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Abstract

The standard way to demonstrate the relevance of chiral symmetry for the NN

interaction is to consider higher partial waves of NN scattering which are ruled entirely by

chiral symmetry alone (since contacts vanish). However, in applications of NN -potentials

to nuclear structure and reactions, the lower partial waves (L ≤ 2) are the important ones,

generating the largest contributions. These lower partial waves are ruled by the dynamics

at short range, and so, when the short-range contacts were to dominate over the chiral

pion contributions in lower partial waves, then the predictions from “chiral potentials”

would have little to do with chiral symmetry. In this thesis, we address this issue and

investigate systematically the role of the (chiral) one- and two-pion exchanges, on the

one hand, and the effect of the contacts, on the other hand, in the lower partial waves

of NN scattering. Our study has also a pedagogical spin-off as it demonstrates in detail

how the reproduction of the lower partial-wave phase shifts comes about from the various

ingredients of the theory.
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Chapter 1

Introduction

1.1 Historical perspective

The theory of nuclear forces has a long history. In 1911, Rutherford discovered the

atomic nucleus by showing that a positively charged core with a small radius can describe

the large angle alpha particle scattering [1]. Then, Thomson discovered the existence of

isotopes while studying nuclear mass [2]. At this time, the first nuclear models assumed

that the electrostatic forces between protons and electrons can be the reason to keep the

nucleus together [2, 3]. In 1932, Chadwick discovered the neutron [4]. This implied that

neutrons and protons are the basic components of the atomic nucleus. Consequently, the

electromagnetic forces cannot be the reason why the nucleons bind together, because the

repulsive electrical forces between protons would blow the nucleus apart. Therefore, a

new force had to be considered to hold the nucleus together, which was called the nuclear

force or the strong force [3].

Soon after, Wigner studied the binding energies of light nuclei and concluded that the

nuclear force was strong within a short range [5]. Heisenberg [6] and Majorana [7] intro-

duced the concept of “exchange forces” to explain how the nucleus can reach saturation.

Around this period, experiment also made big progress, such as measuring the bind-

ing energy of the deuteron [8] and conducting proton-proton scattering experiments [9].

Heisenberg assumed that protons and neutrons are two different states of the same par-

ticle (nucleon), thus introducing what later was called the isospin formalism by Cassen

and Condon in 1936 [10]. It was also suggested that the new force acts about equally

strong between two protons, two neutrons, and proton and neutron, leading to the hy-

pothesis of the charge independence of nuclear forces. Since then, various theories have

been proposed to describe this force [3].

In 1935, Yukawa [11] created the first fundamental explanation for the nuclear force.

Yukawa suggested that the nucleons (protons and neutrons) would exchange sub-nuclear
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particles (eventually called mesons) between each other and this would create a force with

a finite range. The potential equivalent to this force is proportional to exp(−mr)/r.1 The

exponential contains the mass m of the exchanged particle (meson), and r is the distance

between the centers of the two nucleons. However, the nuclear force turns out to be much

more complicated because of its dependence on the spins of the two interacting nucleons.

There have been many modifications of the meson-exchange theory of nuclear forces, but

the basic concept developed by Yukawa proved to be right.

Yukawa’s theory was extended and further modifications were made by Proca [12] and

Kemmer [13]. They added pseudoscalar, pseudovector, and vector particles. In 1939, Rabi

and co-workers discovered the quadrupole moment of the deuteron and, also, measured

its magnetic moment [14]. Thus, it was realized that a tensor force was needed to describe

the quadrupole moment of the deuteron. Such a tensor force can be created by either

pseudoscalar or vector exchange. In 1946, Pauli [15] predicted that the meson was most

likely an isovector pseudoscalar particle. A year later, the pion, with a mass of about

140 MeV, was found in cosmic rays by Occhialini and collaborators [16, 17]. It was also

recognized, by Breit [18, 19] and Rosenfeld [20], that vector and scalar fields create a

spin-orbit force, which was required to explain the structure of some light nuclei.

In 1951, Taketani, Nakamura, and Sasaki introduced their historic suggestion of di-

viding the nuclear force into three regions [21]. They distinguished between a short range

(r ≤ 1 fm), an intermediate range (1 fm ≤ r ≤ 2 fm), and a long range (r ≥ 2 fm) region;

where r denotes the distance between the centers of the two nucleons. In the long range,

the one pion exchange (1PE) is dominant due to the small mass of the pion. The most

important contribution in the intermediate range is the two-pion exchange (2PE), but

also heavier mesons become relevant. Finally, in the short range, different processes play

a role for the interaction; for example, there are multi-pion exchanges, heavy mesons, and

potentially genuine quark-gluon exchanges [3].

1Throughout this thesis, we use units such that ~ = c = 1.
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In the 1950’s, the 1PE became well established as the long range part of the nuclear

force. The 1PE contribution to the nuclear force had all the features a physicist could

want from a theory, namely, easy to calculate and successful in explaining data. Next, the

two pion exchange (2PE) was considered which, however, created many problems. The ef-

forts of pion theoretical potentials are divided into two groups: Taketani-Machida-Onuma

evaluated an S-matrix directly from meson field theory [22], while the Brueckner-Watson

method was based on an expansion in the particle number and derived a potential [23].

The main differences between the two groups came from the box diagrams and the pair

terms. Pair terms denote contributions that include virtual nucleon-antinucleon states,

also known as Z-graphs. However, the pair terms lead to a πN scattering length that is

too large by about two orders of magnitude [3]. Therefore, the suppression of virtual pairs

was assumed to be a general rule of meson theory [24]. We will pick up this aspect later

on when we introduce the concept of chiral symmetry. In summary, the situation in the

1950’s was that, while the 1PE turned out to be very useful in explaining nucleon-nucleon

(NN) scattering data and the properties of the deuteron, multipion exchange could not

be treated in a satisfactory way. Thus, the pion theories of the 1950’s are generally judged

to be failures.

The situation was “rescued” in the early 1960’s by the discovery of heavy mesons,

in particular the ρ [25] and ω [26]. The ρ is a 2π and the ω is a 3π resonance, with

masses around 770− 780 MeV. As a consequence, the one-boson exchange (OBE) model

was developed [27]. This model is based on the old Yukawa idea that the nuclear force is

meson mediated. It turned out that the NN data can be described very well within the

OBE model [3, 27–30].

In the 1970’s, dispersion relations and field theoretical approaches were pursued to

further develop the meson theory of nuclear forces. One of the most elaborate models

applying dispersion relations was developed by the Paris group [31]. Dispersion theory

deals with physically observable quantities only.
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Lomon and Partovi [32] worked on a field theoretic model and evaluated the contri-

butions from 2π-exchange Feynman diagrams to the NN interaction. Moreover, around

the mid 1970s, a group of researchers at the University of Bonn, Germany, started a pro-

gram directed towards the calculation of multipion exchange diagrams including nucleon

resonances using field theory. Machleidt, Holinde, and Elster calculated two- and some

three- and four-pion exchange diagrams and extended the model to take the effects of

virtual isobar excitations into account [33]. The Bonn-potential accurately reproduces

the NN scattering data and the properties of the deuteron. The Jülich group attempted

to incorporate further correlated meson-exchange, for example, ππ and πρ [34, 35].

In the late 1980’s and early 1990’s, the Nijmegen group performed an excellent partial-

wave analysis (PWA) of all pp and np scattering data below 350 MeV [36]. This triggered

the development of the high-precision potentials of the 1990’s [37–39] that fit the proton-

proton (pp) and neutron-proton (np) scattering data below 350 MeV laboratory energy

with a χ2/datum close to one.

One of these high-precision NN potentials is the Charge-Dependent Bonn (CD-Bonn)

potential [39], the off-shell behavior of which is based upon the relativistic OBE model.

This creates non-locality which increases the triton binding energy. The Argonne group’s

high-precision potential (AV18) uses the local version of 1PE and local phenomenology

for the intermediate and short range [38].

Because of the differences in the derivation of the various models for the nuclear force,

there are differences off-shell. Due to those off-shell differences, the binding energy of the

triton varies remarkably when calculations are executed with different two-nucleon forces

(2NF) [3]. The missing binding energy is, generally, attributed to three-nucleon forces.

Three-nucleon physics is reviewed in [40].
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Despite the very successful description of most of the experimental data, the meson-

exchange based NN potentials are essentially phenomenological models because mesons

are not fundamental particles. A fundamental approach to the nuclear force has to start

from quantum chromodynamics (QCD) [41], as to be discussed in Chapter 2.
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1 2 3

Long-range

Intermediate-range

Short-range

Figure 1.1: The nuclear potential and the three ranges of the nuclear force
.

1.2 Properties of the nuclear force

The nuclear force has many intriguing properties. As discussed, the nuclear potential

depends on the range and can be divided into three parts [21] (cf. Fig 1.1). The long-

range part is mediated by 1PE. In the intermediate range, 2PE dominates. Finally, at the

short range, there are multi-pion exchanges, heavy mesons and, potentially, quark-gluon

effects.

The nuclear force is spin dependent. The earliest evidence came from the non-vanishing

quadrupole moment of the deuteron. This requires a tensor force which depends on the

orientations of the spins of the two nucleons. Moreover, there is a strong spin-orbit force

needed to explain the polarization data of NN scattering. The shell-model of the atomic

nucleus provides further evidence for the nuclear spin-orbit force.

As we are dealing with the spin dependence of the nuclear force, we should also

mention that there is a spin-spin force which, however, is not as important as the other

forces components. Furthermore, the nuclear force is isospin dependent.
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1.3 The purpose of this thesis

Since quantum chromodynamics (QCD) is the fundamental theory of strong interactions,

the most fundamental approach to nuclear forces should be based upon QCD. Since direct

QCD calculations are very involved and can only be conducted with brute computational

power (lattice QCD [42, 43]), an effective field theory (EFT) has been developed that is

based on the symmetries of low-energy QCD, particularly, chiral symmetry [41, 44–46].

These modern advances will be explained in more detail in Chapters 2 and 3. In the chiral

EFT approach to nuclear forces, a clear distinction is made between the long- and short-

range parts of the NN potential (where the long-range part includes the intermediate-

range part). While the long-range part is given by one- and multi-pion exchanges (ruled by

chiral symmetry), the short-range description consist of polynomials of increasing degree,

also known as contact terms (since the short-range nucleon structure cannot be resolved at

the low energy scale characteristic for traditional nuclear physics). Although chiral EFT

based NN potentials have been around already for more than two decades, the exact

role of the (short-ranged) contact terms versus the (long-ranged) pion-exchanges in the

quantitative description of lower partial waves (L . 2) has never been clearly investigated.

