

Novel Security Models for IoT-Fog-Cloud Architectures in a

Real-World Environment.

A Dissertation

Presented in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

Mohammed Ahmed Aleisa

Approved by

Major Professor: Frederick Sheldon, Ph.D.

Committee Members: Abdullah Abuhussein, Ph.D.; Robert Rinker, Ph.D.; Xiaogang Ma, Ph.D.

Department Administrator: Terence Soule, Ph.D.

May 2022

ii

Abstract

The emergence of the Internet of things (IoT) has generated demand for computation performed at

the ‘edge’ of the network. With companies being increasingly challenged to collect and send data

collected from IoT devices to the cloud, this increases the need for fog computing. Fog computing is an

intermediate computing layer that has emerged to address the latency issues of cloud-based Internet of

things (IoT) environments. As a result, new forms of security and privacy threats are emerging. These

threats are mainly due to the huge number of sensors, as well as the enormous amount of data generated

in IoT environments that needs to be processed in real time. These sensors send data to the cloud through

the fog computing layer, creating an additional layer of vulnerabilities. In addition, the cloud by nature

is vulnerable because cloud services can be located in different geographical locations and provided by

multiple service providers. Moreover, cloud services can be hybrid and public, which exposes them to

risks due to their infinite number of anonymous users. This research proposed two architectures of cloud-

based IoT environments and three analysis methods. The two proposed architectures are evaluated based

on the three analysis methods to show the efficacy of the fog layer in different experiments in a real-

world environment by examining performance metrics on the cloud and fog layers using different

numbers of IoT devices. To overcome the security challenges between the IoT layer and fog layer and,

thus, meet the security requirements, this research also proposed a fine-grained data access control

model based on the attribute-based encryption of the IoT–Fog–Cloud architecture to limit the access to

sensor data and meet the authorization requirements. In addition, this research proposed a blockchain-

based certificate model for the IoT–Fog–Cloud architecture to authenticate IoT devices to fog devices

and meet the authentication requirements. We evaluated the performance of the two proposed security

models using AWS cloud metrics to determine their efficiency in real-life experiments of the IoT–Fog–

Cloud architecture.

iii

Acknowledgements

First and foremost, I must praise and thank my Almighty God (Allah) for his blessings. This

dissertation could not be done without the Allah blessings. He alone helps me to proceed and succeed

in my life. Then, I would like to thank my sponsors, the government of Saudi Arabia and Majmaah

University for supporting me to pursue the Ph.D. degree.

Moreover, I would like to express my sincere appreciation to my respected major advisor Prof.

Frederick Sheldon and Prof. Abdullah Abuhussein, for their invaluable support, motivation in my Ph.D.

journey.

I would like to convey my acknowledgements to the rest of my dissertation committee members

for their support: Prof. Abdullah Abuhussein, Prof. Robert Rinker, and Prof. Xiaogang Ma.

My appreciation also goes to all faculty members, and colleagues in the Department of

Computer Science at University of Idaho.

Furthermore, I would like to express my gratitude to my family, parents (Aljawhara

Almukhadab and Ahmed Aleisa), wife (Mona Altuwayjiri), son (Ahmed), my brothers and sisters for

their trust, encouragement, support, help and love in this journey.

iv

Dedication

This work is dedicated to my parents, Aljawhara Almukhadab and Ahmed Aleisa. I am not able

to express my appreciation to them for all of the sacrifices that they have made on my behalf. Their

invaluable unconditional and continuous love, care, and support since the first day of my life till where

I am today and for the rest of my life is the real blessing that cannot be perceived by all other blessings.

Without their prayers, no happiness could touch my heart. In memory of my father Ahmed Aleisa death,

may Allah forgive him and have mercy on him, and give him strength and pardon him, and be generous

to him. May Allah bless him and grant him the highest level of paradise. Also, this work is dedicated to

my beloved family members including my brothers, my sisters, and my relatives.

This work is particularly dedicated to my dear wife, Mona Altuwayjiri, who has spent years

supporting me, encouraging me, and taking care of our son Ahmed Aleisa. You have been a constant

source of support and encouragement during the challenges of graduate school and difficulties of

life.Your encouragements are the fuel that drives me straight to achieve my goals in this life.

 v

 Table of Contents

Abstract ... ii

Acknowledgements .. iii

Dedication .. iv

Table of Contents ... v

List of Tables ... ix

List of Figures x

Chapter 1: Introduction ... 1

1.1 Problem Background .. 1

 1.1.1 What is Fog Computing? ... 1

 1.1.1.1 Why Fog Computing? ... 2

 1.1.1.2 Fog Computing Layers .. 3

 1.1.1.3 Fog-Aided IoT process Phases ... 4

 1.1.1.4 Characteristics of Fog Computing.. 7

1.2 Problem Definition.. 9

1.3 Motivation .. 10

1.4 Significance and Contribution 11

1.5 Structure of the Dissertation 12

Chapter 2: Literature Review .. 13

2.1 Introduction .. 13

2.2 Access Control Overview .. 14

 2.2.1 Access Control Models... 15

 2.2.2 Access Control Requirements in Fog Computing Environments .. 17

2.3 State of the art in Fog Access Control... 18

2.4 Security and Privacy issues related to Access Control in Fog Computing................................... 26

 vi

 2.4.1 Trust in Fog Nodes... 26

 2.4.2 Data Computation in Fog Nodes... 27

 2.4.3 Rogue Fog Node.. 27

 2.4.4 Fog Node Privacy.. 28

 2.4.5 Privacy Preserving in Fog Nodes.. 28

2.5 Discussion & Research Gaps.. 29

 2.5.1 Discussion of Several Features in Different Schemes .. 29

 2.5.2 Gaps and Future Research Directions.. 32

2.6 Conclusion 33

Chapter 3: Performance Analysis of Two Cloud-Based IoT Implementations: Empirical Study 35

3.1 Introduction 35

3.2 Motivation... 36

3.3 Implementation.. 37

3.4 Description of Aws IoT Metrics.. 39

3.5 Empirical Testing... 40

3.6 Discussion.. 42

3.7 Conclusion... 44

Chapter 4: Examining Performance in Fog-Aided Cloud-Centered IoT in a Real-World

Environment: Scientific Experiments.. 45

4.1 Introduction 45

4.2 Background... 49

4.3 Related Works... .. 53

4.4 Experiment Setup.. 55

 4.4.1 Hardware... .. 55

 4.4.1.1 First Architecture.. 57

 4.4.1.2 Second Architecture... 58

 vii

 4.4.2 Software.. 59

 4.4.2.1 First Architecture.. 59

 4.4.2.1.1 Bridging.. 60

 4.4.2.1.2 Python Script.. 60

 4.4.2.2 Second Architecture... 61

4.5 Descriptions of Metrics... 63

 4.5.1 Cloud Layer: AWS IoT Metrics... 63

 4.5.2 Fog Layer: Eclipse Mosquitto Broker Metrics.. 65

4.6 Analysis Methods.. 67

 4.6.1 Architecture 1 vs. Architecture 2... 68

 4.6.2 Architecture 1 Implementation: Python Script vs. Bridging... 68

 4.6.3 Architecture 1 Measurement: Mosquitto Metrics vs. AWS Metrics.................................... 69

4.7 Results and Description of Experiments.. 70

4.7.1 Results: Description of the three experiments of the first architecture with one, two, or

three IoT devices using AWS benchmark metrics (cloud layer) .. 71

4.7.2 Results: Description of the three experiments on the second architecture with one, two,

or three IoT devices using AWS benchmark metrics (cloud layer) .. 72

 4.7.3 Results: Description of the three experiments of the first architecture with one, two, or

three IoT devices using Mosquitto benchmark metrics (fog layer) .. 75

4.8 Evaluation of Results.. 78

 4.8.1 First Architecture vs. Second Architecture.. 78

 4.8.2 Architecture 1 Implementation: Python Script vs. Bridging.. 81

 4.8.3 Architecture 1 Measurement: Mosquitto Metrics vs. AWS Metrics..................................... 83

4.9 Threats to validity.. 86

4.10 Discussion and Limitations.. 87

4.11 Conclusion and Future Works... 88

 viii

Chapter 5: Novel Security Models for IoT–Fog–Cloud Architectures in a Real-World

Environment.. 90

 5.1 Introduction 90

 5.2 Proposed Authentication Model: Blockchain-based Certificate... 92

 5.3 Proposed Authorization Model: Attribute-based Encryption for Access Control........................ 93

 5.4 Experiment Setup.. 96

 5.4.1 Hardware... 96

 5.4.2 Software.. 98

 5.5 Analysis Methods.. 100

5.5.1 IoT–Fog–Cloud architecture with blockchain-based certificate model versus without

blockchain-based certificate model.. 101

5.5.2 IoT–Fog–Cloud architecture with access control model versus without access control

model... 101

 5.6 Evaluation of Results.. 102

5.6.1 IoT–Fog–Cloud architecture with blockchain-based certificate model versus without

blockchain-based certificate model... 102

5.6.2 IoT–Fog–Cloud architecture with access control model versus without access control

model... 104

 5.7 Conclusion... 107

Chapter 6: Conclusion.. 108

 6.1 Main Conclusion………….. 108

 6.2 List of Publications... 109

 6.2.1 As a First Author.. 109

 References... 112

 Appendix A: Awards and Honors ... 123

ix

List of Tables

Table 1.1. Characteristics that differ between fog computing and cloud computing……………….8

Table 2.1. Comparison of features in different AC schemes……………………………………….32

Table 3.1. AWS metrics results for Two Cloud-Based IoT Implementations……...………………41

Table 4.1. Summary of the equipment used in the two architectures………………………..……..56

Table 4.2. AWS IoT message broker metrics on N. Virginia datacenter (cloud layer) using bridge –

First & Second Architecture………………………………..………………………………………73

Table 4.3. AWS IoT message broker metrics on N. Virginia datacenter (cloud layer) using bridge

vs. Python – First Architecture……………………………………………..………………………74

Table 4.4. Mosquitto message broker metrics on fog layer using bridge – First Architecture– One

IoT device………………………………….…………….…………………………………...….....77

Table 4.5. Mosquitto message broker metrics on fog layer using bridge – First Architecture– Two

IoT devices…………………………………………………………………………………..….….77

Table 4.6. Mosquitto message broker metrics on fog layer using bridge – First Architecture. Three

IoT devices………………………………………………………………………………………....78

Table 5.1. Summary of the equipment used in the IoT–Fog–Cloud architecture………………….97

Table 5.2. AWS cloud message broker metrics results on N. Virginia datacenter (cloud layer) IoT–

Fog–Cloud architecture with blockchain-based certificate model versus without blockchain-based

certificate model…………………………………………………………………….…………….102

Table 5.3. AWS cloud message broker metrics results on N. Virginia datacenter (cloud layer) IoT–

Fog–Cloud architecture with access control model versus without access control model………..104

x

List of Figures

Figure 1.1. Fog Computing Environment…………………………………………………………....2

Figure 1.2. The subscribe, join, and transfer phases in a fog-aided IoT environment with events

occurring in each phase……………………………………………………………………………...6

Figure 1.3. Fog Computing Applications…………………………………………………………....6

Figure 2.1. Access Control Models in Fog Computing…………………………………………….19

Figure 2.2. Layers of Fog Computing……………………………………………………………...20

Figure 3.1. Cloud-Based IoT Implementations a and b…………………………………………….38

Figure 3.2. AWS metrics results for Implementations a (Imp1) and b (Imp2)…………………….43

Figure 4.1. Overview of cloud-aided IoT environments…………………………………………...52

Figure 4.2. First architecture (IoT-Fog-Cloud) vs. second architecture (IoT-Cloud)……………....57

Figure 4.3. Hardware used in first architecture: IoT-Fog-Cloud…………………………………...58

Figure 4.4. IoT-Fog-Cloud Architecture using two methods: Python script and MQTT bridging...69

Figure 4.5 (a) Metrics applied in the fog layer vs. (b) metrics applied in the cloud layer………....70

Figure 4.6 AWS IoT message broker PublishIn.Success metric with 1, 2, and 3 IoT devices on N.

Virginia datacenter (cloud layer)…………………………………………………………………...80

Figure 4.7 AWS IoT message broker PublishOut.Success metric with 1, 2, and 3 IoT devices on N.

Virginia datacenter (cloud layer)….……………………………………..80

Figure 4.8 AWS IoT message broker Connect.Success metric with 1, 2, and 3 IoT devices on N.

Virginia datacenter (cloud layer)……….…………………………..81

Figure 4.9 AWS IoT message broker Subscribe.Success metric with 1, 2, and 3 IoT devices on N.

