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Abstract 
 

 

 

The emergence of the Internet of things (IoT) has generated demand for computation performed at 

the ‘edge’ of the network. With companies being increasingly challenged to collect and send data 

collected from IoT devices to the cloud, this increases the need for fog computing. Fog computing is an 

intermediate computing layer that has emerged to address the latency issues of cloud-based Internet of 

things (IoT) environments. As a result, new forms of security and privacy threats are emerging. These 

threats are mainly due to the huge number of sensors, as well as the enormous amount of data generated 

in IoT environments that needs to be processed in real time. These sensors send data to the cloud through 

the fog computing layer, creating an additional layer of vulnerabilities. In addition, the cloud by nature 

is vulnerable because cloud services can be located in different geographical locations and provided by 

multiple service providers. Moreover, cloud services can be hybrid and public, which exposes them to 

risks due to their infinite number of anonymous users. This research proposed two architectures of cloud-

based IoT environments and three analysis methods. The two proposed architectures are evaluated based 

on the three analysis methods to show the efficacy of the fog layer in different experiments in a real-

world environment by examining performance metrics on the cloud and fog layers using different 

numbers of IoT devices. To overcome the security challenges between the IoT layer and fog layer and, 

thus, meet the security requirements, this research also proposed a fine-grained data access control 

model based on the attribute-based encryption of the IoT–Fog–Cloud architecture to limit the access to 

sensor data and meet the authorization requirements. In addition, this research proposed a blockchain-

based certificate model for the IoT–Fog–Cloud architecture to authenticate IoT devices to fog devices 

and meet the authentication requirements. We evaluated the performance of the two proposed security 

models using AWS cloud metrics to determine their efficiency in real-life experiments of the IoT–Fog–

Cloud architecture. 
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Chapter 1: Introduction 
 

M. Aleisa, A. Abuhussein, and F. T. Sheldon, “Access Control in Fog Computing: Challenges and 

Research Agenda,” IEEE Access, vol. 8, pp. 83986–83999, May 2020, DOI: 

10.1109/ACCESS.2020.2992460  
 
 

 
 

1.1 Problem Background 

 
1.1.1 What is Fog Computing? 

 
   Fog computing is defined as an intermediate layer between the cloud and IoT devices [1]. 

Figure 1.1 presents a classic fog computing-aided IoT environment. Fog computing extends the cloud 

services to the edge of the network, near IoT devices, to reduce the latency and network congestion. 

Low latency is a desired quality in today’s applications, such as emergency responses in the medical 

domain, and fog computing guarantees low latency by providing real-time processing capabilities for 

the transferred data [1]. According to Cisco [2], fog computing is the place where IoT data is analyzed 

near the IoT devices that generate and process data. A typical fog computing environment consists 

of nodes connected to IoT devices. These nodes are referred to as fog nodes.  

      Fog nodes can be deployed anywhere within the network connection. Fog devices can be 

any device that has computing, storage, and network connectivity. According to NIST [3], fog 

computing is an intermediate layer that allows global access to several IoT devices. The environment 

of fog computing enables the deployment of distributed applications and services [4], [5].  
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FIGURE 1.1  Fog Computing Environment 

 

 

1.1.1.1 Why Fog Computing? 

 

The fog computing layer between the cloud and IoT devices has valuable functionalities: 

1) Move cloud content closer to IoT 

By bringing cloud content closer to IoT devices, fog computing solves the delay issues in time-sensitive 

applications in which decisions must be made in a timely manner. 

2) Save network bandwidth 

Since not all data should be transferred to the cloud for processing, using a fog layer between the cloud 

and the IoT devices helps to save network bandwidth. In this case, fog computing can better handle 

managing and controlling data processing, transfer, privacy, and security. This will also reduce operating 

expense.  

3) Bring storage closer to IoT 

This functionality of fog computing is essential because it places temporary storage closer to IoT devices 

which have limited storage capability. Fog computing serves as a temporary storage location for the data 

aggregated from IoT devices, whereas the cloud stores the data permanently. 

4) Bring computation power closer to IoT 
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In the cases in which data gathered from IoT devices require immediate processing, fog computing can 

serve as a processing facility that is located closer than the cloud. Fog computing, in this case, will take 

care of quick and small workloads. Big data analytics will still be handled by the cloud.   

5) Protect IoT data 

Although fog computing expands the cloud-fog-IoT architecture attack surface, this additional computing 

layer, with its storage and computing capability, can be utilized to host and run automated monitors to 

detect threats to IoT. It can also be used to fine grain AC to avoid over- and underexposure of authorization.   

 

 

 
1.1.1.2 Fog Computing Layers 

  Several fog computing architectures have been proposed in [1], [6]–[9]. Commercial 

architectures of fog computing have also been developed for commercial fog devices [8]. The 

architecture of a standard fog computing environment consists of several layers:  

1) Physical Layer  

This layer represents all fog hardware devices that send and receive data to and from IoT devices. These 

devices can be virtual or physical devices, such as virtual and physical network routers. 

2) Monitoring Layer 

This layer is responsible for detecting and logging performance and security-related flaws in IoT devices 

and/or fog nodes. For example, this layer can select a fog node based on criteria such as throughput, 

congestion, etc., and detect malicious activities against fog nodes or IoT devices.  

3) Processing Layer  

This layer is responsible for analyzing and filtering the data collected from IoT devices. As the number 

of IoT devices increases, the amount of data also increases. Therefore, processing this enormous amount 

of data can be challenging. Fog nodes usually have light-to-medium-weight processing capability. 

Intensive processing is usually performed in the cloud.     
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4) Storage Layer 

This layer is responsible for storing data generated from IoT devices. IoT devices have limited storage 

capability, so fog computing provides a temporary storage service for IoT data. Long-term storage and 

storing historical data are usually handled by the cloud.     

5) Security Layer  

This layer maintains the security objectives (i.e., confidentiality, integrity, and availability) in the fog 

nodes. The security layer is where all controls and measures are applied to detect and prevent threats, as 

well as to respond to security incidents. For example, encryption and decryption of data received and 

sent by fog devices is a security measure handled by the fog computing layer to maintain confidentiality 

and is considered a prevention technique. In another example, fog nodes may be used to balance the 

load directed to IoT devices based on throughput or congestion in cases of denial of service (DoS) 

attacks. The objective of this security measure is to maintain availability by responding to a DoS 

incident. 

6) Application Layer  

This layer includes the applications and protocols responsible for networking (such as routing) and load 

balancing (such as routing tables and Hypertext Transfer Protocol (HTTP)  and MQ Telemetry Transport 

(MQTT) protocols) [10].  

 

1.1.1.3 Fog-Aided IoT Process Phases 

 
  In fog-aided IoT environments [11], [12], a subscribed IoT node may request to join a fog 

network before it can collect and publish data. This model is known as the publishing/subscribing model. 

In another model, a fog-aided IoT network finds an IoT node and requests to add it to the network in 

order to collect and publish data. This is known as the request/response model. When the IoT node joins, 

it is assigned network resources and can then start communicating and operating as a component of the 

IoT environment. Figure 1.2 shows a three-phase process in a fog-aided IoT environment. The process 

assumes a fresh start of an unsubscribed node. Thus, initially, a node needs to be subscribed on-demand 
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before it can join the fog network and transfer data within the network (by aggregating and publishing 

data, for example).  

1) Subscribe Phase 

When a new IoT device wants to connect to a fog device, the fog device captures the new IoT device 

that needs services and registers it to the requested services.  

2) Join Phase 

Fog devices detect new IoT devices that request services, and each IoT device is asked to show its 

identity before joining the fog network. To avoid security issues from malicious IoT devices, the new 

IoT devices should be authenticated first. After that, the authenticated devices may request access to fog 

devices to obtain authorization for the services provided. This is where AC models are applied. When 

the authentication and authorization operations are complete, different groups of IoT devices become 

connected to the corresponding fog devices with access to network resources and service may begin. 

3) Transfer Phase 

In this phase, fog devices start aggregating data from IoT devices and/or send tasks to them. When the 

amount of data collected is huge, fog devices filter data received from IoT devices before processing it 

or sending it to the cloud. Load balancing strategies can be used to send workload to free fog nodes 

when a fog node is overwhelmed with tasks. 

Fog computing receives data from IoT devices and then processes it or sends it to cloud storage. Fog 

computing can interact with all three types of cloud services (Software as a Service [SaaS], Platform as 

a Service [PaaS], and Infrastructure as a Service [IaaS]) [3]. To the best of our knowledge, there is no 

standard architecture for fog computing. Several commercial platforms, including ParaDrop and 

Cloudlet, have been proposed [13]. ParaDrop is a fog computing platform based on wireless routers 

using operating system-level virtualization. A cloudlet is a mobility enhanced small-scale cloud 

infrastructure that is located at the edge of the Internet and can act as a fog layer. 
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FIGURE 1.2  The subscribe, join, and transfer phases in a fog-aided IoT environment with events 

occurring in each phase. 

There are several areas where fog computing can be utilized, such as smart cities, smart vehicles, smart 

grids, and mobile healthcare [14]. Figure 1.3 shows a taxonomy of fog computing applications. In the 

healthcare domain, data are generated by thousands of sensors that require low latency and real-time 

processing demand. Fog nodes can be a feature to support the scalability of patient monitoring.  

 

 

FIGURE 1.3  Fog Computing Applications. 

 
 
 



7 
 

1.1.1.4 Characteristics of Fog Computing 

 

As the number of IoT devices increases, handling the data generated by IoT devices and transferring it 

to the cloud may turn out to be challenging. Therefore, fog computing emerged to address these 

challenges by processing the data at the edge of the network (close to the IoT devices), which results in 

reduced latency. Table 1.1 depicts the differences between fog computing and cloud computing in terms 

of the following common characteristics: 

1) Latency  

Some transfer delay between IoT devices and the cloud can be tolerated, depending on the requirements 

and the nature of the application. However, for medical applications or in case of emergency events, the 

data are very time-sensitive. The latency will be high in the cloud because the distance between IoT 

devices and the cloud is long. Thus, computing the data in the cloud will cause a high latency. However, 

fog computing reduces that latency by bringing data to the edge of the network and closer to end users 

to meet the high processing demand [15]. 

2) Scalability  

As the number of IoT devices increases, it is difficult for the cloud to handle the heavy computation and 

bandwidth overhead of these devices. Fog computing can solve this issue by distributing serval fog 

nodes that can reduce the heavy computation and support hierarchal scalability when the number of IoT 

devices increases [15]. 

3) Location-Awareness  

Since the cloud is far from IoT devices, sending location information may push heavy workloads toward 

the cloud when the number of IoT devices is high. Therefore, having fog nodes closer to the IoT devices 

to manage and control traffic sent to the cloud and to support geographic location becomes necessary 

[15].   

4)  Mobility   
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Fog computing supports the feature of mobility. Per Cisco, any device that has computing, storage, and 

network connectivity can be a fog node [2]. In fog computing, a fog node can be any mobile device, 

such as smart vehicles or smart phones, or any static device, such as traffic cameras in smart city devices 

[16]. 

Table 1.1 Characteristics that differ between fog computing and cloud computing. 

Characteristics Fog Computing  Cloud Computing 

Architecture Decentralized  Centralized  

Latency Low  High  

Location Awareness  Yes  No  

Mobility  Supported  Limited  

Geographic location Yes    No  

Delay   Low  High  

Scalability High   Limited  

Deployment   At the edge of the network  Network Core  

 

5) Geographic Location 

A fog computing layer may consist of a number of distributed fog nodes that are deployed in different 

locations [6]. As previously mentioned, fog computing supports the feature of geographic location, and 

distributed fog nodes can track the locations of IoT devices to support their mobility. The applications 

and services of fog computing are decentralized and can process and store data from end devices. 

Therefore, the massive amounts of data generated by IoT devices will be processed faster in 

decentralized fog computing than in centralized cloud computing.  

6)  Heterogeneity 

The fog computing layer consists of two components: the physical node and the virtual node. Physical 

nodes include physical sensors and routers, while virtual nodes include virtual sensors and virtual load 

balancers. These physical or virtual nodes may have different operating systems and may be used to run 
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different applications. Therefore, heterogeneity in fog nodes is desirable to make these devices 

interoperable [6], [16].  

7)   Bandwidth 

Fog computing can process the data created by IoT devices at the edge of the network, close to the end 

user, rather than sending it to the cloud. Therefore, fog computing efficiently saves the bandwidth by 

computing and storing the data locally. As the number of IoT devices increases, more data may be 

generated and collected. Therefore, an architecture of distributed fog nodes addresses this problem by 

computing the enormous amount of data locally instead of transmitting it to the cloud. This, in turn, 

reduces network traffic and saves bandwidth [16].  

 

1.2 Problem Definition 

  First, the 2016 Dyn cyberattack that occurred on October 21, 2016 and disrupted internet across 

internet service across Europe and US. The 2016 Dyn cyberattack was a series of distributed denial-of-

service attacks (DDoS attacks) that targeted Internet of Things-enabled (IoT) devices 

such  cameras, residential gateways, and baby monitors. Many services were affected by the 2016 Dyn 

cyberattack [123]: 

Airbnb CrunchBase HBO Overstock.com RuneScape 

Amazon.com DirecTV Heroku PayPal SaneBox 

Ancestry.com The Elder Scrolls 

Online 

HostGator Pinterest Seamless 

The A.V. Club Electronic Arts iHeartRadio Pixlr Second Life 

BBC Etsy Imgur PlayStation 

Network 

Shopify 

The Boston 

Globe 

FiveThirtyEight Indiegogo Qualtrics Slack 

Box Fox News Mashable Quora SoundCloud 

Business Insider The Guardian National Hockey 

League 

Reddit Squarespace 

CNN GitHub Netflix Roblox Spotify 

Comcast Grubhub The New York 

Times 

Ruby Lane Starbucks 

 

https://en.wikipedia.org/wiki/Denial-of-service_attack#Distributed_DoS
https://en.wikipedia.org/wiki/Denial-of-service_attack#Distributed_DoS
https://en.wikipedia.org/wiki/Camera
https://en.wikipedia.org/wiki/Residential_gateway
https://en.wikipedia.org/wiki/Baby_monitor
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  Second, although fog computing offers promising solutions to many of the performance and 

security problems of IoT, it is confronted with various security and privacy risks. For instance, while 

the fog computing is crucial for spreading risks across distributed fog node, it also has untoward effect 

of increasing the attack surface. What makes the situation even worse is that in fog computing devices 

interact with devices only. In other words, the fog nodes receives IoT data from sensors and sends it to 

the cloud and vice versa. This means, no human interaction is involved in the communication. Although 

this can be considered as an advantage because these interacting devices do not even have screens or an 

on-device user interface, which means smaller attack surface, yet this can lead do failures and/or targeted 

attacks that cannot be easily detected and deterred. There are plenty of other security and privacy issues 

in fog aided IoT that deserve our genuine attention. 

   In this dissertation, we aim to better understand fog aided IoT environments in order to pave 

the way for further research to address interesting confidentiality, integrity, and availability violations.  

1.3 Motivation  

  First, there is a lack of real-life implementations of the many theoretical studies in research and 

academia. Although simulation-based experiments provide easy access to practical results about the 

performance of computing systems, observations and research outcomes may not be generalizable to all 

scenarios due to the variety in IoT platform providers and device manufacturers; their different 

implementations, service specifications, and configurations; and differences in network architectures 

and protocols. Therefore, in order to develop a profound and general insight into the tradeoffs involved 

in a particular system, it is important to use real IoT platforms built on top of a real-world network (i.e., 

Internet) when obtaining analytical results for the performance of fog aided IoT implementations. In 

addition, it would be interesting to explore the performance differences of fog implementations 

interacting with different commercial IoT platforms, such as Amazon IoT and Azure IoT.  

  Second, due to the diverseness that fog-aided IoT environments enjoys and the lack of consensus 

among practitioners and hobbyists on a standard fog computing implementation, there is a lack of 
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resources that show how to implement an efficient fog-aided IoT system. Most of the implementations 

available are either domain specific, complex, or too abstract to be useful in all scenarios.  

  Third, The IoT-Fog-Cloud field is rapidly evolving because security requirements and objectives 

are changed. Therefore, current solutions are not sufficient.  

 

1.4 Contribution  

  First, this research proposes two architectures of cloud-based IoT environments in a real-world 

environment. In first architecture, we used a fog layer between IoT devices and the cloud, whereas in 

the second, IoT devices published data directly to the cloud. Second, we developed a methodology of 

each IoT devices to provide more accurate, consistent, and real results about the environment 

performance. Third, we proposed three analysis methods to perform the experiments on both 

architectures and evaluated them based on the three analysis methods. Through conducting several 

experiments based on the three analysis methods, we found that the first architecture outperforms the 

second architecture in terms of performance. Overall, with an increased number of IoT devices, the first 

architecture outperforms the second architecture. From a security standpoint, authenticating IoT devices 

at the fog layer provides more flexibility in adding sophistication to the authentication and authorization 

process. Therefore, to overcome the security challenges between the IoT layer and fog layer and, thus, 

meet the security requirements, authentication and authorization models must be proposed. Fourth, this 

research proposes a fine-grained data access control model based on the attribute-based encryption of 

the IoT–Fog–Cloud architecture to limit the access to sensor data and meet the authorization 

requirements. The encryption-based access control is fined grained and hard to break. However, the 

encryption-based access control increases the demand of resources utilization and heavy computation. 

To solve this, fog computing is used to outsource the heavy computation. Fifth, this research proposes a 

blockchain-based certificate model for the IoT–Fog–Cloud architecture to authenticate IoT devices to 

fog devices and meet the authentication requirements. The blockchain-based certificate model defines 
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as a decentralized. Therefore, blockchain supports fog decentralization and offers encryption and 

validation. Also, it is hard to break and can be traceable and irreversible. Although blockchain 

transactions take time to process and validate, the number of fog devices is not expected to be huge as 

the number of IoT devices. Therefore, the number of transactions will be also low.  

 

1.5 Structure of the Dissertation   

The dissertation has five remaining chapters: the second chapter is literature review; the third 

chapter is the empirical study of analyzing the performance of the two Cloud-Based IoT 

Implementations; the fourth chapter is the scientific experiments of examining performance in Fog-

Aided Cloud-Centered IoT in a Real-World Environment.; the fifth chapter is the novel security models 

for IoT–Fog–Cloud architectures in a Real-World Environment. The sixth chapter is the main 

conclusions and future works. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

Chapter 2: Literature Review 
 

M. Aleisa, A. Abuhussein, and F. T. Sheldon, “Access Control in Fog Computing: Challenges and 

Research Agenda,” IEEE Access, vol. 8, pp. 83986–83999, May 2020, DOI: 

10.1109/ACCESS.2020.2992460  
 
 

 
 

2.1 Introduction  

 
  Cloud computing provides IoT (Internet of things) environments with a facility for computation 

and storage. However, cloud computing requires a high latency due to its distance from the end user 

[17]. Additionally, the data generated from IoT devices takes time to be computed in the cloud. As the 

number of IoT devices increases, the amount of data generated will also increase. This huge amount of 

data aggregated from devices located far away from the cloud must be transferred with low latency. To 

solve this issue, fog computing emerged.  

  Fog computing serves as a middle layer between cloud and IoT devices to solve the problem of 

high data transfer latency. To meet the high processing demand, the huge number of sensors in IoT 

environments send data through fog nodes rather than directly to the cloud. Smart cities and smart grids 

are examples of systems in which fog computing can be found between the smart devices and the cloud 

[18], [19]. This additional layer (i.e., fog computing) can introduce new vulnerabilities since it expands 

the attack surface on which threats such as data loss and breaches can occur [20]. In addition, several 

threats, such as malicious fog nodes [21], man in the middle attacks [22], malicious insider threats [20], 

and denial of service attacks [20], arose in fog computing environments. For instance, in fog computing 

environments, attackers may seek infinite processing or storage in fog devices, which prevents users 

from accessing fog device(s) [23]. 

  Access control (AC) is one of the crucial defense frontlines to maintain users’ security and 

privacy, as well as to protect data and services from unauthorized access. Due to the increase in the 

number and type of threats, it is essential to have effective AC models in fog computing environments. 

Cloud computing and fog computing are being used in many domains to provide support to IoT 
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environments. This is known as cloud-fog-IoT architecture. To ensure the appropriateness of the AC 

strategies in the cloud-fog-IoT architecture, it is important to identify the requirements of the application 

for which this architecture is used. Application requirements in fog computing include, but are not 

limited to, scalability, mobility, and heterogeneity [6]. Thus, it is important to select AC models that 

meet these fog application requirements. Moreover, choosing one of the AC strategies over the others 

can have a negative impact. For example, it may significantly increase the computation overhead in fog 

nodes due to the multiple operations involved in AC models, such as file encryption, ciphertext 

decryption, and distribution of attributes [24]–[26]. On the other hand, using more than one AC model 

in fog nodes can cause additional heavy computation on fog nodes due to the heavy operations used in 

controlling access. Therefore, outsourcing part of the operations when implementing AC models for fog 

nodes becomes crucial. The aforementioned reasons demonstrate the need for dynamic and more 

efficient AC models. It is also important to appropriately select AC models to protect the cloud-fog-IoT 

architecture. In this paper, we survey AC models in fog computing, present their challenges, and identify 

gaps for future research. 

  The remainder of this paper is structured as follows: In sections 2 and 3, we discuss fog 

computing and AC comprehensively. In section 4, we present the state of the art in the field of AC in 

fog computing. In section 5, we discuss some security and privacy issues related to AC in fog computing. 

In section 6, gaps in the field are identified and discussed. Finally, we conclude this work in section 7.   

2.2 Access Control Overview 

  AC is based on a data access policy (e.g., HIPAA [27]) that determines what privileges are 

granted to which roles within the various operational scenarios. In other words, the user should first be 

authenticated to access the system. Then, the user can request access to the system resources and be 

authorized by the system administrator [28]. There are multiple AC models, such as Discretionary 

Access Control (DAC), Mandatory Access Control (MAC), Role-Based Access Control (RBAC), and 

Attribute-Based Access Control (ABAC) [28]. Figure 5 shows a taxonomy of AC models in fog 
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computing. Attribute-Based access control (ABAC) could be an appropriate model to deal with fog 

computing, as the owner of the data in the fog layer can define the AC policies for users to achieve the 

authorization [8]. Here, we summarize AC models:  

2.2.1 Access Control Models: 

1)  Attribute-based Access Control (ABAC) 

  One of the most well-known AC models is attribute-based access control (ABAC) [28]. This 

model has three key elements: attributes, a policy model, and an architecture model. Attributes are 

features that define a user, a resource, or an environmental condition. In fog computing environments, 

there are four components that interact with fog devices: IoT devices, the data owner, users, and attribute 

authority. When fog nodes receive data from IoT devices for high processing demand, users may want 

to access the data. Therefore, a set of attributes will be provided to the users and resources to grant the 

authorization for access. Attributes can be a username, a job, a resources owner, and/or an environment’s 

time or date created or last accessed. AC policies are defined by the owner of the data, which could be 

an organization or an individual. AC policies are rules specified by the owner of the data within the 

organization. These rules can be defined based on users’ behavior [28].  