Note that in those lower partial waves, the contacts as well as pion-exchanges contribute,

while in higher partial waves (L & 3) only pion exchanges (and no contacts) are involved.

Thus, it is easy to investigate the role of pion-exchanges in higher partial waves, and

such analyses have been conducted repeatedly in the past [47–49]. However, the story

is more complicated in lower partial waves, since the contributions from contacts and

pion-exchanges need to be disentangled to obtain a clear idea of the role of both.

Such low partial wave analysis is important for the following reasons: Since lower

partial waves are more sensitive to the short range potential, one may suspect that the

contact contributions are dominant and simply override the pion-exchange contributions

in lower partial waves. Note again that only the pion-contributions are ruled by chiral
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symmetry, while the contacts are based on just the usual non-relativistic invariances and

have nothing to do with chiral symmetry.

In applications of NN -potentials to nuclear structure and reactions, the lower partial

waves make large contributions. Thus, if chiral symmetry would rule only the higher

partial waves while the lower partial wave were essentially governed by the contacts, then

the predictions from these “chiral” potentials for nuclear structure and reactions would

have little to do with chiral symmetry.

Motivated by the above concerns, the purpose of this thesis is to systematically inves-

tigate the role of the contacts, on the one hand, and the effect of the (chiral) one- and

two-pion exchange contributions, on the other hand, in the lower partial waves of chiral

NN potentials; to determine if chiral symmetry plays an essential role in those lower

waves.

In Chapter 2, we explain the foundation for chiral EFT and, in Chapter 3, we spell out

in detail the chiral NN potential construction. Finally, in Chapter 4, the investigation of

the central issue of this thesis is conducted. Chapter 5 concludes the thesis.
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Chapter 2

Chiral effective field theory

2.1 An effective field theory for low energy QCD

Originally, meson theory was believed to be the fundamental theory of strong interactions

with mesons being the field quanta in analogy to the photon in quantum electrodynamics

(QED). In QED, electrically charged particles exchange photons to create the electromag-

netic force. However, nowadays, quantum chromodynamics (QCD) is perceived to be the

fundamental theory of strong interactions. QCD deals with color-charged quarks, which

exchange gluons to create the strong force and, so, the degrees of freedom are quarks

and gluons in QCD. QED and QCD are categorized as Abelian and non-Abelian gauge

theories, respectively [41].

The force between quarks is weak at short distances corresponding to high energies.

But the force is strong at long distances (low energies). Therefore, QCD allows for per-

turbative calculations at high energies, whereas in the low energy regime it is highly

non-perturbative and therefore not solvable analytically in term of the fundamental de-

grees of freedom. For the nuclear force, the problem with QCD in the low energy regime

was solved by Weinberg in 1979 [44]. He developed an EFT that is equivalent to low-

energy QCD. This EFT uses pions and nucleons as the effective degrees of freedom instead

of quarks and gluons. A theorem by Weinberg, which became known as ”Folk Theorem,”

established a strong link between QCD and EFT that is given by observing all relevant

symmetries of the underlying theory [44, 50–52].

In summary, the EFT program consists of the following steps:

1. Identify the soft and hard scales, and the degrees of freedom appropriate for (low-

energy) nuclear physics.

2. Identify the relevant symmetries of low-energy QCD and investigate if and how

they are broken.

3. Construct the most general Lagrangian consistent with those symmetries and sym-
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metry breakings.

4. Design an organizational scheme that can distinguish between more and less im-

portant contributions: a low-momentum expansion.

5. Guided by the expansion, calculate Feynman diagrams for the problem under

consideration to the desired accuracy.

The first step on the above list is to identify a separation of scales. In the hadron

spectrum, a large gap between the masses of the pions (140 MeV) and the masses of

the vector mesons, like ρ(770) and ω(782), can clearly be identified. Thus, it is natural

to assume that the pion mass sets the soft scale, Q ∼ mπ, and the ρ mass the hard

scale, Λχ ∼ mρ, also known as the chiral symmetry breaking scale. This is suggestive of

considering an expansion in terms of the soft scale over the hard scale, Q/Λχ. Concerning

the relevant degrees of freedom, it is reasonable to assume that nucleons and pions are the

effective degrees of freedom for the ground state and the low energy spectrum of nuclei,

instead of quarks and gluons.

The second step on the list requires the EFT to observe all relevant symmetries of low-

energy QCD. In particular, chiral symmetry is of great importance here. This provides

a link between QCD and chiral EFT and makes sure that this EFT is not just another

phenomenology.

In the following subsections, we will discuss the further steps, one by one.
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(a) (b)

Figure 2.1: (a) Left handed chirality and (b) right handed chirality.

2.2 Chiral symmetry

Chirality and helicity

Chirality refers to the handedness of a particle with spin. There is also helicity, h,

which is the projection of the spin of a particle onto (the unit-vector) of its momentum.

A spin-1 particle can have h = +1 (right handed) if the direction of its spin is the same as

the direction of its motion, or h = −1 (left handed) if the spin and motion are in opposite

directions, cf. Fig. 2.1. Spin-1
2

particles have h = ±1
2
.

For particle with non-zero mass, the helicity can be altered by an observer. If we

have an observer that moves at a velocity faster than the particle, the relative velocity

will be directed in the opposite direction. In other words, one can convert a right-handed

particle into a left-handed one simply by changing the frame of reference. However,

helicity is conserved when the particle moves with the speed of light (massless particle),

because there cannot be an observer traveling faster. The (conserved) Lorentz invariance

helicity is called chirality.

The QCD Lagrangian

Nucleons are made from three up and down quarks. The interactions among quarks is

described by QCD. This section will give an introduction to QCD, QCD symmetries and

symmetry breakings. More details on this topic can be found in Refs. [41, 53]. The QCD



12

Lagrangian reads

LQCD = q̄(iγµDµ −M)q − 1

4
Gµν,aGµνa , (2.1)

where q denotes the quark fields. Dµ is the covariant derivative which is defined as

Dµ = ∂µ − ig
λa
2
Aµ,a , (2.2)

where g denotes the strong coupling constant. The λa are the Gell-Mann matrices (3× 3

matrices in color space), and Aµ,a are the gluon fields. The gluon field strength tensor is

given by

Gµν,a = ∂µAν,a − ∂νAµ,a + gfabcAµ,bAν,c . (2.3)

The fabc are called the structure constants which form an antisymmetric tensor. The

gluon-gluon term in the last equation is the reason for the peculiar features of the color

force.

The masses of up, down, and strange quarks are small as compared to a typical

hadronic scale:

mu = 2.2± 0.6 MeV,

md = 4.7± 0.5 MeV,

ms = 96± 8 MeV. (2.4)

We now define the right and left handed quark fields:

qR = PRq , qL = PLq , (2.5)

where PR and PL are projection operators defined as

PR =
1

2
(1 + γ5) , PL =

1

2
(1− γ5) . (2.6)
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By using the left and right handed fields, we can write the QCD Lagrangian in the limit

of vanishing quark masses as

L0
QCD = q̄Riγ

µDµqR + q̄Liγ
µDµqL −

1

4
Gµν,aGµνa . (2.7)

Thus, the right and left handed components of massless quarks do not mix in the QCD

Lagrangian. This is known as chiral symmetry for the two-flavor case. However, this

symmetry is broken in two ways: explicitly and spontaneously.

2.2.1 Explicit symmetry breaking

The mass term (−q̄Mq) in the QCD Lagrangian breaks chiral symmetry explicitly. How-

ever, since the up and down quarks have very small masses as compared to the hadronic

scale of ≈ 1 GeV, the breaking of chiral symmetry is small. So, we can say that QCD is

approximately chirally symmetry. To better see this, we consider the quark mass matrix

for the two-flavor case,

M =

mu 0

0 md

 (2.8)

=
1

2
(mu +md)

1 0

0 1

+
1

2
(mu −md)

1 0

0 −1

 (2.9)

=
1

2
(mu +md)I +

1

2
(mu −md)τ3 . (2.10)

The first term in the last equation is invariant under isospin symmetry and, so, isospin

is an exact symmetry if mu = md. Both terms break chiral symmetry explicitly. But, as

discussed, because the quark masses are very small, the breaking is small [41, 50, 53].
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2.2.2 Spontaneous symmetry breaking

Chiral symmetry is spontaneously broken because parity doublets do not exist in nature.

For any hadron of positive parity, we would expect the same hadron with negative parity

and vice versa. But these parity doublets are not observed in the low-energy hadron

spectrum. For example, take the ρ(770)-meson which is a vector meson of negative parity

and mass 775 MeV. There does exist a vector meson with positive parity, namely the

a1(1260), but it has a mass of 1230 MeV and, therefore, does not represent a parity

partner. A spontaneously broken symmetry generates a massless Goldstone boson. We

identify the pions with those Goldstone bosons, which explains why the pion masses are

so small. They are not exactly zero, because the up and down quark masses are not zero

either. In summary, pions reflect spontaneous and explicit symmetry breaking.

2.3 Effective Lagrangians

The next step in the EFT program is to construct the most general Lagrangian con-

sistent with those symmetries and symmetry breakings. An elegant formalism for the

construction of such Lagrangians was developed by Callan et al. [54], who worked out the

group-theoretical foundations of non-linear realizations of chiral symmetry. It is charac-

teristic for these non-linear realizations that, whenever functions of the Goldstone bosons

appear in the Lagrangian, they are always accompanied with at least one space-time

derivative [44].

The relevant degrees of freedom are pions and nucleons. Since Goldstone bosons

interact weakly at low energy and the interactions between them must vanish at zero

momentum transfer and in the chiral limit (mπ → 0), the low-energy expansion of the

effective Lagrangian is arranged in powers of derivatives and pion masses. This effective

Lagrangian is subdivided into the following pieces,
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Leff = Lππ + LπN + LNN + · · · , (2.11)

where Lππ deals with the dynamics among pions, LπN describes the interaction between

pions and a nucleon, and LNN contains two-nucleon contact interactions which consist of

four nucleon-fields (four nucleon legs) and no meson fields. The ellipsis stands for terms

that involve two nucleons plus pions and three or more nucleons with or without pions,

relevant for nuclear many-body forces. The individual Lagrangians are organized in terms

of increasing orders [52]:

Lππ = L(2)
ππ + L(4)

ππ + · · · , (2.12)

LπN = L(1)
πN + L(2)

πN + L(3)
πN + L(4)

πN + · · · , (2.13)

LNN = L(0)
NN + L(2)

NN + L(4)
NN + · · · , (2.14)

where the superscript refers to the number of derivatives or pion mass insertions (chiral

dimension) and the ellipsis stands for terms of higher dimensions. These Lagrangians are,

in part, very involved and have been published in the literature [41, 55]. Therefore, we

will not reprint them here.
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Chapter 3

The NN potential expansion

3.1 Chiral perturbation theory and power counting

Effective Langrangians lead to an infinite number of Feynman diagrams contributing to

the interactions among nucleons. Therefore, we need a rule which distinguishes between

large and small contributions. This scheme is called chiral perturbation theory (ChPT),

which makes the theory manageable and calculable.

