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Abstract

The prediction of human movement when people gather in crowds for reasons has

become very important for public safety and the protection of property. From the early

1990s different techniques have been studied to predict the next steps of individuals

in crowds and the field of study has increased in rapidly as a result. Our research has

developed along three lines of inquiry. First, we developed the use of a combination

of genetic algorithms and neural networks (GA-NN) to predict individuals’ future

steps in crowded areas. We applied a method, using a cone of vision of individuals

to specify the location of the nearest people, in order to train the neural networks to

accurately predict the decisions the individual agents would make based on their

nearest neighbors. We demonstrated that using this combination of genetic algo-

rithms and neural networks is effective at predicting movement in crowds. We also

demonstrated that different physical layouts of areas and the difference in crowd types

give different results when compared across experiments. Our crowd types included

a structured crowd area and tan unstructured crowd area. We also introduced a

new metric, the cumulative distance error (CDE) that is very effective in measuring

prediction accuracy and can be used to improve experimentation in the field of human

movement prediction.

Second, we tested the use of the long short-term memory (LSTM) using the similar

methods that were used for the cone of vision calculations. It is known that recurrent

neural networks (RNNs) and its sub-type LSTMs make use of memory and the past

for training; we took the directions of the agent’s recent past steps, and the directions

of other pedestrians in the field of view and predicted a sequence of future directions

by taking the average speed as a constant speed in the future. We used three different

layout styles, including structured crowds, unstructured crowds, and merging paths.

We also used two different behaviors: the flocking model (FM) and the social force

model (SFM). We compared our results with the LSTM method with the method

described above that used the combination of genetic algorithms and neural networks.
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The results show that the LSTM outperforms the combination of genetic algorithms

and neural networks in both simulations, and for every dataset.

In the third line of inquiry, we expanded our work to include more scenarios, more

types of crowds, and a longer distance for prediction. For example, intersections,

waypoints, and more complicated unstructured crowded areas have been included in

this line of inquiry. Additionally, we extended the predictions from five time-steps up

to fifty time-steps in certain situations. The results show that we should differentiate

between crowd types in predictions because the results depend on the crowd types,

and layout styles.
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chapter 1

Introduction

The long short-term memory (LSTM) is a special kind of the popular recurrent neural

network (RNN). An RNN accounts for the disadvantages that the ordinary neural

networks have. Because people normally begin to think about a problem or an issue

based on something that already exists, the RNN algorithm was developed from the

idea of remembering the past when deciding what actions to take in the future. An

RNN uses internal states to handle a series of past values of a neural network’s

variables as inputs. Gradient exploding and gradient vanishing are the problems

for the RNN function. These problems were discovered by computer scientists Sepp

Hochreiter in 1991, and by Yoshua Bengio in 1994. The information in traditional

neural networks goes from the input neurons to the outputs, and in backpropogation

training, it is transmitted back to rescale the weights after the calculating the error. In

a RNN the situation is different, because the information from the previous timesteps

is input for the next timestep, the error can be figured out at each time-step. The error

is calculated as the difference between the outputs and the ground truth. At this point,

while back propagating to rescale the weights at each time-step, the outputs need to be

multiplied by the recurrent learning weight, and the same thing is done at each time-

step; the result will diminish very quickly when you multiply these outcomes by a

number much less than one. Contrasting, if the outcomes are multiplied by a number

greater than one, the results will explode, and an exploding gradients problem will

occur. To find a solution for vanishing and exploding gradients, Sepp Hochreiter and

Jürgen Schmidhuber suggested the use of LSTMs.

In the field of genetic algorithms and neural networks, the early papers in this area

were by Montana et al. (1989) and Miller et al. (1989), who published their papers in

1989. The idea was to train the neural networks by using genetic algorithms.
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The social force model (SFM) for pedestrian movement was suggested by Helbing

and Molnar (1995); the idea was to describe pedestrians’ movements and how they

subordinate to social forces. The three pillars for the social force model can be

summarized as follows: acceleration to the target, keeping distance between the

pedestrian and constant-dynamic obstacles, and the effect of catchy places.

The flocking model (FM) is another model for describing the behavior of multiple

agents in motion. This model was developed by Reynolds (1987). The idea behind

the flocking model was that the agents move together as a group and try to avoid any

collisions.

The field of prediction has grown with the use of machine learning approaches.

Handwriting, text-to-speech, vehicle motion, and pedestrians’ trajectories are just a

few examples where promising results have been obtained by using machine learning.

Predicting humans’ movements has become a substantial matter for public safety, and

a more paramount issue for the authorities and organizers who deal specifically with

crowded areas. The existence of robots among people is an additional case that has

raised the importance of predicting humans’ movements. Predicting humans’ motion

in highly dense crowds, such as at the Hajj in Saudi Arabia, or kumbh Mela in India,

is beneficial for organizers, for example, to position barriers to manage crowd motion

or to avoid barriers to smooth movement.

Tracing people in very dense crowds is a complicated mission. Beginning in 2030,

Saudi Arabian authorities plan to require every person who participates in the Hajj to

have a watch or wristband tracker Alarabiya (2018). This action will help obtain the

actual locations of individuals in such a dense crowd.

In this research, we concentrated on the prediction of individuals within crowds.

This subject is important to us because dense crowds can lead to a risk of deaths at

huge events, as happened and was reported by the Ministry of Hajj in Saudi Arabia

wikipedia (2019). The styles of motion in our simulations were inspired from the

real-world crowds. Xue et al. (2017) mentioned how the layout of places can play

a significant role in the predictions, so we created many designs of areas and more

than one behavior of walking agents. The difference in planning areas shows how

the prediction is different from condition to condition. We varied our planning or
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scenarios to include intersection, structured crowded area, more than one scenario for

unstructured crowded areas, a roadway that converged into one lane, and waypoints

where people stop for a while to do something and then continue on their way.

Crowd scenarios come in many styles, but the main categories in this field are

structured crowds, and unstructured crowds. In structured crowded areas people

usually go in one direction and they have one goal. In unstructured crowded areas,

people move in more than one direction and have many goals.

1 .1 preliminary research background

In this section, we concentrate on some problems that have been mentioned in the

past literature for pedestrian prediction. Xue et al. (2017) researched how the area

design could have an impact on pedestrian prediction. Shirazi and Morris (2015)

mentioned the influence of making a decision when the agent is alone or with a group,

and in proximity to cars. Ridel et al. (2018) talked about some problems in existing

datasets, such as pre-directed agents, and the limitation of the number of collected

datasets. Schmidt and Faerber (2009) explored the sudden stops of individuals, and

the variations of speed based on age and gender. A longer section of literature review

and background can be found in Chapter 2.

1 .2 research motivation and objective

Saudi Arabia, represented by the Ministry of Hajj, intends to require every person

(Hajji) who is practicing the Hajj to wear a watch or wristband starting in 2030, which

in turn means that every Hajji will be tracked by locations during the days of the Hajj.

The news about the watch and wristband motivated us to work on crowd prediction,

since tracking people is a difficult task in dense crowds. Also, a lack of the application

of machine learning methods that deal with longer times of prediction stimulated me

to work in this field to predict longer times than existing experiments; most prediction

research has focused on predicting a pedestrian’s movements only a few seconds

ahead. Longer predictions can increase the objectives that benefit prediction, such as
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planning to set up barriers or avoiding them. Many crowd disasters, resulting from

disorganization, happened during the Hajj between 1992 and 2015, and left a large

number of people dead. These accidents happened not from bad intentions, but only

because of disorganization and chaos, and this encouraged me us to dig into this field

of crowd management. In this research, we try to answer these four questions:

• Can we predict human movements in a crowd using NNs trained with GAs?

• Do NNs and GAs make better predictions than the LSTM for human movements in

a structured crowd?

• Do NNs and GAs make better predictions than LSTM for human movements in an

unstructured crowd?

• Should we differentiate between crowd types in predictions because the results of

the structured crowd and the unstructured crowd are different?

1 .3 significance and contribution

Obtaining data has become more important in many problem domains, because im-

provements in technology has resulted in the use of data in almost every aspect of

our lives. One of these domains is using location data for people walking in crowds,

which was difficult in the past, but will be easier in the future.

Simulating crowd movements and forecasting their motion provide a method to

improve the design of spaces and the standards for safety. Designing environments

for crowds by applying existing models that have specific rules for behaviors is prob-

lematic. Incorporating the cone of vision of pedestrians could possibly be the most

important means for deciphering crowd motion, especially for structured crowded

areas. Our work has proved that the combination of neural networks and genetic

algorithms, using the nearest people in the cone of vision as the influence on decision-

making, is effective in predicting pedestrians’ movements. Another contribution of



5

our research is that we used the LSTM to study the history for each agent in his cone

of vision. We have also added a new measurement tool to this field, the cumulative

distance error (CDE); this tool provides a new metric of accuracy in percentages

regardless of metric lengths and makes it easier to compare longer term prediction

techniques.

1 .4 scope of the research

The research was constrained to the following:

• It only dealt with people’s environment and excluded other obstacles, such as cars;

• It focused on crowded areas;

• It used two models of behaviors for its experiments, the Social Forces Model and

the Flocking Model; and,

• It did not concentrate on normal or uncrowded areas.

1 .5 author ’s related publications

1. Alajlan, A., Edris, A., Heckendorn, R. B. and Soule, T., "Using Neural Networks

and Algorithms for Predicting Human Movement in Crowds," In Advances in Artifi-

cial Intelligence and Applied Cognitive Computing, pp. 353-368, Springer, 2021.

2. Alajlan, A., Edris, A., Sheldon, F. and Soule, T., "Machine Learning for Dense

Crowd Direction Prediction Using Long Short-Term Memory," In 2020 International

Conference on Computational Science and Computational Intelligence, pp. 686-689,

IEEE, 2020, December.

3. Alajlan, A., Edris, A., and Soule, T., “Predicting Human Movements Using

Machine Learning”. The 23rd International Conference on Artificial Intelligence,

ICAI’21: July 26-29, 2021, USA.

4. Edris, A., Alajlan, A., Sheldon, F., Soule, T. and Heckendorn, R., "An Alert

System: Using Fuzzy Logic for Controlling Crowd Movement by Detecting Critical
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Density Spots," In 2020 International Conference on Computational Science and Com-

putational Intelligence, pp. 633-636, IEEE, 2020, December.

5. Edris, A., Alajlan, A. and Soule, T., "A Contribution to Crowd Control by

Detecting Critica Density Spots" 2021 International Conference on Computational

Science and Computational Intelligence, ICAI’21: July 26-29, 2021, USA.

1 .6 dissertation organization

The dissertation is organized as follows: Chapter 2 presents the literature review of the

research; Chapter 3 presents how the neural network and the genetic algorithm (NN-

GA) can be effective in pedestrians’ trajectory prediction; Chapter 4 introduces a use

of long short-term memory (LSTM) in the cone of vision method; Chapter 5 presents

a comparison of results between NN-GA and LSTM in more than one scenario and

more than one model; and, Chapter 6 presents the results of the comparison between

the NN-GA and the LSTM in a variety of scenarios and with more than one behavior.

The last chapter of this dissertation, chapter 7, includes a summary of implementation

specifics, future works for predicting human movements in dense crowds, and our

conclusions and future work.
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chapter 2

Background and Related Work
1

2 .1 summary

The growth of the population in the world has created crowds that require attentive

handling. Crowded areas always create difficulties for authorities and organizers

regarding management. Crowd management needs to be approached with great ac-

curacy. Predicting crowd motion is one of the pillars in crowd management; it permits

a semi-real visualization for organizers of how the crowd moves. The importance of

prediction of individuals’ next locations could also appear in numerous sections in our

life, for example mobile robots amidst pedestrians. Hence many studies and models

of human movement have been published in order to comprehend people’s behaviors

while walking. Machine learning is one of the tools that has been employed in this

field to improve the predictions of humans’ movements. Specifically, the Recurrent

Neural Network (RNN) and the sub-type of Long Short-Term Memory (LSTM) have

recently caught researchers’ attention for the prediction of human trajectories, because

of their success of dealing with sequential data in other fields. In this paper, we

review the large number of research papers that use LSTMs in their studies to predict

pedestrians’ trajectories.

2 .2 introduction

Human action is usually for some purpose. An example of using purposeful common

sense would be moving away from a person or an object to avoid a collision or moving

towards a goal. Crowd management requires a contribution from more than one

sector to help a crowd to move smoothly. These sectors can include health concerns

(e.g. allowing pedestrians to reach water or emergency medical personnel to reach

1This chapter was submitted in an international journal .
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people in need), planning, and management. The future existence of robots among

crowds will require greater accuracy in predicting human movement. Health matters

have been one of the most concerning issues for authorities and the World Health

Organization (WHO), and after COVID-19, the need for more organized crowds has

become even more important. Hajj and Kumbh Mela are two of the greatest gather-

ings in the world that deal with a very large number of people in small geographic

areas. The Hajj is a ritual in the Islamic religion that every Muslim must perform

at least once in his or her lifetime. In Hinduism, Kumbh Mela is considered as

an enormously important religious celebration that takes place four times over the

course of twelve years at four sacred rivers. For the Hajj Saudi Arabia is planning

to give every pilgrim a tracking bracelet by 2030, which is a promising technology

that will track pilgrims in the most crowded areas. Most datasets struggle with

the limitation that they are confined to a specific number of people. These types

of technologies will accelerate the success of obtaining more datasets from one of the

most crowded locations in the world. Crowd areas and the scenarios within crowds

can be categorized into more than one type: the structured crowd, in which people

move in one direction and aim at one target; the unstructured crowd, in which people

move in more than one direction and aim at many targets Rodriguez et al. (2009);

merged paths, in which pedestrians in structured crowded areas come from more

than one path, and merge into one route; and, intersections, in which pedestrians

scramble into intersections. Additional scenarios exist, such as stopping points (water

fountains, restrooms, pilgrimage points, etc.) in the structured/unstructured crowds.

With the increase of applications that used location-based services (LBS), the pre-

diction for next locations became important and much more data will become avail-

able Sabarish et al. (2015). This feature makes it easy for algorithms to play a pivotal

function in the future. Rudenko et al. (2020) raised three substantial questions with

regards to the data for crowd prediction. The first question was about the quality of

the metrics that have been used to measure the accuracy of prediction. The second

question was about whether all approaches to prediction reach similar levels of accu-

racy. The third question was whether the problem of movement prediction has been

resolved or not. Bighashdel and Dubbelman (2019) considered the employment of
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numerous mechanisms in crowd prediction due to the intricacy of agent behaviors.

They pointed out that the effectiveness for algorithms is based on their performance

in the metrics that have been used, with different metrics leading to different apparent

effectiveness. Similarly Rudenko et al. (2020): asked are existing metrics capable of

producing the desired results? Are there extra metrics that should be used? so that

we can distinguish between algorithms, and not only for metrics that have been used

to date.

In the report of the World Health Organization. (2017, December), various factors

were considered as a hazards for crowds, primarily including inappropriate prepa-

ration for medical care and incomplete crowd control. However, the risk factors

for large crowds can be change from year to year; for example, insistence on social

distancing started after COVID-19. To the best of our knowledge, there is currently

no study in the field of pedestrian prediction that assumes the factors of COVID-

19. Chapter 7, Section 7.4 presents some preliminary results for social distancing.

Before the application of machine learning to the prediction of human movements, the

question was: do existing approaches have the ability to capture all the complexities

in human movements Bighashdel and Dubbelman (2019)? Dangerous situations in

structured/unstructured crowded areas could be predicted by some methods, and

these dangerous situations could be avoided by human observation and prediction

of the crowd condition. For example, planning and designing barriers for a crowd

in motion should be studied before they are set up. Various modeled motions and

algorithms have been applied in this field. Physics-based method, movements based

on the target, and the pattern mode approach are three of the most popular modeling

approaches for human movement Rudenko et al. (2020).

Artificial intelligence approaches seek to build a system that can comprehend and

predict people’s behaviors and intentions Kong and Fu (2018). Most of the LSTM

based methods use the past positions of agents and additional information, such

as the environments, or the pedestrians’ targets to try to predict movement. For

our work, we summarize the most recent studies in this domain, and make some

comparisons between approaches.
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In this paper, we have excluded the studies that deal with heterogeneous envi-

ronments, such as environments including pedestrians and vehicles, and we have

focused on the research with environments that treat only pedestrians, or at most

robots among pedestrians. Moreover, our survey concentrates on studies that have

been published in the last four years.

2 .3 predicting human movements

2.3.1 Trajectory Prediction

Predicting the trajectory of pedestrians is essential in diverse applications, includ-

ing robot navigation and autonomous driving. However, predicting trajectories re-

liably requires an understanding of human social behaviors, which are difficult to

express using hand-crafted rules. At the same time, although Long Short Term

Memory (LSTM) networks have shown great potential in learning and predicting

social be- haviors, they often neglect the current intention of neighbors in a crowd

scenario.Accordingly, Zhang et al. (2019) proposed a data-driven state refinement

module for LSTM (SR-LSTM) that leverages neighbors’ current intentions and refines

current states of all participants in the crowd, both iteratively and jointly, through

a messaging mechanism.The researchers also introduced a social-aware information

selection mechanism to support the extraction of the social effect of neighbors. Experi-

ments done using this approach showed excellent outcomes. The proposed algorithm,

SR- LSTM has various advantages and disadvantages. Perhaps the main advantage is

that it considers the current neighbor states for timely inference. By considering the

current states of neighbors, the accuracy of the prediction of the next movement is en-

hanced. Another advantage is that the algorithm adaptively selects useful information

from neighbors based on their locations and motions. Furthermore, this algorithm

offers a large range of parameters, thus eliminating the need for fine adjustments.

On the downside, the proposed algorithm has several weaknesses, including the

failure to remove vanishing gradients completely and the need for extensive resources

and time when training it. Additionally, SR-LSTMs might not be effective in crowd

management settings where developers need to remember information for extended
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periods. Overall, the study recommends the utilization of SR-LSTM when predicting

trajectory. Future studies should attempt to apply this algorithm in practical settings,

such as autonomous driving, to establish its effectiveness and efficiency. The LSTM ar-

chitectures have emerged as important approaches for path prediction. Es- essentially,

anticipating trajectories is essential in computer vision, autonomous systems, and

robotics. Hasan et al. (2018) proposed the use of vislets, which are short sequences of

the pose estimates of the head, to increase the accuracy of trajectory prediction. They

then integrated these vislets into MX-LSTM, which is a novel framework that can

jointly forecast positions and the orientations of heads by leveraging vislets and track-

lets (or short track). MX-LSTM captures the interplay between tracklets and vislets. It

also forecasts future head poses, which is essential as it improves long-term trajectory

prediction, Hasan et al. (2018). By combining attention-based social pooling with head

pose estimates, the algorithm exhibits state-of-the-art forecasting capabilities when

tested on different datasets. One of the major advantages of the algorithm proposed

in this study is that it exhibits exemplary performance in situations when pedestrians

slow down. This situation as been difficult to model in other approaches. Another

advantage is that this algorithm considers head pose estimates, hence significantly

increasing the accuracy of trajectory prediction. The authors emphasize that head

poses influence trajectories, and their inclusion in the algorithm enhances trajectory

prediction. The main weakness in this paper relates to the requirement of extensive

resources during training. Despite this drawback, the authors stress the consideration

of head poses in trajectory prediction. Future studies should explore the utilization

of head poses in other algorithms and situations concerning trajectory prediction to

improve accuracy.

Predicting human trajectory continues to be a major challenge to computer vision

systems. As a result, Manh and Alaghband (2018) developed a forecasting system uti-

lizing information obtained from the scene and the trajectories of human movements

in static crowded scenes. The approach adopted encompassed utilizingscene-LSTM

to capture scene information and pedestrian-movement LSTM to capture movement

trajectories. The researchers superimposed a two-level grid structure and explored

common trajectories happening within each grid cell. They then trained two coupled
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LSTM networks (comprising a pedestrian-movement LSTM and its cor- responding

scene-LSTM) to predict future movements. The authors demonstrated that using

common path information enhanced the accuracy of the prediction. They also de-

signed a scene data filter to enable the selection of the relevant types of informa-

tion relative to the state of the target. Based on the experiments done, the pro-

posed approach minimizes displacement errors significantly as compared to current

LSTM-based methods. A key advantage of the algorithm is that it considers scene

information and demonstrates how this information can be utilized to enhance the

prediction of movement trajectories. Another advantage is that the method reduces

displacement errors, which are characteristic of LSTM-based methods. However, the

algorithm requires a lot of time and resources to train and utilize because it is based

on the LSTM. Nevertheless, the study demonstrates how scene information, combined

with pedestrian movement, can improve trajectory prediction. Future studies ought

to explore how to integrate the social model into the scene model to improve the

accuracy of the prediction. It would also be important to examine the interactions

of humans with other moving or static objects and how these interactions influence

trajectories

Crowded scenes of human beings are characterized by three critical elements

that inhibit the accurate forecasting of human behavior: interpersonal relationships,

social acceptability, and multi-modality. Modeling the trajectory of human beings is

imperative for applications such as social robots and autonomous driving. To address

these challenges, Gupta et al. (2018) developed a trajectory prediction system that

combined sequence prediction and generative adversarial networks. The result of this

combination was a recurrent sequence-to-sequence model for aggregating informa-

tion, observing the histories of motions, and forecasting future behavior. The authors

trained the model against a recurrent discriminator to predict possible social features.

