

information system, system security procedures, internal controls, or implementation that

could be exploited or triggered by a threat source” [7]. Some authors have defined it

based on their own viewpoints of access control, state space, trust, etc. For example,

Shirey defines “vulnerability” as a defect or a weakness in a software/system design,

implementation or operation management which can be used to break or violate a security

policy [8]. Ivan Krsul states that software vulnerability is an instance of an error, a

mistake, or a fault in the software specification, requirements engineering, development,

or configuration so the software’s execution can violate or exploit the security policy [9].

Software applications may have different kinds of vulnerabilities that may cause

security breaches and information leaks which affect the privacy and availability of a
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system. Buffer overflow is a common vulnerability in a system, which may impact the

system availability and information disclosure. Some common vulnerability types are

summarized and explained in the next section.

Table 1.1: Top 10 Vulnerabilities

No. Vulnerability Explanation

1
CWE-122: Heap-based
Buffer Overflow

A heap buffer overflow is when data overwrite outside an
allocated space in the heap section in the memory.

2
CWE-121: Stack-based
buffer overflow

A stack buffer overflow happens when data overwrite and exceed
the limited space allocated in the stack section in the memory.
This vulnerability causes a crash in a program when the data
exceeds the stack size.

3
CWE-787: Out of bounds
write

Out of bounds write vulnerability is when a program writes data
that exceed the size of a buffer or fall behind the beginning of
that buffer.

4

CWE-120: Buffer copy
without checking the size
of input (classic buffer
overflow)

Buffer overflow happens when a program takes an input copy of a
buffer to an output buffer, and the input buffer size is larger than
the output buffer size.

5
CWE-190: Integer
overflow or wraparound

Integer overflow happens when a program performs an integer
calculation resulting in a value that is either too large or small to
store it in the associated representation.

6

CWE-119: Improper
restriction of operations
within the bounds of
memory buffer

A program performs operation on a memory buffer; however, it
can read or write to a memory place that is outside the intended
boundary of the buffer.

7
CWE-125: Out-of-bounds
Read

When a software reads data and exceeds or falls beyond the
intended boundary.

8
CWE-129: Improper
validation of array index

It is when a program uses untrusted input when doing calculation
or using array index; however, the program does not confirm or
wrongly confirms the index to make sure the index points to a
valid place in the array. The data type that may trigger this kind
of vulnerability is integer.

9
CWE-131: Incorrect
calculation of buffer size

It is when a program calculates the buffer size wrongly to be used
when allocating a buffer, which may lead to a buffer overflow.

10
CWE-134: Use of
externally-controlled
format string

It is when a program uses a function that accepts a format string
as an argument but the format string creates from an external
source.

1.1.1 Common Software Weaknesses

Table 1.1 shows the top 10 vulnerabilities in software, according to CWE [10]. CWE

is a website which provides information on software vulnerabilities in computer systems.
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It is widely used by the computer security community as a guideline for vulnerability

description, elimination, and deterrence. CWE started in 2005 and developed as a list

of software weaknesses which are more adequate for assessing software security. It lists

different kinds of vulnerabilities and also provides examples and mitigation techniques to

the weaknesses. Moreover, CWE supports the evaluation of security tools and services

designed for discovering vulnerabilities in programs [10].

1.2 Software Testing

Software testing is the process of running a program to check whether the target

software meets the specification requirements. Software testing is an important step in

the software development life cycle. It is widely used to test the quality of software and

reveal bugs in it. Most testing can be done automatically, which reduces the workload of

developers and saves time and money as well. Bugs may be triggered during the software

testing process and therefore can be fixed before the software is publicly available on the

market. Good and effective software testing can reduce the number of vulnerabilities in

the software and also make sure the implementation follows the design and the software

runs as expected.

Software testing strategies and approaches available in use today can be divided into

three main categories, functional testing and non-functional testing [11].

In functional testing, different tests are performed in ordered steps that will lead to

successful software testing. The steps are 1) unit testing, which tests a basic and small

piece of code; 2) integration testing, which integrates the units to each other to build the

software; 3) system testing, which tests the system as a whole; and 4) acceptance testing,

which ensures the system is running as intended and the delivery is done [11].

Non-functional testing is a type of software testing that is concerned with the
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operational aspects of the software product such as performance, security, usability,

compatibility, etc. [12]. Non-functional testing has many types; however, the most

common ones include: 1) performance testing, which concerns how a software will act

under different test cases; 2) security testing, which provides data and operation protection

to ensure integrity, confidentiality and availability of a system; 3) usability testing, which

evaluates system’s ease-of-use, and 4) compatibility testing, which ensures the system is

going to run and work in various environments.

Testing can be categorized to black-box, white-box, and grey-box testing. Both

functional and non-functional testing can use them. Black-box testing processes the

software as a black box which investigates the software at run time without any knowledge

of the internal behavior. White-box testing is the opposite of black-box testing; it knows

the internal functionality, logic, and the structure of source code. Grey-box testing stands

between black and white box; it allows a tester to examine software while having a partial

knowledge of the source code [11].

1.3 Fuzz Testing

Fuzz testing or fuzzing is a type of software testing. Fuzzing is an automated technique

that supports discovering vulnerabilities and weaknesses in a target program by using

random generated malformed input data [6]. Fuzzing has shown effectiveness in software

security; specifically, it helps find flaws in an application before final delivery. Fuzzing

can be automated and does not require access to the source code compared to manually

reviewing the source code, which requires a huge amount of time and cost. It can

trigger vulnerabilities that the programmers overlooked while programming, such as buffer

overflow, off by one error, etc. Fuzzing was first implemented in 1988 when Miller Barton

attempted to test Unix utilities automatically with random input files. Miller’s aim was
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to fuzz Unix programs to test the reliability of the Unix system [5]. In recent years,

fuzzing has become an interesting topic in software testing. There are many fuzzing tools

that automatically generate invalid test inputs and feed them to the target program for

exploring any bugs; some known fuzzing tools include AFL [13], Peach [14], LibFuzzer [15],

and RADAMSA [16]. There are different types of fuzzers, such as black-box fuzzing,

coverage-guided fuzzing, symbolic execution-guided fuzzing, dynamic taint analysis-guided

fuzzing, grammar-based fuzzing, etc. Black-box fuzzing randomly generates a stream of

test cases and fuzzes a program without any knowledge of the program. Coverage-guided

fuzzing uses trivial program coverage feedback to follow how the running path of the

program switches via given fuzzed input. The fuzzer employs the collected instrumentation

data to choose which inputs could be ignored or kept in the corpus queue. Fuzzers that use

symbolic execution technique employ input values as symbolic values rather than using

actual values and use symbolic presentation to express the values of program variables [17].

Dynamic taint analysis is a type of data flow analysis method which is used in many

domains like software engineering, and computer security. It is used in fuzzing to track

the generation of some kind of inputs to collect useful data to fuzz programs with different

inputs. Grammar-based fuzzing takes grammars for a certain input file structure such as

HTML, XML, C language, etc. to generate valid input fuzzing files that are accepted by

the grammars. A detailed literature review on the existing grammar-based fuzzers can be

found in Chapter 2.

1.4 DARPA Cyber Grand Challenge Dataset

DARPA Cyber Grand Challenge (CGC) was a competition developed to spur the

research on automated vulnerability discovery and patching. CGC representatives created

a dataset containing 250 vulnerable stand along programs with detailed documentation of
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the vulnerabilities. DARPA designed the DARPA Experimental Cybersecurity Research

Evaluation Environment (DECREE) which is a simple operating system and an open

source Linux extension made for managed software security trails. DECREE OS contains

7 system calls: transmit to send data, receive to receive data, waitfd to wait for

data over file descriptors, random to generate random data, allocate, deallocate for

memory control and terminate to stop the server communication [18]. There are about

250 programs in the DARPA CGC dataset. Each program has at least one vulnerability in

it. The programs are written in C or C++ programming languages. Despite the simplicity

of the CGC environment model, the programs given by DARPA have a large scope of

complexity [18].

Although source code for each of the programs is not given during the competition,

most of the programs came with network traffic files saved in pcap (Package CAPture)

files. These pcap files record the interactions with the programs, what was sent to the

program and what the program responded to. The network traffic can be extracted from

the pcap files for further analysis and learning.

1.5 Motivation and Objectives

1.5.1 Motivation

Generally, fuzzing is a prevalent and effective way to reveal bugs in applications.

Fuzzing tools work by providing a huge amount of fuzzing inputs which can be used to test

the target program. By looking closely at the execution of these fuzzing inputs, fuzzing

tools can identify inputs which can trigger an exception. In high-level view, one can take

into consideration that fuzzing is a random method to discover flaws in software; however,

most of the randomly generated inputs are rejected in the early stage by the target

program without visiting interesting locations in the program. There are many studies
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conducted on this approach to explore new effective ways to generate interesting fuzzing

inputs which are more likely to trigger a vulnerability located deeply in a program [19].

Although great progress has been accomplished in fuzzing, there is often still human

intervention in the fuzzing process [20]. It is an important goal for fuzzing tool developers

to reduce the human interaction and domain knowledge of the target program.

A very important aspect of fuzzing is input generation, which affects the effectiveness

of fuzzing input data. Without the source code and knowledge about the program, the

performance of a fuzzer will be limited because most of the programs require highly

structured input. To help improve performance, some fuzzers require valid sample input

to at least have a good start point, but they cannot guarantee that a generated fuzzing

inputs meet the program requirement and can be accepted by the program. Some fuzzers

limit the format of the target program to be a certain type of program, such as pdf, png,

html. Some researchers focus on generating fuzzing inputs based on one or more input

formats [19, 21–23]. For example, fuzzer GramFuzz [22] deals with JavaScript, HTML,

and CSS formats, so the fuzzer understands how to generate fuzzing input that satisfies

the format requirement for those three formats. Several fuzzers require users to manually

create grammars to help generate fuzzing input [21, 24–26], but they require the users to

have knowledge about the input format and be able to provide the proper grammar to the

fuzzer correctly. Therefore, it is still an open question to automatically generate fuzzing

inputs which are good for general inputs’ format specification (often called “grammars”).

Some researchers have studied how effective user inputs can be generated [27]. Others

have concentrated on fuzzing techniques that exercise fewer resources and reduce the

space of potential inputs [24]. The focus of this research is learning grammar from the

sample input files and generating effective fuzzing inputs from grammars. In this research,
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the sample input files will be studied and grammars will be extracted from the input

automatically. The grammar is later used to help generate effective fuzzing input which

has correct format that can be accepted by the program and can go deeper into the

program.

1.5.2 The Objectives

The goal of my research is to develop a grammar-based fuzzing tool which can learn the

grammar from sample input file. Then the grammar is used to generate effective fuzzing

input which can reach deeper into the tested program. The tool was implemented using

Python programming language. Particularly, the research has the following objectives:

• Objective 1. Review recent literature on grammar-based fuzzing. Many of the

different techniques have been introduced and developed. Having a high-level view of

the recent grammar-based fuzzers with their strengths and weaknesses is significant

for the research.

∗ Task 1.1 Review existing grammar-based fuzzing tools.

∗ Task 1.2 Compare the different grammar-based fuzzing tools.

∗ Deliverables: A literature review paper has been published [28].

• Objective 2. Analyze input files from DARPA CGC dataset to understand input

format and extract grammars.

∗ Task 2.1 Collect the data from DARPA CGC environment.

∗ Task 2.2 Develop a method to extract grammar from sample input files.

∗ Task 2.3 Implement a fuzzer wihich can extract grammar from sample input

files.
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∗ Deliverables: Developed a tool to gather data and generate grammars.

• Objective 3. Employ the extracted grammars to modify the sample input to produce

fuzzing inputs.

∗ Task 3.1 Develop a fuzzer which can take the extracted grammar.

∗ Task 3.2 Use the grammar to help modify the existing sample input to generate

fuzzing input files.

∗ Task 3.3 Evalaute the fuzzer with DARPA CGC dataset.

∗ Deliverables: Developed a fuzzer which can take the grammar and generate

fuzzing files. A journal paper has been published [29].

• Objective 4. Learn the order of the commands and utilize the grammars to create

new fuzzing inputs.

∗ Task 4.1 Learn the structures of the sample input files.

∗ Task 4.2 Use the grammars and structure information to generate new fuzzing

input files (without modifying the existing sample files).

∗ Task 4.3 Test programs with the newly produced fuzzing inputs.

∗ Deliverables: An updated fuzzer with the ability to generate fuzzing files

without modifying the available sample input files has been developed. A

conference paper has been published [30].

• Objective 5. Evaluate the new fuzzing tool and compare it with other fuzzers.

∗ Task 5.1 Evaluate the fuzzer with DARPA CGC dataset.

∗ Task 5.2 Run other fuzzers with DARPA CGC dataset.
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∗ Task 5.3 Compare the performance of the new fuzzer with other fuzzers.

∗ Deliverables: Testing results are documented in this dissertation.

1.5.3 Contributions

Most previous research studies centered on generating fuzzing files on a specific input

language and using public grammar rules to generate fuzzing input files. The developed

tool can analyze sample input files, obtain the grammar rules, and use them to generate

fuzzing inputs automatically. This work is a grammar-based fuzzing tool that analyzes

sample input files of a program and uses fuzzing techniques to generate effective fuzzing

inputs.

The developed tool was designed and implemented based on grammars and effective

fuzzing techniques that will improve the efficiency of vulnerabilities detection. Without

any human interaction, by using sample input files, the tool can automatically learn the

grammar of the input and generate effective fuzzing inputs which may trigger vulnerabilities

in a target program. This will provide software developers a hand to test their software,

discover vulnerabilities, and make sure their software is safe and secure. The extracted

grammar will guide the fuzzer to generate fuzzing files by modifying the sample input

files. Therefore, the tool will support software developers and industry to find bugs in

a system. Since the tool is automated, it will save the developers and testers time and

energy.

The research learns the structure (the orders of the commands, probability of the

command following another) of the sample input file as well. This will make the fuzzer

able to generate completely new fuzzing files without mutating or modifying the sample

input files. It will give conceptual methods based on general programs’ inputs grammar

analysis and understanding ways to use them to generate new fuzzing input from those
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grammars to explore bugs easily. To our knowledge, this will be the first grammar-based

fuzzer which can generate fuzzing files based on the analysis and learning of the sample

input files. Therefore the research work will bring in new conceptual methods to the

software testing community.

1.6 Dissertation Overview

The remainder of this dissertation is organized as follows. Chapter 2 provides

background on the fuzzing approach and surveys various grammar-based fuzzing techniques

which have been proposed by other researchers and developers. Chapter 3 provides detailed

approach about analyzing input files to extract grammar from them. Chapter 4 presents

the detailed design of generating fuzzing files by modifying the sample input files with

the help of the extracted grammar. Chapter 5 presents the using of Markov chain model

to help further analyze and learn from the sample input files. This chapter also discusses

the updated fuzzer which can generate completely new fuzzing files. Chapter 6 explains

the experiments conducted on the tool and explains the findings. Chapter 7 provides

conclusion and future work.
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Chapter 2: Background

2.1 Grammar Theory

A grammar is a set of rules which define a valid language [31]. So, a grammar consists of

4 tuples: G = {V,
∑

, P, S}

V: Set of non-terminals∑
: Set of terminals

P: Set of production rules

S: Start symbol

Non-terminal symbols are those symbols which can be substituted as many times

as needed by a production rule. Terminal symbols are those symbols which cannot be

substituted further [31].

A language is generated from the rules of a grammar. A language contains only

terminal symbols ε which means null (empty) alphabet or
∑

. When a language L is

generated by a grammar G, then the language is written as L(G) and read as the language

L generated by grammar G. The grammar is called G(L) and read as the grammar for

language L [31].

The production rules for a grammar consist of two parts: left hand side (LHS), which

always contains non-terminal (V) to be substituted, and right hand side (RHS), which

may contain non-terminal (V), terminal (
∑

), or any combination of both. The grammar

always starts with start symbol (S) and at least one production rule must have the start

symbol (S) in the LHS [31].

For example, if a grammar consists of the following:

G = {(S,A,B),(S, A, B, a, b, ε), P, S}

P:

S → A | ε
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A → aSB

B → b

The generated language will be L = {‘ ‘, ‘ab’, ‘aabb’, ‘aaaabbbb’, ‘aaaaaaabbbbbbb’, . . . }.

The language L generated by the grammar G is the same number of ‘a’ and ‘b’ or null.

2.2 Fuzzing Approaches

This section introduces available fuzzing approaches and techniques. It provides an

explanation of each approach and advantages and disadvantages of each one.

2.2.1 Blind or Black-box Fuzzing

Blind or black-box fuzzing randomly generates a stream of test cases and fuzzes a

program without any knowledge of the program’s code. If a fuzzing tool generates fuzzing

input without considering the internal actions of a program; it is called “blind fuzzing.”

Some examples of blind fuzzers include Peach [14], RADAMSA [16], and Sulley [26].

The advantage of blind fuzzers is that they are easy to set up and use. However, one

problem with blind fuzzing is that the random input cannot trigger vulnerabilities located

deep in the program. It can only find bugs in the surface of the program, because in most

of the cases, random input does not meet the format requirement of the program and

therefore will be ignored and terminated by the program at the early stages. Therefore, it

is difficult for a black-box or blind fuzzer to generate fuzzing inputs that explore a large

number of paths in the target program [32].

To make blind fuzzers more effective, most of them require information about the

format of the target program. For example, pdf fuzzers know the format of pdf files and

therefore can generate fuzzing files which are acceptable by a pdf program. Similarly,

there are HTML fuzzers and XML fuzzers that target HTML and XML separately. A

blind fuzzer usually uses the format specification to generate new inputs in fairly effective
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way. Another way to help blind fuzzers is the use of sample input. A group of valid inputs

(corpus) could be essential to aid the generation process [33] [23]. A fuzzing tool can

utilize mutation techniques to mutate the initial seed of inputs and generate fuzzing files

from there. Additional test inputs are generated from some defined mutational operators

randomly on the initial corpus or new test inputs that are created throughout fuzzing

execution runs. Some common mutation operations are bit flipping, splicing (recombining

two inputs) and repetitions.

Peach [14] is a famous general purpose fuzzing tool that builds a huge amounts of

invalid samples based on input format through the component called Peach Pits. Peach

generates invalid test cases based on mutation strategies which are the rules for fuzzing

system to process the input data. These rules decide which mutation operator will be

used to manipulate the input and then generate different number of input test cases.

Peach is time consuming because it builds Pit file using input format given by Peach to

describe the target file format [32].

RADAMSA [16] is a general purpose fuzzing tool. It is a black-box fuzzer which

depends on a sequence of input cases and is not completely arbitrary. It employs the

format of valid inputs by looping over the patterns it finds and then fuzzes them based

on flipping bits and generates a large number of input test cases.

Sulley [26] is a tool which works by defining test input cases for fuzzing and then

describing the target software and running the fuzz data produced from the main mutation

method then sends data test cases to the target program for testing. In the end, Sulley

provides the result analysis via web-based user interface.
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2.2.2 Coverage-guided Fuzzing

A coverage-guided fuzzer uses trivial program coverage feedback to follow how the

running path of the program switches via given fuzzed input. The fuzzer employs the

collected instrumentation data to choose which inputs could be ignored or kept in the

corpus queue. Thus, the fuzzer is able to develop inputs that are different from initial

seed while testing new software attributes. This approach offers a fuzzing tool the ability

to continuously discover the internal code of the software as it reveals novel paths. Some

of the most famous fuzzing tools that employ this approach are AFL [13], T-Fuzz [34],

and CollAFL [35]. However, a good coverage does not guarantee the fuzzer can trigger

bugs in the software.

American Fuzzy Lop (AFL) [13] is a general purpose coverage-guided fuzzing tool.

AFL obtains coverage information at the time of fuzzing operation. It gets the coverage

information by a code instrumentation. AFL supports two modes of instrumentation:

compile time instrumentation for open source applications, and instrumentation at runtime

using QEMU for binaries instrumentation. In compile time instrumentation, AFL supports

both GCC and LLVM mode. In runtime instrumentation, AFL supports the QEMU

mode that instrument piece of a program.

Peng et al. presented a coverage-guided fuzzing tool, T-Fuzz [34], which is a

transformational fuzzer that focuses on improving the fuzzing technique to find vulnerabilit-

ies in a target program by removing complex and hard checks. It utilizes AFL fuzzing tool

to fuzz the target program. When the fuzzing tool is unable to generate new inputs to

find bugs, a tracing approach discovers all the input checks generated by fuzzing tool that

fail to satisfy the checks. Then, the program is transformed by disabling or removing the

hard checks. After that, the transformed program continues to be fuzzed independently
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by AFL. The authors determined that T-Fuzz is able to find bugs because the T-Fuzz

found 166 out of 296 in CGC dataset (more than AFL and Driller had found). Also,

T-Fuzz showed better performance in LAVA-M dataset.

Gan el at. [35] proposed a code coverage-guided fuzzing tool which is based on coverage

sensitive fuzzer called CollAFL. The purpose of CollAFL is to solve the hash collision

problem in AFL. By verifying that each edge in the program has its own hash, it helps

AFL to distinguish between two edges. Then, the fuzzer can give accurate edge coverage

information. CollAFL uses the coverage information to apply three new strategies to

increase the speed to explore new paths and bugs. They proved that CollAFL is successful

in finding new interesting paths that can crash the program and discover vulnerabilities.

2.2.3 Fuzzing Guided by Symbolic Execution

The idea behind symbolic execution technique is to use input values as symbolic values

rather than using actual values and to use symbolic presentation to express the values of

program variables [17]. Symbolic execution plays an important role in software testing

because it helps discover a large number of program paths [36]. Symbolic execution can

efficiently generate high code coverage test cases and find bugs deep in a complicated

software because it has the capability to generate real test inputs [36]. This approach

overcomes the problems in coverage-guided fuzzing by directing fuzzing tool to fuzz the

interesting locations in the software. However, this approach has two main issues: path

explosion and generating complicated constraints [36]. For example, if software has a

complicated iteration or function that operates recursively, there probably would be

an infinite number of paths [36]; then the constraints could be very complicated and

might not be resolved in a timely manner [36]. Some fuzzing tools that employ symbolic

execution are Mayhem [37], Driller [38], EXE [39], and KLEE [40].
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Mayhem [37] is a cyber reasoning tool that uses symbolic execution approach. Mayhem

is a system that is developed to automatically discover bugs in a software. It works

by inserting random initial input samples which Mayhem uses to trace the concrete

execution of the target program, while building a symbolic procedure extracted from

the input. Then, when Mayhem finds a branch condition, it utilizes the procedures for

the condition to create a malformed input test case that takes the other direction of the

branch. Then, Mayhem repeats the tracing process using the input test cases as a new

corpus. After repeating, Mayhem enlarges the corpus to cover a larger number of paths.

Mayhem reduces the path explosion problem by combining similar corpus together and

then processing a single merged corpus that accomplishes same discovering to process

each of its component corpus.

Driller, introduced by Stephens et al. [38], is a hybrid vulnerability finding tool which

employs selective concolic execution method to enhance the efficiency of fuzzing and find

deeper bugs. When fuzzing cannot identify inputs that direct to new interesting paths,

the concolic execution system will be invoked. All of the interesting inputs that were

found by the fuzzing tool will be passed to the engine. After that, the engine is going to

recognize state transitions and create input that could cause execution to the particular

state transition. The input information will be sent back to the fuzzing tool to explore

the newly found compartment. Driller is created on top of AFL [13]. Stephens et al.

combined the fuzzer AFL with their concolic execution system, so Driller takes advantage

of the speed up of fuzzing with the selective concolic execution technique to find deep

bugs.

EXE (EXecution generated Execution)is another symbolic execution fuzzer that was

introduced by Cadar et al. [39]. EXE dominates other traditional run time tools as stated
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by the authors; because it has the ability to force running down any path in the program,

and detect if the current path constraints accept any value which leads to a flaw or not

when running a severe vulnerability. When a path exits or finds a flaw, a constraint solver

helps to resolve the path restrictions to explore actual values, then EXE can automatically

produce an input test that will execute this path.

KLEE [40] is an extended work of EXE and is also a symbolic execution tool. Cadar

et al. stated that KLEE has the ability to create input tests that reach high code coverage

on various sets of complicated software. It uses different kind of constraint-solving

improvements and utilizes search heuristics to give high code coverage. Moreover, it can

evaluate weakness constraints to capture buffer overflow vulnerabilities. KLEE at the

start analyzes the code to gather data about arrays and their size; after that, KLEE

employs these data to compute the weakness constraints. KLEE takes advantage of

applying both weakness constraints and path constraints to effectively generate fuzzing

input file.