Virginia datacenter (cloud layer)…………………………………………………………………...81

Figure 4.10 AWS IoT message broker PublishIn.Success metric with 1, 2, and 3 IoT devices on N.

Virginia datacenter (cloud layer)……………………………………………………………….…..82

Figure 4.11. AWS IoT message broker PublishOut.Success metric with 1, 2, and 3 IoT devices on

N. Virginia datacenter (cloud layer)………………………………..82

xi

Figure 4.12. AWS IoT message broker Connect.Success metric with 1, 2, and 3 IoT devices on N.

Virginia datacenter (cloud layer)…….……………………………..82

Figure 4.13 AWS IoT message broker Subscribe.Success metric with 1, 2, and 3 IoT devices on N.

Virginia datacenter (cloud layer)………………………………………………………………………….83

Figure 4.14 Mosquitto message broker metrics on the fog layer using bridge (Architecture 1)…...85

Figure 5.1. Blockchain-based certificate model applied in IoT–Fog–Cloud architecture…………..93

Figure 5.2. Access control model for the IoT–Fog–Cloud architecture………………………………94

Figure 5.3. Access policy tree for access control model for the IoT–Fog–Cloud architecture……..95

Figure 5.4. Access control model applied to the IoT–Fog–Cloud architecture………………………96

1

Chapter 1: Introduction

M. Aleisa, A. Abuhussein, and F. T. Sheldon, “Access Control in Fog Computing: Challenges and

Research Agenda,” IEEE Access, vol. 8, pp. 83986–83999, May 2020, DOI:

10.1109/ACCESS.2020.2992460

1.1 Problem Background

1.1.1 What is Fog Computing?

 Fog computing is defined as an intermediate layer between the cloud and IoT devices [1].

Figure 1.1 presents a classic fog computing-aided IoT environment. Fog computing extends the cloud

services to the edge of the network, near IoT devices, to reduce the latency and network congestion.

Low latency is a desired quality in today’s applications, such as emergency responses in the medical

domain, and fog computing guarantees low latency by providing real-time processing capabilities for

the transferred data [1]. According to Cisco [2], fog computing is the place where IoT data is analyzed

near the IoT devices that generate and process data. A typical fog computing environment consists

of nodes connected to IoT devices. These nodes are referred to as fog nodes.

 Fog nodes can be deployed anywhere within the network connection. Fog devices can be

any device that has computing, storage, and network connectivity. According to NIST [3], fog

computing is an intermediate layer that allows global access to several IoT devices. The environment

of fog computing enables the deployment of distributed applications and services [4], [5].

2

FIGURE 1.1 Fog Computing Environment

1.1.1.1 Why Fog Computing?

The fog computing layer between the cloud and IoT devices has valuable functionalities:

1) Move cloud content closer to IoT

By bringing cloud content closer to IoT devices, fog computing solves the delay issues in time-sensitive

applications in which decisions must be made in a timely manner.

2) Save network bandwidth

Since not all data should be transferred to the cloud for processing, using a fog layer between the cloud

and the IoT devices helps to save network bandwidth. In this case, fog computing can better handle

managing and controlling data processing, transfer, privacy, and security. This will also reduce operating

expense.

3) Bring storage closer to IoT

This functionality of fog computing is essential because it places temporary storage closer to IoT devices

which have limited storage capability. Fog computing serves as a temporary storage location for the data

aggregated from IoT devices, whereas the cloud stores the data permanently.

4) Bring computation power closer to IoT

3

In the cases in which data gathered from IoT devices require immediate processing, fog computing can

serve as a processing facility that is located closer than the cloud. Fog computing, in this case, will take

care of quick and small workloads. Big data analytics will still be handled by the cloud.

5) Protect IoT data

Although fog computing expands the cloud-fog-IoT architecture attack surface, this additional computing

layer, with its storage and computing capability, can be utilized to host and run automated monitors to

detect threats to IoT. It can also be used to fine grain AC to avoid over- and underexposure of authorization.

1.1.1.2 Fog Computing Layers

 Several fog computing architectures have been proposed in [1], [6]–[9]. Commercial

architectures of fog computing have also been developed for commercial fog devices [8]. The

architecture of a standard fog computing environment consists of several layers:

1) Physical Layer

This layer represents all fog hardware devices that send and receive data to and from IoT devices. These

devices can be virtual or physical devices, such as virtual and physical network routers.

2) Monitoring Layer

This layer is responsible for detecting and logging performance and security-related flaws in IoT devices

and/or fog nodes. For example, this layer can select a fog node based on criteria such as throughput,

congestion, etc., and detect malicious activities against fog nodes or IoT devices.

3) Processing Layer

This layer is responsible for analyzing and filtering the data collected from IoT devices. As the number

of IoT devices increases, the amount of data also increases. Therefore, processing this enormous amount

of data can be challenging. Fog nodes usually have light-to-medium-weight processing capability.

Intensive processing is usually performed in the cloud.

4

4) Storage Layer

This layer is responsible for storing data generated from IoT devices. IoT devices have limited storage

capability, so fog computing provides a temporary storage service for IoT data. Long-term storage and

storing historical data are usually handled by the cloud.

5) Security Layer

This layer maintains the security objectives (i.e., confidentiality, integrity, and availability) in the fog

nodes. The security layer is where all controls and measures are applied to detect and prevent threats, as

well as to respond to security incidents. For example, encryption and decryption of data received and

sent by fog devices is a security measure handled by the fog computing layer to maintain confidentiality

and is considered a prevention technique. In another example, fog nodes may be used to balance the

load directed to IoT devices based on throughput or congestion in cases of denial of service (DoS)

attacks. The objective of this security measure is to maintain availability by responding to a DoS

incident.

6) Application Layer

This layer includes the applications and protocols responsible for networking (such as routing) and load

balancing (such as routing tables and Hypertext Transfer Protocol (HTTP) and MQ Telemetry Transport

(MQTT) protocols) [10].

1.1.1.3 Fog-Aided IoT Process Phases

 In fog-aided IoT environments [11], [12], a subscribed IoT node may request to join a fog

network before it can collect and publish data. This model is known as the publishing/subscribing model.

In another model, a fog-aided IoT network finds an IoT node and requests to add it to the network in

order to collect and publish data. This is known as the request/response model. When the IoT node joins,

it is assigned network resources and can then start communicating and operating as a component of the

IoT environment. Figure 1.2 shows a three-phase process in a fog-aided IoT environment. The process

assumes a fresh start of an unsubscribed node. Thus, initially, a node needs to be subscribed on-demand

5

before it can join the fog network and transfer data within the network (by aggregating and publishing

data, for example).

1) Subscribe Phase

When a new IoT device wants to connect to a fog device, the fog device captures the new IoT device

that needs services and registers it to the requested services.

2) Join Phase

Fog devices detect new IoT devices that request services, and each IoT device is asked to show its

identity before joining the fog network. To avoid security issues from malicious IoT devices, the new

IoT devices should be authenticated first. After that, the authenticated devices may request access to fog

devices to obtain authorization for the services provided. This is where AC models are applied. When

the authentication and authorization operations are complete, different groups of IoT devices become

connected to the corresponding fog devices with access to network resources and service may begin.

3) Transfer Phase

In this phase, fog devices start aggregating data from IoT devices and/or send tasks to them. When the

amount of data collected is huge, fog devices filter data received from IoT devices before processing it

or sending it to the cloud. Load balancing strategies can be used to send workload to free fog nodes

when a fog node is overwhelmed with tasks.

Fog computing receives data from IoT devices and then processes it or sends it to cloud storage. Fog

computing can interact with all three types of cloud services (Software as a Service [SaaS], Platform as

a Service [PaaS], and Infrastructure as a Service [IaaS]) [3]. To the best of our knowledge, there is no

standard architecture for fog computing. Several commercial platforms, including ParaDrop and

Cloudlet, have been proposed [13]. ParaDrop is a fog computing platform based on wireless routers

using operating system-level virtualization. A cloudlet is a mobility enhanced small-scale cloud

infrastructure that is located at the edge of the Internet and can act as a fog layer.

6

FIGURE 1.2 The subscribe, join, and transfer phases in a fog-aided IoT environment with events

occurring in each phase.

There are several areas where fog computing can be utilized, such as smart cities, smart vehicles, smart

grids, and mobile healthcare [14]. Figure 1.3 shows a taxonomy of fog computing applications. In the

healthcare domain, data are generated by thousands of sensors that require low latency and real-time

processing demand. Fog nodes can be a feature to support the scalability of patient monitoring.

FIGURE 1.3 Fog Computing Applications.

7

1.1.1.4 Characteristics of Fog Computing

As the number of IoT devices increases, handling the data generated by IoT devices and transferring it

to the cloud may turn out to be challenging. Therefore, fog computing emerged to address these

challenges by processing the data at the edge of the network (close to the IoT devices), which results in

reduced latency. Table 1.1 depicts the differences between fog computing and cloud computing in terms

of the following common characteristics:

1) Latency

Some transfer delay between IoT devices and the cloud can be tolerated, depending on the requirements

and the nature of the application. However, for medical applications or in case of emergency events, the

data are very time-sensitive. The latency will be high in the cloud because the distance between IoT

devices and the cloud is long. Thus, computing the data in the cloud will cause a high latency. However,

fog computing reduces that latency by bringing data to the edge of the network and closer to end users

to meet the high processing demand [15].

2) Scalability

As the number of IoT devices increases, it is difficult for the cloud to handle the heavy computation and

bandwidth overhead of these devices. Fog computing can solve this issue by distributing serval fog

nodes that can reduce the heavy computation and support hierarchal scalability when the number of IoT

devices increases [15].

3) Location-Awareness

Since the cloud is far from IoT devices, sending location information may push heavy workloads toward

the cloud when the number of IoT devices is high. Therefore, having fog nodes closer to the IoT devices

to manage and control traffic sent to the cloud and to support geographic location becomes necessary

[15].

4) Mobility

8

Fog computing supports the feature of mobility. Per Cisco, any device that has computing, storage, and

network connectivity can be a fog node [2]. In fog computing, a fog node can be any mobile device,

such as smart vehicles or smart phones, or any static device, such as traffic cameras in smart city devices

[16].

Table 1.1 Characteristics that differ between fog computing and cloud computing.

Characteristics Fog Computing Cloud Computing

Architecture Decentralized Centralized

Latency Low High

Location Awareness Yes No

Mobility Supported Limited

Geographic location Yes No

Delay Low High

Scalability High Limited

Deployment At the edge of the network Network Core

5) Geographic Location

A fog computing layer may consist of a number of distributed fog nodes that are deployed in different

locations [6]. As previously mentioned, fog computing supports the feature of geographic location, and

distributed fog nodes can track the locations of IoT devices to support their mobility. The applications

and services of fog computing are decentralized and can process and store data from end devices.

Therefore, the massive amounts of data generated by IoT devices will be processed faster in

decentralized fog computing than in centralized cloud computing.

6) Heterogeneity

The fog computing layer consists of two components: the physical node and the virtual node. Physical

nodes include physical sensors and routers, while virtual nodes include virtual sensors and virtual load

balancers. These physical or virtual nodes may have different operating systems and may be used to run

9

different applications. Therefore, heterogeneity in fog nodes is desirable to make these devices

interoperable [6], [16].

7) Bandwidth

Fog computing can process the data created by IoT devices at the edge of the network, close to the end

user, rather than sending it to the cloud. Therefore, fog computing efficiently saves the bandwidth by

computing and storing the data locally. As the number of IoT devices increases, more data may be

generated and collected. Therefore, an architecture of distributed fog nodes addresses this problem by

computing the enormous amount of data locally instead of transmitting it to the cloud. This, in turn,

reduces network traffic and saves bandwidth [16].