They also utilized a novel variety loss to enable diverse predictions. According to

the experiments done, this model outperformed existing solutions. One of the key

advantages of the algorithm is that it has a variety-loss capability that enables the

generative network to cover different possible paths. Another advantage is that the

algorithm can learn a global pooling vector. A final advantage relates to the exemplary
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results of the algorithm after evaluations were completed. However, the algorithm

fails to consider static or other moving objects within a crowded space. Nevertheless,

the study suggests the combination of generative adversarial networks and sequence

prediction for modeling human trajectories. Future studies should attempt to consider

other moving objects and static elements within the algorithm.

Xu et al. (2018) have designed a deep-learning framework, Crowd Interaction

Deep Neural Network (CIDNN) to predict future steps for pedestrians by taking into

account the effect of people nearby. They believe the future positions for pedestrians

depend on three things: first, the movement data, such as velocity and acceleration, for

the targeted pedestrian; second, the movement data for all pedestrians in the vicinity;

and third, the distance between this specific pedestrian and other pedestrians. The

CIDNN is built based on three factors: the movement’s history encoder that uses

the LSTM networks; positions for others based on their spatial locations; and, the

future coordinates for pedestrians. They used six datasets in their experimental work,

including New York Grand Central (GC), ETH, UCY, the CUHK Crowd Dataset, and

the subway station dataset. The approach has shown promising results in comparison

with some methods that have been used before.

Social robots and other autonomous systems are dependent on the capability to

accurately model human motion. However, the process of modeling trajectory is chal-

lenging as people move based on their intention and it is almost impossible to know

the destination of the pedestrian. Accordingly, in this article, the authors presented an

interpretable and end-to-end model for predicting human trajectory Dendorfer et al.

(2020). The model adopted an intuitive two-stage process: estimating the goal of the

pedestrian and developing a routing module. The role of the module is to estimate the

possible trajectories that can be followed to reach the estimated goal. The model con-

siders the visual scene context and pedestrian dynamics to estimate the posterior-over-

possible goals. Thereafter, it predicts trajectories using a recurrent neural network.

The overall approach adopted in this study was comprised of three steps: developing

a novel architecture for estimating future goal positions, training the network using

the Gumbel Softmax trick through the stochastic process, and evaluating the approach

using various public benchmarks and qualitative measures. The algorithm utilized
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has various advantages. To start with, the algorithm is goal-conditioned in that it

predicts the final position first and then generates the appropriate trajectory based

on the position. The utilization of the generative adversarial network (GAN) was also

important as GANs often generate data that is like the original position, hence helping

with the trajectory determination. Furthermore, GANs are detailed and can interpret

different versions of the data. As a result, their utilization helps to determine potential

trajectories easily. More importantly, the algorithm attained state-of-the- art results on

various datasets. It also generated multi modal, feasible, and diverse trajectories. On

the downside, a key disadvantage of the algorithm is that it is difficult to train.

The algorithm relies upon the loss function, which is difficult to optimize. In-

deed, another disadvantage is that this algorithm cannot be applied to problems

involving speech and text. Future studies should explore the possibility of improving

forecasting by integrating different factors into the algorithm. For instance, weights

could be assigned to neighbors based on distance. Additionally, the level of comfort

between pedestrians ought to be considered. Human trajectory prediction is an

important area of research due to the vast applications it could enable. In this study,

the authors developed an approach to enhance the accuracy of human trajectory

forecasting by using visualizations of crowded spaces Singhal and Indu (2020). The

idea was to optimize accuracy by learning the entire pipeline and computing values

for numerical stability. The researchers combined semantic and social components

to exploit the local awareness of the surrounding space. Accordingly, the algorithm

that was developed combined the social-LSTM and social elements and the scene-

aware LSTM model and integrated more features to encode interactions in the space

to enhance accuracy Singhal and Indu (2020). In other words, the approach involved

extracting social conventions from observed trajectories and then augmenting them

with semantic information derived from the neighborhood. The algorithm that was

developed had various advantages. To start with, the LSTM model that was utilized al-

lows pedestrians to share their hidden representations. The social pooling mechanism

included in the LSTM merges hidden states in immediate neighborhoods to make

each trajectory aware of its neighborhood. Another important advantage is that the

algorithm considers other factors that influence pedestrian dynamics, such as zebra
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crossings and sidewalks. Therefore, by using a combination of social elements and

scene-aware LSTM, the authors were able to consider human dynamics, neighborhood

semantics, and past observations. Perhaps the most important advantage of the

algorithm is that it produced better results than other state-of-the-art methods. More

importantly, it included an error-calculation system, which significantly reduced er-

rors, hence enhancing the accuracy of the models. The algorithm also has drawbacks:

specifically, the reliance on the LSTMs means that the time required to train the

algorithm is lengthy; and additional memory is needed and the LSTMs are highly

sensitive to random weight initialization.

The study recommends the combination of social and semantic elements to exploit

the local awareness of the surrounding space to increase accuracy. The integration of

additional features was shown as being helpful in improving trajectory prediction.

Concerning the direction of future research, the authors highlighted the need to

explore different datasets with more nuanced dynamics, such as considering the

motion of elements such as cyclists and vehicles to help refine trajectory prediction.

Furthermore, the researchers recommended an in-depth examination of the impact on

trajectory forecasting of semantic segmentation of areas in a neighborhood. Trajectory

predictions are beneficial in smart cities as they can support autonomous driving

and urban scene monitoring. Accordingly, the researchers in this study focused

on the modeling of single trajectories using recurrent neural networks. The main

contribution of the study to the literature is the examination of the effect of the choice

of the output representation on the network performance. Although the study does

not present a new trajectory prediction system, it assesses how the current state- of-

the-art systems encode their output. The researchers showed that the performance of

an LSTM-based neural network improved when estimate residuals, which are relative

displacements or deviations to linear regression, were utilized Ek-Hobak et al. (2020).

Accordingly, the authors concluded that residuals ought to be used instead of absolute

positions if better prediction outcomes are to be realized. The algorithm that was

utilized has various advantages. The first one is that it combined the idea of neural

networks with residual output representations to improve trajectory prediction. The

normal approach involves absolute positioning, which is ineffective Ek-Hobak et al.
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(2020). Another advantage is based on the utilization of the LSTM method since the

LSTM algorithm does not require fine adjustments. On the downside, however, the

researchers did not try to propose a new algorithm for predicting trajectories; they

instead focused on showing how the performance of deep recurrent neural networks

can be improved by using residual positioning. Nevertheless, the overarching recom-

mendation is that neural network-based trajectory forecasting systems ought to utilize

residual output representations to predict trajectories more accurately. Therefore,

future work ought to focus on the use of residual output representations to enhance

accuracy in other systems for predicting trajectories.

More importantly, future research also ought to assess how the idea of residual

output representations can improve predictions in situations where the scene includes

moving objects, such as cars and bicycles.The orientation of the head can give an

idea regarding the trajectory of a person. Accordingly, the researchers in this study

postulated that the head pose and the human trajectory could be jointly modeled. The

authors introduced the MiXing LSTM (MX-LSTM), which encodes the relationship

between peoples’ dynamics and the movement of the head Hasan et al. (2019). The

utilization of the MX-LSTM enables the mixing of tracklet and vislet streams in the

LSTM hidden-state recursion Hasan et al. (2019). The algorithm presented in this

study has the major advantage of integrating head poses into trajectory prediction.

From a social and observational perspective, head poses provide insights concerning

the potential direction that one intends to take. Similarly, the researchers encoded

head poses into vislets to improve motion prediction. Another advantage of the

algorithm is that it allows unconstrained optimization, which enables the inclusion

of other variables, such as the possibility of a person belonging to a social group

within the scene. Furthermore, the algorithm performs exceedingly well when people

slow down and look around before changing direction. However, the algorithm

makes use of LSTMs, which take a longer time and more resources to train. Our

recommendation is that trajectory prediction systems ought to consider head poses to

enhance the accuracy of forecasting. Current approaches largely focus on the position

of the pedestrian and the location of neighbors. However, such approaches fail to

consider other aspects that could improve accuracy, such as head poses. To integrate
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head poses into the forecasting process, the MX-LSTM model ought to be utilized.

Future work should attempt to examine the proposed algorithm using actual head

poses as because this study made use of estimated ones.

Doing so would help determine whether the system can be applied to practical

settings. Within smart buildings, predicting the trajectory of occupants can be useful

to enhance space utilization, crowd management, operations, security, comfort, and

evacuation. In this study, the researchers presented and compared two trajectory

methods. The models were implemented and compared at the same time and location

in a reliable and non-intrusive manner. The idea was to ensure that the conditions

were similar enough to limit confounding variables. The test space that was utilized

was a multi-utility area in a public building with installed three-dimensional cameras

to capture spatial location coordinates from a bird’s-eye view Das et al. (2020). Based

on the information collected, the accuracy of both models for predicting occupant

trajectories was compared. According to the findings, the gated recurrent unit (GRU)

algorithm was found to be more accurate than the LSTM in predicting trajectories Das

et al. (2020). Essentially, the GRU had a lower mean square error (MSE) and mean

absolute error (MAE) than the LSTM, highlighting its high fidelity. This study was

unique as it compared two models rather than presenting one novel algorithm. To

start with, the LSTM eliminates the need for fine adjustments due to the utilization

of a large range of parameters. However, it has a complex architecture, suffers from

the exploding gradient problem, and makes use of time-consuming computations.

Additionally, as the study found, it is less accurate as compared to the GRU. Likewise,

the major advantage of the GRU is that it is more accurate than the LSTM, as shown

in the experiments. In addition, it requires fewer training parameters and, therefore,

needs less memory and exhibits faster processing speeds. However, for large datasets,

the accuracy of the GRU might be lower than that of the LSTM. The overall recommen-

dation of this study is that the GRU is better than the LSTM in predicting occupant

trajectories in a smart building. Indeed, the GRU and the LSTM have emerged as state-

of-the-art methods for capturing long- and short-term dependencies among variables,

which makes them suitable for tracking applications. In addition to possessing the

capacity to capture interactions between occupants in a scene, both models consider
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rich semantic information that characterizes the typical occupant space. To further

research in this area, future research should attempt to enhance the applicability of

the GRU in practical environments by considering other factors that affect human

motion within buildings.

Prediction of human trajectory movements is essential for autonomous and self-

aware robots. Current approaches for predicting human trajectory focus on the effect

of neighbors on a person’s movement; they do not consider the destination of the

person. However, destination plays a vital role in route planning and the general

trajectory of a person. Xue et al. (2017) proposes a two-stage prediction method that

aims at coming up with multiple paths. The paths lead to the same destination, but

each possibility is different. The method proposed by Xue et al. (2017) is referred to as

bi-prediction. Before trajectory forecasting, this method used bi-directional long short-

term memory to classify paths into smaller route subgroups. The field of artificial

intelligence has made significant progress over the years. However, there are some

challenges in the automatic analysis and prediction of human trajectories. Therefore,

the training of machines to foresee human trajectories is an essential concept for

socially aware robots and tracking systems. Methods of trajectory prediction can

be divided into model-based and long short-term memory. However, model-based

methods fail to accurately predict trajectories in crowded scenes because they rely on

energy functions and specific pedestrian settings rather than learning from trajectory

datasets. However, trajectory prediction based on LSTM architecture has attracted

much attention owing to the success of the LSTM in the sequential data processing.

An advantage of this approach is that it utilizes both the past and the future contexts

in data sequences. Pedestrians choose their routes based on the intended destination

in a real-world application. Trajectory prediction will be more accurate if pedestrian

destinations can be learned through trajectory data. Generating multiple pedestrian

trajectories would be more beneficial for anomaly detection to depict complex multi-

ple pedestrian movement patterns. A disadvantage of this approach is that trajectory

prediction in complex clustered scenes with multiple exits and entry points is difficult.

This is because human movement is influenced by several factors not modeled into

the bi-directional algorithm. Thus, the pedestrian may opt for an entirely different un-
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conventional route despite having multiple paths to a destination. Therefore, it is not

possible to accurately predict pedestrian movement. For a recommended future work,

a two-stage trajectory methodology maybe introduced. LSTM architecture classifies

potential destinations, and thus prediction accuracy is much higher. This prediction

method can yield multiple prediction trajectories with different possibilities. Some

trajectories can have lower probabilities and can be labeled as abnormal trajectories.

Future work includes automatically detecting entry and exit points in crowded scenes

and considering factors influencing human movement

2.3.2 Movement Patterns and Scenario

The complex movement of crowds and the complex environments that crowds often

occupy makes it challenging to forecast the path of pedestrians. At the same time,

forecasting the movement of people in crowded areas is important for many comput-

erized vision-based applications, such as smart video surveillance. Current LSTM-

based methods for predicting pedestrian paths are based on the availability of rich

context data, including information about the background scenes, exits and entrances,

and static obstacles. The requirement of rich context information makes approaches

inappropriate in most applications and limits their generalization. Additionally, the

inclusion of contextual information increases computational overload.

Accordingly, Xue et al. (2019) proposed a joint location-velocity attention LSTM

method for predicting trajectories. The algorithm was developed based on the idea

of enhancing the LSTM network and training the attention mechanism. The resultant

model was used to learn to combine the location and velocity of information optimally

in the prediction process. The algorithm was evaluated on several publicly available

databases and exhibited better results as compared to other prediction approaches.

More importantly, the algorithm showed extensive generalizability. The location-

velocity attention LSTM algorithm has various advantages. The main benefit is that it

does not need additional contextual information. This aspect is particularly important

as it enhances the generalizability of the algorithm. Another advantage is that it

exhibits better performance than other state-of-the-art prediction models on different

datasets. However, since this algorithm is based on the LSTM, it requires a lot of
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resources and time during training. Although the researchers recommend this algo-

rithm for predicting pedestrian trajectories, they recommend further improvements

to enhance prediction accuracy. Accordingly, future studies should focus on utilizing

temporal attention mechanisms to enhance prediction accuracy. Additionally, future

studies ought to assess the algorithm in diverse tasks to improve the process of

tracking people in a high-density crowd.

Path prediction has also received attention due to its potential utilization in various

applications beyond crowd prediction, particularly movement in areas with diverse

objects or movement types, e.g. pedestrians, bicyclists, skateboarders, etc. The con-

ventional approach to prediction considers diverse factors to not only forecast paths

but also eliminate collisions. Scene semantics have emerged as a technique to promote

reliability in prediction in numerous applications. However, these techniques consider

all objects to belong to the same class, but classes of objects differ in terms of aspects

such as distance, area, and speed. It is imperative to consider the path corresponding

to each class of objects to enhance accuracy. Therefore, Minoura et al. (2019) proposed

a model that views the target type as an attribute and considers information regarding

the environment to predict paths based on the individual categories.

The features integrated into the LSTM algorithm include the attribute, past tra-

jectory of the object, and the semantics of the environment. Doing so enabled the

researchers to forecast paths for each target. Based on the experimental results, the

method produced highly accurate predictions. The method proposed has several

advantages. The most essential advantage is that it considers the fact that different

categories of objects exhibit different behaviors in terms of movement. As such, the

prediction’s accuracy is likely to improve if category-specific factors are considered.

Another advantage is that the algorithm considers the semantics of the environment.

Furthermore, the proposed method can be applied to different targets using a unified

framework. On the downside, the method failed to achieve good prediction results

in cases where the objects were bicycles and skateboards. Part of the reason for this

is that there are mini- mal traffic rules governing the utilization of these methods of

transportation. Still, the study recommends considering the semantic environment
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and object attributes when predicting path trajectories. Future studies should encom-

pass enhancing training for cases of rare attribute targets such as bicycles.

The interaction between vehicles and pedestrians should be considered in au-

tonomous driving as it influences safety. As such, predicting pedestrian trajectories

is essential. However, the complex movement patterns of pedestrians in the presence

of vehicles make the process of predicting trajectories difficult. Still, recent research

has identified LSTM as a promising approach to trajectory prediction by perceiving

the problem as an issue of sequence learning. Cheng et al. (2018) conducted a study

in which they enhanced the effectiveness of the LSTM by incorporating a social grid.

The proposed Social-Grid LSTM utilizes the LSTM cell structure by incorporating

a social pooling operation to enable an influence relationship among neighboring

pedestrians. The proposed method was evaluated using two public datasets and

compared to two baseline methods. According to the findings, the proposed method

outperforms the baseline approaches. A key advantage of this algorithm is that

it integrates the human-to-human model. The role of this model is to enable the

consideration of social aspects related to trajectories. Another advantage is that it

adopts a two-dimensional Grid LSTM model, which differs from the conventional

LSTM structure in terms of the parameter transfer mechanism from layer to layer.

However, this algorithm requires extensive resources in training and it is sensitive to

random weight initializations. Nevertheless, the authors recommend the inclusion

of the social grid in trajectory prediction as human-to-human interactions have a

profound impact on people’s movements. Future studies should attempt to integrate

attention mechanisms into the algorithm. Moreover, it is imperative to examine the

performance of the proposed method in practical autonomous driving applications.

Trajectory prediction, while important, continues to be challenging as it has a

multi-modal issue. Multi-modal means that there is the possibility of predicting more

than one specific path in open scenes. Additionally, it entails social interactions

that can influence movement decisions and the presence of structures can inhibit

movement in certain directions. To address these problems, Huynh and Alaghband

(2019) developed a novel forecasting system that combines pedestrian-LSTM with

scene-LSTM to predict pedestrian trajectories in static crowd scenes. The inclusion
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of the scene-LSTM aimed to enable the collection of information relating to the com-

monly utilized paths, thus enhancing the accuracy of forecasting in local areas. The

approach also included integrating scene data filters to choose the most essential

scene information in local areas and combine it with pedestrian-LSTM to enhance the

accuracy of prediction. According to the experimental results, the proposed approach

outperformed similar works and exhibited better accuracy in diverse scenes. The

main advantage of the algorithm is that it considers the typical human movements in

localities within a given scene. This aspect is critical as human beings are likely to

adhere to common movement patterns in each area. Another advantage is that the

algorithm exhibited better results than similar approaches in different scene settings.

However, its main disadvantage is the failure to recognize the importance of the

social aspects influencing trajectories. Still, the authors recommend the integration

of common human movements when predicting trajectories in an area. Future stud-

ies should focus on integrating social information into the scene model to improve

prediction. Additionally, future studies ought to consider the interaction between

humans and other objects and the impact of the interactions on trajectories.

Applications such as robot navigation and autonomous driving depend on the

accurate estimation of pedestrian trajectories for the prevention of collisions. However,

modeling pedestrian trajectories in the presence of autonomous vehicles is challenging

because it is influenced by the movement of other pedestrians, and by the impact of

the autonomous vehicles, as well as by static objects within the scene. To advance

research in this area, Haddad et al. (2019) presented a new spatio-temporal graph-

based LSTM to forecast the trajectory of people in this type of heterogeneous crowded

environments. The proposed approach considers the interaction between people and

dynamic elements (such as autonomous vehicles and robots) as well as static objects.

Experiments done showed that the approach performed better than state-of-the-art

methods utilized in predicting human trajectories. More importantly, the approach

minimized the average and final displacement errors with respect to other methods.

The main advantage of the algorithm is that it operates on the global and local contexts

around the pedestrian during the prediction process. The local aspect is key as people

typically make movement decisions regarding static objects when they are closer to
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them. Another advantage is that the algorithm attains significant qualitative and

quantitative improvements over other methods. However, since the algorithm is based

on LSTM, extensive resources and time are needed to train and utilize it. For future

studies, attempts should be made to apply this algorithm to practical problems.

As noted previously early research in the area of social robot navigation focused on

modeling the movement patterns of human beings. However, the approaches taken

failed to recognize the subtle and complex interactions among humans in crowded

spaces, thus making it difficult to define the path of the robot. Because of the

need to consider these complex interactions, Vemula et al. (2018) developed a novel

trajectory model called social attention, which considers the relative significance of

each pedestrian in a crowd, regardless of proximity. During the evaluation process,

the researchers examined the performance of this model against other state-of-the-

art approaches using two crowd datasets and realized positive outcomes. A key

advantage of their algorithm is that it considers the relative influence of each person

in a crowd on the behavior of other pedestrians. Essentially, everyone, regardless of

their proximity, influences human trajectories, but the extent of the influence differs.