2)  Discretionary Access Control Model (DAC) 

  This AC model controls access based on the identity of the users who request the access. Any 

authorized entity can grant access rights, such as read, write, and/or view, to others. This model is less 

secure and known to cause management overhead in the environment of fog computing [28].  

3) Role-based Access Control Model (RBAC) 

  In this model, AC is defined based on the role of the user in the organization, such as students, 

faculty, and staff in universities and colleges. Therefore, access rights are assigned to the roles instead 

of the users. Some users may have more than one role within the organization. In this situation, AC 

policies for each role are applied and may overlap. In this model, AC rights that the owner of data would 

grant to users are view, read, update, and/or write. When a user requests to access data, the user’s role 



16 
 

is compared to the access policy that is predefined by the owner of the data and access is granted 

accordingly [28].  

4) Access Policy Access Control Model (APAC) 

  A policy is a set of rules that is pre-defined by the data owner. The owner of the data can be an 

organization or an individual that sets up the policy for access to their resources. These rules may consist 

of authorized behaviors that are defined by the owner of the data and meet the data owner’s security 

objectives. Each user has one or more identifying attributes. Access policies consist of attributes that 

define every user’s accessibility to the resources. These attributes are written in access policy in multiple 

levels and may be connected by a logical expression such as AND or OR [28]. 

5) Identity-based Access Control (IBAC) 

  There are three elements that interact in AC: subject, object, and access rights. The subject is an 

active entity and can be a user or an application requesting access to a resource(s). The object is a passive 

entity and can be a resource for which access needs to be controlled. The access rights are the method 

by which a subject may access an object. The access rights consist of several operations, such as read, 

write, delete, and search. This model manages any access by a subject to an object through access rights. 

This model is based on the identity of the subject and an object identifier [29].  

6) Task-based Access Control (TBAC) 

  In this model, a task is considered a subrole for a subject. When the task of a subject satisfies 

the roles involved in the task, the subject is granted access to an object [29].  

7) Rule-based Access Control (RBAC) 

  In this model, rules are defined such that a subject can access an object through satisfying these 

rules. As in DAC, access control lists (ACL) are associated with each object and include access rights 

of a subject to gain access to an object. When a user tries to access a resource, the system checks the 

rules in the ACL for that resource. Then, if rules are satisfied, the user gains access to a resource. For 

example, students may access a course website only at a certain time of day [30].  
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8) Mandatory Access Control (MAC) 

  This model manages access based on comparing security labels with security clearances. The 

security labels are allocated to each object, such as a resource, and indicate how important the system 

resources are. The security labels consist of two components: (1) a classification component (e.g., top 

secret) and (2) a category component which declares the level to which the object is available. The 

subject, which is a user, has a classification and a category. When a user tries to access a resource using 

MAC, the system checks the classifications and category of the user and compares it to the security 

labels of the resource. Then, if the classification and the category of the user match the security labels 

of a resource, access is permitted. Otherwise, access is denied [30].  

2.2.2 Access Control Requirements in Fog Computing Environments 

  Although we thoroughly surveyed the AC models, some of the AC models mentioned earlier 

are not used for fog computing. Thus, we identified the requirements for adopting and applying AC in 

fog computing. The requirements necessary to maintain efficiency in fog computing are as follows:    

1) AC models use operations such as building access policy, which may cause computational overhead 

on the side of the IoT device. Since IoT devices have limited resources, the computational overhead can 

be taken care of by the closest fog node [8]. 

2) AC models should support the creation, deletion, and revocation of an AC policy. For example, what 

techniques should be used to update the system when policy is revoked [8]? In fog-based environments, 

the emerging fog layer further exposes the user data and applications since it is an additional attack 

point. This necessitates the application of an AC model that enables policy creation, deletion, and 

revocation at the cloud, fog, and IoT device levels.  

3) Since the IoT devices are resource-limited, it is essential to restrict some resources from being 

accessed when the number of IoT devices increases [8].   
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4) AC models should support the revocation of attributes. This is important (1) to prevent the user whose 

attribute is revoked from being able to decrypt the new encrypted data (i.e., backward security) and (2) 

to enable the newly subscribed user whose attribute is satisfied and valid to decrypt the newly published 

encrypted data (i.e., forward security) [31]. 

5)  Since the fog layer is supposed to be close to the IoT devices to solve the latency issue, the time 

required to decide whether the access policy is satisfied should be low and reasonable. If the user’s 

attribute satisfies the access policy, the policy decision’s response time should be low. In addition, 

execution cost, networking cost, and deployment cost of the fog-based AC models should also be 

reduced since the fog layer is close to the IoT devices [18], [32]. 

6) As the number of IoT devices increase, the fog nodes will also increase. Therefore, multiple attribute 

authorities are needed to support scalability of fog nodes and IoT devices. Thus, AC models should 

support multiple attribute authorities [33]. 

7) Selecting an AC model in fog computing depends on the application requirements, which can impact 

the computation overhead. Some of the AC models mentioned earlier can be encryption-based, which 

results in additional operations (e.g., encryption and decryption). Thus, it is important to decide whether 

data encryption is required and mandated as an application requirement before selecting the AC model 

[6].   

 

8) As the number of IoT devices increases, the data generated by these IoT devices will also increase. It 

is important to utilize an AC model that gives data owners more flexibility to underexpose/overexpose 

their data. Therefore, fine-grained AC becomes an essential requirement [34].  

2.3 State of the art in Fog Access Control 

  Attribute-based encryption (ABE) has been extensively studied [35], [36] and used in several 

schemes. ABE is a type of public encryption that is dependent on the attributes of the users and resourced 
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accessed (i.e., APAC). Users who want to obtain access obtain secret keys that reflect their attributes, 

and the ciphertext has attributes that are encrypted according to policies created by data owner. Then, if 

the user’s attributes satisfy the attributes embedded in the ciphertext, the user can decrypt the ciphertext 

and obtain access to the plaintext. In healthcare applications, a patient can define access policies by 

using logical expressions such as AND or OR and encrypt their personal health record according to the 

defined policies. The doctor can decrypt the personal health record if the doctor’s attributes satisfy the 

access policies embedded in the ciphertext. There are two types of attribute-based encryption (ABE): 

Ciphertext-Policy Attribute-Based Encryption (CP-ABE) and Key Policy Attribute-Based Encryption 

(KP-ABE), as shown in Figure 2.1  

 

FIGURE 2.1 Access Control Models in Fog Computing 

 

  The existing schemes CP-ABE and KP-ABE have a number of operations to handle encryption 

and decryption, which cause a heavy computation overhead due to the resource constraints at the end 

users’ side. Figure 4 shows a system model of applying ABE in fog computing. To decrease the heavy 

computation at the end users’ side, serval works that outsource the encryption and decryption operations 

to the near fog nodes have been proposed, as shown in Figure 2.2 and Table 2.1. 
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FIGURE 2.2  Layers of Fog Computing. 

 

  The authors of [25] proposed an AC CP-ABE scheme that outsources the heavy computation of 

encryption and decryption to fog nodes. This makes the number of attributes in access policy and secret 

keys independent from the encryption/decryption computation. This scheme uses the intermediate fog 

layer to reduce the computational overhead for the data owner or end users. As shown in Figure 5, this 
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(4) the end user, and (5) the key authority. The authors assumed that CSP and fog nodes are trusted in 

the scheme. The data owner has files that need to be encrypted before being sent to the cloud. Each data 

owner is responsible for defining access policy and generating part of the ciphertext of the encrypted 
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ciphertext of the encrypted file. Then, the whole ciphertext is uploaded to the CSP. The key authority 
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the ciphertext. The other part of ciphertext is decrypted by the end user. Updated users are those whose 

attributes are updated by the key authority, and non-updated users are those whose attributes are not yet 

updated.  

  The authors in [37] proposed a framework that secures the sharing of personal health records 

(PHR) in a cloud computing environment. Their framework supports the scalability feature in cloud 

computing. The patients can encrypt their PHR files so that only authorized users can decrypt and access 

them. The presented framework classifies users according to security domains as (1) public domain and 

(2) private domain. The public domain includes the professional users who are managed distributively 

by multiple attribute authorities. The attribute authority can control several attributes for all users in the 

public domain, and each user should be able to reach more than one attribute authority to get his/her 

attributes. Multiple Authorities Attribute-Based Encryption (MA-ABE) is used by public domain users, 

such as physicians, so that the user (i.e., physician) attributes represent the professional role of the user 

in the healthcare domain. In the public domain, patients (i.e., owners) defines access policies for their 

PHR files based on the professional roles of the users in that domain. On the other hand, the private 

domain includes those close to the PHR owner, such as family members, and access rights are assigned 

by the PHR owner to all users in the private domain. KP-ABE is used with private domain users such 

as close friends or family members so that a patient can control secret keys and access rights for their 

PHR files. PHR files are encrypted using ABE, so a PHR owner can easily permit users from two 

domains to access the files. This framework tackled the key and attribute management issues for all 

users by dividing them into two types of security domains and supported to the scalability features.  

  The authors in [38] proposed a framework, Privacy Preserving Cipher Policy Attribute-Based 

Encryption (PP-CP-ABE), to secure data inquiry in mobile cloud computing. This framework protects 

the collected data from mobile devices. Therefore, outsourcing the heavy computation of encryption and 

decryption operations to CSPs can be achieved using PP-CP-ABE. Attribute-Based Data Storage 

(ABDS) is also proposed to decrease the data management overhead caused by CSPs. In the system 
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architecture, there are three service providers: (1) encryption service provider (ESP), (2) decryption 

service provider (DSP), and (3) storage service provider (SSP). The ESP presents the encryption service 

to data owners without disclosing the data, the DSP presents the decryption service to users without 

exposing the data, and the SSP stores the encrypted data. Mobile devices can outsource the heavy 

operations of encryption and decryption to ESP and DSP using PP-CP-ABE.   

  The authors in [39] proposed an ABE scheme that supports the outsourcing encryption of a host 

and the outsourcing decryption of a user. The host and users are using mobile devices that have limited 

computational power, and the ABE scheme requires several operations of encryption and decryption. 

Therefore, the proposed ABE scheme uses two semi-trusted proxies. The first semi-trusted proxy is used 

to outsource the computation of encryption operations, and the second semi-trusted proxy is used to 

outsource the heavy computation of decryption operations. Thus, the computational overhead of mobile 

devices can be reduced. In the encryption stage, the data owner encrypts part of the message and the 

proxy encrypts the remaining part. This occurs according to the access policy that is defined by a host 

with set of attributes. In the decryption stage, the proxy compares the predefined access policy by the 

host with the user’s attributes. If the user’s attributes satisfy the access policy embedded in the encrypted 

message, the proxy decrypts part of the ciphertext and transforms the ciphertext to ElGamal ciphertext 

style. The ElGamal ciphertext can then be decrypted by the user. This scheme can help to relieve the 

computation overhead in constrained devices.  

  The authors in [31] proposed a Data Access Control for Multi-Authority Cloud Storage (DAC-

MACS) system. A multi-authority CP-ABE scheme with support for an attribute revocation method that 

achieves both forward and backward security was also proposed. The system model has several entities: 

(1) a global trusted Certificate Authority (CA), (2) multiple Attribute Authorities (AAs), (3) a cloud 

server, (4) data owners, and (5) users. The CA is responsible for registering all users and AAs in the 

system. Each user is assigned a global unique identity by the CA. Every AA is responsible for managing 

and distributing secret keys that reflect users’ attributes or roles. The cloud server stores the owner’s 
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data after it has been encrypted and allows users to access the data if the user’s attributes satisfy access 

policies defined in the ciphertext. Data owners can define access policies and encrypt their data 

according to predefined access policies. Each user is allowed to decrypt the data stored in the cloud 

server if their secret keys issued by multiple AAs satisfy access policy embedded in the ciphertext.  

  The authors in [34] proposed a data AC scheme with the ciphertext update based on CP-ABE 

and an Attribute-Based Signature (ABS) in fog computing. This scheme has delegated most operations 

of encryption to the data owner, decryption to IoT devices, and signing to update the ciphertext to fog 

nodes. Therefore, fog nodes perform heavy computation.Since IoT devices are resource-constrained, 

they can outsource their heavy computation to fog nodes. This scheme consists of five entities: attribute 

authority, CSP, fog nodes, data owner, and end user, as shown in Figure 2. The data are first encrypted 

with a symmetric encryption algorithm by the data owner, who also then defines an access policy and 

update policy. The access policy is used for end users to decrypt the data when their attributes are 

satisfied, while the update policy is used for end users who intend to modify the ciphertext. In other 

words, the data owner specifies two policies: one for decryption and another for modification. Fog nodes 

play a role in encryption by partially encrypting the data according to access policy, while the data owner 

completes the encryption phase with the access and update policies and sends it to cloud. IoT devices 

are limited resources that are connected to fog nodes and used by end users who would like to access 

the stored encrypted data in the cloud. To access data, the end user’s attribute set must satisfy the access 

policy in ciphertext. Then, the fog node plays a second role to partially decrypt the ciphertext and let the 

user perform the rest of the decryption to recover the data. Once the user obtains access to the data, he 

or she might wish to modify and re-encrypt it. A signature-based attribute is applied, and a fog node 

plays a third role by supporting the request of the user to update the ciphertext. The partial signature is 

created by a fog node and is used to generate the user’s signature. The CSP verifies the signature from 

end users and renews the ciphertext if the user’s attribute set satisfies the update policy defined by the 

data owner. 
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  The authors of [40] proposed a Chosen-Ciphertext Attack (CCA) security model for ABE with 

outsourced decryption in fog computing. The CCA is an attack in which the cryptanalyst can collect 

information by obtaining the decryptions of the chosen ciphertext. Once the information is gathered, the 

adversary tries to use the collected information to retrieve the user’s secret key, which is used to decrypt 

the ciphertext. This model outsources the decryption operation to fog devices and consists of six 

algorithms: key generation, key extraction, outsourced decryption key generation, encryption, 

outsourced decryption by fog devices, and decryption by IoT devices. Two formats of the ciphertext are 

presented: the original ciphertext, which is generated from an encryption algorithm, and transformed 

ciphertext, which is executed by the outsourced decryption in fog devices. The paper presented two 

cases in which the attacker might try to figure out the ciphertext: one with the original ciphertext, and 

the other with the transformed ciphertext. Each method has several phases that are explained in detail in 

the paper. One way to detect a CCA is to check the validity of the ciphertext. Since two decryptions are 

needed in an Outsourced Decryption-Attribute-Based encryption scheme, ciphertext transformation by 

proxy and transformed ciphertext decryption by the decryptor, two techniques are used. These 

techniques are (1) Asymmetric and Symmetric Encryption Schemes, proposed in [41], and (2) Identity-

Based Encryption, proposed in [42]. For Identity-Based Encryption techniques, which support 

verifiability, the proxy checks the validity before transformation. The decryptor can also check the 

validity of the transformed ciphertext using the Asymmetric and Symmetric Encryption technique. 

Therefore, the two techniques (Asymmetric and Symmetric Encryption and Identity-Based Encryption) 

are applied on an ABE scheme. The authors showed the cost of the algorithms (KeyGen, Ext, OKGen, 

Enc, and TDec) with a collection of attributes. The proposed scheme supported outsourced decryption 

in which the heavy computation is outsourced to fog devices, as the IoT devices have limited resources. 

However, the scheme does not support outsourced encryption, ciphertext update, and attribute 

revocation. When the number of data owners is increased, it is difficult to compute the encryption 

operations on the limited IoT devices without supporting the outsourced encryption to release the 

computational overhead from IoT devices.  
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  The authors in [43] proposed a protocol of encrypted key exchange based on CP-ABE to secure 

the communications between fog nodes. In this protocol, communications between fog nodes and the 

cloud are confidential. The system model consists of several entities: a cloud, a key generator server, 

fog nodes, and IoT devices. The cloud is responsible for defining the access structure and executing the 

encryption to produce the ciphertext. Fog nodes are deployed on the network and each one is associated 

with a set of attributes that are defined by the access policy in the ciphertext. If the fog node’s attribute 

set satisfies the access policy defined by the cloud, the fog node can decrypt the ciphertext and obtain 

the shared key. 

  In [26], Sun et al. proposed an attribute-based searchable encryption scheme based on cloud-

fog computing. The proposed framework integrated the ABE technology and searchable encryption 

technology to achieve search-based keywords with fine-grained AC simultaneously. The CP-ABE with 

multiple authorities was also proposed to manage attribute creation and secret key distribution. The 

scheme has six entities: central authorities, attribute authority, CSP, fog nodes, the data owner, and the 

end user. In their scheme, due to the limited resources available by end users and data owners, part of 

the encryption and decryption operations are outsourced to the attached fog nodes. Therefore, the high 

computation overhead on end users and data owners are reduced. Personal health records in hospitals 

are an example of an application of the proposed scheme. One of the limitations is that the keyword sets 

are taken from the actual encrypted file in the cloud, which introduces the possibility of a chosen-

ciphertext attack.  

  In [24], the authors proposed a keyword search over encrypted data system in fog computing 

that supported a fine-grained AC using CP-ABE. The system also supported attribute updates by 

updating the user’s secret key and attributes associated with the ciphertext. In addition, they provided a 

multiple keywords option in a single search query, which locates the data quickly and reduces the range 

of retrieved data. The system has five entities: a key generator center, a data owner, CSP, an end user, 

and a fog node. The system supported outsourcing encryption and decryption by moving part of the 
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computational overhead, including file encryption and decryption, from the data owner or end user to 

the chosen fog nodes. They presented a security analysis that prevented two types of attacks: Chosen 

Keyword Attack and Chosen Plaintext Attack. One of the limitations is that, when the number of fog 

nodes and end users increases, the single key generator center is not enough to manage the distribution 

of secret keys and the creation of attributes for fog nodes and end users. 

2.4 Security and Privacy issues related to Access Control in Fog Computing  

  There are many security issues related to stored data in fog devices [44]. The ability to access 

and modify the user’s data should only be permitted to authorized entities. Security and privacy 

requirements for several data services in fog computing, such as storage, sharing, and computation, are 

mentioned in [15]. AC ensures that only valid users are permitted to read, update, and/or send data within 

the fog. Thus, AC is used to prevent unauthorized access to data of any kind. Since fog computing is an 

extension of cloud computing, the security and privacy issues are inherited. Security and privacy issues 

that are relevant to AC in fog computing include: 

2.4.1 Trust in Fog Nodes 

  Since end users attach to the nearest fog node for real-time processing of their data, the trust 

level should be measured by the fog node or IoT device layer [45], [46]. Trust between fog nodes and 

IoT devices is important. The fog node that provides a service to the end user’s device should confirm 

the authentication of the device. The end user’s device that requests a service from a fog node should 

also be able to confirm the authentication of the intended fog node. AC models can be applied to measure 

the trust level when designing a trust model in the fog computing environment. The challenge will be 

how to define the trust level in fog computing [44], [47]. To measure the trust level of fog nodes, several 

attributes of fog nodes can be defined. One of the AC models is ABE, which provides fine-grained AC. 

The two types of attribute-based AC are CP-ABE and KP-ABE. Another challenge will be to determine 

who can verify the trust level of a fog node. The trusted authority can be defined to design a trust model 
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in the fog computing environment. One of the roles of the attribute authority is to create a secret key 

that reflects fog or user attributes and manages these attributes.  

2.4.2 Data Computation in Fog Nodes 

  End users can offload their data to the nearest fog node for computation. However, outsourcing 

data to the fog node can cause data breaches. For example, in a smart grid, the reading of the smart meter 

by a fog node can leak household data [47]. The proposed solution to prevent data breaches is to apply 

AC models such as CP-ABE when outsourcing the data to the nearest fog nodes to achieve fine-grained 

AC. Several schemes involving the outsourcing of end users’ data to fog nodes have been proposed in 

the literature. Collectively, these schemes suggest that the data should first be encrypted before 

offloading it to the fog nodes. The fog node can then perform part of the encryption and decryption of 

the data to relieve the heavy computation from a wearable end user device. Another important service 

is search over encrypted data. Serval schemes use a searchable encryption technology to search over 

encrypted data. Search-based keyword schemes that extend to achieve fine-grained AC using CP-ABE 

have been proposed in the literature.  

2.4.3 Rogue Fog Node 

  A rogue fog node is a node that is reached by a malicious user. It appears as a legitimate fog 

node to other fog nodes in the network. Thus, a rogue fog node encourages other fog nodes to connect 

to it, which causes data damage or false data in the fog layer. One of the features of fog computing is to 

provide reliability in the fog node layer; however, a rogue fog node can lead to an attack to end users’ 

data. Fog nodes must be protected against a malicious fog node when the end user sends sensitive 

information to it. When a fog node is divided and sends the computation task to several other fog nodes 

in the network, if one of fog nodes is a rogue node, it injects false data to the other fog nodes. Therefore, 

the security and privacy of end user will be destroyed [47]. An ABE scheme, which is a type of attribute-

based AC, can be applied to provide confidence in end users and fog nodes.  
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2.4.4 Fog Node Privacy 

  In fog computing, sensitive data can be disclosed because the fog node is closed to end users. 

When an end user offloads its task to the nearest fog node in the network, the location of the end user 

can be disclosed since location awareness is one of the features of fog computing. If an end user 

outsources its data to the nearest fog node, the fog node can indicate that the end user is close to that fog 

node. Once an end user outsources its data to several fog nodes in the network, the privacy of the user’s 

location will be at risk [47]. AC can be a solution to address the issue of user privacy preservation and 

the security of fog nodes. 

  In a data breach, the user's information is disclosed and accessed by unauthorized users. When 

a fog node is performing its task of collecting computing end users' data, data breaches can occur on the 

end users’ side or the fog side. Therefore, AC is needed to maintain the confidentiality of end users’ 

data. One scenario that could occur is one of the fog nodes being reached by a malicious user, then 

acting as a legitimate fog node to the other fog nodes in the network. The malicious data from the 

attacker will then be delivered to the other fog devices in the network [48]. To solve the issue, there is a 

need for security mechanisms such as AC to protect fog devices and prevent malicious activities [8]. 

Another scenario that could put end users’ privacy at risk is a fog node leaving the fog network 

permanently. In this case, entities interacting with the fog node that has left the network, such as the 

data owner, end user, or CSP, need to update their AC lists to avoid leftover access to a node that does 

not exist. AC should be applied to allow only authorized users to access the data—protecting the stored 

data in fog devices from unauthorized users is another challenge. It is also challenging to design a fine-

grained AC system that supports scalability. When an end user’s attributes are revoked, updating the 

user’s attributes turns out to be challenging as the number of users increases. 