1.2 Problem Definition

 First, the 2016 Dyn cyberattack that occurred on October 21, 2016 and disrupted internet across

internet service across Europe and US. The 2016 Dyn cyberattack was a series of distributed denial-of-

service attacks (DDoS attacks) that targeted Internet of Things-enabled (IoT) devices

such cameras, residential gateways, and baby monitors. Many services were affected by the 2016 Dyn

cyberattack [123]:

Airbnb CrunchBase HBO Overstock.com RuneScape

Amazon.com DirecTV Heroku PayPal SaneBox

Ancestry.com The Elder Scrolls

Online

HostGator Pinterest Seamless

The A.V. Club Electronic Arts iHeartRadio Pixlr Second Life

BBC Etsy Imgur PlayStation

Network

Shopify

The Boston

Globe

FiveThirtyEight Indiegogo Qualtrics Slack

Box Fox News Mashable Quora SoundCloud

Business Insider The Guardian National Hockey

League

Reddit Squarespace

CNN GitHub Netflix Roblox Spotify

Comcast Grubhub The New York

Times

Ruby Lane Starbucks

https://en.wikipedia.org/wiki/Denial-of-service_attack#Distributed_DoS
https://en.wikipedia.org/wiki/Denial-of-service_attack#Distributed_DoS
https://en.wikipedia.org/wiki/Camera
https://en.wikipedia.org/wiki/Residential_gateway
https://en.wikipedia.org/wiki/Baby_monitor

10

 Second, although fog computing offers promising solutions to many of the performance and

security problems of IoT, it is confronted with various security and privacy risks. For instance, while

the fog computing is crucial for spreading risks across distributed fog node, it also has untoward effect

of increasing the attack surface. What makes the situation even worse is that in fog computing devices

interact with devices only. In other words, the fog nodes receives IoT data from sensors and sends it to

the cloud and vice versa. This means, no human interaction is involved in the communication. Although

this can be considered as an advantage because these interacting devices do not even have screens or an

on-device user interface, which means smaller attack surface, yet this can lead do failures and/or targeted

attacks that cannot be easily detected and deterred. There are plenty of other security and privacy issues

in fog aided IoT that deserve our genuine attention.

 In this dissertation, we aim to better understand fog aided IoT environments in order to pave

the way for further research to address interesting confidentiality, integrity, and availability violations.

1.3 Motivation

 First, there is a lack of real-life implementations of the many theoretical studies in research and

academia. Although simulation-based experiments provide easy access to practical results about the

performance of computing systems, observations and research outcomes may not be generalizable to all

scenarios due to the variety in IoT platform providers and device manufacturers; their different

implementations, service specifications, and configurations; and differences in network architectures

and protocols. Therefore, in order to develop a profound and general insight into the tradeoffs involved

in a particular system, it is important to use real IoT platforms built on top of a real-world network (i.e.,

Internet) when obtaining analytical results for the performance of fog aided IoT implementations. In

addition, it would be interesting to explore the performance differences of fog implementations

interacting with different commercial IoT platforms, such as Amazon IoT and Azure IoT.

 Second, due to the diverseness that fog-aided IoT environments enjoys and the lack of consensus

among practitioners and hobbyists on a standard fog computing implementation, there is a lack of

11

resources that show how to implement an efficient fog-aided IoT system. Most of the implementations

available are either domain specific, complex, or too abstract to be useful in all scenarios.

 Third, The IoT-Fog-Cloud field is rapidly evolving because security requirements and objectives

are changed. Therefore, current solutions are not sufficient.

1.4 Contribution

 First, this research proposes two architectures of cloud-based IoT environments in a real-world

environment. In first architecture, we used a fog layer between IoT devices and the cloud, whereas in

the second, IoT devices published data directly to the cloud. Second, we developed a methodology of

each IoT devices to provide more accurate, consistent, and real results about the environment

performance. Third, we proposed three analysis methods to perform the experiments on both

architectures and evaluated them based on the three analysis methods. Through conducting several

experiments based on the three analysis methods, we found that the first architecture outperforms the

second architecture in terms of performance. Overall, with an increased number of IoT devices, the first

architecture outperforms the second architecture. From a security standpoint, authenticating IoT devices

at the fog layer provides more flexibility in adding sophistication to the authentication and authorization

process. Therefore, to overcome the security challenges between the IoT layer and fog layer and, thus,

meet the security requirements, authentication and authorization models must be proposed. Fourth, this

research proposes a fine-grained data access control model based on the attribute-based encryption of

the IoT–Fog–Cloud architecture to limit the access to sensor data and meet the authorization

requirements. The encryption-based access control is fined grained and hard to break. However, the

encryption-based access control increases the demand of resources utilization and heavy computation.

To solve this, fog computing is used to outsource the heavy computation. Fifth, this research proposes a

blockchain-based certificate model for the IoT–Fog–Cloud architecture to authenticate IoT devices to

fog devices and meet the authentication requirements. The blockchain-based certificate model defines

12

as a decentralized. Therefore, blockchain supports fog decentralization and offers encryption and

validation. Also, it is hard to break and can be traceable and irreversible. Although blockchain

transactions take time to process and validate, the number of fog devices is not expected to be huge as

the number of IoT devices. Therefore, the number of transactions will be also low.

1.5 Structure of the Dissertation

The dissertation has five remaining chapters: the second chapter is literature review; the third

chapter is the empirical study of analyzing the performance of the two Cloud-Based IoT

Implementations; the fourth chapter is the scientific experiments of examining performance in Fog-

Aided Cloud-Centered IoT in a Real-World Environment.; the fifth chapter is the novel security models

for IoT–Fog–Cloud architectures in a Real-World Environment. The sixth chapter is the main

conclusions and future works.

13

Chapter 2: Literature Review

M. Aleisa, A. Abuhussein, and F. T. Sheldon, “Access Control in Fog Computing: Challenges and

Research Agenda,” IEEE Access, vol. 8, pp. 83986–83999, May 2020, DOI:

10.1109/ACCESS.2020.2992460

2.1 Introduction

 Cloud computing provides IoT (Internet of things) environments with a facility for computation

and storage. However, cloud computing requires a high latency due to its distance from the end user

[17]. Additionally, the data generated from IoT devices takes time to be computed in the cloud. As the

number of IoT devices increases, the amount of data generated will also increase. This huge amount of

data aggregated from devices located far away from the cloud must be transferred with low latency. To

solve this issue, fog computing emerged.

 Fog computing serves as a middle layer between cloud and IoT devices to solve the problem of

high data transfer latency. To meet the high processing demand, the huge number of sensors in IoT

environments send data through fog nodes rather than directly to the cloud. Smart cities and smart grids

are examples of systems in which fog computing can be found between the smart devices and the cloud

[18], [19]. This additional layer (i.e., fog computing) can introduce new vulnerabilities since it expands

the attack surface on which threats such as data loss and breaches can occur [20]. In addition, several

threats, such as malicious fog nodes [21], man in the middle attacks [22], malicious insider threats [20],

and denial of service attacks [20], arose in fog computing environments. For instance, in fog computing

environments, attackers may seek infinite processing or storage in fog devices, which prevents users

from accessing fog device(s) [23].

 Access control (AC) is one of the crucial defense frontlines to maintain users’ security and

privacy, as well as to protect data and services from unauthorized access. Due to the increase in the

number and type of threats, it is essential to have effective AC models in fog computing environments.

Cloud computing and fog computing are being used in many domains to provide support to IoT

14

environments. This is known as cloud-fog-IoT architecture. To ensure the appropriateness of the AC

strategies in the cloud-fog-IoT architecture, it is important to identify the requirements of the application

for which this architecture is used. Application requirements in fog computing include, but are not

limited to, scalability, mobility, and heterogeneity [6]. Thus, it is important to select AC models that

meet these fog application requirements. Moreover, choosing one of the AC strategies over the others

can have a negative impact. For example, it may significantly increase the computation overhead in fog

nodes due to the multiple operations involved in AC models, such as file encryption, ciphertext

decryption, and distribution of attributes [24]–[26]. On the other hand, using more than one AC model

in fog nodes can cause additional heavy computation on fog nodes due to the heavy operations used in

controlling access. Therefore, outsourcing part of the operations when implementing AC models for fog

nodes becomes crucial. The aforementioned reasons demonstrate the need for dynamic and more

efficient AC models. It is also important to appropriately select AC models to protect the cloud-fog-IoT

architecture. In this paper, we survey AC models in fog computing, present their challenges, and identify

gaps for future research.

 The remainder of this paper is structured as follows: In sections 2 and 3, we discuss fog

computing and AC comprehensively. In section 4, we present the state of the art in the field of AC in

fog computing. In section 5, we discuss some security and privacy issues related to AC in fog computing.

In section 6, gaps in the field are identified and discussed. Finally, we conclude this work in section 7.

2.2 Access Control Overview

 AC is based on a data access policy (e.g., HIPAA [27]) that determines what privileges are

granted to which roles within the various operational scenarios. In other words, the user should first be

authenticated to access the system. Then, the user can request access to the system resources and be

authorized by the system administrator [28]. There are multiple AC models, such as Discretionary

Access Control (DAC), Mandatory Access Control (MAC), Role-Based Access Control (RBAC), and

Attribute-Based Access Control (ABAC) [28]. Figure 5 shows a taxonomy of AC models in fog

15

computing. Attribute-Based access control (ABAC) could be an appropriate model to deal with fog

computing, as the owner of the data in the fog layer can define the AC policies for users to achieve the

authorization [8]. Here, we summarize AC models:

2.2.1 Access Control Models:

1) Attribute-based Access Control (ABAC)

 One of the most well-known AC models is attribute-based access control (ABAC) [28]. This

model has three key elements: attributes, a policy model, and an architecture model. Attributes are

features that define a user, a resource, or an environmental condition. In fog computing environments,

there are four components that interact with fog devices: IoT devices, the data owner, users, and attribute

authority. When fog nodes receive data from IoT devices for high processing demand, users may want

to access the data. Therefore, a set of attributes will be provided to the users and resources to grant the

authorization for access. Attributes can be a username, a job, a resources owner, and/or an environment’s

time or date created or last accessed. AC policies are defined by the owner of the data, which could be

an organization or an individual. AC policies are rules specified by the owner of the data within the

organization. These rules can be defined based on users’ behavior [28].

2) Discretionary Access Control Model (DAC)

 This AC model controls access based on the identity of the users who request the access. Any

authorized entity can grant access rights, such as read, write, and/or view, to others. This model is less

secure and known to cause management overhead in the environment of fog computing [28].

3) Role-based Access Control Model (RBAC)

 In this model, AC is defined based on the role of the user in the organization, such as students,

faculty, and staff in universities and colleges. Therefore, access rights are assigned to the roles instead

of the users. Some users may have more than one role within the organization. In this situation, AC

policies for each role are applied and may overlap. In this model, AC rights that the owner of data would

grant to users are view, read, update, and/or write. When a user requests to access data, the user’s role

16

is compared to the access policy that is predefined by the owner of the data and access is granted

accordingly [28].

4) Access Policy Access Control Model (APAC)

 A policy is a set of rules that is pre-defined by the data owner. The owner of the data can be an

organization or an individual that sets up the policy for access to their resources. These rules may consist

of authorized behaviors that are defined by the owner of the data and meet the data owner’s security

objectives. Each user has one or more identifying attributes. Access policies consist of attributes that

define every user’s accessibility to the resources. These attributes are written in access policy in multiple

levels and may be connected by a logical expression such as AND or OR [28].

5) Identity-based Access Control (IBAC)

 There are three elements that interact in AC: subject, object, and access rights. The subject is an

active entity and can be a user or an application requesting access to a resource(s). The object is a passive

entity and can be a resource for which access needs to be controlled. The access rights are the method

by which a subject may access an object. The access rights consist of several operations, such as read,

write, delete, and search. This model manages any access by a subject to an object through access rights.

This model is based on the identity of the subject and an object identifier [29].

6) Task-based Access Control (TBAC)

 In this model, a task is considered a subrole for a subject. When the task of a subject satisfies

the roles involved in the task, the subject is granted access to an object [29].

7) Rule-based Access Control (RBAC)

 In this model, rules are defined such that a subject can access an object through satisfying these

rules. As in DAC, access control lists (ACL) are associated with each object and include access rights

of a subject to gain access to an object. When a user tries to access a resource, the system checks the

rules in the ACL for that resource. Then, if rules are satisfied, the user gains access to a resource. For

example, students may access a course website only at a certain time of day [30].

17

8) Mandatory Access Control (MAC)

 This model manages access based on comparing security labels with security clearances. The

security labels are allocated to each object, such as a resource, and indicate how important the system

resources are. The security labels consist of two components: (1) a classification component (e.g., top

secret) and (2) a category component which declares the level to which the object is available. The

subject, which is a user, has a classification and a category. When a user tries to access a resource using

MAC, the system checks the classifications and category of the user and compares it to the security

labels of the resource. Then, if the classification and the category of the user match the security labels

of a resource, access is permitted. Otherwise, access is denied [30].

2.2.2 Access Control Requirements in Fog Computing Environments

 Although we thoroughly surveyed the AC models, some of the AC models mentioned earlier

are not used for fog computing. Thus, we identified the requirements for adopting and applying AC in

fog computing. The requirements necessary to maintain efficiency in fog computing are as follows:

1) AC models use operations such as building access policy, which may cause computational overhead

on the side of the IoT device. Since IoT devices have limited resources, the computational overhead can

be taken care of by the closest fog node [8].