Another advantage is that the algorithm outperforms state-of-the-art methods on two

publicly-available datasets in terms of prediction errors. However, a major weakness is

that the algorithm fails to consider static objects. Nevertheless, the study recommends

incorporating the relative influence of individuals on the movement trajectories of

others. Future studies should extend the model by considering static obstacles within

the scene. Additionally, future research ought to attempt to examine the model in

practical settings by placing a robot, powered by this model, in a human crowd. In

scenarios where social robots and autonomous vehicles occupy the same space as

human beings, the need to forecast long-term future paths becomes essential. Shi et

al. (2021) explored long-term path forecasting problems in crowds. The idea was

to generate future sequence trajectories by utilizing short observations. The authors

observed that current methods rely on modeling social interactions and forecasting

multi-modal features, which is a daunting task as machines cannot consider social

interactions and the uncertainty of features simultaneously. As a result, the authors

presented a model that jointly considers different interacting motion sequences and
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forecasts future multi-modal socially acceptable distributions. The evaluation of this

model demonstrates that it can predict socially acceptable distributions of future paths

effectively in complicated environments. The major advantage of this algorithm is

that it predicts socially acceptable trajectories, which remains a challenging area in

the research. It does so by adopting a new aggregation mechanism that selectively

incorporates the latent states of concurrent movements in a crowded environment by

using a messaging capability. It also includes a loss function to enable the generation

of socially possible future distribution. Another advantage is that the model exhibits

conformity and coherence to social norms. However, the algorithm did not consider

all possible future nodes of an interacting group. Additionally, other moving objects,

such as cars and bicycles, were not considered. Still, the authors recommend the

integration of socially acceptable distributions when predicting future paths. Future

studies should focus on expanding the model to enable it to predict future trajectories

in interacting groups and consider different static and moving objects.

Intelligence surveillance includes classifying objects, tracking, describing behavior,

and detecting motion. Detecting and understanding motion is a critical area as it

helps in predicting future trajectories. To help in developing a system to predict hu-

man trajectories, Peng et al. (2021b) proposed the social-relationship attention LSTM

algorithm (SRA-LSTM). To begin with, the researchers created a social-relationship

decoder to collect information concerning the social relationship between pairs of

pedestrians. Next, they adopted the social-relationship feature and latent movements

to obtain the social relationship of pedestrian pairs. The method was compared with

similar methods using public datasets and better performance was noted. One of the

key advantages of this algorithm is that it models social relationships using the tem-

poral correlation of relative positions, which produced exemplary results. Another

advantage is that the algorithm produced better outcomes compared to similar state-

of-the-art approaches. In addition, the utilization of the social-relationship attention

model enabled the simultaneous consideration of social relationships and the poten-

tial movement interactions on decisions relating to movement. On the downside, the

algorithm failed to accurately predict future trajectories in some scenarios, including

when a person moves towards the wall and stops. Still, the paper recommends the
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utilization of the SRA-LSTM framework to predict human trajectories. Concerning

future studies, it is imperative for scholars to explore how scene-specific information

can be integrated into the model to improve the accuracy of predictions. The human-

scene component was missing in this study, and thus there is the need to examine it

in the future. Furthermore, the proposed method should be examined when utilized

in robot navigation systems.

The utilization of deep learning methods in forecasting human trajectories has

gained prominence in recent years due to the potential applications it promises. How-

ever, current deep-learning LSTM methods often ignore scene layouts and rely ex-

clusively on neighborhood influence in predicting trajectories. This aspect weakens

the accuracy of the trajectory prediction. Accordingly, Xue et al. (2018) developed

a hierarchical LSTM-based network, which considers scene layouts, as well as the

neighborhood influence of pedestrians. The algorithm utilized three LSTMs to capture

information relating to the scene, social setting, and pedestrians, respectively. The

authors selected a neighborhood with a circular shape rather than a rectangular one.

According to the experimental results, this approach produces better outcomes

than other state-of-the-art techniques. The utilization of the circular-shaped neigh-

borhood also enhanced the accuracy of forecasting. The advantages of this algo-

rithm included the consideration of the scene layout and the adoption of a circular

neighborhood. The idea of combining three LSTMs, as well as using scene informa-

tion, contributed to the high-quality prediction outcomes observed during evaluation.

However, the algorithm lacked a temporal attention mechanism, which means that

other factors influencing trajectories were not considered. Additionally, it did not con-

sider the influence of neighbors based on the differences in distances between them.

Overall, the study recommends the use of the SS-LSTM prediction model because it

offers an effective way of integrating scene information in trajectory prediction. Future

studies ought to improve the model by assigning influence weights to neighbors based

on the distance between them and incorporating a temporal attention mechanism to

collect and aggregate other information necessary for predicting trajectories. More-

over, an additional network should be integrated into the model to learn other factors

influencing trajectories, such as comfortable distances
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Deka et al. (2018) focused on the area around each pedestrian, and the pedestrian’s

positions., They, therefore, fed this information to the Structural Recurrent Neural

Network using LSTM. Focusing on the positions and the surrounding environment,

without the velocity, gave a superior result. Two datasets were used: the ETH dataset,

and the ATC dataset.Peng et al. (2021a) suggested a Spatio-temporal Interaction-

aware Recursive Net- work (STIRNet) to forecast various acceptable trajectories of

people in the scene. They used a graph attention network to shape the spatial interac-

tions, which is joined with the encoding as inputs to the LSTM to capture movement

advantage. The LSTM is part of their model architecture to predict human trajec-

tories. Two benchmarks were used in this experiment, ETH, and UCY. Rozenberg

et al. (2021) used asymmetrical bidirectional recurrent neural networksto encode

pedestrians’ paths. The methodology is based on three things: input embedding;

asymmetrical bidirectional recurrent neural network architecture, and the decoder.

The input contains the positions’ coordinates, velocity, and trajectory embeddings.

The asymmetrical bidirectional RRNs have the backward and forward hidden states,

where the future information can be used in the forward pass. The decoder obtains

the predicted locations for each pedestrian. They used the Trajnet++ benchmark that

has various datasets, such as ETH, UCY, WildTrack, L-CAS, and CFF.

The Long Short-Term Memory (LSTM) algorithm is utilized extensively to predict

pedestrian trajectories. Accordingly, the researchers in this study deployed the Grid-

LSTM, which functions over multi-dimensional feature inputs, to model pedestrian

trajectories. Specifically, they proposed a Graph-to-Kernel LSTM (G2K LSTM) that

converts a spatial-temporal graph into the kernel to approximate correlations between

pedestrians Haddad and Lam (2020). The correlations suggest that relationships

among people as individuals tend to maintain close distances when they feel com-

fortable or are evading collisions. In the research, the authors utilized this Grid-LSTM

as an encoder to learn about future neighborhoods and their impacts on pedestrian

movement. Based on the analyses done, the authors established that their model

outperformed other state-of-the-art methods. Exemplary performance was also noted

across different datasets. A major advantage of the proposed algorithm is that it

estimates the neighborhood given the static context and a combination of social cues.
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The authors proposed an adaptive neighborhood based on spatial constraints and

visual locus Haddad and Lam (2020). Another key advantage is that generalization

is possible because the algorithm does not rely on a fixed assumption relating to

specific scenes. The fact that scenes are not defined strictly means that the algorithm

can be utilized in diverse environments. Furthermore, the authors demonstrated

that this algorithm performed better than other state-of-the-art methods. On the

downside, the algorithm requires a lot of time to make predictions. For instance,

it required about four seconds to predict trajectories for a scene comprised of only

twelve pedestrians. Still, the overall recommendation is that the G2K LSTM is accurate

when predicting trajectories because it leverages adaptive neighborhoods. Concerning

future research, the authors highlight the need to generate more realistic perceptions

of the neighborhood’s importance. Additionally, there is a need to minimize network-

component complexity to reduce the time required to process data in forecasting

trajectories

Stationary and mobile elements influence the behavior and mannerisms of a hu-

man being in a crowded setting. Bartoli et al. (2018) propose a context-aware hu-

man trajectory prediction model that considers human-to-human interaction and the

interactions of humans with their surroundings. This model will be context-aware,

thus enabling it to predict human trajectories in various settings, such as malls and

museums. Usually, every pedestrian has an objective they wish to achieve. This

objective may be to reach a particular destination, reach another person, or avoid a

specific obstacle. Therefore, they can adjust their trajectory accordingly to achieve

their objective. Human navigation is a complex process to be understood by robots.

Some past works in this field have predicted targeted human paths by interpreting

how humans interact with the agents in the scene. However, these models are not

very accurate because they may not have prior knowledge of the interaction between

humans and static elements in the scene. These static elements include sidewalks,

trees, and staircases. The context-aware model assumes that human movement is

based on the interactions with static and dynamic elements within the environment.

This work builds upon the social LTSM model and considers human interactions

with others and the space surrounding them. An advantage of this model is that it
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considers the environment in which a person is moving to get to an accurate trajectory

prediction. Static and dynamic elements are first identified. The static elements are

manually defined, including exit and entry points. A disadvantage of this model

is that each agent in the space contributes equally to trajectory prediction. For a

recommended future work, a model that also considers environmental conditions

would be useful because the weather also influences human trajectory.

Amirian et al. (2019) propose the use of the crowd simulation method to imitate the

behavior of pedestrians in a given setting. First, the learning dataset will consist of the

observed trajectories, and then, using generative adversarial networks, the patterns

will be analyzed, and new trajectories will be generated. This approach involves devel-

oping a crowd while still focusing on real-time interactions among various agents. The

simulated crowds exhibit characteristics similar to real crowds, but elements can be

added to the virtual environment for a richer scenario. Simulation of crowds involves

applying artificial intelligence, computer graphics, and psychology, the latter because

humans are considered social beings. To model human behavior, crowd simulation

requires real-world input. Crowd behavior is observed from this input, and the same

behavior is replicated in the virtual crowd. A limitation of this system is that the

simulated crowd cannot exhibit any behavior that is not part of the input. However,

the proposed system overcomes this limitation by enabling the simulation of crowds

while at the same time giving the simulated crowd freedom to alter trajectory when

necessary. In summary, this approach can generate new trajectories based on the

learned input trajectories. These trajectories are then incorporated into the crowd’s

simulations while allowing interactions among the agents. To generate trajectories,

a planner environment is used to model agents. A trajectory is then defined as a

path an agent moves in T seconds. The trajectory also involves consideration of the

agent’s speed. The generative adversarial network (GAN) consists of a generator and

a discriminator. The generator generates new samples while the discriminator decides

whether a sample is authentic or not. The advantage of this model is that elements can

be added to the virtual scene to make the virtual location rich in terms of static and

dynamic agents. This enables the model to come up with more potential trajectories.

However, a disadvantage of this model is that training the model is a complex process.
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It requires real-time input data to generate trajectories, which the model will later use

to create more trajectories. Another disadvantage is that the model does not perform

well in environments where agents must act independently. These limitations will be

looked into to improve the model in future work.

Recently, an increase in robot interactions with humans has been noted. In airports,

for instance, there is a need for robots to help humans make the best decision on

what route to follow to avoid crowds. In universities, there can be a need for robots

to help humans access the different facilities in the institution. The increase in robots

potentially creates collisions with humans and can affect safety in general Hamandi

et al. (2019). This paper explores and explains deep model for target-driven imitation

(deepMoTIon), which is an algorithm that trains robots to mimic human navigation

while in crowds. The advantages of the algorithm is that in all the tests, it reaches

the intended destination. The training set is twisted in different angles to make the

learning challenging to assure there is a well-trained model in the end. The algorithm

has disadvantages as well; it takes a lot of time to learn, which increases the resources

that are used in training. The robot is interested in the reward of getting to the

target instead of concentrating on the learning. Human beings are inconsistent in

their movement, and in some cases, they collide. This can make robots learn the

inconsistency, and their collision with humans could be fatal. Light detection and

ranging (LiDAR) is the method that was used to learn human movement and train

the robots. To increase the accuracy and the natural state of the experiment, an

improvement in the algorithm can be achieved if real images are used. This will

help the algorithm outperform the social force model; the SFM is the only algorithm

that outperforms the deepMoTIon in terms of the number of collisions. Penalizing

the robot heavily for collisions will assist the robot to concentrate on learning rather

than reaching the target.

Xue et al. (2017) suggested a use of bidirectional LSTM with a method called

bi- prediction. This method takes two phases to process its operation. First, it

divides the scene into regions, and then it predicts the regions that the pedestrian

may head toward. Second, it chooses a trained LSTM to predict a path to all possible

destinations. Xue et al. (2017) think the division of regions is an important process
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in the prediction of pedestrians’ trajectories. The advantages of their method are the

use of the bi-directional LSTM for the first time to predict people’s paths, and the

suggestion of more than one prediction for each possible region that the agent may

move to.Alajlan et al. (2021) suggested using the cone of vision for pedestrians that

had been used before Alajlan et al. (2020) in the combination of neural networks and

genetics algorithms (NN-GA) to specify the nearest people in the field of view for

each agent. The tracking of these agents’ several previous locations in the cone of

vision were used as inputs for the LSTM-Directions. They compared the results of

LSTM-Directions with the results of NN-GA using many scenarios, and more than

one behavior of the moving agents.

2.3.3 Factors Inhibiting Accurate Forecasting

Predicting the future trajectories of pedestrians in crowded places is valuable because

it can help in advancing autonomous driving and robot navigation. However, the

creation of effective prediction models remains challenging due to the dynamic nature

of human interactions. Additionally, human motion is characterized by intrinsic

multi-modality. Accordingly, Shi et al. (2020) proposed a spatio-temporal model

to capture the multi-modality of the motion patterns and aggregate information ob-

tained from socially interacting agents. The researchers also introduced a coordinate

transformation to represent the relative motion between people and to enable the

integration of more factors to represent the typical interaction of people. The authors

conducted extensive experiments on the algorithm and established that it can predict

diverse scenarios and that it exhibits excellent performance. One of the main advan-

tages of the proposed algorithm is that it considers spatial social awareness and the

temporal movements of the agents when predicting trajectories. The consideration

of the social awareness and temporal transitions helps to enhance the performance

of the algorithm and increase its applicability to different scenarios. The use of the

coordinate transformation was also important as it ensured that essential information,

such as speed, position, and direction, were considered. However, the algorithm

has the disadvantage of failing to consider past information collected over a long

period. Additionally, the model requires extensive resources and time during training.
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Still, the paper recommends this model due to its exemplary performance. Future

studies should attempt to apply this algorithm to different situations to examine its

generalizability.

The utilization of deep learning methods to predict the behavior of pedestrians has

gained popularity in recent years. Although positive outcomes have been attained,

the use of deep neural networks with the LSTM-Direction is a one-dimensional vector,

which means that the data of the model has to be a one-dimensional vector. Accord-

ingly, spatial information concerning the pedestrian is destroyed. Therefore, Chen et

al. (2020) proposed the utilization of multi-channel tensors to represent information

relating to pedestrians. Additionally, the proposed method encompassed representing

spatio-temporal pedestrian interactions using convolution tensor operations Chen et

al. (2020). The result of this exercise was the creation of an end-to-end fully convo-

lutional LSTM model for encoding and decoding. The model was then trained and

tested based on current LSTM-based methods using publicly-available datasets with

appropriate video sequences. Based on the findings, the proposed method offers a

realistic trajectory-forecasting approach for diverse applications. It also minimizes the

displacement offset error. The algorithm presented by Chen et al. (2020) has several

advantages. It addresses the problem of pedestrian spatial information destroyed in

existing deep neural networks with LSTM approaches. Another advantage is that it

minimizes prediction errors, thus improving accuracy. Furthermore, the experiments

that were done showed that this algorithm performed better than existing methods.

However, the algorithm did not consider the interaction between scene and social

models. Considering the behavior of other objects, whether static or not, is imperative

to improving the prediction of pedestrian trajectories. The study recommends the

utilization of multi-channel tensor data to improve prediction accuracy. Future studies

should examine the interaction between humans and other objects and how this

interaction influences path trajectories. Moreover, the proposed algorithm should

be utilized in practical environments to resolve issues concerning computer vision.

Crowd management also encompasses developing systems that can count the

number of people in a building and discover the places where the occupants are

located. According to Qolomany et al. (2017), smart buildings today utilize sen-
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sor technology and control algorithms to establish the number of occupants in a

building. However, this approach is ineffective due to the limitations associated

with the technology utilized. Consequently, the authors proposed the use of time

series, rather than sensors, to forecast occupants in a location at a given time. The

adopted approach makes use of Wi-Fi datasets and trains LSTM time series models

and auto-regression integrated moving average (ARIMA) models Qolomany et al.

(2017). When applied to a smart-building case scenario, the proposed approach

enabled the prediction of the number of occupants at different time intervals and

access point levels. Concerning the LSTM, the researchers created the models in two

ways. The first method encompassed developing a different model for each time

scale. By contrast, the second approach entailed creating a combined model for three

timescales. The combined approach was more effective because it reduced the com-

putational resources needed while exhibiting good performance. Additionally, the

utilization of the LSTM showed a lower error rate when compared to ARIMA models.

One of the major advantages of the algorithms is that they exhibit better performance

than the conventional sensor technology in counting people. A key aspect of the

models is that they leverage Wi-Fi networks, which are characteristic of the typical

building today. Furthermore, the LSTM combined approach was advantageous as it

reduced the number of neurons needed, hence improving efficiency. However, the

LSTM approach has several weaknesses, including the need for more training data

and additional time required to train and run it. Overall, the researchers recommend

the application of the combined LSTM method to the problem of counting people

within a building. Future studies ought to explore how the combined LSTM method

can be improved and applied in practical settings.

Forecasting human trajectory is one important goal in computer vision. Objects

such as socially-aware robots must possess the capability to map and anticipate the

movement of people to avoid collisions and enhance their safety. The need to forecast

human trajectories is particularly imperative in urban scenarios such as shopping

malls and streets due to the presence of large, dense crowds in these areas. Conse-

quently, Lisotto et al. (2019) proposed an LSTM-based model that considered three

key aspects: the semantics of the environment, human interactions, and past obser-
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vations. The proposed model consisted of several pooling mechanisms for integrat-

ing the three elements, which also defined multiple tensors: semantic, social, and

navigation tensors. The model was evaluated in unstructured environments where

intentional and unintentional factors influenced paths. Based on the findings, the

proposed model exhibited significant performance accuracy in predicting the human

paths. The algorithm has several advantages. One of the main ones is that it considers

social interactions and context information when modeling paths, which increases the

accuracy of prediction. In this study, the researchers included previous information

about the scene as a navigation map, which included information about areas fre-

quently crossed. It also considered scene context by utilizing semantic segmentation,

hence minimizing the potential directions of motion to the possible paths. Another

advantage is that the algorithm performed better than state-of-the-art methods that do

not consider information relating to the context. Furthermore, the proposed algorithm

minimizes errors and predicts movement even when the scene does not have other

people. The main disadvantage of the study is that it fails to evaluate the algorithm

using publicly available datasets. Such datasets are complex; they comprise different

categories of moving objects and, therefore, provide a better standard for assessing

the performance of algorithms. Another weakness is that the algorithm is based

on the LSTM, which requires a lot of time and resources to train and utilize. As a

recommendation, this study emphasizes the consideration of context information and

social interactions when creating models for predicting human trajectories. Future

studies should focus on examining the algorithm against publicly available datasets.

Social interactions, multimodal behavior, and scene context are some of the factors

affecting the accuracy of trajectory prediction. Creating an algorithm that addresses

these challenges is central to the development of effective trajectory prediction sys-

tems. Although current research has addressed these elements to a certain degree, the

aspect of multimodality is under-examined. This being the case, Kosaraju et al. (2019)

presented a graph-based generative adversarial network that predicts trajectories in

a better way by modeling pedestrian social interactions in each scene. In addition,

the algorithm included a recurrent architecture for encoding and decoding, which

was trained to predict the paths of human beings based on the available features.
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Furthermore, the researchers formed a reversible transformation between a scene

and its noise to address the multimodality of trajectory prediction. The experiments

performed showed that the framework outperforms other methods based on the base-

lines utilized. The main advantage of the algorithm is that it can generate multiple

trajectories for every person involved. Additionally, it can generate the trajectories for

each pedestrian in the crowd in a multimodal way. Furthermore, the algorithm can

predict human trajectories more realistically and outperforms other state-of-the-art

mechanisms. Considering the disadvantages, the algorithm did not take into account

other objects within the typical scene. Nevertheless, the study suggests using flexible

graph-attention networks to improve trajectory prediction. Future studies should

attempt to examine the algorithm in practical environments.