2.2.4 Fuzzing Guided by Dynamic Taint Analysis

Dynamic taint analysis marks data found or derived from untrusted sources as tainted

[41]. Dynamic taint analysis is a type of data flow analysis method which is used in many

domains like software engineering and computer security. The idea behind it is to trace

the propagation of a specific part of data such as password or text data, then gather some

good and helpful information from the executed program [42]. Dynamic tainting analysis

approach has been commonly employed to stop exploitation of vulnerabilities such as

buffer overflow and control format string [43]. The benefit of dynamic taint analysis is the

ability to discover many input validation attacks with a low false positive rate; however,

it is time consuming, which means the execution of dynamic taint analysis is slow and
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misses full code coverage paths [44]. Some fuzzing tools that use dynamic taint analysis

are BuzzFuzz [45] ,TaintScope [46], and Dowser [47].

BuzzFuzz [45] is a white-box fuzzing tool which employs dynamic taint analysis to find

initial inputs that affect the defined values applied on the attack point of the application.

After that, it produces new fuzzing test data that only fuzz the known input cases. Rather

than utilizing random fuzzed input test cases, it employs the direct values that are related

to the particular possible weaknesses. The advantage of BuzzFuzz is that it is able to

keep the valid input file format, so they can meet the basic syntactic restrictions and

reach deeper locations in the application.

TaintScope, introduced by Wang et al. [46], is a fuzzing tool that combines taint

analysis and symbolic execution. It employs dynamic taint analysis to continue tracing

the fields of input data that affect the security processes. These input fields are known

as hot bytes. After that, TaintScope produces the fuzz input data with random or edge

values based on hot bytes. Additionally, the tool employs symbolic execution approach

because it reacts with hot bytes in initial input as symbolic values and uses dynamic

symbolic execution to reveal bugs and weaknesses on the track.

Dowser [47] is also a fuzzing tool that integrates dynamic taint analysis and symbolic

execution. Dowser employs static analysis to find critical locations in the application

which may cause buffer overflow. After that, it applies taint tracing method to locate

the input source which are operated by these identified locations. After that, a new

path guidance function is going to direct the symbolic execution to discover these critical

locations.
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2.2.5 Grammar-guided Fuzzing

Grammar-guided fuzzing approach is suitable for structured input specification like

HTML or CSS. Blind fuzzing tools have hard time handling these kind of input files

because they possibly break critical features of the input that the software is going to

rapidly detect in the beginning of parsing stage and then ignore. Therefore, blind fuzzing

tools end up testing a small portion of the software code [27]. Grammar-guided fuzzing

is a strong approach that takes advantage of grammar and supports fuzzing tools to go

deeper in the application. Therefore, blind fuzzing tools can employ this approach to

increase their efficiency to discover bugs in the target program. However, it is dependent

mostly on the provided grammar, which requires human efforts to write the grammars and

is time consuming and error prone. There are some fuzzing tools that use this approach,

such as previously mentioned tool Peach [14], Jsfunfuzz [48], and LangFuzz [49].

Jsfunfuzz [48] is a grammar-guided blind fuzzing tool for JavaScript web browser

engines which is written in JavaScript too. Jsfunfuzz focuses on confirmed classes of

bugs. It discovers dangerous operations like crash or hangs and finds bugs and errors

by differential testing. It is a generative tool which uses a provided input grammar. It

begins with the start symbol and picks production rules randomly. Then, it replaces the

non-terminals in a form of string that is defined in terminals. Eventually, it generates too

many input strings. The tool found more than 1000 bugs in Mozilla JavaScript engine

and was faster in finding these bugs than other tools. It has become a common tool for

web browser designers.

Holler et al. [49] introduced LangFuzz, which is a grammar-guided fuzzing tool that

employs grammars for multiple languages and uses seed samples. LangFuzz builds

knowledge from the target language to identify variables and existing keywords. After
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that, the tool uses mutation technique to modify the inputs which then generates test

cases to examine the target program.

2.3 Literature Review on Grammar-based Fuzzing

Grammar-based fuzzing is a fuzzing technique that takes a particular input format

to get the correct grammars structure. It uses the grammars to generate fuzzing input

that passes the parsing stage of a program. The vast majority of the grammar-guided

fuzzing techniques take unique file format for specific input structure. A fuzzing tool will

have difficulties if it does not have a valid user input format known before. Therefore,

it is critical for grammar-based fuzzing tool to have grammar specification which will

support the generation of valid fuzzing inputs that meet the program testing and assist

in exploring interesting bugs. Moreover, grammar-based fuzzing tool that uses grammar

guided method is able to increase code coverage and reach deeper locations in a target

application [50]. Most of the techniques that use grammar-based fuzzing utilize grammars

with user inputs in the beginning of fuzzing process to generate test. By using grammars,

the fuzzing tool can generate new user inputs and then apply them to generate new fuzzing

inputs. Many studies have been performed on fuzzing techniques that use grammar to

guide fuzzer. Moreover, they combine grammar-based fuzzers with techniques such as

mutation, machine learning (e.g. neural networks), evolutionary computing (e.g. genetic

algorithm), or coverage feedback to guide fuzzing and improve the ability of revealing

bugs in a program under test.

Mutation-based fuzzing takes sample inputs and chooses them in particular order,

then mutates/changes them in different ways, and examines target programs with the

newly generated test input. Mutation is the most common technique used for fuzzing

guidance because it is an efficient way to get fuzzing user input that supports finding deep
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bugs while using it with grammar-guided fuzzing [22]. Machine learning fuzzing is another

method that a fuzzer can use to find bugs in the target programs. It is a learning algorithm

which learns or trains model to do certain operations with some probabilities, and it

can be used with fuzzing to generate intelligent or organized fuzzing files. Evolutionary

computing fuzzing is inspired by evolution theory and generates new individuals in the

eco-system with reproduction and combination of good features of individuals by using

fitness function. Therefore, the tool can generate effective fuzzing inputs. As mentioned

before, coverage-guided fuzzing is a technique in which a fuzzer can get coverage feedback

information so the fuzzer uses it to test unvisited locations in the program under test.

2.3.1 Grammar-based Fuzzers Based on Mutation

Some studies used mutation techniques in a grammar-based fuzzing. According to

Guo et al. [22], GramFuzz uses the two techniques of grammar analysis of inputs and

mutation of the input structure to fuzz web browsers. GramFuzz obtains initial input

file from the internet and analyzes them to set a parse tree by using Gold Parser, an

open source analysis tool. After getting the grammar trees, the nodes are mutated. Then

input test cases can be generated. Authors reported that by combining generation and

mutation, test cases will be more effective at fuzzing web browsers. GramFuzz has found

36 vulnerabilities considered severe security in IE and Mozila [22]. However, GramFuzz

only works with web browsers which accept HTML, CSS, and JavaScript files.

Sargsyan et al. [51] presented SD-Gen which is a structure input generation grammar-based

fuzzing by using available grammars in ANTLR that supports grammar rules for more

than 120 languages and file formats. It takes the target grammar and input language as

inputs. Then, test data (programs) are generated and mutated. SD-Gen can generate

programs for compilers, interpreters, and translator testing because it supports generating
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programs in C, C++, Java, Python, etc. Results showed SD-Gen is able to increase code

coverage [51]. However, it can’t provide programs semantic correctness.

BlendFuzz [52] is another grammar-based fuzzing tool which is a model-based framework

that is effective fuzzing with grammatical inputs. BlendFuzz generates inputs by first

building a parser for the target language. Second, it applies the parser to seed set (input)

and obtains a parser tree to extract grammar language from the tree structure and check

the ordering of grammar elements. Third, it maps between inferring grammar elements

and collecting language constructs to make it easy for mutation. Lastly, it uses mutation

technique to the string by selecting fragments and replacing them with the same type.

These inputs test the target program so the complex structures and program’s edges

are covered. In the end, the results showed the approach is effective and enhanced the

code coverage and revealed security vulnerabilities [52]. However, it can’t generate new

grammar components other than those available in the seed set and can’t always generate

syntactically correct inputs. Also, it supports only specific input formats XML, HTML,

and Javascript.

QuickFuzz [53] has been introduced by Grieco et al. It leverages Haskell’s QuickChick

(the well-known property-based random testing library) and Hackage (the community

Haskell software repository) and combines a general purpose bit-level mutational fuzzers

(e.g. Radamsa and HonggFuzz) to create fuzzing automatically for some well-known file

format without providing any file format specifications. It generates input files based

on a grammar then performs mutational techniques on these files to trigger unexpected

behavior in the target program. QuickFuzz was tried with real world programs and found

to be successfully effective in discovering most important vulnerabilities [53]. However,

at the start of the generation process, some randomly derived inputs are not effective in
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generation of source code because they are rejected in the parsing stage. Also, there are

some issues of using third party’s package because some modules do not support certain

complex file types. The fuzzer mostly focuses on multimedia file formats such as image,

audio, video, etc. and supports certain PDF and certain types of archive file formats such

as ZIP and TAR.

LangFuzz [49] was introduced by Holler et al. It is a fuzzing tool using blackbox

fuzz testing of engines based on grammar. LangFuzz takes the provided grammars using

ANTLR and sample code to generate language fragments and test suite for code mutation.

Code mutation is divided into two phases: a learning phase and main mutation phase. In

learning phase, a group of sample codes are operated with a parser using grammar. The

parser will separate the input code sample into code fragments which are non-terminal in

the grammar. Once the learning phase is finished, mutation phase starts by selecting some

code fragments and replacing them with others of the same type. Using code generation,

step wise expansion is used by considering code as syntax tree. LangFuzz uses code

mutation, which is the primary technique, and random generation to generate test cases

to test the engine before passing the test cases to the interpreter. By combining two

types of code generation (mutation and generation), LangFuzz has found 164 real-world

bugs in popular JavaScript engines and 31 security related vulnerabilities from Mozila

and Chrome V8 and detected 20 bugs on PHP engine [49]. LangFuzz has some issues; for

example, fewer test cases or biased tests decrease LangFuzz’s performance. Moreover, it

has to make necessary changes to add grammar rules to use the tool for generating new

inputs to be compatible and accepted by the new language. Also, it only supports testing

Mozilla and PHP interpreter.
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2.3.2 Grammar-based Fuzzers Guided by Machine Learning

Some grammar-based fuzzing tools utilize machine learning to generate well-formed

inputs that are able to increase code coverage and discover new bugs.

Godefroid et al. [54] designed Learn&Fuzz, which uses machine learning (Neural

Network) to generate fuzzing inputs automatically. Learn&Fuzz uses neural network-based

learning methods to learn a grammar for non-binary PDF data objects such as formatted

text. It uses input sampling techniques to generate PDF objects from the learned

distribution. The full specification of the PDF format is over 1300 pages long. The

grammar rules are huge and heavy but they are structured well and adequate for learning

with neural network. Learn&Fuzz utilizes learned input probability distribution to guide

the tool to generate fuzzing inputs in a smart way. It shows that the neural network

technique is able to generate well-formed inputs and increase coverage of input parser

more than different variations of random fuzzing [54]. Nevertheless, it focuses only on

PDF file format. Also, Learn&Fuzz is not able to process less structured inputs such as

images, videos, and audio files because it is designed for text formatted inputs.

Wang et al. [19] stated that Skyfire is a data-driven seed generation approach. It

takes a corpus and grammar as inputs and generates fuzzing inputs in two steps. First,

it parses the collected samples based on the grammar and generates the AST (Abstract

Syntax Tree) trees. Then, it learns the PCSG (Probabilistic Context-Sensitive Grammar)

that is based on semantics rules and syntax features. Second, it generates seed inputs

by looping to select and apply grammar rules that satisfy the context on non-terminal

symbols until there is no more non-terminal symbol in the output string. Then, it applies

low probability on high probability production rules to obtain uncommon input with

variety of grammar structure. Skyfire makes selections on the resulting input seed to
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filter out the similar seeds to reduce duplication. In the end, Skyfire mutates the selected

input seeds by randomly selecting leaf-level node in the trees with the same node with

applying semantic rules and remaining grammar structure. The results show that Skyfire

effectively improves the code coverage and enhances the ability to find bugs [19]. However,

it is only limited for files whose format are XML, XSL, and JavaScript.

According to Hu et al. [55], GANFuzz uses machine learning for industrial network

protocol to fuzz network protocol in which input test is generated using protocol grammar

by creating specifications or reverse engineering from network packets. In this study,

by using machine learning (neural network) an automated test input is generated

with deep-learning techniques to learn protocol grammar. After that, GANFuzz takes

advantages to train test inputs over the network packets to get protocol grammars then

generates invalid input messages that lead to discover some bugs and errors. The results

showed that GANFuzz is effective in code coverage and deeply testing [55]. However,

it is only limited for the format of industrial network protocols files. Also, there are

some limitations; for example GANFuzz cannot handle file operations or generate correct

syntactically protocol specifications, and there are graphical user interface errors.

2.3.3 Grammar-based Fuzzers Guided by Evolutionary Computation

Some grammar-based fuzzing tools use evolutionary computation methods such as

genetic algorithm and genetic programming. These tools leverage the crossover and

mutation techniques to produce well-formed test inputs based on improved fitness function.

Hodován et al. [56] created the fuzzing tool Grammarinator which works with

generation and mutation-based fuzzers with the help of grammar. It uses parser grammar

to generate input test cases and build abstract syntax tree for each test case and analyzes

them. Moreover, an evolutionary algorithm is used for mutation and recombination to
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the test input files. Grammarinator defines the depth of generated structure and focuses

its generation on the less visited parts. It also defines complex actions and decides the

correct test cases that the grammar can describe. Grammarinator is used to test different

JavaScript engines and is found to be useful and effective: it has found more than 100

new issues from IoT.js [57]. However, it only fuzzes JavaScript engines.

Veggalam et al. [23] developed a fuzzing tool called IFuzzer that uses evolutionary

computation techniques such as genetic programming to guide fuzzing. it takes context-free

grammar as input to generate test cases by generating parse trees and extracting code

fragments from test suit. IFuzzer uses genetic programming technique that utilizes

mutation and crossover and leverages the improving fitness function to enhance the

effectiveness of generating input (codes) test cases. The results showed that IFuzzer

reveals bugs more quickly than state-of-the-art fuzzing tools [23]. Moreover, it found 40

bugs in old version of JavaScript interpreter of Mozilla and 17 bugs in latest version of

the interpreter [23]. However, IFuzzer is low quality with respect to code generation, and

it requires changes for new language or new code.

2.3.4 Grammar-based Fuzzers Guided by Coverage Feedback

As stated previously, latest mutational blind (black-box), coverage-guided, symbolic

execution, or dynamic taint analysis guided fuzzing tools are not able to effectively create

inputs for programs with structured input languages. To solve this problem, generational

fuzzing tools (whether blind, coverage-guide, symbolic execution, or taints analysis) use a

specification or a format of the input language (usually called “a grammar”) to generate

valid inputs. So, they decrease the space of potential inputs to a small group that has

higher probability to trigger vulnerabilities. Moreover, coverage-guided grammar fuzzing

tools can mutate inputs in this small group by using the given grammar. We call these
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mutations comprehensive mutations since they modify large part of the input. Hence, the

performance of fuzzing tools that use this approach can be significantly high by providing

formats or specifications of the inputs to the fuzzing tools. Moreover, the fuzzing tool

has the ability to reasonably merge inputs that lead to critical attributes with a high

probability of discovering more dangerous actions. However, they need human labor and

expert knowledge, and they must be manually written to give input format correctly.

Also, it is error prone, which is difficult to manually provide a correct specification. There

are several tools that employ this technique: they are NAUTILUS [24], AFLSMART [58],

and Superion [59].

Aschermann et al. [24] proposed a design and implementation of a fuzzing method

that combines the use of grammar to generate inputs with coverage-guided fuzzing to

explore bugs deep in a target program that occur after syntactic checks. NAUTILUS

does not need a seed input; only needs source code of a target program and a grammar

as inputs. Then, it uses the provided grammar for generating new inputs for the program.

It employs feedback to generate mutated interesting inputs for the target program. As a

result, using feedback with grammar led to a great improvement for fuzzers to find bugs

deep in the target program. NAUTILUS has found 13 new bugs in 4 targets Ruby, Lau,

PHP and JavaScriptand; and received in a sum of $2600 as award in 6 CVEs that have

been discovered [24].

Pham et al. [58] introduced AFLSMART. It is a smart grey-box fuzzing (SGF) and acts

as a coverage-guided grammar fuzzing tool. It takes advantages of high-level structural

specification of files to generate novel input files for some applications that process complex

file formats. New novel mutation operators have been created. They work on the virtual

file structure to maintain file validity and discover completely new input files with the help
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of SGF validity based power schedule to generate input files. These files are able to pass

the parsing part of a target program to increase the likelihood of reaching vulnerabilities

deep in the program. It achieves more branch code coverage, up to 87% improvement

compared with AFL [13] and finds more flaws. However, AFLSMART is tedious and

requires more effort and time to write specification for inputs [58].

Wang et al. [59] proposed a grammar-aware coverage-based gray-box fuzzing tool

called Superion. It is used for programs to process structured inputs. It takes as inputs a

target program and a grammar of the input tests that are publicly available. They used

AST for grammar-ware trimming technique which trims or modifies test inputs and at

the same time keeps the input structure valid. The proposed technique removes each

subtree in the AST for a test input and watches the coverage changes. Also, the proposed

approach includes two grammar-aware strategy; then, a tree-based mutation strategy is

proposed that replaces a subtree from itself or another test input in the queue on the

subtree in the AST of a test input. It found 34 new bugs in Jerryscript, XML engine, 3

JavaScript engines, and ChakraCore. Also, it discovered 22 new vulnerabilities with 19

CVEs identifier assigned. In comparison with AFL and Jsfunfuzz [48], AFL found only 6

bugs of 34 and Jsfunfuzz did not discover anything [59].
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Chapter 3: Input Files Grammars Analysis

After examining the programs in the DARPA CGC dataset, it was determined that each

program is a standalone program and there is no similarity among the programs. For

example, there are ship game, palindrome test, picture analyzer, file reading and searching

programs in the dataset. Each program has its own way to interact with the user, such

as using specific commands and special strings. To be able to conduct effective fuzzing,

the formats of how to interact with the programs have to be learned. Since most of the

vulnerable programs come with network traffic data, the interactions between the user

and program can be extracted. This network traffic data can be treated as valid sample

input files, and a grammar can be learned from these files and used in the later process.

This section discusses how to analyze input files from the DARPA CGC dataset to

extract grammars. After the grammar is extracted from the sample input files, it can be

fed to the fuzzer to generate effective fuzzing input files.

This stage begins by collecting data from the DARPA CGC dataset which then

starts analyzing for grammars. After investigating the input files/network traffic files in

the DARPA CGC dataset, we found that most of the programs require input that are

command-like. One example can be found in Listing 3.1, which shows all the messages

sent from the user to the program. By taking a closer look, we can find the messages are

in the format of command and one or more parameters, command only, or some random

strings. Therefore, when analyzing the input, we treat the first word as command and

the later part as parameters. For example, in Listing 3.1, commands are the first word of

each line, for example, copy, list, show, erase, make, last, write, etc.. Parameters are the

items that come after a command. Using the first line in Listing 3.1 as an example, copy

is a command and the parameters are README.txt, and lcggfldeuausqsrx. On the second

line, list is a command and no parameter after it.
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Listing 3.1: Filesystem Command Shell User Input Example

1 copy README. txt l c g g f l d e u a u s q s r x
2 l i s t
3 show README. txt
4 e ra s e au then t i c a t i on . db
5 make gtims
6 l a s t README. txt 10
7 show l c g g f l d e u a u s q s r x
8 show README. txt
9 l i s t

10 wr i t e au then t i c a t i on . db
11 show README. txt
12 l a s t README. txt 10
13 l a s t README. txt 10
14 f i r s t README. txt 10
15 l a s t l c g g f l d e u a u s q s r x 10
16 f i r s t au then t i c a t i on . db 10
17 l i s t
18 logout
19 ev j f r tm 58932
20 xboskhi 18012
21 ahpoyva 1614
22 l a s t au then t i c a t i on . db 10
23 make f l x z z o f v e q e x s f j e
24 make kzoycqeppd
25 wr i t e f l x z z o f v e q e x s f j e
26 chwvs fnnspychd j f rby f junhv lbypwib j e iu ixgo ipvxr
27 wr i t e au then t i c a t i on . db
28 e ra s e README. txt
29 f i r s t l c g g f l d e u a u s q s r x 10
30 perms authen t i c a t i on . db 2
31 l i s t
32 make zmhvbqsjmzo
33 perms README. txt 2
34 l a s t au then t i c a t i on . db 10
35 f i r s t f l x z z o f v e q e x s f j e 10
36 perms authen t i c a t i on . db 1
37 e ra s e f l x z z o f v e q e x s f j e
38 l a s t zmhvbqsjmzo 10
39 perms zmhvbqsjmzo 1
40 perms README. txt 3
41 e ra s e gtims
42 perms authen t i c a t i on . db 4
43 wr i t e au then t i c a t i on . db
44 e x i t

The grammar analysis step entails going through all sample input files for a program
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and analyzing them to extract the commands with their parameters and use them for

generating fuzzing files in the next stage. This step can be further divided into four

smaller tasks: 1) read sample input files, 2) analyze real commands, 3) analyze real

parameters, and 4) analyze numbers.

3.1 Reading Input Files

The tool starts by reading all the sample input files and saving all of the strings from

the input files into an input list because it has to be easy and flexible so that the tool can

find repeated or real items in all the input files. Then it scans through the input list and

counts the numbers of each possible delimiter ( , / | : ; = - ‘ space). The reason for this is

the tool needs to determine which character should be treated as the delimiter to split the

words on each line. From the manual examination of the programs, most programs use

white space as the delimiter; however, some programs use hyphen, semicolon, or equal sign

to separate command and parameters. Therefore, a possible delimiter list is maintained

and the tool first scans and counts the occurrence of each possible delimiter and uses the

top one as the delimiter to separate words in the input files. For example, the delimiter

for Listing 3.1 is “space” after the tool counts all the possible delimiters in all input files.

Then the delimiter is used to split the input strings so that the first word before the first

space is treated as command and the later part of the line is treated as parameters of the

specific command. The delimiter is used to separate parameters as well.

3.2 Analyzing Real Commands

This stage is for extracting and analyzing real commands. After determining the

delimiter, each string in the input list is split. Then, each of the first words after splitting

the lines will be treated as a possible command. The possible commands are kept in a

command list.



34

Figure 3.1: Sorting Commands.

Figure 3.2: Counting Real Commands.

Because of the large amount of input strings, we cannot treat each first word as a

command. Instead, only the commands which have higher occurrences should be treated

as commands. For example, some commands showed more than 500 times, but some other

potential commands only occurred for 2 or 3 times. These low-occurrence commands are

less likely to be the real commands, and they should be ignored. Otherwise, the number

of real commands will be too high, and it will take much more time to analyze them.

In addition, many of the low-occurrence commands are random strings and are not real

commands.

To determine if a command is a real command, we count how many times it occurs.

If a possible command occurs in more than 10% of the lines, it is considered a “real

command”. This percentage number was chosen experimentally (see Section 6.6). The

reason for doing that is to not include unnecessary items as commands. We set the

maximum number of real commands to be 20. So, the tool will not get too many real

commands. Therefore, the tool will be able to speed up the process of analyzing larger

input files with huge data input and support generating effective fuzzing input files by

focusing only on the found items.
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Using the input in Listing 3.1 as an example, after the commands are collected, the

command list is taken and sorted as shown in Figure 3.1. Then, real commands are

collected and the number of occurrences of each one is counted (see Figure 3.2). The

reason for sorting and counting commands is to make it easier, more accessible, and faster

at finding similarities in commands. After that, the tool will have commands collected

with its counter number. Then, the tool keeps those that occur more than 10% of the

lines. For example, the final commands list for Listing 3.1 is shown in Listing 3.2.

Listing 3.2: Real Command List

1 [ ‘ e ra s e1 ’ , ‘ f i r s t 2 ’ , ‘ l a s t 2 ’ , ‘ l i s t 0 ’ , ‘ make1 ’ , ‘ perms2 ’ , ‘ show1 ’ ,
2 ‘ wr i t e1 ’ ]

In the command list, an extra number is added after each command to specify the number

of parameters.The number is determined based on the number of parameters after each

command. By having this number, the tool knows how many parameters come after a

command and collects them to find real parameters (next step). Using the first line in

Listing 3.1 as an example, copy README.txt lcggfldeuausqsrx, the number of the split

words on this line is 3, which means there are 2 parameters following the copy command.