2.4.5 Privacy Preserving in Fog Nodes 

  Fog computing, like any other computing model, is not immune to privacy issues, including 

those involving data privacy and location privacy [49], [50]. To solve the latency issue, fog nodes are 

close to the IoT devices, which facilitates the real-time processing capability in fog nodes. However, 
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data can be overexposed and revealed to the outside world because of this additional fog layer. The data 

generated by IoT devices will be computed by the nearest fog nodes, and false data injection attacks can 

occur when data are outsourced to the fog nodes [51]. Since fog nodes are close to IoT devices, location 

privacy is another issue. When IoT devices subscribe to a specific fog node for processing demand, it 

can be inferred that the subscribed IoT devices are close to that fog node and far away from other fog 

nodes [49], [50]. Therefore, a privacy-preserving guarantee must be achieved in fog computing. AC 

models can be a solution to address the issue of privacy preserving. Since some AC models, such as 

ABE, are encryption-based, the promise of data confidentiality can be met. In addition, fine-grained AC 

can help in limiting the access to data. This can also ensure preserving the privacy of data and users 

[52].  

2.5 Discussion & Research Gaps 

2.5.1 Discussion of Several Features in Different Schemes  

  There are several features that should be taken into consideration when designing AC models. 

These features are crucial to make the designed scheme more efficient and secure. The features are: (1) 

outsourcing encryption, (2) outsourcing decryption, (3) multiple authorities, (4) supportability in the fog 

computing environment, and (5) providing search-based keywords. Using AC models require several 

operations of encryption and decryption, which increases computation overhead. One of the desired 

features is to outsource part of the encryption and decryption when designing AC models. Therefore, to 

reduce the computation overhead, IoT devices can perform part of the encryption and decryption 

operations, with fog nodes performing the rest. There are several entities that interact with each other in 

AC models. One of these entities is the key authority, which is responsible for creating secret keys and 

distributing attributes to users. Thus, when the number of IoT devices increases, one key authority will 

not be enough to generate secret keys and distribute attributes to users. Designing AC models with 

multiple key authorities can significantly reduce the network congestion and improve the system’s 

efficiency. In addition, multiple authorities can relieve the enormous effort required for the data owner 
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to handle the user attributes. Designing AC models to be used in the context of fog computing can 

decrease the latency issues of IoT devices and relieve the computation overhead of encryption and 

decryption operations from IoT devices. Since end users should satisfy the access policies of the 

ciphertext, fog nodes can compare and execute part of the decryption in a timely manner before 

outsourcing decryption to the end user. 

  Using searchable encryption (SE) technologies is another feature that could decrease the range 

of retrieved data from the cloud. As the amount of data increases, integrating SEs in AC models becomes 

desirable. Therefore, combining the features mentioned can crucially improve the design of AC models. 

These features are important to researchers due to their benefits in many domains, such as medical care. 

Designing AC models in medical care is challenging since the privacy and security of patients’ data are 

extremely important.     

  Table 2.1 compares existing works that propose AC schemes according to the features they have 

(i.e., outsourcing encryption, outsourcing decryption, multiple authorities, supportability in a fog 

computing environment, and providing search-based keywords). All schemes in Table II use AC 

strategies that require heavy computation due to the operations of encryption and decryption. Schemes 

described in [24]–[26], [34], [38], [39], [52]–[55] support outsourcing encryption and decryption, and 

schemes in [33], [40], [56], [57] support only outsourcing the decryption operations. Outsourcing the 

heavy operations of encryption and decryption means that the computation overhead of the end users 

will be decreased. However, some of the schemes solve the latency issue, while other do not. Schemes 

in [24]–[26], [34], [52], [54], [55] provide outsourcing of encryption and decryption and solve the latency 

issue by introducing a fog computing layer between IoT devices and the cloud. The schemes presented 

in [38], [39], [53], [56], [57] offer outsourcing of encryption and decryption, except those in [40], [44], 

which only offer outsourcing of decryption. The latency for all of them can be high due to the use of 

serval cloud computing servers. Multiple authorities enhance the scalability of building a model and 

reduce the computation overhead on a single authority. Data owners and end users’ attributes are 



31 
 

distributed by the attribute authority. As the number of end users and data owners increases, a single 

attribute authority will not be enough to handle the distribution of users’ attributes. Few schemes used 

multiple attribute authorities to improve AC in their proposed schemes. Authors of [26], [31], [33], [37], 

[52], [54], [55] developed a scheme that is highly scalable by introducing several distributing attribute 

authorities in their work. Schemes in [31], [33], [37], [52], [54], [55] support only multiple attribute 

authorities and AC. The scheme presented in [26] supports multiple attribute authorities and all features 

in Table II. SE technologies have been well studied in the literature. One of the known SE technologies 

is search-based keywords, which gained considerable attention in cloud computing for several years. 

Some schemes presented in Table II provided search-based keywords in the context of cloud computing 

so that the designed model has both SE technologies and fine-grained AC. Few papers enhanced their 

schemes by deploying CP-ABE and SE technologies in a fog computing layer that can solve the latency 

issue. In such schemes, encryption and decryption operations are outsourced to fog nodes and the 

computation overhead in end users’ devices will be reduced. For example, one paper introduced a 

scheme that uses CP-ABE and search-based keywords and deployed it in the fog using multiple attribute 

authorities. Additionally, scheme [24] proposed a fine-grained keyword search with outsourcing 

encryption and decryption in fog computing, while scheme [26] presented ABE and keyword search for 

personal health records in fog computing using multiple attribute authorities. 
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Table 2.1 Comparison of features in different AC schemes 

 

 

2.5.2 Gaps and Future Research Directions 

  Fog computing and cloud computing are similar in nature and highly coupled. However, 

solutions built to address the cloud efficiency, security, and privacy issues cannot necessarily be applied 

to fog computing. As previously discussed, multiple operations of AC models can have a major impact 

on fog computing solutions. This section outlines the research gaps that need to be addressed to enhance 

AC models in fog computing: 

1) Auditing Mechanism 

  Designing an AC model with an auditing mechanism is necessary in distributed fog nodes. 

Auditing, in this case, is important to periodically check users’ attributes and make sure that the 

attributes are valid, and that the users’ privileges are not outdated. Moreover, in highly scalable 

Features 

Schemes 
Authors Search 

based Keywords 
Fog Computing 

Multiple 
Authorities 

Outsourcing 
Encryption 

Outsourci
ng 

Decryptio
n 

Access 
Control 

Citation 

Zhang [25]       59 

Zhou [38]       226 

Asim [39]       16 

Mao [56]       63 

Zuo [40]       64 

Alrawais [43]       60 

Li  [37]       1033 

Yang [31]       2 

Wang [53]       29 

Li [57]       120 

Huang  [34]       48 

Sun  [26]       3 

Miao [24]       26 

Vohra [33]       2 

Fan [54]       32 

Xu [55]       9 

Xue [52]       21 
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environments, an auditing mechanism becomes important for the robustness of AC. Since cloud 

computing, IoT, and fog computing are highly coupled and scalable, there will be a massive number of 

joining and leaving nodes (e.g., fog, cloud, IoT). This mandates continuous and thorough auditing to 

maintain the confidentiality and integrity of the data and applications. The existence of nodes with more 

privileges than needed also increases the demand of computation power to handle operations like 

encryption and decryption, which negatively impacts the environment performance. Therefore, 

intelligent auditing mechanisms are needed to automatically search for policy violations and update 

access policies and users’ attributes.  

2) Fine-Grained Access Control 

  Proposing fine-grained AC is essential in widely distributed fog nodes. When a number of IoT 

devices connect to fog nodes, fog nodes apply one or more AC models to grant access to a number of 

authorized IoT devices. Fine-grained AC can be introduced in fog computing to limit the access to 

specific data, and each fog node can apply its own access policy for its own IoT devices. This is 

important, as it will give administrators more control and flexibility to securely and effectively 

overexpose and underexpose data. Designing fine-grained AC models for distributed fog nodes is 

necessary; thus far, however, little or no work has been done to tackle this challenge.  

3) Covering More Features for Better Efficiency 

  Designing and implementing AC models that cover more features is important for the efficiency 

of the model. Therefore, we surveyed AC models and their supporting features to better understand how 

these features work and how to integrate them in a future AC model. More AC features can still be 

explored and integrated to build efficient AC in fog computing.  

2.6 Conclusion 

  Fog computing is a new computing paradigm that provides real-time processing at the edge of 

the network, close to IoT devices. AC models can be applied in fog computing to preserve the privacy 

of IoT data and to protect the system and users’ data. Several security and privacy issues in fog 
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computing can be solved using one or more AC model(s); however, the choice of an AC model is 

dependent on the application’s requirements. In this paper, we thoroughly discussed fog computing and 

AC models. Then, we presented the state of the art in the field of fog computing AC. We also discussed 

some security and privacy issues relevant to AC in fog computing. Several features that that are known 

to produce efficient AC models in fog computing were discussed and research gaps were outlined.  

   In our future research, we plan to propose an AC model that supports more features for better 

efficiency and security. We also plan to investigate designing a fine-grained AC model for fog 

computing-aided environments.  
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Chapter 3: Performance Analysis of Two Cloud-Based IoT 

Implementations: Empirical Study 
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IoT Implementations: Empirical Study," 2020 7th IEEE International Conference on Cyber Security 

and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and 

Scalable Cloud (EdgeCom), 2020, pp. 276-280, DOI: 10.1109/CSCloud-EdgeCom49738.2020.00055  
 
 

 
 

3.1 Introduction  

 
  Cloud computing is an attractive environment that provides computation and storage for the 

Internet of Things (IoT). However, high latency is an issue within cloud computing due to the distance 

between the cloud and IoT devices. Data from IoT devices requires a substantial amount of time to be 

processed and analyzed in the cloud. Moreover, as the number of IoT devices amount, the amount of 

data generated becomes enormous. Low latency is an essential factor in computing the enormous amount 

of data published from IoT devices. Therefore, fog computing appeared to provide light computation 

power and temporary light storage with low latency [58]. 

  Fog computing is an intermediate layer between IoT devices and the cloud that is designed to 

solve the latency issue. As the number of computations increases, fog computing becomes essential to 

provide high-performance computation in a real-time manner because it allows computation to occur 

closer to IoT devices [59]. Measuring the performance of published data in IoT-Fog-Cloud environments 

is important to assess the outcomes of continuous efforts to improve. Different researchers have 

proposed and developed various benchmark metrics that measure the performance of IoT-Fog-Cloud 

environments [60]–[63]. For more accurate benchmarking, implementations that simulate real-life 

environments must be evaluated when measuring the message subscribe and publish performance of 

IoT-Fog-Cloud environments. 

  Amazon Web Services (AWS) provides an IoT service (AWS IoT) that offers secure 

communication between IoT devices such as sensors and actuators [64]. This service allows developers 

to collect and analyze an enormous amount of data from several devices. In addition, Amazon 
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CloudWatch [65] is used to monitor the resources of AWS in real time. CloudWatch provides a variety 

of metrics to measure the performance of cloud-based IoT environments [66]. 

  This paper makes the following contributions. First, we built two experimental implementations 

of cloud-based IoT environments and measured their performance. We used AWS as a cloud provider 

in both implementations. The first implementation (a) applies a fog layer between IoT devices and the 

cloud. The second implementation (b) publishes data directly to the cloud without having a fog 

computing layer between the IoT sensors and the cloud. Second, we used AWS IoT metrics embedded 

in Amazon CloudWatch to measure the performance of the two implementations a and b (Fig. 3.1). 

Third, AWS metrics were used to compare the performance of implementations a and b over time.  

  The remainder of this paper is structured as follows: In section 2, we present the motivation for 

our work and discuss existing fog and IoT benchmarks. In section 3, we describe our implementations 

a and b in detail. In section 4, we provide a description of the AWS IoT metrics that were used to measure 

our implementations. We describe the empirical testing and discuss the results in section 5. The 

discussion, including challenges faced and future work, is presented in section 6. Finally, we conclude 

the paper in section 7. 

3.2 Motivation  

  
  Several benchmark metrics have been proposed and used in the literature to measure the 

performance of IoT-Fog-Cloud environments [60]–[62], [67]. TPCx-IoT [68] is a TPC industrial 

benchmark to measure the performance of IoT systems. 

  The authors in [63] explained the details of TPCx-IoT and showed the performance of different 

industry configurations running HBase 1.2.0. IoTABench is another analytical IoT benchmark for big 

data [60]. A benchmark for an IoT system for big data that includes a smart meter use case is proposed 

in [60]. The smart meter use case includes eight node clusters operating the HP Vertical analytics 

platform version 7.0.0. Reference [61] presented Edge-Bench, which is a benchmark for edge computing 

platforms, and studied two platforms: Greengrass and Azure Edge. Comparing performance of the two 
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platforms showed that there is a high latency in the Azure Edge platform. The authors of [62] presented 

an edge computing AI benchmark called Edge AlBench. The Edge AIBench contains six components 

benchmarks and four application benchmarking frameworks.  

  MQTT, a well-known protocol produced by IBM [12],[69] can be a solution for communication 

between the IoT-Fog-Cloud layers [10]. Several researchers proposed different benchmarks for the 

MQTT protocol to measure the performance of IoT-Fog-Cloud environments. The authors of [67] 

studied two IoT platforms, ThingBoard and SiteWhere. The performance of two protocols, MQTT and 

HTTP, was evaluated on the ThingBoard and SiteWhere IoT platforms in order to compare these 

platforms. The performance evaluation showed that ThingBoard performs better than SiteWhere. In 

addition, the authors of [70] analyzed the process of message transmission using the MQTT protocol. 

The authors captured the delays and message loss of the transmitting messages with different service 

quality levels and payload sizes. The results showed that the delays are associated with message loss for 

different sizes of messages. It is important to simulate a real-life environment for cloud-based IoT 

environments to provide accurate benchmarking. Therefore, in this paper, we simulate a real-life 

environment of the two implementations a and b to measure the performance of subscribing and 

publishing messages. We conducted our analysis using several metrics to evaluate our implementations 

and to provide a better understanding of their performance. 

3.3 Implementation  

 
  In this section, we present two cloud-based IoT implementations. Fig. 3.1 depicts the 

implementations, a and b. These implementations are used in the following section to measure 

performance. In implementation a, two basic temperature and humidity sensors (DHT11 [71]) are 

connected to a Raspberry Pi 3 model B [72], which enables sensors to communicate over Wi-Fi since 

the sensors are not equipped with Wi-Fi boards. Sensors along with their Wi-Fi-enabling Raspberry Pi 

are considered to be the IoT layer that has light computation capabilities and light storage for 

configurations. Both sensors, with their respective Wi-Fi-enabling Raspberry Pis, are connected to 
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another Raspberry Pi 3 model B that serves as middle layer (i.e., fog node). An MQTT broker operates 

on top of the fog layer to enable message exchange using a publish/subscribe model. The fog layer is 

used for light computation and temporary storage. Data from the sensors that is received by the fog node 

is then forwarded to the cloud layer (i.e., AWS IoT). This cloud computing layer is used for high 

computation and permanent big data storage. The three layers are wirelessly connected using Wi-Fi. In 

implementation b, two DHT11 sensors are connected to a Raspberry Pi model B. This is the IoT layer 

of the implementation. Sensors are then directly connected to the cloud (AWS IoT) without a middle 

fog layer. 

 

Figure 3.1 Cloud-Based IoT Implementations a and b 

 

  As mentioned above, in the IoT layer of implementations a and b, because the sensors do not 

come with Wi-Fi capability, the sensors are attached to the Raspberry Pi model B to enable Wi-Fi. 
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Arduino IDE software is installed on top of the Raspberry Pi and a C++ program is written to read the 

sensor’s data and publish it to the fog layer. We installed another MQTT broker on the fog node (the 

green Raspberry Pi box in Fig. 3.1) to publish data to the cloud (AWS IoT). A python script is executed 

in fog to filter the data received from the IoT layer (the sensors) and publish it to the cloud (AWS IoT). 

In the cloud layer, the AWS message broker handles receiving the data sent from the fog node (the green 

Raspberry Pi box in Fig. 3.1). Similarly, in implementation b, we also attached the sensors to the 

Raspberry Pi to enable Wi-Fi. In addition, we installed Arduino IDE in Raspberry Pi and wrote a C++ 

program that reads the sensor’s data and publishes it directly to the cloud (AWS IoT).  

3.4 Description of AWS IoT metrics  

 
  Amazon CloudWatch provides a monitor to measure AWS IoT-based systems. It can process 

data and analyze it in real time. There are several AWS metrics [9] that can be taken in consideration to 

evaluate our cloud-based IoT implementations. These metrics are: 

1) Connect.Success: 
 

This metric is used to collect the number of successful connections from our IoT nodes or fog nodes to 

the AWS message broker.  

2) Ping.Success 
 

This metric collects the number of ping messages received by the AWS message broker. These ping 

messages are received from the fog node(s) in implementation a and from the IoT node(s) in 

implementation b. 

3) Publishin.Success 
 

This metric is used to collect the number of publish requests successfully processed by the AWS 

message broker. Like the ping messages, these messages are also received from the fog node(s) in 

implementation a and from the IoT node(s) in implementation b. 

4) Publishout.Success 
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The Publishout.Success metric is used to collect the number of publish requests successfully made by 

the AWS message broker to the fog nodes in implementation a and to the IoT nodes in implementation 

b. 

5) Subscribe.Success 
 

The Subscribe.Success metric is used to collect the number of successful subscribe requests processed 

by the AWS message broker. These requests are made by the fog node in implementation a and made 

directly by the IoT devices in implementation b.  

6) Publishin.Clienterror 
 

Finally, the Publishin.Clienterror metric is used to collect the number of publish requests rejected 

because they did not meet the AWS IoT requirements.  

7) Unsubscribe.Success 
 

The Unsubscribe.Success metric collects the number of unsubscribed requests that were successfully 

processed by the AWS message broker. These unsubscribe requests are made by the fog node in 

implementation a and made directly by the IoT devices in implementation b. 

8) Throttle.Exceeded 
 

The Throttle.Exceeded metric is used to collect the number of requests that were throttled because the 

client (i.e., the IoT node or fog node) has sent too many messages and exceeded the allowed message 

rate. 

9) Publishout.Throttle 
 

The Publishout.Throttle metric is used to collect the number of publish requests that were throttled 

because the client (i.e., IoT node or fog node) exceeded the allowed message rate.  

3.5 Empirical Testing 

 
  To test the differences in the two implementations, we analyzed the metrics provided by AWS 

IoT that are listed in section 4 and shown in Table 3.1. Fig. 3.2 shows the results of these metrics at 
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different durations (i.e., 1 second, 5 seconds, 10 seconds, 15 seconds, 30 seconds, 1 minute, 5 minutes, 

15 minutes, and 1 hour). The metrics show that both implementations have similar results when run for 

less than 15 minutes. They also show that implementation a had a higher number of successful 

connections, especially after 15 minutes. Implementation a also showed better results in the number of 

subscribe requests. 

Table 3.1 AWS metrics results for Two Cloud-Based IoT Implementations  

AWS IoT metrics results – implementation a (imp1) & implementation b (imp2)  

AWS IoT 

metrics 

1 second 5 seconds 10 seconds 30 seconds 1 minute 5 minutes 15 minutes 1 hour 

Imp1 Imp2 Imp1 Imp2 
Imp

1 
Imp2 Imp1 Imp2 Imp1 Imp2 Imp1 Imp2 Imp1 Imp2 Imp1 Imp2 

Connect. Success 
3.13
5 

2 3 2 3 2 3 2 3 2 6 2 9.005 3 29 3 

Ping.Success 1 4 1 4 1 4 1 4 1 4 5 18 15 63 87 275 

PublishIn.Succes

s 
40 30 40 30 40 30 40 30 40 30 248 150 708 450 1.42 k 1.8 k 

PublishOut.Succe
ss 

18 16 18 16 18 16 18 16 18 16 122 76 352 196 710 1.26 k 

Subscribe. 

Success 
2 1 2 1 2 1 2 1 2 1 2 2 6 2 10.025 2 

Unsubscribe. 

Success 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Throttle.Exceede

d 
- - - - - - - - - - - - - - - - 

Publishout.Thrott

le 
- - - - - - - - - - - - - - - - 

Publishin.Cliente

rror 
- - - - - - - - - - - - - - - - 

 

  However, implementation b outperformed implementation a in the number of processed publish 

requests by AWS IoT, the number of publish requests made by AWS IoT, and the number of successful 

pings after 1 hour. Both implementations had similar results in the number of unsubscribe requests 

processed by AWS IoT. It is important to note that three of the metrics (Throttle.exceeded, 

Publishout.throttle, and Publishin.clienterror) did not show any results, which indicates that our 
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implementations did not violate AWS IoT requirements and did not exceed the allowed rate of messages. 

Overall, implementation b (i.e., no fog layer) tends to outperform implementation a in some metrics, 

especially at or after 1 hour. However, implementation a has a better ability to scale up as the number 

of devices and messages increase due to its utilization of a fog computing node, as shown in Fig 3.2.  

3.6 Discussion 

 
  Although in our experiment we demonstrated that adding a fog layer between the sensors and 

the cloud in cloud-based IoT environments did not substantially impact performance, these results are 

subject to some limitations. First, we noticed that implementation b outperformed implementation a after 

the first hour of running both implementations. We are not sure at what point between 15 minutes and 

1 hour implementation b started to perform better. We also ran both of the experiments for only one 

hour; thus, we do not know whether implementation b would continue to perform better than a. The 

results we obtained, as well as the lack of results in some metrics, are likely due the small number of 

edge devices used and/or to running both experiments for only one hour.  
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Figure 3.2 AWS metrics results for Implementations a (Imp1) and b (Imp2) 

  In this paper, we used only two sensors per implementation. Future studies may test whether the 

results we obtained hold true if we use more sensors. If 1000 sensors and 10 fog nodes were used, for 

example, it is likely that implementation a would outperform implementation b due to the hierarchical 

architecture in implementation a that makes it easier and less cumbersome for the IoT to manage the 

received messages from the MQQT brokers. In other words, instead of having the AWS IoT interacting 

with 1000 sensors, it will receive messages from 10 fog devices. This is important because it means that 

implementation a could also handle additional functionalities, such as access control, encryption, 

decryption, and filtering of messages. Also, although we utilized a fog layer in implementation a to 

better manage and control message exchange between the sensors and AWS IoT, the sensors and fog 

nodes were both operating using TCP on the same LAN. We plan to locate the fog node on a different 

network and perform the experiment again to determine whether that will affect the results. In addition, 
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our AWS IoT currently operates on Virginia datacenter. We will try to run our AWS IoT service on a 

different datacenter and determine whether that would impact our results.  

  This paper presents a work in progress on how adding a fog layer may impact the performance 

of cloud-based IoT systems. Such work is important because we are attempting to implement an access 

control model [73] that may need to execute some operations for the IoT devices, since sensors usually 

have low or no processing capability. This will improve the security of IoT environments, especially in 

critical applications such as medicine [74]. 