2) AC models should support the creation, deletion, and revocation of an AC policy. For example, what

techniques should be used to update the system when policy is revoked [8]? In fog-based environments,

the emerging fog layer further exposes the user data and applications since it is an additional attack

point. This necessitates the application of an AC model that enables policy creation, deletion, and

revocation at the cloud, fog, and IoT device levels.

3) Since the IoT devices are resource-limited, it is essential to restrict some resources from being

accessed when the number of IoT devices increases [8].

18

4) AC models should support the revocation of attributes. This is important (1) to prevent the user whose

attribute is revoked from being able to decrypt the new encrypted data (i.e., backward security) and (2)

to enable the newly subscribed user whose attribute is satisfied and valid to decrypt the newly published

encrypted data (i.e., forward security) [31].

5) Since the fog layer is supposed to be close to the IoT devices to solve the latency issue, the time

required to decide whether the access policy is satisfied should be low and reasonable. If the user’s

attribute satisfies the access policy, the policy decision’s response time should be low. In addition,

execution cost, networking cost, and deployment cost of the fog-based AC models should also be

reduced since the fog layer is close to the IoT devices [18], [32].

6) As the number of IoT devices increase, the fog nodes will also increase. Therefore, multiple attribute

authorities are needed to support scalability of fog nodes and IoT devices. Thus, AC models should

support multiple attribute authorities [33].

7) Selecting an AC model in fog computing depends on the application requirements, which can impact

the computation overhead. Some of the AC models mentioned earlier can be encryption-based, which

results in additional operations (e.g., encryption and decryption). Thus, it is important to decide whether

data encryption is required and mandated as an application requirement before selecting the AC model

[6].

8) As the number of IoT devices increases, the data generated by these IoT devices will also increase. It

is important to utilize an AC model that gives data owners more flexibility to underexpose/overexpose

their data. Therefore, fine-grained AC becomes an essential requirement [34].

2.3 State of the art in Fog Access Control

 Attribute-based encryption (ABE) has been extensively studied [35], [36] and used in several

schemes. ABE is a type of public encryption that is dependent on the attributes of the users and resourced

19

accessed (i.e., APAC). Users who want to obtain access obtain secret keys that reflect their attributes,

and the ciphertext has attributes that are encrypted according to policies created by data owner. Then, if

the user’s attributes satisfy the attributes embedded in the ciphertext, the user can decrypt the ciphertext

and obtain access to the plaintext. In healthcare applications, a patient can define access policies by

using logical expressions such as AND or OR and encrypt their personal health record according to the

defined policies. The doctor can decrypt the personal health record if the doctor’s attributes satisfy the

access policies embedded in the ciphertext. There are two types of attribute-based encryption (ABE):

Ciphertext-Policy Attribute-Based Encryption (CP-ABE) and Key Policy Attribute-Based Encryption

(KP-ABE), as shown in Figure 2.1

FIGURE 2.1 Access Control Models in Fog Computing

 The existing schemes CP-ABE and KP-ABE have a number of operations to handle encryption

and decryption, which cause a heavy computation overhead due to the resource constraints at the end

users’ side. Figure 4 shows a system model of applying ABE in fog computing. To decrease the heavy

computation at the end users’ side, serval works that outsource the encryption and decryption operations

to the near fog nodes have been proposed, as shown in Figure 2.2 and Table 2.1.

Access Control models
in Fog Computing

Attribute-based-
Access Control

Role-based
access Control

Discretionary
access control

Mandatory
access control

Part of Decryption –
End user

Part of Encryption-
End user

Part of Encryption–
Fog node

Part of Decryption –
Fog node

Attribute-based
Encryption

CP-ABE KP-ABE

20

FIGURE 2.2 Layers of Fog Computing.

 The authors of [25] proposed an AC CP-ABE scheme that outsources the heavy computation of

encryption and decryption to fog nodes. This makes the number of attributes in access policy and secret

keys independent from the encryption/decryption computation. This scheme uses the intermediate fog

layer to reduce the computational overhead for the data owner or end users. As shown in Figure 5, this

scheme has five types of entities: (1) a cloud service provider (CSP), (2) fog nodes, (3) the data owner,

(4) the end user, and (5) the key authority. The authors assumed that CSP and fog nodes are trusted in

the scheme. The data owner has files that need to be encrypted before being sent to the cloud. Each data

owner is responsible for defining access policy and generating part of the ciphertext of the encrypted

file before sending it to a fog node. A fog node is responsible for the creation of the other part of the

ciphertext of the encrypted file. Then, the whole ciphertext is uploaded to the CSP. The key authority

oversees user registration and the creation of secret keys for users. The secret keys reflect each user’s

attributes. The end user is the user on the other side who wants to gain access to the encrypted data

stored in the cloud. If the end user’s attribute set satisfies the access policy embedded in the ciphertext,

the ciphertext will be uploaded from the cloud by the fog node. The fog node will then decrypt part of

Cloud Server

Fog
Node

Data Owner

Fog
Node

End User

Outsourced
Encryption on
the Fog Node

Outsourced
Decryption on
the Fog Node

Ciphertext
Ciphertext

Distributed
Attribute Authority

Partial Ciphertext
computation

Partial Ciphertext
computation

21

the ciphertext. The other part of ciphertext is decrypted by the end user. Updated users are those whose

attributes are updated by the key authority, and non-updated users are those whose attributes are not yet

updated.

 The authors in [37] proposed a framework that secures the sharing of personal health records

(PHR) in a cloud computing environment. Their framework supports the scalability feature in cloud

computing. The patients can encrypt their PHR files so that only authorized users can decrypt and access

them. The presented framework classifies users according to security domains as (1) public domain and

(2) private domain. The public domain includes the professional users who are managed distributively

by multiple attribute authorities. The attribute authority can control several attributes for all users in the

public domain, and each user should be able to reach more than one attribute authority to get his/her

attributes. Multiple Authorities Attribute-Based Encryption (MA-ABE) is used by public domain users,

such as physicians, so that the user (i.e., physician) attributes represent the professional role of the user

in the healthcare domain. In the public domain, patients (i.e., owners) defines access policies for their

PHR files based on the professional roles of the users in that domain. On the other hand, the private

domain includes those close to the PHR owner, such as family members, and access rights are assigned

by the PHR owner to all users in the private domain. KP-ABE is used with private domain users such

as close friends or family members so that a patient can control secret keys and access rights for their

PHR files. PHR files are encrypted using ABE, so a PHR owner can easily permit users from two

domains to access the files. This framework tackled the key and attribute management issues for all

users by dividing them into two types of security domains and supported to the scalability features.

 The authors in [38] proposed a framework, Privacy Preserving Cipher Policy Attribute-Based

Encryption (PP-CP-ABE), to secure data inquiry in mobile cloud computing. This framework protects

the collected data from mobile devices. Therefore, outsourcing the heavy computation of encryption and

decryption operations to CSPs can be achieved using PP-CP-ABE. Attribute-Based Data Storage

(ABDS) is also proposed to decrease the data management overhead caused by CSPs. In the system

22

architecture, there are three service providers: (1) encryption service provider (ESP), (2) decryption

service provider (DSP), and (3) storage service provider (SSP). The ESP presents the encryption service

to data owners without disclosing the data, the DSP presents the decryption service to users without

exposing the data, and the SSP stores the encrypted data. Mobile devices can outsource the heavy

operations of encryption and decryption to ESP and DSP using PP-CP-ABE.

 The authors in [39] proposed an ABE scheme that supports the outsourcing encryption of a host

and the outsourcing decryption of a user. The host and users are using mobile devices that have limited

computational power, and the ABE scheme requires several operations of encryption and decryption.

Therefore, the proposed ABE scheme uses two semi-trusted proxies. The first semi-trusted proxy is used

to outsource the computation of encryption operations, and the second semi-trusted proxy is used to

outsource the heavy computation of decryption operations. Thus, the computational overhead of mobile

devices can be reduced. In the encryption stage, the data owner encrypts part of the message and the

proxy encrypts the remaining part. This occurs according to the access policy that is defined by a host

with set of attributes. In the decryption stage, the proxy compares the predefined access policy by the

host with the user’s attributes. If the user’s attributes satisfy the access policy embedded in the encrypted

message, the proxy decrypts part of the ciphertext and transforms the ciphertext to ElGamal ciphertext

style. The ElGamal ciphertext can then be decrypted by the user. This scheme can help to relieve the

computation overhead in constrained devices.

 The authors in [31] proposed a Data Access Control for Multi-Authority Cloud Storage (DAC-

MACS) system. A multi-authority CP-ABE scheme with support for an attribute revocation method that

achieves both forward and backward security was also proposed. The system model has several entities:

(1) a global trusted Certificate Authority (CA), (2) multiple Attribute Authorities (AAs), (3) a cloud

server, (4) data owners, and (5) users. The CA is responsible for registering all users and AAs in the

system. Each user is assigned a global unique identity by the CA. Every AA is responsible for managing

and distributing secret keys that reflect users’ attributes or roles. The cloud server stores the owner’s

23

data after it has been encrypted and allows users to access the data if the user’s attributes satisfy access

policies defined in the ciphertext. Data owners can define access policies and encrypt their data

according to predefined access policies. Each user is allowed to decrypt the data stored in the cloud

server if their secret keys issued by multiple AAs satisfy access policy embedded in the ciphertext.

 The authors in [34] proposed a data AC scheme with the ciphertext update based on CP-ABE

and an Attribute-Based Signature (ABS) in fog computing. This scheme has delegated most operations

of encryption to the data owner, decryption to IoT devices, and signing to update the ciphertext to fog

nodes. Therefore, fog nodes perform heavy computation.Since IoT devices are resource-constrained,

they can outsource their heavy computation to fog nodes. This scheme consists of five entities: attribute

authority, CSP, fog nodes, data owner, and end user, as shown in Figure 2. The data are first encrypted

with a symmetric encryption algorithm by the data owner, who also then defines an access policy and

update policy. The access policy is used for end users to decrypt the data when their attributes are

satisfied, while the update policy is used for end users who intend to modify the ciphertext. In other

words, the data owner specifies two policies: one for decryption and another for modification. Fog nodes

play a role in encryption by partially encrypting the data according to access policy, while the data owner

completes the encryption phase with the access and update policies and sends it to cloud. IoT devices

are limited resources that are connected to fog nodes and used by end users who would like to access

the stored encrypted data in the cloud. To access data, the end user’s attribute set must satisfy the access

policy in ciphertext. Then, the fog node plays a second role to partially decrypt the ciphertext and let the

user perform the rest of the decryption to recover the data. Once the user obtains access to the data, he

or she might wish to modify and re-encrypt it. A signature-based attribute is applied, and a fog node

plays a third role by supporting the request of the user to update the ciphertext. The partial signature is

created by a fog node and is used to generate the user’s signature. The CSP verifies the signature from

end users and renews the ciphertext if the user’s attribute set satisfies the update policy defined by the

data owner.

24

 The authors of [40] proposed a Chosen-Ciphertext Attack (CCA) security model for ABE with

outsourced decryption in fog computing. The CCA is an attack in which the cryptanalyst can collect

information by obtaining the decryptions of the chosen ciphertext. Once the information is gathered, the

adversary tries to use the collected information to retrieve the user’s secret key, which is used to decrypt

the ciphertext. This model outsources the decryption operation to fog devices and consists of six

algorithms: key generation, key extraction, outsourced decryption key generation, encryption,

outsourced decryption by fog devices, and decryption by IoT devices. Two formats of the ciphertext are

presented: the original ciphertext, which is generated from an encryption algorithm, and transformed

ciphertext, which is executed by the outsourced decryption in fog devices. The paper presented two

cases in which the attacker might try to figure out the ciphertext: one with the original ciphertext, and

the other with the transformed ciphertext. Each method has several phases that are explained in detail in

the paper. One way to detect a CCA is to check the validity of the ciphertext. Since two decryptions are

needed in an Outsourced Decryption-Attribute-Based encryption scheme, ciphertext transformation by

proxy and transformed ciphertext decryption by the decryptor, two techniques are used. These

techniques are (1) Asymmetric and Symmetric Encryption Schemes, proposed in [41], and (2) Identity-

Based Encryption, proposed in [42]. For Identity-Based Encryption techniques, which support

verifiability, the proxy checks the validity before transformation. The decryptor can also check the

validity of the transformed ciphertext using the Asymmetric and Symmetric Encryption technique.

Therefore, the two techniques (Asymmetric and Symmetric Encryption and Identity-Based Encryption)

are applied on an ABE scheme. The authors showed the cost of the algorithms (KeyGen, Ext, OKGen,

Enc, and TDec) with a collection of attributes. The proposed scheme supported outsourced decryption

in which the heavy computation is outsourced to fog devices, as the IoT devices have limited resources.