In ChPT, graphs are analyzed in terms of powers of small external momenta over

the large scale: (Q/Λχ)ν , where Q is generic for an external momentum (nucleon three-

momentum or pion four-momentum) or a pion mass and Λχ ∼ 1 GeV is the chiral sym-

metry breaking scale (hardronic scale, hard scale). Determining the power ν has become

known as power counting.

For the moment, we will consider only so-called irreducible graphs. By definition, an

irreducible graph is a diagram that cannot be separated into two by cutting only nucleon

lines. Following the Feynman rules of covariant perturbation theory, a nucleon propagator

is Q−1, a pion propagator Q−2, each derivative in any interaction is Q, and each four-

momentum integration Q4. This is also known as naive dimensional analysis or Weinberg

counting [45, 46].

Applying some topological identities, one obtains for the power of a connected irre-

ducible diagram involving A nucleons

ν = −2 + 2A− 2C + 2L+
∑
i

∆i, (3.1)

with

∆i ≡ di +
ni
2
− 2, (3.2)

where C denotes the number of separately connected pieces and L the number of loops in

the diagram; di is the number of derivatives or pion-mass insertions and ni the number of
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nucleon fields (nucleon legs) involved in vertex i; the sum runs over all vertexes i contained

in the diagram under consideration. Note that ∆i ≥ 0 for all interactions allowed by chiral

symmetry.

The most important observation from power counting is that the powers are bounded

from below and, specifically, ν ≥ 0. This fact is crucial for the convergence of the low-

momentum expansion.

Moreover, the power formula Eq. (3.1) allows to predict the leading orders of connected

multi-nucleon forces. Consider a m-nucleon irreducibly connected diagram (m-nucleon

force) in an A-nucleon system (m ≤ A). The number of separately connected pieces is

C = A−m + 1. Inserting this into Eq. (3.1) together with L = 0 and
∑

i ∆i = 0 yields

ν = 2m − 4. Thus, two-nucleon forces (m = 2) appear at ν = 0. Three-nucleon forces

(m = 3) at ν = 2 (but they happen to cancel at that order), and four-nucleon forces at

ν = 4 (they don’t cancel).

For an irreducible NN diagram (A = 2, C = 1), the power formula collapses to the

very simple expression

ν = 2L+
∑
i

∆i. (3.3)

In summary, the chief point of the ChPT expansion is that, at a given order ν, there

exists only a finite number of graphs. This is what makes the theory calculable. The

expression (Q/Λχ)ν+1 provides a rough estimate of the relative size of the contributions

left out and, thus, of the precision at order ν. The ability to calculate observables to any

degree of precision gives the theory its predictive power [41, 56].
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(Q/Λχ)
0

NLO

(Q/Λχ)
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(Q/Λχ)

6

Figure 3.1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed
lines pions. Small dots, large solid dots, solid squares, triangles, diamonds, and stars
denote vertices of index ∆i = 0, 1, 2, 3, 4 and 6, respectively.

3.2 The hierarchy of nuclear forces

Chiral perturbation theory and power counting imply that nuclear forces evolve as a

hierarchy ruled by the power ν, see Fig. 3.1. We will focus here on the two-nucleon force

(2NF). See Appendix A for details.
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3.3 The long-range NN potential

Pion exchanges build up the long-range part of the NN potential. The various pion-

exchange contributions can be arranged according to the number of pions being exchanged

between the two nucleons:

Vπ = V1π + V2π + V3π + · · · , (3.4)

where the meaning of the subscripts is obvious and the ellipsis represents 4π and higher

pion exchanges. For each of the above terms, we have a low-momentum expansion:

V1π = V
(0)

1π + V
(2)

1π + V
(3)

1π + V
(4)

1π + V
(5)

1π + · · · (3.5)

V2π = V
(2)

2π + V
(3)

2π + V
(4)

2π + V
(5)

2π + · · · (3.6)

V3π = V
(4)

3π + V
(5)

3π + · · · , (3.7)

where the superscript denotes the order ν of the expansion. Due to parity and time

reversal, there are no first order contributions.

Order by order, the long-range NN potential builds up as follows:

VLΩ ≡ V (0) = V
(0)

1π (3.8)

VNLΩ ≡ V (2) = VLΩ + V
(2)

1π + V
(2)

2π (3.9)

VNNLΩ ≡ V (3) = VNLΩ + V
(3)

1π + V
(3)

2π (3.10)

VN3LΩ ≡ V (4) = VNNLΩ + V
(4)

1π + V
(4)

2π + V
(4)

3π (3.11)

VN4LΩ ≡ V (5) = VN3LΩ + V
(5)

1π + V
(5)

2π + V
(5)

3π (3.12)

where LΩ stands for leading order, NLΩ for next-to-leading order, etc..
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Table 3.1: Basic constants used throughout this work [57].

Quantity Value

Axial-vector coupling constant gA 1.29
Pion-decay constant fπ 92.4 MeV
Charged-pion mass mπ± 139.5702 MeV
Neutral-pion mass mπ0 134.9766 MeV
Average pion-mass m̄π 138.0390 MeV
Proton mass Mp 938.2720 MeV
Neutron mass Mn 939.5654 MeV
Average nucleon-mass M̄N 938.9183 MeV

3.3.1 One-pion exchange (1PE)

At leading order (LΩ), only one-pion exchange (1PE) contributes to the long range, cf.

Figs. 3.1 and 3.2. The charge-independent 1PE is given by

V
(CI)

1π (~p′, ~p) = − g2
A

4f 2
π

τ1 · τ2
~σ1 · ~q ~σ2 · ~q
q2 +m2

π

. (3.13)

where ~p′ and ~p denote the final and initial nucleon momenta in the center-of-mass system

(CMS), respectively. ~σ1,2 and τ1,2 are the spin and isospin operators of nucleons 1 and 2.

Parameters gA, fπ and mπ denote the axial-vector coupling constant, pion-decay constant,

and the pion mass, respectively. See Table 3.1 for their values. Higher order corrections

to the 1PE are taken care of by mass and coupling constant renormalizations gA/fπ →

gπN/MN . Note also that, on shell, there are no relativistic corrections. Thus, we apply

1PE in the form of Eq. (3.13) through all orders.

The 1PE potential, Eq. (3.13), can be re-written as follows:

V
(CI)

1π (~p′, ~p) = − g2
A

12f 2
π

τ1 · τ2

(
~σ1 · ~σ2 − ~σ1 · ~σ2

m2
π

q2 +m2
π

+
S12(~q)

q2 +m2
π

)
, (3.14)

with tensor operator

S12(~q) = 3 ~σ1 · ~q ~σ2 · ~q − ~σ1 · ~σ2 q
2 , (3.15)
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where the 1PE is broken up into a spin-spin contact term (δ-function term), a spin-spin

Yukawa central force, and a tensor piece. The 1PE tensor force is known to be strong,

while the spin-spin central force is weak.

If one takes the charge-dependence of the 1PE into account, then, in proton-proton

(pp) and neutron-neutron (nn) scattering, one has

V
(pp)

1π (~p′, ~p) = V
(nn)

1π (~p′, ~p) = V1π(mπ0) (3.16)

and, in neutron-proton (np) scattering,

V
(np)

1π (~p′, ~p) = −V1π(mπ0) + (−1)I+1 2 V1π(mπ±) , (3.17)

where I = 0, 1 denotes the total isospin of the two-nucleon system and

V1π(mπ) = − g2
A

4f 2
π

~σ1 · ~q ~σ2 · ~q
q2 +m2

π

, (3.18)

with mπ0 = 134.9766 MeV and mπ± = 139.5702 MeV.

The charge-dependence of the 1PE is of order (NLΩ), but we include it already at

leading order (LΩ) to make the comparison with the np phase-shift analyses meaningful.
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Figure 3.2: LΩ, NLΩ, and NNLΩ contributions to the NN interaction. Notation as in
Fig. 3.1.

3.3.2 Two-pion exchange (2PE)

To state the mathematical expressions for the 2PE contributions, we use the following

general scheme:

V
(ν)

2π (~p′, ~p) = V
(ν)
C + τ1 · τ2 W

(ν)
C

+ [ V
(ν)
S + τ1 · τ2 W

(ν)
S ] ~σ1 · ~σ2

+ [ V
(ν)
LS + τ1 · τ2 W

(ν)
LS ] (−i~S · (~q × ~k))

+ [ V
(ν)
T + τ1 · τ2 W

(ν)
T ] ~σ1 · ~q ~σ2 · ~q

+ [ V
(ν)
σL + τ1 · τ2 W

(ν)
σL ] ~σ1 · (~q × ~k) ~σ2 · (~q × ~k) , (3.19)

where ~p′ and ~p denote the final and initial nucleon momenta in the CMS; moreover,

~q ≡ ~p′ − ~p is the momentum transfer,

~k ≡ 1
2

(~p′ + ~p) the average momentum, and

~S ≡ 1
2

(~σ1 + ~σ2) the total spin.
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For on-shell scattering, Vα and Wα (α = C, S, LS, T, σL) can be expressed as functions

of q =| ~q | and p =| ~p′ |=| ~p |, only.

Next-to-leading order (NLΩ)

Using the above scheme, the NN diagrams that occur at NLΩ (cf. Figs. 3.1 and 3.2)

contribute in the following way [47, 48]:

W
(2)
C =

L(Λ̃; q)

384 π2 f 4
π

[
4m2

π(1 + 4g2
A − 5g4

A) + q2(1 + 10g2
A − 23g4

A)− 48g4
Am

4
π

w2

]
+ polynomial terms of order two , (3.20)

V
(2)
T = − 1

q2
VS = − 3g4

A

64π2f 4
π

L(Λ̃; q) + polynomial terms of order zero , (3.21)

where the regularized logarithmic loop function is given by

L(Λ̃; q) =
w

2q
ln

Λ̃2(2m2
π + q2) − 2m2

πq
2 + Λ̃

√
Λ̃2 − 4m2

π q w

2m2
π(Λ̃2 + q2)

(3.22)

with

w ≡
√

4m2
π + q2 . (3.23)

For the explicit expressions of the polynomial terms that contribute in Eqs. (3.20) and

(3.21), see Ref. [47].