The tool will store copy2 on the final command list if it exceeds the percentage number so

that the tool knows that this command copy has 2 parameters. However, if the command

doesn’t have a parameter, the new command will be command0, such as list0 in the

example. To lower the amount of generated fuzzing files, the max parameter number

is set to 3. This means if a line has more than 4 split words, it will be excluded from

analysis or fuzzer. After knowing the command and how many parameters it has, each

command and its parameters are put together in a general dictionary.
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3.3 Analyzing Real Parameters

The goal for the third step is to find common and most available parameters for each

command by analyzing all the parameters for that command similar to how we found

commands. The tool manages all the parameters and identifies the parameters that

appear mostly with a command if the counted number is equal to or exceed a calculated

percentage.

Similar to the percentage number used for determining real command, another

percentage number (10%) is used. This percentage number can be changed if necessary.

The reason for using the percentage number is to limit the number of real parameters

and avoid treating random strings as real parameters.

If a real parameter is found, the same process will be done for the second and third

parameters. However, if there is no common first parameter, there is no need to find

common parameters for the second and third parameters. Similarly, if there is a common

first parameter but there is no second common parameter, the tool will not find the third

common parameter.

Listing 3.3: Real Commands and Their Real Parameters

1 { ‘ copy2 ’ : [ [ ‘README. txt ’ ] , [ ‘ au then t i c a t i on . db ’ ] ] ,
2 ‘ e ra s e1 ’ : [ [ ‘README. txt ’ ] , [ ‘ au then t i c a t i on . db ’ ] ] ,
3 ‘ e x i t 0 ’ : [ ] ,
4 ‘ f i r s t 2 ’ : [ [ ‘README. txt ’ , ‘ 10 ’ ] , [ ‘ au then t i c a t i on . db ’ , ‘10 ’ ] ] ,
5 ‘ l a s t 2 ’ : [ [ ‘README. txt ’ , ‘ 10 ’ ] , [ ‘ au then t i c a t i on . db ’ , ‘10 ’ ] ] ,
6 ‘ l i s t 0 ’ : [ ] ,
7 ‘ l ogout0 ’ : [ ] ,
8 ‘ make1 ’ : [ ] ,
9 ‘ perms2 ’ : [ [ ‘README. txt ’ ] , [ ‘ au then t i c a t i on . db ’ ] ] ,

10 ‘ show1 ’ : [ [ ‘README. txt ’ ] , [ ‘ au then t i c a t i on . db ’ ] ] ,
11 ‘ wr i t e1 ’ : [ [ ‘README. txt ’ ] , [ ‘ au then t i c a t i on . db ’ ] ] }

After that, the new findings for real commands with their real parameters are kept for

further processing. The final findings from Listing 3.1 are shown in Listing 3.3. On lines
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2 and 4, ‘erase1’ and ‘first2’ are commands. Also, line 2 shows the real first parameters

[[‘README.txt’],[‘authentication’]] for command ‘erase1’, which is a one-parameter

command type. The command ‘first2’ is a two-parameter command type that has [[‘REA

DME.txt’,‘10’],[‘authentication.db’,‘10’]], which has two first parameters, ‘README.txt’

and ‘authentication.db’. Each one is followed by a second parameter, which is ‘10’ for

each one.

3.4 Analyzing Numbers and Change to [0-9]

While manually examining the sample input files of DARPA CGC dataset, it was

noticed that some input files, such as “move r1, move r4, move r7, move r10”, have

different numbers in their parameters. The first parameters for the move command are

r1, r4, r7, r10. If we compare the occurrence number of each one with the percentage

number, then all of them will be dropped. However, they should be treated as a common

parameter r[0-9]. Therefore, to be able to detect parameters like this, the numerical

parts in parameters are modified and changed to [0-9] to make it easy to detect these

parameters. So the first parameters for the move command (r1, r4, r7, r10) will be

each changed to r[0-9], and they will be counted for an occurrence of 4 and saved in the

common parameter list.

After this stage, a final grammar shown in Listing 3.4 will be obtained. The only

changes from previous listing (Listing 3.3) are on line 10 in Listing 3.4. The changes can

be seen for command perms2 because the second parameters are different numbers for

this command. So, all numbers in the second parameters were changed and modified to

“[0-9]”. Therefore, it was easy and helpful for them to be discovered. “[0-9]” was included

with the parameters in the parameters’ list.
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Listing 3.4: Real Commands and Their Real Parameters after Changing Number to
(0-9)

1 { ‘ copy2 ’ : [ [ ‘README. txt ’ ] , [ ‘ au then t i c a t i on . db ’ ] ] ,
2 ‘ e ra s e1 ’ : [ [ ‘README. txt ’ ] , [ ‘ au then t i c a t i on . db ’ ] ] ,
3 ‘ e x i t 0 ’ : [ ] ,
4 ‘ f i r s t 2 ’ : [ [ ‘README. txt ’ , ‘ 10 ’ ] , [ ‘ au then t i c a t i on . db ’ , ‘10 ’ ] ] ,
5 ‘ l a s t 2 ’ : [ [ ‘README. txt ’ , ‘10 ’ ] , [ ‘ au then t i c a t i on . db ’ , ‘10 ’ ] ] ,
6 ‘ l i s t 0 ’ : [ ] ,
7 ‘ l ogout0 ’ : [ ] ,
8 ‘ make1 ’ : [ ] ,
9 ‘ perms2 ’ : [ [ ‘README. txt ’ ] , [ ‘ au then t i c a t i on . db ’ ] ,

10 [ ‘README. txt ’ , ‘ [0 −9] ’ ] , [ ‘ au then t i c a t i on . db ’ , ‘ [0 −9] ’ ] ] ,
11 ‘ show1 ’ : [ [ ‘README. txt ’ ] , [ ‘ au then t i c a t i on . db ’ ] ] ,
12 ‘ wr i t e1 ’ : [ [ ‘README. txt ’ ] , [ ‘ au then t i c a t i on . db ’ ] ] }

Another reason to change numbers in parameters is that the fuzzing tool will substitute

the “[0-9]” to generate random numbers in the hope of discovering any vulnerability

caused by using invalid numbers in the program. Some input files have numbers in them,

which means there could be a chance of one of those numbers triggering a buffer overflow,

integer overflow, or other vulnerabilities.

Analyzing sample input files is started by taking all of input files and going through

steps. First, reading the input files which read all input files for a program and find most

used delimiter in them. Then, the tool splits them by the delimiter and keeps them for

later process. Second, analyzing real commands by taking all commands and count each

one and check of the counted number exceeds or equals to to 10% of number of sample

input files. Third, analyzing real parameters for each real command and count them to

find if the counted number exceeds or equals to 10% of number of command occurrences.

Fourth, analyzing numbers in parameters and change them to [0-9].
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Chapter 4: Generating Fuzzing Files

After finishing the sample input files analysis, grammars are extracted, which will support

generating fuzzing files. This chapter discusses how the new fuzzing tool creates and

generates fuzzing files by using the extracted grammar. To be able to test the deeper

code in the program, the sample input files are used and modified because we want to

keep the orders of commands as shown in the valid sample input files. Also, they were

used to help generate effective fuzzing files which can interact with the program correctly.

Therefore, the strategies of generating fuzzing files in this step are to make substitution

and replacement on the valid sample input files. In this step, a random string generator is

developed. The new fuzzer gets a sample input file and figures out which part to substitute

with the help of the extracted grammars. Then it uses the random string generator to

generate a random string to substitute a particular part of the sample input. This new

fuzzing file will be saved and later will be fed into the target program for testing.

The step can be divided into two major steps: 1) Read in sample input file and identify

the location in the sample input file where it needs to be substituted, and then construct

a new line to substitute the original line, and 2) Generate a random string and substitute

the identified part in the sample input file with newly constructed line and save it as a

new fuzzing file.

4.1 Line Replacements

The purpose of this step is to replace a line of a sample input file each time with new

random string because most programs require keeping the order of the commands in user

inputs so the programs run and execute correctly. After having one sample input file, the

tool can use it to create multiple fuzzing files from it by substituting different lines.
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4.1.1 Constructing Fuzzing Files

In the beginning, the tool starts to generate fuzzing files by opening a sample input

file, then all the data from that file will be copied to the new text file. Then, it takes a

line from the sample input file and creates a target line variable to recognize the line that

needs to be replaced with a random string. Later, it starts replacing lines from first line

and then goes to the next line by increasing the target line variable by 1 and continues

until it reaches the last line. After replacing a line, it copies the lines before the target

line and the following lines that come after it to create a new fuzzing file. In short, it

only modifies one line from the sample input file and saves it as a new fuzzing input

file. Then, next round, the tool substitutes another line from the same sample input file

to make it a new fuzzing file. The tool continues until reaching the last line. Because

every time, only one line of the valid sample input is changed, the new fuzzing file is very

likely to interact the program properly. By keeping the order of commands in the testing

file, the programs can be executed correctly, and the tool will have a higher chance in

discovering a vulnerability deeper in the program. When replacing a line, the tool works

by taking the first word of it which is considered a command and determine whether

it is in the grammar list. Based on the number of parameters, the tool will be able to

recognize the type of a command; the command types are a command only, one-parameter

command, two-parameter command, and three-parameter command. After that, when

the tool knows the format of the line, it is compared with the extracted grammars. If it is

one of the commands, then it continues to parameter checking. However, if the first word

does not match any command in the real command list, then the tool will generate a

random string for that line, supporting testing programs that do not have real commands.
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4.1.2 Creating Fuzzing Line

In a line, the tool will have different number of parameters that come with a command.

There are commands with/without parameters. For each one, the line is taken based on

if it is a command with zero, one, two, or three parameters. Then, any number that is

found in a parameter is changed to “[0-9]” for each parameter. After that, it is compared

with the grammar extracted before. If there is a match, the numeric parameter will

be recognized, and it will be substituted by a random number with a random length.

However, if there is no match, the tool will consider these parameters as strings. So, for a

command with no parameter, the tool can substitute the command and replace it by a

random string with different length or keep it with no replacement. For a command with

parameters, the tool will replace either the command or any one of the parameters with a

random string with a different length. Nevertheless, in case there is no command match,

there will not be parameter match. So, the target line will be substituted, or a random

string will be added to it with a random length.

For example, if a line contains a command and two parameters and the command

matches one of the commands in the grammar, the tool will analyze each parameter

and change any number in it to “[0-9]”. Those parameters are then compared with the

parameters in the grammars. If there is a match, then the tool considers the parameters

are numeric. After that, they are changed to random numbers with different length. For

example, in Listing 1, after the line “perms README.txt 2” is split, the tool will get

[‘perms’,‘README.txt’,‘2’ ]. The tool will go to first and second parameters. If there is

any number in them, the tool will change it to “[0-9]”, so in the end the tool will have

the parameters look like [‘README.txt’,‘[0-9]’], and then it will have a match with a

command in Listing 3.4 . Thus, the tool will be able to change the “[0-9]” with a random
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number when generating fuzzing files. On the other hand, if there is no numeric parameter

and no match, they will be considered as string parameters and will be substituted with

a random string. For example, if there is a two-parameter command on a line, the tool

can make one of the following replacements:

• Replace the command with a random string and keep the two parameters with no

change.

• Keep the command and second parameter with no change and replace the first

parameter with a random string.

• Keep the command and first parameter with no change and replace the second

parameter with random string.

Since the grammar of the input was extracted, the tool is able to use it to generate

more effective fuzzing files by substituting only part of a line. For example, the

line move r3, r2 may be changed to move r12348579204756380801, r2 or move r3,

r385972939754098840242 or even move r3, r-328495723975892. Helped by the grammar,

the string can be substituted precisely. In addition, it is more likely to trigger a bug in a

program compared to substituting the whole line with a random string which may not

meet the format requirement and hence will be rejected by the program.

4.2 Generating Random String

After finding a target line and matching with the grammars, the tool is going to

generate a random string or random number to the selected element from the target

line. To have a better coverage of different kinds of random strings, the strings are not

randomly generated. Instead, we feed the random test numbers to the random string
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generator to specify the format of random string we want. The random test number tells

the length, the character types of the random string, and how to replace the target line.

4.2.1 Random Test Numbers

In the beginning, the tool uses random test numbers to specify the length, string type

of the random string, and the location in the line to replace the random string. The

random test number is three-digit number.

Random test number list is created for each command that is found in the grammar.

Each random test number is a three-digit number between 000 and 999. Each of the digits

is used for different things in generating a random string. The first digit is for selecting

an element that is going to be replaced with a random string; the second digit is for the

type of string that is going to be generated; and the third digit is for the length of the

generated string. For example, if a random test number is 234, 4 is the first digit, which

is for selecting an element to be replaced; 3 is the second digit, which is the type of string

to be generated; and 2 is the third digit, which is for the length of generated random

string. The goal of the random test number list is to get a better coverage of string types,

substitution types, and lengths so the random test number will have the information of

string types, substitution types, and lengths, which will be passed to the random string

generator to generate different combinations of strings. Moreover, these numbers can be

positive or negative, with the negative numbers representing the generation of negative

numbers for only numeric parameters. For example, if there is a two-parameter command

type “copy dowjdh file.txt”, the tool will have a list of 100 different random test numbers

generated for command “copy”:

copy:[411,-300,-325,32,....]

411 from the list is picked. From the random test number 411, the tool knows first digit 1
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is for replacing the first parameter as shown below. The second digit is 1 which is for

selecting the string type, which is characters only (upper and lower cases), to be generated.

The third digit 4 is for the length of the generated string which is 32.

copy dfgAjhDGjhjgGDHKgKDGKDgiuioFGHop file.txt

32 from list is picked. 32 from the list is picked. From the random test number 32, the

tool knows first digit 2 is for replacing the second parameter as shown below. The second

digit is 3 which is for selecting the string type, which is characters and numbers, to be

generated. The third digit 0 is for the length of the generated string which is 4.

copy dowjdh y2g9

-300 from the list is picked. From the random test number -300, the tool knows first

digit 0 is for replacing the command as shown below. The second digit is 0 which is for

selecting the string type, which is numbers only and because the random test number

is negative, the tool will generate negative random number. The third digit 3 is for the

length of the generated string which is 4.

-34657219 dowjdh file.txt

After completing the generating process from one of the picked random test numbers

for a command, the number will be removed from the list. Then, the generating process

will continue for that command until all of the random test number list is empty. If

the random test number list for a command is empty, one more random test number

list will be created for that command to keep generating new random strings for it (if

the command is found in coming lines until the last line in the last sample input file).

Therefore, the tool will have large combination of different random strings of different

length that will be generated for fuzzing files, so that the fuzzer will generate adequate

amount of fuzzing files to get a higher probability of finding bugs or vulnerability in a
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program.

4.2.2 Digit 1: Selecting and Replacing Part of A Line

For selecting and replacing a string, a random test numbers list for a command is

obtained. Then, when there is a command match with a command from the target line, a

random test number from the list is picked. As mentioned previously, the first digit is

for selecting the element that is going to be replaced with a random string. The choices

are going to be 5 options based on the line format (command only or command with

parameter(s)) ranging from 0 to 4. These options are:

• 0 means replace the command.

• 1 means replace the first parameter.

• 2 means replace the second parameter.

• 3 means replace the third parameter.

• 4 means select one of the four locations and insert a random string in the selected

position.

4.2.3 Digit 2: String Types To Be Generated

In the picked random test number, the second digit specifies the type of string that

is going to be generated. The following are the types of strings that are going to be

generated by the fuzzer:

• Numbers only.

• Characters only (upper and lower case).

• Symbols only.
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• Numbers and characters.

• Numbers, characters, and symbols.

• 0 with space.

• 1 with space.

• %x.

• %n.

• %p.

• Multiple spaces “\x20”.

• Multiple “\xff”.

• Multiple of null character “\x00”.

• Hex control characters.

• Hex characters without the control characters.

The string type 1 with space and 0 with space are for programs that trigger an overflow

vulnerability in them. The string types %x, %n, and %p are for discovering format string

vulnerability. The hex characters “\x20”, ”\x00”, and “\xff” are going to be used to fuzz

the programs for memory corruption. In addition, the hexadecimal control characters

from “\x00” to “\x20” and “\x7f” are bad characters that can cause memory corruption

in programs under test by giving mixed strings from these characters and then inserting

them into a program to trigger a buffer overflow or a bug that crashes the program.

Finally, the hexadecimal uncontrol characters from “\x21” to “\x7e” will be used to fuzz



47

the programs with different combinations of characters to increase the chance of triggering

a buffer overflow vulnerability in the fuzzed program.

The tool is able to generate any combination of strings for every generated line because

it uses the random test numbers for each command in the fuzzer which will help the tool

to create different random string in each round.

4.2.4 Digit 3: Length of A Random String

After the tool has the type of replacement and the type of generated string, it has

to determine the length of the generated string. Therefore, the third digit in the picked

random test number is for the length of generated string. Because the random test

number is three digits from 000 to 999, the third digit in the random test number is in

range 0 to 9. The tool will have different kinds of lengths, and there are two lists each

containing 10 different lengths. The first list is [4,6,8,16,32,64,128,256,512,1025] and the

second list is [1200,1500,1800,2000,2200,2500,2800,3000,3500,4001]. The tool is going to

try different lengths to find a bug or vulnerability in the program. The tool works by

randomly choosing which list to use. The purpose of having various lengths is to have a

higher chance to trigger buffer overflow vulnerabilities. Many programmers forget about

checking length or size of a string or an array that could be revealed by fuzzing, so the

tool will help find these mistakes during the testing process.

4.3 Fuzzing Process Explanation With An Example

For more clarification, as an example, consider the picked number is 463 and the line is

a command with three parameters. So, the first digit 3 means replace the third parameter

with a random string. Second digit is 6, which is for the type of the generated string, and

it is 1 with space. Moreover, the third digit is 4, which is going to determine the length

of the generated string. If list 1 is selected, the length of the random string will be 32;



48

otherwise, the length of the random string will be 2200.

Once the random string is generated, it will be plugged into the new line, and the new

fuzzing file will be constructed. This step will be performed many times to generate a

large number of fuzzing files. After completing and generating fuzzing files, the tool will

have thousands of fuzzing files, and it will use them to test the target program. Moreover,

it will obtain different kinds of fuzzing data in each generated fuzzing file because the

random data covers different combination of numbers, letters, and symbols, and for each

combination, there will be different string lengths. In the end, there should be a large

number of generated fuzzing files, and they can be fed to the target program for testing.

Experimental results for this version of the fuzzer are shown in Section 6.4. However,

before we show those results, we introduce an enhanced version of this fuzzur in Chapter

5.
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Chapter 5: Markov Chains

In the previous chapter, we proposed a fuzzer which can analyze the format and structure

of sample input files and obtain the grammars from them automatically. Then, guided by

the extracted grammar, sample input files are modified one line at a time to generate the

fuzzing input files. The advantage of the developed fuzzer is that it can extract grammars

and use them to guide the fuzzing process quickly and effectively. However, the biggest

limitation of the fuzzer, similar to many existing fuzzers, is that the tool is limited to the

quality of the sample input files. For example, if there is only one or two sample input

files provided, it limits the quality of the extracted grammars. In addition, by making

modifications on the sample input files, the fuzzer sticks with the order of commands

in the given sample input files, which makes it greatly limited by the contents of the

provided sample input files. This situation causes the tool to frequently visit the same

locations or go through the same paths in the code, which hinders the tool from exploring

paths or locations in the code that could find a vulnerability.

Learning the order of the commands and generating new fuzzing input files without

modifying the sample input files are the goals of our study in this chapter. To achieve that,

we used Markov chain model on top of our previous tool to help generate new fuzzing

input files. By learning the order and probability of the commands from sample input

files, the new fuzzer can generate fuzzing input files based on that information and the

extracted grammar. Not limited by the order of commands in the sample input files, the

new fuzzer goes deeper in the program and thus may reveal more bugs and vulnerabilities.

5.1 Background

Since the idea of Markov chains is based on probabilities, it is an arbitrary process for

potential cases that focuses on transition from one state to another based on a probability

of each state [60].
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The random state variables can be {X0, X1, X2, ...} where Xt is state space at time

t. Therefore, Xt+1 depends only on Xt, which means the future state depends on the

current state. The state space of Markov chain is all of the states in the process such as

S = {X0, X1, X2, X3}. The sequence of the process of Markov chain is a particular set of

values for X0, X1, X2, ..., Xn. For example, if X0 = 4, X1 = 7, X2 = 8,..., Xn = N then

the sequence up to time t = 2 is 4, 7, 8. So, the sequence is the path from one state to

another until last state.

Then, a transition matrix Pt for Markov chains {X} at time t is a matrix hold

probabilities information of transitioning from current state to next state [60]. It is the

most important step for analyzing the Markov chain.

Xt

{
list
all

states

xy
Xt+1︷ ︸︸ ︷← all states→
insert

Probabilities
pij

 each row adds to 1

pij is the transition matrix and pij = P . In the transition matrix, rows indicate current

state (Xt) and columns indicate future state (Xt+1). The entry (ij) is a conditional

probability that means future state is j given that current state i, which is the probability

of transitioning from state i to the the state j. Specifically, by providing an ordering of a

matrix’s rows and columns by the state space S, the (i, j)th elements of the matrix Pt is

given by

(Pt)i,j = P (Xt+1 = j|Xt = i)

Which means the probability of next state depends on the current state. So, the entries

must not be negative and each row i in the matrix must sum to 1. P must have all

possible states in the space state S. The P matrix is a square matrix P (N ×N).
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5.2 Related Work

There are several studies that employ Markov chain model in generating test cases.

Some of them are used to create test cases for testing programs to discover defects, bugs,

or vulnerabilities. This section summarizes a representative set of these studies.

Cao et al. [61] introduced an approach to generate test cases automatically based on

Markov chain model with reward process that newly consists of a reward method for test

results to guide the generation of test cases. The authors use N-step algorithm in this

approach combined with Markov chain model, which supports the generation of test flow

with the highest probability of triggering software defects or bugs as fast as possible. A

HTTP requests for e-commerce system has been collected. Then, Cao et al [61] used

them to generate new test cases to test the system. With using Markov chain model, a

large number of test cases are generated. They concluded that the average of the found

defects is 82.63% which is higher than the manual test which is 65.77%.

Böhme et al. [62] introduced a gray box fuzzing tool AFLFAST that is coverage based

and utilizes Markov chain on top of AFL fuzzing tool. It generates test cases without any

program analysis. It uses Markov chain model to produce test inputs to test programs.

The tool tries to convert generating test cases that exercise high frequency paths to low

frequency paths. Markov chain model works by specifying the probability of generating

fuzzed test cases that mostly exercise path i to exercise path j, which has low execution

or is not executed. They found that AFLFAST is on average 19 times faster than AFL

to trigger vulnerabilities. Experiments with three targets show that AFLFAST found 9

vulnerabilities that were assigned CVEs and 3 bugs.

Ouyang et al. [63] presented a fuzzing technique based on Markov chain. It optimizes

the test case samples to minimize the generated test cases. It uses instrumentation



52

to keep track of the code execution information. After that, it employs Markov chain

for transitioning from a path to another in the program according to the probabilities.

Eventually, Markov chain is used to find the change of the execution path and help a tester

to select better test sample case for mutation. After that, the tester can generate test cases

and start testing the target program. Experiments showed that the proposed method

can support fuzzer to generate effective test samples. Ouyang et al. [63] stated that they

found 51 vulnerabilities in application such WPS, with an increased code coverage about

49% in comparison with zzuf. Moreover, the average of exception discovery rate had

increased to approximately 9 times in contrast with MiniFuzz.

Wang et al. [64] introduced a new technique for software reliability test case design

which is based on using Markov chain model. Authors stated that they used Markov

chain model based in UML. Markov chain was explained and created with directed graph

that clarifies the process of auto generation of arithmetic of reliability test cases that lead

to ease the software reliability test. Wang et al. [64] stated that this method is adequate

for generating test cases and efficient for engineering practices.

Zhou [65] presented a method of the generation of Markov usage model for software

system and a technique of software reliability test based on it. The author proposed a

method to create Markov usage model based on enhanced probability state transition

matrix that is table-based framework. Moreover, a software reliability test technique

contains generation of test case and based on Markov chain usage model. The author

included adequacy determination. In the end, Markov chain test cases generation (MTCG)

has been developed which implements the early mentioned methods. Zhou [65] compared

between completely random test generation and Markov chain model test generation. In

experiments, Markov chain model generated fewer high-efficient test cases than random
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test generation which can discover defects on the target application.