However, the scheme does not support outsourced encryption, ciphertext update, and attribute

revocation. When the number of data owners is increased, it is difficult to compute the encryption

operations on the limited IoT devices without supporting the outsourced encryption to release the

computational overhead from IoT devices.

25

 The authors in [43] proposed a protocol of encrypted key exchange based on CP-ABE to secure

the communications between fog nodes. In this protocol, communications between fog nodes and the

cloud are confidential. The system model consists of several entities: a cloud, a key generator server,

fog nodes, and IoT devices. The cloud is responsible for defining the access structure and executing the

encryption to produce the ciphertext. Fog nodes are deployed on the network and each one is associated

with a set of attributes that are defined by the access policy in the ciphertext. If the fog node’s attribute

set satisfies the access policy defined by the cloud, the fog node can decrypt the ciphertext and obtain

the shared key.

 In [26], Sun et al. proposed an attribute-based searchable encryption scheme based on cloud-

fog computing. The proposed framework integrated the ABE technology and searchable encryption

technology to achieve search-based keywords with fine-grained AC simultaneously. The CP-ABE with

multiple authorities was also proposed to manage attribute creation and secret key distribution. The

scheme has six entities: central authorities, attribute authority, CSP, fog nodes, the data owner, and the

end user. In their scheme, due to the limited resources available by end users and data owners, part of

the encryption and decryption operations are outsourced to the attached fog nodes. Therefore, the high

computation overhead on end users and data owners are reduced. Personal health records in hospitals

are an example of an application of the proposed scheme. One of the limitations is that the keyword sets

are taken from the actual encrypted file in the cloud, which introduces the possibility of a chosen-

ciphertext attack.

 In [24], the authors proposed a keyword search over encrypted data system in fog computing

that supported a fine-grained AC using CP-ABE. The system also supported attribute updates by

updating the user’s secret key and attributes associated with the ciphertext. In addition, they provided a

multiple keywords option in a single search query, which locates the data quickly and reduces the range

of retrieved data. The system has five entities: a key generator center, a data owner, CSP, an end user,

and a fog node. The system supported outsourcing encryption and decryption by moving part of the

26

computational overhead, including file encryption and decryption, from the data owner or end user to

the chosen fog nodes. They presented a security analysis that prevented two types of attacks: Chosen

Keyword Attack and Chosen Plaintext Attack. One of the limitations is that, when the number of fog

nodes and end users increases, the single key generator center is not enough to manage the distribution

of secret keys and the creation of attributes for fog nodes and end users.

2.4 Security and Privacy issues related to Access Control in Fog Computing

 There are many security issues related to stored data in fog devices [44]. The ability to access

and modify the user’s data should only be permitted to authorized entities. Security and privacy

requirements for several data services in fog computing, such as storage, sharing, and computation, are

mentioned in [15]. AC ensures that only valid users are permitted to read, update, and/or send data within

the fog. Thus, AC is used to prevent unauthorized access to data of any kind. Since fog computing is an

extension of cloud computing, the security and privacy issues are inherited. Security and privacy issues

that are relevant to AC in fog computing include:

2.4.1 Trust in Fog Nodes

 Since end users attach to the nearest fog node for real-time processing of their data, the trust

level should be measured by the fog node or IoT device layer [45], [46]. Trust between fog nodes and

IoT devices is important. The fog node that provides a service to the end user’s device should confirm

the authentication of the device. The end user’s device that requests a service from a fog node should

also be able to confirm the authentication of the intended fog node. AC models can be applied to measure

the trust level when designing a trust model in the fog computing environment. The challenge will be

how to define the trust level in fog computing [44], [47]. To measure the trust level of fog nodes, several

attributes of fog nodes can be defined. One of the AC models is ABE, which provides fine-grained AC.

The two types of attribute-based AC are CP-ABE and KP-ABE. Another challenge will be to determine

who can verify the trust level of a fog node. The trusted authority can be defined to design a trust model

27

in the fog computing environment. One of the roles of the attribute authority is to create a secret key

that reflects fog or user attributes and manages these attributes.

2.4.2 Data Computation in Fog Nodes

 End users can offload their data to the nearest fog node for computation. However, outsourcing

data to the fog node can cause data breaches. For example, in a smart grid, the reading of the smart meter

by a fog node can leak household data [47]. The proposed solution to prevent data breaches is to apply

AC models such as CP-ABE when outsourcing the data to the nearest fog nodes to achieve fine-grained

AC. Several schemes involving the outsourcing of end users’ data to fog nodes have been proposed in

the literature. Collectively, these schemes suggest that the data should first be encrypted before

offloading it to the fog nodes. The fog node can then perform part of the encryption and decryption of

the data to relieve the heavy computation from a wearable end user device. Another important service

is search over encrypted data. Serval schemes use a searchable encryption technology to search over

encrypted data. Search-based keyword schemes that extend to achieve fine-grained AC using CP-ABE

have been proposed in the literature.

2.4.3 Rogue Fog Node

 A rogue fog node is a node that is reached by a malicious user. It appears as a legitimate fog

node to other fog nodes in the network. Thus, a rogue fog node encourages other fog nodes to connect

to it, which causes data damage or false data in the fog layer. One of the features of fog computing is to

provide reliability in the fog node layer; however, a rogue fog node can lead to an attack to end users’

data. Fog nodes must be protected against a malicious fog node when the end user sends sensitive

information to it. When a fog node is divided and sends the computation task to several other fog nodes

in the network, if one of fog nodes is a rogue node, it injects false data to the other fog nodes. Therefore,

the security and privacy of end user will be destroyed [47]. An ABE scheme, which is a type of attribute-

based AC, can be applied to provide confidence in end users and fog nodes.

28

2.4.4 Fog Node Privacy

 In fog computing, sensitive data can be disclosed because the fog node is closed to end users.

When an end user offloads its task to the nearest fog node in the network, the location of the end user

can be disclosed since location awareness is one of the features of fog computing. If an end user

outsources its data to the nearest fog node, the fog node can indicate that the end user is close to that fog

node. Once an end user outsources its data to several fog nodes in the network, the privacy of the user’s

location will be at risk [47]. AC can be a solution to address the issue of user privacy preservation and

the security of fog nodes.

 In a data breach, the user's information is disclosed and accessed by unauthorized users. When

a fog node is performing its task of collecting computing end users' data, data breaches can occur on the

end users’ side or the fog side. Therefore, AC is needed to maintain the confidentiality of end users’

data. One scenario that could occur is one of the fog nodes being reached by a malicious user, then

acting as a legitimate fog node to the other fog nodes in the network. The malicious data from the

attacker will then be delivered to the other fog devices in the network [48]. To solve the issue, there is a

need for security mechanisms such as AC to protect fog devices and prevent malicious activities [8].

Another scenario that could put end users’ privacy at risk is a fog node leaving the fog network

permanently. In this case, entities interacting with the fog node that has left the network, such as the

data owner, end user, or CSP, need to update their AC lists to avoid leftover access to a node that does

not exist. AC should be applied to allow only authorized users to access the data—protecting the stored

data in fog devices from unauthorized users is another challenge. It is also challenging to design a fine-

grained AC system that supports scalability. When an end user’s attributes are revoked, updating the

user’s attributes turns out to be challenging as the number of users increases.

2.4.5 Privacy Preserving in Fog Nodes

 Fog computing, like any other computing model, is not immune to privacy issues, including

those involving data privacy and location privacy [49], [50]. To solve the latency issue, fog nodes are

close to the IoT devices, which facilitates the real-time processing capability in fog nodes. However,

29

data can be overexposed and revealed to the outside world because of this additional fog layer. The data

generated by IoT devices will be computed by the nearest fog nodes, and false data injection attacks can

occur when data are outsourced to the fog nodes [51]. Since fog nodes are close to IoT devices, location

privacy is another issue. When IoT devices subscribe to a specific fog node for processing demand, it

can be inferred that the subscribed IoT devices are close to that fog node and far away from other fog

nodes [49], [50]. Therefore, a privacy-preserving guarantee must be achieved in fog computing. AC

models can be a solution to address the issue of privacy preserving. Since some AC models, such as

ABE, are encryption-based, the promise of data confidentiality can be met. In addition, fine-grained AC

can help in limiting the access to data. This can also ensure preserving the privacy of data and users

[52].

2.5 Discussion & Research Gaps

2.5.1 Discussion of Several Features in Different Schemes

 There are several features that should be taken into consideration when designing AC models.

These features are crucial to make the designed scheme more efficient and secure. The features are: (1)

outsourcing encryption, (2) outsourcing decryption, (3) multiple authorities, (4) supportability in the fog

computing environment, and (5) providing search-based keywords. Using AC models require several

operations of encryption and decryption, which increases computation overhead. One of the desired

features is to outsource part of the encryption and decryption when designing AC models. Therefore, to

reduce the computation overhead, IoT devices can perform part of the encryption and decryption

operations, with fog nodes performing the rest. There are several entities that interact with each other in

AC models. One of these entities is the key authority, which is responsible for creating secret keys and

distributing attributes to users. Thus, when the number of IoT devices increases, one key authority will

not be enough to generate secret keys and distribute attributes to users. Designing AC models with

multiple key authorities can significantly reduce the network congestion and improve the system’s

efficiency. In addition, multiple authorities can relieve the enormous effort required for the data owner

30

to handle the user attributes. Designing AC models to be used in the context of fog computing can

decrease the latency issues of IoT devices and relieve the computation overhead of encryption and

decryption operations from IoT devices. Since end users should satisfy the access policies of the

ciphertext, fog nodes can compare and execute part of the decryption in a timely manner before

outsourcing decryption to the end user.

 Using searchable encryption (SE) technologies is another feature that could decrease the range

of retrieved data from the cloud. As the amount of data increases, integrating SEs in AC models becomes

desirable. Therefore, combining the features mentioned can crucially improve the design of AC models.

These features are important to researchers due to their benefits in many domains, such as medical care.

Designing AC models in medical care is challenging since the privacy and security of patients’ data are

extremely important.

 Table 2.1 compares existing works that propose AC schemes according to the features they have

(i.e., outsourcing encryption, outsourcing decryption, multiple authorities, supportability in a fog

computing environment, and providing search-based keywords). All schemes in Table II use AC

strategies that require heavy computation due to the operations of encryption and decryption. Schemes

described in [24]–[26], [34], [38], [39], [52]–[55] support outsourcing encryption and decryption, and

schemes in [33], [40], [56], [57] support only outsourcing the decryption operations. Outsourcing the

heavy operations of encryption and decryption means that the computation overhead of the end users

will be decreased. However, some of the schemes solve the latency issue, while other do not. Schemes

in [24]–[26], [34], [52], [54], [55] provide outsourcing of encryption and decryption and solve the latency

issue by introducing a fog computing layer between IoT devices and the cloud. The schemes presented

in [38], [39], [53], [56], [57] offer outsourcing of encryption and decryption, except those in [40], [44],

which only offer outsourcing of decryption. The latency for all of them can be high due to the use of

serval cloud computing servers. Multiple authorities enhance the scalability of building a model and

reduce the computation overhead on a single authority. Data owners and end users’ attributes are

31

distributed by the attribute authority. As the number of end users and data owners increases, a single

attribute authority will not be enough to handle the distribution of users’ attributes. Few schemes used

multiple attribute authorities to improve AC in their proposed schemes. Authors of [26], [31], [33], [37],

[52], [54], [55] developed a scheme that is highly scalable by introducing several distributing attribute

authorities in their work. Schemes in [31], [33], [37], [52], [54], [55] support only multiple attribute

authorities and AC. The scheme presented in [26] supports multiple attribute authorities and all features

in Table II. SE technologies have been well studied in the literature. One of the known SE technologies

is search-based keywords, which gained considerable attention in cloud computing for several years.

Some schemes presented in Table II provided search-based keywords in the context of cloud computing

so that the designed model has both SE technologies and fine-grained AC. Few papers enhanced their

schemes by deploying CP-ABE and SE technologies in a fog computing layer that can solve the latency

issue. In such schemes, encryption and decryption operations are outsourced to fog nodes and the

computation overhead in end users’ devices will be reduced. For example, one paper introduced a

scheme that uses CP-ABE and search-based keywords and deployed it in the fog using multiple attribute

authorities. Additionally, scheme [24] proposed a fine-grained keyword search with outsourcing

encryption and decryption in fog computing, while scheme [26] presented ABE and keyword search for

personal health records in fog computing using multiple attribute authorities.