3.7 Conclusion 

 
  In this paper, we presented two cloud-based IoT implementations using a real-life platform that 

is used in industry. One of the implementations has a fog layer between the IoT devices (i.e., sensors) 

and the cloud, whereas in the other implementation, IoT devices were directly connected to the cloud. 

The purpose of these experiments was to better understand the impact of the additional fog layer on the 

performance of cloud-based IoT environments. We examined the performance of the two 

implementations and showed that adding a fog layer between the IoT devices and the cloud positively 

impacted the connect, message publish, ping, and subscribe metrics for the first 15 minutes. At the 1-

hour time point, the implementation that did not have a fog layer performed better. We also noticed that 

both implementations gave consistent results (i.e., increasing, decreasing) using the AWS metrics, which 

indicates credible results. In the future, we plan to use the same metrics to evaluate the performance of 

IoT-Fog-Cloud environments that utilize encryption-based access control to determine how the 

encryption and decryption operations affect the performance of cloud-based IoT environments, with the 

aim of providing practical solutions. 
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4.1 Introduction  
  

  Cloud computing is an emerging technology that offers high computational power and 

permanent storage for the Internet of things (IoT). In cloud-based IoT environments, as the number of 

IoT devices increase, the amount of data generated from the IoT also increases. This causes a high 

latency due to the long distance between the IoT devices and the cloud. Exchanging data between IoT 

devices and the cloud increases the utilization of bandwidth and requires increasing resources as the 

number of IoT devices increases. In addition, operations such IoT device authentication and 

authorization, as well as encryption, add computation overhead on the cloud. This requires bringing the 

computation capability closer to the IoT devices and reserving the resource-demanding tasks for the 

cloud. Therefore, fog computing emerged to satisfy the demand for frequent computation, 

communication, and storage by the IoT layer [58], [75]. 

  According to Cisco, fog computing is a layer of computing that extends the cloud, bringing it 

closer to the things that generate and process IoT data. Any device with computing, storage, and network 

connectivity can be a fog node, and fog layer nodes can be deployed anywhere with a network 

connection (e.g., on top of a traffic light, alongside a railway track, etc. [76]). Fog computing enjoys the 

following characteristics:  

1) Low Latency: Network latency is defined as the time it takes for data or a request to travel from the 

source to the destination. In cloud-based IoT environments, latency is typically high due to the distance 

between the IoT devices and the cloud. This increases the cloud response time, especially as the number 

of IoT devices increases, making the cloud unable to support the real-time demand of IoT devices. Fog 
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computing reduces that latency by bringing data to the edge of the network and closer to end users to 

meet the high processing demand.  

2) Higher Scalability: Scalability is the ability of a system to handle a growing amount of work by adding 

resources to the system. In cloud-based IoT environments, as the number of IoT devices increases, it 

becomes difficult for the cloud to handle the heavy computation and bandwidth overhead of the devices. 

Fog computing can solve this issue by distributing serval fog nodes that can reduce the heavy load on 

the cloud and support hierarchal scalability when the number of IoT devices increases. 

3) Location Awareness: Location awareness refers to the ability of a device to passively or actively 

determine their location. This feature is important because it allows applications to provide services 

better suited to user and device location, thus lowering latency.  

4) Mobility: Computing mobility is the ability to perform computing operations while a connected 

device is able to move, communicating from any location through a wireless channel. This includes 

mobility of IoT nodes as well as fog nodes in cloud-based IoT environments.  

5) Decentralized Architecture: A decentralized network is a network of interconnected devices in which 

no single entity is the sole authority. Workloads in distributed architectures are distributed among 

several machines instead of relying on a single central server. This is an important feature of fog 

computing because applications and services on the fog can process and store data from any end devices, 

whether it is a fog node or a sensor (i.e., IoT node).  

6) Heterogeneity: Heterogeneity in networking refers to a network that connects devices made by 

different manufacturers running different operating systems and uses multiple network architectures and 

protocols. Fog computing heterogeneity is a topological feature that is of particular importance in cloud-

based IoT environments, as it enables devices to exchange information and to use the information that 

has been exchanged without restrictions. 
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7) Bandwidth Optimization: Optimization of network bandwidth refers to overall inbound and outbound 

bandwidth improvements on a network. This allows fog nodes to handle traffic from billions of devices 

to prevent congestion and latency problems. This is because the enormous amount of data collected from 

the IoT devices is can be processed locally instead of transmitting it to the cloud. 

  Despite the benefits offered by fog-aided IoT, researchers and practitioners are faced with 

challenges in the implementation and performance of fog-aided IoT systems. 

First, there is a lack of real-life implementations of the many theoretical studies in research and 

academia. Although simulation-based experiments provide easy access to practical results about the 

performance of computing systems, observations and research outcomes may not be generalizable to all 

scenarios due to the variety in IoT platform providers and device manufacturers; their different 

implementations, service specifications, and configurations; and differences in network architectures 

and protocols. Therefore, in order to develop a profound and general insight into the tradeoffs involved 

in a particular system, it is important to use real IoT platforms built on top of a real-world network (i.e., 

Internet) when obtaining analytical results for the performance of fog-aided IoT implementations. In 

addition, it would be interesting to explore the performance differences of fog implementations 

interacting with different commercial IoT platforms, such as Amazon IoT and Azure IoT.   

Second, due to the diverseness that fog-aided IoT environments enjoys and the lack of consensus among 

practitioners and hobbyists on a standard fog computing implementation, there is a lack of resources that 

show how to implement an efficient fog-aided IoT system. Most of the implementations available are 

either domain specific, complex, or too abstract to be useful in all scenarios.  

Third, although fog computing offers promising solutions to many of the performance and security 

problems of the IoT [77], it is confronted with various security and privacy risks. For instance, while fog 

computing is crucial for spreading risks across distributed fog nodes, it also has the untoward effect of 

increasing the attack surface. This is exacerbated because fog computing devices interact with devices 

only; that is, the fog nodes receive IoT data from sensors and send it to the cloud and vice versa. This 
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means that no humans are involved in the communication. Although this can be considered an advantage 

because these interacting devices do not have screens or an on-device user interface, which reduces the 

attack surface, it can lead to failures and/or targeted attacks that cannot be easily detected and deterred. 

Other security and privacy issues in fog-aided IoT also deserve our attention. In this work, we aim to 

better understand fog-aided IoT environments in order to pave the way for further research to address 

interesting confidentiality, integrity, and availability violations. This paper makes the following 

contributions: 

• We present two architectures of cloud-based IoT environments. The first architecture has a fog layer 

applied between the IoT devices and the cloud, whereas the second architecture publishes the data 

directly to the cloud without a fog layer.  

• We used two benchmarks to measure the performance of the cloud-based IoT architectures. The first 

benchmark is Mosquitto message broker metrics, which are used to measure the performance of the 

IoT-Fog-cloud at the fog computing level. The second benchmark is AWS message broker metrics, 

which are used to measure the performance of the two architectures (IoT-cloud and IoT-fog-cloud) 

to show the impact of the additional middle layer (i.e., the fog layer) on cloud-centered IoT 

environments. 

• We discuss some security and privacy implications of the two architectures presented in this paper, 

showing what triggers these implications and suggesting methods to address these implications. 

• This work serves as a tutorial reference of fundamental fog computing concepts and aims to walk 

practitioners through different implementations of fog-aided IoT and to reveal tradeoffs that inform 

when to use each implementation based on one’s objectives.  

  The remainder of this paper is structured as follows. In section 2, we present related work and 

discuss existing industrial and Message Queuing Telemetry Transport (MQTT) benchmarks. In section 

3, we describe the experiment setup of the two architectures of cloud-based IoT environments in detail. 

In section 4, we provide a description of the AWS IoT metrics and Mosquitto message broker metrics 
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that were used to measure our two architectures. We describe the performance metrics in section 5 and 

discuss the results in section 6. The discussion, including challenges faced and future work, is presented 

in section 7. Finally, we conclude the paper. 

4.2 Background 

 
  Today, IoT sensors are used everywhere and have become crucial to the operation of many 

domains of life. As shown in Fig 4.1, different kinds of sensors can be found in our homes, cars, 

workplaces, etc., and are sold independently (e.g., smoke sensor, light sensor, temperature sensor, 

motion sensor, proximity sensor, touch sensor, ultrasonic sensor, humidity sensor, IR sensor, pressure 

sensor, gyroscope sensor, etc.) or as an integral part of a sophisticated device such as a smartphone that 

may have dozens of sensors. These sensors are developed by major manufacturers and are deployed in 

many sectors, including healthcare, education, communication, transportation, and manufacturing. 

  Manufacturers have developed IoT platforms to help organizations build fully functional IoT 

environments. According to AT&T [78], an IoT platform is an end-to-end software framework that pulls 

together information from sensors, devices, networks, and software that work together to unlock 

valuable, actionable data. IoT platforms enable management and automation of connected devices 

within the IoT universe. There are several proprietary IoT platforms available, including AWS IoT Core 

[79], Microsoft Azure IoT [80], IBM IoT [81], and Google IoT Core [82], as well as opensource IoT 

platforms such as IoTivity [83], Zetta [84], Arduino IDE [85], DeviceHive [86], and openremote [87]. 

These IoT platforms usually reside and run on a virtual machine on the cloud that efficiently pulls, 

processes, and stores the data received from the massive number of IoT sensors.  

  Classical IoT environments are configured so that IoT sensors are directly connected to the IoT 

platform and the cloud. In modern architectures, a fog layer is introduced between the IoT sensors and 

the IoT platform (the cloud) for extra-efficient computation, communication, and storing. Case studies 

to show tradeoffs between the two implementations will be discussed extensively in this paper.  

https://devicehive/
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  Devices in all layers of IoT environments (see fig. 4.1) communicate using different protocols. 

These protocols are [11]: 

• MQTT is a lightweight many-to-many communication protocol for the IoT that is designed to be a 

publish/subscribe messaging transport protocol. MQTT is ideal for connecting remote devices with 

minimal memory consumption and network bandwidth. MQTT is used in a wide variety of domains, 

such as industry, health care, and transportation. Port 1883 is the default MQTT port, whereas port 

8883 is the default MQTT port over TLS (i.e., secure-mqtt), and both are registered at the Internet 

Assigned Numbers Authority (IANA) for Secure MQTT.  

• Constrained Application Protocol (CoAp) is a one-to-one User Datagram Protocol (UDP) protocol 

for transferring state information between client and server. Despite its ability to preserve resources, 

CoAP is best suited to a state transfer model. Since CoAp uses UDP, it does not guarantee the 

delivery of datagrams. In addition, CoAp is unencrypted. The default CoAP port registered at IANA 

is 5683. 

• Extensible Messaging and Presence Protocol (XMPP) is a secure and near-real-time communication 

protocol for message-oriented middleware based on XML that enables the exchange of structured 

but extensible data between any two or more devices over a network. XMPP is mainly used by 

instant messaging applications such as WhatsApp [88] and Telegram [89]. XMPP offers persistent 

decentralized connection between devices; thus, no central XMPP servers are needed to 

communicate. However, to establish a connection between two devices, one of the devices is 

considered an xmpp-client and communicates over port 5222, while the other is considered an 

xmpp-server and uses port 5269. XMPP can also use port 5280 for two-way communication. This 

is called xmpp-bosh, which means Bidirectional-streams Over Synchronous HTTP (BOSH). XMPP 

has been used in the literature to network IoT devices, such as in [90], [91]. Despite its features and 

potential, XMPP has some limitations. First, XMPP does not have a Quality of Service (QoS) 

mechanism. In addition, XMPP streams data in XML format, which introduces overhead due to the 
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text-based communication. These reasons, among others, make MQTT a more popular protocol for 

IoT, since it has a mechanism for QoS and uses lightweight binary-based communication. 

• MQTT For Sensor Networks (MQTT-SN) [92] is considered a modified version of MQTT that is 

adapted to the attributes of a wireless connection, such as a lossy wireless network. It is designed 

specifically for wireless sensor networks with scale in mind. MQTT-SN was developed to support 

non-TCP networks like UDP. This is another advantage because it makes the communication lighter 

by eliminating the TCP handshakes.  

• The Advanced Message Queuing Protocol [93] (AMQP) is an open standard application layer 

protocol for middleware. AMQP is designed with more advanced features that introduce more 

overhead than when using MQTT. These features include message orientation, queuing, routing, 

reliability, and security. The registered port number for AMQP at IANA is 5672, and for AMQPS 

(i.e., TLS/SSL encrypted AMQP), it is 5671. For more information on which protocol functions best 

for the IoT based on the messaging requirements, see [94].  
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Figure 4.1 Overview of cloud-aided IoT environments. 

 

  This work focuses on commercial IoT sensors (i.e., DHT11 temperature and humidity sensors) 

connected using a proprietary IoT platform (i.e., AWS IoT Core). We choose proprietary IoT platforms 

over the free opensource ones because they are popular among industries due to their faster time to 

market and lower initial cost.  

  Amazon Web Services (AWS) provides reliable, scalable, and inexpensive on-demand cloud 

computing services to individuals, companies, and governments around the world [64]. Customers can 

benefit from the cloud data centers distributed in the different locations in many ways, including the low 

cost (pay as you go) and the massive cloud infrastructure to perform experiments and deploy new 

applications. AWS offers many services; however, we will be using the following in this work: (1) AWS 

IoT, (2) Amazon S3, and (3) AWS CloudWatch. AWS IoT allows a secure communication and 

messaging exchange over MQTT for internet-connected devices such as sensors and micro-controllers 
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in real time [95]. Amazon CloudWatch [96] monitors devices and applications connected to AWS in 

real time using several metrics [95] to track the connected devices and measure the performance, 

security, and scalability, among other criteria. 

  The MQTT protocol is a widely used protocol and is supported by all IoT platforms as well as 

commercial sensors; therefore, we used MQTT as the communication protocol. In addition, we used a 

Raspberry Pi board to simulate fog nodes for the scenarios in which fog nodes are introduced. To enable 

the Raspberry Pi boards used in this experiment to communicate over MQTT, we used an MQTT broker 

software, Eclipse Mosquitto [97]. An MQTT broker is a server that receives all the messages from the 

IoT devices and publishes them to other devices. MQTT broker also has other benefits, including (1) 

supporting scalability with many IoT devices, (2) managing credentials and certificates that are used for 

authentication, (3) decreasing network strain on the cellular network without disclosing security, and 

(4) excluding the connection of insecure and vulnerable devices. Many MQTT brokers are available, 

including Eclipse Mosquitto [97], RabbitMQ [98], and ActiveMQ [99]. In this paper, we used Eclipse 

Mosquitto because it is the most popular and has ample resources for implementation. In addition, it is 

lightweight and suitable for use on all devices, from low-power single-board computers to full servers. 

An MQTT broker feature called SYS-Topics [100] is widely used to monitor the Mosquitto MQTT 

broker by providing metrics about Mosquitto and track the devices connected to it.  

  In this paper, we present numerical results based on an experiment that uses a real-world IoT 

platform, sensors, and network (not a simulation) to show the performance tradeoffs of various IoT 

implementations and discuss the results. Notably, this experiment in a real environment is vulnerable to 

real-life cyber and/or physical attacks as well as performance failures.  

4.3 Related Works 

 
  The rapid adoption of cloud-based IoT environments in large scale and with intensive use has 

induced, among other factors, a growing need to simulate real-life environments to measure the security 

and performance of the IoT-Fog-Cloud environments to provide suitable support for the construction of 
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an efficient access control model [58]. Benchmarks are one of the ways to measure the security and 

performance of cloud-based IoT environments. There are several widely used general industry 

benchmarks that are adopted in many commercial solutions. The Standard Performance Evaluation 

Corporation (SPEC) provides benchmarks for a wide range of IT components, such as cloud, CPU, 

storage, power, and virtualization [101]. The Transaction Processing Performance Council (TPC) also 

offers a suite of widely used IT industry benchmarks [102]. TPCx-IoT is one of TPC benchmarks that 

measures the operating system, and data storage and management systems to provide the industry with 

performance metrics and other available metrics of IoT systems [63], [103]. Moreover, HP developed 

IoTABench, an IoT analytics benchmark for big data scenarios that is used to evaluate the performance 

and scalability of a big data platform [60]. The benchmark was demonstrated using a smart metering 

IoT use case and evaluated on the HP Vertica 7 analytics platform, which can handle data for an “electric 

utility with 40 million smart meters”. 

  For MQTT, different benchmarks to measure the performance and security of cloud-based IoT 

environments have been proposed in the literature [104], [105]. Two IoT platforms, Things Board and 

Site Where, have been evaluated using different metrics [67]. In addition, evaluation of the message 

transmission process (i.e., Subscribe and Publish) of the MQTT protocol via wireless and wired clients 

was presented in [70]. The end-to-end delay and message loss when transmitting messages are analyzed 

with different quality of service levels and different payload sizes. The results of their experiment showed 

that end-to-end delay is related to the message loss with different sizes of payloads. 

  Moreover, Azzam et al., in a recent survey, evaluated the performance of fog computing using 

performance metrics such as processing delay, processing costs, and processing power, and derived the 

performance gains obtained in comparison to a cloud computing-only approach [106]. In the healthcare 

sector, Alsubaei et al. evaluated security in the Internet of Medical Things (IoMT) [46]. In addition, 

Kafhali et al. evaluated the response time of accessing medical data stored in a fog-based IoMT 

implementation [107]. They also proposed a queuing model to predict the minimum number of computing 
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resources (both fog and cloud nodes) required to meet the Service Level Agreement (SLA) for response 

time. Another study in the healthcare field was presented by Vilela et al., who compared the performance 

of fog-based computing to the conventional cloud computing model in a healthcare real-time monitoring 

system [108]. EdgeBench is another benchmark for serverless edge computing platforms and is used to 

measure the performance of two edge computing platforms, Greengrass and Azure [61]. In addition, 

DeFog, a fog computing benchmark, was proposed to provide a standard methodology and facilitate the 

understanding of the target platform by collecting a catalogue of relevant metrics for a set of benchmarks 

[109]. However, most experiments in these studies were carried out using simulators that rely on provided 

generic metrics and/or focus on one domain, which do not represent real IoT-fog-cloud systems across 

different domains. 

  Hence, in this paper, we extend the previous works by implementing real-life experiments and 

analyzing performance metrics from a popular cloud provider (AWS) and IoT protocol (MQTT). We 

implemented two real-life architectures of cloud-based IoT environments to measure their performance. 

In addition, we used different numbers of IoT devices to increase the number of subscribers and 

publishers in order to understand how this impacts the results. 

 

4.4 Experiment Setup 

 
  This section presents the hardware and software components used to set up our experiment. In 

this paper, we present several IoT-cloud implementations: (1) IoT-Cloud, (2) IoT-fog-cloud using 

bridge, and (3) IoT-fog-cloud using Python. The hardware and software configurations used in these 

implementations are discussed in the following subsections.   

4.4.1 Hardware 

  As shown in Fig. 4.2, the experiment in this section involves two architectures. The first 

architecture presents IoT-fog-cloud, while the second presents IoT-cloud. In this section, we first describe 
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the devices that are used in the two architectures of cloud-based IoT environments, then explain the two 

architectures in detail. In this experiment, we used DHT11 devices [110] and Raspberry 3 Pi model B 

[111]. The DHT11 is a low-cost sensor device that is used to measure the temperature and humidity of 

the surrounding air. The purpose of the DHT11 sensor in this experiment was to generate real data for 

the experiment. The Raspberry Pi is a low-cost, single-board computer with built in WiFi and processing 

capability that is used in several domains, such as weather monitoring, smart homes, and smart health 

care. In this experiment, the purpose of the Raspberry Pi was to provide light computation capability to 

the DHT11 sensor data. In addition, it provided light storage for the DHT11 configurations. Moreover, 

the Raspberry Pi can be easily moved to different locations. A complete list of the hardware used in this 

experiment is available in Table 4.1  

Table 4.1 Summary of the equipment used in the two architectures. 

 

Equipment Name  Equipment Type  Quantity  Purpose   

DHT11 temperature-humidity 

sensor 

3  Generate real life data  

Raspberry Pi Version 3 Model B 4 Enable WiFi & provide huge processing 

power and storage 

Micro SD Card 32GB ImageMate Plus 130 

mb/s Read 

4 Initial storage for the operating system 

and files 

Monitor HP  4 Provide a visual display  

Keyboard & mice HP 4 Useful for working on a Raspberry Pi 

Power 

Supply/Adapter 

CanaKit 4 Supply the power for the Raspberry Pi 

HDMI Cable onn 4 Connect the Raspberry Pi to a monitor   
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Figure 4.2 First architecture (IoT-Fog-Cloud) vs. second architecture (IoT-Cloud). 

 

4.4.1.1 First Architecture 

  In the first architecture, each DHT11 sensor is connected to only one Raspberry Pi. The 

Raspberry Pi is used here to enable WiFi connectivity, since the DHT11 sensors are not equipped with 

network interfaces. Each sensor is connected to Raspberry Pi board (i.e., connectivity enabler) that is 

considered an IoT device in the IoT layer. Each IoT device is connected via WiFi to another Raspberry 

Pi board that acts as fog node in the fog layer. Communication between the IoT devices, the fog node, 

and the cloud uses the MQTT protocol. For this, an MQTT broker called Eclipse Mosquitto [97] is 

installed in the Raspberry Pi acting as a fog device. The Mosquitto MQTT broker exchanges all messages 

using the subscribe-publish model presented in [58]. The Mosquitto MQTT broker is also used to filter 
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all messages based on topics. A topic refers to an UTF-8 string that the broker (i.e., Mosquitto) uses to 

filter messages for each connected IoT device. Each data type (i.e., humidity, temperature) in our 

experiment is considered a separate topic. The data generated by the sensors and collected by the three 

IoT devices is transmitted over the Internet to the Raspberry Pi acting as the fog node. This Raspberry Pi, 

which contains the MQTT broker Mosquitto on it, is then connected over the Internet to the AWS cloud. 

The communication between the three layers is through the Internet. Fig. 4.3 shows the hardware used to 

implement the first architecture.  

 

Figure 4.3 Hardware used in first architecture: IoT-Fog-Cloud. 

 

4.4.1.2 Second Architecture 

  In the second architecture, all three IoT devices, consisting of a sensor and a Raspberry Pi board 

(i.e., connectivity enabler), are directly connected to the AWS cloud. Therefore, the huge real data 

received by device one, device two, or device three is forwarded wirelessly to the AWS cloud layer. The 
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hardware used in the second architecture is identical to that used in Fig. 4.3, except that no fog node is 

used in this architecture. 

4.4.2 Software 

  We installed Arduino IDE [112] software on top of the three Raspberry Pi boards used to connect 

the IoT devices. Arduino IDE is a cross-platform application that is written in functions from C and C++ 

and is used to write and upload programs to Arduino-compatible boards like Raspberry Pi. We used 

Arduino IDE to read the data collected by the sensors (i.e., temperature and humidity) and then publish 

it over the Internet to the fog node. We used C++ scripts in Arduino IDE to perform the following 

operations on the IoT devices: tagging, authentication, publish, and subscribe.  