Prowell [66] presented a new approach that relies on utilizing concurrency operators

to the generated test cases by using simple Markov chain model to create and produce

more advanced and complicated test cases to test any software or program. Prowell [66]

presents experiments on XML language to show that using Markov chain can have an

efficient way raise an event by obtaining a test case for a tester.

Listing 5.1: Commands and Their common Parameters After adding “Rs”

1 { ‘ copy2 ’ : [ [ ‘README. txt ’ , ‘ Rs ’ ] , [ ‘ au then t i c a t i on . db ’ , ‘ Rs ’ ]
2 , [ ‘ Rs ’ , ‘ Rs ’ ] ] ,
3 ‘ e ra s e1 ’ : [ [ ‘README. txt ’ ] , [ ‘ au then t i c a t i on . db ’ ] , [ ‘ Rs ’ ] ] ,
4 ‘ e x i t 0 ’ : [ ] ,
5 ‘ f i r s t 2 ’ : [ [ ‘README. txt ’ , ‘ 10 ’ ] ,
6 [ ‘ au then t i c a t i on . db ’ , ‘ 10 ’ ] , [ ‘ Rs ’ , ‘ Rs ’ ] ] ,
7 ‘ l a s t 2 ’ : [ [ ‘README. txt ’ , ‘ 10 ’ ] ,
8 [ ‘ au then t i c a t i on . db ’ , ‘ 10 ’ ] , [ ‘ Rs ’ , ‘ Rs ’ ] ] ,
9 ‘ l i s t 0 ’ : [ ] ,

10 ‘ logout0 ’ : [ ] ,
11 ‘ make1 ’ : [ ‘ Rs ’ ] ,
12 ‘ perms2 ’ : [ [ ‘README. txt ’ , ‘ Rs ’ ] , [ ‘ au then t i c a t i on . db ’ , ‘ Rs ’ ] ,
13 [ ‘README. txt ’ , ‘ [ 0 −9 ] ’ ] , [ ‘ au then t i c a t i on . db ’ , ‘ [ 0 −9 ] ’ ] ,
14 [ ‘ Rs ’ , ‘ Rs ’ ] ] ,
15 ‘ show1 ’ : [ [ ‘README. txt ’ ] , [ ‘ au then t i c a t i on . db ’ ] , [ ‘ Rs ’ ] ] ,
16 ‘ wr i t e1 ’ : [ [ ‘README. txt ’ ] , [ ‘ au then t i c a t i on . db ’ ] , [ ‘ Rs ’ ] ] }

5.3 Adding Random String Indicator “Rs” to Grammars

Before applying Markov chain, the grammars need to be updated and added ”Rs” that

indicates ”Random string”. Therefore, the purpose of this step is to update the grammars

in Listing 3.4 to add “Rs”. This helps to ensure the tool can have each command that

has missing parameters to get complete parameters number for that command; therefore,

supporting to newly generate complete commands with parameters as shown in Section

5.4.2

After obtaining the grammars in chapter 3, the final grammar will be further updated
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to add “Rs” for the commands that have no or less fixed parameters. For example,

in Listing 3.4, the make1 command (on line 8) has no parameter found after it. It

shows that it is a one-parameter command. Therefore, “Rs” is added to it. Similarly,

perms2 and copy2 are two-parameter commands which should have two parameters

after them. However, from the extracted grammar, only the first parameter is fixed to

“README.txt” or “authentication.db”, and the second parameter is probably a random

string. To represent random string, “Rs” is added as the second parameters for perms2

and copy2. As shown in Listing 5.1, extra “Rs” parameters are added for each command

based on the type of command. What is more, it helps calculate the remaining random

string parameters for each command in later steps to support the generation of new

fuzzing input files.

5.4 Using Markov Chain Model in the Fuzzer

The Markov chain model is used on top of the previous tool, where we assume the

fuzzer has analyzed and extracted the grammar from sample input files. By applying

Markov chain model, the tool further analyzes and studies the sample input files to collect

information about the orders and probabilities of each command. There are three major

stages: (1) Analyzing commands and parameters by learning the command order by

using Markov chain model, (2) Calculating command and parameter probabilities, and

(3) Generating completely new fuzzing input files with all of the information learned from

analyzing sample input files.

5.4.1 Analyzing Commands and Parameters Using Markov Chain Model

In this stage, the tool obtains commands from sample input files and applies Markov

chain model to get the possible commands order from analyzing all of the sample input

files.
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5.4.1.1 Extracting Unsorted Commands

This step extracts commands from sample input files without sorting so the tool can

keep the order of commands unaffected. The tool starts getting the first words in each

line and saves them based on the order of occurrence in sample input files. For example,

if a sample input file has the commands “copy, list, print, read, write, exit” and another

sample input file has “read, write, copy, list, print, exit”, that tool will have two lists

created: [copy, list, print, read, write, exit] and [read, write, copy, list, print, exit]. In

addition, to know the first and last command in each sample input file, a start mark or

pattern “START” and an end mark or pattern “FINAL” are added to each command

lists. If the tool does not know the start and the end of the commands list, it will get

unordered commands and will not stop producing the commands, as explained later in

section 5.4.1.3. In the previous example, the two commands lists are changed to [START,

copy, list, print, read, write, exit, FINAL], and [START, read, write, copy, list, print, exit,

FINAL].

5.4.1.2 Calculating Commands Transition Probabilities

In this stage, the tool establishes a transition matrix for the extracted commands

and calculates the probabilities of each next command (transition to) for each current

(transition from) command. The tool takes each current command and next command

and saves them in a transition pair, (current, next). In this way, a list of current and

next commands transition pair looks similar to (command1, command2), (command2,

command3)...., (commandn, commandn+1). These pairs are used to create transition

matrix for current commands and next commands. After that, the tool calculates

transition probability of each next command for each current command.

The tool first counts the number of transition from commands (current commands) as
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well as the occurrences of transition to commands (next commands). Then it counts the

number of occurrences for each transition pair. With these numbers, the tool calculates

the probability of each next command by dividing the occurrences of each next command

by the occurrence number of the current command. The transition probabilities of all

commands will be stored and kept for further processes. For example, if the commands

list is [START, list, copy, list, print, list, print, list, exit, FINAL], a list of transition

pairs looks like (START, list), (list, copy), (copy, list), (list, print), (print, list), (list,

print), (print, list), (list, exit), (exit, FINAL). From the list, we can tell that command

list is followed by commands copy, print, exit at probabilities of 25%, 50%, and 25%

correspondingly. Command copy is always followed by command list ; similarly, command

print has command list as the next command at 100% probability.

The Markov chain model in our fuzzer keeps probability of each next command for

a current state command to be used when generating new inputs. So, the current state

command has one or more commands following it with their probabilities. When a

command is found, the tool chooses the next command based on the probability of that

command. The tool repeats these steps for upcoming commands until it stops.

5.4.1.3 Obtaining Next Command

After the tool learns the probabilities of next commands for a particular current

command, it can select the next command for a specific current command based on

the transition probabilities. To do this, starting from “START”, which is considered

the current state i, the tool chooses the next command j based on its probability. The

current command maintains a pool of next commands and their probabilities of picking

the next command. Once the next command is chosen, it becomes the current command,

and similarly, it has a group of possible next commands and their probabilities. Then
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the tool keeps selecting commands based on their probabilities until it reaches pattern

“FINAL” and the command generation stops. When “FINAL” is reached, the tool saves the

generated order of commands as a possible order of commands which is called commands

chain. A chain of generated order of commands may look like [START, command1,

command2 ..., commandn, FINAL]. Since “START” and “FINAL” are for helping the tool

to know the start and the end commands in each sample input file, they are discarded

from the command chain.

For each list of command chains, the tool does not have a fixed number of commands

because the generation of a list only stops when reaching the pattern “FINAL”. Picking

the next command is all based on the probability. Therefore, for the same program,

sometimes it may take only five commands to reach to “FINAL”, but sometimes it may

select more than 100 commands before reaching “FINAL”.

At the end of this stage, the tool generates many possible lists of command chain.

These lists of command chain will be used for generating new fuzzing files in the later

stage.

5.4.1.4 Analyzing and Counting Parameters

After analyzing the commands, the fuzzer starts analyzing parameters. The goal of

this stage is to find out how many parameter matches (from sample input files) there

are for each command in the grammar and the probabilities of parameters. From the

results of the parameter analysis, the tool will understand how to pick parameters for

each command.

The tool accomplishes this by first counting all parameter matches for each command

in the grammar which match a command in the command chains. For each command, no

matter if it is a one-parameter, two-parameter, or three-parameter command, the tool
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takes all parameters (one, two, three parameters) for that command from sample input

files. Then, each parameter from sample input files is compared with the parameters

in the grammar; if there is a match, then the fuzzer counts and collects it for future

calculations.

Then, the fuzzer begins checking whether or not there is a “[0-9]” parameter in the

grammar parameters for each command. If there is a “[0-9]” parameter, it analyzes

the parameters from sample input files and changes any number to “[0-9]” and counts

the matches with the grammar. If there is no “[0-9]” in the grammar parameter, the

tool takes the parameters, finds any match for parameters in the grammar, and counts

them. Moreover, if there is “Rs” in the parameter grammar, the tool changes the strings

at that location to “Rs” in the sample input files. It counts any match between the

parameters in the grammar and the parameters in the sample input files. Then, the tool

subtracts the command occurrence number from the parameter grammar total count

number for parameters contain “[0-9]”, “Rs”, and other parameter grammars that has

been calculated previously. The result of that calculation will be for the “Rs” parameters

if the “Rs” parameters is one of the following command types: one-parameter type [“Rs”],

two-parameter type [“Rs”,“Rs”] or three-parameter type [“Rs”,“Rs”,“Rs”].

While scanning and analyzing parameters, the tool also collects the total number of

all parameters for each command in the grammars.

5.4.1.5 Calculating Grammar Parameters Probabilities

After the tool gets the total count numbers of each parameter for each command

in the grammar based on the command chains, it calculates the occurrences of each

command in the sample input files. Then, it divides the parameters’ total count numbers

by the calculated number to get each parameter’s probability. By having the parameter’s
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probability data, the tool knows how to choose a parameter for a command based on the

probability of parameters.

At the end of this step, each parameter has a probability associated with it. This

information will support the process of picking parameters for each command.

5.4.2 Generating New Input Lines

The generation of new input lines consists of two steps. First, the tool employs

commands chain and parameters probabilities to generate new input lines. Second, it

substitutes the numeric and string parameters with random number and random string.

Then, the tool uses these new input lines and generates completely new fuzzing input

files.

5.4.2.1 Obtaining New Input Lines by Using Chain of Commands and Parameters
Probabilities

The goal of this stage is to generate new input lines based on the grammars and

probabilities with the use of possible chain of commands (generated in Section 5.4.1.3).

The chains of order of commands are an important component in this stage because they

indicate commands orders.

Taking each chain of commands, the tool picks parameters for each command in the

chain. If the command in the chain matches a command in the grammar, the fuzzer

chooses the parameter for that command based on the probability. Then it appends the

selected parameter to the command and saves it as an input line. The tool repeats this

for upcoming commands in the chain.

For any command in the chain list that is not in the grammar, the tool adds “Rs”

parameters to indicate a random string is needed. If the command is not in the command

chain list, the tool fills the remaining line with certain number of “Rs” parameters

(“Rs” means random string). For example, command “Print5” and “Read2” tell that
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the command “Print” has five parameters following it and “Read” has two parameters

following it. If command “Print5” and “Read2” are in the list of command chain list

but do not have any information on the parameters probabilities for those commands,

command “Print5” will have [“Rs”,“Rs”,“Rs”,“Rs”,“Rs”] appended to the command and

“Read2” will have [“Rs”,“Rs”] appended to the command, too.

Finally, the fuzzer saves the input lines in a file which will be used to generate input

files. These input format files tell the fuzzer how to generate an input file. At the end of

this stage, a large number of input format files will be ready for later processing.

5.4.3 Generating Completely New Fuzzing Input Files

After getting the input format files from previous steps, the tool will use them to

generate new fuzzing files. The overall method of generating fuzzing files is identical

to the techniques and methods as discussed in our former tool (see Chapter 4). Briefly,

it takes one of the input format files and changes only one line and keeps other lines

unchanged. This stage is going to be repeated many times until the tool generates about

5000 completely new fuzzing input files.

Before substituting a line, the “[0-9]” and “Rs” in the format will be replaced with

a random number or a random string respectively by using random test number. The

random test number is different than the random test number in Chapter 4. The different

is that the test number used here is 2-digit. First digit is for string type and the second

digit is for selecting a length from this list [4, 6, 8, 16, 32, 64, 70, 80, 90, 100]. So, If it

encounters a “[0-9]” on a new input line, a random number is generated and replaces

“[0-9]”. Similarly, when finding a “Rs”, it will be substituted with a random string.

The tool starts with the first line and analyzes the line. It compares the command on

that line with the commands in grammar. If there is a match, it compares the parameters
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to find out whether there is a match or not. If there is a match, the tool will substitute

the command or the parameters with a random string or a random number. In next

round, it will target the next line in the same input format file and continue until it

reaches the last line in this file. Then it move to the next input format file and starts

substituting from the first line again.

When generating a random number or random string, the method of random test

number is used. The random test number tells the random number generator what kind

of random string or number is expected, such as the type of the string and its length. By

using a random test number, the tool can generate different kinds of random strings.

If the sample input file has hexadecimal characters more than plain text characters,

the tool will create random hexadecimal characters; otherwise, it will create plain text

characters in the new input lines that have “Rs”. For more details about the random test

number see Section 4.2.

The generated input file looks like a real input file. This new input file can be used to

generate new fuzzing files by using the fuzzing technique mentioned in Chapter 4.
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Chapter 6: Experiments and Evaluation

This chapter discusses the experiments that have been conducted to evaluates the fuzzer

and presents the findings and learned lessons. To test each fuzzing input file generated by

the fuzzer, a bash script runs to go through all of the programs in the dataset and feed

in fuzzing input files to each program. Then, it looks for crashed program by scanning

for core dump or segmentation fault error messages. After that, it collects the findings

and results. The 24-hour test was one of the evaluations conducted. Then, there was a

comparison between the tool and others. Moreover, the tool was tested with respect to

the code coverage of each program. In addition, percentage numbers were adjusted to

evaluate the tool with the best percentage that have better code coverage and number of

crashes.

6.1 Experiments Setup and Running

6.1.1 Segmentation Fault (SIGSEGV)

Internal operating system, Figure 6.1 shows that a compiled C program’s memory

consists of five major segments. Text segment for code segment that includes machine

language instructions of the program. Data segment has the initialized global and static

variables [67]. Block Started by Symbol (BSS) segment contains uninitialized global and

static variables. Data in BSS is initialized by kernel to arithmetic 0 before executing the

program. Heap segment where dynamic memory allocation takes place. This location

starts at the end of BSS and grows up to higher addresses. Stack segment is placed under

operating system kernel. The stack segment grows toward lower addresses which opposites

of the heap segment [67].

Segmentation fault occurs when an address of a variable falls outside the segment that

the variable is assigned to. Therefore, after experiencing an error in writing to a memory

segment, the Unix or Linux operating system sends a SIGSEGV signal to the program,
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Figure 6.1: Memory Layout.

which then crashes and displays the “Segmentation fault” notification. Segmentation

faults are normally specific to high-level languages like C, which ask the programmer to

assign memory to an operating code.

As shown Listing 6.1, integer n is an integer input by a user. If it is more than 1000, it is

going to result in segmentation fault because it accesses memory space beyond the array

boundary. Without checking the user input, the program may lead to illegal memory

access and cause the program to crash.

Listing 6.1: Illegal Memory Access1

1 int n ;
2 int array [ 1 0 0 0 ] ;
3 p r i n t f ( ” Enter an i n t e g e r number : ” ) ;
4 s can f ( ”%d”,&n) ;
5 for ( int i = 0 ; i < n ; i++)
6 array [ i ] = i ;

Listing 6.2 is another example of illegal memory access. No memory space was

allocated and pointed by pointer b, so b will point to a random location in the memory.

Therefore, accessing b[0] may cause segmentation fault.

Listing 6.2: Illegal Memory Access2

1 f loat ∗a , ∗b ;
2 a = ( f loat ∗) mal loc (1000) ;
3 b [ 0 ] = 1 . 0 ;
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6.1.2 Experiment Setup

The research experiments begin with analyzing sample input files from DARPA CGC

programs to get grammars from them because the tool needs to get more knowledge on

the format of the sample input files. After that, the tool generates fuzzing input files to

be used in testing process. When testing the fuzzing input files, we look for segmentation

fault or program crash.

Figure 6.2: Printer Program Core Dumped Example.

A bash script has been written to loop through each fuzzing file and feed them to

the target program under test. In the meantime, the output of running the program is

monitored for any “core dumped” or “Segmentation fault”.

Figure 6.3: Payroll Program Core Dumped Example.

When a message “core dumped” or “Segmentation fault” is displayed in the output,

it means a crash in the program has happened; then the running program stops and

terminates the running process. “Segmentation fault” message informs that the program

encounters a serious error and the program has a bug or vulnerability. As shown in

Figures 6.2 and 6.3, when a fuzzing input file crashes a program under test, it is displayed
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on the terminal that the program has been “CORED” or crashed, and then it continues

testing next fuzzing files.

For instance, as shown in Figure 6.4, when testing the RRPN program with the

generated fuzzing inputs, the program crashed and displayed that the “Segmentation

fault” when the file “127.0.0.144788-127.44.224.53.2457 3780.pov” and ‘‘127.0.0.144788-1

27.44.224.53.2457 3781.pov” were fed to the program. While running other input files,

there was no crash or SIGSEGV message.

Figure 6.4: RRPN Program Crash.

6.1.3 DARPA CGC Dataset

There are 247 programs in the Cyber Grand Challenge dataset. We use CB-multios

dataset that was ported and provided by TrailofBits team [68]. We excluded 12 programs

because of some issues in compilation and running. The following programs have

compilation issues:

• CAT

• CROMU 00038
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• Ghost In The CGC

• SBTP

• Trust Plateform Module

• adventure game

Also, some programs had programming and running issues. Some of them crash in the

beginning of running and the others crash after inserting an input. Part of the problems

we saw was things like uninitialized variables. The DEGREE environment initialized the

stack to all zeros, but normal Linux does not. This resulted in some errors when porting.

The following programs have execution problems:

• A Game of Chance

• LAN Simulator

• Messaging

• Mount Filemore

• middleware handshake

• QUIETSQUARE

6.2 Experiments Overview

Different kinds of experiments has been conducted to evaluate the developed fuzzing

tool. The experiments performed on our regular fuzzing tool that has been explained in

Chapters 3 and 4. Moreover, another experiment performed with the developed tool with

Markov chain that was explained in Chapter 5.

The following experiments has been conducted in our research:
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• 24 hours testing: the testing was conducted on our regular fuzzing tool for 24 hours

running to fuzz programs.

• Comparing the tool with other tools: the experiment has been performed to compare

our regular fuzzing tool with other fuzzing tools.

• Experiments with code coverage: the experiments have been conducted on our

regular fuzzing tool to examine code coverage for each program.

• Adjustment percentages crashes and code coverage: the experiments have conducted

on our regular fuzzing tool to examine the best percentage based on number of

crashes and code coverage.

• Experiments on fuzzer updated with Markov chain: the experiments have been

performed on the updated tool using Markov chain model only.

6.3 24 Hours Testing

The purpose of our 24 hour test was to examine the programs in 24 hours and find

crashed programs. The system is Xubuntu 18.04 VM, which has 60 cores, 512 GB of

memory, and 80 TB of hard drive space. The testing entails running and testing each

program for up to 24 hours. Moreover, the testing of each program was planned to test

for up to 24 hours by generating fuzzing files each time when the previous test run out of

fuzzing files and continue generating fuzzing files and test them until the timer reaches 24

hours; otherwise, if there is a crash the testing would be stopped. It tested 40 programs

in parallel every time. This testing took about 8 days to test all of the programs.

Table 6.1 shows the programs that crashed in this experiment. There are 82 crashed

programs that have been found. It consists of five columns: the first column is program

name, the second column is the generation time to generate fuzzing files and it is in
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minutes and seconds, the third column is the number of samples input files, the fourth

column is the number of generated fuzzing files, and the fifth is the testing time and it is

in day, hours, minutes, and seconds.

For example, in first row, the program name is 3D Image Toolkit. Its generation time

is 17 seconds, the number of sample files is 1000 files, the number of generated fuzzing

files is 6915 files, and the testing time is 10 hours, 37 minutes, and 43 seconds.

Table 6.1: List of 24 Hours Run Crashed Programs

Program name
Generation

Time (m:s)

# of

Sample

input

files

# of Fuzzing

files

Time

until

crash

(d:h:m:s)

3D Image Toolkit 0:17 1000 6915 0:10:37:43

Azurad 14:6 1000 196782 0:0:3:47

Bloomy Sunday 1:16 1000 30900 0:0:0:20

CGC Planet Markup Langu-

age Parser
15:10 1000 300280 0:1:10:24

Charter 0:7 1000 2458 0:0:0:19

Checkmate 0:11 1000 4995 0:0:18:43

CML 2:40 1000 48607 0:0:10:28

Cromulence All Service 10:31 1000 225262 0:17:54:34

CTTP 6:1 1000 89278 0:0:27:18

DFARS Sample Service 1:43 1000 36657 0:0:0:2

Diary Parser 0:7 1000 3093 0:0:0:1

Diophantine Password Wallet 0:38 1000 19747 0:3:12:15

Divelogger2 3:48 1000 82757 0:0:1:14

Document Rendering Engine 9:38 1000 222070 0:0:0:40

Eddy 0:3 1000 1226 0:0:21:18

electronictrading 0:4 1000 1006 0:0:12:36

EternalPass 0:13 1000 6984 0:0:0:0

FablesReport 0:4 1000 1000 0:5:35:4

FileSys 0:31 1000 12929 0:0:2:6

Filesystem Command Shell 0:32 1000 36627 0:0:6:3

Finicky File Folder 0:31 1000 11366 0:0:0:1

Flash File System 0:12 1000 5164 0:0:2:26

Flight Routes 1:42 1000 46971 0:3:0:52

Fortress 5:1 1000 151818 0:13:20:45

Continued on next page
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Continued from previous page...

Program name
Generation

Time (m:s)

# of

Sample

input

files

# of Fuzzing

files

Time

until

crash

(d:h:m:s)

Game Night 0:28 1000 14618 0:0:0:2

Grit 9:59 1000 147446 0:0:0:10

HackMan 6:30 1000 135426 0:0:0:6

HeartThrob 0:8 1000 2987 0:0:34:22

HighFrequencyTradingAlgo 0:3 1000 1012 0:0:0:30

Hug Game 0:23 1000 27058 0:0:4:15

INSULATR 4:23 1000 38556 0:3:5:42

Kaprica Script Interpreter 19:30 1000 302907 0:0:0:41

KTY Pretty Printer 1:33 1000 38319 0:1:19:33

Lazybox 0:58 1000 31622 0:0:0:2

Loud Square Instant Messa-

ging Protocol LSIMP
1:54 1000 52134 0:18:39:28

Matchmaker 1:14 1000 35638 0:0:0:3

matrices for sale 0:12 1000 6450 0:0:0:12

Monster Game 1:31 1000 46249 0:17:32:51

Movie Rental Service 0:20 1000 9628 0:0:1:41

Multicast Chat Server 12:29 968 253273 0:0:0:7

Multipass3 1:9 1000 24299 0:7:38:54

Network Queuing Simulator 2:23 1000 52461 0:0:0:1

online job application 1:31 1000 34581 0:0:26:30

online job application2 1:7 1000 34570 0:3:4:50

OTPSim 2:58 1000 51325 0:0:0:1

Palindrome 0:18 1000 8889 0:0:0:1

Palindrome2 0:20 1000 9731 0:0:0:0

payroll 10:23 900 113370 0:0:0:14

Pipelined 0:16 1000 7600 0:0:1:3

pizza ordering system 2:0 1000 46155 0:0:1:14

Printer 2:44 1000 72683 0:0:1:5

PRU 0:11 1000 4810 0:0:0:2

PTaaS 2:55 1000 39967 0:0:0:1

Query Calculator 0:2 1000 1000 0:0:0:1

Recipe and Pantry Manager 7:57 1000 186476 0:1:2:12

Recipe Database 9:50 1000 196705 0:0:2:47

REMATCH 2 –Mail Server–

Crackaddr
0:15 1000 4003 0:0:7:11

Continued on next page
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Continued from previous page...