32

Table 2.1 Comparison of features in different AC schemes

2.5.2 Gaps and Future Research Directions

 Fog computing and cloud computing are similar in nature and highly coupled. However,

solutions built to address the cloud efficiency, security, and privacy issues cannot necessarily be applied

to fog computing. As previously discussed, multiple operations of AC models can have a major impact

on fog computing solutions. This section outlines the research gaps that need to be addressed to enhance

AC models in fog computing:

1) Auditing Mechanism

 Designing an AC model with an auditing mechanism is necessary in distributed fog nodes.

Auditing, in this case, is important to periodically check users’ attributes and make sure that the

attributes are valid, and that the users’ privileges are not outdated. Moreover, in highly scalable

Features

Schemes
Authors Search

based Keywords
Fog Computing

Multiple
Authorities

Outsourcing
Encryption

Outsourci
ng

Decryptio
n

Access
Control

Citation

Zhang [25] 59

Zhou [38] 226

Asim [39] 16

Mao [56] 63

Zuo [40] 64

Alrawais [43] 60

Li [37] 1033

Yang [31] 2

Wang [53] 29

Li [57] 120

Huang [34] 48

Sun [26] 3

Miao [24] 26

Vohra [33] 2

Fan [54] 32

Xu [55] 9

Xue [52] 21

33

environments, an auditing mechanism becomes important for the robustness of AC. Since cloud

computing, IoT, and fog computing are highly coupled and scalable, there will be a massive number of

joining and leaving nodes (e.g., fog, cloud, IoT). This mandates continuous and thorough auditing to

maintain the confidentiality and integrity of the data and applications. The existence of nodes with more

privileges than needed also increases the demand of computation power to handle operations like

encryption and decryption, which negatively impacts the environment performance. Therefore,

intelligent auditing mechanisms are needed to automatically search for policy violations and update

access policies and users’ attributes.

2) Fine-Grained Access Control

 Proposing fine-grained AC is essential in widely distributed fog nodes. When a number of IoT

devices connect to fog nodes, fog nodes apply one or more AC models to grant access to a number of

authorized IoT devices. Fine-grained AC can be introduced in fog computing to limit the access to

specific data, and each fog node can apply its own access policy for its own IoT devices. This is

important, as it will give administrators more control and flexibility to securely and effectively

overexpose and underexpose data. Designing fine-grained AC models for distributed fog nodes is

necessary; thus far, however, little or no work has been done to tackle this challenge.

3) Covering More Features for Better Efficiency

 Designing and implementing AC models that cover more features is important for the efficiency

of the model. Therefore, we surveyed AC models and their supporting features to better understand how

these features work and how to integrate them in a future AC model. More AC features can still be

explored and integrated to build efficient AC in fog computing.

2.6 Conclusion

 Fog computing is a new computing paradigm that provides real-time processing at the edge of

the network, close to IoT devices. AC models can be applied in fog computing to preserve the privacy

of IoT data and to protect the system and users’ data. Several security and privacy issues in fog

34

computing can be solved using one or more AC model(s); however, the choice of an AC model is

dependent on the application’s requirements. In this paper, we thoroughly discussed fog computing and

AC models. Then, we presented the state of the art in the field of fog computing AC. We also discussed

some security and privacy issues relevant to AC in fog computing. Several features that that are known

to produce efficient AC models in fog computing were discussed and research gaps were outlined.

 In our future research, we plan to propose an AC model that supports more features for better

efficiency and security. We also plan to investigate designing a fine-grained AC model for fog

computing-aided environments.

35

Chapter 3: Performance Analysis of Two Cloud-Based IoT

Implementations: Empirical Study

M. Aleisa, A. A. Hussein, F. Alsubaei and F. T. Sheldon, "Performance Analysis of Two Cloud-Based

IoT Implementations: Empirical Study," 2020 7th IEEE International Conference on Cyber Security

and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and

Scalable Cloud (EdgeCom), 2020, pp. 276-280, DOI: 10.1109/CSCloud-EdgeCom49738.2020.00055

3.1 Introduction

 Cloud computing is an attractive environment that provides computation and storage for the

Internet of Things (IoT). However, high latency is an issue within cloud computing due to the distance

between the cloud and IoT devices. Data from IoT devices requires a substantial amount of time to be

processed and analyzed in the cloud. Moreover, as the number of IoT devices amount, the amount of

data generated becomes enormous. Low latency is an essential factor in computing the enormous amount

of data published from IoT devices. Therefore, fog computing appeared to provide light computation

power and temporary light storage with low latency [58].

 Fog computing is an intermediate layer between IoT devices and the cloud that is designed to

solve the latency issue. As the number of computations increases, fog computing becomes essential to

provide high-performance computation in a real-time manner because it allows computation to occur

closer to IoT devices [59]. Measuring the performance of published data in IoT-Fog-Cloud environments

is important to assess the outcomes of continuous efforts to improve. Different researchers have

proposed and developed various benchmark metrics that measure the performance of IoT-Fog-Cloud

environments [60]–[63]. For more accurate benchmarking, implementations that simulate real-life

environments must be evaluated when measuring the message subscribe and publish performance of

IoT-Fog-Cloud environments.

 Amazon Web Services (AWS) provides an IoT service (AWS IoT) that offers secure

communication between IoT devices such as sensors and actuators [64]. This service allows developers

to collect and analyze an enormous amount of data from several devices. In addition, Amazon

36

CloudWatch [65] is used to monitor the resources of AWS in real time. CloudWatch provides a variety

of metrics to measure the performance of cloud-based IoT environments [66].

 This paper makes the following contributions. First, we built two experimental implementations

of cloud-based IoT environments and measured their performance. We used AWS as a cloud provider

in both implementations. The first implementation (a) applies a fog layer between IoT devices and the

cloud. The second implementation (b) publishes data directly to the cloud without having a fog

computing layer between the IoT sensors and the cloud. Second, we used AWS IoT metrics embedded

in Amazon CloudWatch to measure the performance of the two implementations a and b (Fig. 3.1).

Third, AWS metrics were used to compare the performance of implementations a and b over time.

 The remainder of this paper is structured as follows: In section 2, we present the motivation for

our work and discuss existing fog and IoT benchmarks. In section 3, we describe our implementations

a and b in detail. In section 4, we provide a description of the AWS IoT metrics that were used to measure

our implementations. We describe the empirical testing and discuss the results in section 5. The

discussion, including challenges faced and future work, is presented in section 6. Finally, we conclude

the paper in section 7.

3.2 Motivation

 Several benchmark metrics have been proposed and used in the literature to measure the

performance of IoT-Fog-Cloud environments [60]–[62], [67]. TPCx-IoT [68] is a TPC industrial

benchmark to measure the performance of IoT systems.

 The authors in [63] explained the details of TPCx-IoT and showed the performance of different

industry configurations running HBase 1.2.0. IoTABench is another analytical IoT benchmark for big

data [60]. A benchmark for an IoT system for big data that includes a smart meter use case is proposed

in [60]. The smart meter use case includes eight node clusters operating the HP Vertical analytics

platform version 7.0.0. Reference [61] presented Edge-Bench, which is a benchmark for edge computing

platforms, and studied two platforms: Greengrass and Azure Edge. Comparing performance of the two

37

platforms showed that there is a high latency in the Azure Edge platform. The authors of [62] presented

an edge computing AI benchmark called Edge AlBench. The Edge AIBench contains six components

benchmarks and four application benchmarking frameworks.

 MQTT, a well-known protocol produced by IBM [12],[69] can be a solution for communication

between the IoT-Fog-Cloud layers [10]. Several researchers proposed different benchmarks for the

MQTT protocol to measure the performance of IoT-Fog-Cloud environments. The authors of [67]

studied two IoT platforms, ThingBoard and SiteWhere. The performance of two protocols, MQTT and

HTTP, was evaluated on the ThingBoard and SiteWhere IoT platforms in order to compare these

platforms. The performance evaluation showed that ThingBoard performs better than SiteWhere. In

addition, the authors of [70] analyzed the process of message transmission using the MQTT protocol.

The authors captured the delays and message loss of the transmitting messages with different service

quality levels and payload sizes. The results showed that the delays are associated with message loss for

different sizes of messages. It is important to simulate a real-life environment for cloud-based IoT

environments to provide accurate benchmarking. Therefore, in this paper, we simulate a real-life

environment of the two implementations a and b to measure the performance of subscribing and

publishing messages. We conducted our analysis using several metrics to evaluate our implementations

and to provide a better understanding of their performance.

3.3 Implementation

 In this section, we present two cloud-based IoT implementations. Fig. 3.1 depicts the

implementations, a and b. These implementations are used in the following section to measure

performance. In implementation a, two basic temperature and humidity sensors (DHT11 [71]) are

connected to a Raspberry Pi 3 model B [72], which enables sensors to communicate over Wi-Fi since

the sensors are not equipped with Wi-Fi boards. Sensors along with their Wi-Fi-enabling Raspberry Pi

are considered to be the IoT layer that has light computation capabilities and light storage for

configurations. Both sensors, with their respective Wi-Fi-enabling Raspberry Pis, are connected to

38

another Raspberry Pi 3 model B that serves as middle layer (i.e., fog node). An MQTT broker operates

on top of the fog layer to enable message exchange using a publish/subscribe model. The fog layer is

used for light computation and temporary storage. Data from the sensors that is received by the fog node

is then forwarded to the cloud layer (i.e., AWS IoT). This cloud computing layer is used for high

computation and permanent big data storage. The three layers are wirelessly connected using Wi-Fi. In

implementation b, two DHT11 sensors are connected to a Raspberry Pi model B. This is the IoT layer

of the implementation. Sensors are then directly connected to the cloud (AWS IoT) without a middle

fog layer.

Figure 3.1 Cloud-Based IoT Implementations a and b

 As mentioned above, in the IoT layer of implementations a and b, because the sensors do not

come with Wi-Fi capability, the sensors are attached to the Raspberry Pi model B to enable Wi-Fi.

39

Arduino IDE software is installed on top of the Raspberry Pi and a C++ program is written to read the

sensor’s data and publish it to the fog layer. We installed another MQTT broker on the fog node (the

green Raspberry Pi box in Fig. 3.1) to publish data to the cloud (AWS IoT). A python script is executed

in fog to filter the data received from the IoT layer (the sensors) and publish it to the cloud (AWS IoT).

In the cloud layer, the AWS message broker handles receiving the data sent from the fog node (the green

Raspberry Pi box in Fig. 3.1). Similarly, in implementation b, we also attached the sensors to the

Raspberry Pi to enable Wi-Fi. In addition, we installed Arduino IDE in Raspberry Pi and wrote a C++

program that reads the sensor’s data and publishes it directly to the cloud (AWS IoT).

3.4 Description of AWS IoT metrics

 Amazon CloudWatch provides a monitor to measure AWS IoT-based systems. It can process

data and analyze it in real time. There are several AWS metrics [9] that can be taken in consideration to

evaluate our cloud-based IoT implementations. These metrics are:

1) Connect.Success:

This metric is used to collect the number of successful connections from our IoT nodes or fog nodes to

the AWS message broker.

2) Ping.Success

This metric collects the number of ping messages received by the AWS message broker. These ping

messages are received from the fog node(s) in implementation a and from the IoT node(s) in

implementation b.

3) Publishin.Success

This metric is used to collect the number of publish requests successfully processed by the AWS

message broker. Like the ping messages, these messages are also received from the fog node(s) in

implementation a and from the IoT node(s) in implementation b.

4) Publishout.Success

40

The Publishout.Success metric is used to collect the number of publish requests successfully made by

the AWS message broker to the fog nodes in implementation a and to the IoT nodes in implementation

b.

5) Subscribe.Success

The Subscribe.Success metric is used to collect the number of successful subscribe requests processed

by the AWS message broker. These requests are made by the fog node in implementation a and made

directly by the IoT devices in implementation b.

6) Publishin.Clienterror

Finally, the Publishin.Clienterror metric is used to collect the number of publish requests rejected

because they did not meet the AWS IoT requirements.

7) Unsubscribe.Success

The Unsubscribe.Success metric collects the number of unsubscribed requests that were successfully

processed by the AWS message broker. These unsubscribe requests are made by the fog node in

implementation a and made directly by the IoT devices in implementation b.

8) Throttle.Exceeded

The Throttle.Exceeded metric is used to collect the number of requests that were throttled because the

client (i.e., the IoT node or fog node) has sent too many messages and exceeded the allowed message

rate.

9) Publishout.Throttle

The Publishout.Throttle metric is used to collect the number of publish requests that were throttled

because the client (i.e., IoT node or fog node) exceeded the allowed message rate.