4.4.2.1 First Architecture 

  In the first architecture, the algorithm gathers data from the IoT devices and forwards it to the 

fog. This involves authenticating the IoT devices to communicate with the MQTT broker on the fog 

device and publish data to it. The following two sections present two ways for fog nodes to communicate 

with the cloud.  

Algorithm 1: Gather data generated from the IoT device and forward it to the fog node – First architecture 

/* This algorithm authenticates the IoT device to the fog device, generates temperature and humidity data via 

DHT11 sensors, and publishes them to the Mosquitto MQTT broker on the fog device 

1:  Define the type of DHT sensor, which is DHT11  

2:  Define the input/output pins of the Raspberry Pi to which the DHT11 is connected 

3:  Define an object of the sensor with two arguments: DHT pin and DHT type  

4:  Define the name of the network  

5:  Define the password of the network  

6:  Define the variable of MQTT broker  

7:  Define only two variables of humidity topic and temperature topic for each IoT device (DHT11 + 

Raspberry Pi) in each experiment  

8:  Create two instances of clients, one used to connect to the Internet and the other used to connect to 

the MQTT broker 

9:  Run MQTT connection, setup, loop  

10:  Function: MQTT connection   

11:              Connect to Internet              

12:               If (the connection is established) then 

13:                           Print “connected” 

14:                           Connect to MQTT broker on fog device 

15:               Else (the connection isn’t established) then 

16:                                      Try reconnecting to Internet   

17:  Function: setup  
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18:               Start a serial communication at 9600 board rates  

19:               Initialize the DHT11 sensor 

20:  While (MQTT connection is True): 

21:               Read humidity  

22:               Read temperature  

23:               Print humidity 

24:               Print temperature          

25:               Publish humidity topic with its read value to MQTT broker on fog device  

26:               Publish temperature topic with its read value to MQTT broker on fog device 

27:  end while 

 

4.4.2.1.1 Bridging  

  In our fog-aided IoT implementation, the MQTT broker (i.e., Mosquitto) is installed on top of a 

Raspberry Pi board that serves as a fog node. In such cases, the MQTT broker needs to be very close to 

where the sensors are deployed. The Mosquitto MQTT broker has a built-in capability that allows the 

received data to be sent directly to the cloud (AWS IoT Core) by specifying the address of the AWS IoT 

core service used. This operation is called bridging. (Please see [113] for more information.) The 

following algorithm illustrates the connection of IoT devices to the AWS IoT core using a bridge 

connection.  

Algorithm 2: Bridge every message received from the IoT devices based on the topics of the messages to the 

AWS broker on the cloud  

/* This algorithm authenticates the IoT device to the MQTT broker on the fog device, bridges to the data 

received from the sensors via the MQTT broker, filters them based on topics, authenticates to the AWS via 

certificates, and then publishes the filtered data to the AWS IoT core service 

1:  Define the variable of endpoint of Amazon Web Service with port number 8883 

2:  Determine which topics of the messages to bridge to AWS   

3:  Define the version of the protocol to be used between the MQTT broker and the AWS broker 

4:  Create one instance of client to be used over the MQTT protocol 

5:  Define the name of the bridge connection   

6:  Start Connection  

7:  Configure the bridge using SSL/TLS support  

8:  Define bridge_cafile to hold the path of Amazon Root CA certificate 

9:  Define bridge_certfile to hold the path of Amazon certificate  

10:  Define bridge_keyfile to hold the path of Private key  

 

4.4.2.1.2 Python Script 

  Using the same Mosquitto MQTT broker, we developed a Python script on the fog device to 

replace the Mosquitto built-in bridging capability to simultaneously authenticate the MQTT broker and 
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AWS, receive the data from the sensors, and filter and publish the data received to the AWS IoT core 

service. This Python script provides more flexibility for future improvements in security and 

performance. The following algorithm depicts the operations implemented in our Python script. This 

algorithm is used to authenticate IoT devices to fog devices, gather the temperature and humidity data 

from the DHT11 sensors, and publish the data to the Mosquitto MQTT broker on the fog device. The 

algorithm also authenticates the fog node to interact with the AWS IoT Core (i.e., cloud). Afterward, the 

algorithm filters the collected data and publishes it to the cloud. 

Algorithm 3: Receive data from the IoT devices and forward it to the cloud 

/* This algorithm authenticates the IoT device to the MQTT broker on the fog device, subscribes to the data 

received from the sensors via the MQTT broker, filters the data based on topics, authenticates to the AWS via 

certificates, and then publishes the filtered data to the AWS IoT core service 

1: Define two variables (humidity topic and temperature topic) for each IoT device in each experiment 

2: Define the variables of MQTT broker and MQTT port  

3: Create two instances of clients, one used for the MQTT broker and the other used for the AWS broker 

4: Connect the first client to the MQTT broker using the IP address of the fog device and MQTT port  

5: Create a loop_start() method to start a new thread for the first client 

6: Set the transport layer security (TLS) for the second client using the three paths of AWS certificates 

and the current version of MQTT protocol 

7: Connect the second client to AWS broker using AWS Endpoint and AWS port 

8: Create a loop_start () method to start a new thread for the second client 

9:             While True do 

10:                  Define a connection function 

11:                              Subscribe for all topics in each IoT device 

12:                              Print “connected” when the connection is established 

13:                              Print “error” when the connection is disconnected 

14:                  Define a message function 

15:                             Get topic of the message 

16:                             Get payload of the message 

17:                             Print topic of the message 

18:                             Print payload of the message 

19:                             Publish topic and payload of the message to AWS cloud 

20:                  Make the first client execute the two functions: (1) connection, and (2) message 

21:                  Make the second client execute the message function to publish the recovered data to AWS 

cloud 

22: end while 

 

4.4.2.2 Second Architecture 

  In the second architecture, Arduino IDE is installed on top of the three Raspberry Pi boards used 

to connect the IoT devices. Arduino IDE is used to read the data collected by the sensors (i.e., temperature 

and humidity) and then publish it over the Internet directly to the cloud. This operation requires 
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authentication to the cloud before the data can be published. The process to authenticate the IoT device 

(i.e., DHT11 + Raspberry Pi) to access the cloud (AWS IoT Core) using the AWS certificate and then to 

publish the data generated by the sensors to the cloud is illustrated in the Algorithm 4. 

 

Algorithm 4: Gather data generated from the IoT device and forward it to the cloud – Second architecture 

/* This algorithm authenticates the IoT device to the AWS cloud via certificates, generates temperature and 
humidity data via the DHT11 sensors, and publishes them to the AWS cloud 

1:  Define the type of DHT sensor, which is DHT11  
2:  Define the input/output pins of the Raspberry Pi to which the DHT11 is connected 
3:  Define an object of the sensor with two arguments, DHT pin and DHT type  
4:  Define the name of the network  
5:  Define the password of the network  
6:  Define the variable of endpoint of Amazon Web Service  
7:  Define only two variables (humidity topic and temperature topic) for each IoT device (DHT11 + 

Raspberry Pi) in each experiment  
8:  Create a client to connect to AWS using AWS endpoint and port number 8883 
9:  Run connection, setup, loop 
10:  Function: connection  
11:              Connect to Internet  
12:               If (the connection is established) then  
13:                           Print “connected” 
14:               Else (the connection isn’t established) then 
15:                           Try reconnecting to Internet   
16:  Function: setup  
17:               Start a serial communication at 9600 board rates  
18:               Initialize the DHT11 sensor 
19:               Run a connection function  
20:               Convert the AWS certificates to .der Format  
21:               Open certificate   
22:               If (certificate is existing)  
23:                            Load certificate  
24:               Else 
25:                            Print “certificate is not existing” 
26:               Open Amazon Root CA certificate  
27:               If (Amazon Root CA certificate is existing) 
28:                            Load Amazon Root CA certificate 
29:               Else 
30:                            Print “Amazon Root CA certificate is not existing” 
31:               Open private key  
32:                If (private key is existing) 
33:                            Load private key     
34:                Else 
35:                            Print “Private key is not existing” 
36:  While (connection is True): 
37:               Read humidity  
38:               Read temperature  
39:               Print humidity 
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40:               Print temperature          
41:               Publish humidity topic with its read value to MQTT broker on fog device  
42:               Publish temperature topic with its read value to MQTT broker on fog device 
43:  end while 

 

  To monitor the Mosquitto MQTT broker, the following algorithm illustrates how $SYS-Topics 

is used to provide metrics. 

Algorithm 5: Monitoring script on fog device 

/* This algorithm connects to the MQTT broker, subscribes to SYS-Topics via the MQTT broker to monitor 

and provide benchmark metrics of the Mosquitto broker, and publishes the results based on these metrics  

1:  Create one instance of clients to connect to Mosquitto broker   

2:  Connect the client to MQTT broker using the IP address of fog device and MQTT port 

3:  Define a connection function 

4:                Print “connected” when the connection is established 

5:                Print “error” when the connection is disconnected 

6:   Subscribe to $SYS/# topics to monitor the mosquito MQTT broker (print the metrics 

results of Mosquitto broker on fog device 

7:  Make the client execute the connection function 

8:  Create a loop forever() method for the client to remain monitoring the Mosquitto 

 

4.5 Descriptions of Metrics 

 
  Many metrics can be used to measure the performance in IoT systems. The following subsections 

describe the metrics that we utilized to measure the performance in the cloud and fog layers. 

4.5.1 Cloud Layer: AWS IoT Metrics 

  Many metrics can be used to measure the performance of cloud-based IoT systems from the cloud 

layer. Since we used the AWS IoT as the cloud service provider for our experiments, we used Amazon 

CloudWatch to measure the performance. Amazon CloudWatch has been used in the literature to monitor 

performance [114]–[116]. Amazon CloudWatch processes and analyzes data in real time and provides 

the following metrics to measure our two architectures of cloud-based IoT environments: 

1) Connect.Success: 
 

 This metric is used to collect the number of successful connections from our IoT nodes or fog nodes to 

the AWS message broker. 
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2) Ping.Success:  
 

This metric is used to collect the number of ping messages received by the AWS message broker. These 

ping messages are received from the fog node(s) in the first architecture and from the IoT node(s) in the 

second architecture. 

3) PublishIn.Success:  
 

This metric is used to collect the number of publish requests successfully processed by the AWS 

message broker. Like the ping messages, these messages are received from the fog node(s) in the first 

architecture and from the IoT node(s) in the second architecture. 

4) PublishOut.Success: 
 

 This metric is used to collect the number of publish requests successfully made by the AWS message 

broker to the fog nodes in the first architecture and to the IoT nodes in the second architecture.  

5) Subscribe.Success: 
 

 This metric is used to collect the number of successful subscribe requests processed by the AWS 

message broker. These requests are made by the fog node in the first architecture and made directly by 

the IoT devices in the second architecture.  

6) PublishIn.Clienterror: 
 

 This metric is used to collect the number of publish requests rejected because they did not meet the 

AWS IoT requirements. 

7) Unsubscribe.Success: 
 

 This metric is used to collect the number of unsubscribe requests that were successfully processed by 

the AWS message broker. These unsubscribe requests are made by the fog node in the first architecture 

and made directly by the IoT devices in the second architecture.  

8) Throttle.Exceeded:  
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This metric is used to collect the number of requests that were throttled because the client (i.e., the IoT 

node or fog node) has sent too many messages and exceeded the allowed message rate.  

9) PublishOut.Throttle:  
 

This metric is used to collect the number of publish requests that were throttled because the client (i.e., 

IoT node or fog node) exceeded the allowed message rate.  

4.5.2 Fog Layer: Eclipse Mosquitto Broker Metrics 

  Likewise, many metrics can be used to measure the performance of the fog layer. MQTT has 

been used in the literature as a lightweight protocol to communicate between messages [104], [105], 

[117]. Since we used the MQTT protocol for the message broker on the fog node, we utilized Eclipse 

Mosquitto [97] in our experiments. Eclipse Mosquitto [97] provides some metrics as $SYS topics, which 

are described as follows: 

1) $SYS/broker/uptime: 
 

 This metric is used to measure the amount of time in seconds the broker has been online. 

2) $SYS/broker/load/messages/received:  
 

This metric is used to measure the moving average of the number of all types of MQTT messages 

received by the broker over different time intervals.  

3) $SYS/broker/load/messages/sent:  
 

This metric is used to measure the moving average of the number of all types of MQTT messages sent 

by the broker over different time intervals.  

4) $SYS/broker/load/publish/received: 
 

 This metric is used to measure the moving average of the number of publish messages received by the 

broker over different time intervals. 

5) $SYS/broker/load/publish/sent: 
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 This metric is used to measure the moving average of the number of publish messages sent by the broker 

over different time intervals.  

6) $SYS/broker/load/bytes/received: 
 

 This metric is used to measure the moving average of the number of bytes received by the broker over 

different time intervals. 

7) $SYS/broker/load/bytes/sent:  
 

This metric is used to measure the moving average of the number of bytes sent by the broker over 

different time intervals. 

8) $SYS/broker/load/sockets:  
 

This metric is used to measure the moving average of the number of socket connections opened to the 

broker over different time intervals.  

9) $SYS/broker/load/connections: 
 

 This metric is used to measure the moving average of the number of CONNECT packets received by 

the broker over different time intervals.  

10) $SYS/broker/messages/stored: 
 

 This metric is used to measure the number of messages currently held in the message store. This 

includes retained messages and messages queued for durable clients.  

11) $SYS/broker/store/messages/bytes: 
 

 This metric is used to measure the number of bytes currently held by message payloads in the message 

store. This includes retained messages and messages queued for durable clients. 

12) $SYS/broker/subscriptions/count:  
 

This metric is used to measure the total number of subscriptions active on the broker. 

13) $SYS/broker/heap/current: 
 

 This metric is used to measure the current size of the heap memory in use by Mosquitto.  
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14) $SYS/broker/messages/received:  
 

This metric is used to measure the total number of messages of any type received since the broker started. 

15) $SYS/broker/messages/sent: 
 

 This metric is used to measure the total number of messages of any type sent since the broker started. 

16) $SYS/broker/publish/messages/received: 
 

 This metric is used to measure the total number of PUBLISH messages received since the broker started. 

17) $SYS/broker/publish/messages/sent: 
 

 This metric is used to measure the total number of PUBLISH messages sent since the broker started. 

18) $SYS/broker/bytes/received: 
 

 This metric is used to measure the total number of bytes received since the broker started. 

19) $SYS/broker/bytes/sent: 
 

 This metric is used to measure the total number of bytes sent since the broker started. 

20) $SYS/broker/publish/bytes/received: 
 

 This metric is used to measure the total number of PUBLISH bytes received since the broker started. 

21) $SYS/broker/publish/bytes/sent:  
 

This metric is used to measure the total number of PUBLISH bytes sent since the broker started.  

4.6 Analysis Methods 

 
  We used two benchmark metrics to analyze the performance of the two IoT architectures 

implemented in this paper. In the two architectures of cloud-based IoT environments, we set the number 

of subscribes and publishes to two for each device. This is because the IoT devices (i.e., the DHT11 

sensors) generate two types of data: (1) temperature and (2) humidity. Therefore, as the number of sensor 

devices increase, the number of subscribes and publishes should also increase. This provides more 

accurate, consistent, and real results about the environment performance and scalability. In this section, 

we present the methods that we used to perform the experiment on both architectures.  
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4.6.1 Architecture 1 vs. Architecture 2 

  The performance of the two architectures of cloud-based IoT environments was analyzed using 

the AWS benchmark, and the results obtained were compared. The experiment was to be performed using 

a different number of IoT devices each time (1, 2, or 3 IoT devices) to compare and analyze the results 

in order to show the impact of the fog layer in the first architecture on IoT environments. Fig. 4.2 shows 

the experiment setup and metrics applied to measure the performance of the two cloud-based IoT 

environments. AWS, like any IoT platform provider, requires that any device be authenticated before 

communicating with it. AWS uses certificates to authenticate devices. As shown in Fig. 4.2, the location 

where the certificate is stored is different in the two architectures due the structure of the environments. 

Since the first architecture has a fog layer between AWS and the IoT devices, the certificate is stored in 

the fog device (i.e., the Raspberry Pi board serving as the fog layer). In the second architecture, however, 

since the IoT devices are directly connected to AWS, the certificates are stored in each IoT device.  

4.6.2 Architecture 1 Implementation: Python Script vs. Bridging 

  The first architecture of the IoT-fog-cloud layer was implemented using two different 

experiments, as shown in Fig 4.4 The first experiment is based on a Python script shown in Algorithm 3 

that manually receives, filters, and forwards the messages to the cloud. The second experiment 

(Algorithm 2) bridges all of the messages received from the IoT devices based on their topics to AWS. 

The purpose of using the bridge in the first architecture is to connect two brokers, the MQTT message 

broker “mosquitto” and the AWS message broker, to exchange messages based on the different topics 

and to validate the results of the first architecture. AWS benchmarks were used to analyze the 

performance of the first architecture in two different implementations. Although bridging offers faster 

implementation, the Python script provides more flexibility to add features to optimize performance. The 

objective of this analysis is to show the impact of both implementations. 
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Figure 4.4 IoT-Fog-Cloud Architecture using two methods: Python script and MQTT bridging. 

 

4.6.3 Architecture 1 Measurement: Mosquitto Metrics vs. AWS Metrics 

  The performance of the first architecture (i.e., IoT-fog-cloud) will be measured from both the fog 

side and the cloud side. The fog-side metrics (i.e., Mosquitto Broker Metrics) were measured over 

different durations (30 seconds, 1 minute, 5 minutes, 15 minutes, 30 minutes, 45 minutes, and 1 hour), 

while the cloud-side metrics (i.e., AWS metrics) were measured over 30 seconds, 1 minute, 5 minutes, 

15 minutes, and 1 hour. (Due to the AWS platform constraints, it was difficult to unify the experiment 

durations.) Fig. 4.5 presents the different metrics used to measure the performance of the IoT environment 

that uses a fog layer from two sides. Fig 4.5 (a) presents the metrics applied to measure performance of 

the IoT environment at the fog layer, whereas Fig 4.5 (b) presents the metrics applied to measure the 
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performance of the IoT environment at the cloud layer. This was done to ensure that the performance of 

the IoT environment remains consistent in the fog and cloud layers using different setups.  

 

Figure 4.5 (a) Metrics applied in the fog layer vs. (b) metrics applied in the cloud layer. 

 

4.7 Results and Description of Experiments 

 
  In this section, the results of the two architectures of cloud-based IoT environments will be 

analyzed using the two benchmarks metrics (Mosquitto and AWS) based on the selected architecture 

using one, two, or three IoT devices with increasing numbers of subscribing and publishing requests. In 

the following sections, the benchmark metrics of each architecture are described in detail, along with 

observations. 
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4.7.1 Results: Description of the three experiments of the first architecture with one, two, or three IoT 

devices using AWS benchmark metrics (cloud layer) 

  The Amazon CloudWatch monitor has a variety of metrics to analyze the cloud layer that were 

used in the experiments on the first architecture, as shown in Tables 4.2 and 4.3. The AWS metrics are: 

(1) Connect.Success, (2) Ping.Success, (3) PublishIn.Success, (4) PublishOut.Success, (5) 

Subscribe.Success, (6) Unsubscribe.Success, (7) PublishIn.Clienterror, (8) Throttle.Exceeded, and (9) 

PublishOut.Throttle. These metrics are explained in detail in section 5.1, and the metrics were collected 

for one hour, starting from 30 seconds, as shown in Tables 4.2 and 4.3. Before analyzing the results 

obtained using the AWS metrics, there are a number of assumptions that should be taken in consideration. 

First, the number of successful connections from either IoT devices or fog devices using the 

Connect.Success metric must be equal to the number of subscribe requests received from either fog 

devices or IoT devices using the Subscribe.Success metric because the loss of connections will lead to 

the loss of subscribe requests in each device and the subscriptions will be renewed automatically once 

the connection is reestablished. Second, the number of unsubscribe requests received from either IoT 

devices or fog devices using the Unsubscribe.Success metric must reflect the number of subscribing and 

publishing requests generated in each IoT device. In our experiments, there are three IoT devices, and 

each of them generates two types of data: temperature and humidity. Therefore, the number of IoT devices 

is three and the number of all subscribing and publishing requests is six. Third, the number of publish 

requests received from either fog devices or IoT devices using the Publishin.Success metric should be 

close to or the same as the number of publish requests made by AWS to either fog devices or IoT devices 

using the Publishout.Success metric.  

  The experiments using the first architecture, which includes a fog layer, were conducted with 

one, two, or three IoT devices for different time periods (30 seconds, 1 minutes, 5 minutes, 15 minutes, 

and 1 hour), as shown in Table 4.2 The first experiment used one IoT device attached to one fog device, 

and the results showed that the Connect.Success and Subscribe.Success numbers reflect the number of 
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subscribing and publishing requests for one IoT device with two subscribe and publish requests. This is 

because the connection is not disconnected and the subscribe request is not lost from either the IoT or the 

fog device. Moreover, there is only one IoT device connected to only one fog device, which is then 

authenticated to the AWS cloud, and no other devices interrupted them. In addition, the PublishIn.Success 

and PublishOut.Success numbers are expected and stable because the data came from the IoT device and 

were filtered based on topic on the fog device, then sent to the AWS cloud. Thus, it takes time for the 

data to be transferred between the three layers of IoT, fog, and cloud. In the second experiment, on the 

other hand, two IoT devices were attached to the fog device, as shown in Table 4.2 The results indicated 

that the Connect.Success and Subscribe.Success numbers were equal to the number of subscribing and 

publishing requests for both IoT devices, since two IoT devices are linked to one fog device with four 

subscribing and publishing requests. Therefore, the PublishIn.Success and PublishOut.Success numbers 

are significantly increased with two IoT devices compared to the previous experiment using only one IoT 

device attached to one fog device. This is because two IoT devices are connected to only one fog device 

serving as the middle layer between the IoT devices and the AWS cloud that is used to authenticate to 

the AWS cloud. Thus, the fog device increased the number of messages published to the AWS cloud and 

reduced the number of IoT devices that need to be authenticated to the AWS cloud. The third experiment 

used three IoT devices connected to one fog device, as shown in Table 4.2 The Connect.Success and 

Subscribe.Success numbers still reflected the actual number of subscribing and publishing requests for 

all three IoT devices, even though there was only one fog device. Thus, the PublishIn.Success and 

PublishOut.Success numbers were significantly increased due to the high volume of published messages 

from the three IoT devices. Therefore, the fog device made a significantly impact in filtering and 

transferring the actual volume of data from the three IoT devices to the AWS cloud and decreasing the 

number of authentications required for the AWS cloud. 