Program name
Generation

Time (m:s)

# of

Sample

input

files

# of Fuzzing

files

Time

until

crash

(d:h:m:s)

REMATCH 3–Address Reso-

lution Service–SQL Slammer
0:14 1000 6569 0:0:0:1

REMATCH 4–CGCRPC Se-

rver–MS08-067
0:6 1000 2947 0:21:11:3

REMATCH 5–File Explorer

–LNK Bug
0:20 1000 9942 0:0:0:23

REMATCH 6–Secure Server

–Heartbleed
0:27 1000 11409 0:0:0:2

RRPN 0:5 1000 1907 0:0:0:11

Sad Face Template Engine

SFTE
0:45 1000 23031 0:0:0:26

Sample Shipgame 1:48 1000 51385 0:0:0:1

SCUBA Dive Logging 3:25 1000 81656 0:0:2:6

Secure Compression 1:33 1000 46846 0:0:0:1

simple integer calculator 0:6 1000 2136 0:0:2:2

simplenote 13:11 1000 300314 0:0:0:10

SPIFFS 1:1 1000 25222 0:0:34:52

stream vm 22:44 1000 300542 0:0:1:1

TAINTEDLOVE 4:51 1000 69188 0:0:0:21

Tennis Ball Motion Calculat-

or
0:18 1000 9134 0:0:0:43

TextSearch 12:46 1000 242852 0:6:35:14

The Longest Road 2:12 1000 48838 0:0:0:10

TVS 31:31 1000 300865 0:0:23:8

university enrollment 1:0 1000 27849 0:0:3:2

Vector Graphics 2 0:11 1000 2377 0:0:4:46

Vector Graphics Format 0:5 1000 2371 0:0:0:5

virtual pet 0:9 1000 4445 0:0:0:13

Water Treatment Facility

Simulator
2:53 1000 59185 0:1:39:16

WhackJack 2:47 1000 55939 0:0:0:8

WordCompletion 0:8 1000 3926 0:0:0:59
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6.4 Comparing Our Tool with Other Tools

6.4.1 Used Tools in Experiment

We compared our work with these four tools: the latest version of AFL [13], MOPT [69],

FairFuzz [70], and AFLFAST [62].

AFL (American fuzzy lop) is a state-of-the-art greybox fuzzer [13]. It uses trivial

instrumentation to get new path coverage information. Based on that, AFL can choose

unique identification of the path that is applied by an input. Then, it utilizes genetic

algorithms to find interesting test cases that are likely to reveal new internal states in the

program under test. After that, these test cases will be added to the sample inputs queue.

Lyu et al. [69] introduced MOPT a mutation-based fuzzing tool. MOPT uses a

customized Particle Swarm Optimization (PSO) algorithm to explore the possibility to

give an optimal selection probability of different kinds of mutation operations. The

optimization enhances the ability of a fuzzer to find the coverage information quickly.

Lemieux et al. [70] stated that FairFuzz is a mutation-based gray-box fuzzing tool.

The tool first looks for these branches that are rarely hit by fewer AFL inputs. Second,

based on new mutation operation techniques, it makes the tool lean to generate inputs

hitting a provided rare branch. This mutation is calculated dynamically during fuzzing

and can be used to fuzz other targets.

According to Böhme et al. [62], AFLFAST is a graybox fuzzing tool that uses Markov

chain knowledge [60]. It does not require a program analysis. It generates new test inputs

with few mutations of seed input samples. It employs Markov chain model that specifies

the probability of fuzzing the sample input that exercises path i, which then provides an

input that exercises path j. Instead of fuzzing highly visited locations, the tool redirects

to fuzz lower visited locations in the code.
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6.4.2 Experiments Setup

The machine for generating fuzzing files and testing has environment: the CPU is

AMD Ryzen Threadripper 2920X 12-Core Processor, memory is 32 GB, Ubuntu 18.04.4

LTS, and OS type 64-bit.

We use CB-multios dataset that is provided by TrailofBits team [68] who ported

DARPA dataset from DEGREE system to Linux. There are about 247 programs. We

excluded 12 challenges because there is an issue with the compilation and running of

those programs. Around 235 programs had been tested separately with different number

of rounds for a one-hour run. During the one hour, the testing will be stopped if a crash

is found.

AFL [13], MOPT [69], FairFuzz [70], and AFLFAST [62] fuzzing tools had been tested

with 235 programs. Each one took 1 hour of testing for each program. After tests were

completed, the number of crashed programs was collected.

6.4.3 Testing Results and Observations

As a result, our fuzzing tool discovered vulnerabilities more than other tools. AFL

crashed 45 programs, which is 19.14%. AFLFAST crashed 44 programs, which is 18.72%.

Moreover, MOPT and FairFuzz crashed 54 programs, which is 22.97%. Our tool crashed

79 programs, which is 33.61% of the programs. With the help of grammar, our tool found

34 more than AFL, 35 more than AFLFast, and 25 more than MOPT and FairFuzz.
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Figure 6.5: Venn Diagram for Discovered Bugs

As the rsualt in Figure 6.5, it shows that our tool outperforms the other tools. So, in

comparison with AFL, our tool crashed 26 same crashed programs that AFL had crashed

and 53 programs did not crash. Also, AFLFAST has 24 same crashed programs with our

tool but AFLFAST did not crash the 55 programs that our tool crashed. MOPT tool has

30 same crashes as our tool crashes; however, It did not find the 49 that our tool crashed.

In case of FairFuzz, our tool and FairFuzz crashed 29 same programs but it did not crash

the 50 programs that our tool crashed. Moreover, the fuzzing techniques have different

kinds of options to create fuzzed inputs that support revealing bugs and vulnerabilities.

For example, it can use the grammar for numerical parameters and replace it with a

random number. Also, the grammar for string parameters supports obtaining different

types of strings with different lengths that can provide the fuzzing tool with a higher

possibility to trigger buffer overflow, off-by-one error, use after free vulnerabilities, etc.

We observed that our tool crashed programs faster than others. For most of the

crashed programs, we noticed that AFL took 20 to 30 minutes to crash a program.

Moreover, AFLFast found most vulnerabilities in 10 to 15 minutes. FairFuzz discovered
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vulnerabilities in most of programs in 25 to 30 minutes. Also, MOPT needs an average of

15 to 20 minutes to crash a program. However, our tool usually finds a crash in 5 minutes.

Table 6.2 shows the crashed programs. The table has five columns. The first one is

the program names. The second column is generation time, which is the duration time

for generating all of the fuzzing files. It is based on minutes and seconds (m:n). The third

column shows the number of sample input files for each program. The fourth column

shows the number of generated fuzzing files, and the fifth column is testing time, which is

the duration of time the program has been tested by the generated fuzzing files until a

vulnerability has been found by the tool, and it is based on minutes and seconds (m:s).

Table 6.2: Crashed Programs by our Fuzzer

Program name
Generation

Time (m:s)

# of

Sample

input

files

# of Fuzzing

files

Time

until

crash

(m:s)

Azurad 3:44 1000 196782 1:45

Bloomy Sunday 0:26 1000 30900 1:4

CGC Planet Markup

Language Parser
4:43 1000 300018 42:8

Charter 0:2 1000 2458 4:43

Checkmate 0:5 1000 4995 18:46

CML 0:50 1000 48607 2:32

Cromulence All Service 6:43 1000 225262 34:6

CTTP 5:41 1000 89278 59:59

DFARS Sample Service 2:32 1000 36657 0:41

Diary Parser 0:3 1000 3093 0:50

Diophantine Password

Wallet
0:16 1000 19747 48:42

Divelogger2 1:28 1000 82757 5:53

Document Rendering Engine 3:37 1000 222070 0:30

Eddy 0:1 1000 1226 9:2

electronictrading 0:1 1000 1006 21:53

EternalPass 0:5 1000 6984 2:1

FablesReport 0:2 1000 1000 1:20

FileSys 0:15 1000 12929 0:50

Continued on next page
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Continued from previous page...

Program name
Generation

Time (m:s)

# of

Sample

input

files

# of Fuzzing

files

Time

until

crash

(m:s)

Filesystem Command Shell 0:0:0:30 1000 36627 0:0:5:12

Finicky File Folder 0:14 1000 11366 0:43

Flash File System 0:4 1000 5164 1:36

Flight Routes 0:52 1000 46971 0:53

Fortress 3:2 1000 151818 49:23

Game Night 0:12 1000 14618 0:56

Grit 3:19 1000 147446 3:10

HackMan 2:16 1000 135426 1:4

HeartThrob 0:3 1000 2987 4:3

HighFrequencyTradingAlgo 0:1 1000 1012 0:57

Hug Game 0:25 1000 27058 6:29

INSULATR 2:7 1000 38556 34:31

Kaprica Script Interpreter 5:37 1000 302474 0:47

KTY Pretty Printer 0:33 1000 38319 13:24

Lazybox 0:24 1000 31622 0:35

Loud Square Instant

Messaging Protocol LSIMP
0:49 1000 52134 24:32

Matchmaker 0:31 1000 35638 0:21

matrices for sale 0:6 1000 6450 0:32

Monster Game 0:40 1000 46249 32:32

Movie Rental Service 0:8 1000 9628 0:32

Multicast Chat Server 3:59 968 253273 0:34

Network Queuing Simulat- or 0:45 1000 52461 0:13

online job application 0:29 1000 34581 2:40

online job application2 0:29 1000 34570 18:15

OTPSim 0:50 1000 51325 0:12

Palindrome 0:7 1000 8889 0:5

Palindrome2 0:8 1000 9731 0:7

payroll 3:27 900 113370 0:11

Pipelined 0:6 1000 7600 0:20

pizza ordering system 0:40 1000 46155 0:35

Printer 1:12 1000 72683 0:42

PRU 0:4 1000 4810 1:1

PTaaS 1:8 1000 39967 0:33

Query Calculator 0:1 1000 1000 1:9

Continued on next page
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Continued from previous page...

Program name
Generation

Time (m:s)

# of

Sample

input

files

# of Fuzzing

files

Time

until

crash

(m:s)

Recipe and Pantry Manager 3:18 1000 186476 9:39

Recipe Database 3:31 1000 196705 1:53

REMATCH 2–Mail Server–

Crackaddr
0:3 1000 4003 0:25

REMATCH 3–Address Resol

ution Service–SQL Slammer
0:5 1000 6569 0:8

REMATCH 4–CGCRPC

Server-MS08-067
0:2 1000 2947 13:51

REMATCH 5–File Explor-

er–LNK Bug
0:8 1000 9942 0:10

REMATCH 6–Secure Ser-

ver–Heartbleed
0:10 1000 11409 0:23

RRPN 0:1 1000 1907 0:29

Sad Face Template Engine

SFTE
0:18 1000 23031 0:9

Sample Shipgame 0:45 1000 51385 0:36

SCUBA Dive Logging 1:14 1000 81656 1:51

Secure Compression 0:40 1000 46846 0:1

simple integer calculator 0:2 1000 2136 1:10

simplenote 4:5 1000 300239 0:5

SPIFFS 0:24 1000 25222 24:41

stream vm 5:6 1000 300448 0:4

TAINTEDLOVE 1:57 1000 69188 0:11

Tennis Ball Motion

Calculator
0:8 1000 9134 0:2

The Longest Road 0:46 1000 48838 0:14

TVS 5:31 1000 300456 3:24

university enrollment 0:36 1000 27849 3:44

Vector Graphics 2 0:3 1000 2377 12:54

Vector Graphics Format 0:2 1000 2371 0:23

virtual pet 0:3 1000 4445 0:12

Water Treatment Facility

Simulator
1:11 1000 59185 11:28

WhackJack 1:9 1000 55939 16:11

WordCompletion 0:3 1000 3926 0:55
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6.5 Experiments with Code Coverage Feedback

6.5.1 Code Coverage Advantages and Disadvantages

Code coverage is a measurement for a program to find how much of the code was

executed based on a standard. Code coverage can help a developer to enhance the testing.

Moreover, it can assist with improving the quality of the code. Also, it gives a good view

of how much of the code has been tested. However, a good code coverage does not mean

good testing [71]. The limitation of code coverage is that it does not guarantee that the

100% code coverage is free of vulnerabilities [71].

There are many types of code coverage. First, line coverage determines how many

lines of the code were successfully executed. Second, branch coverage determines how

many branches (loop, if-else statements) of the code were successfully executed. Third,

function coverage determines how many functions were called. Fourth, path coverage

determines that each path from the input to output in the program is executed or covered.

We conducted the code coverage in our experiments to examine the performance of

the fuzzing tool in generating fuzzing input files that are inserted in a program and how

much of the code has been tested.

6.5.2 Code Coverage Tool

LLVM-COV GCOV tool [72] was used to get the code coverage information. It

analyzes the source code coverage of a program and tests which parts of the code are

executed and not executed. It counts how many statements have been executed and gives

a percentage of code that has been covered. LLVM-COV GCOV is used with option -b,

which gives lines and branches code coverage information. After compiling the programs

with code coverage enabled, a file with extension “.gcno” is generated, and after a program
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is executed a file with extension “.gcda” is generated. So after testing all the fuzzing files,

using Gcov with option -b and “filename.gcno” will obtain the lines and branches code

coverage information.

The machine for generating fuzzing files and testing has environment: the CPU is

Intel(R)Core(TM) i5-6500 @ 3.20GHZ, memory is 16 GB, Ubuntu 18.04.4 LTS, and OS

type 64-bit.

The two types of code coverage lines and branches code coverage were used to obtain

and collect the code coverage for the tool. The testing was run to go through all of the

programs in the dataset. Some programs have multiple files in the source directory. Each

file has a line and branch code coverage. Therefore, we took the averages of each program

that has multiple files. In this testing, crashes and code coverage information for each

program were collected as shown in Table 6.3. The testing sat to run for a maximum of

two days because some programs took more than two days. The testing was planned to

keep the program running even after finding a crash. For programs that ran less than one

or two days, they stopped after their testing with all fuzzing input files. The experiment

was to test one program at a time and it did not start testing the next program until the

testing of the previous program was finished. It took about two and half months to finish

testing all the programs.

Table 6.3 shows the tool code coverage information for all the programs in the dataset.

The table consists of 9 columns: the first column is the program name, the second column

is the generation time for generating fuzzing files and it is in minutes and seconds, third

column is the number of sample input files, the fourth column is the number of fuzzing

files that has been generated, the fifth column is the number of the crash files, the sixth

column is the testing time and it is in day, hour, minutes, and second. the seventh column
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is indication there is a crash ”Y” or no crash ”N”, the eighth column is lines code coverage,

and the ninth is branches code coverage.

For example, in the first row the program name is 3D Image Toolkit, the generation

time is 3 seconds, the number of sample input files is 1000 files, the number of generated

fuzzing files is 6915 files, the number of crashes is 0, and the testing time is 3 and 4

seconds, the crash is no crash, the lines code coverage is 10.41%, and the branches code

coverage is 8.75%.

Table 6.3: Tool Code Coverage

Program name

Gene-

ration

Time

(m:s)

#

of

Sam-

ple

input

files

# of

Fuzzi-

ng

files

# of

cras-

hed

files

Testing

Time

(d:h:m:s)

Cra-

sh

(Y/

N)

Lines

ccov

Bran-

ches

ccov

3D Image Toolkit 0:3 1000 6915 0 0:0:3:4 N 10.41% 8.75%

Accel 0:34 1000 73414 0 0:1:9:11 N 81.35% 95.51%

AIS-Lite 0:1 1000 1000 0 0:0:0:36 N 92.22% 100.00%

anagram game 0:49 1000 111184 0 0:1:28:6 N 97.45% 100.00%

ASCII Content Ser

ver
0:2 1000 1091 0 0:0:7:13 N 80.37% 99.04%

ASL6parse 0:7 1000 13268 0 0:0:10:35 N 64.18% 88.61%

Audio Visualizer 0:24 1000 52502 0 2:0:0:1 N 78.23% 76.46%

Azurad 1:53 1000 196782 55758 0:4:11:57 Y 84.05% 80.64%

Barcoder 0:3 1000 7618 0 0:0:6:24 N 74.42% 73.37%

basic emulator 2:30 1000 230517 0 0:3:58:49 N 67.06% 70.13%

basic messaging 0:30 1000 68989 0 0:2:51:56 N 87.29% 97.01%

BIRC 0:22 1000 49426 0 0:0:48:19 N 7.87% 1.86%

BitBlaster 0:2 1000 4059 0 0:0:1:20 N 89.36% 100.00%

Bloomy Sunday 0:12 1000 30900 1647 0:0:33:30 Y 76.60% 86.46%

Blubber 0:2 1000 1000 0 0:2:46:44 N 37.01% 39.31%

Board Game 0:29 1000 19342 0 0:0:9:2 N 99.03% 100.00%

BudgIT 0:2 1000 1208 0 0:0:0:28 N 66.61% 77.34%

CableGrind 8:36 1000 300342 0 0:10:37:53 N 31.61% 32.89%

CableGrindLlama 15:40 1000 300932 0 0:11:46:49 N 41.25% 42.73%

Carbonate 0:2 1000 3254 0 0:0:1:47 N 75.71% 92.86%
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N)

Lines

ccov

Bran-

ches

ccov

Casino Games 0:2 1000 4921 0 0:8:29:15 N 80.36% 85.25%

Cereal Mixup A

Cereal Vending

Machine Controller

0:2 1000 1141 0 0:0:0:42 N 14.03% 22.22%

CGC Board 0:4 1000 7792 0 0:0:24:14 N 79.94% 87.54%

CGC File System 0:2 1000 5235 0 0:0:4:47 N 82.01% 98.73%

CGC Hangman

Game
0:9 1000 22624 0 0:0:8:52 N 85.00% 88.00%

CGC Image Parser 0:19 1000 44454 0 0:0:35:53 N 7.48% 7.89%

CGC Planet Mark-

up Language Parser
2:45 1000 300100 101 2:0:0:5 Y 75.40% 98.40%

CGC Symbol Vie-

wer CSV
0:37 1000 65962 0 0:0:52:34 N 20.48% 22.14%

CGC Video Forma-

t Parser and Viewer
0:13 1000 25748 0 0:0:13:26 N 76.81% 94.71%

Character Statist

ics
0:2 1000 1652 0 0:0:0:43 N 73.03% 90.32%

Charter 0:2 1000 2458 1 0:0:2:26 Y 89.63% 98.00%

Checkmate 0:2 1000 4995 13 0:2:52:30 Y 95.80% 96.38%

chess mimic 0:2 1000 1000 0 0:2:46:56 N 55.74% 58.85%

Childs Game 0:20 1000 49110 0 1:19:45:27 N 91.19% 97.29%

CLOUDCOMPU-

TE
0:2 1000 2295 0 0:6:22:38 N 83.78% 74.31%

CML 0:25 1000 48607 1029 0:0:47:57 Y 45.56% 56.71%

CNMP 0:2 1000 1000 0 0:0:0:24 N 97.22% 100.00%

COLLIDEOSCO-

PE
0:4 1000 10957 0 0:2:45:11 N 89.64% 93.10%

commerce webscale 0:23 1000 54481 0 0:0:41:9 N 16.20% 8.19%

Corinth 0:2 1000 4950 0 0:0:7:11 N 59.78% 73.78%

cotton swab arith-

metic
0:1 1000 3142 0 0:0:2:8 N 70.87% 89.19%

Cromulence All

Service
1:57 1000 225262 3 2:0:0:3 Y 64.62% 67.77%

CTTP 0:7 1000 8171 46 0:14:45:44 Y 56.57% 66.77%
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cyber blogger 0:13 1000 31935 0 0:10:18:2 N 42.69% 44.99%

DFARS Sample

Service
0:21 1000 36657 35922 0:2:8:36 Y 54.66% 27.78%

Diary Parser 0:2 1000 3093 73 0:0:1:25 Y 92.68% 98.63%

Differ 18:13 1000 304261 0 2:0:0:5 N 42.26% 50.06%

Diophantine Pass-

word Wallet
0:19 1000 19747 23 0:0:6:31 Y 93.48% 94.29%

Dive Logger 1:27 1000 87386 0 0:2:19:50 N 97.38% 97.16%

Divelogger2 1:20 1000 82757 19578 2:0:0:0 Y 86.77% 91.72%

Document Render-

ing Engine
3:35 1000 222070 3025 0:9:24:51 Y 84.50% 91.67%

Dungeon Master 6:19 1000 382513 0 0:7:47:48 N 72.81% 78.17%

ECM TCM Simul-

ator
0:29 1000 31394 0 0:0:23:26 N 67.44% 84.90%

Eddy 0:2 1000 1226 13 0:1:43:52 Y 92.44% 99.16%

electronictrading 0:2 1000 1006 3 0:1:21:58 Y 75.07% 85.34%

Email System 2 0:33 999 36647 0 0:12:29:54 N 97.70% 100.00%

Enslavednode chat 0:53 1000 47641 0 2:0:0:5 N 64.31% 75.19%

Estadio 0:4 1000 4374 0 0:0:1:55 N 54.35% 47.43%

EternalPass 0:6 1000 6984 3982 0:0:11:8 Y 67.88% 67.18%

expression databa-

se
0:24 1000 27119 0 0:2:7:57 N 76.83% 83.37%

FablesReport 0:2 1000 1000 0 0:1:24:41 N 95.21% 100.00%

FaceMag 0:5 1000 5416 0 0:0:3:9 N 7.66% 21.51%

Facilities Access

Control System
0:4 1000 4046 0 0:0:2:19 N 58.23% 65.68%

FailAV 0:54 1000 55586 0 0:6:57:59 N 11.36% 7.50%

FASTLANE 0:8 1000 9110 0 0:0:6:3 N 71.34% 71.10%

FileSys 0:14 1000 12929 12 0:0:11:26 Y 72.51% 79.34%

Filesystem Comm-

and Shell
0:33 1000 37500 143 2:0:0:3 Y 70.26% 85.18%

Finicky File Folder 0:13 1000 11366 4772 0:0:13:46 Y 65.74% 67.83%

FISHYXML 0:6 1000 6327 0 0:0:3:50 N 91.27% 99.16%

Flash File System 0:5 1000 5164 1 0:0:2:52 Y 65.84% 75.97%
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Flight Routes 0:41 1000 46971 7 2:0:0:3 Y 89.30% 96.73%

Fortress 2:24 1000 151818 2 0:2:35:49 Y 90.58% 91.15%

FSK BBS 28:49 1000 304994 0 1:1:58:20 N 71.09% 91.03%

FSK Messaging

Service
2:31 1000 127997 0 0:2:40:22 N 67.94% 71.02%

FUN 0:8 1000 9277 0 0:0:6:44 N 20.58% 20.90%

Game Night 0:12 1000 14618 17 0:0:8:45 Y 81.76% 79.43%

Glue 0:2 1000 1000 0 0:0:0:48 N 92.81% 97.44%

GPS Tracker 0:3 1000 3096 0 0:0:1:29 N 81.95% 96.17%

GreatView 0:8 1000 5939 0 0:0:37:47 N 70.89% 83.14%

greeter 0:3 1000 3020 0 0:0:1:14 N 71.43% 80.56%

GREYMATTER 5:27 1000 265185 0 0:2:43:43 N 20.45% 20.41%

Gridder 0:2 1000 1000 0 0:0:0:53 N 93.04% 96.15%

Griswold 0:2 1000 1698 0 0:0:0:44 N 17.70% 24.44%

Grit 3:13 1000 147446 520 0:4:55:45 Y 88.34% 97.24%

H20FlowInc 0:11 1000 13484 0 0:0:8:39 N 90.20% 95.77%

HackMan 2:6 1000 135426 3025 0:2:0:57 Y 73.82% 100.00%

hawaii sets 0:14 1000 15722 0 0:0:6:36 N 62.17% 90.14%

Headscratch 0:2 1000 2000 0 0:0:1:32 N 12.50% 5.88%

HeartThrob 0:3 1000 2987 8 0:0:2:8 Y 98.77% 67.44%

HIGHCOO 0:2 1000 1965 0 0:0:0:43 N 23.81% 50.00%

HighFrequencyTra-

dingAlgo
0:2 1000 1012 8 0:2:36:57 Y 86.62% 91.18%

Hug Game 0:24 1000 27058 429 0:0:47:15 Y 95.32% 100.00%

humaninterface 0:9 1000 9858 0 0:0:6:9 N 41.96% 58.47%

Image Compressor 6:36 1000 300056 0 0:9:35:13 N 89.37% 87.50%

INSULATR 1:59 1000 38556 0 0:0:33:57 N 89.47% 98.63%

Kaprica Go 3:10 1000 124810 0 2:0:0:1 N 92.69% 91.88%

Kaprica Script Int-

erpreter
5:47 1000 300707 5439 2:0:0:8 Y 78.89% 87.36%

KKVS 4:56 1000 244941 0 0:5:55:49 N 24.94% 27.22%

KTY Pretty Print-

er
0:37 1000 38319 4 0:0:51:12 Y 82.92% 94.41%

Lazybox 0:26 1000 31622 315 1:18:56:50 Y 61.88% 77.37%
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LazyCalc 0:6 1000 6120 0 0:0:8:12 N 12.27% 15.62%