Pfeiffer et al. (2018) suggested a model that combines the three important factors

in pedestrian prediction: pedestrian velocity; pedestrians’ static obstacles in the scene;

and information about all pedestrians in and around the targeted pedestrian. Based

on LSTMs, they could predict person-to-person interactions, that the pedestrian could

avoid a static obstacle, and they introduced a new technique, the angular pedestrian

grid (APG) to deal with dynamic obstacles. Yang and Peters (2019b) focused on the

group’s issues. One of the shortcomings in the field of social robotics is assuming

that the members of the collection are constant during generating reasonable paths

for robots. To overcome this limitation, Yang and Peters (2019b) suggested a new

method by using LSTM-based Generative Adversarial Network (GAN) with group

interactivities that combines the agent’s position and his/her head orientation in the

collection in order to generate reasonable paths for approaching a group. The datasets

used were synthetic. App-LSTM is a refurbished LSTM to produce reasonable paths

for approaching a group, and was suggested for use by Yang and Peters (2019a). By

taking into consideration positions and orientation, and using a synthetic dataset, they

designed a group interaction module (GIM). The module’s current state of an agent

that is approaching is repeatedly expurgated to obtain an accurate concentration.

The computation of human trajectory prediction requires the consideration of both

temporal and spatial interactions. However, based on this study, most of today’s

proposed methods fail to consider temporal correlations, especially associations be-
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tween pedestrians in each scene. Accordingly, the authors proposed STGAT (spatial-

temporal graph attention network) to predict pedestrian trajectories along with a

sequence-to-sequence methodology Huang et al. (2019). The algorithm also includes

an LSTM to encode temporal interaction correlations. The authors evaluated this

sys- tem and established that it performed well against other methods using two

publicly available datasets. They also emphasized that the system produced more

“socially”possible pedestrian trajectories. The proposed algorithm has the main ad-

vantage of considering temporal correlations among pedestrians. Indeed, these cor-

relations provide insight concerning the potential movement of the person. Further-

more, the algorithm exhibited better performance than other state-of-the-art methods.

Finally, the algorithm produced “socially-acceptable” predictions of future movement

and can be applied to different scenes. On the other hand, the algorithm is based

on the LSTM and, therefore, requires more time and resources to train. In terms of

recommendations, the authors emphasized the utilization of the STGAT for predicting

future human movement in crowded spaces. The main strength of this method is that

it considers temporal aspects that improve the accuracy of prediction. Concerning

future work, it is imperative to explore how the algorithm can be improved to enhance

its efficiency. Additionally, future work ought to consider moving objects within the

scene.

This study proposed an approach for perceiving pedestrians as clusters to predict

their dynamics by using a neural network. By regarding people as clusters, the

authors were able to model a system using cluster features rather than agent features

Yokojima and Sakai. Essentially, the maximum number of individual agents is limited

by the size of the neural network. The authors also regarded the training model at

a cognitive level to distinguish phenomena learned at the current level of cognition

from others that require additional surrounding details. The study demonstrated

this methodology by using a neural network and leveraging the analogy of cognitive

modes. The major advantage of this algorithm is that it perceived pedestrians as

clusters rather than agents. It also made use of cognitive modes as human beings

tend to move from one mode to another. Additionally, the researchers attempted

to reduce the computational intensity of the LSTM used for encoding, which can
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enhance efficiency. However, the algorithm was disadvantageous mainly because the

authors failed to examine it empirically. As a result, it was difficult to determine

whether the algorithm performed well as compared to other methods. Overall, the

study recommends the use of abstracted features and the conceptualization of crowds

as clusters rather than agents to improve pedestrian learning.Future work ought to

examine how this algorithm, which is based on cognitive modeling, can work on

publicly available crowd datasets.

Humans are complex and, in most cases, are not predictable. The unpredictability

is that they can change their minds anytime, making it impossible to predict the

actual location at a given time based on the history of their movements. When

humans change directions suddenly, whether due to a change of plans or to avoid

an obstacle,the training model can be confused. To solve the problem, pedestrian

positions are measured related to the coordinates of the movement history Choi et al.

(2019). The information of the pedestrian movement is needed as a feature vector. The

long short-term memory network (LSTM) does the encoding. The LSTM performs

time- series processing efficiently since it is a recurrent neural network algorithm.

Multi- layer perception (MLP) makes it possible to have different layers to operate.

The pedestrians, the neighbors, the velocity, and the obstacles are considered to

provide a larger view for the whole approach. The trajectory prediction will be more

accurate because we linearly combine all past motion vectors. In conjunction with the

New York Grand Central dataset, PyTorch was used for training and testing. The data

was divided into flames; 10 flames were used, five used as input, and the next five

as the output (prediction). The advantages of using this algorithm are that the data

used is actual data and validates the results. Combining the LSTM and MLP makes

the algorithm more accurate as it enjoys the advantages of the two algorithms. The

disadvantage of the algorithm is taking into consideration the prediction of human

trajectory considering the unpredictability of humans. Plans for the future involve

the model’s being trained using human movement without trying to predict their

movement; instead, they will learn how to make their movements and avoid obstacles

by altering their velocity or direction.
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A detailed table summarizing all papers, which includes overall approaches, the

objectives of each method, and the metrics used in each technique, can be found in

the appendix.

2 .4 conclusion

This chapter is a literature review of about using LSTM to predict pedestrian’s next

locations. Many criteria have been applied to this survey to concentrate on a specific

path in this field. Heterogeneous environments have been excluded from this survey,

and we focused on the environments that deal only with pedestrian surroundings.

Also, for this review, the papers that were published before 2017 were eliminated.

These papers form many categories. Table 1 includes a summary of the title of the

paper, method, objective, and the metrics that were used in the paper. There is a

speedy evolution in the field of using machine learning, and deep machine learning

for the estimation of pedestrians’ future steps. The information about datasets is still

less than desired despite the everyday presence of crowds worldwide We believe the

tools of collecting the data of agents in the most crowded areas have improved, but

there is still a gap between the hope and the on the ground reality regarding datasets.
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chapter 3

Using Neural Networks and Genetic Algorithms for

Predicting Human Movement in Crowds
2

3 .1 summary

Safety is an important issue at large gatherings of people such as at religious gath-

erings or sporting events. Therefore, it is important to control crowds, and identify

in advance when dangerous situations may arise. Simulations play an important role

in predicting how people in crowds will react to each other and their environment.

Simulations often rely on a priori models of human behavior to predict crowd behavior.

We combine, Genetic Algorithms and Neural Networks to learn how people behave

in crowds to avoid assumptions used in a priori models. We examine learning in two

important regimes, structured crowds where individuals are moving in a specified

direction, as in the Islamic Hajj or Hindu Kumbh Mela; and unstructured crowds,

such as town squares and train stations. In this preliminary work we are most

concerned with questions of trainability. In order to provide sufficient data and

control qualitative features of our crowd data we begin use generated data based

on elaborations of wildlife flocking models in NetLogo. We compared performance

on structured and unstructured crowds by predicting a series of next locations. The

results showed we are able to predict crowd motion, but error rates for individuals

grow as time passes; however, the structured crowd gave more reliable results than

the unstructured crowd.

3 .2 introduction

Simulations of crowd behavior can be used to improve the design of public spaces

for the movement of people at large events, such as religious gatherings, athletic
2This chapter was published in the 22nd International Conference on Artificial Intelligence.

Springer.
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events, or concerts. This, in turn, can be used to help prevent crushing and trampling

disasters and help guarantee public safety. Many simulations rely on assumptions

about how crowds move, leaving a possible predictive gap between reality and the

simulation. Our approach is to use machine learning to learn how individuals in a

crowd move and provide a simulation more directly tied to an unbiased observation

of crowd behavior. We examine learning in two common and important regimes,

structured crowds where individuals are moving in a specified direction, as in the

Islamic Hajj or Hindu Kumbh Mela; and unstructured crowds, such as town squares,

shopping malls, and train stations.

Neural Networks (NNs) have a track record of success in problem areas such as

speech recognition, language translation, and image/video classifications Chan et al.

(2016); Bahdanau et al. (2014); Shao et al. (2017). Genetic Algorithms (GAs) have been

shown to work well at training Neural Networks (NNs) Wang and Wang (2017). In

this paper, we use GAs to train NNs to predict the movement of people in a crowd.

The object of this paper is to predict the next location of person in a crowd by taking

into account their nearest neighbor within their cones of vision.

In the next section we show the background organized into three subsections. This

is followed by a section on how our model works. The fourth section presents the

results, and the discussion. Finally, the conclusions, and future works are presented.

3 .3 background

Predicting individual trajectories in crowded areas for use in crowd management

simulations is an evolving research topic.

Alahi et al. (2016) show that they were able to predict future trajectories by using

an individual’s past positions and a social Long Short Term Memory (LSTM) model

trained on observed human movement. To discover the motion of each pedestrian

and how that person interacts with nearby neighbors Xu et al. (2018) used a Crowd

Interaction Deep Neural Network (CIDNN) to predict displacement frames for each

pedestrian. The DESIRE encoder and decoder Lee et al. (2017) predicts future locations

of objects in dynamic scenes. Walking-step size prediction, using Genetic Algorithms
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to optimize a Neural Network model, predicts the step size by collecting data from

different sensors that have been applied to the pedestrians Wang and Wang (2017).

Based on observing the mobility behavior for a person over a period of time, using

the Mobility Markov Chain (MMC) model can lead to a prediction for the next location

Gambs et al. (2012). The use of this model Karasev et al. (2016) improves long-term

prediction by modeling pedestrian behavior, as a jump-Markov process. Using multi-

layer architecture (IaKNN) Interaction aware Kalman Neural Networks for forecasting

the motion of surrounding dynamic obstacles can solve high-density traffic issues Ju

et al. (2019).

Different approaches have been applied in Yang et al. (2006); for example, NN and

GA have predicted the number of occurrences of dwelling fires in the United King-

dom. Plans to apply deep Neural Network Rehder et al. (2018) have been proposed to

predict a pedestrian’s trajectory using Goal-Direction Plan, and the learning patterns

motion behavior will be operated with Fully Convolutional Network (FCN).

3.3.1 Structured/Unstructured Crowds

Analyzing a crowd’s behavior can be used to improve the designs for the movement

of people at large events, such as religious gatherings, concerts, or sporting events, in

order to prevent improve public safety Johansson et al. (2008); Krausz and Bauckhage

(2012). As noted in Rodriguez et al. (2009), there are two types of crowds: the

unstructured crowds, in which people move in a variety of directions as in Figure

5.1(a); and, the structured crowds, in which people tend to move in a specific direction

toward a target as in Figure7.1(b). Large events or festivals, such as Züri Fäscht in

Zürich, Switzerland, deployed an app for crowd management Blanke et al. (2014) over

a period of three days. An app with a similar purpose has also been proposed by

Yamin et al. (2016) for crowds at the Hajj (an Islamic ritual).

A proposed RFID-based Hajj management system Al-Hashedi et al. (2013) would

include data sharing, network communication, and Mohammad and Ades (2009);

Yamin et al. (2008) other wireless technologies. To improve the research on a crowd’s

motion when there is a great density of people, Yamin (2008); Nasser et al. (2017)

suggest a framework for Hajj management. Schubert and Suzic (2007) describes
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the development of a decision-support system for crowd control that uses a GA

with simulation to discover control strategies. Distributing Combining GPS and

Bluetooth Low Energy (BLE) tags among groups of people and using smart phones

Jamil et al. (2015) Jamil et al. hope to capture large-group dynamics for large-scale

events. Pellegrini et al. (2009) has developed a crowd simulation to model dynamic

social behavior that has been trained from birds-eye video records of high traffic areas.

Koshak and Fouda Koshak and Fouda (2008) have used GPS and added GIS to capture

and analyze pedestrian movement. Schubert et al. (2008) have described a decision-

support system by storing sample situations and then used GAs to run trials in order

to find a successful system to control crowds. In this section, we compared more than

one crowd style by emphasizing structured crowded areas and unstructured crowded

areas for the purpose of identifying the types of crowd motion.

3.3.2 Evolution Models NN & GA

Lately, NNs have had a high impact with accomplishments in many areas. Chan

et al. (2016) demonstrates NNs ability to learn LAS (Listen, Attend, and Spell) by

duplicating an audio sequence signal into a word sequence. Regarding translations,

Bahdanau et al. (2014) used NNs to predict relevant translatable words. Also, NNs

are valuable for classified tasks for videos and image processing Shao et al. (2017).

Wang and Wang (2017) has shown that the NN model developed by GA produces

better results for prediction. Gupta and Sexton (1999) has compared the genetic

algorithm with backpropagation for neural network training, and has demonstrated

that GA is superior to backpropagation. The methodology in our paper is based on

the combination of the Neural Networks and genetic algorithms.

3.3.3 Simulating Crowd Interactions

In our model, the collected dataset that applied unwritten rules in the crowd, such

as avoiding collision, depended on the Netlogo model as an important machine

for simulating people in different approaches when seeking crowd behavior motion.

Agent-based models have been an attractive research tool for people seeking crowd
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(a) An unstructured crowd.Image from Ozturk et al. (2010).

(b) A structured crowd. Image is a screen capture from
videos in 2019 from Ministry of Hajj, Kingdom of Saudi Arabia,
https://www.haj.gov.sa/en

F igure 3 .1 : Examples of two major regimes of nominal crowd flow.
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motion outcomes to evaluate structured public areas and closed spaces. The hope is

to show the effectiveness of simulation in crowd management.

For instance, Pluchino et al. (2013) presents a simulation using a NetLogo model,

for pedestrian motion at the Castello Ursino Museum in Catania, Italy. The simulation

is used to evaluate the capacity of the museum and the safety of visitors in cases of

an alarm. Camillen et al. (2009) compares their evacuation approach with different

evacuation approaches looking for an optimal solution. Their results show the effi-

ciency of their evacuation plan by uncovering hard forecasts in emergency results.

Based on experts on animal-migration, Hargrove et al. Hargrove and Westervelt

(2012) simulated the efficacy of a PATH (Pathway Analysis Through Habitat) by using

NetLogo to study animals moving outside their territory through a connected but

fragmented landscape. It is clear that NetLogo as a very useful agent based modeling

tool for research and teaching Tisue and Wilensky (2004).

3 .4 our model

In a crowd, people usually take into account their nearby neighbors in order to avoid

a collision. We model a person’s vision by their field of view or we say cone of vision.

In our 2D world a cone of vision is the region in front of a traveling person subtended

by an angle on either side of vector of travel. See Figure 3.2. Only people visible to the

person can act as a influence on the direction the person is proceeding. For example,

a person will take an alternative route or will stop, due to the influence of the people

who walk into his/her cone of vision.

We created a model for the prediction of pedestrian movement by locating nearby

people in an individual’s cone of vision. The location of the nearest people are fed

into our NN and a predicted direction is returned.

Because this is a complex system, the farther into the future we attempt to predict

the more inaccuracies will build and the model strays from actually tracking the

location of individuals Pellegrini et al. (2009). We will use a NN given the list of

three nearest people in the cone of vision sorted by distance. The NN will be trained

by a GA.
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F igure 3 .2 : In our model, the NN focuses on the nearest agents in the individual’s
cone of vision to predict his/her next position. The position of the nearest three agents
are represented as a distance and angle. The angle is scaled between 0 at the right
side of the cone of vision and 1 at the left side. The scaled angle we will call the unit
angle. Distances are absolute.

3.4.1 Hand Collected Dataset

Our goal is devise a method of predicting where individuals will move in a crowd

given observations of crowds. This will require lots of data in form of (x, y) pairs and

timings to train on. We decided that a low cost solution is to create a separate data

generating simulation for our initial development.

We use something similar to a Social Force Model (SFM). An SFM is based on three

factors: 1) the acceleration of an individual to a desired speed; 2) the individuals main-

taining a specific distance from obstacles and other individuals; and, 3) the impact of

attraction, as in Helbing et al. Krausz and Bauckhage (2012). Our data generating

crowd model uses a NetLogo model. The model is derived from the flocking model

that comes with NetLogo, but with some additions for variation in speed, collision

avoidance, field of view, boundary and initialization conditions, and for structured

crowds and common direction of flow. Both structured and unstructured crowds

were simulated as seen in Figure 3.3.
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3.4.2 Combining Neural Networks with GAs

Crowds may behave differently depending on the cultural composition, event, or

environment. In order to more accurately model crowds it is important to learn from

observation rather than apply a one size fits all solution. This motivated us to design

a method that can read and learn from data. Perceiving the patterns of data (such

as nearby neighbors’ positions) to predict the motion of a crowd is the main feature

of the algorithm. The combination of NN and GA has produced excellent results

Wang and Wang (2017). This motivated us to develop an algorithm using NN and

GA. In a crowd people pay attention to the people in front of them and “sort” them

visually as nearest neighbors, which becomes a major factor when making a decision

to change direction, even if only a slight change. This logic encouraged us to apply it

in designing the inputs to the NN.

After calculating the distance between points, the neural network takes the three

nearest neighbors’ positions in the cone of vision as inputs. For example, if we specify

that 60 degrees is the cone of vision for the individual, the distance is calculated as in

Equation 7.3

nearest3(c) = argmin 3
i∈Conec(Pop)

distance(c, i) (3.1)

In this Equation, c is the current pedestrian for whom we are looking for his/her

nearest neighbors. i is from the set of individuals in the cone of vision of c denoted

Conec(Pop). The cone of vision is determined by the direction of motion of c. We

assume a cone of vision is 60 degrees. argmin 3 gives the list of three smallest values,

in this case, distances. Finally, in our unit angle, every individual from those three

nearest neighbors obtains a number between 0 and 1 based on his/her location in the

unit angle as in Figure 3.2.
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(a) Structured crowd simulation in which people tend to move from left to right.

(b) Unstructured crowd simulation in which people on the sides move at random initial top
speeds to a paired random location on the opposite side. This forces the left and right to
negotiate passage through the middle area by adjusting their direction and speed.

F igure 3 .3 : NetLogo simulations of structured and unstructured crowds.
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F igure 3 .4 : This shows a sketch of the workflow for training the NN. Training
data based on NetLogo simulations is input to the NN which produces trajectory
predictions for the fitness function. The fitness function is used in the GA to converge
on better weights for the NN.

3.4.3 The Use of the Genetic Algorithm

A Genetic Algorithm (GA) are an optimization algorithm inspired by biological evolu-

tion Eiben et al. (2003). A GA has several key components. A population of potential

solutions. Each individual in our population is a possible set of weights for the

NN. Imperfect copies of the individuals from the population will be made using

cloning and mixing using mutation and crossover operators. Selective pressure will

be applied to force an enrichment in the population with sets of weights which are

selected for, that is, have higher fitness. In our case fitness will be determined by the

success of the NN in predicting where individuals move given what they see (More

below). If selection is controlled by the fitness function so that individuals with higher

fitness function values are selected, then we have an optimization algorithm using a

scheme very similar to that envisioned by Charles Darwin (1964). Each generation

of the genetic algorithm uses tournament selection to choose the worthy individuals

among the population as parents and uses them to produce offspring for the next

generation using mutation and crossover. For diversity in every generation of the
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Table 3 .1 : Table of GA parameters

Parameter Value
Type of GA steady state
Pop size 100

Mutation Rate 0.12 per weight
Mutation Add random N(0, 1)
Crossover probability 100%
Crossover Type 1pt
Mating Selection Tournament size 10

Stopping Criteria 1000 generations

population, 12% is the percentage of mutation applied. To optimize the quality of NN

weights, each individual corresponds to an evaluation, which is the distance between

the predicted location and the actual location. The fitness distinguishes the NNs

with high/low scores based on their outputs. It calculates the difference between the

predicted position and the actual position for every individual’s next location. Table

3.1 describes the Genetic Algorithm parameters used in this paper.

f itness(NN) =
n−1

∑
i=0

|αi − πi| (3.2)

In Equation 3.2 f itness(NN)represents the fitness for the weights of the NN. The

variable i indexes through all the training data of position and three nearest neighbors.

αi is the actual angle of the next move of training case i. πi is the angle predicted by

the NN. Angles are in unit angles. The less the difference between the angles, the

better the neural network. That is, the GA is minimizing the sum of simple errors of

the trajectories.

In summary, the GA begins by initializing with a random population of neural

networks. The GA uses the fitness based the nearest neighbors in the cone of vision

for each agent. This is used to train the weights for the neural network using GA.

The fitness function scores each neural network based on the difference between the

predicted trajectory and the actual trajectory in terms of a unit angle in the cone of

vision. The neural network with the smallest error will be the model’s neural network
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F igure 3 .5 : The Error in the average distance between the predicted location and
the actual location.

to predict an individuals trajectory. The step size will be assumed to be the same as

the last step size. Figure 3.4 explains the workflow of the training.