Next-to-next-to-leading order (NNLΩ)

The NNLΩ contribution, included in Fig. 3.2, is given by [47, 48]:

V
(3)
C =

3g2
A

16 π f 4
π

[2m2
π(c3 − 2c1) + c3q

2] (2m2
π + q2)A(Λ̃; q)

+ polynomial terms of order three , (3.24)

W
(3)
T = − 1

q2
WS = − g4

A

32 π f 4
π

c4w
2 A(Λ̃; q) + polynomial terms of order one . (3.25)



24

The loop function that appears in the above expressions, regularized by spectral-function

cut-off Λ̃, is

A(Λ̃; q) =
1

2q
arctan

q(Λ̃− 2mπ)

q2 + 2Λ̃mπ

. (3.26)

For the explicit expressions of the polynomial terms that contribute in Eqs. (3.24) and

(3.25), see Ref. [47].

Next-to-next-to-next-to-leading order (N3LΩ)

Football diagram at N3LΩ The football diagram at N3LΩ, Fig. 3.3(a), generates

[48, 58]

V
(4)
C =

3

16π2f 4
π

{[c2

6
w2 + c3(2m2

π + q2) − 4c1m
2
π

]2

+
c2

2

45
w4
}
L(Λ̃; q), (3.27)

W
(4)
T = − 1

q2
WS =

c2
4

96π2f 4
π

w2 L(Λ̃; q). (3.28)

We note that in addition to the non-polynominal terms shown in the above equations,

there are polynomial terms of order four in the central potential and polynomial terms of

order two in the tensor and spin-orbit potentials, which we do not show explicitly. This

note applies to all potential expressions of order N3LΩ.
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(a)

(b)

(c)

= + + +

+ + + +

+ + + + . . .

Figure 3.3: Two-pion-exchange contributions at N3LΩ with (a) the N3LΩ football dia-
gram, (b) the leading 2PE two-loop contributions, and (c) the relativistic corrections of
NLΩ diagrams. Notation as in Fig. 3.1. Open circles denote relativistic 1/MN corrections.

Leading two-loop contributions The leading-order 2π-exchange two-loop diagrams

are shown in Fig. 3.3(b). In terms of spectral functions, the results are [48, 58]:
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ImV
(4)
C =

3g4
A(2m2

π − µ2)

πµ(4fπ)6

[
(m2

π − 2µ2)
(

2mπ +
2m2

π − µ2

2µ
ln
µ + 2mπ

µ − 2mπ

)
+ 4g2

Amπ (2m2
π − µ2)

]
, (3.29)

ImW
(4)
C =

2k

3µ(8πf 2
π)3

∫ 1

0

dx[g2
A(µ2 − 2m2

π)

+ 2(1 − g2
A)k2x2]

{
96π2f 2

π [2m2
π − µ2)(d̄1 + d̄2 − 2k2x2d̄3 + 4m2

πd̄5]

+ [4m2
π(1 + 2g2

A) − µ2(1 + 5g2
A)]

k

µ
ln
µ+ 2k

2mπ

+
µ2

12
(5 + 13g2

A) − 2m2
π(1 + 2g2

A)

− 3k2x2 + 6kx
√
m2
π + k2x2 ln

kx +
√
m2
π + k2x2

mπ

+ g4
A(µ2 − 2k2x2 − 2m2

π)

[
5

6
+

m2
π

k2x2
−
(

1 +
m2
π

k2x2

)3/2

ln
kx+

√
m2
π + k2x2

mπ

]}
,

(3.30)

ImV
(4)
S = µ2 ImVT =

g2
Aµk

3

8πf 4
π

(d̄15 − d̄14) +
2g6

Aµk
3

(8πf 2
π)3
×

∫ 1

0

dx(1− x2)

[
1

6
− m2

π

k2x2
+

(
1 +

m2
π

k2x2

)3/2

ln
kx+

√
m2
π + k2x2

mπ

]
, (3.31)

ImW
(4)
S = µ2 ImWT (iµ) =

g4
A(4m2

π − µ2)

π(4fπ)6

[(
m2
π −

µ2

4

)
ln
µ+ 2mπ

µ− 2mπ

+ (1 + 2g2
A)µmπ

]
,

(3.32)

where k = (µ2/4−m2
π)1/2.

The momentum-space potentials Vα(q) and Wα(q) are obtained from the above ex-

pression by means of the subtracted dispersion integrals as follows [48]:

VC.S(q) = −2q6

π

∫ Λ̃

2mπ

dµ
ImVC.S(iµ)

µ5(µ2 + q2)
,

VT (q) =
2q4

π

∫ Λ̃

2mπ

dµ
ImVT (iµ)

µ3(µ2 + q2)
. (3.33)

We note that the subtracted dispersion integrals generate (besides the non-polynomial
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contributions) also polynomial terms of order four for the central potential and polynomial

terms of order two for the tensor potentials.

Leading relativistic corrections The relativistic corrections of the NLΩ diagrams,

which are shown in Fig. 3.3(c), count as N3LΩ and are given by [48]

V
(4)
C =

3g4
A

128πf 4
πMN

[
m5
π

2w2
+ (2m2

π + q2)(q2 −m2
π) A(Λ̃; q)

]
, (3.34)

W
(4)
C =

g2
A

64πf 4
πMN

{
3g2

Am
5
π

2w2
+ [g2

A(3m2
π + 2q2)− 2m2

π − q2](2m2
π + q2) A(Λ̃; q)

}
(3.35)

V
(4)
T = − 1

q2
VS =

3g4
A

256πf 4
πMN

(5m2
π + 2q2) A(Λ̃; q), (3.36)

W
(4)
T = − 1

q2
WS =

g2
A

128πf 4
πMN

[g2
A(3m2

π + q2)− w2] A(Λ̃; q), (3.37)

V
(4)
LS =

3g4
A

32πf 4
πMN

(2m2
π + q2) A(Λ̃; q), (3.38)

W
(4)
LS =

g2
A(1− g2

A)

32πf 4
πMN

w2 A(Λ̃; q). (3.39)

Subleading relativistic corrections We also add to VN3LΩ the 1/MN corrections of

the NNLΩ 2PE diagrams proportional to ci, to compensate for the excessive attraction

generated by the football diagram at N3LΩ. This contribution is repulsive and propor-

tional to ci/MN , Fig. 3.4. It appears nominally at fifth order and is given by [48, 58]:

V
(4)
C =

g2
AL(Λ̃; q)

32π2MNf 4
π

[(6c3 − c2)q4 + 4(3c3 − c2 − 6c1)q2m2
π

+ 6(2c3 − c2)m4
π − 24(2c1 + c3)m6

πw
−2], (3.40)

W
(4)
C = − c4

192π2MNf 4
π

[g2
A(8m2

π + 5q2) + w2]q2L(Λ̃; q), (3.41)

W
(4)
T = − 1

q2
WS =

c4

192π2MNf 4
π

[w2 − g2
A(16m2

π + 7q2)]L(Λ̃; q), (3.42)

V
(4)
LS =

c2g
2
A

8π2MNf 4
π

w2L(Λ̃; q), (3.43)

W
(4)
LS = − c4

48π2MNf 4
π

[g2
A(8m2

π + 5q2) + w2]L(Λ̃; q). (3.44)
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Figure 3.4: Relativistic corrections of NNLΩ diagrams.
Notation as in Fig. 3.3.

3.3.3 Three-Pion Exchange (3PE)

The 3PE contributions that occur at N3LΩ have been calculated by the Munich group

and found to be negligible [59, 60]. We therefore leave them out.
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3.4 The short-range NN potential (NN contact terms)

In the EFT approach, the short-range interaction is described by contributions of the

contact type, which are constrained by parity, time-reversal, and the usual invariances,

but not by chiral symmetry. Only even powers of momentum are allowed because of parity

and time-reversal. Thus, the expansion of the contact potential is formally given by

Vct = V
(0)
ct + V

(2)
ct + V

(4)
ct + V

(6)
ct + · · · , (3.45)

where the superscript denotes the power or order.

In operator form, the contact potentials are given by:

Zeroth-order (leading order, LΩ),

V
(0)
ct (~p′, ~p) = CS + CT ~σ1 · ~σ2 . (3.46)

Second order (next-to-leading order, NLΩ),

V
(2)
ct (~p′, ~p) = C1q

2 + C2k
2 + (C3q

2 + C4k
2) ~σ1 · ~σ2

+ C5[−i~S · (~q × ~k)] + C6( ~σ1 · ~q)( ~σ2 · ~q)

+ C7( ~σ1 · ~k)( ~σ2 · ~k) . (3.47)
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Fourth order (next-to-next-to-next-to-leading order, N3LΩ):

V
(4)
ct (~p′, ~p) = D1q

4 +D2k
4 +D3q

2k2 +D4(~q × ~k)2

+ [D5q
4 +D6k

4 +D7q
2k2 +D8(~q × ~k)2] ~σ1 · ~σ2

+ (D9q
2 +D10k

2)[−i~S · (~q × ~k]

+ (D11q
2 +D12k

2)( ~σ1 · ~q)( ~σ2 · ~q)

+ (D13q
2 +D14k

2)( ~σ1 · ~k)( ~σ2 · ~k)

+D15[ ~σ1 · (~q × ~k) ~σ2 · (~q × ~k)] . (3.48)

In terms of a partial-wave decomposition, we have up to fourth order:

〈1S0, p
′|Vct|1S0, p〉 = C̃1S0

+ C1S0
(p2 + p′2) + D̂1S0

(p′4 + p4) +D1S0
p′2p2,

〈3S1, p
′|Vct|3S1, p〉 = C̃3S1

+ C3S1
(p2 + p′2) + D̂3S1

(p′4 + p4) +D3S1
p′2p2,

〈3S1, p
′|Vct|3D1, p〉 = C3S1−3D1

p2 + D̂3S1−3D1
p4 +D3S1−3D1

p′2p2,

〈1P1, p
′|Vct|1P1, p〉 = C1P1

pp′ +D1P1
(p′3p+ p′p3),

〈3P0, p
′|Vct|3P0, p〉 = C3P0

pp′ +D3P0
(p′3p+ p′p3),

〈3P1, p
′|Vct|3P1, p〉 = C3P1

pp′ +D3P1
(p′3p+ p′p3),

〈3P2, p
′|Vct|3P2, p〉 = C3P2

pp′ +D3P2
(p′3p+ p′p3),

〈3P2, p
′|Vct|3F2, p〉 = D3P2−3F2

p′p3,

〈1D2, p
′|Vct|1D2, p〉 = D1D2

p′2p2,

〈3D1, p
′|Vct|3D1, p〉 = D3D1

p′2p2,

〈3D2, p
′|Vct|3D2, p〉 = D3D2

p′2p2,

〈3D3, p
′|Vct|3D3, p〉 = D3D3

p′2p2. (3.49)

Notice that, in our notation, partial-wave contact LECs

• C̃α are of zeroth order (there are two),



31

• Cα are of second order (there are seven), and

• D̂α and Dα are of fourth order (there are 15),

where α stands for a partial wave or a combination thereof. There exist linear one-to-one

relations between the two C̃α and CS and CT of Eq. (3.46), the seven Cα and the seven

Ci of Eq. (3.47), and the 15 D̂α and Dα and the 15 Di of Eq. (3.48). The relations can

be found in Appendix B [41].