4.7.2 Results: Description of the three experiments on the second architecture with one, two, or three 

IoT devices using AWS benchmark metrics (cloud layer) 
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  In Table 4.2, it can be seen that for one IoT device, the Connect.Success and Subscribe.Success 

numbers are low because there is only one IoT device with two subscribe and publish requests 

authenticated to the AWS, and no other IoT devices are attached with it. Thus, the connection and 

subscription are established one time. In addition, the PublishIn.Success and PublishOut.Success 

numbers are consistent and high due to the single authenticated IoT device. With two IoT devices with 

four subscribe and publish requests, however, the Connect.Success and Subscribe.Success numbers 

increase because there are two IoT devices attempting to authenticate to the AWS cloud at one time, 

which increases the number of connections and subscriptions. The Publishin.Success and 

PublishOut.Success numbers have not substantially changed compared to the previous experiment even 

though the number of subscribe and publish requests increased with the second IoT device added because 

the second IoT device tried to authenticate to the AWS cloud while the first IoT device tried to publish 

messages to the AWS cloud; as a result, publish messages were lost in each period. The third experiment, 

using three IoT devices with six subscribe and publish requests, shows that the number of connections 

and subscriptions increases while the PublishIn.Success and PublishOut.Success numbers become low. 

This is because the three IoT devices tried to authenticate to the  

AWS cloud at once, causing a huge number of connections and subscriptions request. 

Table 4.2 AWS IoT message broker metrics on N. Virginia datacenter (cloud layer) using bridge – First 

Architecture vs. Second Architecture 

 

AWS IoT message broker metrics on N. Virginia datacenter (cloud layer) 

using bridge – First Architecture  

AWS IoT message broker metrics on N. Virginia datacenter (cloud layer) 

– Second Architecture  

Number of IoT devices  1 Number of IoT devices  1 

Number of subscribing & 

publishing   

2 Number of subscribing & 

publishing   

2 

AWS IoT metrics in minutes (m) 0.

5 

1 5  15  60 AWS IoT metrics in minutes (m) 0.

5 

1 5  15  60 

Connect.Success 2 2 2 2 2 Connect.Success 2 2 2 2 2 

Ping.Success 2 2 8 29 120 Ping.Success 5 5 25 75 297 

PublishIn.Success 44 4

4 

206 586 236

0 

PublishIn.Success 60 60 30

0 

90

0 

358

0 

PublishOut.Success 44 4

4 

206 586 236

0 

PublishOut.Success 60 60 30

0 

90

0 

358

0 

Subscribe.Success 2 2 2 2 2 Subscribe.Success 2 2 2 2 2 

Unsubscribe.Success 2 2 2 2 2 Unsubscribe.Success 2 2 2 2 2 
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AWS IoT message broker metrics on N. Virginia datacenter (cloud layer) 

using bridge – First Architecture   

AWS IoT message broker metrics on N. Virginia datacenter (cloud layer) 

– Second Architecture 

Number of IoT devices  2 Number of IoT devices 2 

Number of subscribing & 

publishing   

4  Number of subscribing & 

publishing   

4 

AWS IoT metrics in minutes  0.5 1 5  15  60 AWS IoT metrics in minutes  0.5 1 5 15 60 

Connect.Success 4 4 4 4 4 Connect.Success 6 6 35 111 432 

Ping.Success 2 2 8 29 120 Ping.Success 1 1 8 20 85 

PublishIn.Success 70 7

0 

350 111

0 

4590 PublishIn.Success 62 62 32

2 

965 385

0 

PublishOut.Success 70 7

0 

350 111

0 

4590 PublishOut.Success 51 51 32

2 

965 385

0 

Subscribe.Success 4 4 4 4 4 Subscribe.Success 6 6 35 111 432 

Unsubscribe.Success 4 4 4 4 4 Unsubscribe.Success 4 4 4 4 4 

AWS IoT message broker metrics on N. Virginia datacenter (cloud 

layer) using bridge – First Architecture 

AWS IoT message broker metrics on N. Virginia datacenter (cloud 

layer) – Second Architecture 

Number of IoT devices 3 Number of IoT devices 3 

Number of subscribing & 

publishing 

6 Number of subscribing & 

publishing   
6 

AWS IoT metrics in minutes 0.5  1 5  15  60 AWS IoT metrics in minutes 0.5 1  5  15  60 

Connect.Success 6 6 6 6 6 Connect.Success 12 1

2 

76 228 893 

Ping.Success 2 2 9 29 119 Ping.Success 2 1 5 14 60 

PublishIn.Success 115 115 54

8 

166

0 

651

0 

PublishIn.Success 68 6

8 

35

9 

105

0 

4240 

PublishOut.Success 115 115 54

8 

166

0 

651

0 

PublishOut.Success 58 6

8 

35

9 

105

0 

4240 

Subscribe.Success 6 6 6 6 6 Subscribe.Success 12 1

2 

76 228 893 

Unsubscribe.Success 6 6 6 6 6 Unsubscribe.Success 6 6 6 6 6 

 

Table 4.3 AWS IoT message broker metrics on N. Virginia datacenter (cloud layer) using bridge vs. 

Python – First Architecture 

 

AWS IoT message broker metrics on N. Virginia datacenter (cloud 

layer) using Python script – First Architecture 

AWS IoT message broker metrics on N. Virginia datacenter (cloud 

layer) using bridge – First Architecture 

Number of IoT devices  1 Number of IoT devices  1 

Number of subscribing & 

publishing   

2 Number of subscribing & 

publishing   

2 

AWS IoT metrics in minutes  0.5 1 5 15 60 AWS IoT metrics in minutes  0.5 1 5 15 60 

Connect.Success 2 2 2 2 2 Connect.Success 2 2 2 2 2 

Ping.Success 2 2 10 30 119 Ping.Success 2 2 8 29 120 

IoT PublishIn.Success 46 46 206 590 236

0 

IoT PublishIn.Success 44 44 20

6 

586 236

0 

IoT PublishOut.Success 46 46 206 590 236

0 

IoT PublishOut.Success 44 44 20

6 

586 236

0 

Subscribe.Success 2 2 2 2 2 Subscribe.Success 2 2 2 2 2 

IoT Unsubscribe.Success 2 2 2 2 2 IoT Unsubscribe.Success 2 2 2 2 2 
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AWS IoT message broker metrics on N. Virginia datacenter (cloud 

layer) using Python script – First Architecture 

AWS IoT message broker metrics on N. Virginia datacenter (cloud 

layer) using bridge – First Architecture 

Number of IoT devices  2 Number of IoT devices 2 

Number of subscribing & 

publishing   

4  Number of subscribing & 

publishing   

4 

AWS IoT metrics in minutes  0.5 1 5 15 60 AWS IoT metrics in minutes  0.5 1 5 15 60 

Connect.Success 4 4 4 4 4 Connect.Success 4 4 4 4 4 

Ping.Success 2 2 9 29 118 Ping.Success 2 2 8 29 120 

IoT PublishIn.Success 76 76 359 117

0 

468

0 

IoT PublishIn.Success 70 70 35

0 

1110 459

0 

IoT PublishOut.Success 76 76 359 117

0 

468

0 

IoT PublishOut.Success 70 70 35

0 

1110 459

0 

Subscribe.Success 4 4 4 4 4 Subscribe.Success 4 4 4 4 4 

IoT Unsubscribe.Success 4 4 4 4 4 IoT Unsubscribe.Success 4 4 4 4 4 

AWS IoT message broker metrics on N. Virginia datacenter (cloud 

layer) using Python script – First Architecture  

AWS IoT message broker metrics on N. Virginia datacenter (cloud 

layer) using bridge – First Architecture 

Number of IoT devices 3 Number of IoT devices 3 

Number of subscribing & 

publishing 

6 Number of subscribing & 

publishing   
6 

AWS IoT metrics in minutes 0.5  1 5  15  60 AWS IoT metrics in minutes 0.5  1 5  15  60 

Connect.Success 6 6 6 6 6 Connect.Success 6 6 6 6 6 

Ping.Success 1 2 10 30 118 Ping.Success 2 2 9 29 119 

IoT PublishIn.Success 117 117 534 168

0 

665

0 

IoT PublishIn.Success 115 11

5 

54

8 

1660 651

0 

IoT PublishOut.Success 117 117 534 168

0 

665

0 

IoT PublishOut.Success 115 11

5 

54

8 

1660 651

0 

Subscribe.Success 6 6 6 6 6 Subscribe.Success 6 6 6 6 6 

IoT Unsubscribe.Success 6 6 6 6 6 IoT Unsubscribe.Success 6 6 6 6 6 

 

4.7.3 Results: Description of the three experiments of the first architecture with one, two, or three IoT 

devices using Mosquitto benchmark metrics (fog layer) 

  The MQTT Mosquitto broker using SYS-Topics has several metrics that were used in the 

experiments on the first architecture from the fog layer, as shown in Tables 4.4, 4.5, and 4.6. The 

Mosquitto broker metrics are: (1) load/messages/received, (2) load/messages/sent, (3) 

load/publish/received, (4) load/publish/sent, (5) load/bytes/received, (6) load/bytes/sent, (7) load/sockets, 

(8) load/connections, (9) messages/stored, (10) store/messages/bytes, (11) subscriptions/count, (12) 

heap/current, (13) messages/received, (14) messages/sent, (15) publish/messages/received, (16) 

publish/messages/sent, (17) bytes/received, (18) bytes/sent, (19) publish/bytes/received, and (20) 

publish/bytes/sent. These metrics are described in detail in section 5.2 and were obtained over one hour, 
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starting from 30 seconds, as shown in Tables 4.4, 4.5, and 4.6.  Before analyzing the Mosquitto broker 

metrics on the fog device, a number of hypotheses should be discussed. First, the number of subscribe 

requests received from each IoT device using the subscription/count metric must reflect the number of 

subscribe and publish requests established in each IoT device. Second, the number of publish messages 

received from each IoT device in the first architecture using the publish/messages/received metric should 

be equal to the number of publish messages received from the fog device using the Publishin.Success 

metric. Third, the number of publish messages sent by the Mosquitto broker on the fog device using the 

publish/messages/sent metric should increase as the number of IoT devices increases due to the broker 

capabilities and the high computational power of the fog device to process and publish many messages. 

The experiments on the first architecture, which has a fog device between the IoT device(s) and the AWS 

cloud, is performed using one, two, or three IoT devices for different periods of 30 seconds, 1 minute, 5 

minutes, 15 minutes, 30 minutes, 45 minutes, and 1 hour. The first experiment used one IoT device 

attached to the fog device connected to the AWS cloud, as shown in Table 4.4. The results showed that 

the number of subscribe requests using the subscriptions/count metric on the fog device reflects the 

number of subscribe and publish requests of the single IoT device with two subscribe and publish 

requests. This is because the fog device is subscribed to the topics of each message received from IoT 

devices and filters them based on the topics of the messages, then publishes them to the AWS cloud. 

Therefore, the message is identified by its topic in each layer. In addition, the number of publish messages 

made by the fog device (publish/messages/sent) is high even though there is only one IoT device with 

two subscribe and publish requests. This is because the fog device has high capabilities to filter and 

publish many messages since it is located close to the IoT device that is generating the real data. 

Moreover, the size of the heap memory used by Mosquitto on the fog device is stable over different 

durations from 30 seconds to 1 hour. The second experiment was conducted using two IoT devices with 

four subscribe and publish requests attached to the fog device, which connects to the AWS cloud, as 

shown in Table 4.5. The results showed that the number of subscribe requests increased since the number 

of IoT devices increased to two. In addition, the number of publish messages made by the fog device 
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(publish/messages/sent) significantly increased because two IoT devices with four subscribe and publish 

requested were attached. The third experiment was conducted using three IoT devices with six subscribe 

and publish requests attached to a fog device and then to the AWS cloud, as shown in Table 4.6. The 

results demonstrated that the number of subscribe requests was six when the number of IoT devices 

increased to three. In addition, the number of publish messages made by the fog device 

(publish/messages/sent) became significantly higher when the number of IoT devices increased to three.  

Table 4.4 Mosquitto message broker metrics on fog layer using bridge – First Architecture– One IoT 

device 

 
Number of IoT devices One IoT device 

Number of subscribing & publishing   Two subscribing & two publishing 

Mosquitto message broker metrics as $SYS 

topics 

30 (seconds) 1 

(minutes) 

5 

(minutes) 

15 

(minutes) 

30 

(minutes) 

45 

(minutes) 

1 (hours) 

$SYS/broker/load/messages/received 1(m) 25.31 36.26 27.43 46.25 47.81 25.96 44.70 
$SYS/broker/load/messages/sent 1(m) 137.87 177.35 179.52 215.36 199.56 188.81 213.35 

$SYS/broker/load/publish/received 1(m) 22.68 33.07 23.95 43.88 45.38 23.43 42.69 

$SYS/broker/load/publish/sent 1(m) 135.23 174.15 176.03 213.00 197.14 186.28 211.34 
$SYS/broker/load/bytes/received 1(m) 802.93 1135.98 849.26 1478.98 1524.90 791.00 1439.38 

$SYS/broker/load/bytes/sent 1(m) 5315.03 6898.23 7230.76 8637.79 8029.54 7694.46 8610.21 

$SYS/broker/load/sockets 1(m) 1.05 0.61 0.92 0.09 0.12 0.94 0.12 
$SYS/broker/load/connections 1(m) 1.05 0.61 0.92 0.09 0.12 0.94 0.12 

$SYS/broker/subscriptions/count 2 2 2 2 2 2 2 

$SYS/broker/heap/current 30224 30232 30360 30148 30084 29744 30132 
$SYS/broker/messages/received 37 65 225 663 1285 1885 2515 

$SYS/broker/messages/sent 202 329 1144 3250 6356 9416 12552 

$SYS/broker/publish/messages/received 32 58 209 625 1213 1787 2375 
$SYS/broker/publish/messages/sent 197 322 1128 3212 6284 9310 12412 

$SYS/broker/bytes/received 1154 2029 7149 21219 41165 60374 80633 

$SYS/broker/bytes/sent 7730 12711 45329 129895 255029 378636 505171 
$SYS/broker/publish/bytes/received 160 290 1045 3125 6065 8935 11875 

$SYS/broker/publish/bytes/sent 806 1400 5505 16551 33192 49748 66818 

 

Table 4.5 Mosquitto message broker metrics on fog layer using bridge – First Architecture– Two IoT 

devices 

 
Number of IoT devices Two IoT devices 

Number of subscribing & publishing   Four subscribing & four publishing 

Mosquitto message broker metrics as $SYS 

topics 

30 

(seconds) 

1 

(minutes) 

5 

(minutes) 

15 

(minutes) 

30 

(minutes) 

45 

(minutes) 

1 (hours) 

$SYS/broker/load/messages/received 1(m) 59.48 79.02 109.81 119.86 109.03 123.12 114.70 

$SYS/broker/load/messages/sent 1(m) 175.38 226.02 296.83 312.57 296.21 307.21 298.85 
$SYS/broker/load/publish/received 1(m) 38.21 53.18 73.62 79.78 74.34 82.05 78.49 

$SYS/broker/load/publish/sent 1(m) 154.11 200.18 260.63 272.49 261.52 266.13 262.63 

$SYS/broker/load/bytes/received 1(m) 2124.60 2767.93 3916.20 4291.54 3854.92 4393.78 4074.59 
$SYS/broker/load/bytes/sent 1(m) 5981.40 7807.80 10344.23 10803.61 10424.09 10568.27 10457.24 

$SYS/broker/load/sockets 1(m) 19.69 23.40 33.62 37.64 32.03 38.43 34.27 

$SYS/broker/load/connections 1(m) 19.69 23.40 33.64 37.65 32.12 38.43 34.27 
$SYS/broker/subscriptions/count 4 4 4 4 4 4 4 

$SYS/broker/heap/current 30268 30268 30252 30268 30252 30260 30204 

$SYS/broker/messages/received 84 143 593 1747 3433 5194 6954 
$SYS/broker/messages/sent 253 416 1632 4686 9154 13704 18242 

$SYS/broker/publish/messages/received 53 94 398 1157 2283 3451 4618 

$SYS/broker/publish/messages/sent 222 367 1437 4096 8004 11961 15906 
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$SYS/broker/bytes/received 2976 5015 21111 62781 123353 186822 250274 
$SYS/broker/bytes/sent 8609 14285 56570 162328 318376 476257 633619 

$SYS/broker/publish/bytes/received 265 470 1990 5785 11415 17255 23090 

$SYS/broker/publish/bytes/sent 942 1650 7159 21442 42979 65025 87076 

 

Table 4.6 Mosquitto message broker metrics on fog layer using bridge – First Architecture– Three IoT 

devices 

 
Number of IoT devices Three IoT devices 
Number of subscribing & publishing   Six subscribing & six publishing 

Mosquitto message broker metrics as $SYS 

topics 

30 (seconds) 1 

(minutes) 

5 

(minutes) 

15 

(minutes) 

30 (minutes) 45 (minutes) 1 (hours) 

$SYS/broker/load/messages/received 1(m) 90.09 129.50 172.49 163.15 163.81 172.50 179.13 

$SYS/broker/load/messages/sent 1(m) 207.44 279.24 359.50 357.54 353.60 352.41 369.72 

$SYS/broker/load/publish/received 1(m) 55.43 81.41 109.62 99.23 98.21 107.07 115.52 

$SYS/broker/load/publish/sent 1(m) 172.78 231.14 296.63 293.61 287.99 286.97 306.10 

$SYS/broker/load/bytes/received 1(m) 3329.39 4744.07 6384.79 6124.10 6170.40 6480.58 6627.83 
$SYS/broker/load/bytes/sent 1(m) 6672.01 8948.99 11686.44 11697.09 11528.00 11394.30 12088.13 

$SYS/broker/load/sockets 1(m) 33.08 45.51 60.27 61.48 63.11 63.81 61.52 

$SYS/broker/load/connections 1(m) 33.08 45.51 60.29 61.49 63.11 63.82 61.63 
$SYS/broker/subscriptions/count 6 6 6 6 6 6 6 

$SYS/broker/heap/current 30376 30320 30268 30312 30376 30240 30252 

$SYS/broker/messages/received 129 228 951 2689 5310 7915 10503 
$SYS/broker/messages/sent 299 505 1992 5639 11077 16495 21823 

$SYS/broker/publish/messages/received 79 142 603 1699 3333 4973 6612 

$SYS/broker/publish/messages/sent 249 419 1644 4649 9100 13553 17932 
$SYS/broker/bytes/received 4736 8349 35210 100003 197975 295130 391395 

$SYS/broker/bytes/sent 9603 16202 64301 183194 359880 536549 710168 

$SYS/broker/publish/bytes/received 395 710 3015 8495 16665 24865 33060 
$SYS/broker/publish/bytes/sent 1082 1920 8315 24546 49094 73862 98359 

 

 

4.8 Evaluation of Results 

 
4.8.1 First Architecture vs. Second Architecture 

  The first experiment of each of the two architectures was performed by connecting one IoT 

device to the cloud. We used two subscribes and two publishes to send the data. The results show that the 

number of subscribes and publishes are the same for both architectures and matches the defined number 

of subscribes and publishes for one IoT device. However, the number of published messages 

(PublishIn.Success and PublishOut.Success in Figs. 4.6.a-4.7.a) in the first architecture is slightly less 

than the number of published messages in the second architecture. This is because there is an additional 

hop (i.e., fog layer) in the middle of the first architecture that processes the messages before transmitting 

them to the AWS cloud; as a result, the messages take additional time to be delivered to the AWS cloud. 
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In contrast, the second architecture does not have a fog layer and the messages are forwarded directly to 

the AWS cloud, so the number of published messages is slightly higher. Moreover, the IoT devices must 

be authenticated to the AWS before publishing messages. Connect.Success and Subscribe.Success in 

Figs. 4.8.a-4.9.a show that when using one IoT device, authentication did not impact these two metrics 

in either architecture.  

  The second experiment was conducted using two IoT devices and four subscribes and publishes. 

The results show that the number of subscribes and publishes matches the defined number of subscribes 

and publishes for two IoT devices only in the first architecture, as shown in Figs. 4.8.b-4.9.b 

(Connect.Success and Subscribe.Success); the number of subscribes and publishes was significantly 

increased in the second architecture. This is because in the second architecture, the two IoT devices need 

to be authenticated separately to the AWS cloud, whereas in the first architecture, only one device (the 

fog node) needs to be authenticated because the IoT devices are authenticated to the fog node in a 

different, simpler process. Additionally, this high number of connect and subscribe requests in the second 

architecture causes a loss in the number of messages published to the AWS cloud. This is because while 

one of the IoT devices is subscribed and publishing, the other device remains trying to connect, as shown 

in Figs. 4.6.b-4.7.b (PublishIn.Success and PublishOut.Success). Notably, the rate of published messages 

in the first architecture is much better than in the second architecture. This is because in the first 

architecture, there was no failure to subscribe and the fog node was always able to publish messages 

successfully to the AWS cloud, as shown in Figs. 4.8.b-4.9.b (Connect.Success and Subscribe.Success).  

  In the third experiment, we used three IoT devices with six subscribes and publishes. The results 

show that the number of subscribes and publishes matches the defined number of subscribes and 

publishes (PublishIn.Success and PublishOut.Success in Figs. 4.6.c-4.7.c) in the first architecture. In the 

second architecture, however, the number of subscribes and publishes is significantly higher. This is 

because the fog node in the first architecture authenticates three IoT devices and the AWS cloud 

authenticates only the fog node. In contrast, in the second architecture, the AWS cloud authenticates three 
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IoT devices separately, which increases the number of subscribes and publishes. This also negatively 

affects the number of published messages in the second architecture due to the time spent by the IoT 

devices that are not connected trying to connect, as shown in Figs. 4.6.c-4.7.c (PublishIn.Success and 

PublishOut.Success). In contrast, in the first architecture, there is no loss in the published messages, as 

there is no sign of failure in the number of subscribes and publishes, as shown in Figs. 4.8.c-4.9.c 

(Connect.Success and Subscribe.Success). 

  In this experiment, we found that the performance of the second architecture was better than that 

of the first architecture when using one IoT device. However, when using more than one IoT device, the 

first architecture outperforms the second architecture in terms of performance. Moreover, when using 

more than one IoT device, the resource utilization in the first architecture was better than in the second 

architecture because all of the IoT devices were able to successfully connect to the fog node 

simultaneously. Overall, with an increased number of IoT devices, the first architecture outperforms the 

second architecture.  

   

Figure 4.6 AWS IoT message broker PublishIn.Success metric with 1, 2, and 3 IoT devices on N. Virginia datacenter (cloud 

layer) 

   

Figure 4.7 AWS IoT message broker PublishOut.Success metric with 1, 2, and 3 IoT devices on N. Virginia datacenter 

(cloud layer) 
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Figure 4.8 AWS IoT message broker Connect.Success metric with 1, 2, and 3 IoT devices on N. Virginia datacenter (cloud 

layer) 

   

Figure 4.9 AWS IoT message broker Subscribe.Success metric with 1, 2, and 3 IoT devices on N. Virginia datacenter (cloud 

layer) 

 

4.8.2 Architecture 1 Implementation: Python Script vs. Bridging 

  In this experiment, we evaluated the first architecture (i.e., IoT-fog-cloud) using two different 

implementations (Python Script vs. bridging) using AWS metrics. Three experiments were performed 

using one, two, or three IoT devices. Using two subscribes and two publishes per device, both 

implementations showed insignificant differences in performance using the AWS benchmark, as shown 

in Figs. 4.10, 4.11,4.12, and 4.13. Comparing the performance results of the same architecture using two 

different implementations shows that the results of our experiment are accurate.  