3 .5 results

In this experiment, we produced training data using NetLogo in two scenarios repre-

senting the two crowd types: structured and unstructured. We used NetLogo since it

is an agent-based model that is well known in research Pluchino et al. (2013); Camillen

et al. (2009); Hargrove and Westervelt (2012); Tisue and Wilensky (2004). To model

structured crowds, we observed surveillance cameras that were deployed on Hajj 2019

to monitor the behavior of people. A model was then built based on flocking/herding

in which agents move within the limits of their own speed to move together and yet

not collide or get too close and proceed toward a goal. The model is parameterized to

emphasize the distributions of maximum speeds and how close they can get before

they feel the urge to separate. There is a cohesion factor as well in that people in a

crowd tend to move with others much like a herd. Unstructured crowds were modeled

similarly but individuals were initially positioned on the left and right of the arena

(see Figure 3.3(b)). They then proceed at different initial maximum speeds to cross to

paired target points on the other side. This way the two sides must negotiate to slide

between the opposing moving people. Decisions to avoid collision with others is the
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F igure 3 .6 : The mean error between the predicted location and the actual location
for an structured crowd. Both trained and untrained neural networks are shown for
comparison.

most important feature of the NetLogo models. This is done by the agents deciding

to change their speed and direction.

3.5.1 Trained vs Control Neural Network

To answer the question are we able to learn how to predict the trajectory we compared

the output of the NN we trained to the a control. As a control, we chose a random

NN without training. We predict the trained NN should actually be able to move

more like real people in a crowd.

Figure 3.6 and 3.8 show the results for both experiments, trained and control, with

the same test for structured and unstructured crowds respectively. The graph shows

the mean Euclidean distance between the predicted position and the actual position

assuming the step size for all predicted steps as the step size for last step before

starting the prediction.

The graphs support the idea that a GA can be used to train a NN to model people’s

behavior in a crowd.
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F igure 3 .7 : The chart shows Cumulative Distance Error (CDE) for all the next
prediction positions. Since we have trained the NN for the first position, the result
shows how the error increases as time passes. That is, error accumulates between the
predictions the model is giving and the actual directions that individuals turn.

3.5.2 Time Series Use of NN

Our next question is whether the NNs we are generating can be repeatedly applied in

a simulation to predict crowd movements farther into the future. In our experiment,

we have applied two metrics, the cumulative distance error (CDE) and the mean in

two different types of crowds.

The cumulative distance error (CDE) for position 1 is the average distance be-

tween the current position and the predicted position, divide by the average distance

between the current position and the previous position. It then multiplies that result

by 100 to obtain the percentage error rate for the first predicted position. For the CDE

of the second predicted position we calculate the distance between the true position

and the predicted position, except that it divides by the average distance between the

current position and the position from which we started the prediction. We proceed

like this for the remaining predicted positions in our experiment. The results for CDE

are displayed in Figure 5.6, which shows how the error rate grows as time passes.
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Figure 3.5 displays the mean for each distance between the predicted position and

the true position. The mean calculates how the error in the average distance between

the predicted position and the true position increases as time passes.

Both graphs indicate a divergence between predicted and real locations. This

suggests a simulation based on our learned NN will quickly diverge from reality.

While this may at first appear as a simple negative result, the system we are mod-

eling is a complex system with classic problem that it small errors will accumulate

exponentially. We would expect these graphs. But since this is our initial research we

believe these measures and others may help to greatly improve our ability to predict

and stave off the inevitable divergence.

3.5.3 Discussion

One of the innovations of our work is the use of a sorted list of nearest neighbors in

the cone of vision. We believe this mimics cognitive input to the individuals. Even

in structured crowded areas, Rodriguez et al. (2009) people walk around each other

as they walk in the same direction to the same goal. However, we realize that the

unstructured crowded area is assembled differently, where people randomly cross

each other’s paths, and still humans tend to watch out for his nearest neighbors and

make a decision about his/her next position or direction.

For the comparison between the structured and unstructured crowds in our exper-

iment, the results include the cumulative distance error, the mean. The structured

crowd results have smaller errors of prediction than unstructured crowds. We believe

this is because the behavior is much more predictable in structured crowds than

unstructured crowds.

conclusions

Simulating crowd motion and predicting the individuals’ movements can be used

to design crowd areas and to improve safety criteria. The need for these kinds of

simulations inspired us to design a simulation that shows the reaction of people

in an environment to seek a predictable crowd behavior in order to provide safe
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F igure 3 .8 : The mean error between the predicted location and the actual location
for an unstructured crowd. Both trained and untrained neural networks are shown
for comparison.
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and pleasant experiences for participants. We have shown that the combination of

neural networks and genetic algorithms can be effective for predicting movement

in a crowd. We used the first predicted position for individuals to train the neural

networks, and the genetic algorithm to obtain the best NN. One of our innovations in

our NN design is use of a sorted list of nearest neighbor locations in the individual’s

cone of vision. We believe this method shows promise as a technique for learning

the movement of people in a crowd. The results showed a more reliable outcome for

a structured crowds than an unstructured crowds. Our future work, will involve

diversifying tests, improving the evolutionary algorithm, and measures of crowd

movement. Additionally, the agents of the model will not be limited to pedestrians,

but include other agents, such as cars, bicycles, etc.
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chapter 4

Machine Learning for Dense Crowd Direction Prediction

Using Long Short-Term Memory
3

4 .1 summary

The safety of a dense crowd is one of the most important matters for an event’s

organizers. Therefore, management of the crowd, and noticing any serious issues

in advance becomes important. Developing a crowd simulation by using a social

force model simulates the behavior of crowds in reality. The prediction of individual

agents’ behavior in the simulation and how the agents interact with each other can

improve the safety of dense crowds. Depending on the success of Recurrent Neural

Network(RNN) handling of sequential data, we propose a model that is based on

Long Short Term Memory (LSTM) to predict individual agents’ next locations. Our

proposed approach will be tested two different densities of crowds, structured crowds,

and unstructured crowds. In structured crowds, people generally move in one direc-

tion and head to the same destination, such as at the Islamic Hajj. In unstructured

crowds people move in many different directions and head for different destinations,

such as in public town squares.

Crowds, Structured Crowded Area, Unstructured Crowded Area, Machine Learn-

ing, Recurrent Neural Network, and Long Short-Term Memory, "Short Paper" Sympo-

sium on Artificial Intelligence (CSCI-ISAI).

4 .2 introduction

People usually follow rules that are taken for granted when they walk in crowds. For

instance, in a dense crowd, individuals move to their next locations while avoiding

people or obstacles in front of them. Understanding these rules leads us to avoid
3This chapter was published on 2020 in the International Conference on Computational Science and

Computational Intelligence .
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(a) Example of an unstructured crowd.Image from Ozturk et al. Ozturk
et al. (2010).

(b) Example of structured crowd. Image is a screen capture from
videos in 2019 from Ministry of Hajj, Kingdom of Saudi Arabia,
https://www.haj.gov.sa/en

F igure 4 .1 : Examples of two forms of crowds.
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dangerous situations and maintains the safety and stability of crowds. Rodriguez et al.

(2009) has shown that there is one type of crowd motion in a structured crowd, such

as at the Hindu Kumbh, and another type of crowd motion in an unstructured crowd,

such as in subway stations. Most prediction simulations have been done without

differentiation between the types of crowds. Our proposed approach is to employ

machine learning to understand how people behave in the two different types of

crowds, structured, and unstructured.

Recurrent Neural Networks (RNN) and especially Long Short-Term Memory (LSTM)

networks have become a very popular method to understand the sequential nature of

their inputs. LSTM has shown promising results in problems with sequential data,

such as individuals’ trajectories, vehicle motion, handwriting, and speech. Alahi et al.

(2016) presented how to connect LSTM networks for every trajectory in relation to

each other, which in turn, allows every LSTM network to share information with close

networks. Rodriguez et al. (2009) has done experiments that depend on two types of

crowds (structured and unstructured crowds) based on the closest people in the cone

of vision. Prediction of an individuals’ movements could be improved if we take into

consideration the differences in crowd behavior in each type of crowd. This will make

it easier for machine learning to accurately learn each kind of movement. Focusing

on the crowd type to acquire data is a form of classification. Our proposed model is

an extension of Alajlan et al. (2020), which use a cone of vision to specify the direction

of motion based on the closest people; furthermore, employs the LSTM networks

technique to monitor the previous cone of vision direction for every individual in

order to understand each individual’s behavior. Additionally, the crowd results will

be divided into two categories (structured, and unstructured crowds).

We present related work in the following section. This will be followed by the

Methodology and Datasets sections. Finally, we will present the conclusion of our

proposed model.
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4 .3 background

Based on the past locations, Alahi et al. (2016) used the LSTM model to train their

model to predict the humans’ trajectories. They let the LSTM network join and share

information with LSTM networks in its range. Shi et al. (2019) suggested LSTM

networks that use encoding and decoding, which in turn, encode movements and

interactions for a long sequence of predictions. Gupta et al. (2018) suggested Genera-

tive Adversarial Networks that use encoding and decoding structure to predict future

paths and avoid the existence of more than one prediction. Manh and Alaghband

(2018) shows two models of Scene-LSTM that can predict human motion; it presented

how the information from the scene is important by feeding it to the cells, which in

turn, uses only the useful data to forecast next movements. Xue et al. (2017) uses the

Bidirectional LSTM to class people’s destinations, which in turn, improves prediction

precision.

Necessary crowd safety, such as at religious gatherings, concerts, or sporting events,

can be improved by analyzing crowds behavior and improving the designs of crowd

movement at large events Krausz and Bauckhage (2012); Johansson et al. (2008). Crowd

behavior and movement have been defined as two types: structured crowds, where

people are heading in specific directions; and unstructured crowds, where people’s

directions cross each other Rodriguez et al. (2009). Yamin proposed an app for crowd

management Yamin et al. (2016) at the Hajj (an Islamic ritual), where most of the crowd

formed as a structured crowd. In Switzerland, there is a festival that takes place at

Züri Fäscht in Zürich Blanke et al. (2014), deployed an app for crowd management

with sign points for each booth that must be collected by the visitors. The RFID-based

Hajj management system proposed by Al-Hashedi et al. (2013) to manage crowds

used data sharing. In addition, Mohammad and Ades (2009) managed the crowd

by using RFID with network communications. Since the Hajj is the largest religious

gathering of people and behaves as a structured crowds, Yamin et al. (2016) proposed

integrating social media and mobile apps for Hajj management. A framework has

been suggested for Hajj management by Yamin (2008) to improve crowd motion

research. He proposed a framework for monitoring hajjies(people who practice the

Hajj ritual) upon their arrival at the airport, which is the starting point of their ritual
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participation. Additionally, Nasser et al. (2017) proposed a crowd monitoring and

management framework for the Hajj gathering.

4 .4 methodology

Dense crowds usually form particular patterns depending upon the crowd type. Ac-

cording to Rodriguez et al. (2009), one direction and one goal is the pattern formed

by a structured crowded, and different directions and different goals is the pattern

of an unstructured crowded. Figure 7.1(b) and Figure 5.1(a) show examples of how

structured and unstructured crowds. In a structured crowd, people usually maintain

their direction in a particular pattern but adapt the path they use. By contrast, in an

unstructured crowd, people create more than one pattern, but usually maintain their

direction in a specific manner. The idea of an individual’s "cone of vision" was applied

in Alajlan et al. (2020), and emphasizes determining the three closest people (near, mid,

and far), then letting machine learning learn how these closest people in the cone of

vision might impact the decision of an individual’s choice of path. Figure 4.3 shows

how Alajlan et al. (2020) uses the "Unit Angle," which numbers the neighbors in the

cone of vision. In contrast, LSTM has been used to predict people’s trajectories based

on past positions, such as in Alahi et al. (2016).

4.4.1 Overview on the LSTM

To enhance the performance of RNN to alleviate the difficulty of learning a long data

sequence, LSTM has been suggested to fix the problem of vanishing and exploding

gradients. Regarding vanishing means, the gradient tends to be smaller and smaller

when we return to the earlier layers. By contrast, when we consider the exploding

means, the gradient tends to get larger and larger when we go back to the earlier

layers. In general, that may mean there is no problem with a small number of hidden

layers, but it may cause an unstable situation when we deal with a large number

of hidden layers. Some of the LSTM advantages are remembering data for a long

time, and predicting more precisely sequential information based on previous data.

By using three gates (forget gate, input gate, and output gate), the idea of an LSTM
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network can be formulated. Figure 4.2(a) illustrates how an LSTM network functions

in the LSTM modules, and figure 4.2(b) illustrates how the LSTM network can be

detailed in the equations Varsamopoulos et al. (2018). f represents the forget gate, i

is the input gate, and o is the output gate. W represents weight matrix of input; U

represents weight matrix and recurrent link between the past and running hidden

layer. h is the hidden state of the past time-step. Ĉt is the candidate for the cell state

that is calculated based on the previous hidden state and Xt (the input of the current

time-step), while Ct represents the cell state at the current time-step.

4.4.2 problem statement

Our goal is the accurate prediction of the people locations from a sequence of data

based on people’s walking behaviors. The challenges always depend on the accuracy

of the prediction for pedestrian trajectories in compare between the actual location

with the predicted location. Our proposed model is based on two main factors: 1)

the direction that the individual decides for his/her path results from the sequence

of previous steps; and 2) the velocity which can estimate the final predicted location

over time is based on the average of the previous speed. In our proposed model,

we picture the behavior as a drawn pattern. By taking the notion of the field of

view, we will draw the sequence of steps based on the Unit Angle, shown in Figure

4.3, for each individual. In other words, every person will have a sequence of data,

each datum represents a value between 0 and 1 that denotes the direction of his/her

cone of vision, which in turn produces a value for each step in the sequence. The

velocity for every individual is an important matter in our prediction model in order

to calculate distances more accurately. The prediction for speed in Alajlan et al. (2020)

was based on the last-step velocity. In contrast, our proposed model uses the average

speed for every person that is calculated from a sequence of data. To process all these

data, we will use LSTM networks to handle the sequence of data for pedestrians.

LSTM networks have the proven ability for predicting sequential data. We employ

the concept of the Unit angle discussed above, to get the directions of past trajectories,

and then we feed the sequential results to the LSTM networks. The angle of direction
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(a) LSTM network example, which f represents the forget gate, i
represents the input gate, and o represents the output gate.

(b) LSTM network equations

F igure 4 .2 : LSTM network example and equations that describe how LSTM
network functions in the LSTM modules.
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F igure 4 .3 : our model focuses on the individual’s previous direction in his/her
cone of vision to predict his/her next positions. The patterns of his/her last directions
are represented as a distance and angle. The angle will be scaled between 0 and 1.

in the cone of vision will be calculated as θ = Atan2(y2− y1, x2− x1), and the equation

for distance is Distance = sqrt((x2 − x1) ∗ (x2 − x1) + (y2 − y1) ∗ (y2 − y1)).

4.4.3 Datasets

We extended our work in Alajlan et al. (2020), which has two categories of datasets.

The datasets have been acquired from the Netlogo simulation machine. One of the

dataset represents structured crowded areas, in which people walk in the same way

and go toward the same destination. The other dataset represents unstructured

crowded areas, in which people go to several destinations in more than one way.

Both of the datasets applied something similar to the social force model to simulate

the behavior of people in a dense crowd. These social force rules include people

keeping a fair distance between themselves and other people, between themselves

and obstacles, acceleration of pedestrians to the desired speed, and the effect of the

surrounding attractions. The datasets in [2] deal with the closest people in the cone

of vision for each step that is fed into the neural networks. In short, the closest

people’s positions will be the inputs for the neural networks, which, in turn, allows

for the prediction of the next direction. By contrast, using the same datasets, we will
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F igure 4 .4 : The workflow presents how to generate the Individuals locations data
to be fed for the LSTM networks to predict the next individuals locations.

use past directions for every individual to obtain data about the patterns of his/her

movements that , will predict next trajectories.

4 .5 conclusion

In this paper, we present a novel model based on an LSTM network for the prediction

of pedestrian trajectories. Our proposed model depends on two factors, the last

directions’ values for each individuals, and the average speed for each individual.

In other words, the model learns from last values of directions and predicts the future

trajectories by LSTM networks. Additionally, the model calculates the average speed

for each individual from the last steps’ velocity, then specifies the future locations

of individuals. The experiment in the proposed model was applied to two kinds of

datasets based on crowd type: structured crowded areas and unstructured crowded

areas.
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chapter 5

Predicting Human Movements Using Machine Learning
4

5 .1 abstract

Assurance of safety in a crowd, such as the density of mass gatherings in religious

rituals, or sports events, represents an important matter for authorities. Chaos and

crowds create a big challenge for movement prediction. Even though, knowing the

pedestrians’ next positions is difficult regarding their behavior and their intentions,

it is useful for ensuring their security. In this paper, we predict the future positions

of pedestrians using the Recurrent Neural Network (RNN) and, specifically, its ex-

tension, Long Short-Term Memory (LSTM). We use the past directions of individuals

predict their next directions, which leads to their future positions. We compared our

proposed LSTM method, based on previous directions (LSTM-direction), with the

neural networks and genetic algorithms (NN-GA) method. We used several datasets

that are based on various scenarios and several simulation types, to evaluate both

methods. Our results show that the LSTM based on the sequence of past directions

and its features is superior to NN-GA.

5 .2 introduction

Avoiding dynamic objects such as other pedestrians, or static obstacles such as a wall

is an individual’s sensible method to continue moving to his/her destination. Keeping

crowds stable and avoiding any dangerous situations are always the authorities’ goal.

Predicting a human’s next positions is important, for instance, to avoid collisions

when robots exist in a crowd. Next-step prediction is also useful to assure the crowd’s

safety and ensure smooth motion in dense crowds, such as at the Islamic Hajj in Saudi

Arabia or the Kumbh Mela in India. Another significant reason for the prediction of
4This chapter was published in the 2022 International Conference on Computational Science and

Computational Intelligence .
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pedestrians’ next steps arises when, for instance, designing temporary barriers in

densely crowded areas, or if two or more paths merge into one route.

Numerous studies have suggested methods to resolve crowd density difficulties.

Resolving crowdedness issues, such as protecting the crowd from chaos, or letting a

crowd move faster, starts from analyzing different aspects of pedestrian behavior. For

instance, dissolving any crowd density is an appropriate approach, in order to avoid

collisions, and predicting the crowd’s future positions in order to help authorities in

organizations provide superior resolutions to what exist now. Crowds can be divided

into two categories: structured crowds where agents walk in one direction with a

common goal; and, unstructured crowds where agents walk in various directions

with differing goals. It should be stated that there are other crowd types that combine

these two categories.

Simulations are of great importance in studying a large number of agents in an

environment who have various characteristics and behaviors in different scenarios.

We applied two simulation methods: the social force model (SFM) that was suggested

by Helbing and Molnar (1995); and the flocking model (FM) that was developed

by Reynolds (1987), but with some additions that make the agent act more like

pedestrians.

Attempts to understand pedestrians’ behaviors are the keys to predicting their

future positions. Plenty of research using various methods search for accuracy in

the prediction of humans’ movements. Our proposed method is to use machine

learning, and specifically Recurrent Neural Networks (RNNs) to study the behaviors

of individuals in the environment of crowd density.

RNNs and particularly LSTMs have shown efficacy in predicting sequential data.

Alahi et al. (2016) was the first study that used LSTM networks in the prediction of

humans’ movements; based on past positions, they connected the LSTM networks for

trajectories, and the networks then share information with nearby networks.

Our work is presented in five sections. The background of our work is illustrated

in the Section 2; it is followed by the details about our model in Section 3. Results and

discussions are detailed in Section 4. The last section of our work, Section 5, includes

our conclusions and future works.
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5 .3 background

5.3.1 Humans’ Movements Predictions

Various approaches utilize LSTMs to handle trajectories that are based on X-Y coordi-

nate systems; these are able to discover sequential behavioral patterns in the observed

motion trajectories. Alahi et al. (2016) was the first study that included LSTMs in the

prediction of pedestrian trajectories. They based their work on previous positions

to predict future trajectories by introducing a social pooling layer. They connected a

pedestrian LSTM network with nearby LSTMs networks. Unlike taking into account

only the nearby humans, Bartoli et al. (2018) extended the social-LSTM to consider

all the objects in the scene that could have an impact on the pedestrian. By taking

into account other agents’ behaviors, Xu et al. (2018) suggested using LSTMs to shape

the movement of all persons and then, based on the spatial locations of people, they

scaled the movement features to predict the displacement. By combining the RRT-

Reach algorithm and mixtures of Gaussian processes, Aoude et al. (2011) showed

how independent position patterns can be utilized to forecast an agent’s motion to

avert collisions and improve the detection system. Shi et al. (2019), proposed LSTM

to be used for encoding and decoding motions and behaviors for a long sequence

of forecasts. Manh and Alaghband (2018) illustrates two Scene-LSTM models that

can forecast people’s movement; they explain how the data from the environment

is significant by using it as inputs to the cells, which then utilize just the relevant

information to anticipate future motions. Xu et al. (2018) used LSTM to gather move-

ments’ information, then modeled a crowd interaction deep neural network (CIDNN)

to forecast the displacement of pedestrians. Gambs et al. (2012) developed a model

called n-MMC that is an extension of Mobility Markov Chain (MMC), which in turn

predicts the next location based on visited positions. To upgrade the LSTM capability,

Quan et al. (2021) proposed a holistic LSTM; they added additional memory cells,

which include a speed cell, an intention cell, and a correlation cell. Furthermore,

they suggested an intention gate to assist with dealing with complicated movements’

information for trajectory prediction. Based on the inverse reinforcement learning

method, Henry et al. (2010) proposed an approach to mimic humans in crowd areas;
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they taught a mobile robot to move through the crowded area safely, and to take the

shortest path when the crowd was not dense.