Note that the partial-wave decomposition of Qν (where Q is either the momentum

transfer q or the average momentum k) has an interesting property. For even ν,

Qν = f ν
2
(cos θ) , (3.50)

where fm stands for a polynomial of degree m and θ is the center-of-mass scattering angle.

The partial-wave decomposition of Qν for a state of orbital-angular momentum L involves

the integral

I
(ν)
L =

∫ +1

−1

QνPL(cos θ)d cos θ =

∫ +1

−1

f ν
2
(cos θ)PL(cos θ)d cos θ , (3.51)

where PL is a Legendre polynomial. Due to the orthogonality of the PL,

I
(ν)
L = 0 for L >

ν

2
. (3.52)

Consequently, contact terms of order zero contribute only in S-waves, while second order

terms can contribute up to P -waves, fourth order terms up to D-waves, etc..
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3.5 Scattering equation and regularization

The full NN potential, calculated to a certain order, is given by the sum of long-range

and short-range potentials as following [41, 56].,

VLΩ ≡ V (0) = V1π + V
(0)
ct , (3.53)

VNLΩ ≡ V (2) = VLΩ + V
(2)

2π + V
(2)
ct , (3.54)

VNNLΩ ≡ V (3) = VNLΩ + V
(3)

2π , (3.55)

VN3LΩ ≡ V (4) = VNNLΩ + V
(4)

2π + V
(4)

3π + V
(4)
ct , (3.56)

VN4LΩ ≡ V (5) = VN3LΩ + V
(5)

2π + V
(5)

3π . (3.57)

The potential V is, in principal, an invariant amplitude (with relativity taken into

account perturbatively) and, thus, satisfies a relativistic scattering equation, like, e. g.,

the Blankenbeclar-Sugar (BbS) equation [61], which reads explicitly,

T (~p ′, ~p) = V (~p ′, ~p) +

∫
d3p′′

(2π)3
V (~p ′, ~p ′′)

M2
N

Ep′′

1

p2 − p′′2 + iε
T (~p ′′, ~p) (3.58)

with Ep′′ ≡
√
M2

N + p′′2 and MN the nucleon mass. The advantage of using a relativistic

scattering equation is that it automatically includes relativistic kinematical corrections

to all orders. Thus, in the scattering equation, no propagator modifications are necessary

when moving up to higher orders.

Defining

V̂ (~p′, ~p) ≡ 1

(2π)3

√
MN

Ep′
V (~p′, ~p)

√
MN

Ep
(3.59)
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and

T̂ (~p′, ~p) ≡ 1

(2π)3

√
MN

Ep′
T (~p′, ~p)

√
MN

Ep
, (3.60)

the BbS equation collapses into the usual, nonrelativistic Lippmann-Schwinger (LS) equa-

tion,

T̂ (~p′, ~p) = V̂ (~p′, ~p) +

∫
d3 p′′ V̂ (~p′, ~p′′)

MN

p2 − p′′2 + iε
T̂ (~p′′, ~p) . (3.61)

Iteration of V̂ in the LS equation, Eq. (3.61), requires cutting V̂ off for high momenta to

avoid infinities. This is consistent with the fact that ChPT is a low-momentum expansion

which is valid only for momenta Q ≤ Λχ ≈ 1 GeV. Therefore, the potential V̂ is multiplied

with a regulator function f(p′, p),

V̂ (~p′, ~p) 7−→ V̂ (~p′, ~p) f(p′, p) , (3.62)

with

f(p′, p) = exp[−(p′/Λ)2n − (p/Λ)2n]. (3.63)

For the chiral potentials applied in this thesis, we use Λ = 500 MeV [56].
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Chapter 4

Relevance of contact terms versus pion exchanges in lower partial waves

In Ref. [56], NN potentials through all orders from LΩ to N4LΩ were constructed. There

are improvements in the reproduction of the empirical phase shifts as the orders increase

and an excellent agreement is achieved at orders N3LΩ and N4LΩ. More similar results,

one can see in Ref. [62–65]. In Fig 4.1, we display the phase shifts up to D-waves. Note

that these fits involve two contacts at LΩ which contribute in S-waves, nine contacts at

NLΩ and NNLΩ which contribute up to P -waves, and 24 contacts at N3LΩ and N4LΩ

which contribute up to D-waves [cf. Eq. (3.49)]. The purpose of this chapter is to analyze

in detail the role of these contacts in the fits of the L ≤ 2 phase shifts up to N3LΩ.

As discussed, the nuclear force consists essentially of two parts: the short range (Sect.

3.4) and the long range (Sect. 3.3). In chiral EFT, the long-range is represented by one-

and multi-pion exchanges, and the short range is described by contact terms. The lower

partial waves are particularly sensitive to the short range and, in fact, at N3LΩ, four

contact terms contribute to each S-waves, two to each P -waves, and one to each D-waves

[cf. Eq. (3.49)]. There are no contact contributions in F and higher partial waves—at

N3LΩ.

Since lower partial waves are more sensitive to the short range potential, one may sus-

pect that the contact contributions are dominant and simply override the pion-exchange

contributions in lower partial waves which, on the other hand, are the most important

ones in applications of the potentials to nuclear structure and reactions.

Consequently, in Ref. [48], only F and higher partial waves were used to show the

effect of pion-contributions up to N4LΩ and in Ref. [49] the same was done for G and

higher partial waves to demonstrate chiral contributions up to N5LΩ.

On the other hand, in applications ofNN -potentials to nuclear structure and reactions,

only the lower partial waves make large contributions. Thus, if chiral symmetry rules

only the higher partial waves while the lower partial wave are essentially governed by
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Figure 4.1: Chiral expansion of np scattering as represented by the phase shifts in S, P ,
and D-waves and mixing parameters ε1 and ε2. Five orders ranging from LΩ to N4LΩ are
shown as denoted. The solid dots and open circles are results from the Nijmegen multi-
energy np phase shift analysis [36] and GWU single-energy np analysis [66], respectively.
(From Ref. [56])
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Table 4.1: Values of the πN low-energy constants (LECs) as determined in Ref. [67]. The
ci and d̄i are the LECs of the second and third order πN Lagrangians, Eq. (2.13), and are
in units of GeV−1 and GeV−2, respectively. The uncertainties in the last digit are given
in parentheses after the value.

NNLΩ N3LΩ

c1 -0.74(2) -1.07(2)
c2 3.20(3)
c3 -3.61(5) -5.32(5)
c4 2.44(3) 3.56(3)

d̄1 + d̄2 1.04(6)
d̄3 -0.48(2)
d̄5 0.14(5)

d̄14 − d̄15 -1.90(6)

the contacts, then the predictions from these “chiral” potentials for nuclear structure and

reactions would have little to do with chiral symmetry.

Motivated by the above concerns, the purpose of this study is to systematically inves-

tigate the role of those contacts versus pion exchange in those lower partial waves of NN

scattering.

In our NN potential construction, the πN LECs are not fit-parameters; they are held

fixed at their values determined in πN scattering [67] shown in Table 4.1. Therefore,

the LECs of the NN contacts are the only fit parameters available to optimize the re-

production of the NN data (below 300 MeV laboratory energy). In this investigation,

we will use the contact LECs to fit specific NN low-energy parameters or phase shifts.

We will consider various scenarios, namely, using contacts only or using contacts together

with pion contributions of increasing chiral order. The failure to reproduce the NN data

by contacts only and the improvements that occur when (chiral) pion contributions are

added will reveal the relevance of chiral symmetry in those lower partial waves. To obtain

maximum insight into the role that contact terms can play, we will not follow here the

rule that contact and pion contributions should be of the same order. In fact, we may, for

example, consider contact contributions up to fourth order alone or with just the (lowest
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order) 1PE or low-order 2PE added, to demonstrate what contacts can maximally achieve

or not achieve. For contacts and pion exchanges, we consider orders up to N3LΩ (fourth

order).

To keep it simple at the start, we begin with the partial waves that have only one

contact, namely, D-waves and, then, proceed to the more elaborate cases, P and S-waves.

4.1 D-waves

To demonstrate the relevance of the pion exchange contributions (versus contacts) in D-

waves, we consider the following cases for which we introduce the short notation given in

parenthesis.

• Contact contribution only (ct1).

• LΩ pion exchange (i. e., 1PE) only and no contact term (L0).

• LΩ 1PE plus contact term (L1).

• NLΩ pion exchanges only, no contact term (NL0).

• NLΩ pion exchanges plus contact term (NL1).

• NNLΩ pion exchanges only, no contact term (NNL0).

• NNLΩ pion exchanges plus contact term (NNL1).

• N3LΩ pion exchanges plus contact term (NNNL1).

Our short notation (given in parenthesis) is designed such that the letters indicate the

order of the pion exchanges included and the integer states the number of contacts involved

(from the contacts available for the given partial wave). Note that in D-waves, there is

only one (fourth order) contact per partial wave available, Eq. (3.49). When we include

this contact term, we fit it to the empirical phase-shift at 50 MeV laboratory energy as
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Table 4.2: Contact LECs used for D-waves [cf. Eq. (3.49)] in units of 104 GeV−6.

case D1D2
D3D2

D3D3

ct1 -3.2575 -5.7202 -1.0130

L1 -1.6165 -0.0578 -1.7843

NL1 -1.2045 -0.3464 -2.3773

NNL1 -0.2068 0.2023 -1.3345

NNNL1 -2.088 -3.3804 -1.4764

determined in the Nijmegen phase-shift analysis [36]. The values for the contact LECs so

obtained are listed in Table 4.2.

Note that the chiral 2PE expressions at orders NLΩ, Eqs. (3.20) and (3.21), and

NNLΩ, Eqs. (3.24) and (3.25), include polynomial terms of order Q2 [47], which do not

contribute in D-waves [cf. Eq. (3.52) and text below the equation]. Therefore, in the

cases of L1, NL1, and NNL1, the Q4 contacts are not renormalized and represent the true

corrections needed on top of the non-polynomial parts of the pion-exchanges, denoted by

L0, NL0, and NNL0, respectively, in Fig. 4.2.