82 
 

   

Figure 4.10 AWS IoT message broker PublishIn.Success metric with 1, 2, and 3 IoT devices on N. Virginia datacenter 

(cloud layer) 

   

Figure 4.11 AWS IoT message broker PublishOut.Success metric with 1, 2, and 3 IoT devices on N. Virginia datacenter 

(cloud layer) 

   

Figure 4.12 AWS IoT message broker Connect.Success metric with 1, 2, and 3 IoT devices on N. Virginia datacenter 

(cloud layer) 
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Figure 4.13 AWS IoT message broker Subscribe.Success metric with 1, 2, and 3 IoT devices on N. Virginia datacenter 

(cloud layer) 

 

4.8.3 Architecture 1 Measurement: Mosquitto Metrics vs. AWS Metrics 

  In this section, we evaluated the first architecture of a cloud-based IoT environment using AWS 

and Mosquitto benchmarks. This is to prove that we have monitored the first architecture from two sides, 

the cloud layer and the fog layer, as shown in Fig. 4.14 

  The first experiment is conducted using one IoT device with two subscribes and two publishes. 

The results show that the number of subscribes and publishes are the same for both the AWS (i.e., 

Subscribe.Success and Connect.Success) and Mosquitto (i.e., $SYS/broker/subscriptions/count) 

benchmarks and reflect the defined number of subscribes and publishes for one IoT device, as shown in 

Figs. 4.8.a, 4.9.a and 4.14.9. This experiment was implemented using the subscribe-publish mode 

presented in [58]. In the architecture with three layers (IoT, fog, and cloud), the fog node subscribes to 

all of the message topics sent from the IoT device(s). These messages are then processed and published 

to the AWS cloud. Again, the cloud layer (i.e., the AWS cloud) subscribed to all of the message topics 

sent from the fog device. This is important, as it ensures that the IoT device(s) are connected and able to 

send data to the fog and then to the cloud without loss.  

  The number of published messages on the fog device using the Mosquitto metric 

(publish/messages/received) is equal to the number of published messages on the AWS cloud using the 

AWS metric (PublishIn.Success), as shown in Figs. 4.14.13 and 4.6.a. This is because the messages 
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generated from one IoT device were received by both the fog and the AWS cloud and no messages were 

lost during transmission. However, the number of messages processed by the Mosquitto broker 

($SYS/broker/publish/messages/sent) on the fog device is significantly higher than the number of 

messages processed by the AWS broker (PublishOut.Success) on the AWS cloud, as shown in Figs. 

4.14.14 and 4.7.a. This is because the fog device is closer to the IoT devices, which reduces the latency 

of transmitting all of the messages to the AWS cloud. In addition, fog devices play an important role in 

decreasing the computation overhead caused by the IoT devices due to its close proximity. It also reduces 

AWS resource consumption by bringing computation closer to the IoT devices. Therefore, the memory 

consumption ($SYS/broker/heap/current) on the fog node remains stable even when the number of 

messages processed increases, as shown in Fig. 4.14.10. 

  The second and third experiments of the first architecture were performed using two or three IoT 

devices with four and six subscribes and publishes, respectively. The results show that the number of 

subscribes and publishes remains identical using the Mosquitto metric ($SYS/broker/subscriptions/count) 

and the AWS metrics (Subscribe.Success and Connect.Success) and reflects the defined number of 

subscribes and publishes, as shown in Figs. 4.8-b,4.8-c, 4.9-b,4.9-c and 4.14.9. In addition, the number 

of published messages on the fog device remains equal to the number of published messages on the AWS 

cloud, as shown in Fig. 4.14.13 and 4.6-b, and 4.6-c. However, we noticed that when we increased the 

number of IoT devices, the number of messages made and processed by the Mosquitto broker on the fog 

device significantly increased without affecting the performance, as shown in Fig. 4.14.14.  

  Overall, in the first experiment with one IoT device, the number of messages processed by the 

fog device (i.e., received from the IoT device and sent to the cloud) is higher than the number of messages 

received by the AWS cloud. Similarly, as the number of IoT devices increased (i.e., using two and three 

IoT devices), the number of messages made by the Mosquitto broker on fog device remains higher than 

the number of messages made by the the AWS broker on the AWS cloud. This is because the messages 

are transmitted through the three layers of the environment (i.e., IoT, fog, and cloud); thus, it takes more 
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time for the messages to be delivered to the AWS cloud due to the additional intermediate fog layer. 

Moreover, since the fog device is located close to the IoT devices, message latency decreased and the 

processing of the messages on the fog increased. Thus, using fog computing is very beneficial when 

connecting more than one IoT device to the cloud. Overall, as the number of IoT devices increases, the 

process ability of the fog device in the first architecture outperforms that of the AWS cloud. 

   

(1) (2) (3) 

   

(4) (5) (6) 
 

   

(7) (8) (9) 
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Figure 4.14  Mosquitto message broker metrics on the fog layer using bridge (Architecture 1). 
 

 

4.9 Threats to validity 

 
  The experiments in this paper were implemented using real commercial sensors interacting with 

a real-world cloud through a commercial IoT service. The environment is susceptible to real attacks and 

simulates a real-life IoT environment. We used Raspberry Pi boards to enable the sensors to send 

collected data through the Internet to the cloud or the fog node. We also used a Raspberry Pi board as a 

fog node, the intermediate layer between the sensors and the cloud in the first architecture. The first 

architecture consists of three layers (IoT, fog, and cloud), whereas the second architecture consists of 

only two layers (IoT and cloud). Every layer operates on a separate network and all networks were 
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connected to the Internet to simulate real-life implementations. In both architectures, up to three sensors 

were used to capture temperature and humidity data and send it to the cloud. 

  Each experiment was performed for an hour, during which the data captured by the sensors was 

sent to the cloud (i.e., the AWS N. Virginia datacenter) and stored there. It is of interest to investigate 

whether the results can be applied to other cloud service providers or to other datacenters in different 

geographical areas. In addition, three sensors were used to conduct the experiments by either connecting 

the sensors to the cloud directly or connecting the sensors through a fog node to the cloud. Further 

experiments are needed to determine how many sensors a fog node can handle before performance is 

impact.  

  Moreover, our results indicate that the first architecture outperforms the second architecture in 

publishing the data captured by the sensors to the cloud. This is attributed to the fact that in the second 

architecture, all of the sensors need a certificate for authentication, whereas in the first architecture, only 

one certificate for authentication is needed and is placed on the fog node. Notably, this leaves the 

communication between the IoT layer and the fog layer without a proper authentication mechanism. We 

plan to utilize the computation and storage capability of the fog node to implement an authentication and 

authorization model for the sensors interacting with the fog nodes in the future. 

4.10 Discussion and Limitations 

 
  Fog computing evolved to support cloud-based IoT environments in many ways. It is known for 

its ability to lower communication latency, optimize communication bandwidth, and enable higher 

scalability and heterogeneity of networks. In addition to these advantages, fog computing enjoys many 

valuable characteristics, such as fog node mobility and location awareness, in addition to computational 

ability that IoT devices lack. In this paper, we demonstrated that fog computing has a substantial impact 

on cloud-based IoT environments in reducing latency and improving communication performance. In 

addition to these benefits, fog computing has a great deal of advantages that were not extensively 

discussed in our results.  
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  First, fog computing-aided IoT environments are known for their higher scalability, since every 

group of IoT devices is connected to a fog node. This hierarchical structure enables better management, 

tracking, and monitoring of IoT devices. In addition to this, compared to environments in which IoT 

devices are connected directly to the cloud, fog-aided IoT environments improve resource utilization. 

This is attributed to savings in processing capability that is wasted when the cloud authenticates a massive 

number of IoT devices. At first sight, one might say that the same processing time and resources will be 

consumed at the fog node to authenticate IoT devices. This is true; however, with a fog node, consumers 

of cloud services will not be overcharged for service that was wasted on the cloud to authenticate a 

significant number of IoT devices, especially because providers charge based on consumption.  

  From a security standpoint, fog computing spreads risks across distributed fog nodes in fog-aided 

IoT environments. In addition, authenticating IoT devices at the fog layer provides more flexibility in 

adding sophistication to the authentication and authorization process, such as encryption-based access 

control. Although the convenience of having a fog layer with semi-heavyweight computation capability 

has a higher capital cost, in the long run, in saves ample resources, time, and money. 

4.11 Conclusion and Future Works 

 
  In this paper, we proposed two architectures of cloud-based IoT environments using a real 

environment. In one architecture, we used a fog layer between IoT devices and the cloud, whereas in the 

second, IoT devices published data directly to the cloud. In order to validate our results, we also examined 

two ways of implementing fog-aided IoT-cloud environments: (1) bridging and (2) using a Python script 

to forward the data to the cloud. For each architecture, we conducted several experiments and increased 

the number of IoT devices as well as the number of subscribes and publishes in each experiment. To 

evaluate performance in the experiments, we used two sets of benchmark metrics: (1) AWS message 

broker metrics and (2) Mosquitto message broker metrics. Performance was evaluated based on the 

following analysis methods. First, we compared the performance for the first and second architecture. 

Second, we compared the performance for the two implementations of the fog-aided IoT environment 
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(i.e., Python script vs. bridging). Finally, to validate our results, the performance of the first architecture 

was analyzed using Mosquitto metrics vs. AWS metrics. The results showed that the performance in the 

IoT-cloud with a fog layer is significantly better than without the fog layer as the number of IoT devices 

and the number of subscribes and publishes increases. The results also showed that using Python script 

or bridging fog-aided IoT-cloud environments performs the same. The results of our third analysis 

method showed that as the number of IoT devices increases, the processability of the fog device in the 

fog-aided IoT-cloud architectures outperforms that of the AWS cloud. This work aimed to educate 

readers on different methods to implement IoT-cloud environments and compares the performance for 

each. It also guides researchers by providing different ways to implement fog-aided IoT-cloud systems.  

  In the future, we plan to extend this work by using the same implementations presented in this 

paper to analyze the performance using different cloud providers, protocols, fog devices, and IoT devices. 

The presented implementations will also be used to investigate security and address issues in fog-aided 

IoT-cloud systems. 
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Chapter 5: Novel Security Models for IoT–Fog–Cloud Architectures in a 

Real-World Environment 

 
M. A. Aleisa, A. Abuhussein, F. S. Alsubaei, and F. T. Sheldon, “ Novel Security Models for IoT-Fog-

Cloud Architectures in a Real-World Environment,” Sensors, vol. 21, no. 21, p. 6950, Mar. 2022. 

 

(Under Review)  

 

5.1 Introduction 

 
  The Internet of Things (IoT) ecosystem includes multitudinous devices connected to the Internet 

[118] with a variety of capabilities, such as sensing, processing, and communicating. The number of IoT 

devices is expected to rise to over 75 billion in 2025 [119], [120] , driving a parallel rise in the already 

massive amount of data that must be locally processed at the edges of networks to reduce latency and 

save network bandwidth. Cloud computing offers high computation power and storage for thousands of 

IoT devices [121]. However, due to the geographic centralization of cloud computing data centers, the 

large volume of data generated by the distributed IoT devices will not be processed in a timely manner, 

which will increase the latency between IoT devices and the cloud especially as the number of IoT 

devices continues to grow. To overcome these challenges, fog computing has emerged to deal with high 

processing demand and temporary storage. Fog computing acts as an intermediate layer between the 

cloud and IoT devices [58], [75], [122], solving the data transmission latency between them.   

  Despite the benefits of fog computing for IoT devices and the cloud, there are several security 

issues between the IoT–Fog–Cloud layers. For example, the Dyn cyberattack (October 21, 2016) 

disrupted Internet service across Europe and US [123] through a series of distributed denial-of-service 

(DDoS) attacks that targeted IoT-enabled devices such as cameras, residential gateways, and baby 

monitors. Many services were affected by this cyberattack, including businesses like Amazon, Comcast, 

PayPal, and Netflix and news networks like Fox News and CNN. 

  Further significant threats to IoT devices include eavesdropping [20], [43], [118], [121] and 

unauthorized access [43], [124], [125], which can lead to device failure. Because there is no human 
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interaction involved in the communication between these devices and because they have extensive 

operating times, it is difficult to monitor and detect their security issues. Therefore, it is essential to build 

a security model that meets the security requirements of the IoT–Fog–Cloud architecture by applying 

authentication and authorization between the IoT–Fog–Cloud layers. 

  Because there is a lack of real-life implementations of cloud-based IoT environments, as 

highlighted in our earlier work [58], we proposed two architectures of cloud-based IoT environments 

and three analysis methods using a real-world environment [75], [122]. In the first architecture, we used 

a fog layer between IoT devices and the cloud, whereas in the second, IoT devices published data directly 

to the cloud [75], [122]. We conducted several experiments and evaluated our results of the 

methodologies and the three analysis methods [122], finding that the first architecture outperforms the 

second. This was attributed to the fact that in the second architecture, all of the sensors require a 

certificate for authentication whereas, in the first, only one authentication certificate is needed and is 

placed on the fog node. Notably, this left the communication between the IoT layer and fog layer without 

proper authentication and authorization models [122]. 

  To fill the gap in security requirements between IoT layer and fog layer and overcome the 

limitations and challenges presented by these security issues [58], [75], [122], this paper makes the 

following contributions: 

• We propose a fine-grained data access control model based on the attribute-based encryption (ABE) 

of the IoT–Fog–Cloud architecture to limit access to sensor data to meet the authorization aim. 

• We propose a blockchain-based certificate model of the IoT–Fog–Cloud architecture to authenticate 

IoT devices to fog devices to meet the authentication aim. 

• We evaluate the performance of the security model (fine-grained data access control and blockchain-

based certificate) using AWS message broker metrics for a real-life scenario of the IoT–Fog–Cloud 

architecture. 
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• We compare the performance of the IoT–Fog–Cloud architecture with and without our security 

model using AWS message broker metrics and present its efficiency and feasibility. 

  The remainder of this paper is structured as follows: In section 2, we present the authentication 

model, a blockchain-based certificate of the IoT–Fog–Cloud architecture. In section 3, we present the 

authorization model, a fine-grained data access control model based on the ABE of the IoT–Fog–Cloud 

architecture. In section 4, we detail the setup of the IoT–Fog–Cloud architecture experiments. In section 

5, we explain the analysis methods used to evaluate the IoT–Fog–Cloud architecture with the two 

security models. In section 6, we evaluate the performance of the IoT–Fog–Cloud architecture with the 

two security models based on the analysis methods. Finally, section 7 concludes the paper. 

5.2 Proposed Authentication Model: Blockchain-based Certificate 

 
To fill the gap of the security requirements between the IoT layer and fog layer[58], [75], [122], 

we propose a blockchain-based certificate model of the IoT–Fog–Cloud architecture to authenticate the 

IoT devices to fog devices and achieve the authentication aim of this study. Figure 5.1 presents the 

operations comprising the model, which are as follows: 1) the IoT devices make a connection request to 

the fog devices; 2) the fog devices distribute a valid certificate to the IoT devices; 3) the handshake 

mechanism using TLS cryptographic protocol is established between IoT devices and fog devices; 4) 

encrypted communication is established between the IoT devices and fog devices; 5) because the fog 

devices are expected to be limited, the blockchain technology is applied to a set of fog devices within 

their geographical location; and 6) each fog device inside the blockchain has a copy of transactions, such 

as the distributed IoT devices certificates. Figure 5 shows how the blockchain-based certificate model 

was applied to the IoT–Fog–Cloud architecture using a real-life environment. 
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Figure 5.1 Blockchain-based certificate model applied in IoT–Fog–Cloud architecture. 

 

 
5.3 Proposed Authorization Model: Attribute-based Encryption for Access Control 

 
To fill the gap in the security requirements between the IoT and fog layers [58], [75], [122], we 

propose a fine-grained data access control model based on the ABE of the IoT–Fog–Cloud architecture 

to limit access to sensor data and achieve the authorization aim of this study. 

Figure 5.2 illustrates the several operations comprising the model, which are as follows: 1) 

attributes are generated for each sensor data type; 2) keys containing a set of attributes or corresponding 

to attributes are generated; 3) the generated sensor data type value are encrypted with the corresponding 

key that contains its attribute; 4) the encrypted message is published to the fog device using a secure  



94 
 

 

Figure 5.2 Access control model for the IoT–Fog–Cloud architecture. 
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communication channel; 5) the access tree that specifies the policy of the set of attributes is generated; 

6) the ciphertext is decrypted if the key containing a set of attributes satisfies the access policy tree; and 

7) the decrypted message is published to the AWS cloud. The model is designed such that each data 

type in an IoT device is associated with attributes, which represent the topic of each sensor data type. 

For example, the DHT11 sensor attached to Raspberry Pi is considered an IoT device [75], [122] and 

generates two types of data: 1) temperature and 2) humidity. The temperature value is encrypted 

according to the key that contains a set of attributes, and then published to the fog device. 

The fog device then generates an access policy tree according to the attributes of each data type 

in the IoT device, an example of which is presented in Figure 5.3. Once the fog device receives the 

ciphertext from the IoT device, it decrypts it if the ciphertext key that contains the attributes satisfies the 

access policy tree. Otherwise, it will decline the decryption request. Then, the temperature degree value 

will be published to the AWS cloud. Figure 5.4 shows how the ABE for the access control model was 

applied to the IoT–Fog–Cloud architecture. 

Figure 5.3 Access policy tree for access control model for the IoT–Fog–Cloud architecture. 
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Figure 5.4 Access control model applied to the IoT–Fog–Cloud architecture. 

 

 

5.4 Experiment Setup 

 
In this paper, we propose a security model of the IoT–Fog–Cloud architecture [122] to meet 

its security requirements [43], [121]. The following subsections present the hardware and software 

configurations used for this security model and our IoT–Fog–Cloud architecture experiment.  

5.4.1 Hardware 

  The experiment discussed in this section involved the first architecture [122] of IoT–Fog–Cloud 

as shown in Figure 5.4 We first describe the devices that were used in the IoT–Fog–Cloud architecture 
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and then explain it in detail. For the experiment, we used DHT11 devices [110] and a Raspberry Pi 3 

Model B [126]. DHT11 is a low-cost sensor that measures the temperature and humidity of the 

surrounding air and was used in this experiment to generate real data. The Raspberry Pi is a low-cost, 

single-board computer with built-in WiFi and processing capabilities that is used across several domains, 

such as weather monitoring, smart homes, and smart health care. In this experiment, the purpose of the 

Raspberry Pi was to provide light computational capabilities for the DHT11 sensor data. It also provided 

light storage for the DHT11 configurations. Moreover, the Raspberry Pi can be easily moved to different 

locations. A complete list of the hardware used in this experiment is available in Table 5.1 

Table 5.1 Summary of the equipment used in the IoT-Fog-Cloud architecture. 

Equipment Name  Equipment Type  Quantity  Purpose   

DHT11 Temperature–humidity sensor 3  Generate real-life data  

Raspberry Pi Version 3 Model B 4 Enable WiFi and provide 

substantial processing power 

and storage 

Micro SD Card 32GB ImageMate Plus 130 mb/s 

Read 

4 Initial storage for the operating 

system and files 

Monitor HP  4 Provide a visual display  

Keyboard & mice HP 4 Facilitate working on a 

Raspberry Pi 

Power 

Supply/Adapter 

CanaKit 4 Supply the power for the 

Raspberry Pi 

HDMI Cable onn 4 Connect the Raspberry Pi to a 

monitor   

 

  In the IoT–Fog–Cloud architecture, each DHT11 sensor was connected to only one Raspberry 

Pi board (i.e., connectivity enabler), which is considered an IoT device in the IoT layer. The Raspberry 

Pi was used here to enable WiFi connectivity, as the DHT11 sensors are not equipped with network 

interfaces. Each IoT device was connected via WiFi to another Raspberry Pi board that acted as a fog 

node in the fog layer. Communication between the IoT devices, the fog nodes, and the cloud used the 

MQTT protocol, for which an MQTT broker called Eclipse Mosquitto [127] was installed in the 

Raspberry Pi, acting as a fog device. The Mosquitto MQTT broker exchanged all messages using the 

subscribe–publish model presented in [58] and filtered all messages based on topics, which are UTF-8 
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strings used by the broker specifically for this task. Each data type in our experiment (i.e., humidity, 

temperature) was considered a separate topic. The data generated by the sensors and collected by the 

three IoT devices were transmitted over the Internet to the Raspberry Pi acting as the fog node. This 

Raspberry Pi, with the MQTT broker Mosquitto, was then connected to the AWS cloud over the Internet. 

The communication between the three layers occurred through the Internet. Figure 6 shows the hardware 

used to implement the IoT–Fog–Cloud architecture. 

5.4.2 Software 

  We installed Python on the three IoT devices (DHT sensor + Raspberry Pi) and the fog device. 

Then, we installed the Circuit Python DHT Library on the three IoT devices to allow communication 

between the DHT11 sensor and Raspberry Pi. Next, we installed the cryptography library on the three 

IoT devices and fog device to perform the security operations. Algorithm 1 illustrates the authentication 

and authorization operations from IoT devices (DHT11 sensor + Raspberry Pi) to the fog device, and 

Algorithm 2 illustrates the authentication and authorization operations from the fog device to the IoT 

devices (DHT11 sensor + Raspberry Pi) and from the fog device to the AWS cloud. 

Algorithm 1: Gather data generated from the IoT device and forward it to the fog device – IoT–Fog–Cloud 

architecture- /* This algorithm provides authentication and authorization operations from IoT devices 

(DHT11 sensor + Raspberry Pi) to fog devices.  