3.5 Empirical Testing

 To test the differences in the two implementations, we analyzed the metrics provided by AWS

IoT that are listed in section 4 and shown in Table 3.1. Fig. 3.2 shows the results of these metrics at

41

different durations (i.e., 1 second, 5 seconds, 10 seconds, 15 seconds, 30 seconds, 1 minute, 5 minutes,

15 minutes, and 1 hour). The metrics show that both implementations have similar results when run for

less than 15 minutes. They also show that implementation a had a higher number of successful

connections, especially after 15 minutes. Implementation a also showed better results in the number of

subscribe requests.

Table 3.1 AWS metrics results for Two Cloud-Based IoT Implementations

AWS IoT metrics results – implementation a (imp1) & implementation b (imp2)

AWS IoT

metrics

1 second 5 seconds 10 seconds 30 seconds 1 minute 5 minutes 15 minutes 1 hour

Imp1 Imp2 Imp1 Imp2
Imp

1
Imp2 Imp1 Imp2 Imp1 Imp2 Imp1 Imp2 Imp1 Imp2 Imp1 Imp2

Connect. Success
3.13
5

2 3 2 3 2 3 2 3 2 6 2 9.005 3 29 3

Ping.Success 1 4 1 4 1 4 1 4 1 4 5 18 15 63 87 275

PublishIn.Succes

s
40 30 40 30 40 30 40 30 40 30 248 150 708 450 1.42 k 1.8 k

PublishOut.Succe
ss

18 16 18 16 18 16 18 16 18 16 122 76 352 196 710 1.26 k

Subscribe.

Success
2 1 2 1 2 1 2 1 2 1 2 2 6 2 10.025 2

Unsubscribe.

Success
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Throttle.Exceede

d
- - - - - - - - - - - - - - - -

Publishout.Thrott

le
- - - - - - - - - - - - - - - -

Publishin.Cliente

rror
- - - - - - - - - - - - - - - -

 However, implementation b outperformed implementation a in the number of processed publish

requests by AWS IoT, the number of publish requests made by AWS IoT, and the number of successful

pings after 1 hour. Both implementations had similar results in the number of unsubscribe requests

processed by AWS IoT. It is important to note that three of the metrics (Throttle.exceeded,

Publishout.throttle, and Publishin.clienterror) did not show any results, which indicates that our

42

implementations did not violate AWS IoT requirements and did not exceed the allowed rate of messages.

Overall, implementation b (i.e., no fog layer) tends to outperform implementation a in some metrics,

especially at or after 1 hour. However, implementation a has a better ability to scale up as the number

of devices and messages increase due to its utilization of a fog computing node, as shown in Fig 3.2.

3.6 Discussion

 Although in our experiment we demonstrated that adding a fog layer between the sensors and

the cloud in cloud-based IoT environments did not substantially impact performance, these results are

subject to some limitations. First, we noticed that implementation b outperformed implementation a after

the first hour of running both implementations. We are not sure at what point between 15 minutes and

1 hour implementation b started to perform better. We also ran both of the experiments for only one

hour; thus, we do not know whether implementation b would continue to perform better than a. The

results we obtained, as well as the lack of results in some metrics, are likely due the small number of

edge devices used and/or to running both experiments for only one hour.

43

Figure 3.2 AWS metrics results for Implementations a (Imp1) and b (Imp2)

 In this paper, we used only two sensors per implementation. Future studies may test whether the

results we obtained hold true if we use more sensors. If 1000 sensors and 10 fog nodes were used, for

example, it is likely that implementation a would outperform implementation b due to the hierarchical

architecture in implementation a that makes it easier and less cumbersome for the IoT to manage the

received messages from the MQQT brokers. In other words, instead of having the AWS IoT interacting

with 1000 sensors, it will receive messages from 10 fog devices. This is important because it means that

implementation a could also handle additional functionalities, such as access control, encryption,

decryption, and filtering of messages. Also, although we utilized a fog layer in implementation a to

better manage and control message exchange between the sensors and AWS IoT, the sensors and fog

nodes were both operating using TCP on the same LAN. We plan to locate the fog node on a different

network and perform the experiment again to determine whether that will affect the results. In addition,

44

our AWS IoT currently operates on Virginia datacenter. We will try to run our AWS IoT service on a

different datacenter and determine whether that would impact our results.

 This paper presents a work in progress on how adding a fog layer may impact the performance

of cloud-based IoT systems. Such work is important because we are attempting to implement an access

control model [73] that may need to execute some operations for the IoT devices, since sensors usually

have low or no processing capability. This will improve the security of IoT environments, especially in

critical applications such as medicine [74].

3.7 Conclusion

 In this paper, we presented two cloud-based IoT implementations using a real-life platform that

is used in industry. One of the implementations has a fog layer between the IoT devices (i.e., sensors)

and the cloud, whereas in the other implementation, IoT devices were directly connected to the cloud.

The purpose of these experiments was to better understand the impact of the additional fog layer on the

performance of cloud-based IoT environments. We examined the performance of the two

implementations and showed that adding a fog layer between the IoT devices and the cloud positively

impacted the connect, message publish, ping, and subscribe metrics for the first 15 minutes. At the 1-

hour time point, the implementation that did not have a fog layer performed better. We also noticed that

both implementations gave consistent results (i.e., increasing, decreasing) using the AWS metrics, which

indicates credible results. In the future, we plan to use the same metrics to evaluate the performance of

IoT-Fog-Cloud environments that utilize encryption-based access control to determine how the

encryption and decryption operations affect the performance of cloud-based IoT environments, with the

aim of providing practical solutions.

45

Chapter 4: Examining Performance in Fog-Aided Cloud-Centered IoT in a

Real-World Environment: Scientific Experiments

M. A. Aleisa, A. Abuhussein, F. S. Alsubaei, and F. T. Sheldon, “Examining the Performance of Fog-

Aided, Cloud-Centered IoT in a Real-World Environment,” Sensors, vol. 21, no. 21, p. 6950, Oct.

2021, doi: 10.3390/s21216950

4.1 Introduction

 Cloud computing is an emerging technology that offers high computational power and

permanent storage for the Internet of things (IoT). In cloud-based IoT environments, as the number of

IoT devices increase, the amount of data generated from the IoT also increases. This causes a high

latency due to the long distance between the IoT devices and the cloud. Exchanging data between IoT

devices and the cloud increases the utilization of bandwidth and requires increasing resources as the

number of IoT devices increases. In addition, operations such IoT device authentication and

authorization, as well as encryption, add computation overhead on the cloud. This requires bringing the

computation capability closer to the IoT devices and reserving the resource-demanding tasks for the

cloud. Therefore, fog computing emerged to satisfy the demand for frequent computation,

communication, and storage by the IoT layer [58], [75].

 According to Cisco, fog computing is a layer of computing that extends the cloud, bringing it

closer to the things that generate and process IoT data. Any device with computing, storage, and network

connectivity can be a fog node, and fog layer nodes can be deployed anywhere with a network

connection (e.g., on top of a traffic light, alongside a railway track, etc. [76]). Fog computing enjoys the

following characteristics:

1) Low Latency: Network latency is defined as the time it takes for data or a request to travel from the

source to the destination. In cloud-based IoT environments, latency is typically high due to the distance

between the IoT devices and the cloud. This increases the cloud response time, especially as the number

of IoT devices increases, making the cloud unable to support the real-time demand of IoT devices. Fog

46

computing reduces that latency by bringing data to the edge of the network and closer to end users to

meet the high processing demand.

2) Higher Scalability: Scalability is the ability of a system to handle a growing amount of work by adding

resources to the system. In cloud-based IoT environments, as the number of IoT devices increases, it

becomes difficult for the cloud to handle the heavy computation and bandwidth overhead of the devices.

Fog computing can solve this issue by distributing serval fog nodes that can reduce the heavy load on

the cloud and support hierarchal scalability when the number of IoT devices increases.

3) Location Awareness: Location awareness refers to the ability of a device to passively or actively

determine their location. This feature is important because it allows applications to provide services

better suited to user and device location, thus lowering latency.

4) Mobility: Computing mobility is the ability to perform computing operations while a connected

device is able to move, communicating from any location through a wireless channel. This includes

mobility of IoT nodes as well as fog nodes in cloud-based IoT environments.

5) Decentralized Architecture: A decentralized network is a network of interconnected devices in which

no single entity is the sole authority. Workloads in distributed architectures are distributed among

several machines instead of relying on a single central server. This is an important feature of fog

computing because applications and services on the fog can process and store data from any end devices,

whether it is a fog node or a sensor (i.e., IoT node).

6) Heterogeneity: Heterogeneity in networking refers to a network that connects devices made by

different manufacturers running different operating systems and uses multiple network architectures and

protocols. Fog computing heterogeneity is a topological feature that is of particular importance in cloud-

based IoT environments, as it enables devices to exchange information and to use the information that

has been exchanged without restrictions.

47

7) Bandwidth Optimization: Optimization of network bandwidth refers to overall inbound and outbound

bandwidth improvements on a network. This allows fog nodes to handle traffic from billions of devices

to prevent congestion and latency problems. This is because the enormous amount of data collected from

the IoT devices is can be processed locally instead of transmitting it to the cloud.

 Despite the benefits offered by fog-aided IoT, researchers and practitioners are faced with

challenges in the implementation and performance of fog-aided IoT systems.

First, there is a lack of real-life implementations of the many theoretical studies in research and

academia. Although simulation-based experiments provide easy access to practical results about the

performance of computing systems, observations and research outcomes may not be generalizable to all

scenarios due to the variety in IoT platform providers and device manufacturers; their different

implementations, service specifications, and configurations; and differences in network architectures

and protocols. Therefore, in order to develop a profound and general insight into the tradeoffs involved

in a particular system, it is important to use real IoT platforms built on top of a real-world network (i.e.,

Internet) when obtaining analytical results for the performance of fog-aided IoT implementations. In

addition, it would be interesting to explore the performance differences of fog implementations

interacting with different commercial IoT platforms, such as Amazon IoT and Azure IoT.

Second, due to the diverseness that fog-aided IoT environments enjoys and the lack of consensus among

practitioners and hobbyists on a standard fog computing implementation, there is a lack of resources that

show how to implement an efficient fog-aided IoT system. Most of the implementations available are

either domain specific, complex, or too abstract to be useful in all scenarios.

Third, although fog computing offers promising solutions to many of the performance and security

problems of the IoT [77], it is confronted with various security and privacy risks. For instance, while fog

computing is crucial for spreading risks across distributed fog nodes, it also has the untoward effect of

increasing the attack surface. This is exacerbated because fog computing devices interact with devices

only; that is, the fog nodes receive IoT data from sensors and send it to the cloud and vice versa. This

48

means that no humans are involved in the communication. Although this can be considered an advantage

because these interacting devices do not have screens or an on-device user interface, which reduces the

attack surface, it can lead to failures and/or targeted attacks that cannot be easily detected and deterred.

Other security and privacy issues in fog-aided IoT also deserve our attention. In this work, we aim to

better understand fog-aided IoT environments in order to pave the way for further research to address

interesting confidentiality, integrity, and availability violations. This paper makes the following

contributions:

• We present two architectures of cloud-based IoT environments. The first architecture has a fog layer

applied between the IoT devices and the cloud, whereas the second architecture publishes the data

directly to the cloud without a fog layer.

• We used two benchmarks to measure the performance of the cloud-based IoT architectures. The first

benchmark is Mosquitto message broker metrics, which are used to measure the performance of the

IoT-Fog-cloud at the fog computing level. The second benchmark is AWS message broker metrics,

which are used to measure the performance of the two architectures (IoT-cloud and IoT-fog-cloud)

to show the impact of the additional middle layer (i.e., the fog layer) on cloud-centered IoT

environments.

• We discuss some security and privacy implications of the two architectures presented in this paper,

showing what triggers these implications and suggesting methods to address these implications.

• This work serves as a tutorial reference of fundamental fog computing concepts and aims to walk

practitioners through different implementations of fog-aided IoT and to reveal tradeoffs that inform

when to use each implementation based on one’s objectives.

 The remainder of this paper is structured as follows. In section 2, we present related work and

discuss existing industrial and Message Queuing Telemetry Transport (MQTT) benchmarks. In section

3, we describe the experiment setup of the two architectures of cloud-based IoT environments in detail.

In section 4, we provide a description of the AWS IoT metrics and Mosquitto message broker metrics

49

that were used to measure our two architectures. We describe the performance metrics in section 5 and

discuss the results in section 6. The discussion, including challenges faced and future work, is presented

in section 7. Finally, we conclude the paper.

4.2 Background

 Today, IoT sensors are used everywhere and have become crucial to the operation of many

domains of life. As shown in Fig 4.1, different kinds of sensors can be found in our homes, cars,

workplaces, etc., and are sold independently (e.g., smoke sensor, light sensor, temperature sensor,

motion sensor, proximity sensor, touch sensor, ultrasonic sensor, humidity sensor, IR sensor, pressure

sensor, gyroscope sensor, etc.) or as an integral part of a sophisticated device such as a smartphone that

may have dozens of sensors. These sensors are developed by major manufacturers and are deployed in

many sectors, including healthcare, education, communication, transportation, and manufacturing.