The situation is different at N3LΩ. The subtracted dispersion integrals, Eq. (3.33),

generate—besides the non-polynomial parts—also contact contributions up to fourth or-

der. Moreover, the other N3LΩ 2PE contributions also include polynomial terms ofO(Q4).

Thus, the fourth order contact term we introduce to fit the phase shift at 50 MeV, in-

cludes a compensation for the fourth order polynomial terms generated by the N3LΩ 2PE

contributions. Therefore, in the case of NNNL1 of Table 4.2, the contact LEC is “renor-

malized”, and it is not just the correction needed besides the genuine 2PE contributions.

In fact, the large size of the NNNL1 contact LECs shown in Table 4.2 indicate that the

fourth order polynomial terms generated by N3LΩ pion contributions can be sizable.

The phase shifts up to 300 MeV predicted for the various cases are shown in Fig. 4.2.

Next we will discuss those phase shifts partial wave by partial wave.
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Figure 4.2: D-wave phase shifts of neutron-proton scattering for the various cases dis-
cussed in the text. Solid dots and open circles as in Fig. 4.1.
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4.1.1 The 1D2-wave

We start with the left 1D2 frame in Fig. 4.2. When only the contact term is applied and

no pion-exchanges (curve ct1) then the phase shift increases dramatically with energy

indicating that the contact contribution is of very short range and completely inadequate

to describe this D-wave. 1PE is weak (curve L0). Adding the contact to 1PE brings

the phase shift up, but too much since obviously the contact is dominant. When 2PE

contributions are added (right 1D2 frame), the description improves with increasing order.

While the NLΩ 2PE is weak and, therefore, does not lead to much improvement (cf. NL0

and NL1), the NNLΩ 2PE is known to provide a realistic intermediate-range attraction

and together with the contact leads to a quantitative description (curve NNL1), and so

does NNNL1. The conclusion is that the contact alone can by no means describe 1D2.

The strong intermediate-range attraction provided by chiral 2PE at NNLΩ and N3LΩ is

crucial. As the small contact LEC in the case of NNL1 reveals (Table 4.2), the contact

contribution is minor, while chiral 2PE rules. This example demonstrates that even when

a contact term is involved, chirality is still the major factor and shows its clear signature.

4.1.2 The 3D2-wave

Also in this case, the contact contribution alone (cf. ct1 curve in the left 3D2 frame in

Fig. 4.2) leads to a dramatically wrong description. In this particular partial wave, the

1PE (L0 curve) happens to play a dominant role, because the matrix element of the tensor

operator is 2 in this state which, in addition, is multiplied by (-3) from the τ1 · τ2 factor,

resulting in an overall factor of (-6) for the pion tensor potential. As the L0 curve reveals,

this large tensor contribution alone, essentially, explains the 3D2-wave. 2PE contributions

play only a minor role (cf. right 3D2 frame), because the (mainly) central forces provided

by 2PE are small as compared to the huge tensor force contribution from 1PE in this

particular wave. This scenario leaves little room for contact contributions. One-pion-

exchange, the most pronounced expression of chiral symmetry, rules this wave.
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4.1.3 The 3D3-wave

The cases ct1, L0, and L1 are inadequate similarly to what we have seen in 1D2. The 2PE

contributions at NLΩ and NNLΩ without and with contact contribution (NL0, NNL0

and NL1, NNL1, respectively) do not lead to much improvement. Finally, with NNNL1

a more realistic result starts to develop. A quantitative description has to wait for N4LΩ

as demonstrated in the 3D3 frame of Fig. 4.1. In any case, the contact alone cannot

describe the 3D3 wave, since the contact contribution is too short-ranged. Substantial

intermediate-range attraction is needed, which only chiral 2PE can provide.

4.1.4 The 3D1-wave

Since the 3D1 wave is coupled to 3S1, it will be discussed in conjunction with the coupled

3S1-3D1 system, below.
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4.1.5 D-wave summary

Contacts alone can not reproduce D-waves (cf. all the ct1 cases in the left column of

Fig. 4.2), because of the short-range nature of the contact contributions, which is ill-

suited for D-waves. The strong intermediate-range attraction provided by chiral 2PE

at NNLΩ and N3LΩ is crucial, unless the 1PE tensor force is dominant, which also is

a reflection of chiral symmetry. For exact fits, contact corrections are needed, but they

are very small. Thus, in spite of contributions from contacts, chirality makes the largest

imprint on D-waves.

The D-waves are, in fact, an interesting case. On the one hand, they are not so

peripheral that the (very long-ranged) 1PE is dominant and, on the other hand, their

orbital angular momentum is large enough to prevent them from being too sensitive

to the (short-ranged) contact potential. Thus, the D-waves are a true window on the

intermediate range. Consequently, they test the reality of the (intermediate-ranged) 2PE

as produced by chiral symmetry. In particular, the 1D2-wave demonstrates that this test

is passed well.

4.2 P -waves

In P -waves, we have two contacts available per partial wave; one is of order two, Cα, and

the other one is of order four, Dα [cf. Eq. (3.49)]. We then consider the following cases

with the short notation given in parenthesis.

• One contact contribution and nothing else (ct1).

• Two contact contributions (ct2).

• LΩ pion exchange (i. e., 1PE) only and no contact term (L0).

• LΩ 1PE plus one contact term (L1).

• LΩ 1PE plus two contact terms (L2).
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• NLΩ pion exchanges plus one contact term (NL1).

• NLΩ pion exchanges plus two contact terms (NL2).

• NNLΩ pion exchanges plus one contact term (NNL1).

• NNLΩ pion exchanges plus two contact terms (NNL2).

• N3LΩ pion exchanges plus two contact terms (NNNL2).

The values for the contact LECs used in the various cases are listed in Table 4.3.

As mentioned, the chiral 2PE expressions at orders NLΩ and NNLΩ include polynomial

terms of order Q2 and the 2PE expressions at order N3LΩ include polynomial terms up

to order Q4. O(Q2) and O(Q4) polynomial terms do not vanish in P -waves [Eq. (3.52)].

These terms are absorbed by the second and fourth order contact terms. Therefore,

the minimal number of contacts to be applied at NLΩ and NNLΩ is one (second order)

contact and two (second and fourth order) contacts at N3LΩ. Thus, the contact LECs

shown in Table 4.3 for NL1, NNL1, and NNNL2 are not just the corrections needed

besides the genuine 2PE contributions and their size does not reflect the size of “what is

missing”. However, in the cases NL2 and NNL2, the second contact included, Dα (fourth

order contact), is not renormalized (since NLΩ and NNLΩ 2PE does not generate Q4

polynomials) and, therfore, reflects a true fourth order correction.

The phase shifts up to 300 MeV that result from the various P -wave cases are shown

in Fig. 4.3, which we will discuss now.

When we apply only one contact, we use the contact of second order and fit it to the

empirical phase-shift at 50 MeV laboratory energy as determined in the Nijmegen phase-

shift analysis [36]. When both contacts are involved, we fit the empirical phase-shifts at

50 MeV and 150 MeV (if possible).

Obviously, with just one contact term and no pion contributions (cases ct1 of the left

column of Fig. 4.3) the description is grossly wrong in all P -waves. Adding the second
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Figure 4.3: P -wave phase shifts of neutron-proton scattering for the various cases dis-
cussed in the text. Solid dots and open circles as in Fig. 4.1.
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Table 4.3: Contact LECs used in P -waves [cf. Eq. (3.49)]. Second order contacts, Cα, are
in units of 104 GeV−4, while fourth order contacts, Dα, are in units of 104 GeV−6.

1P1
3P0

3P1
3P2

case C1P1
D1P1

C3P0
D3P0

C3P1
D3P1

C3P2
D3P2

ct1 6.5533 0 -0.4631 0 4.3248 0 -0.3256 0

ct2 2.17 -5.0 -0.874 10.0 1.4127 -5.0 -0.4766 1.6

L1 0.1349 0 0.8463 0 -0.1732 0 -0.2302 0

L2 0.1613 0.95 0.8531 -0.55 -0.1480 1.58 -0.3300 1.1

NL1 0.2295 0 1.3228 0 -0.4607 0 -0.2203 0

NL2 0.2664 1.45 1.3234 -0.03 -0.4352 1.2 -0.3203 1.1

NNL1 0.1821 0 1.1415 0 -0.7851 0 -0.6333 0

NNL2 0.1912 0.3 1.1495 -0.95 -0.8133 -0.58 -0.6251 -0.1

NNNL2 0.1933 9.72 1.1883 4.92 -0.8105 4.74 -0.7464 5.95

contact does not lead to any improvement in 1P1 and 3P1 and, in fact, in these two cases

it is not possible to fit the phase shift at 150 MeV, in spite of the second term. The

3P0 and 3P2 partial waves improve with the second contact, but are not any close to a

quantitative description. Adding 1PE (L0) together with one or two contacts (L1, L2)

brings about considerable improvement in most P -waves. Turning to the frames of the

right column of Fig. 4.3 where the 2PE exchanges of various orders are added, we observe

order by order improvement. 1P1 is described well in the cases of NNL1 and NNL2, while

the other partial waves assume a quantitative character only when the powerful 2PE at

N3LΩ is added (case NNNL2).

In summary, contacts alone are inadequate to describe P -waves. 1PE brings improve-

ment, but strong chiral 2PE is needed for a quantitative description of P -waves. Thus, a

clear signature of chiral symmetry can be identified in P -waves.

A note is in place on 3P2, since it is coupled with 3F2 and ε2 through the contact LEC

D3P2−3F2
, Eq. (3.49). We found that the latter parameter has only a weak effect on the

3P2 phase shift and, therefore, we decided to leave it out of our considerations. We kept

it at zero.
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Table 4.4: Columns two to five show the contact LECs used in the 1S0 wave [cf. Eq. (3.49)].