LMS 1:57 1000 103545 0 0:0:40:11 N 55.36% 64.29%

Loud Square Insta-

nt Messaging Proto-

col LSIMP

0:52 1000 52134 0 0:0:58:32 N 49.08% 33.15%

LulzChat 0:13 1000 14768 0 0:0:10:5 N 6.92% 4.83%

Matchmaker 0:33 1000 35638 771 0:0:18:41 Y 87.10% 87.03%

Material Temperat-

ure Simulation
0:20 1000 23679 0 2:0:0:2 N 20.29% 24.00%

Mathematical Solv-

er
0:2 1000 1000 0 0:0:0:29 N 5.54% 7.17%

matrices for sale 0:6 1000 6450 4991 0:6:55:42 Y 92.52% 100.00%

Matrix Math Cal-

culator
0:23 1000 24499 0 0:0:21:21 N 90.16% 100.00%

Message Service 1:6 1000 68792 0 0:0:32:56 N 68.84% 78.89%

middleout 0:5 1000 5000 0 0:0:14:30 N 64.50% 90.95%

Minimalistic Memo

Manager 3M
3:15 1000 197759 0 0:4:4:32 N 98.61% 100.00%

Mixology 0:29 1000 14148 0 0:0:5:49 N 12.00% 16.67%

Modern Family

Tree
0:4 1000 3090 0 0:0:1:47 N 3.08% 4.62%

Monster Game 0:44 1000 46249 0 0:0:25:4 N 82.01% 91.51%

Movie Rental Serv-

ice
0:9 1000 9628 156 0:2:59:19 Y 56.09% 60.56%

Movie Rental Serv-

ice Redux
0:9 1000 9053 0 0:2:9:51 N 58.10% 58.86%

Multi Arena Pursu-

it Simulator
0:2 1000 1000 0 0:0:0:31 N 96.78% 99.40%

Multi User Calen-

dar
0:24 1000 29423 0 0:0:31:6 N 61.93% 74.63%

Multicast Chat

Server
4:20 968 253273 158444 0:5:48:56 Y 64.22% 68.06%

Multipass 0:1 1000 1260 0 0:0:0:48 N 68.67% 45.58%

Multipass2 0:3 1000 2008 0 0:0:0:39 N 28.98% 32.96%

Multipass3 0:28 1000 24299 25 0:0:9:21 N 55.86% 60.54%
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Music Store Client 0:3 1000 1000 0 0:0:0:36 N 90.94% 100.00%

NarfAgainShell 0:2 1000 1000 0 0:2:46:43 N 29.77% 26.83%

NarfRPN 0:2 1000 1152 0 0:3:12:3 N 78.58% 97.92%

netstorage 0:53 1000 53272 0 0:0:42:43 N 23.03% 19.84%

Network File Sys-

tem
0:5 1000 5373 0 0:0:2:33 N 75.93% 100.00%

Network File Sys-

tem v3
0:5 1000 5619 0 0:0:2:57 N 72.60% 79.16%

Network Queuing

Simulator
0:49 1000 52461 1908 0:0:37:37 Y 93.23% 100.00%

Neural House 2:30 1000 158947 0 0:6:11:3 N 64.99% 69.41%

No Paper. Not Ev-

er. NOPE
0:16 1000 11056 0 0:0:17:5 N 6.73% 8.49%

NoHiC 0:16 1000 16257 0 0:0:12:42 N 15.11% 16.94%

On Sale 0:2 1000 2165 0 0:6:1:36 N 74.44% 88.42%

One Amp 0:13 1000 13572 0 0:0:35:17 N 13.78% 17.50%

One Vote 1:42 1000 109595 0 0:2:31:9 N 66.47% 77.11%

online job applicat-

ion
0:31 1000 34581 160 2:0:0:4 Y 66.20% 66.70%

online job applicat-

ion2
0:30 1000 34570 1 0:2:13:54 Y 90.92% 100.00%

Order Up 0:9 1000 9356 0 0:1:25:5 N 3.63% 2.85%

OTPSim 0:51 1000 51325 50428 0:1:27:1 Y 83.60% 87.09%

OUTLAW 0:2 1000 1851 0 0:0:0:50 N 4.81% 2.52%

Overflow Parking 0:2 1000 1459 0 0:0:5:52 N 82.18% 88.13%

Pac for Edges 0:2 1000 1043 0 0:0:0:51 N 96.72% 100.00%

Packet Analyzer 1:10 1000 67225 0 0:0:24:12 N 7.02% 11.38%

Packet Receiver 0:28 1000 29017 0 0:0:17:24 N 25.48% 23.54%

Palindrome 0:7 1000 8889 6663 0:0:11:52 Y 82.05% 92.86%

Palindrome2 0:9 1000 9731 7268 0:0:12:56 Y 82.05% 92.86%

Parking Permit

ManagementSystem

PPMS

0:3 1000 3450 0 0:0:2:19 N 34.48% 35.90%

Particle Simulator 0:22 1000 25684 0 1:4:36:39 N 94.93% 100.00%
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Pattern Finder 0:12 1000 13553 0 0:0:11:33 N 83.82% 92.32%

payroll 3:34 900 113370 2786 0:1:6:10 Y 90.51% 98.75%

PCM Message

decoder
5:51 1000 273064 0 0:2:1:11 N 86.09% 97.80%

Personal Fitness

Manager
0:2 1000 1922 0 0:0:1:1 N 17.77% 6.16%

Pipelined 0:7 1000 7600 0 0:0:2:34 N 15.14% 15.59%

pizza ordering

system
0:40 1000 46155 709 0:12:49:12 Y 77.59% 88.82%

PKK Steganogra-

phy
7:47 1000 300333 0 0:8:8:45 N 7.36% 8.70%

Printer 1:7 1000 72683 103 0:1:19:2 Y 96.92% 99.51%

PRU 0:4 1000 4810 18 0:0:2:13 Y 72.18% 75.00%

PTaaS 1:11 1000 39967 6135 0:2:59:26 Y 79.04% 97.78%

QuadtreeConways 0:6 1000 6228 0 0:5:36:38 N 59.09% 93.38%

Query Calculator 0:2 1000 1000 41 0:0:0:38 Y 83.45% 95.06%

RAM based

filesystem
0:2 1000 1848 0 0:0:0:44 N 71.90% 89.05%

reallystream 0:10 1000 10828 0 0:0:3:55 N 71.13% 67.72%

Recipe and Pantry

Manager
2:51 1000 186476 2 0:2:3:52 Y 89.91% 100.00%

Recipe Database 3:15 1000 196705 680 2:0:0:7 Y 83.54% 89.48%

REDPILL 0:2 1000 1254 0 0:3:4:42 N 56.52% 63.59%

Rejistar 0:2 1000 1000 0 0:0:0:32 N 78.05% 87.02%

REMATCH 1–Hat

Trick–Morris

Worm

0:3 1000 3176 0 0:0:1:19 N 15.64% 15.71%

REMATCH 2–Mail

Server–Crackaddr
0:3 1000 4003 28 0:0:1:50 Y 87.38% 88.59%

REMATCH 3–Ad-

dress Resolution Ser-

vice–SQL Slammer

0:6 1000 6569 286 0:0:3:29 Y 69.64% 79.53%

REMATCH 4–CG-

CRPC Server–MS08

-067

0:2 1000 2947 618 0:0:2:21 Y 40.59% 37.66%
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REMATCH 5–File

Explorer–LNK Bug
0:9 1000 9942 3 0:0:4:35 Y 69.64% 82.05%

REMATCH 6–Sec-

ure Server–Heartb-

leed

0:12 1000 11409 5734 0:0:20:59 Y 14.31% 12.76%

Resort Modeller 0:4 1000 2972 0 0:0:1:48 N 11.11% 16.67%

root64 and parcour 0:13 1000 13901 0 0:0:8:33 N 89.51% 95.56%

router simulator 11:46 1000 165507 0 0:2:12:42 N 46.35% 98.58%

RRPN 0:2 1000 1907 111 0:0:12:18 Y 96.35% 100.00%

Sad Face Template

Engine SFTE
0:19 1000 23031 45 0:0:21:44 Y 78.64% 86.83%

Sample Shipgame 0:45 1000 51385
28509

0:0:58:17 Y 95.10% 100.00%

SAuth 0:5 1000 5799 0 0:0:4:26 N 62.70% 71.43%

Scrum Database 0:2 1000 1202 0 0:0:2:7 N 60.18% 66.52%

SCUBA Dive Logg-

ing
1:18 1000 81656 32695 2:0:0:7 Y 93.31% 100.00%

Secure Compress-

ion
0:42 1000 46846 44827 0:1:36:10 Y 96.72% 98.25%

Sensr 0:16 1000 15850 0 0:0:12:25 N 98.14% 96.36%

SFTSCBSISS 0:3 1000 2218 0 0:0:0:52 N 75.74% 92.71%

Shipgame 0:4 1000 3998 0 0:0:1:26 N 9.35% 6.95%

Shortest Path Tree

Calculator
0:12 1000 13000 0 0:17:18:56 N 61.91% 69.25%

ShoutCTF 0:31 1000 35157 0 0:0:29:11 N 9.10% 6.39%

SIGSEGV 0:2 1000 1006 0 0:0:2:26 N 66.97% 52.17%

simple integer calc-

ulator
0:2 1000 2136 24 0:4:41:45 Y 94.51% 100.00%

Simple Stack Ma-

chine
0:3 1000 3539 0 0:0:1:2 N 37.93% 31.75%

simplenote 4:32 1000 300072 7399 0:12:19:16 Y 74.32% 82.10%

simpleOCR 0:12 1000 13604 0 0:3:11:37 N 90.40% 91.55%

Single-Sign-On 0:8 1000 6446 0 0:0:30:43 N 65.32% 72.73%

SLUR reference

implementation
0:2 1000 1000 0 0:0:4:54 N 50.25% 99.42%
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Snail Mail 0:2 1000 1375 0 0:3:49:38 N 70.14% 80.35%

SOLFEDGE 0:3 1000 1491 0 0:0:0:30 N 97.54% 99.06%

Sorter 0:8 1000 1028 0 0:0:0:47 N 44.51% 15.09%

Space Attackers 0:41 1000 46057 0 0:0:40:53 N 81.50% 81.68%

SPIFFS 0:25 1000 25222 19 0:6:6:59 Y 84.44% 91.70%

Square Rabbit 0:10 1000 12261 0 0:13:47:32 N 84.44% 88.89%

stack vm 0:4 1000 1000 0 0:0:0:24 N 75.10% 82.81%

Stock Exchange Si-

mulator
0:58 1000 60834 0 0:0:22:4 N 67.04% 56.44%

stream vm 5:18 1000 300132 169 0:22:12:48 Y 91.25% 97.44%

stream vm2 5:44 1000 300202 0 0:7:4:49 N 84.46% 94.06%

Street map service 0:4 1000 4205 0 0:0:3:35 N 64.14% 55.94%

String Info Calcula-

tor

1:22 1000 88192 0 0:0:38:2 N 84.38% 100.00%

String Storage and

Retrieval
0:33 1000 33926 0 0:2:5:3 N 24.06% 35.38%

TAINTEDLOVE 1:10 1000 69188 16100 1:6:57:38 Y 61.84% 66.67%

Tennis Ball Motion

Calculator
0:7 1000 9134 23 0:0:3:7 Y 93.06% 100.00%

Terrible Ticket Tr-

acker
0:4 1000 4439 0 0:12:23:47 N 31.72% 23.40%

TextSearch 3:50 1000 242852 1 0:13:28:1 Y 88.71% 93.96%

TFTTP 0:2 1000 1186 0 0:0:0:36 N 74.14% 69.61%

The Longest Road 0:45 1000 48838 784 0:0:22:19 Y 93.72% 99.71%

Thermal Controller

v2
0:13 1000 14557 0 0:0:7:49 N 21.41% 9.87%

Thermal Controller

v3
0:17 1000 19253 0 0:0:11:26 N 13.34% 5.36%

TIACA 0:6 1000 6620 0 0:0:2:35 N 11.85% 20.83%

Tick-A-Tack 0:2 1000 1000 0 0:0:0:19 N 90.29% 100.00%

tribute 6:49 1000 253978 0 0:1:33:49 N 29.89% 29.17%

TVS 5:44 1000 300653 1 0:10:23:41 Y 83.27% 83.33%

university enrollm-

ent
0:25 1000 27849 425 0:17:0:8 Y 79.64% 95.25%
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Program name

Gene-

ration

Time

(m:s)

#

of

Sam-

ple

input

files

# of

Fuzzi-

ng

files

# of

cras-

hed

files

Testing

Time

(d:h:m:s)

Cra-

sh

(Y/

N)

Lines

ccov

Bran-

ches

ccov

User Manager 0:12 1000 14054 0 1:2:15:14 N 81.64% 69.03%

UTF-late 0:2 1000 1000 0 0:2:46:43 N 85.53% 100.00%

ValveChecks 0:2 1000 1767 0 0:0:0:34 N 11.45% 14.64%

Vector Graphics 2 0:2 1000 2377 2 0:0:0:59 Y 87.74% 93.83%

Vector Graphics

Format
0:3 1000 2371 14 0:0:0:58 Y 75.92% 83.69%

Venture Calculator 0:29 1000 32499 0 0:0:26:22 N 90.32% 89.84%

vFilter 6:49 1000 300164 0 0:8:22:39 N 54.09% 57.07%

Virtual Machine 0:35 1000 35840 0 0:0:23:42 N 15.17% 18.00%

virtual pet 0:4 1000 4445 3 0:0:1:35 Y 91.21% 100.00%

Water Treatment

Facility Simulator
0:55 1000 59185 1 0:0:49:21 Y 92.31% 96.93%

WhackJack 0:49 1000 55939 9042 0:13:27:17 Y 91.79% 94.78%

WordCompletion 0:3 1000 3926 1 0:0:1:6 Y 85.00% 91.67%

XStore 1:21 1000 78319 0 0:1:11:51 N 3.15% 2.75%

yolodex 0:9 1000 11061 0 0:0:4:31 N 94.56% 100.00%

After the experiment, the code coverage information showed how much of each program

had executed. Two types of code coverage are shown in the table, which are line coverage

and branch coverage. We found the average of line code coverage is about 65%. Also, we

found the average of branch code coverage is about 71%. They tell us that the generated

fuzzing files had pretty good coverage. Also, we used this code coverage information to

compare our tool code coverage with sample input code coverage in Section 6.5.4.

6.5.3 Low Code Coverage Programs

There are some programs with low code coverage. In general, low code coverage is

mainly caused when a program has user input that is not compatible with the programs

requirement and the commands that come after entering the user input cannot be
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executed correctly. Some programs cannot be executed correctly in our system because

of uninitialized variables. For example, 3D Image Toolkit and XStore are two programs

that have lower code coverage.

Table 6.4: 3D Image toolkit Code Coverage

3D Image toolkit

File name Line code coverage branches code coverage

3dc.c 18.37% 20.00%

compress.c 0.00% 0.00%

main.c 12.87% 6.25%

After the investigation, 3D Image Toolkit program has low code coverage in lines and

branches code coverage. 3D Image Toolkit has three C code files as shown in Table 6.4.

In main.c, (part of the code is shown in Listing 6.3) a variable choice is declared but

never get a value. Then a while loop exist later in the main.c file. The evaluation of the

loop is based on the value of choice. In our system, apparently the variable has a value

of 0, and the evaluation of the while loop is FALSE. Hence the whole while loop which

takes more than 50 lines of executable code are not executed at all. This leads to low

code coverage on the main.c file.

The Listings 6.3 and 6.4 show the covered and uncovered lines from the GCOV

coverage files. There are many lines which have numbers, (-), and (#####). So, if the

beginning of the line has (-), that indicates it is not an executable line; if the line starts

by a number, this number tells the lines were executed (covered) and it tells how many

times this line was executed, and if a line starts by (#####), the line was not executed

(uncovered).
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In Listing 6.3, the main function has the function cgc menu(). In cgc menu() the input

“choice” variable (declared on line 56) never got a value but used in the while loop on line

81. From the coverage information, we can tell the while loop was checked, but the loop

body was not executed. This indicates the condition of the while loop is always evaluated

to False. By skipping the while loop, it affects the code coverage of the program.

In addition, on line 84, the switch-case statement has (#####) at the beginning of

the line which means the line was not executed. The switch cases in the switch statement

call functions in 3dc.c and compress.c files. Because of not executing the switch statement,

many functions are not called. So Table 6.4 shows that other C files have low line and

branch coverage or even 0. Therefore, 3D Image toolkit overall code coverage is lower.

The total number of executable lines in main.c file is 101. There are 13 executed lines

and the uncovered lines are 88 lines. To calculate the percentage of covered lines we can

divide the covered lines number by the total lines number so 13/101 = 12.87%.

Listing 6.3: 3D Image toolkit Program

. . . .
−: 55 : void cgc menu ( ) {
−: 56 : char cho i c e ;
−: 57 : char coord ;
−: 58 : u i n t 1 6 t va l ;
−: 59 :
−: 60 : char new in i t [ 4 0 9 6 ] ;

113136: 61 : t3DCPixel ∗ l a s t shown = NULL;
−: 62 :
−: 63:# i f d e f PATCHED 1
−: 64 : u i n t 8 t ∗ out data =
cgc ma l l oc (MAX FILE SIZE) ;
−: 65 : u i n t 8 t ∗ i n da ta =
cgc ma l l oc (MAX FILE SIZE) ;
−: 66:# else
−: 67 : u i n t 8 t out data [ 3 0 7 2 ] ;
−: 68 : u i n t 8 t in data [ 3 0 7 2 ] ;
−: 69:# e n d i f
−: 70 :
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56568 : 71 : u i n t 1 6 t compress l en = 0 ;
56568 : 72 : u i n t 8 t decompre s s f l ag = 0 ;

−: 73 :
56568 : 74 : u i n t 1 6 t pixelCount =
MAGIC PAGE SIZE / s izeof ( t3DCPixel ) ;

−: 75 :
56568 : 76 : t3DCPixel ∗∗ p x l i s t =
cgc ma l l oc ( pixelCount ∗ s izeof ( t3DCPixel ∗) ) ;
56568 : 77 : cgc memset ( p x l i s t , 0 ,
pixelCount ∗ s izeof ( t3DCPixel ∗) ) ;

−: 78 :
56568 : 79 : cgc ReadFi l e ( p x l i s t ) ;

−: 80 :
113136: 81 : while ( cho i c e ) {
#####: 82 : c g c r e c e i v e b y t e s (&choice , 1) ;

−: 83 :
#####: 84 : switch ( cho i c e ) {

. . . .
−: 227 : }
−: 228 : }

56568 : 229 : c g c f r e e ( p x l i s t ) ;
113136: 230 :}

−: 231 :
−: 232 : int main ( int cgc argc , char ∗ cgc argv [ ] ) {
−: 233 :

56568 : 234 : c g c p r i n t f ( ”3D Coordinates
(3DC) Image F i l e Format Tools\n” ) ;

−: 235 :
56568 : 236 : cgc menu ( ) ;

−: 237 :
56568 : 238 : return 0 ;

−: 239 :}

XStore program has low code coverage in lines and branches. It consists of three C

code files. As shown in Table 6.5, there is low code coverage in XStore as well.
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Table 6.5: XStore Code Coverage

XStore

File name Line code coverage branches code coverage

service.c 7.07% 7.36%

tr.c 0.00% 0.00%

xpack.c 2.39% 0.90%

Because after entering user input, the commands that came later cannot be executed.

The reason for this is that unknown byte values were not understood or not compatible

with the program requirement. Moreover, the code overage of service.c is low, which

causes the other C code files to have lower code coverage, which affects the average of

lines and branches code coverage.

From examining the code coverage report, shown in Listing 6.4, the cases in the

switch-case statement (started from line 717) were not executed except the default case

(on line 739). The variable “command” was read in from function cgc fread (on line 708).

It means the user input was not read in properly or it was not in the correct format.

Therefore, none of the switch statements were covered, and many function calls (functions

in tr.c and xpack.c files) were not executed. It led to a low code coverage on the program.

If counting the executed lines and not executed lines, in service.c file, there were 26

covered lines and the uncovered lines are 342 lines. Therefore, the total number of lines is

368. To calculate the percentage of covered lines, we can divide the covered lines number

by the total line number, 26/368 = 7.07%.

Listing 6.4: XStore Program

. . . .
−: 692 : int main ( int s e c r e t p a g e i , char ∗unused [ ] )
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{
−: 693 : s e c r e t p a g e i = CGC FLAG PAGE ADDRESS;
−: 694 :
−: 695 : void ∗ s e c r e t p a g e =(void ∗) s e c r e t p a g e i ;

78712 : 696 : u i n t 6 4 t command ;
39356 : 697 : c g c s i z e t s i z e ;
39356 : 698 : u i n t 8 t debug = 0 ;

−: 699 :
39356 : 700 : c g c g c t x = c g c x p k i n i t (1024) ;

−: 701 :
39356 : 702 : cg c check s e ed ( ) ;

−: 703 :
39356 : 704 : c g c f b u f f e r e d ( cgc s tdout , 1) ;

5881291: 705 : while (1 )
−: 706 : {

177282850: 707 : c g c f f l u s h ( cgc s tdout ) ;
177282850: 708 : i f ( c g c f r e a d (&command ,

s izeof ( u i n t 6 4 t ) ,
c g c s t d i n ) != s izeof ( u i n t 6 4 t ) )

−: 709 : break ;
177256503: 710 : i f ( c g c f r e a d (& s i z e ,

s izeof ( c g c s i z e t ) , c g c s t d i n ) !=
s izeof ( c g c s i z e t ) )

−: 711 : break ;
177243494: 712 : i f ( s i z e > MAX DATA LEN)

−: 713 : {
171401559: 714 : c g c p r i n t f ( ”Wrong . ” NL) ;
171401559: 715 : continue ;

−: 716 : }
5841935: 717 : switch (command)

−: 718 : {
−: 719 : case CMD STORE:

#####: 720 : c g c h a n d l e s t o r e ( s i z e ) ;
#####: 721 : break ;

−: 722 : case CMD LOOKUP:
#####: 723 : cgc hand le lookup ( s i z e ) ;
#####: 724 : break ;

−: 725 : case CMD DELETE:
#####: 726 : c g c h a n d l e d e l e t e ( s i z e ) ;
#####: 727 : break ;

−: 728 : case CMD DEBUG:
#####: 729 : cgc handle debug ( s i z e , &debug ) ;
#####: 730 : break ;

−: 731 : case CMD PRINT:
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#####: 732 : c g c h a n d l e p r i n t ( s i z e , debug ) ;
#####: 733 : break ;

−: 734 : case CMD QUIT:
#####: 735 : cg c s end r e spons e (RES OK) ;
#####: 736 : c g c f f l u s h ( cgc s tdout ) ;
#####: 737 : c g c e x i t (0 ) ;

−: 738 : default :
5841935: 739 : cg c s end r e spons e (RES INVALID) ;
5841935: 740 : break ;

−: 741 : }
−: 742 : }

39356 : 743 : c g c f f l u s h ( cgc s tdout ) ;
−: 744 :

39356 : 745 : return 0 ;
39356 : 746 :}

6.5.4 Code Coverage Difference Between Generated Fuzzing Files and Sample

Inputs Files

The Table 6.6 shows the comparison between our regular fuzzer coverage and sample

input files code coverage. Our regular fuzzer uses 10% percentage which means 10% of

number of sample input files that our tool used to obtain the grammars. It shows that

the code coverage of our fuzzer is similar to the sample input files’ code coverage. The

Table 6.6 has four major columns: the first column is the program name; the second

column is the code coverage for our regular fuzzer. It has two columns lines and branches

code coverage; the third column is sample input files’ code coverage and it has two column

which are lines and branches code coverage; and the fourth column is the difference which

has the calculated difference between our tool’s code coverage and sample input files’ code

coverage. The difference column has two column: lines and branches differences.

If the difference number is 0.0, it means the code coverage has the same coverage

between our regular fuzzer code coverage and sample code coverage. If the difference is

a positive number, it means that our regular fuzzer has increased code coverage for a
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particular program. If the difference number is negative, it means our regular fuzzer code

coverage has lower code coverage.