5.3.2 Crowd Management

One of the big examples of structured and crowded paths is in Mecca, Saudi Ara-

bia, during the Hajj. Many researchers have suggested a number of technologies

for crowd management for this big event. We believe obtaining instant data from

pilgrims’ locations is the first step for predicting collective future trajectories. For

pilgrims’ identification, tracking, monitoring and planning, Mohamed et al. (2019);

Mohandes et al. (2011); Al-Hashedi et al. (2014); Naser et al. (2010); Binsalleeh et al.

(2009); Alsubhy et al. (2020); Mitchell et al. (2013) proposed using RFID technology. We

started our experiments based on two simulations and many scenarios, and, as noted

in Rodriguez et al. (2009), we categorized crowds in two types: the structured crowded

environment, which has one direction and one goal as in Figure 7.1(b); and, the un-

structured crowded environment, which has various directions and various goals as in

Figure 5.1(a). To improve Hajj crowd management, Ahmad et al. (2014); Rahman et al.

(2017); Mohamed et al. (2013); Lakhdari et al. (2020) suggested utilizing mobile phone

applications and GPS for pilgrims’ tracking and monitoring. Additionally, Alshalani

et al. (2020) proposed an application that is based on GPS to organize pilgrims during

Hajj; this includes locating the pilgrim and his/her responsible manager during Hajj,

which provides a notification to both the pilgrim and his/her manager if the pilgrim

is away from the group, etc. Yamin (2019) took the Hajj in Saudi Arabia and the

Kumbha Mela in India as case studies for using wireless and mobile devices to

facilitate crowd management in order to reduce the health risks between pilgrims.

To help crowd management at the Hajj, Mitchell et al. (2013) proposed using RFID

and mobile integration to determine pilgrims’ locations and track them. To manage

the density of the crowd effectively, Al-Kodmany (2013) proposed three pillars: an

examining designs, preparing realistic plans, and identifying any difficulty.

Crowd S imulation Interactivities — In our simulations, two simulation

types were implemented: the social force model suggested by Helbing and Molnar
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(1995) and the flocking model. The social force model is a popular simulation that can

mimic collective behavior. Pelechano and Malkawi (2008) described how the social

force model represents a situation of people’s panic in simulations and how people

in a panic mimic what others do. The flocking model uses rules for cohesion in a

flock and for avoiding collisions. Mehran et al. (2009) suggested a method to detect

unusual actions in the environment of crowdedness. Dewi et al. (2011) conducted

an experiment that utilized the flocking algorithm to simulate collective behavior in

order to reach a specific aim. The Netlogo programming environment is an important

program for simulating people in various conditions, and following different rules.

Pluchino et al. (2013) used the Netlogo model to mimic peoples’ movement at the

Castello Ursino Museum in Catania, Italy. Camillen et al. (2009) utilized Netlogo for

simulating people who visit a museum and it applied an evacuation plan for various

situations, such as for different group sizes.

5 .4 our model

In a crowd, individuals are usually aware of the people in front of them, by which,

they adapt their speed and the direction of their next position in order to be in

the appropriate place and avoid collisions. This adaptation creates a sequence of

movements that draws a pattern for successive steps. We studied the behavior of the

past successive directions for each individual in order to predict the future location

and direction for all of the agents.

Because this is based on people’s sequences of steps, and requires the knowledge

of their past sequential directions, we used LSTMs. Unlike previous LSTMs methods

that are based on past positions, we used the cone-of-vision concept Alajlan et al.

(2020) to consider the past directions inside what we called Unit Angle for each person

in the scene. The observed direction paths inside the field of view were our inputs for

the machine learning system.
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(a) A picture of an unstructured crowded area.Image from Xu et al. Xu
et al. (2019).

(b) A structured crowd. The image is a screen capture from Ministry of
Hajj videos for Hajj 2019, https://www.haj.gov.sa/en

F igure 5 .1 : Examples of two major systems of crowd flow.
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F igure 5 .2 : An example of an LSTM network that is represented by three gates
(input gate, forget gate, and output gate). More details can be found in figure 4.2.

5.4.1 Overview of LSTM

LSTMs are an extension of Recurrent Neural Networks (RNNs). RNNs work with

sequential data to generate or predict future data. Vanishing and exploding gradi-

ents are the difficulties faced by RNNs, which remain a hurdle for training RNNs.

Vanishing gradients occur when gradients head toward very small values whenever

they shift to the earlier layers. On the other hand, exploding gradients occur when

the gradients head to very large values whenever they shift to the earlier layers. To

resolve this problem, Hochreiter and Schmidhuber (1997) suggested the long short-

term memory, which has the advantage of remembering or recalling data from long

sequences. Three gates are employed by an LSTM to form its model: forget gate, input

gate, and output gate. Dealing with a small number of hidden layers may not affect

the values, but a large number of hidden layers may lead to an unstable condition. In

Figure 5.2, we illustrate one LSTM network.

LSTMs have plenty of successes in predicting pedestrians’ next positions. These

studies motivated us to improve the idea of using the past sequence of directions

inside the cone of vision to study the movement patterns of individuals, especially in

dense structured crowds.



71

F igure 5 .3 : our model concentrates on the individual’s past direction and obstacles
in his/her cone of vision to forecast next locations. The patterns of people’s directions
are represented as a distance and angle. The angle is scaled between 0 and 1.

5.4.2 Problem Statement

Our aim is to accurately foresee individuals’ locations from a series of data dependent

upon their walking patterns. The difficulties are often dependent on the precision

of the human trajectory forecast when comparing the true position to the expected

location. Our proposed model is based on two major assumptions: 1) a person’s

trajectory is determined by their prior steps; and 2) the speed used to predict the

final predicted position over time is dependent upon the prior velocities. The action

is depicted as a drawn pattern in our model. We drew a series of steps that are

dependent on the field of view, as shown in Figure 5.3, and for each person, we used

the concept of the cone of vision that is called “Unit Angle”.

5.4.3 Simulations and Datasets

Regarding Ridel et al. (2018), studies in this field have created various datasets specifi-

cally in urban scenarios, and some have compared their results with one or two other

algorithms or approaches. A major problem is the datasets themselves; either the

pedestrians are pre-instructed, and he/she follows what the data collector wants, or

in realistic scenarios, when the person is not an actor, most of the pedestrians, when
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crossing a street, for instance, negotiate by eye contacts and eye contact is not easily

modeled. In our proposed approach, we focused on the predictions for crowded areas,

and used the cone of vision as an analogy to eye contact.

In this paper, we expanded our work from Alajlan et al. (2020) to include more than

one type of simulation and multiple scenarios. One of the popular pedestrians’ sim-

ulations is the Social Force Model that was suggested by Helbing and Molnar (1995);

the second simulation in our experiment is the flocking model that was developed

by Reynolds (1987). Similar scenarios are applied in these two types of simulations

to track the difference in predictions. Our scenarios were inspired from real life and

some of them are specifically from the pedestrians’ paths in the Islamic ritual Hajj,

which pilgrims follow in Mecca. The first scenario is of a structured crowded area with

high density and low density. The second scenario is of an unstructured crowded area

with high density and low density. The third scenario is of two structured crowded

paths that merge and head toward one destination. As with the other scenarios, the

merged paths were tested with the high density and low density.

The Social Force Model (SFM) is based on three factors: 1) agents accelerate to

the desired speed; 2) agents avoid other pedestrians and obstacles; and, 3) agents are

attracted to a goal. SFM is one of the most widespread methods for characterizing the

movement of individuals in crowds. We represent the SFM in equation 5.1 as:

SF i = desiredi + ∑
j ̸=i

socialij + ∑ obstacleiw (5.1)

where desiredi is the desired force of direction and velocity, sociali j is the social

force that wards the pedestrian off from other pedestrian, and obstacleiw is force

of an obstacle that wards off the pedestrian from obstacles. We based our second

simulation model on the Flocking Model that comes with Netlogo, but with several

changes. Netlogo is a multi agent modeling platform that may be programmed

to imitate natural and social processes. The applied properties in our simulation

include: the maximum speed, acceleration to the desired speed, avoidance of other

pedestrians and obstacles, cone of vision, and cohesion. The model uses several
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F igure 5 .4 : Pedestrian paths merging in Mecca, Saudi Arabia. The image is from
Google Earth.

parameters: separation, alignment, cohesion, and cone of vision. Byrisetty (2013)

summarizes the job of the first three parameters, separation, alignment, and cohesion.

In separation, the agent aims to move towards the destination while avoiding other

agents; in alignment, the agent aims towards the average heading of nearby agents;

and in cohesion, the agent moves toward the average position of other agents. The

cone of vision specifies the angle of vision that the agent can see while moving.

The datasets were collected from Netlogo for four properties: ID, Time, X-coordinate,

and Y-coordinate; these are recorded for each agent at each time step. The scenarios

are, a structured crowd, an unstructured crowd, and merging paths as in Figure 5.4,

and are applied in both SFM and FM simulations.

5.4.4 Methodology

In Alajlan et al. (2020), we identified the locations of the nearest three persons in a

cone of vision and predicted the location the individual chose based on these people

in front of him/her. Equation 7.3 clarifies how the model works in Alajlan et al. (2020).

In this equation, c represents the current pedestrian, and the model looks for the

nearest three persons i in the field of view of c; they are then sorted for the closest.
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nearest3(c) = argmin 3
i∈Conec(Pop)

distance(c, i) (5.2)

The locations of the nearest persons are the data that were fed to the neural

networks. By using genetic algorithms and neural networks, we obtained the best

neural network to predict next steps. We then compared the low densities of the

structured and unstructured crowded areas.

Additionally, we extended our work to try another technique with another strategy

that uses the same concept. This model is based on the LSTMs algorithm, and it has

two facets: 1) using the field of view to figure out the directions for many steps in the

past for each individual; and, 2) calculating the average speed while each agent was

taking actual steps in his/her desired directions. Our idea was inspired by employing

the cone of vision that was used in Alajlan et al. (2020), not to determine the nearest

people for each pedestrian, but to draw a sequence of pedestrians’ aimed directions

in their Unit Angle that they decided on in many previous steps. Figure 5.5 shows

how the model draws one step for one individual to illustrate the idea. The sequence

of directions are numbers between 0 and 1. We specified the angle for each individual

based on his/her direction. For example, if the pedestrian moved one step in angle 0,

and if we specify the field of view to be 100, then the cone of vision for his/her next

step is between -50 and 50. The angle -50 will be represented as 0 and angle 50 will

represent the number 1, and every angle of direction in between these two angles will

be a number between 0 and 1. We trained our data on LSTM networks as follows:

(1)reshaping the inputs data, which are the numbers of directions in the Unit

Angle for four steps; (2)feeding the LSTMs with these steps of directions for each

individual; (3)training the model for the whole dataset in order to predict the fifth

step and optimizing the difference between the actual directions and the predicted

directions using the mean square error loss function; (4)calculating the average speed

for each individual while obtaining the previous directions; and, (5)testing the model

by predicting the next four steps for each individual.
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F igure 5 .5 : Our model concentrates on drawing a pattern of each individual’s past
directions in his/her cone of vision. Based on the cone of vision angle, several steps
will be scaled between 0 and 1, and average velocity will be calculated.
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5.4.5 How We Tested Our Model

The result of the predicted fifth step was fed to the LSTMs to predict the sixth step,

which means that the second, third, fourth, and predicted fifth step will be the new

inputs into the LSTMs to predict the sixth step. At the same time, we calculated

the average speed in order to figure out the distance for the next step, which in this

instance is the sixth step. The testing process continued to establish the rest of the

predicted steps.

5 .5 results

The LSTMs directions experiment was achieved using the open-source library Keras

Chollet et al. (2015). We ran our experiments using two simulations, SFM and FM. The

scenarios were inspired from real world situations, including the structured crowded

area, the unstructured crowded area, and the merging paths area and these were

used to examine the effectiveness of our approach. In the LSTMs experiment, we

observed four time-steps in order to predict the next five-time-steps; each time-step in

the sequence was observed and input to the machine learning algorithm. During

our observations, the average velocity for each individual was computed. In the

neural networks and genetic algorithms method, we used the same approach as in

Alajlan et al. (2020), in which the inputs to the machine learning were the values of the

closest three persons in the agent’s field of view. Some improvements were applied

to the second method to assist in the evolution of its results, such as considering the

average speed of the steps’ distance instead of constant speed. We compared our

new method that uses the LSTMs based on the direction of the individual’s cone of

vision with neural networks and genetic algorithms that were used in Alajlan et al.

(2020). In table 5.1, we present our prediction methods error based on three metrics.

For the first measurement, we illustrated the error of prediction using the average

displacement error, as in Pellegrini et al. (2009), which calculates the mean Euclidean

distance between predicted points and the ground truth, through all time-steps.
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ADE(P̂, P) =
1
T

T

∑
i=1

√
(Xi − X̂i)2 + (Yi − Ŷi)2 (5.3)

For the second measurement, we used the final displacement error, which calcu-

lates the mean Euclidean distance between the predicted final step and the true final

position, as in Alahi et al. (2016).

FDE(P̂, P) =
√

(XF − X̂F)2 + (YF − ŶF)2 (5.4)

For the third measurement, we reported the cumulative distance error (CDE), as

in Alajlan et al. (2020). For the CDE, we calculated the average distance between

the predicted final point and the true final position, divided by the average distance

between the step from which we had started our prediction and the true final step;

finally, we multiplied the result by 100 to give the error as a percent of the total

movement.

CDE(P̂, P) =
1
N

N

∑
i=1

√
(XF − X̂F)2 + (YF − ŶF)2√
(XF − X̂S)2 + (YF − ŶS)2

× 100 (5.5)

In the results, we included the average for each method in its simulation type over

all scenarios.

5.5.1 LSTM-Direction vs. NN-GA

To determine whether our new method, LSTMs-based direction (LSTM-direction) that

predicts trajectories, is superior to the neural networks and genetic algorithms (NN-

GA) approach in Alajlan et al. (2020), we compared these two algorithms. The LSTMs-

direction algorithm, uses past directions inside the cone of vision, while the (NN-GA)

algorithm uses the closest three persons in the individual’s field of view. Second, we

used two movement simulations, and multiple scenarios with different densities of
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crowds (low density-high density) assure that both approaches were stringently tested.

The results in Table 5.1 show that the new technique that uses (LSTMs-direction)

outperforms the (NN-GA) in both simulations, and for every dataset.

5.5.2 Low Density vs. High Density Scenarios

We present our observations about the variation between low density and high density

in our results in Figure 5.6. In the SFM, the structured crowded areas/unstructured

crowded areas showed superior results in low density for both algorithms, while the

merging paths scenario had a lower error in the high density scenario. On the other

hand, the FM structured crowded area with low density created less fewer errors than

high density, while the merging paths areas high density outperformed low density.

In the unstructured crowded areas of the FM, each algorithm acted differently; the

high-density was superior to the low density in the LSTM-direction situation; and,

the low density produced minimal error in the NN-GA situation.

5.5.3 Average and Final Errors

The innovation of our new method is to employ the strategy that we previously used

with a (NN-GA) based on the closest people in the cone of vision, but to draw a

pattern of the past individuals’ directions in their field of view. Additionally, we

tested the approach with multiple behaviors and scenarios. We observed the pilgrims’

behavior on some watchtowers’ cameras from the Hajj 2019 to design our flocking

model. In the social force model, we simulated the model that was suggested by Hel-

bing and Molnar (1995) to imitate another behavior for pedestrians. We implemented

a diversity of simulations, crowd densities, and scenarios. Table 5.1 presents the

resulting difference between our approaches for all three error metrics. Every scenario

has two densities of pedestrians. Each density has been tested on two datasets, one

belonging to the flocking model, and one belonging to the social force model. Each

dataset was used to test two prediction approaches, the (LSTMs-direction) and the

(NN-GA).
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(a) The cumulative distance error in LSTM-
direction for a flocking model simulation be-
tween a low-density crowd and a high-density
crowd.

(b) The cumulative distance error in NN-GA
for a flocking model simulation between a low-
density crowd and a high-density crowd.

(c) The cumulative distance error in LSTM-
direction for the social force model simulation
between a low-density crowd and a high-
density crowd.

(d) The cumulative distance error in NN-GA for
a social force model simulation between a low-
density crowd and a high-density crowd.

F igure 5 .6 : Low density-high density Cumulative Distance Error (CDE). Note the
larger scale for the NN-GA model
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Table 5 .1 : The results for the two prediction approaches in different simulation
types and different scenarios. We report the performance for each algorithm using
three metrics. The first four rows represent the average displacement error, the
next four rows represent the final displacement error, and the last four rows show
the cumulative distance error. Regarding simulations, algorithms, and scenarios,
the second column represents the simulation type, the third column is the kind of
algorithm, and the rest show various crowd scenarios. The LSTM-direction-based
prediction outperforms NN-GA-based prediction in all cases

Structured Unstructured Merging Avg.Low
D.

High
D.

Low
D.

High
D.

Low
D.

High
D.

Avg.
disp.
error

SFM LSTM-
direction

0.398 0.439 0.486 0.687 0.371 0.313 0.449

NNs&
GAs

0.660 0.752 0.630 0.736 1.468 1.39 0.939

FM LSTM-
direction

0.064 0.089 0.215 0.197 0.034 0.016 0.102

NNs&
GAs

0.123 0.136 0.344 0.692 0.072 0.056 0.237

Final.
disp.
error

SFM LSTM-
direction

0.696 0.786 0.830 1.172 0.678 0.606 0.794

NNs&
GAs

1.124 1.278 1.092 1.264 2.446 2.373 1.596

FM LSTM-
direction

0.152 0.158 0.466 0.391 0.062 0.02 0.208

NNs&
GAs

0.244 0.273 0.580 0.879 0.139 0.109 0.370

CDE
SFM LSTM-

direction
18.5% 22.16% 21.76% 32.85% 41.02% 35.98% 28.71%

NNs&
GAs

29.82% 35.80% 28.39% 35.27% 146.8% 142.33% 69.73%

FM LSTM-
direction

5.7% 10.6% 28.9% 23.3% 5.5% 2.8% 12.8%

NNs&
GAs

9.37% 15.55% 34.35% 56.2% 12.41% 10.62% 23.08%
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5 .6 conclusion

Our proposed new method, called (LSTM-direction) uses the individuals’ directions

in their cones of visions to track the patterns for pedestrians several steps, to predict

the future trajectory based on the past patterns and past average speed. We compared

our new technique with the strategy that has been used in [3], that we call (NN-GA),

which used the cone of vision to determine the closest three persons in the field of

view as inputs to the prediction algorithm. The results show that (LSTM-direction)

is superior to (NN-GA) in every dataset on which we experimented. Our datasets

collected data from two simulation types, two different densities of pedestrians, and

three scenarios from the real world. Our approach is focused on the pedestrians’ field

of view, because usually people in structured crowded zones, such as in the Hajj, are

confined by their cone of vision.

The necessity for improving crowd management criteria motivated us to focus our

research on a the fertile field of crowd management, which includes humans’ move-

ments prediction. In this we research we concentrated on the behavior of structured

crowded areas, such as the holy places in Mecca. Saudi Arabian authorities recently

created a vital means for how to improve the system of crowd management. However,

there are two substantial matters that will be serious issues for the Hajj in the future:

the increased number of pilgrims from three million to five million; and, digitizing the

plan for the Hajj to include tracking pilgrims. The plan of obtaining immediate data

from pilgrims’ locations encouraged us to try to help and to be a part of the improved

plan. Our future work will concentrates on predicting humans’ movements for long

trajectories, which we believe is doable. Moreover, this could assist the organizers’

awareness ahead of time of any disaster that might occur in the pedestrians’ path; for

example, in the case of designing a barriers among the pilgrims.
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chapter 6

Many Scenarios in Predicting Human Movement in Crowds

6 .1 summary

To continue testing our methods and comparing the results, we tested the LSTM-

Direction, and the NN-GA techniques on multiple scenarios that correspond to com-

monly observed scenarios in crowd control situations. These are: an intersection,

a structured crowded area, an unstructured crowded area (part 1), an unstructured

crowded area (part 2), merging paths, and a waypoints path in the crowd behavior

of the Social Force Model(SFM). Additionally, to test the limits of the algorithms we

lengthened the period of time for both observations and predictions.