The zeroth order contact C̃1S0
is in units of 104 GeV−2; the second order contact C1S0

in units of 104 GeV−4; and fourth order contacts D̂1S0
and D1S0

in units of 104 GeV−6.
Column six and seven display the np scattering length, anp, and effective range, rnp, in
the 1S0 state.

case C̃1S0
C1S0

D̂1S0
D1S0

anp (fm) rnp (fm)

ct1 -0.063985 0 0 0 -23.74 0.69

ct2 0.475799 4.0 0 0 -23.74 2.37

ct3 -0.158301 2.0 -6.0 0 -23.74 2.66

L1 -0.109340 0 0 0 -23.74 1.73

L2 -0.130919 1.33 0 0 -23.74 2.70

NL2 -0.146214 1.815 0 0 -23.74 2.70

NNL2 -0.152032 2.36 0 0 -23.74 2.70

NNNL4 -0.139563 2.417 -2.332 -16.74 -23.74 2.70

4.3 The 1S0-wave

In the 1S0 wave, we have available a total of four contact terms [cf. Eq. (3.49)], namely, one

zeroth order contact, C̃1S0
, one second order contact, C1S0

, and two fourth order contacts,

D̂1S0
and D1S0

. When we use only one contact, we pick the zeroth order one and fit it

to the np 1S0 scattering length, anp = −23.74 MeV. When we apply two contacts, we fit,

besides the scattering length, the 1S0 np effective range parameter, rnp = 2.70±0.05 MeV.
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Figure 4.4: 1S0 phase shifts of neutron-proton scattering for the various cases discussed
in the text. Solid dots and open circles as in Fig. 4.1.
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With three parameters, we also try to reproduce (if possible) the empirical phase-shift at

50 MeV laboratory energy as determined in the Nijmegen phase-shift analysis [36] and,

with four parameters, the phase shift at 150 MeV is included in the fit. We consider the

following cases with the short notation given in parenthesis.

• One contact contribution, and nothing else (ct1).

• Two contact contributions (ct2).

• Three contact contributions (ct3).

• LΩ 1PE and no contact term (L0).

• LΩ 1PE plus one contact term (L1).

• LΩ 1PE plus two contact terms (L2).

• NLΩ pion exchanges plus two contact terms (NL2).

• NNLΩ pion exchanges plus two contact terms (NNL2).

• N3LΩ pion exchanges plus four contact terms (NNNL4).

The values for the contact LECs are listed in Table 4.4 and the phase shifts up to 300

MeV that result from the various 1S0 cases are shown in Fig. 4.4, which we will discuss

now.

When only one contact term is used (fit to anp) and no pion contributions (case ct1),

then the 1S0 phase shifts are far above the data. Adding more contacts (cases ct2 and ct3)

moves the predictions far below the data. The prediction with four contacts is essentially

the same as with three contacts and, therefore, not shown. Clearly, contacts alone cannot

describe the 1S0 wave, no matter how many contacts one is using. 1PE alone (L0) is

small and adding to it one or two contacts (cases L1 and L2) brings about predictions

that are very similar to the corresponding cases with contacts alone (ct1 and ct2) and,
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again, adding more contacts does essentially not change anything. Thus, in 1S0, 1PE is

obviously of very limited relevance, except for the effective range parameter, rnp, which is

improved by 1PE (cf. Table 4.4). The strong part of 1PE is its tensor force, which does

not contribute in singlet states where only the (weak) central force has a presence. The

momentum-space 1PE includes also a constant term/contact term [see Eq. (3.14)], which

converts into a δ(~r)-function in position space. The L0 case includes the δ(~r)-function

contribution.

We now turn to the frame on the right of Fig. 4.4, where the 2PE exchanges of the

various orders are added in. The NLΩ 2PE (curve NL2) does not create any improvement

over the L2 case. However 2PE at NNLΩ (curve NNL2) leads to an excellent reproduction

of the 1S0 phase shifts up to 300 MeV. Adding more contacts beyond two in the cases of

NLΩ and NNLΩ does not improve the description, which is why we do not show these

cases. The NNNL4 case creates further subtle refinements.

We remind the reader again of the fact that the chiral 2PE expressions at orders NLΩ

and NNLΩ include polynomial terms of order Q0 and Q2, and the 2PE expressions at

order N3LΩ include polynomial terms up to order Q4, which are always compensated by

contacts of the same order. Therefore, in the case of the 1S0 wave, the minimal number of

contacts to be applied at NLΩ and NNLΩ is two (zeroth and second order) and four (of

orders zero, two, and four) at N3LΩ. Thus, the contact LECs shown in Table 4.4 for NL2,

NNL2, and NNNL4 are renormalized numbers whose size does not necessarily reflect the

size of what is missing beyond the genuine pion exchange contributions.

In summary, contacts alone are inadequate to describe the 1S0-wave. The strong chiral

2PE that starts at NNLΩ is needed for a quantitative description of the 1S0-wave. There

is a clear signature of chiral symmetry in 1S0-wave.
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Table 4.5: Columns two to seven show the contact LECs used in the 3S1−3 D1 waves [cf.

Eq. (3.49)]. The C̃α of the zeroth order contact are given in units of 104 GeV−2; the Cα of

second order in 104 GeV−4; and D̂α and Dα of fourth order in 104 GeV−6. Column eight
and nine display the triplet scattering length, at, and effective range, rt, respectively, in
the 3S1 state.

case C̃3S1
C3S1

D̂3S1
D3S1

D3D1
C3S1−3D1

at (fm) rt (fm)

ct1 -0.077103 0 0 0 0 0 5.42 0.68

ct5 -0.1311 2.0 -0.5 0 27.0 -1.25 5.42 1.76

L1 -0.06366 0 0 0 0 0 5.42 1.59

L5 -0.13345 0.4 -0.7 0 -2.0 0.41 5.42 1.73

NL2 -0.136835 -0.39 0 0 0 0 5.42 1.76

NL5 -0.1255 -0.5 -2.3 0 -2.3 0.1 5.42 1.73

NNL2 -0.10002 -0.335 0 0 0 0 5.42 1.75

NNL5 -0.14875 0.4 -0.1 0 -1.4 0.4 5.42 1.74

NNNL8a -0.159635 0.8233 -4.319 -19.17 -5.59 0.503 5.42 1.75

a In the case of NNNL8, besides the six parameters given, D̂3S1−3D1
= 1.162 and D3S1−3D1

= 1.759. In

all other cases, D̂3S1−3D1
= D3S1−3D1

= 0.

4.4 The coupled 3S1-
3D1 system

In the coupled 3S1-3D1 system, we have available a total of eight contact terms [cf.

Eq. (3.49)]; namely, four for 3S1 (C̃3S1
, C3S1

, D̂3S1
, D3S1

), one for 3D1 (D3D1
), and three

for the 3S1-3D1 transition potential (C3S1−3D1
, D̂3S1−3D1

, D3S1−3D1
). When we use only

one of the eight contacts, we pick the zeroth order one, C̃3S1
, and fit it to the 3S1 scat-

tering length, at = 5.42 MeV. When we apply the two contacts C̃3S1
and C3S1

, we fit,

besides the scattering length, the 3S1 effective range parameter, rt = 1.75 ± 0.02 MeV.

Using the three 3S1 parameters C̃3S1
, C3S1

, and D̂3S1
, we try to also reproduce (if pos-

sible) the empirical 3S1 phase-shift at 50 MeV laboratory energy as determined in the

Nijmegen phase-shift analysis [36]. Besides the three contact LECs mentioned, we will, in

some cases, also include D3D1
and C3S1−3D1

, which affect the 3D1 phase shift and the ε1

parameter, respectively. To prevent our investigation from becoming too involved, we do

not vary the LECs D3S1
, D̂3S1−3D1

, and D3S1−3D1
at orders up to NNLΩ and keep them
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at zero. Thus, up to NNLΩ, we will be experimenting with maximally five contacts in

the 3S1-3D1 system.

We consider the following cases with the short notation given in parenthesis.

• One contact contribution, and nothing else (ct1).

• Five contact contributions (ct5).

• LΩ pion exchange (i. e., 1PE) plus one contact term (L1).

• LΩ 1PE plus five contact terms (L5).

• NLΩ pion exchanges plus two contact terms (NL2).

• NLΩ pion exchanges plus five contact terms (NL5).

• NNLΩ pion exchanges plus two contact terms (NNL2).

• NNLΩ pion exchanges plus five contact terms (NNL5).

• NNNLΩ pion exchanges plus eight contact terms (NNNL8).

The values for the contact LECs used in the various cases are listed in Table 4.5, and

the corresponding phase shifts up to 300 MeV are shown in Fig. 4.5.

When only one contact term is used (fit to at) and no pion contributions (case ct1),

then the 3S1 phase shifts are substantially above the data and rt is off by about 1 fm.

Adding one more contact (cases ct2, not shown), gets rt correct, but moves the phase shifts

at intermediate energies far below the data, very similar to the case ct5 that is shown in

Fig. 4.5. In fact, adding more contacts to the coupled system under consideration does

not change the 3S1 phase shifts up the maximum of five contacts. Clearly, contacts alone

cannot describe the 3S1 wave, no matter how many contacts one is using. However, adding

1PE (case L1) makes a big difference, getting the 3S1 phase shifts almost right and finally

perfect with more contacts (L5). This is quite in contrast to 1S0, where 1PE has little
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influence and where 1PE plus contacts never lead to a reproduction of the phase shifts.

The reason for this is that, in the coupled 3S1-3D1 state, the 1PE tensor force contributes

strongly which is crucial for the correct description of this coupled system.

We now turn to the 3S1 frame on the right of Fig. 4.5, where the 2PE exchanges of

the various orders are added, and we see that 2PE does not make much difference.

Turning to the 3D1 phase shifts, we see again that contacts alone cannot get this partial

wave right. The contact contribution is too short-ranged for this partial wave as clearly

seen by the very small contribution at low energies and too strong a contribution above

150 MeV. Adding 1PE gets it right at low energies, but requires short-ranged corrections

at higher energies. This can be done by contacts (case L5) or by 2PE contributions of

higher order together with moderate contacts (right 3D1 frame).

Finally, we turn to the ε1 parameter, which is interesting, because it is proportional

to the 3S1-3D1 transition potential created exclusively by the tensor force. 1PE generates

a (too) strong tensor force (L1) which, when damped by a short ranged contact, gets it

about right. The 2PE of the various orders do also generate more or less tensor force

contributions which require short-range contact corrections to get it right.

Thus, qualitatively, 1PE plus a short-range correction is all that is needed for the

3S1-3D1 system. Interestingly, the chiral 2PE contributions are not important in this

case. The deeper reason for this is that the iteration of the 1PE tensor force in this

coupled system generates a 2PE contribution that is so strong that it makes other 2PE

contributions insignificant.