Looking at column difference Table 6.6 we can see most of the programs have 0.0

numbers difference numbers for lines and branches columns. Therefore, it indicates that

the tool has similar code coverage with sample inputs code coverage.

For example, in the first row is 3D Image Toolkit, 10% tool lines code coverage is

10.41% and the branches code coverage is 8.75%; the sample line code coverage is 10.41%

and branches code coverage is 8.75%; and the difference between them is 0.00% for lines

and branches code coverage.

Table 6.6: Code Coverage Differences

Program Name
Our Fuzzer CCOV Samples CCOV Difference

Lines

ccov
Branches

ccov

Lines

ccov
Branches

ccov

Lines Branchs

3D Image Toolkit 10.41% 8.75% 10.41% 8.75% 0.00% 0.00%

Accel 81.13% 95.51% 81.07% 95.51% 0.06% 0.00%

AIS-Lite 92.22% 100.00% 92.22% 100.00% 0.00% 0.00%

anagram game 97.11% 99.55% 97.05% 99.33% 0.06% 0.22%

ASCII Content Serv-

er
80.37% 99.04% 80.37% 99.04% 0.00% 0.00%

ASL6parse 71.49% 96.41% 73.58% 98.73% -2.09% -2.32%

Audio Visualizer 79.88% 78.88% 78.09% 76.46% 1.79% 2.42%

Azurad 82.41% 78.94% 82.29% 78.42% 0.12% 0.52%

Barcoder 74.65% 74.24% 74.76% 74.68% -0.11% -0.44%

basic emulator 66.56% 69.60% 66.83% 69.81% -0.27% -0.21%

basic messaging 87.29% 97.01% 87.29% 97.01% 0.00% 0.00%

BIRC 48.23% 46.65% 48.23% 46.65% 0.00% 0.00%

BitBlaster 89.36% 100.00% 89.36% 100.00% 0.00% 0.00%

Bloomy Sunday 76.60% 86.46% 76.60% 86.46% 0.00% 0.00%

Blubber 36.99% 39.27% 37.01% 39.31% -0.02% -0.04%

Board Game 99.03% 100.00% 99.03% 100.00% 0.00% 0.00%

BudgIT 68.09% 77.34% 68.09% 77.34% 0.00% 0.00%

CableGrind 30.78% 32.89% 30.36% 32.89% 0.42% 0.00%

CableGrindLlama 40.87% 42.73% 40.11% 42.73% 0.76% 0.00%

Continued on next page
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Program Name
Our Fuzzer CCOV Samples CCOV Difference

Lines

ccov
Branches

ccov

Lines

ccov
Branches

ccov

Lines Branchs

Carbonate 75.71% 92.86% 75.71% 92.86% 0.00% 0.00%

Casino Games 73.77% 81.87% 72.13% 81.73% 1.64% 0.14%

Cereal Mixup A

Cereal Vending Mac

hine Controller

59.81% 66.93% 58.81% 65.94% 1.00% 0.99%

CGC Board 79.88% 88.74% 79.94% 89.08% -0.06% -0.34%

CGC File System 83.39% 98.73% 83.39% 98.73% 0.00% 0.00%

CGC Hangman

Game
85.00% 88.00% 85.00% 88.00% 0.00% 0.00%

CGC Image Parser 44.25% 49.18% 42.02% 44.93% 2.23% 4.25%

CGC Planet Mark-

up Language Parser
73.29% 98.06% 73.58% 98.14% -0.29% -0.08%

CGC Symbol View-

er CSV
21.15% 22.14% 21.05% 22.14% 0.10% 0.00%

CGC Video Format

Parser and Viewer
77.01% 94.71% 77.27% 94.71% -0.26% 0.00%

Character Statistics 73.03% 90.32% 73.03% 90.32% 0.00% 0.00%

Charter 89.77% 98.67% 90.06% 100.00% -0.29% -1.33%

Checkmate 94.98% 95.78% 94.98% 95.78% 0.00% 0.00%

chess mimic 55.74% 58.85% 55.74% 58.85% 0.00% 0.00%

Childs Game 90.00% 97.29% 90.35% 97.29% -0.35% 0.00%

CLOUDCOMPUTE 83.20% 73.81% 82.78% 73.81% 0.42% 0.00%

CML 45.57% 56.75% 45.62% 56.77% -0.05% -0.02%

CNMP 97.22% 100.00% 97.22% 100.00% 0.00% 0.00%

COLLIDEOSCOPE 88.67% 92.91% 88.16% 92.23% 0.51% 0.68%

commerce webscale 34.63% 38.68% 35.17% 39.37% -0.54% -0.69%

Corinth 65.11% 78.22% 65.11% 78.22% 0.00% 0.00%

cotton swab arithm-

etic
84.51% 98.20% 86.61% 100.00% -2.10% -1.80%

Cromulence All

Service
41.80% 37.03% 41.22% 36.34% 0.58% 0.69%

CTTP 56.57% 66.77% 56.57% 66.77% 0.00% 0.00%

cyber blogger 41.95% 43.34% 41.87% 43.34% 0.08% 0.00%

DFARS Sample

Service
53.67% 27.16% 54.10% 27.78% -0.43% -0.62%

Diary Parser 93.50% 98.63% 93.50% 98.63% 0.00% 0.00%

Continued on next page
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Program Name
Our Fuzzer CCOV Samples CCOV Difference

Lines

ccov
Branches

ccov

Lines

ccov
Branches

ccov

Lines Branchs

Differ 35.56% 42.91% 35.56% 42.91% 0.00% 0.00%

Diophantine Passwo-

rd Wallet
93.48% 94.29% 93.48% 94.29% 0.00% 0.00%

Dive Logger 97.38% 97.16% 97.38% 97.16% 0.00% 0.00%

Divelogger2 86.55% 91.72% 86.51% 91.72% 0.04% 0.00%

Document Render-

ing Engine
83.92% 91.67% 84.00% 91.67% -0.08% 0.00%

Dungeon Master 69.84% 74.75% 70.78% 75.84% -0.94% -1.09%

ECM TCM Simulat-

or
67.76% 85.17% 67.64% 84.90% 0.12% 0.27%

Eddy 92.44% 99.16% 92.35% 99.16% 0.09% 0.00%

electronictrading 73.86% 85.33% 74.84% 86.66% -0.98% -1.33%

Email System 2 91.87% 99.57% 92.27% 100.00% -0.40% -0.43%

Enslavednode chat 76.65% 82.64% 77.10% 82.73% -0.45% -0.09%

Estadio 51.61% 44.61% 54.35% 47.43% -2.74% -2.82%

EternalPass 87.29% 86.54% 89.65% 88.82% -2.36% -2.28%

expression database 76.14% 82.68% 76.16% 82.89% -0.02% -0.21%

FablesReport 95.21% 100.00% 95.21% 100.00% 0.00% 0.00%

FaceMag 35.57% 47.01% 35.57% 47.01% 0.00% 0.00%

Facilities Access Co-

ntrol System
59.60% 65.68% 59.81% 65.68% -0.21% 0.00%

FailAV 26.91% 24.82% 26.91% 24.82% 0.00% 0.00%

FASTLANE 71.34% 71.10% 71.34% 71.10% 0.00% 0.00%

FileSys 72.51% 79.34% 72.51% 79.34% 0.00% 0.00%

Filesystem Comma-

nd Shell
77.68% 89.01% 76.81% 88.61% 0.87% 0.40%

Finicky File Folder 66.34% 68.06% 66.14% 67.83% 0.20% 0.23%

FISHYXML 91.41% 99.30% 91.41% 99.37% 0.00% -0.07%

Flash File System 67.72% 79.05% 69.10% 81.34% -1.38% -2.29%

Flight Routes 81.78% 94.06% 81.41% 93.77% 0.37% 0.29%

Fortress 90.55% 91.15% 90.55% 91.15% 0.00% 0.00%

FSK BBS 71.09% 91.03% 71.09% 91.03% 0.00% 0.00%

FSK Messaging Ser-

vice
67.94% 71.02% 67.94% 71.02% 0.00% 0.00%

FUN 20.58% 20.90% 20.58% 20.90% 0.00% 0.00%

Continued on next page
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Program Name
Our Fuzzer CCOV Samples CCOV Difference

Lines

ccov
Branches

ccov

Lines

ccov
Branches

ccov

Lines Branchs

Game Night 82.35% 79.43% 82.35% 79.43% 0.00% 0.00%

Glue 92.81% 97.44% 92.81% 97.44% 0.00% 0.00%

GPS Tracker 82.61% 97.45% 82.53% 97.45% 0.08% 0.00%

GreatView 70.89% 83.14% 70.89% 83.14% 0.00% 0.00%

greeter 71.43% 80.56% 71.43% 80.56% 0.00% 0.00%

GREYMATTER 20.45% 20.41% 20.45% 20.41% 0.00% 0.00%

Gridder 93.04% 96.15% 93.04% 96.15% 0.00% 0.00%

Griswold 36.66% 44.33% 36.66% 44.33% 0.00% 0.00%

Grit 88.25% 97.18% 88.32% 97.24% -0.07% -0.06%

H20FlowInc 91.75% 97.95% 91.75% 97.95% 0.00% 0.00%

HackMan 73.69% 100.00% 73.82% 100.00% -0.13% 0.00%

hawaii sets 63.53% 90.97% 63.84% 90.97% -0.31% 0.00%

Headscratch 23.50% 20.88% 23.50% 20.88% 0.00% 0.00%

HeartThrob 98.77% 67.49% 98.77% 67.50% 0.00% -0.01%

HIGHCOO 23.81% 50.00% 23.81% 50.00% 0.00% 0.00%

HighFrequencyTrad-

ingAlgo
84.98% 88.24% 85.21% 88.24% -0.23% 0.00%

Hug Game 95.49% 100.00% 94.72% 100.00% 0.77% 0.00%

humaninterface 41.96% 58.85% 41.96% 59.62% 0.00% -0.77%

Image Compressor 89.37% 87.50% 89.37% 87.50% 0.00% 0.00%

INSULATR 89.47% 98.63% 89.47% 98.63% 0.00% 0.00%

Kaprica Go 92.69% 91.88% 92.69% 91.88% 0.00% 0.00%

Kaprica Script Inte-

rpreter
75.92% 84.67% 75.74% 85.40% 0.18% -0.73%

KKVS 49.89% 54.45% 49.89% 54.45% 0.00% 0.00%

KTY Pretty Printer 82.75% 94.41% 82.74% 94.41% 0.01% 0.00%

Lazybox 48.68% 58.09% 48.69% 57.88% -0.01% 0.21%

LazyCalc 23.87% 32.20% 23.87% 32.20% 0.00% 0.00%

LMS 55.66% 64.88% 55.36% 64.29% 0.30% 0.59%

Loud Square Instant

Messaging Protocol

LSIMP

50.17% 33.15% 50.72% 33.15% -0.55% 0.00%

LulzChat 6.92% 4.83% 6.92% 4.83% 0.00% 0.00%

Matchmaker 87.10% 87.03% 87.10% 87.03% 0.00% 0.00%

Continued on next page
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Program Name
Our Fuzzer CCOV Samples CCOV Difference

Lines

ccov
Branches

ccov

Lines

ccov
Branches

ccov

Lines Branchs

Material Temperat-

ure Simulation
64.01% 67.50% 64.01% 67.50% 0.00% 0.00%

Mathematical Solver 61.75% 75.56% 61.87% 77.62% -0.12% -2.06%

matrices for sale 91.90% 100.00% 90.65% 100.00% 1.25% 0.00%

Matrix Math Calcul-

ator
90.31% 100.00% 90.38% 100.00% -0.07% 0.00%

Message Service 68.84% 78.89% 68.84% 78.89% 0.00% 0.00%

middleout 64.78% 90.95% 64.91% 90.95% -0.13% 0.00%

Minimalistic Memo

Manager 3M
97.48% 100.00% 97.52% 100.00% -0.04% 0.00%

Mixology 19.27% 23.67% 19.27% 23.67% 0.00% 0.00%

Modern Family Tree 43.09% 47.12% 43.09% 47.12% 0.00% 0.00%

Monster Game 81.37% 90.48% 84.24% 93.05% -2.87% -2.57%

Movie Rental Serv-

ice
56.06% 60.56% 56.09% 60.56% -0.03% 0.00%

Movie Rental Serv-

ice Redux
58.10% 58.86% 58.10% 58.86% 0.00% 0.00%

Multi Arena Pursuit

Simulator
96.78% 99.40% 96.78% 99.40% 0.00% 0.00%

Multi User Calendar 66.72% 81.52% 66.83% 82.05% -0.11% -0.53%

Multicast Chat Se-

rver
64.22% 68.06% 64.22% 68.06% 0.00% 0.00%

Multipass 68.99% 45.58% 68.67% 45.58% 0.32% 0.00%

Multipass2 32.94% 39.16% 32.71% 38.73% 0.23% 0.43%

Multipass3 56.79% 61.14% 55.98% 60.44% 0.81% 0.70%

Music Store Client 90.94% 100.00% 90.94% 100.00% 0.00% 0.00%

NarfAgainShell 48.59% 53.64% 48.32% 53.49% 0.27% 0.15%

NarfRPN 82.33% 98.92% 82.33% 98.92% 0.00% 0.00%

netstorage 35.11% 40.10% 35.11% 40.10% 0.00% 0.00%

Network File Sys-

tem
76.72% 100.00% 76.72% 100.00% 0.00% 0.00%

Network File Syste-

m v3
74.94% 82.80% 74.54% 82.13% 0.40% 0.67%

Network Queuing

Simulator
93.23% 100.00% 93.23% 100.00% 0.00% 0.00%

Neural House 64.99% 69.41% 64.99% 69.41% 0.00% 0.00%

Continued on next page
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Program Name
Our Fuzzer CCOV Samples CCOV Difference

Lines

ccov
Branches

ccov

Lines

ccov
Branches

ccov

Lines Branchs

No Paper. Not Ever.

NOPE
24.73% 29.22% 24.73% 29.22% 0.00% 0.00%

NoHiC 26.84% 29.77% 26.84% 29.77% 0.00% 0.00%

On Sale 74.14% 87.92% 73.69% 87.09% 0.45% 0.83%

One Amp 15.27% 19.61% 15.71% 20.15% -0.44% -0.54%

One Vote 67.29% 77.20% 66.47% 77.11% 0.82% 0.09%

online job applicat-

ion
57.56% 61.64% 57.37% 61.02% 0.19% 0.62%

online job applicat-

ion2
90.27% 99.43% 90.92% 100.00% -0.65% -0.57%

Order Up 3.63% 2.85% 3.63% 2.85% 0.00% 0.00%

OTPSim 78.76% 79.03% 78.76% 79.03% 0.00% 0.00%

OUTLAW 4.81% 2.52% 4.81% 2.52% 0.00% 0.00%

Overflow Parking 82.18% 88.13% 82.18% 88.13% 0.00% 0.00%

Pac for Edges 96.72% 100.00% 96.72% 100.00% 0.00% 0.00%

Packet Analyzer 7.02% 11.38% 7.02% 11.38% 0.00% 0.00%

Packet Receiver 25.48% 23.54% 25.48% 23.54% 0.00% 0.00%

Palindrome 82.05% 92.86% 82.05% 92.86% 0.00% 0.00%

Palindrome2 82.05% 92.86% 82.05% 92.86% 0.00% 0.00%

Parking Permit

Management System

PPMS

37.02% 37.95% 38.29% 38.97% -1.27% -1.02%

Particle Simulator 94.48% 100.00% 94.42% 100.00% 0.06% 0.00%

Pattern Finder 83.82% 92.32% 83.82% 92.32% 0.00% 0.00%

payroll 91.33% 98.75% 92.98% 98.75% -1.65% 0.00%

PCM Message deco-

der
73.22% 82.60% 73.29% 82.35% -0.07% 0.25%

Personal Fitness

Manager
17.77% 6.16% 17.77% 6.16% 0.00% 0.00%

Pipelined 15.14% 15.59% 15.14% 15.59% 0.00% 0.00%

pizza ordering

system
77.59% 88.82% 77.59% 88.82% 0.00% 0.00%

PKK Steganography 7.36% 8.70% 7.36% 8.70% 0.00% 0.00%

Printer 96.71% 99.51% 96.60% 99.51% 0.11% 0.00%

PRU 74.96% 76.39% 77.56% 79.17% -2.60% -2.78%

Continued on next page
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Program Name
Our Fuzzer CCOV Samples CCOV Difference

Lines

ccov
Branches

ccov

Lines

ccov
Branches

ccov

Lines Branchs

PTaaS 79.04% 97.78% 79.04% 97.78% 0.00% 0.00%

QuadtreeConways 58.96% 92.36% 59.09% 92.46% -0.13% -0.10%

Query Calculator 83.45% 95.06% 83.45% 95.06% 0.00% 0.00%

RAM based filesyst-

em
73.68% 90.64% 73.68% 90.64% 0.00% 0.00%

reallystream 72.03% 68.25% 72.03% 68.25% 0.00% 0.00%

Recipe and Pantry

Manager
89.14% 100.00% 89.34% 100.00% -0.20% 0.00%

Recipe Database 80.48% 85.99% 79.67% 84.72% 0.81% 1.27%

REDPILL 52.42% 58.15% 52.90% 60.33% -0.48% -2.18%

Rejistar 78.59% 87.02% 78.59% 87.02% 0.00% 0.00%

REMATCH 1–Hat

Trick–Morris Worm
15.64% 15.71% 15.64% 15.71% 0.00% 0.00%

REMATCH 2–Mail

Server–Crackaddr
87.38% 88.59% 87.38% 88.59% 0.00% 0.00%

REMATCH 3–Addr-

ess Resolution

Service–SQL

Slammer

69.82% 79.53% 70.17% 79.53% -0.35% 0.00%

REMATCH 4–CGC-

RPC Server–MS08-

067

46.11% 47.34% 46.28% 47.42% -0.17% -0.08%

REMATCH 5–File

Explorer–LNK Bug
72.20% 82.91% 72.35% 82.91% -0.15% 0.00%

REMATCH 6–Secu-

re Server–Heartbleed
14.60% 12.76% 14.60% 12.76% 0.00% 0.00%

Resort Modeller 11.11% 16.67% 11.11% 16.67% 0.00% 0.00%

root64 and parcour 89.51% 95.56% 89.51% 95.56% 0.00% 0.00%

router simulator 46.26% 98.58% 46.22% 98.58% 0.04% 0.00%

RRPN 96.35% 100.00% 96.35% 100.00% 0.00% 0.00%

Sad Face Template

Engine SFTE
78.64% 86.83% 78.64% 86.83% 0.00% 0.00%

Sample Shipgame 93.95% 100.00% 93.66% 100.00% 0.29% 0.00%

SAuth 62.70% 71.43% 62.70% 71.43% 0.00% 0.00%

Scrum Database 37.20% 31.06% 37.20% 31.06% 0.00% 0.00%

Continued on next page
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Program Name
Our Fuzzer CCOV Samples CCOV Difference

Lines

ccov
Branches

ccov

Lines

ccov
Branches

ccov

Lines Branchs

SCUBA Dive Logg-

ing
78.23% 86.95% 78.89% 87.29% -0.66% -0.34%

Secure Compression 96.58% 98.25% 96.29% 98.25% 0.29% 0.00%

Sensr 98.14% 96.36% 98.14% 96.36% 0.00% 0.00%

SFTSCBSISS 77.02% 93.75% 77.02% 93.75% 0.00% 0.00%

Shipgame 9.35% 6.95% 9.35% 6.95% 0.00% 0.00%

Shortest Path Tree

Calculator
59.05% 65.55% 56.40% 62.94% 2.65% 2.61%

ShoutCTF 9.10% 6.39% 9.10% 6.39% 0.00% 0.00%

SIGSEGV 66.97% 52.17% 66.97% 52.17% 0.00% 0.00%

simple integer calcu-

lator
92.01% 99.10% 91.28% 98.78% 0.73% 0.32%

Simple Stack Mach-

ine
37.93% 31.75% 37.93% 31.75% 0.00% 0.00%

simplenote 74.32% 82.10% 74.32% 82.10% 0.00% 0.00%

simpleOCR 91.72% 92.49% 90.68% 91.55% 1.04% 0.94%

Single-Sign-On 65.32% 72.73% 65.32% 72.73% 0.00% 0.00%

SLUR reference imp-

lementation
50.25% 99.42% 50.25% 99.42% 0.00% 0.00%

Snail Mail 69.92% 80.13% 69.47% 79.69% 0.45% 0.44%

SOLFEDGE 98.36% 100.00% 98.36% 100.00% 0.00% 0.00%

Sorter 44.51% 15.09% 44.51% 15.09% 0.00% 0.00%

Space Attackers 81.50% 81.68% 81.50% 81.68% 0.00% 0.00%

SPIFFS 83.71% 91.70% 83.92% 91.70% -0.21% 0.00%

Square Rabbit 83.39% 88.89% 83.21% 88.89% 0.18% 0.00%

stack vm 75.10% 82.81% 75.10% 82.81% 0.00% 0.00%

Stock Exchange Si-

mulator
67.04% 56.44% 67.04% 56.44% 0.00% 0.00%

stream vm 82.50% 93.16% 77.50% 89.74% 5.00% 3.42%

stream vm2 80.18% 88.12% 79.73% 88.12% 0.45% 0.00%

Street map service 67.12% 59.59% 66.86% 59.14% 0.26% 0.45%

String Info Calculat-

or
84.38% 100.00% 84.38% 100.00% 0.00% 0.00%

String Storage and

Retrieval
22.11% 33.34% 22.78% 33.85% -0.67% -0.51%

Continued on next page
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Program Name
Our Fuzzer CCOV Samples CCOV Difference

Lines

ccov
Branches

ccov

Lines

ccov
Branches

ccov

Lines Branchs

TAINTEDLOVE 61.84% 66.67% 61.84% 66.67% 0.00% 0.00%

Tennis Ball Motion

Calculator
93.06% 100.00% 93.06% 100.00% 0.00% 0.00%

Terrible Ticket Tra-

cker
31.72% 23.40% 31.72% 23.40% 0.00% 0.00%

TextSearch 88.31% 91.89% 87.38% 90.13% 0.93% 1.76%

TFTTP 74.14% 69.61% 74.14% 69.61% 0.00% 0.00%

The Longest Road 93.72% 99.71% 93.72% 99.71% 0.00% 0.00%

Thermal Controller

v2
21.41% 9.87% 21.41% 9.87% 0.00% 0.00%

Thermal Controller

v3
13.34% 5.36% 13.34% 5.36% 0.00% 0.00%

TIACA 11.85% 20.83% 11.85% 20.83% 0.00% 0.00%

Tick-A-Tack 90.94% 100.00% 91.26% 100.00% -0.32% 0.00%

tribute 29.89% 29.17% 29.89% 29.17% 0.00% 0.00%

TVS 84.56% 83.44% 83.27% 83.33% 1.29% 0.11%

university enroll-

ment
78.44% 94.45% 78.58% 94.73% -0.14% -0.28%

User Manager 81.21% 69.03% 81.21% 69.03% 0.00% 0.00%

UTF-late 85.14% 100.00% 85.53% 100.00% -0.39% 0.00%

ValveChecks 11.45% 14.64% 11.45% 14.64% 0.00% 0.00%

Vector Graphics 2 88.44% 94.24% 88.79% 94.45% -0.35% -0.21%

Vector Graphics

Format
76.56% 83.89% 76.49% 83.89% 0.07% 0.00%

Venture Calculator 90.32% 89.84% 90.32% 89.84% 0.00% 0.00%

vFilter 42.58% 42.22% 41.93% 41.22% 0.65% 1.00%

Virtual Machine 15.17% 18.00% 15.17% 18.00% 0.00% 0.00%

virtual pet 91.21% 100.00% 91.21% 100.00% 0.00% 0.00%

Water Treatment

Facility Simulator
92.31% 96.93% 92.31% 96.93% 0.00% 0.00%

WhackJack 86.84% 91.29% 87.05% 91.79% -0.21% -0.50%

WordCompletion 85.50% 91.67% 85.50% 91.67% 0.00% 0.00%

XStore 3.15% 2.75% 3.15% 2.75% 0.00% 0.00%

yolodex 95.61% 100.00% 96.28% 100.00% -0.67% 0.00%
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6.6 Adjustment Percentages Crashes and Code Coverage

6.6.1 Experiments

The aim the experiment is to test different percentage numbers see Section 6.5.4

to find out which is the best one in the case of number of crashed programs and code

coverage. Moreover, the purpose of the testing is to find out the differences between each

percentage regrading number of crashes and code coverage. The used percentages are 5%,

7%, 10%, 12% and 15%.