44:  Import board  

45:  Import adafruit_dht 

46:  Import paho.mqtt.client as mqtt 

47:  From Crypto.Cipher import ABS 

48:  Import base64 

49:  Define the type of DHT sensor, which is DHT11  

50:  Define the input/output pins of the Raspberry Pi to which the DHT11 is connected 

51:  Define a Python library (adafruit_dht.DHT11) to read the DHT series of humidity and temperature 

sensors on a Raspberry Pi with one argument, DHT pin connected 

52:  Define the key length which must be either 16, 24, or 32 bytes long 

53:  Define only two variables (humidity topic and temperature topic) for each IoT device (DHT11 + 

Raspberry Pi) in each experiment 

54:  Define the variable of MQTT broker 

55:  Define the variable of MQTT port 

56:  While True do 

57:              Define a connection function 

58:                           Connect to Internet  

59:                           If (the connection is established) then  

60:                                  Print “connected” 

61:                           Else (the connection isn’t established) then 
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62:                                  Try reconnecting to Internet   

63:                Define a message function 

64:                             Read humidity degree from Raspberry Pi serial port using (dhtDevice.humidity) 

65:                             Read temperature degree from Raspberry Pi serial port using 

(dhtDevice.temperature) 

66:                             Print humidity degree 

67:                             Print temperature degree          

68:                             Generate keys containing a set of attributes for each sensor data type in each IoT 

device 

69:                             Generate a first key containing a set of attributes for temperature sensor in each 

IoT device 

70:                             Generate a second key containing a set of attributes for humidity sensor in each 

IoT device 

71:                             Create the cipher config for first key (temperature sensor) 

72:                             Create the cipher config for second key (humidity sensor) 

73:                             Use the cipher of the first key to encrypt the humidity degree message using 

cipher.encrypt 

74:                             Use the cipher of second key to encrypt the temperature degree message using 

cipher.encrypt 

75:                             Encode the cipher and humidity degree message using the base64 module 

76:                             Encode the cipher and temperature degree message using the base64 module 

77:                             Print the encrypted message 

78:                             Publish humidity topic with its encrypted message to fog device  

79:                             Publish temperature topic with its encrypted message to fog device 

80:  end while 

81:  Create a client to connect to fog device  

82:  Make the client run connect, and message function 

83:  Set the transport layer security (TLS) for the client using fog device certificates and the current 

version of MQTT protocol 

84:  Connect the client to the MQTT broker using the IP address of the fog device and MQTT port 

1883 

85:  Create a loop_start() method to start a new thread for the client 

 

 

Algorithm 2: Gather data generated from the fog device and forward it to the cloud – IoT–Fog–Cloud 

architecture- /* This algorithm provides authentication and authorization operations from fog device to IoT 

devices (DHT11 sensor + Raspberry Pi) & from fog device to AWS cloud  

1:  Import sys  

2:  Import ssl 

3:  Import adafruit_dht 

4:  Import paho.mqtt.client as mqtt 

5:  From Crypto.Cipher import ABS 

6:  Import base64 

7:  Define the key length which must be either 16, 24, or 32 bytes long 

8:  Define the variable of MQTT broker 

9:  Define the variable of MQTT port 

10:  While True do  

11:              Define a connection function  

12:                           Subscribe for all topics in each IoT devices  

13:                           Connect to Internet  
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14:                           If (the connection is established) then  

15:                                   Print “connected” 

16:                           Else (the connection isn’t established) then 

17:                                    Try reconnecting to Internet   

18:               Define a message function 

19:                            Define keys containing a set of attributes for each sensor data type in each IoT 

device based on access policy  

20:                            Define a first key containing a set of attributes for temperature sensor in each IoT 

device 

21:                            Define a second key containing a set of attributes for humidity sensor in each IoT 

device  

22:                            Create the cipher config for first key (temperature sensor) 

23:                            Create the cipher config for second key (humidity sensor) 

24:                            Decode the encrypted message using the base64 module 

25:                            Use the cipher of the first key to decrypt the humidity degree message using 

cipher.decrypt 

26:                            Use the cipher of second key to decrypt the temperature degree message using 

cipher.decrypt 

27:                            Print the decrypted message  

28:                            Publish humidity topic with its decrypted message to AWS cloud  

29:                            Publish temperature topic with its decrypted message to AWS cloud 

30:  end while 

31:  Create two instances of clients, one used for the MQTT broker and the other used for the AWS 

broker 

32:  Make the first client run connect, and message function  

33:  Connect the first client to the MQTT broker using the IP address of the fog device and MQTT port 

34:  Create a loop_start() method to start a new thread for the first client 

35:  Set the transport layer security (TLS) for the second client using the three paths of AWS 

certificates and the current version of MQTT protocol 

36:  Connect the second client to AWS broker using AWS Endpoint and AWS port 

37:  Create a loop_start () method to start a new thread for the second client 

 

5.5 Analysis Methods 

 
We used AWS benchmark metrics to analyze the performance of our security model for the 

IoT–Fog–Cloud architecture proposed in our paper [75], [122]. We set the number of subscribers and 

publishers to two for each device because the IoT devices (i.e., the DHT11 sensors) generated two types 

of data, namely (1) temperature and (2) humidity data; therefore, as the number of sensor devices 

increases, the numbers of subscribers and publishers should also increase. This provides more accurate, 

consistent, and real results about the environment’s performance and scalability. In this section, we 

present the methods used to perform the experiments on the security model for the IoT–Fog–Cloud 

architecture. 
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5.5.1 IoT–Fog–Cloud architecture with blockchain-based certificate model versus without blockchain-

based certificate model 

  The performance of the IoT–Fog–Cloud architecture with the blockchain-based certificate 

model was analyzed and compared with the architecture without the blockchain-based certificate model, 

which was presented in the previous work [122], using AWS metrics. The experiment was conducted 

using different numbers of IoT devices (1, 2, or 3) two times, once with the blockchain-based certificate 

model and once without. The results were compared and analyzed to show the impacts of our 

blockchain-based certificate model on the proposed IoT–Fog–Cloud architecture [75], [122]. Because 

the AWS cloud provider requires a certificate to authenticate any device, and because the fog device is 

the next layer, the certificate was paced in the fog device (i.e., the Raspberry Pi board serving as the fog 

layer). This left the communication between the IoT layer and the fog layer without a proper 

authentication model [122]; this gap was filled by the proposed security model. The fog device 

distributed the certificates to the IoT devices after a connection request was made by IoT devices. The 

fog device certificate was paced in each IoT device to allow them to be authenticated to the fog device. 

The objective of this method was to illustrate the impact of the blockchain-based certificate model on 

the IoT–Fog–Cloud architecture and that the performance of the model remains identical when using 

different numbers of IoT devices. 

5.5.2 IoT–Fog–Cloud architecture with access control model versus without access control model 

  The performance of the IoT–Fog–Cloud architecture with the access control model was 

evaluated by comparison with the architecture without the model [122]. The experiment was performed 

using one, two, and three IoT devices. The experiment was performed twice, once with the access control 

model and once without. The results were compared and evaluated to show the impact of our access 

control model on the proposed IoT–Fog–Cloud architecture [122]. Because the IoT devices were 

authenticated to the fog device using a blockchain-based certificate model, the sensor data needed to be 

unavailable to the other IoT devices and have limited access. Therefore, the access control model 
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proposed in this paper fills the authorization requirement gap between the IoT layer and fog layer. The 

objective of the analysis method was to show the impact of the access control model on the IoT–Fog–

Cloud architecture and how the performance changed using different numbers of IoT devices. 

 

5.6 Evaluation of Results 
 

5.6.1 IoT–Fog–Cloud architecture with blockchain-based certificate model versus without blockchain-

based certificate model 

  In this section, we evaluate the IoT–Fog–Cloud architecture with our blockchain-based 

certificate model using AWS cloud metrics, as shown in Table 5.2. 

Table 5.2 AWS cloud message broker metrics results on N. Virginia datacenter (cloud layer) IoT–Fog–

Cloud architecture with blockchain-based certificate model versus without blockchain-based certificate 

model. 

AWS IoT message broker metrics on N. Virginia datacenter (cloud 

layer) using Python script – IoT–Fog–Cloud architecture without 

blockchain-based certificate model 

AWS IoT message broker metrics on N. Virginia datacenter (cloud 

layer) using Python script – IoT–Fog–Cloud architecture with 

blockchain-based certificate model 

Number of IoT devices  1 Number of IoT devices  1 

Number of subscribing & 

publishing   

2 Number of subscribing & 

publishing   

2 

AWS IoT metrics in minutes (m) 0.

5 

1 5 15 60 AWS IoT metrics in minutes (m) 0.

5 

1 5 15 60 

Connect.Success 2 2 2 2 2 Connect.Success 2 2 2 2 2 

Ping.Success 2 2 8 29 120 Ping.Success 2 2 8 29 120 

PublishIn.Success 44 4

4 

206 586 236

0 

PublishIn.Success 44 44 20

6 

58

6 

236

0 

PublishOut.Success 44 4

4 

206 586 236

0 

PublishOut.Success 44 44 20

6 

58

6 

236

0 

Subscribe.Success 2 2 2 2 2 Subscribe.Success 2 2 2 2 2 

Unsubscribe.Success 2 2 2 2 2 Unsubscribe.Success 2 2 2 2 2 

Number of IoT devices  2 Number of IoT devices 2 

Number of subscribing & 

publishing   

4 Number of subscribing & 

publishing 

4 

AWS IoT metrics in minutes  0.5 1 5 15 60 AWS IoT metrics in minutes 0.5 1 5 15 60 

Connect.Success 4 4 4 4 4 Connect.Success 4 4 4 4 4 

Ping.Success 2 2 8 29 120 Ping.Success 2 2 8 29 120 

PublishIn.Success 70 7

0 

350 111

0 

4590 PublishIn.Success 70 70 35

0 

111

0 

459

0 

PublishOut.Success 70 7

0 

350 111

0 

4590 PublishOut.Success 70 70 35

0 

111

0 

459

0 

Subscribe.Success 4 4 4 4 4 Subscribe.Success 4 4 4 4 4 
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Unsubscribe.Success 4 4 4 4 4 Unsubscribe.Success 4 4 4 4 4 

Number of IoT devices 3 Number of IoT devices 3 

Number of subscribing & 

publishing 

6 Number of subscribing & 

publishing 

6 

AWS IoT metrics in minutes 0.5 1 5 15 60 AWS IoT metrics in minutes 0.5     1    5 15 60 

Connect.Success 6 6 6 6 6 Connect.Success 6     6   6 6 6 

Ping.Success 2 2 9 29 119 Ping.Success 2     2    9 29 119 

PublishIn.Success 115 115 54

8 

166

0 

651

0 

PublishIn.Success 11

5 

115 54

8 

166

0 

651

0 

PublishOut.Success 115 115 54

8 

166

0 

651

0 

PublishOut.Success 11

5 

115 54

8 

166

0 

651

0 

Subscribe.Success 6 6 6 6 6 Subscribe.Success 6    6   6 6 6 

Unsubscribe.Success 6 6 6 6 6 Unsubscribe.Success 6    6    6 6 6 

 

  The first experiment of the IoT–Fog–Cloud architecture was performed using one IoT device. 

We ran the first experiment twice simultaneously, one without our blockchain-based certificate model 

and the other with the model. We used two subscribes and two publishes because the IoT device 

generated two types of data: (1) temperature and (2) humidity data. The results show that the number of 

subscribes and publishes (i.e., Subscribe.Success and Connect.Success) for the IoT–Fog–Cloud 

architecture with and without the blockchain-based certificate model were the same and reflect the 

defined number of subscribes and publishes for one IoT device. This is because the connection of neither 

experiment (with vs. without the security model) was disconnected and, thus, the subscribe request was 

not lost. Although the first experiment with the security model had a certificate in the authentication 

process of the IoT–Fog–Cloud layers, it did not affect the number of subscribes and publishes. 

Furthermore, the number of published messages (PublishIn.Success and PublishOut.Success) for the 

IoT–Fog–Cloud architecture with the blockchain-based certificate model remained the same as that of 

the architecture without the model. 

  The second and third experiments of the IoT–Fog–Cloud architecture were performed using two 

and three IoT devices with four and six subscribes and publishes, respectively. The results show that the 

number of subscribes and publishes (i.e., Subscribe.Success and Connect.Success) were the same for 

the IoT–Fog–Cloud architecture with and without the blockchain-based certificate model and reflect the 

defined number of subscribes and publishes for two or three IoT devices. This is because when the fog 
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device distributed the certificates to the two or three IoT devices, those devices were authenticated 

simultaneously to the fog device. Therefore, there was no sign of failure in the number of connects and 

subscribes because the two or three IoT devices remained authenticated to the fog device and started 

publishing messages. Moreover, the number of published messages (PublishIn.Success and 

PublishOut.Success) for the IoT–Fog–Cloud architecture with and without the blockchain-based 

certificate model also remained identical using two or three IoT devices; there was no loss in the number 

of published messages, as there was no sign of failure in the number of connects and subscribes 

(Connect.Success and Subscribe.Success) because the two or three IoT devices remain authenticated to 

fog device and start publishing messages at the same time. 

  Overall, we found that the performance of the IoT–Fog–Cloud architecture with and without 

the blockchain-based certificate model was the same when using one, two, or three IoT devices. Thus, 

there was no delay in the number of published messages for the IoT–Fog–Cloud architecture with the 

blockchain-based certificate model, as shown in table 3. This is because the first layer of security 

requirements, authentication, was proposed and added to the IoT–Fog–Cloud architecture, and it did not 

affect its performance. This means that the IoT–Fog–Cloud architecture had improved performance and 

security simultaneously.  

5.6.2 IoT–Fog–Cloud architecture with access control model versus without access control model 

  In this section, we evaluate the IoT–Fog–Cloud architecture with our access control model using 

AWS cloud metrics, as shown in Table 5.3. 

Table 5.3 AWS cloud message broker metrics results on N. Virginia datacenter (cloud layer) IoT–

Fog–Cloud architecture with access control model versus without access control model. 

AWS IoT message broker metrics on N. Virginia datacenter (cloud 

layer) using Python script – IoT–Fog–Cloud architecture without 

access control model 

AWS IoT message broker metrics on N. Virginia datacenter (cloud 

layer) using Python script – IoT–Fog–Cloud architecture with 

access control model 

Number of IoT devices  1 Number of IoT devices  1 

Number of subscribing & 

publishing   

2 Number of subscribing & 

publishing   

2 

AWS IoT metrics in minutes (m) 0.

5 

1 5 15 60 AWS IoT metrics in minutes (m) 0.

5 

1 5 15 60 
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Connect.Success 2 2 2 2 2 Connect.Success 2 2 2 2 2 

Ping.Success 2 2 8 29 120 Ping.Success 2 2 8 29 120 

PublishIn.Success 44 4

4 

206 586 236

0 

PublishIn.Success 42 42 20

4 

58

4 

235

8 

PublishOut.Success 44 4

4 

206 586 236

0 

PublishOut.Success 42 42 20

4 

58

4 

235

8 

Subscribe.Success 2 2 2 2 2 Subscribe.Success 2 2 2 2 2 

Unsubscribe.Success 2 2 2 2 2 Unsubscribe.Success 2 2 2 2 2 

Number of IoT devices  2 Number of IoT devices 2 

Number of subscribing & 

publishing   

4 Number of subscribing & 

publishing 

4 

AWS IoT metrics in minutes  0.5 1 5 15 60 AWS IoT metrics in minutes 0.5 1 5 15 60 

Connect.Success 4 4 4 4 4 Connect.Success 4 4 4 4 4 

Ping.Success 2 2 8 29 120 Ping.Success 2 2 8 29 120 

PublishIn.Success 70 7

0 

350 111

0 

4590 PublishIn.Success 68 68 34

8 

110

8 

458

8 

PublishOut.Success 70 7

0 

350 111

0 

4590 PublishOut.Success 68 68 34

8 

110

8 

458

8 

Subscribe.Success 4 4 4 4 4 Subscribe.Success 4 4 4 4 4 

Unsubscribe.Success 4 4 4 4 4 Unsubscribe.Success 4 4 4 4 4 

Number of IoT devices 3 Number of IoT devices 3 

Number of subscribing & 

publishing 

6 Number of subscribing & 

publishing 

6 

AWS IoT metrics in minutes 0.5 1 5 15 60 AWS IoT metrics in minutes 0.5     1  5 15 60 

Connect.Success 6 6 6 6 6 Connect.Success 6     6  6 6 6 

Ping.Success 2 2 9 29 119 Ping.Success 2     2  9 29 119 

PublishIn.Success 115 115 54

8 

166

0 

651

0 

PublishIn.Success 11

3 

113 54

6 

165

8 

650

8 

PublishOut.Success 115 115 54

8 

166

0 

651

0 

PublishOut.Success 11

3 

113 54

6 

165

8 

650

8 

Subscribe.Success 6 6 6 6 6 Subscribe.Success 6    6  6 6 6 

Unsubscribe.Success 6 6 6 6 6 Unsubscribe.Success 6     6  6 6 6 

 

  The first experiment of the IoT–Fog–Cloud architecture was conducted using one IoT device. 

We ran this experiment twice simultaneously, one instance without our access control model and the 

other with the model. We used two subscribes and two publishes because the IoT device generated two 

types of data: (1) temperature and (2) humidity data. The results show that the number of subscribes and 

publishes (i.e., Subscribe.Success and Connect.Success) for the IoT–Fog–Cloud architecture with and 

without the access control model were the same and reflect the defined number of subscribes and 

publishes for one IoT device. This is because the connection of neither experiment (with vs. without the 

access control model) was disconnected so the subscribe request was not lost. Although the first 

experiment with the security model had a certificate in the authentication process of the IoT–Fog-Cloud 
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layers, it did not affect the number of subscribes and publishes. In contrast, the number of published 

messages (PublishIn.Success and PublishOut.Success) for the IoT–Fog–Cloud architecture with the 

access control model was slightly less than that of the architecture without the model. This is because 

the IoT device performed some security operations that took one second for each sensor data type. Each 

sensor data type (i.e., temperature data and humidity data) took one second to generate keys containing 

a set of attributes and encrypt the generated sensor data type value with the corresponding key containing 

its attribute. 

  The second experiment of the IoT–Fog–Cloud architecture was performed by connecting two 

IoT devices and making four subscribe and publish requests. This experiment was also run twice 

simultaneously, with and without our access control model. The results show that the numbers of 

subscribe and publish requests (i.e., Subscribe.Success and Connect.Success) for the IoT–Fog–Cloud 

architecture with and without the access control model were the same for two IoT devices and match 

the defined number of subscribe and publish requests for one IoT device. However, the number of 

published messages (PublishIn.Success and PublishOut.Success) for the architecture with the access 

control model was slightly less than that of the architecture without the model. This is because each of 

the two IoT devices performed security operations, which took one second for each sensor data type 

(i.e., temperature data or humidity data) for each of the two IoT devices. Each sensor data type (i.e., 

temperature data or humidity data) of each of the two IoT devices took one second to generate a key 

containing a set of attributes and encrypt the generated sensor data type value with the corresponding 

key containing its attribute. 

  Overall, we found that the performance of the IoT–Fog–Cloud architecture without the access 

control model was slightly better than that of the architecture with the model when using one, two, or 

three IoT devices. However, when using one, two, or three IoT devices, the number of published 

messages was delayed two seconds when using the access control model, as shown in table 3. This is 

because the second layer of security requirements, authorization, was proposed and added to the IoT–
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Fog–Cloud architecture. Therefore, this makes the IoT–Fog–Cloud architecture has a better performance 

and security at the same time. 

5.7 Conclusion 

 
   In this paper, we proposed a blockchain-based certificate model and a fine-grained data access 

control model based on ABE for the IoT–Fog–Cloud architecture using a real environment. The two 

proposed models meet the authentication and authorization security requirements of the architecture. 

We conducted several experiments and increased the numbers of IoT devices, subscribes, and publishes 

in each experiment. We used AWS cloud metrics to evaluate the performance of the models based on 

the following analysis methods. First, we compared the performance of the IoT–Fog–Cloud architecture 

with and without the blockchain-based certificate model. Second, we compared the performance of the 

architecture with and without the access control model. The results showed that the performance of the 

IoT–Fog–Cloud architecture with and without the blockchain-based certificate model was the same 

when using one, two, or three IoT devices. Furthermore, the performance of the IoT–Fog–Cloud 

architecture without the access control model was slightly better than that of the architecture with the 

model when using one, two, or three IoT devices. This work aimed to improve the performance and 

security of the IoT–Fog–Cloud architecture. 
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Chapter 6: Conclusion   

 

 
6.1 Main Conclusion and Future Works  

 
 The fog layer provides a substantial benefit in cloud-based IoT applications because it can serve 

as an aggregation layer and brings the computations near the IoT devices. However, it is important to 

ensure performance in such applications, as they usually communicate frequently and authenticate with 

the cloud. This can cause performance and availability issues, which can be dangerous in critical 

applications such as the those used in the healthcare sector. Therefore, this research proposed two 

architectures of cloud-based IoT environments and three analysis methods. The two proposed 

architectures are evaluated based on the three analysis methods to show the efficacy of the fog layer in 

different experiments in a real-world environment by examining performance metrics on the cloud and 

fog layers using different numbers of IoT devices. In the first architecture, we used a fog layer between 

IoT devices and the cloud, whereas in the second, IoT devices published data directly to the cloud. In 

order to validate our results, we also examined two ways of implementing fog-aided IoT–cloud 

environments, namely (1) bridging and (2) using a Python script to forward the data to the cloud. For 

each architecture, we conducted several experiments and increased the number of IoT devices as well 

as the number of subscribe and publish in each experiment. To evaluate the experimental performance, 

we used two sets of benchmark metrics, namely (1) AWS message broker metrics and (2) Mosquitto 

message broker metrics. The performance was evaluated based on the following analysis methods. First, 

we compared the performance of the first and second architectures. Second, we compared the 

performance of the two implementation frameworks of the fog-aided IoT environments (i.e., Python 

script vs. bridging). Finally, to validate our results, the performance of the first architecture was analyzed 

using Mosquitto metrics vs. AWS metrics. The results showed that the performance in the IoT–cloud 

with a fog layer was significantly better than without the fog layer, as the number of IoT devices and 

the number of subscribe and publish commands increased. The results also showed that the use of a 

Python script or fog-aided IoT–cloud environment resulted in the same performance. The results of our 
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third analysis showed that as the number of IoT devices increased, the processability of the fog device 

in the fog-aided IoT–cloud architectures outperformed that of the AWS cloud. 

  To overcome the security challenges between the IoT layer and fog layer and, thus, meet the 

security requirements, this research also proposed a blockchain-based certificate model and a fine-

grained data access control model based on ABE for the IoT–Fog–Cloud architecture using a real 

environment. The two proposed models meet the authentication and authorization security requirements 

of the architecture. We conducted several experiments and increased the numbers of IoT devices, 

subscribes, and publishes in each experiment. We used AWS cloud metrics to evaluate the performance 

of the models based on the following analysis methods. First, we compared the performance of the IoT–

Fog–Cloud architecture with and without the blockchain-based certificate model. Second, we compared 

the performance of the architecture with and without the access control model. The results showed that 

the performance of the IoT–Fog–Cloud architecture with and without the blockchainbased certificate 

model was the same when using one, two, or three IoT devices. Furthermore, the performance of the 

IoT–Fog–Cloud architecture without the access control model was slightly better than that of the 

architecture with the model when using one, two, or three IoT devices. This work aimed to improve the 

performance and security of the IoT–Fog–Cloud architecture.  

For future works, we plan to apply the two proposed architecture of cloud-based IoT environment to 

different types of sensors attached to the IoT devices and different cloud service providers and evaluate 

the performance and security. Also, we plan to apply the two proposed architecture to the medical 

domains and evaluate the performance and security.  
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