We remind the reader again of the fact that the chiral 2PE expressions at orders NLΩ

and NNLΩ include polynomial terms of order Q0 and Q2 and the 2PE expressions at order

N3LΩ include polynomial terms up to order Q4. Therefore, in the case of the coupled

3S1-3D1 system, the minimal number of contacts to be applied at NLΩ and NNLΩ is

three, namely, C̃3S1
, C3S1

, and C3S1−3D1
. In the case of N3LΩ it is eight.
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In summary, contacts alone are inadequate to describe the 3S1-3D1 system. Crucial is

the 1PE which, for good reasons, is called the Leading Order of the chiral expansion.
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Figure 4.5: 3S1, 3D1, and ε1 phase parameters of neutron-proton scattering for the various
cases discussed in the text. Solid dots and open circles as in Fig. 4.1.
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Chapter 5

Summary and conclusions

The most characteristic feature in the design of chiral NN potentials is that the long and

intermediate-range part of the potential is described by one- and multi-pion exchanges

which are ruled by chiral symmetry. In contrast, the short-range part consists simply of

polynomial terms (“contact” terms), since the short-range nucleon structure cannot be

resolved at low energies.

In the lower partial waves of NN scattering, which are the dominant ones for predic-

tions of observable of nuclear structure and reactions, contacts as well as pion-exchanges

contribute. But, since lower waves are presumed to be more sensitive to the short-range,

one may suspect that the contact terms are dominant and simply override the (chiral)

pion-exchange contributions.

Motivated by the above concerns, the purpose of this thesis was to systematically

investigate the role of the contacts, on the one hand, and the effect of the pion exchanges,

on the other hand, in the lower partial waves of chiral NN potentials.

We have shown in detail what contact terms alone can achieve in the lower partial

waves of NN scattering. This is displayed by the brown ct curves in the left frames of

Figs. 4.2 to 4.5, which all demonstrate that contacts alone are totally inadequate and

do not catch anything of the nature of the nuclear force in those partial waves. Adding

(chiral) 1PE yields semi-realistic results in some specific partial-wave states, where the

tensor force plays an outstanding role. Such cases are the 3D2 state and the 3S1-3D1

system that is coupled through the tensor force. Chiral 2PE at NLΩ is generally weak

and, therefore, does not bring about much improvement. However, the NNLΩ 2PE is

very strong, creating a realistic intermediate range attraction that cannot be simulated

by contacts.

This fact is also reflected in the χ2 calculations for the fit of the NN data conducted

in Ref. [56]. While the χ2/datum at NLΩ comes out to be 51.5, at NNLΩ it is 6.3, even
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though in both cases the number of contact terms is the same. The improvement in the

χ2 is due to an improvement of the chiral 2PE at NNLΩ. Obviously, the contacts cannot

substitute the chiral terms.

In conclusion, despite the fact that contact and pion-exchange contributions are en-

tangled in the all important lower partial waves of an NN potential, we were able to

disentangle them. We managed to identify and pin down many characteristic signatures

of chiral symmetry that are crucial for the quantitative description of the nuclear force

in those low angular momentum states. However, that does not imply that contacts are

totally useless. For the accurate fit of NN quantities like the effective range parameters,

the phase shifts at low energies, and the deuteron binding energy, contacts are needed.

They play a subtle role and are like the “dot over the i”.
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Appendix A: The hierarchy of nuclear forces: Overview

Leading order (LO, ν=0)

At LO, we have only two contact contributions with no momentum dependence (∼ Q0),

represented by the four-nucleon-leg diagram with a small-dot vertex shown in the first

row of Fig. 3.1. Furthermore, we have the static one-pion exchange (1PE), represented

by the second diagram of the first row of Fig. 3.1.

This description contains some of the main attributes of the NN force. First, the 1PE

provides the tensor component of the force known to be crucial for the two-nucleon bound

state. Second, it predicts correctly NN phase parameters for peripheral partial waves of

very high orbital angular momentum. At this order, the two contacts, which contribute

only in S-waves, provide the short- and intermediate-range interaction.

Note that in the next order, ν=1, all contributions vanish, as they would violate parity

conservation and time-reversal invariance.

Next-to-leading order (NLO, ν=2)

The two-pion exchange (2PE) occurs for the first time at this order, and thus it is re-

ferred to as the leading 2PE. This contribution is essential for a realistic account of the

intermediate-range attraction. However, the leading 2PE has insufficient strength, for

the following reason: the loops present in the 2PE diagrams which involve pions carry

the power ν=2, and so only the lowest order πNN and ππNN vertices with ∆i=0 are

allowed at this order, which is why these vertices are weak. Moreover, seven new contacts

appear at this order which contribute in S and P waves. The two-nucleon contact terms

are indicated by the four-nucleon-leg diagram with a solid square. At this power, the

appropriate operators of these contacts include spin-orbit, central, spin-spin, and tensor

terms, essentially all the spin operator structures needed for a realistic description of the

2NF, although the medium-range attraction still lacks sufficient strength.
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Next-to-next-to-leading order (NNLO, ν=3)

The 2PE contains now the two-derivative ππNN seagull vertices denoted by a large solid

dot. These vertices bring in correlated 2PE and intermediate ∆(1232)-isobar contribu-

tions. No new contacts become available at this order, because contacts appear only at

even orders. Three-nucleon forces appear at NLO, but their net contribution vanishes

at this order. The first non-zero 3NF contribution is found here. It is therefore easy to

understand why 3NF are very weak as compared to the 2NF which contributes already

at (Q/Λ)0.

Next-to-next-to-next-to leading order (N3LO, ν=4)

We show a few representative diagrams in Fig. 3.1. There is a large attractive one-loop

2PE contribution (the bubble diagram with two large solid dots), which slightly over-

estimates the 2NF attraction at medium range. Two-pion-exchange graphs with two loops

are seen at this order, together with three-pion exchange (3PE), which was determined to

be very weak at N3LO. Most importantly, 15 new additional contacts ∼ Q4 arise at this

order, signified by the four-nucleon-leg diagram in the figure with the diamond-shaped

vertex. These contacts impact states with orbital angular momentum up to L = 2 (D-

waves), and are the reason for the quantitative description of the two-nucleon force at

this order. More 3NF diagrams show up at N3LO, as well as the first contributions to

four-nucleon forces (4NF). The investigation of this paper is carried out up to N3LO.
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Appendix B: Contacts in terms of partial waves

The zeroth-order (leading order, LO), contacts, Eq. (3.46), are given in terms of partial

waves by

V
(0)
ct (1S0) = C̃1S0

= 4π (CS − 3CT ), (1)

V
(0)
ct (3S0) = C̃3S0

= 4π (CS + CT ). (2)

The second order (NLO) contacts, Eq. (3.47), lead to the following partial-wave con-

tributions:

V
(2)
ct (1S0) = C1S0

(p2 + p′2),

V
(2)
ct (3P0) = C3P0

pp′,

V
(2)
ct (1P1) = C1P1

pp′,

V
(2)
ct (3P1) = C3P1

pp′,

V
(2)
ct (3S1) = C3S1

(p2 + p′2),

V
(2)
ct (3S1 − 3D1) = C3S1−3D1

p2,

V
(2)
ct (3D1 − 3S1) = C3S1−3D1

p′2,

V
(2)
ct (3P2) = C3P2

pp′. (3)

The relationship between the C(2s+1)LJ
and the Ci can be found in Ref. [41].

The fourth-order (N3LO) contacts, Eq. (3.48), after partial-wave decomposition, are
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represented by [41]:

V
(4)
ct (1S0) = D̂1S0

(p′4 + p4) +D1S0
p′2p2,

V
(4)
ct (3P0) = D3p0(p

′3p+ p′p3),

V
(4)
ct (1P1) = D1p1(p

′3p+ p′p3),

V
(4)
ct (3P1) = D3p1(p

′3p+ p′p3),

V
(4)
ct (3S1) = D̂3S1

(p′4 + p4) +D3S1
p′2p2,

V
(4)
ct (3D1) = D3D1

p′2p2,

V
(4)
ct (3S1 − 3D1) = D̂3S1−3D1

p4 +D3S1−3D1
p′2p2,

V
(4)
ct (3D1 − 3S1) = D̂3S1−3D1

p′4 +D3S1−3D1
p′2p2,

V
(4)
ct (1D2) = D1D2

p′2p2,

V
(4)
ct (3D2) = D3D2

p′2p2,

V
(4)
ct (3P2) = D3p2(p

′3p+ p′p3),

V
(4)
ct (3P2 − 3F2) = D3P2−3F2

p′p3,

V
(4)
ct (3F2 − 3P2) = D3p2−3F2

p′3p,

V
(4)
ct (3D3) = D3D3

p′2p2. (4)

The relationship between the D(2s+1)LJ
and the Di is given in Ref. [41].

The full list of contributions for each partial-wave shown in Eq. (3.49) is assembled,

order-by-order, from the partial-wave terms displayed in this Appendix.



60

Appendix C: The number of contact terms

Table C.1 shows that, at N3LO, there are 24 parameters which impact partial waves with

L ≤ 2, while at NLO and NNLO there are only 9 contacts which contribute for L ≤ 1.

These LECs are free constants employed to parametrize the short-range phenomenology.

Thus, at N3LO, contacts appear for the first time in D-waves. This is one important

mechanism behind the considerable improvement in the reproduction of the NN data at

this order. Because the D-states are somewhat in between central and peripheral waves,

contact terms, in addition to the one- and two-pion exchanges, are important to describe

the D-phases correctly.

In the Table, we also show the number of parameters used in the Nijmegen partial wave

analysis (PWA93) [36] and in the high-precision CD-Bonn potential [68]. The table reveals

that, for S- and P -waves, the number of parameters used in high-precision phenomenology

and in EFT at N3LO are about the same. Thus, the EFT approach provides retroactively

a justification for the phenomenology used in the 1990s to obtain high-precision fits.

Consequently, at N3LO, potentials can be constructed which are of about the same quality

as the high-precision NN potentials of the 1990s.
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Table C.1: Number of parameters needed for fitting the np data in the Nijmegen phase-
shift analysis (Nijmegen PWA93 [36]) and by the high-precision CD-Bonn potential [68]
versus the total number of NN contact terms of EFT-based potentials at different orders.

Nijmegen PWA93 CD-Bonn EFT

Q0 Q2 Q4

1S0 3 4 1 2 4
3S1 3 4 1 2 4
3S1-3D1 2 2 0 1 3
1P1 3 3 0 1 2
3P0 3 2 0 1 2
3P1 2 2 0 1 2
3P2 3 3 0 1 2
3P2-3F2 2 1 0 0 1
1D2 2 3 0 0 1
3D1 2 1 0 0 1
3D2 2 2 0 0 1
3D3 1 2 0 0 1
3D3-3G3 1 0 0 0 0
1F3 1 1 0 0 0
3F2 1 2 0 0 0
3F3 1 2 0 0 0
3F4 2 1 0 0 0
3F4-3H4 0 0 0 0 0
1G4 1 0 0 0 0
3G3 0 1 0 0 0
3G4 0 1 0 0 0
3G5 0 1 0 0 0

Total 35 38 2 9 24
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