6 .2 introduction

All of these scenarios are common in daily life. The Hajj, which is one of the largest

gatherings of people in the world, has all of these scenarios during the Hajj journey.

The structured crowded area, which is one of the popular paths for people to move

from one ritual area to another, was simulated and is illustrated in Figure 6.1(b). The

unstructured crowded area (part 1) scenario, which was the deadliest disaster in the

history of the Hajj, was simulated and is illustrated in Figure 6.1(c). Intersections,

which are common in Mina ritual places, were simulated and are illustrated in Figure

6.1(a). The unstructured crowded area (part 2), which is common during the night

life at the Hajj, was simulated and is illustrated in Figure 6.1(d). Merging paths, also

common at the Hajj, was simulated and is illustrated in Figure 6.1(e). The waypoints

path, another path that is common during the Hajj, was simulated and is illustrated

in Figure 6.1(f)
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(a) Intersection simulation, in which people move
from the top to their targets in the bottom, and
from left to their targets on the right. They
collide in the intersection before continuing to
their targets.

(b) Structured crowd simulation, in which people
tend to move from left to right.

(c) Unstructured crowd simulation (part1), in
which people on the sides move at random to
a paired random location on the opposite side,
initially at random speed.

(d) Unstructured crowd simulation (part 2), in
which people move from one place to another,
randomly selected, goal point; once the agent
reached his target he immediately headed to
another randomly selected target.
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(e) Merging paths, in which people come from
different paths and merge into one path.

(f) Waypoints path, in which people stop at
different points for a while before continuing to
their final goal

F igure 6 .1 : The figure illustrates NetLogo simulations of all scenarios in crowds



85

6 .3 intersection

In the intersection, agents come from different paths, then pass through the intersec-

tion to their destination, which causes two structured crowds to overlap while in the

intersection. There are three locations where we evaluated our prediction: before the

agents enter the intersection, when the agents overlap in the intersection, and after

the agents pass through the intersection. Our evaluations in this scenario used 5 time-

steps, and the total number of predictions was 25 time-steps. In all three locations,

we observed the agent every fifth time-step for five steps, then we predicted the next

location at every fifth time-step, for a total prediction time of 25 time-steps.Although

the results for the LSTM-Direction are close inside the intersection and after the

intersection, we observed a small difference between the outcomes. The average

displacement error (ADE) results, the final displacement error (FDE) results, and

the cumulative distance error (CDE) results all produced larger errors inside the

intersection. On the other hand, the NN-GA showed various results in these three

locations; before agents entered the intersection had the lowest error in comparison

with other locations. Finally, the LSTM-Direction did a better job in all three locations

than the NN-GA.

6 .4 structured crowded area

The structured crowded area is described as one in which the whole population moves

in one direction, and they head toward one targeted destination. In this environment,

the agents moved from the left to the right to their goals with different speeds. Our

evaluations in this scenario were based on three factors: these included the 1 time-step

where the total number of predictions was 5 time-steps; 5 time-steps where the total

number of predictions was 25 time-steps, and 10 time-steps where the total number

of predictions is was 50 time-steps. That is, 10 time-steps means that we observed

the agent every tenth time-steps for five steps, then we predicted the next locations

at every tenth time-step, which is 50 time-steps in total prediction time. The results

for in table 6.2 both the LSTM-Direction and the NN-GA showed growth in ADE and

FDE as the time passed, but the CDE decreased during the same period. Our new
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Table 6 .1 : Illustrates the difference between the LSTM-Direction and the NN-GA in
the three locations that included before the intersection, inside the intersection, and
after the intersection. Three metrics were used: ADE, FDE, and CDE. Note the larger
number in the error rate of the NN-GA model. Note the larger number in the error
rate of the NN-GA model.

Before Intersection- 5 Time-steps
Metrics LSTM NN-GA
Average
Displacement
Error

3.686 3.989

Final Displace-
ment Error

4.831 6.434

Cumulative Dis-
tance Error

20.07% 26.73%

Inside Intersection- 5 Time-steps
Metrics LSTM NN-GA
Average
Displacement
Error

4.245 5.447

Final Displace-
ment Error

5.833 8.719

Cumulative Dis-
tance Error

29.63% 44.29%

After Intersection- 5 Time-steps
Metrics LSTM NN-GA
Average
Displacement
Error

3.724 4.819

Final Displace-
ment Error

5.752 7.828

Cumulative Dis-
tance Error

29.47% 40.11%
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(a) The average distance error in the LSTM-
Direction and the NN-GA for before intersec-
tion, inside intersection, and after intersection.

(b) The final distance error in the LSTM-
Direction and the NN-GA for before intersec-
tion, inside intersection, and after intersection.

(c) The cumulative distance error in the LSTM-
Direction and the NN-GA for before intersec-
tion, inside intersection, and after intersection.

F igure 6 .2 : Intersection: before intersection, inside intersection, and after
intersection ADE, FDE, and CDE for the LSTM-Direction model and the NN-GA
model.
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(a) Before intersection LSTM-Direction (all
agents).

(b) Before intersection: NN-GA (all agents).

(c) Inside intersection:LSTM-Direction (all
agents).

(d) Inside intersection:NN-GA (all agents).
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(e) After intersection:LSTM-Direction (all agents) (f) After intersection:NN-GA (all agents)

F igure 6 .3 : The graphs illustrate all agents in the three places before reaching
the intersection, inside the intersection, and after passing through the intersection.
The colors represent the following: black indicates the points where the agents start
moving; pink indicates the points where the prediction starts; green indicates the
last step of prediction; and red indicates the last step of ground truth. Note how
the spread of prediction in green points inside the intersection, which has the worst
outcomes between the three places for each method. Note the spread of prediction
(green points) inside the intersection; this produced the worst outcomes among the
three places for each method.
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(a) Before intersection LSTM-Direction one
agents) with final distance error= 4.259

(b) Before intersection: NN-GA (one agents) with
final distance error= 6.177

(c) Inside intersection:LSTM-Direction (one
agents) with final distance error= 1.573

(d) Inside intersection:NN-GA (one agents)with
final distance error= 6.142
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(e) After intersection:LSTM-Direction (one agents)
with final distance error= 7.145

(f) After intersection:NN-GA (one agents) with
final distance error= 8.121

F igure 6 .4 : These figures illustrates an example of one agent from each place
(before reaching the intersection, inside the intersection, and after passing through
the intersection). The colors represent the following: black indicates the points
where there is no observation or prediction; pink indicates an observation point;
green indicates prediction points; and red indicates ground truth points.Note the
predictions tend to be smoother, more of a straight line, than the actual movement.
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measurement "CDE" gave us a new view of our results. The LSTM-Direction gave

better results in all scenarios.

6 .5 unstructured crowded area (part 1 )

In the unstructured crowded scene (part 1), we created an environment that has two

populations, one heading from right to left, and the other moving in the opposite

way. Each agent had a specific target and tried to reach the goal in the shortest

path. The time strategy in this unstructured crowded area used 5 time-steps, as in the

intersection scenario, where the total number of predictions was 25 time-steps. Our

evaluations were based on three different locations, before the two crowds met with

each other, during the meeting, and after the meeting. The results for this experiment

showed promising outcomes in the LSTM-Direction. In the NN-GA tests, we realized

the experiment’s outcomes improved after the interference, but the worst results for

both methods were during the interference.

6 .6 unstructured crowded area (part 2 )

In the scenario of an unstructured crowded area (part 2), there were some changes

in factors that differed from the unstructured crowded area (part 1). In this specific

scenario, every agent moved from one point to another, randomly selected, goal point.

Once the agent reached a goal point it immediately headed to another randomly

selected goal point (i.e. the agents bounced from goal point to goal point), and

so forth. Our evaluations in this unstructured crowded area were based on three

different approaches, as they were in the structured crowded area: the time strategy

of the 1 time-step, 5 time-steps, and 10 time-steps. The errors for ADE, FDE, and CDE

increased as the time-steps increased. The CDE results for the last approach, 10 time-

steps, produced a large number of errors. Although the LSTM-Direction produced

a smaller number than the NN-GA, neither could be trusted at the specific scenario,

which was the 10 time-steps of unstructured crowded area (part 2).
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Table 6 .2 : This table illustrates the difference between the LSTM-Direction and the
NN-GA in the structured crowded area and included 1 time-step, 5 time-steps, and
10 time-steps. Three metrics were used: ADE, FDE, and CDE.

Structured - 1 Time-step
Metrics LSTM NN-GA
Average
Displacement
Error

0.984 1.159

Final Displace-
ment Error

1.639 1.967

Cumulative Dis-
tance Error

47.73% 57.26%

Structured- 5 Time-steps
Metrics LSTM NN-GA
Average
Displacement
Error

3.618 4.88

Final Displace-
ment Error

5.756 7.993

Cumulative Dis-
tance Error

33.96% 47.16%

Structured- 10 Time-steps
Metrics LSTM NN-GA
Average
Displacement
Error

7.081 7.472

Final Displace-
ment Error

9.399 12.211

Cumulative Dis-
tance Error

25.11% 32.63%
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(a) The average distance error in the LSTM-
Direction and the NN-GA for 1 time-step, 5

time-steps, and 10 time-steps.

(b) The final distance error in the LSTM-
Direction and the NN-GA for 1 time-step, 5

time-steps, and 10 time-steps.

(c) The cumulative distance error in the LSTM-
Direction and the NN-GA for 1 time-step, 5

time-steps, and 10 time-steps.

F igure 6 .5 : Structured: 1 time-step, 5 time-steps, and 10 time-steps ADE, FDE, and
CDE for the LSTM-Direction model and the NN-GA model.The error increase in the
ADE, and FDE as the time passed, but the CDE error decreased as the time passed.
Note that in this structured crowded area scenario, we are obtaining a more accurate
results in the CDE when time passed. The error increased in the ADE, and the FDE as
time passed, but the CDE error decreased as time passed. Note that in this structured
crowded area scenario, we obtained more accurate results in the CDE when time
passed.
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(a) 1 time-step: LSTM-Direction (all agents). (b) 1 time-step: NN-GA (all agents).

(c) 5 time-steps: LSTM-Direction (all agents). (d) 5 time-steps:NN-GA (all agents).
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(e) 10 time-steps:LSTM-Direction (all agents) (f) 10 time-steps:NN-GA (all agents)

F igure 6 .6 : Structured crowded area: The following illustrates all agents in the
three scenarios that included 1 time-step, 5 time-steps, and 10 time-steps. The colors
represent the following: black indicates the points where the agents start moving;
pink indicates the points where the prediction starts; green indicates the last step of
prediction; and red indicates the last step of ground truth.
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(a) Structured 1 time-step: LSTM-Direction one
agents) with final distance error= 0.782

(b) Structured 1 time-step: NN-GA (one agents)
with final distance error= 0.984

(c) Structured 5 time-steps:LSTM-Direction (one
agents) with final distance error= 0.919

(d) Structured 5 time-steps:NN-GA (one
agents)with final distance error= 1.963
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(e) Structured 10 time-steps:LSTM-Direction (one
agents) with final distance error= 9.622

(f) Structured 10 time-steps:NN-GA (one agents)
with final distance error= 14.276

F igure 6 .7 : These figures illustrates an example of one agent from each place
and includes 1 time-step, 5 time-steps, and 10 time-steps. The colors represent the
following: black indicates the points where there is no observation or prediction; pink
indicates an observation point; green indicates prediction points; and red indicates
ground truth points.
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(a) The average distance error in the LSTM- Di-
rection and the NN-GA for before interference,
inside interference, and after interference.

(b) The final distance error in the LSTM- Di-
rection and the NN-GA for before interference,
inside interference, and after interference.

(c) The cumulative distance error in the LSTM-
Direction and the NN-GA for before interfer-
ence, inside interference, and after interference.

F igure 6 .8 : Unstructured (part 1): before interference, inside interference, and after
interference ADE, FDE, and CDE for the LSTM-Direction model and the NN-GA
model.
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(a) Before the interference: LSTM-Direction (all
agents)

(b) Before the interference:NN-GA (all agents)

(c) During the interference:LSTM-Direction (all
agents)

(d) During the interference:NN-GA (all agents)
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(e) After the interference:LSTM-Direction (all
agents)

(f) After the interference:NN-GA (all agents)

F igure 6 .9 : Unstructured crowded area (part 1): The following illustrates all agents
in the three scenarios and include before the interference, during the interference, and
after the interference. The colors represent the following: black indicates the points
where the agents start moving; pink indicates the points where the prediction starts;
green indicates the last step of prediction; and red indicates the last step of ground
truth.
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(a) Unstructured 1 before the interference: LSTM-
Direction one agents) with final distance error=
1.883

(b) Unstructured 1 before the interference: NN-GA
(one agents) with final distance error= 7.015

(c) Unstructured 1 during the interference:LSTM-
Direction (one agents) with final distance error=
6.105

(d) Unstructured 1 during the interference:NN-GA
(one agents)with final distance error= 7.233
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(e) Unstructured 1 after the interference:LSTM-
Direction (one agents) with final distance error=
5.954

(f) Unstructured 1 after the interference:NN-GA
(one agents) with final distance error= 7.283

F igure 6 .10 : Unstructured crowded area (part 1): These figures illustrate an
example of one agent from each place and includes before the interference, during
the interference, and after the interference. The colors represent the following: black
indicates the points where there is no observation or prediction; pink indicates an
observation point; green indicates prediction points; and red indicates ground truth
points.
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(a) The average distance error in the LSTM-
Direction and the NN-GA for 1 time-step, 5

time-steps, and 10 time-steps.

(b) The final distance error in the LSTM-
Direction and the NN-GA for 1 time-step, 5

time-steps, and 10 time-steps.

(c) The cumulative distance error in the LSTM-
Direction and the NN-GA for 1 time-step, 5

time-steps, and 10 time-steps.

F igure 6 .11 : : Unstructured crowded area (part 2): 1 time-step, 5 time-steps, and
10 time-steps ADE, FDE, and CDE for the LSTM-Direction model and the NN-GA
model.
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(a) 1 time-step: LSTM-Direction (all agents). (b) 1 time-step: NN-GA (all agents).

(c) 5 time-steps: LSTM-Direction (all agents). (d) 5 time-steps:NN-GA (all agents).
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(e) 10 time-steps:LSTM-Direction (all agents) (f) 10 time-steps:NN-GA (all agents)

F igure 6 .12 : Unstructured crowded area (part2): The following illustrates all agents
in the three scenarios that included 1 time-step, 5 time-steps, and 10 time-steps. The
colors represent the following: black indicates the points where the agents start
moving; pink indicates the points where the prediction starts; green indicates the
last step of prediction; and red indicates the last step of ground truth.
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(a) Unstructured 2: 1 time-step: LSTM-Direction
one agents) with final distance error= 0.542

(b) Unstructured 2: 1 time-step: NN-GA (one
agents) with final distance error= 1.059

(c) Unstructured 2: 5 time-steps:LSTM-Direction
(one agents) with final distance error= 5.243

(d) Unstructured 2: 5 time-steps:NN-GA (one
agents)with final distance error= 6.346
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(e) Unstructured 2: 10 time-steps:LSTM-Direction
(one agents) with final distance error= 20.110

(f) Unstructured 2: 10 time-steps:NN-GA (one
agents) with final distance error= 40.61

F igure 6 .13 : Unstructured crowded area (part 2): These figures illustrate an
example of one agent from each place that included 1 time-step, 5 time-steps, and 10

time-steps. The colors represent the following: black indicates the points where there
is no observation or prediction; pink indicates an observation point; green indicates
prediction points; and red indicates ground truth points.
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Table 6 .3 : Illustrates the difference between the LSTM-Direction and the NN-GA in
the unstructured crowded area (part 1) and included before the interference, during
the interference, and after the interference. Three metrics were used: ADE, FDE, and
CDE.

Unstructured (part 1) - Before Interference 5 time-steps
Metrics LSTM NN-GA
Average
Displacement
Error

3.789 5.031

Final Displace-
ment Error

5.656 8.09

Cumulative Dis-
tance Error

25.25% 41.85%

Unstructured (part 1) - Inside Interference 5 time-steps
Metrics LSTM NN-GA
Average
Displacement
Error

3.976 6.449

Final Displace-
ment Error

6.671 10.867

Cumulative Dis-
tance Error

28.34% 46.24%

Unstructured (part 1) - After Interference 5 time-steps
Metrics LSTM NN-GA
Average
Displacement
Error

4.11 4.17

Final Displace-
ment Error

6.272 6.394

Cumulative Dis-
tance Error

26.85% 27.37%

6 .7 merging paths

Another scenario was deemed worth testing was merging paths, when agents from

two different paths merge into one path because this is a common crowd scenario

and can lead to serious problems. We choose two locations from this scenario for

predicting the agents’ motion: one from before the paths merge; and the second

from after the agents have merged into one path. Both methods produced better
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Table 6 .4 : This table illustrates the difference between the LSTM-Direction and the
NN-GA in the unstructured crowded area (part 2) that included 1 time-step, 5 time-
steps, and 10 time-steps. Three metrics were used: ADE, FDE, and CDE.

Unstructured 2 - 1 Time-step
Metrics LSTM NN-GA
Average
Displacement
Error

0.513 0.61

Final Displace-
ment Error

0.881 1.067

Cumulative Dis-
tance Error

15.98% 19.33%

Unstructured 2 - 5 Time-steps
Metrics LSTM NN-GA
Average
Displacement
Error

5.313 6.346

Final Displace-
ment Error

9.175 12.126

Cumulative Dis-
tance Error

38.89% 51.40%

Unstructured 2 - 10 Time-steps
Metrics LSTM NN-GA
Average
Displacement
Error

14.123 22.309

Final Displace-
ment Error

24.522 44.614

Cumulative Dis-
tance Error

68.84% 125.24%
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Table 6 .5 : This table illustrates the difference between the LSTM-Direction and the
NN-GA in the merging paths that included before merging, and after merging. Three
metrics were used: ADE, FDE, and CDE.

Merge - Before merging
Metrics LSTM NN-GA
Average
Displacement
Error

3.288 4.555

Final Displace-
ment Error

5.142 7.193

Cumulative Dis-
tance Error

29.68% 41.52%

Merge - After merging
Metrics LSTM NN-GA
Average
Displacement
Error

3.44 3.783

Final Displace-
ment Error

4.193 5.97

Cumulative Dis-
tance Error

16.99% 24.20%

results after the paths merged, but the LSTM-Direction surpassed the NN-GA in both

scenarios. It was surprising to us that the results for after the merging of paths had

better overall outcomes than for before merging. The explanation for this is that there

seemed to be less comfort with crowd density before merging than the comfort level

with crowd density after merging; there is a narrowing of paths before merging. This

resulted in less accuracy of prediction for before merging.

6 .8 waypoints path

The last scenario we tested was a path with waypoints, in which agents stopped at

some points along their way, then continued moving to their targets. This is one of

the most common scenarios that occurs during the Hajj, where people move from

one of the ritual sites of the pilgrimage to another ritual area. Two strategies were

applied in this scenario: one was 5 time-steps, in which the total time of prediction
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(a) The average distance error in the LSTM-
Direction and the NN-GA for before merging
and after merging.

(b) The final distance error in the LSTM-
Direction and the NN-GA for before merging
and after merging.

(c) The cumulative distance error in theLSTM-
Direction and the NN-GA for before merging
and after merging.

F igure 6 .14 : Merge: before merging and after merging ADE, FDE, and CDE for the
LSTM-Direction model and the NN-GA model.
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(a) Before Merging: LSTM-Direction (all agents). (b) Before Merging: NN-GA (all agents).

(c) After Merging: LSTM-Direction (all agents). (d) After Merging:NN-GA (all agents).

F igure 6 .15 : Merge: The following illustrates all agents in the two scenarios that
included before merging, and after merging. The colors represent the following: black
indicates the points where the agents start moving; pink indicates the points where
the prediction starts; green indicates the last step of prediction; and red indicates the
last step of ground truth.
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(a) Merge: Before merging, LSTM-Direction one
agents) with final distance error= 0.840

(b) Merge: Before merging, NN-GA (one agents)
with final distance error= 0.882

(c) Merge: After merging,:LSTM-Direction (one
agents) with final distance error= 8.476

(d) Merge: After merging,NN-GA (one agents)with
final distance error= 10.488

F igure 6 .16 : Merge: These figures illustrate an example of one agent from each
place that included before merging, and after merging. The colors represent the
following: black indicates the points where there is no observation or prediction; pink
indicates an observation point; green indicates prediction points; and red indicates
ground truth points.
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Table 6 .6 : Waypoints path:This table illustrates the difference between the LSTM-
Direction and the NN-GA in thewaypoints path that included 5 time-steps, and 10

time-steps. Three metrics were used: ADE, FDE, and CDE.