The machine for generating fuzzing files and testing has environment: the CPU is

AMD Ryzen Threadripper 2920X 12-Core Processor, memory is 32 GB, Ubuntu 18.04.4

LTS, and OS type 64-bit.

The experiment was to go through all of the programs in the dataset. The testing

kept tracking of the number of crashes and the code coverage which was collected for

each program. We took the averages for line and branch code coverage for the programs

that have multiple files in the source directory. Moreover, the percentage was changed

for different percentage numbers: 5%, 7%, 10%, 12% and 15%. These percentages are

the percentage number of sample files that can be used to get grammars to generate

fuzzing files. Each percentage was running for three rounds and each round took an hour

for testing each program. Each round obtained new code coverage information for each

program, which means each round testing was not using previously created code coverage.

The testing took 6 programs in parallel for testing. This experiment took about 8 weeks

to finish testing all programs for all the five percentages.
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5% Crashes and Code Coverage

The percentage in the tool adjusted to 5% of number of sample files. After that, the

tool was tested for three rounds to get the maximum number of crashes. The maximum

number of crashed programs was 71. After each round, the code coverage for each program

was collected and stored.

Figure A.1 shows the line code coverage chart for 5%. Figure A.2 shows the branch

code coverage chart for 5%.

7% Crashes and Code Coverage

The percentage in the tool changed to 7% of number of sample files. Therefore, the

tool was tested for three rounds to get the maximum number of crashes. The number

of crashed programs was 71. After each round, the code coverage for each program was

collected and stored.

Figure A.3 shows the line code coverage chart for 7%. Figure A.4 shows the branch

code coverage chart for 7%.

10% Crashes and Code Coverage

The percentage was changed to 10% of sample files number. After that, the tool was

tested for three rounds and has found a maximum number of crashed programs which

was 73. After each round, the code coverage for each program was collected and stored.

The line code coverage chart for 10% can be found in Figure A.5. Figure A.6 shows

the branch code coverage chart for 10%.
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12% Crashes and Code Coverage

The percentage was changed to 12% of sample files number. After that, the tool was

tested for three rounds and has found a maximum number of crashed programs which

was 71. After each round, the code coverage for each program was collected and stored.

Figure A.7 shows the line code coverage chart for 12%. Figure A.8 shows the branch

code coverage chart for 12%.

15% Crashes and Code Coverage

The percentage was changed to 15% of sample files number. After that, the tool was

tested for three rounds and has found a maximum number of crashed programs which

was 70. After each round, the code coverage for each program was collected and stored.

Figure A.9 shows the line code coverage chart for 15%. Figure A.10 shows the branch

code coverage chart for 15%.

6.6.2 Percentages Experiments Code Coverage Summary

Number of Crashes

Figure 6.6 shows the summary of number of crashed programs for each percentage in

each round.
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Figure 6.6: Summary of Number of Crashes
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Line Code Coverage Summary

Figure 6.7 shows the summary of line code coverage for each percentage in each round.

Figure 6.7: Summary of Line Code Coverage
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Branch Code Coverage Summary

Figure 6.8 shows the summary of branch code coverage for each percentage in each

round.

Figure 6.8: Summary of Line Code Coverage

69.00%

69.50%

70.00%

70.50%

71.00%

71.50%

72.00%

R1
5%

R2 R3 R1
7%

R2 R3 R1
10%

R2 R3 R1
12%

R2 R3 R1
15%

R2 R3

Branch Code Coverage

Lessons Learned

After finishing the experiments about adjusting percentages, we found that the increase

in code coverage does not mean the increase of number of crashes. Some programs have

high code coverage but did not crash. Also, Some programs have low code coverage but

they crashed.

We observed that when the percentage increases from 5% to 10%, the code coverage

and crashes increase. Moreover, when the percentage increases after 10%, the code

coverage decreases because 5%, 7%, and 10% included the necessary commands and

grammars which show increased code coverage and crashes.

We believe percentages 12% and 15% included fewer critical commands and grammars

that could lead a program to crash; also, they show decreased code coverage and number
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of crashes. We determine the code coverage and crashes decrease when the percentage

gets larger than 10%.

We found that 10% is the best percentage for the tool that can lead to increased

code coverage and crashes. The 10% is the best to include the important commands and

grammars that can help the fuzzer to generate fuzzing files that lead to more crashes and

increase the code coverage.

6.7 Experiments on Fuzzer Updated with Markov Chain Model

The experiments had been conducted to examine the fuzzer after using Markov chain

model. The experiments begin with testing the programs in DARPA CGC dataset. We

used a bash script to loop through each program in the data set. Then, the tool generates

test cases to test a program and waits for any crash or exception. During the testing, we

look for “core dumped” or “Segmentation fault”. In those cases, we know that a bug

has been revealed. We conducted our testing on 235 programs in the dataset. For each

program, the fuzzer run for one hour. Since fuzzing is very random and the results are

usually random, we ran the testing of 235 programs three times.

The machine that had been used for generating fuzzing files and testing has environment:

the CPU is AMD Ryzen Threadripper 2920X 12-Core Processor, memory is 32 GiB,

Ubuntu 18.04.4 LTS 64-bit, and 2 TB disk space.

6.7.1 Testing Results and Observations

We used the same data set for our previous study, which is CB-multios dataset that

has been exported from DARPA CGC DECREE system to Linux system by TrailofBits

team [68]. There are 247 programs in CGC DARPA dataset. However, we discarded

12 programs because of compilation and running issues. Therefore, we performed our
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investigation and tested on 235 programs.

After completing the testing, we found that 73 programs crashed which is 31.06%

of the total programs. Moreover, we found crashes in 7 new programs that were not

discovered by our previous study. The fuzzer with Markov chain model should be run on

top of our regular fuzzer. If we integrate the fuzzer with Markov chain model into our

previous tool, these 7 new crashed programs can be found in addition to the 82 crash set

found by our previous tool and would become 89 crashed programs. The list of crashed

programs is shown in Table 6.7.

Table 6.7: Crashed Programs by Markov Chain Model

Program name
Generation

Time (m:s)

# of

Sample

input files

# of

Fuzzing

files

Time

until

crash

(m:s)

ASCII Content Server 0:16 1000 5000 1:43

Azurad 0:11 1000 5395 58:41

Bloomy Sunday 0:3 1000 5058 0:1

CGC Hangman Game 0:4 1000 5008 26:2

CGC Planet Markup

Language Parser
0:20 1000 5036 18:9

Charter 0:6 1000 5001 16:46

Checkmate 0:4 1000 5001 1:34

CML 0:5 1000 5092 3:5

DFARS Sample Service 0:22 1000 5029 0:5

Diary Parser 0:5 1000 5006 0:3

Diophantine Password Wallet 0:4 1000 5003 1:33

Divelogger2 0:5 1000 5058 0:8

Document Rendering Engine 1:34 1000 5148 0:15

Dungeon Master 0:7 1000 5596 41:13

Eddy 0:11 1000 5000 6:1

electronictrading 0:14 1000 5000 7:11

EternalPass 0:4 1000 5002 0:6

FablesReport 0:14 1000 5000 18:32

Filesystem Command Shell 0:33 1000 5033 6:2

Finicky File Folder 0:12 1000 5029 0:6

Continued on next page
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Program name
Generation

Time (m:s)

# of

Sample

input files

# of

Fuzzing

files

Time

until

crash

(m:s)

FISHYXML 0:4 1000 5001 3:49

Flash File System 0:5 1000 5005 2:9

Flight Routes 0:5 1000 5077 25:11

Game Night 0:4 1000 5070 3:53

Grit 2:50 1000 5162 46:18

HackMan 0:4 1000 5096 0:5

HighFrequencyTradingAlgo 0:12 1000 5000 0:10

Hug Game 0:4 1000 5001 2:5

INSULATR 2:44 1000 5026 46:32

KTY Pretty Printer 0:4 1000 5062 0:23

Lazybox 0:5 1000 5048 1:2

Loud Square Instant

Messaging Protocol LSIMP
0:4 1000 5030 24:43

Matchmaker 0:24 1000 5168 1:10

matrices for sale 0:4 1000 5007 0:6

Monster Game 0:3 1000 5004 45:51

Movie Rental Service 0:6 1000 5012 1:43

Multicast Chat Server 0:45 968 5647 0:54

Multipass3 0:8 1000 5005 49:13

Network Queuing Simulator 0:4 1000 5009 0:7

online job application 0:4 1000 5022 43:56

OTPSim 0:7 1000 5223 0:48

Pac for Edges 0:14 1000 5000 47:26

Palindrome 0:4 1000 5002 0:11

Palindrome2 0:4 1000 5000 0:18

Pipelined 0:4 1000 5006 0:31

pizza ordering system 0:3 1000 5106 14:13

Printer 0:4 1000 5065 0:10

PRU 0:5 1000 5003 0:38

PTaaS 0:16 1000 5007 0:11

Query Calculator 0:5 1000 5139 0:5

Recipe and Pantry Manager 0:5 1000 5018 4:11

Recipe Database 2:9 1000 5201 19:11

Rejistar 0:17 1000 5000 2:4

Continued on next page
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Program name
Generation

Time (m:s)

# of

Sample

input files

# of

Fuzzing

files

Time

until

crash

(m:s)

REMATCH 3–Address Resol-

ution Service–SQL Slammer
0:4 1000 5004 0:23

REMATCH 4–CGCRPC Ser-

ver–MS08-067
0:8 1000 5004 51:12

REMATCH 5–File Explorer–

LNK Bug
0:4 1000 5006 0:28

REMATCH 6–Secure Server–

Heartbleed
0:4 1000 5001 0:2

RRPN 0:10 1000 5000 0:9

Sample Shipgame 0:4 1000 5065 0:14

SCUBA Dive Logging 0:5 1000 5014 4:12

Secure Compression 0:3 1000 5079 15:1

simple integer calculator 0:11 1000 5003 7:21

stream vm 0:20 1000 5042 0:32

String Storage and Retrieval 0:12 1000 5032 57:11

TAINTEDLOVE 0:7 1000 5000 0:5

Tennis Ball Motion

Calculator
0:3 1000 5008 4:41

TVS 0:49 1000 5954 0:49

university enrollment 0:4 1000 5009 8:17

Vector Graphics 2 0:7 1000 5001 7:39

Vector Graphics Format 0:7 1000 5000 0:5

virtual pet 0:6 1000 5009 46:12

Water Treatment

Facility Simulator
0:4 1000 5057 53:23

WhackJack 0:3 1000 5011 18:53

After finishing the experiments, we believe that Markov chain model helped the tool

to try different paths or locations to trigger a possible vulnerability. Moreover, the tool

with Markov chain model can get new fuzzing files that can be better than previous tool

because with using sample input files to generate fuzzing files can not help the fuzzer

to try other paths or locations but in the tool using Markov chain can have different
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command order to try fuzzing the target program. The differences between previous tool

and the tool using Markov chain is the previous tool uses and modifies sample input files

to generate fuzzing files; however, the tool using Markov chain can learn and analyze the

sample input files and calculate the probabilities to help the tool generate new fuzzing

files. Moreover, the number of generated fuzzing files with the fuzzer using Markov chain

is fewer than the number of generated fuzzing files with our previous tool and can find

crashed programs faster than previous tool because most of crashed programs can be

found in early first or second round but the previous tool can find most crashes after

third round.
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Chapter 7: Conclusion and Future Work

7.1 Conclusion

Software testing is one of the important steps in software development that makes sure

that an application or software is almost free of bugs and vulnerabilities. Fuzzing is one

type of software testing. It is an automated technique in testing a program that generates

malformed user inputs and inserts them to a program under testing and monitoring for

abnormal behavior. Some programmers may overlook or forget about a vulnerability in a

software that can cause a software failure.

The research work presented in this dissertation focuses on analyzing sample input

files to extract grammars (commands and parameters) and using the extracted grammars

to generate fuzzing files. Fuzzing techniques are: 1) modifying the sample input file line

by line, and after a line is modified a new fuzzing file is generated; 2) using different

kinds of ways, strings (letters, numbers, mix of letters and numbers, etc.) and different

lengths to create a fuzzing string; 3) changing the numbers in the input to “[0-9]” to be

substituted with random number and length. Then, the tool uses the fuzzing input files

to test programs to trigger or reveal bugs. Moreover, Markov chain model was used to

learn the commands order and probability to support generating new fuzzing files without

modifying the sample input files. It is used to generate completely new fuzzing files in

addition to the ones generated by making modifications on the sample input files. These

new fuzzing files can be inserted to the programs to discover bugs or vulnerabilities in

them.

The main contributions of this dissertation are:

• Reviewing grammar-based fuzzing studies and publishing a paper for it.

• Analyzing sample input files to extract grammars from them.
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• Using the extracted grammars from sample input files and generating fuzzing input

files.

• Using Markov chain to learn the commands order on top of the tool and generating

new fuzzing input files without modifying the sample input files. By learning the

order and probability of the commands from sample input files, the new fuzzer can

generate fuzzing input files based on that information and the extracted grammar.

Also, the new fuzzer goes deeper in the program and thus may reveal more bugs

and vulnerabilities.

• Testing and experiments had been conducted and the results are documented in

this dissertation.

Our regular tool is able to get grammars form many different types of input file

formats such as web browser, photo analyzer, board game, etc. However, other studies

in the related work are focused on using a provided grammar for certain types of input

formats such as GramFuzz [22] and Learn&Fuzz [54]. Moreover, our tool can learn

grammars from sample input files to generate fuzzing input files. However, other studies

in the related work are using manually provided grammars to the fuzzing tool such as

Skyfire [19]. Moreover, our tool showed that it is faster in triggering vulnerabilities in the

tested program than others. By using sample input files during testing, AFL, AFLFast,

FairFuzz, and MOPT are not able to find more crashes than our tool because they are

not grammar-based and it is difficult for them to get the correct file input structure

to generate fuzzing inputs that can help them to trigger the vulnerabilities in different

programs. Grammar-based fuzzing supports to get the correct format for a program and

uses it to generate fuzzing inputs that leads to possibly crash a program. The issue with

our regular tool is when using the sample input file only, it cannot guide the fuzzer to try
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other locations or paths. Some sample input files are large, so when the tool generates

fuzzing files, it generates larger number of fuzzing files and takes time to test them all.

Our tool using Markov chain model uses the extracted grammars, learns command

order and probabilities from sample input files to generate new fuzzing files. The tool can

use the same techniques from previous tool to generate fuzzing files. The tool is able to

obtain new fuzzing files that can try other locations or paths in a hope of triggering a

vulnerability in a target program. The generated fuzzing files can be run in addition to

the files generated by our regular fuzzer, so that this is a higher possibility to cause a

crash in the program.

The results showed how the performance of our fuzzer. Our regular fuzzer crashed

82 programs. Moreover, we measured the code coverage of our tool, which showed that

our tool perform better than sample input files code coverage. Lines code coverage is

approximately in average 65% of all tested programs. Also, branch code coverage is about

in average of 71%. After we used Markov chain on top of our regular tool, the new fuzzer

can crash additional programs. It crashed 7 new programs that were not discovered by

our previous tool. If we assume that our new tool was built into the previous one the

total crashed will be 89 programs.

7.2 Future Work

While generating effective fuzzing files is still challenging, there is much work to be

done. In this dissertation, since the tool used large number of sample input files to

generate large amount fuzzing files, the tool should have a way to generate large number

of fuzzing files from fewer number of sample input files. In addition, in using Markov

chain, there are “START” and “FINAL” mark patterns to indicate the start and the end

of commands extracted from sample input files, so if a program has “START” or “FINAL”
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as commands, the tool should have other alternatives for these patterns. Moreover, one

of the future work could involve using the code coverage feedback information to generate

fuzzing inputs for other paths that were not visited. So, the fuzzer can have better code

coverage which increase the chance of triggering the vulnerabilities in the target program.

Another future work could be testing the fuzzer with other real world applications or

dataset to evaluate and improve it. This can be done by looking for other dataset different

from CGC DARPA dataset. Moreover, a future work could be running the integration of

our tool with Markov chain to get better results. Therefore, after the experiment, the

performance of the fuzzer using Markov chain model can be evaluated. Also, testing

the fuzzer with Markov chain for 24 hours to see its performance in case of number of

crashes. In addition, testing fuzzer with Markov chain model code coverage information

and compare it with our previous tool’s code coverage. A future work for the fuzzer

using Markov chain model is using code coverage information to change the paths that

is already found a crash to try other paths to reduce the redundancy. Therefore, the

fuzzer can exclude the redundant fuzzing inputs and select other fuzzing inputs that can

exercise other locations. Also, the regular fuzzer can employ a machine learning algorithm

to use the extracted grammar to generate fuzzing inputs by knowing that each fuzzing

input can be different than the others and trying other paths or locations. This can be

accomplished by storing the already visited locations and create a queue for generating

unique fuzzing inputs. After that, the fuzzer can use them to try and exercise new paths.
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A. Abbasi, M. Schweighauser, S. Schinzel, S. Schumilo et al., “GRIMOIRE:

Synthesizing structure while fuzzing,” in 28th USENIX Security Symposium (USENIX

Security 19), 2019, pp. 1985–2002.

[21] P. Fuzzer, “Discover unknown vulnerabilities,” Peach, Peach Fuzzer.[Online].

Available: http://www. peachfuzzer. com/. Accessed on: Jul, vol. 13, 2016.

[22] T. Guo, P. Zhang, X. Wang, and Q. Wei, “Gramfuzz: Fuzzing testing of web browsers

based on grammar analysis and structural mutation,” in Informatics and Applications

(ICIA), 2013 Second International Conference on. IEEE, 2013, pp. 212–215.

[23] S. Veggalam, S. Rawat, I. Haller, and H. Bos, “Ifuzzer: An evolutionary interpreter

fuzzer using genetic programming,” in European Symposium on Research in Computer

Security. Springer, 2016, pp. 581–601.

[24] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and D. Teuchert,

“Nautilus: Fishing for deep bugs with grammars.” in NDSS, 2019.

[25] Y. Koroglu and F. Wotawa, “Fully automated compiler testing of a reasoning engine

via mutated grammar fuzzing,” in IEEE/ACM 14th International Workshop on

Automation of Software Test (AST). IEEE, 2019, pp. 28–34.

[26] P. Amini and A. Portnoy, “Sulley: Pure python fully automated and unattended

fuzzing framework,” May, 2013.



121

[27] P. Godefroid, “Fuzzing: hack, art, and science,” Communications of the ACM, vol. 63,

no. 2, pp. 70–76, 2020.

[28] H. Al Salem and J. Song, “A review on grammar-based fuzzing techniques,”

International Journal of Computer Science & Security (IJCSS), vol. 13, no. 3,

p. 114, 2019.

[29] ——, “Using grammar extracted from sample inputs to generate effective fuzzing

files,” International Journal of Computer Science & Security (IJCSS), vol. 15, no. 5,

2021.

[30] ——, “Grammar-based fuzzing tool using markov chain model to generate new

fuzzing inputs,” in 2021 International Conference on Computational Science and

Computational Intelligence (CSCI), 2021.

[31] W. J. Levelt, An introduction to the theory of formal languages and automata. John

Benjamins Publishing, 2008.

[32] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the art,” IEEE

Transactions on Reliability, vol. 67, no. 3, pp. 1199–1218, 2018.

[33] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Traon, “Zest: Validity

fuzzing and parametric generators for effective random testing,” arXiv preprint

arXiv:1812.00078, 2018.

[34] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: fuzzing by program

transformation,” in 2018 IEEE Symposium on Security and Privacy (SP). IEEE,

2018, pp. 697–710.



122

[35] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl: Path sensitive

fuzzing,” in IEEE Symposium on Security and Privacy (SP). IEEE, 2018, pp.

679–696.

[36] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A survey of

symbolic execution techniques,” vol. 51, no. 3, May 2018.

[37] T. Avgerinos, D. Brumley, J. Davis, R. Goulden, T. Nighswander, A. Rebert, and

N. Williamson, “The mayhem cyber reasoning system,” IEEE Security & Privacy,

vol. 16, no. 2, pp. 52–60, 2018.

[38] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,

C. Kruegel, and G. Vigna, “Driller: Augmenting fuzzing through selective symbolic

execution.” in NDSS, vol. 16, 2016, pp. 1–16.

[39] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, “Exe:

automatically generating inputs of death,” ACM Transactions on Information and

System Security (TISSEC), vol. 12, no. 2, pp. 1–38, 2008.

[40] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and automatic generation

of high-coverage tests for complex systems programs.” in OSDI, vol. 8, 2008, pp.

209–224.

[41] J. Newsome and D. Song, “Dynamic taint analysis: Automatic detection, analysis,

and signature generation of exploit attacks on commodity software,” in In Proceedings

of the 12th Network and Distributed Systems Security Symposium. Citeseer, 2005.



123

[42] G. Liang, L. Liao, X. Xu, J. Du, G. Li, and H. Zhao, “Effective fuzzing based on

dynamic taint analysis,” in 2013 Ninth International Conference on Computational

Intelligence and Security. IEEE, 2013, pp. 615–619.

[43] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint analysis framework,”

in Proceedings of the 2007 international symposium on Software testing and analysis,

2007, pp. 196–206.

[44] J. Cai, S. Yang, J. Men, and J. He, “Automatic software vulnerability detection

based on guided deep fuzzing,” in IEEE 5th International Conference on Software

Engineering and Service Science. IEEE, 2014, pp. 231–234.

[45] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox fuzzing,” in

IEEE 31st International Conference on Software Engineering. IEEE, 2009, pp.

474–484.

[46] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A checksum-aware directed

fuzzing tool for automatic software vulnerability detection,” in 2010 IEEE Symposium

on Security and Privacy. IEEE, 2010, pp. 497–512.

[47] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing for overflows: A

guided fuzzer to find buffer boundary violations,” in Presented as part of the 22nd

USENIX Security Symposium (USENIX Security 13), 2013, pp. 49–64.

[48] J. Ruderman, “Introducing Jsfunfuzz,” [Online]. Available: http://www.squarefree.

com/2007/08/02/introducing-jsfunfuzz, 2007.

[49] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments.” in USENIX

Security Symposium, 2012, pp. 445–458.



124

[50] S. Y. Kim, S. Cha, and D.-H. Bae, “Automatic and lightweight grammar generation

for fuzz testing,” Computers & Security, vol. 36, pp. 1–11, 2013.

[51] S. Sargsyan, S. Kurmangaleev, M. Mehrabyan, M. Mishechkin, T. Ghukasyan,

and S. Asryan, “Grammar-based fuzzing,” in 2018 Ivannikov Memorial Workshop

(IVMEM). IEEE, 2018, pp. 32–35.

[52] D. Yang, Y. Zhang, and Q. Liu, “Blendfuzz: A model-based framework for fuzz

testing programs with grammatical inputs,” in IEEE 11th International Conference

on Trust, Security and Privacy in Computing and Communications. IEEE, 2012,

pp. 1070–1076.

[53] G. Grieco, M. Ceresa, and P. Buiras, “Quickfuzz: an automatic random fuzzer for

common file formats,” in Proceedings of the 9th International Symposium on Haskell.

ACM, 2016, pp. 13–20.

[54] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning for input

fuzzing,” in Proceedings of the 32nd IEEE/ACM International Conference on

Automated Software Engineering. IEEE Press, 2017, pp. 50–59.

[55] Z. Hu, J. Shi, Y. Huang, J. Xiong, and X. Bu, “Ganfuzz: a gan-based industrial

network protocol fuzzing framework,” in Proceedings of the 15th ACM International

Conference on Computing Frontiers. ACM, 2018, pp. 138–145.
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Appendix A: Appendix

Figure A.1: Line Coverage of the Programs after Adjusting the Percentage to 5%.
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Figure A.2: Branch Coverage of the Programs after Adjusting the Percentage to 5%.
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Figure A.3: Line Coverage of the Programs after Adjusting the Percentage to 7%.
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Figure A.4: Branch Coverage of the Programs after Adjusting the Percentage to 7%.
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Figure A.5: Line Coverage of the Programs after Adjusting the Percentage to 10%.
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Figure A.6: Branch Coverage of the Programs after Adjusting the Percentage to 10%.
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Figure A.7: Line Coverage of the Programs after Adjusting the Percentage to 12%.
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Figure A.8: Branch Coverage of the Programs after Adjusting the Percentage to 12%.
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Figure A.9: Line Coverage of the Programs after Adjusting the Percentage to 15%.
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Figure A.10: Branch Coverage of the Programs after Adjusting the Percentage to 15%.
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