Waypoints - 5 time-steps
Metrics LSTM NN-GA
Average
Displacement
Error

4.118 4.236

Final Displace-
ment Error

6.613 7.021

Cumulative Dis-
tance Error

29.18% 30.98%

Waypoints - 10 time-steps
Metrics LSTM NN-GA
Average
Displacement
Error

6.471 8.105

Final Displace-
ment Error

10.587 13.926

Cumulative Dis-
tance Error

21.79% 28.67%

was 25 time-steps; the second strategy is was 10 time-steps, in which the total time

of prediction is was 50 time-steps. The outcomes had a growth error in ADE, and

FDE when prediction time lengthened. In contrast, the CDE decreased when the

prediction time lengthened. The LSTM-Direction was superior to the NN-GA in both

approaches.

6 .9 conclusions

Avoiding static, or dynamic obstacles plays a very important part in human movement

prediction. Our work covered most of the scenarios that happen in daily life. We

focused on the scenarios that usually have higher crowd density. We tested two

methods, the LSTM-Direction and the NN-GA, on all scenarios. We conclusively

found that the LSTM-Direction outperformed the NN-GA in every scenario. Although

the LSTM-Direction is superior, but the results in some scenarios are close. That
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(a) The average distance error in the LSTM-
Direction and the NN-GA for 5 time-steps and
10 time-steps.

(b) The final distance error in the LSTM-
Direction and the NN-GA for 5 time-steps and
10 time-steps.

(c) The cumulative distance error in the LSTM-
Direction and the NN-GA for 5 time-steps and
10 time-steps.

F igure 6 .17 : Waypoints: 5 time-steps and 10 time-steps ADE, FDE, and CDE for
the LSTM-Direction model and the NN-GA model.
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(a) Waypoints 5 time-steps: LSTM-Direction (all
agents).

(b) Waypoints 5 time-steps: NN-GA (all agents).

(c) Waypoints 10 time-steps: LSTM-Direction (all
agents).

(d) Waypoints 10 time-steps:NN-GA (all agents).

F igure 6 .18 : Waypoints: The following illustrate all the agents in the two scenarios
that included 5 time-steps, and 10 time-steps. The colors represent the following:
black indicates the points where the agents start moving; pink indicates the points
where the prediction starts; green indicates the last step of prediction; and red
indicates the last step of ground truth.
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(a) Waypoints: 5 time-steps, LSTM-Direction one
agents) with final distance error= 4.004

(b) Waypoints: 5 time-steps, NN-GA (one agents)
with final distance error= 6.813

(c) Waypoints: 10 time-steps,LSTM-Direction (one
agents) with final distance error= 4.008

(d) Waypoints: 10 time-steps,NN-GA (one
agents)with final distance error= 4.357

F igure 6 .19 : Waypoints: These figures illustrate an example of one agent from
each place that included 5 time-steps, and 10 time-steps. The colors represent the
following: black indicates the points where there is no observation or prediction; pink
indicates an observation point; green indicates prediction points; and red indicates
ground truth points.
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encourages us to test more scenarios in the future, since we cannot be certain that the

LSTM-Direction will always surpass the NN-GA. Both produced better Cumulative

Distance Error (CDE) outcomes when the prediction was longer, with the exception

of the unstructured crowded area (part 2). Yet, we can say the LSTM-Direction

outperformed NN-GA in all of the scenarios we tested.
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chapter 7

Conclusion

7 .1 conclusion and future work

The primary goal of delving into this research was to develop novel techniques for

predicting human movements. Our research produced a new metric, new methods,

and a new perspective on this problem. This research addressed a number of specific

issues in the field.

First, our investigation compared the performance of two algorithms: neural net-

works trained via a genetic algorithms (NN-GA), and long short-term memory (LSTM).

The objectives was to discover if the NN-GA is effective in the prediction of human

movements. In our first investigation in Chapter 3, we used the NN-GA with two

types of scenarios: structured crowded areas, and unstructured crowded areas. To

test the effectiveness of using the NN-GA, we compared the two methods, one of

which used the NN-GA to predict the future steps, and the other that did not use any

algorithm for prediction. Our results showed how that the NN-GA algorithm was

effective in trajectory prediction.

Second, we expanded our work to include many scenarios, several behaviors, and

more than one method using the two prediction algorithms: NN-GA and LSTM-

Direction. We demonstrated that the LSTM-Direction outperformed NN-GA in all

scenarios and in different behaviors in Chapter 5. Our tests included several scenarios:

low density and high density crowds, structured and unstructured crowds, and a

short period of prediction time or a long period of prediction time. For behaviors we

tested the flocking model (FM) and social force model (SFM).

Third, we demonstrated that each scenario leads to different prediction results,

which was demonstrated using three metrics, average distance error (ADE), final

distance error (FDE), and cumulative distance error (CDE). The CDE is the most

convincing metric of the three; it can address questions regarding prediction over
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different time periods with different datasets and methodologies by normalizing the

error over time. Using CDE we observed different prediciton accuracy in different sce-

narios, which demonstrated that in making predictions it is necessary to differentiate

between scenarios and take each one individually. The outcomes of this research was

published in Alajlan et al. (2021). Our evaluations were based on the three metrics,

ADE, FDE, and CDE. In the ADE, we took the average distance between the predicted

step and the ground truth at each step as in Pellegrini et al. (2009).

ADE(P̂, P) =
1
T

T

∑
i=1

√
(Xi − X̂i)2 + (Yi − Ŷi)2 (7.1)

The second metric, FDE, measures the average distance between the final predicted

step and the final ground truth.

FDE(P̂, P) =
√

(XF − X̂F)2 + (YF − ŶF)2 (7.2)

The third metric, CDE, measures the average distance between the final predicted

step and the final ground truth divided by the average distance between the final

ground truth location and the location from which we started the prediction. We then

multiplied that result by 100 to obtain the percentage error in distance as a function

of the distance moved.

CDE(P̂, P) =
1
N

N

∑
i=1

√
(XF − X̂F)2 + (YF − ŶF)2√
(XF − X̂S)2 + (YF − ŶS)2

× 100 (7.3)

7 .2 summary of implementations

We used the Python programming language, a high-level programming language, as

our primary language to execute and train the prediction algorithms in this research.

For the algorithms, we used python open-source library Keras Chollet et al. (2015) in

both algorithms. The Python open-source library PyGAD that works with keras was
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used with the NN-GA. The second language in this research was the Netlogo, a multi-

agent programmable modeling environment, to model the behaviors of agents. The

movement behaviors were based on existing simulations used in published papers:

the Social forces Model (SFM) introduced by Helbing and Molnar (1995), and the

Flocking Model (FM) that introduced by Reynolds (1987). During simulation we

recorded the linear difference between any two steps for each agent as the distance

and speed for that specific agent at that time-step. The base information for every

agent at each time-step was based on the following data: the agent ID, the specific

time, and the (X,Y) for this agent. We then transferred all this information to a text

files for analysis in Python.

7 .3 future works for predicting human movements in

dense crowds

This research has focused on dense crowds and the small spaces that pedestrians may

have to move through in specific situations. We have studied how people behave

in these situations, and based on that study, developed and tested techniques for

predicting pedestrian’s movement in crowds.

Working closely on behalf of the pilgrims will be a focus in future research. The

Saudi Arabian authorities are going to require each pilgrim at the Hajj to wear a watch

or wristband beginning in 2030. These tracking devices will provide the opportunity

to locate each person at every spot during the five days of Hajj. Since this research

focuses on dense crowds, we plan to work with the authorities to optimize the pre-

diction of the pilgrims’ movement. Future research focus will be on the Jamarat in

the Mina ritual place, which is where the three walls (formerly pillars) are located. In

this cases a pilgrim stops at the first pillar to throw stones seven times and then, in

an orderly fashion, moves to the next two pillars to do the same. We have designed a

scenario in Chapter 6, and specifically in section 6.8 that has waypoints for the period

when the agents stop at specified point and then move to either another point or to

his/her destination.
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(a) Image of Jamarat building and bridges that let people go through.
Image from:
https://www.nytimes.com/interactive/2015/09/24/world/middleeast/mecca-
mina-stampede-hajj-maps.html

(b) Another Image of Jamarat building and bridges.
Image from: https://www.bbc.com/news/world-middle-east-34361122

F igure 7 .1 : Examples of two major regimes of nominal crowd flow.
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Table 7 .1 : Social distancing: This table illustrates the difference between the LSTM-
Direction and the NN-GA in the social distancing scenario includes 1 time-step. Three
metrics were used: ADE, FDE, and CDE.

Structured- 1 time-step With social distancing
Metrics LSTM NN-GA
Average
Displacement
Error

1.066 2.814

Final Displace-
ment Error

1.803 4.461

Cumulative Dis-
tance Error

51.63% 127.74%

One of the reasons why we will focus our future work on the Jamarat ritual place,

is because it has had many sad accidents that have resulted a large number of deaths.

Even though the accidents at the Jamarat building have lessened during the last ten

years, the Saudi Arabian authorities intend to raise the pilgrims’ numbers to twice the

2019 number, which was 2.5 million pilgrims, by the year 2030.

Another future focus will be on the real actual structured crowded areas in the Hajj,

where people move from one point to another with the same direction and the same

goal. These paths are considered as important areas for more organization during the

Hajj. Figures 7.1 show how pilgrims move in these pedestrians’ paths.

7 .4 social distancing scenario

In the last two years, we have seen how important social distancing is, specifically in

gatherings such as sport events. Based on Brauer (2021) more variants of COVID-19

are expected in the future, and that the virus will evolve, and mutate, which means

we can expect the situation of mask-wearing and distancing socially to continue at

some point in the future. We tested one scenario incorporating social distancing, and

we intend to test more scenarios in our future work. In the social forces model social

distancing is modeled by increasing the social avoidance force, causing individuals

to be more strongly ‘repelled’ by each other. Obtaining a real dataset for social
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distancing in the future will help us to be more accurate in our predictions, especially

in crowds. Table 7.1 illustrates the difference of results between the NN-GA and

the LSTM-Direction for one scenario in a structured crowded area (1 time-step). As

in previous experiments LSTM performed much better than NN-GA in predicting

human movement. Given the risk of future pandemics, combined with worldwide

population growth, and ever increasing crowds, improved methods to predict human

movement in large crowds under varying distancing scenarios will be critical for

protecting human lives and thus a research area of growing importance.
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appendix a

Supplementary Information to Chapter 2

a .1 table of papers

Table a .1 : The table briefly summarizes all papers to provide the comprehensive
aspects of each paper. Overall approach, output, and the metrics used are the labels
that describe the method. The list of metrics’ abbreviations can be found at the end
of table.

Paper Overall Approach Objective/Output Metrics

Zhang et al.

(2019)

State refinement module

for LSTM (SR-LSTM)

To consider the current

neighbor states for timely

inference. To introduce

a socially aware informa-

tion selection mechanism

to support the extraction of

social information.

ADE, FDE

Xue et al.

(2019)

Location-Velocity

Attention LSTM

To combine the location

and velocity of informa-

tion optimally to enhance

trajectory prediction accu-

racy.

ADE, FDE

Continued on next page
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Table a.1 – continued from previous page

Paper Overall Approach Objective/Output Metrics

Shi et al.

(2020)

Multimodal interaction-

aware trajectory prediction

To consider spatial social

awareness and temporal

movements of the agents

when predicting trajecto-

ries. To utilize coordi-

nate transformation to rep-

resent the relative motion

between people.

ADE, FDE

Dendorfer

et al. (2020)

The development of the

Goal-GAN model and then

evaluating it using differ-

ent datasets.

Multimodal trajectory pre-

diction
ADE, FDE

Singhal

and Indu

(2020)

Developing an algorithm

combined with more fea-

tures and then evaluating

it using datasets

Enhancing the accuracy of

human trajectory forecast-

ing by using visualizations

of crowded scenes

ADE, FDE

Ek-Hobak

et al. (2020)

Examining whether the

use of residual output

representations enhanced

neural network-based

trajectory forecasting

systems

Accuracy of network-

based trajectory

forecasting systems

using residual output

representations

ADE, FDE

Continued on next page
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Table a.1 – continued from previous page

Paper Overall Approach Objective/Output Metrics

Hasan et al.

(2019)

Developing MX-LSTM

model and then examining

whether the consideration

of head poses improved

the accuracy of pedestrian

trajectory prediction.

To introduce MX-LSTM

model and to assess

whether head poses

enhance the accuracy of

forecasting

ADE, FDE

Das et al.

(2020)

Comparison of two neural

networks.

To compare the accuracy

of the gated recurrent unit

(GRU) with the long short-

term memory (LSTM)

models

Mean

square

error and

mean

absolute

error

Haddad

and Lam

(2020)

Developing Graph-

to-Kernel LSTM and

evaluating its performance

To model pedestrian tra-

jectories by learning adap-

tive neighborhoods using

Graph-to-Kernel LSTM

ADE, FDE

Huang

et al. (2019)

Development of STGAT

(spatial-temporal graph at-

tention network) and eval-

uating its performance.

To develop and utilize

STGAT in predicting fu-

ture human movement in

crowded spaces

ADE, FDE

Yokojima

and Sakai

Conceptualization of

pedestrian trajectory

prediction by perceiving

pedestrians as crowds and

using abstracted features

To develop a framework

for modeling pedestrian

trajectories as crowds and

using abstracted features

N/A

Continued on next page
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Table a.1 – continued from previous page

Paper Overall Approach Objective/Output Metrics

Hasan et al.

(2018)
MX-LSTM

To integrate vislets into

the MX-LSTM model to

increase the accuracy of

trajectory prediction.

ADE, FDE,

MAE

Minoura

et al. (2019)

Utilization of object at-

tributes and semantic en-

vironment together with

LSTM

To consider object

attributes and semantic

environments to improve

trajectory prediction

accuracy.

ADE, FDE

Chen et al.

(2020)

Convolutional LSTM en-

coder–decoder

To utilize multi-channel

tensors to represent infor-

mation relating to pedestri-

ans. To develop an end-

to-end fully convolutional

LSTM model for encoding

and decoding information

and predicting trajectories.

ADE, FDE

Cheng et al.

(2018)
Social-Grid LSTM model

To improve trajectory pre-

diction using the Social-

Grid LSTM model.

ADE, FDE

Qolomany

et al. (2017)

Deep LSTM neural net-

works

To utilize Wi-Fi network

data in a deep LSTM neu-

ral network to predict hu-

man occupancy in a smart

building.

RMSE

Continued on next page



139

Table a.1 – continued from previous page

Paper Overall Approach Objective/Output Metrics

Manh and

Alaghband

(2018)

Scene-LSTM

To utilize scene informa-

tion to enhance the predic-

tion of movement trajecto-

ries using LSTM.

ADE, FDE,

NDE

Huynh

and

Alaghband

(2019)

Coupling scene-LSTM

with human movement

LSTM

To develop a forecasting

system that combines

pedestrian-LSTM with

scene-LSTM to predict

pedestrian trajectories in

static crowded scenes.

ADE, FDE,

NDE

Haddad

et al. (2019)

Spatio-temporal graph-

based LSTM

To develop an algorithm

that considers the interac-

tion between people and

dynamic elements, as well

as static objects, in trajec-

tory prediction.

ADE, FDE

Lisotto

et al. (2019)

LSTM-based model for so-

cial and scene-aware trajec-

tory prediction

To incorporate semantics

of the environment, hu-

man interactions, and past

observations into an LSTM

model to predict human

trajectories

ADE, FDE

Vemula

et al. (2018)
Social attention model

To consider the relative

significance of each pedes-

trian in a crowd to predict

human trajectories.

ADE, FDE

Continued on next page
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Table a.1 – continued from previous page

Paper Overall Approach Objective/Output Metrics

Shi et al.

(2021)
Social-DPF

To consider jointly differ-

ent interacting motion se-

quences and forecasts of

future multimodal socially-

acceptable distributions.

ADE, FDE

Gupta et al.

(2018)

Social generative adversar-

ial network (GAN)

To develop and evaluate a

novel pooling mechanism

to aggregate information,

observe motion histories,

and forecast future behav-

ior. To train the model

against a recurrent discrim-

inator to predict socially

plausible future trajecto-

ries. To utilize a novel va-

riety loss to enable diverse

predictions.

ADE, FDE

Kosaraju

et al. (2019)
Social-BiGAT

To predict trajectories by

modeling pedestrian social

interactions in each scene.

ADE, FDE

Peng et al.

(2021)
SRA-LSTM

To model social relation-

ships using the temporal

correlation of relative posi-

tions.

ADE, FDE

Continued on next page
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Table a.1 – continued from previous page

Paper Overall Approach Objective/Output Metrics

Xue et al.

(2018)
SS-LSTM

To develop a model

comprising three LSTMs

(scene, social setting, and

pedestrian) and using

scene information to

enhance human trajectory

prediction accuracy. To

utilize a circular-shaped

neighborhood to improve

prediction accuracy.

ADE, FDE

Sun et al.

(2018)

Using 3D LiDAR pose tra-

jectories instead of 2d po-

sitions, and more inputs

data (such as the rotation)

for trajectory prediction,

and orientation prediction.

Trajectory prediction, ori-

entation Prediction.

ADE,

AEDE

Xu et al.

(2018)

Each pedestrian has an

LSTM to form his/her mo-

tion; then they scaling

the movement characteris-

tic depending on the affin-

ity space.

Trajectory prediction.
ADE, FDE,

ANDE

Continued on next page
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Table a.1 – continued from previous page

Paper Overall Approach Objective/Output Metrics

Pfeiffer

et al. (2018)

Using three factors as in-

puts, velocity, surrounding

static objects, and neigh-

boring pedestrians. Model-

ing LSTM to predict pedes-

trian behaviors.

Trajectory forecasting. AEM

Deka et al.

(2018)

Using the positions, and

the surrounding environ-

ment information to feed

the SRNN.

Trajectory prediction. ADE, FDE

?

The LSTM receives the spa-

tial interaction context that

is coupled with the encod-

ing to catch the movement

feature.

Trajectory prediction. ADE, FDE

Yang and

Peters

(2019b)

LSTM-based GAN with a

group interactivities that

combines the agent’s posi-

tion and his/her head ori-

entation in the collection

Trajectory prediction. ADE, FDE

Yang and

Peters

(2019a)

Using App-LSTM, which is

to obtain a (GIM), and tak-

ing into consideration the

positions, and orientations.

Generating factual paths

for pedestrians.
ADE, FDE

Rozenberg

et al. (2021)

Using asymmetrical bidi-

rectional RRNs to predict

future trajectories.

Predicting future pedestri-

ans’ trajectories.

ADE, FDE,

Col-I, Col-

II

Continued on next page
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Table a.1 – continued from previous page

Paper Overall Approach Objective/Output Metrics

Xue et al.

(2017)

Bi-Prediction: Pedestrian

Trajectory Prediction

based on Bidirectional

LSTM Classification

Prediction of pedestrian

trajectory based on destina-

tion.

ADE, FDE

Bartoli et al.

(2018)

Context-Aware Trajectory

Prediction

To predict human trajec-

tory using context aware

model.

ADE

Amirian

et al. (2019)

Data-Driven Crowd Simu-

lation with Generative Ad-

versarial Networks

To predict human

trajectory in a data-

driven crowd. To make

simulations for crowded

areas.

The dis-

tribution

of entry

points

Choi et al.

(2019)

Predict Pedestrian Trajec-

tory Using LSTM

Predict pedestrian trajec-

tory.
ADE

Hamandi

et al. (2019)

Robots navigating like hu-

mans using deep MoTIon

algorithm.

Reduce robot-human colli-

sions.

SPD, DTW,

Proximity,

number of

collisions,

and target

location.

Xue et al.

(2017)

Bi-prediction divides the

scene into regions, and pre-

dicts a path to all possible

destinations

Predicting pedestrians’ tra-

jectories
ADE, FDE

Alajlan

et al. (2021)

Using LSTM-Direction

(cone of vision) to predict

future directions for agents

Predicting agents’ trajecto-

ries

ADE, FDE,

CDE
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Metrics abbreviations:

ADE: Average Displacement Error

FDE: Final Displacement Error

CDE : Cumulative Distance Error

AEDE: Average Eulerian angle Difference Error

ANDE: Average Non-linear Displacement Error

AEM: Average prediction Error in Meter

MAE: Mean Angular Error (in degrees)

RMSE: Root Mean Square Error

NDE: Average Nonlinear Displacement Error

SPT: Squared Path Difference

DTW: Dynamic Time Warping

(Collision rate) Col-I, Col-II: Prediction Collision, and Ground Truth Collision
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