 Manufacturers have developed IoT platforms to help organizations build fully functional IoT

environments. According to AT&T [78], an IoT platform is an end-to-end software framework that pulls

together information from sensors, devices, networks, and software that work together to unlock

valuable, actionable data. IoT platforms enable management and automation of connected devices

within the IoT universe. There are several proprietary IoT platforms available, including AWS IoT Core

[79], Microsoft Azure IoT [80], IBM IoT [81], and Google IoT Core [82], as well as opensource IoT

platforms such as IoTivity [83], Zetta [84], Arduino IDE [85], DeviceHive [86], and openremote [87].

These IoT platforms usually reside and run on a virtual machine on the cloud that efficiently pulls,

processes, and stores the data received from the massive number of IoT sensors.

 Classical IoT environments are configured so that IoT sensors are directly connected to the IoT

platform and the cloud. In modern architectures, a fog layer is introduced between the IoT sensors and

the IoT platform (the cloud) for extra-efficient computation, communication, and storing. Case studies

to show tradeoffs between the two implementations will be discussed extensively in this paper.

https://devicehive/

50

 Devices in all layers of IoT environments (see fig. 4.1) communicate using different protocols.

These protocols are [11]:

• MQTT is a lightweight many-to-many communication protocol for the IoT that is designed to be a

publish/subscribe messaging transport protocol. MQTT is ideal for connecting remote devices with

minimal memory consumption and network bandwidth. MQTT is used in a wide variety of domains,

such as industry, health care, and transportation. Port 1883 is the default MQTT port, whereas port

8883 is the default MQTT port over TLS (i.e., secure-mqtt), and both are registered at the Internet

Assigned Numbers Authority (IANA) for Secure MQTT.

• Constrained Application Protocol (CoAp) is a one-to-one User Datagram Protocol (UDP) protocol

for transferring state information between client and server. Despite its ability to preserve resources,

CoAP is best suited to a state transfer model. Since CoAp uses UDP, it does not guarantee the

delivery of datagrams. In addition, CoAp is unencrypted. The default CoAP port registered at IANA

is 5683.

• Extensible Messaging and Presence Protocol (XMPP) is a secure and near-real-time communication

protocol for message-oriented middleware based on XML that enables the exchange of structured

but extensible data between any two or more devices over a network. XMPP is mainly used by

instant messaging applications such as WhatsApp [88] and Telegram [89]. XMPP offers persistent

decentralized connection between devices; thus, no central XMPP servers are needed to

communicate. However, to establish a connection between two devices, one of the devices is

considered an xmpp-client and communicates over port 5222, while the other is considered an

xmpp-server and uses port 5269. XMPP can also use port 5280 for two-way communication. This

is called xmpp-bosh, which means Bidirectional-streams Over Synchronous HTTP (BOSH). XMPP

has been used in the literature to network IoT devices, such as in [90], [91]. Despite its features and

potential, XMPP has some limitations. First, XMPP does not have a Quality of Service (QoS)

mechanism. In addition, XMPP streams data in XML format, which introduces overhead due to the

51

text-based communication. These reasons, among others, make MQTT a more popular protocol for

IoT, since it has a mechanism for QoS and uses lightweight binary-based communication.

• MQTT For Sensor Networks (MQTT-SN) [92] is considered a modified version of MQTT that is

adapted to the attributes of a wireless connection, such as a lossy wireless network. It is designed

specifically for wireless sensor networks with scale in mind. MQTT-SN was developed to support

non-TCP networks like UDP. This is another advantage because it makes the communication lighter

by eliminating the TCP handshakes.

• The Advanced Message Queuing Protocol [93] (AMQP) is an open standard application layer

protocol for middleware. AMQP is designed with more advanced features that introduce more

overhead than when using MQTT. These features include message orientation, queuing, routing,

reliability, and security. The registered port number for AMQP at IANA is 5672, and for AMQPS

(i.e., TLS/SSL encrypted AMQP), it is 5671. For more information on which protocol functions best

for the IoT based on the messaging requirements, see [94].

52

Figure 4.1 Overview of cloud-aided IoT environments.

 This work focuses on commercial IoT sensors (i.e., DHT11 temperature and humidity sensors)

connected using a proprietary IoT platform (i.e., AWS IoT Core). We choose proprietary IoT platforms

over the free opensource ones because they are popular among industries due to their faster time to

market and lower initial cost.

 Amazon Web Services (AWS) provides reliable, scalable, and inexpensive on-demand cloud

computing services to individuals, companies, and governments around the world [64]. Customers can

benefit from the cloud data centers distributed in the different locations in many ways, including the low

cost (pay as you go) and the massive cloud infrastructure to perform experiments and deploy new

applications. AWS offers many services; however, we will be using the following in this work: (1) AWS

IoT, (2) Amazon S3, and (3) AWS CloudWatch. AWS IoT allows a secure communication and

messaging exchange over MQTT for internet-connected devices such as sensors and micro-controllers

53

in real time [95]. Amazon CloudWatch [96] monitors devices and applications connected to AWS in

real time using several metrics [95] to track the connected devices and measure the performance,

security, and scalability, among other criteria.

 The MQTT protocol is a widely used protocol and is supported by all IoT platforms as well as

commercial sensors; therefore, we used MQTT as the communication protocol. In addition, we used a

Raspberry Pi board to simulate fog nodes for the scenarios in which fog nodes are introduced. To enable

the Raspberry Pi boards used in this experiment to communicate over MQTT, we used an MQTT broker

software, Eclipse Mosquitto [97]. An MQTT broker is a server that receives all the messages from the

IoT devices and publishes them to other devices. MQTT broker also has other benefits, including (1)

supporting scalability with many IoT devices, (2) managing credentials and certificates that are used for

authentication, (3) decreasing network strain on the cellular network without disclosing security, and

(4) excluding the connection of insecure and vulnerable devices. Many MQTT brokers are available,

including Eclipse Mosquitto [97], RabbitMQ [98], and ActiveMQ [99]. In this paper, we used Eclipse

Mosquitto because it is the most popular and has ample resources for implementation. In addition, it is

lightweight and suitable for use on all devices, from low-power single-board computers to full servers.

An MQTT broker feature called SYS-Topics [100] is widely used to monitor the Mosquitto MQTT

broker by providing metrics about Mosquitto and track the devices connected to it.

 In this paper, we present numerical results based on an experiment that uses a real-world IoT

platform, sensors, and network (not a simulation) to show the performance tradeoffs of various IoT

implementations and discuss the results. Notably, this experiment in a real environment is vulnerable to

real-life cyber and/or physical attacks as well as performance failures.

4.3 Related Works

 The rapid adoption of cloud-based IoT environments in large scale and with intensive use has

induced, among other factors, a growing need to simulate real-life environments to measure the security

and performance of the IoT-Fog-Cloud environments to provide suitable support for the construction of

54

an efficient access control model [58]. Benchmarks are one of the ways to measure the security and

performance of cloud-based IoT environments. There are several widely used general industry

benchmarks that are adopted in many commercial solutions. The Standard Performance Evaluation

Corporation (SPEC) provides benchmarks for a wide range of IT components, such as cloud, CPU,

storage, power, and virtualization [101]. The Transaction Processing Performance Council (TPC) also

offers a suite of widely used IT industry benchmarks [102]. TPCx-IoT is one of TPC benchmarks that

measures the operating system, and data storage and management systems to provide the industry with

performance metrics and other available metrics of IoT systems [63], [103]. Moreover, HP developed

IoTABench, an IoT analytics benchmark for big data scenarios that is used to evaluate the performance

and scalability of a big data platform [60]. The benchmark was demonstrated using a smart metering

IoT use case and evaluated on the HP Vertica 7 analytics platform, which can handle data for an “electric

utility with 40 million smart meters”.

 For MQTT, different benchmarks to measure the performance and security of cloud-based IoT

environments have been proposed in the literature [104], [105]. Two IoT platforms, Things Board and

Site Where, have been evaluated using different metrics [67]. In addition, evaluation of the message

transmission process (i.e., Subscribe and Publish) of the MQTT protocol via wireless and wired clients

was presented in [70]. The end-to-end delay and message loss when transmitting messages are analyzed

with different quality of service levels and different payload sizes. The results of their experiment showed

that end-to-end delay is related to the message loss with different sizes of payloads.

 Moreover, Azzam et al., in a recent survey, evaluated the performance of fog computing using

performance metrics such as processing delay, processing costs, and processing power, and derived the

performance gains obtained in comparison to a cloud computing-only approach [106]. In the healthcare

sector, Alsubaei et al. evaluated security in the Internet of Medical Things (IoMT) [46]. In addition,

Kafhali et al. evaluated the response time of accessing medical data stored in a fog-based IoMT

implementation [107]. They also proposed a queuing model to predict the minimum number of computing

55

resources (both fog and cloud nodes) required to meet the Service Level Agreement (SLA) for response

time. Another study in the healthcare field was presented by Vilela et al., who compared the performance

of fog-based computing to the conventional cloud computing model in a healthcare real-time monitoring

system [108]. EdgeBench is another benchmark for serverless edge computing platforms and is used to

measure the performance of two edge computing platforms, Greengrass and Azure [61]. In addition,

DeFog, a fog computing benchmark, was proposed to provide a standard methodology and facilitate the

understanding of the target platform by collecting a catalogue of relevant metrics for a set of benchmarks

[109]. However, most experiments in these studies were carried out using simulators that rely on provided

generic metrics and/or focus on one domain, which do not represent real IoT-fog-cloud systems across

different domains.

 Hence, in this paper, we extend the previous works by implementing real-life experiments and

analyzing performance metrics from a popular cloud provider (AWS) and IoT protocol (MQTT). We

implemented two real-life architectures of cloud-based IoT environments to measure their performance.

In addition, we used different numbers of IoT devices to increase the number of subscribers and

publishers in order to understand how this impacts the results.

4.4 Experiment Setup

 This section presents the hardware and software components used to set up our experiment. In

this paper, we present several IoT-cloud implementations: (1) IoT-Cloud, (2) IoT-fog-cloud using

bridge, and (3) IoT-fog-cloud using Python. The hardware and software configurations used in these

implementations are discussed in the following subsections.

4.4.1 Hardware

 As shown in Fig. 4.2, the experiment in this section involves two architectures. The first

architecture presents IoT-fog-cloud, while the second presents IoT-cloud. In this section, we first describe

56

the devices that are used in the two architectures of cloud-based IoT environments, then explain the two

architectures in detail. In this experiment, we used DHT11 devices [110] and Raspberry 3 Pi model B

[111]. The DHT11 is a low-cost sensor device that is used to measure the temperature and humidity of

the surrounding air. The purpose of the DHT11 sensor in this experiment was to generate real data for

the experiment. The Raspberry Pi is a low-cost, single-board computer with built in WiFi and processing

capability that is used in several domains, such as weather monitoring, smart homes, and smart health

care. In this experiment, the purpose of the Raspberry Pi was to provide light computation capability to

the DHT11 sensor data. In addition, it provided light storage for the DHT11 configurations. Moreover,

the Raspberry Pi can be easily moved to different locations. A complete list of the hardware used in this

experiment is available in Table 4.1

Table 4.1 Summary of the equipment used in the two architectures.

Equipment Name Equipment Type Quantity Purpose

DHT11 temperature-humidity

sensor

3 Generate real life data

Raspberry Pi Version 3 Model B 4 Enable WiFi & provide huge processing

power and storage

Micro SD Card 32GB ImageMate Plus 130

mb/s Read

4 Initial storage for the operating system

and files

Monitor HP 4 Provide a visual display

Keyboard & mice HP 4 Useful for working on a Raspberry Pi

Power

Supply/Adapter

CanaKit 4 Supply the power for the Raspberry Pi

HDMI Cable onn 4 Connect the Raspberry Pi to a monitor

57

Figure 4.2 First architecture (IoT-Fog-Cloud) vs. second architecture (IoT-Cloud).

4.4.1.1 First Architecture

 In the first architecture, each DHT11 sensor is connected to only one Raspberry Pi. The

Raspberry Pi is used here to enable WiFi connectivity, since the DHT11 sensors are not equipped with

network interfaces. Each sensor is connected to Raspberry Pi board (i.e., connectivity enabler) that is

considered an IoT device in the IoT layer. Each IoT device is connected via WiFi to another Raspberry

Pi board that acts as fog node in the fog layer. Communication between the IoT devices, the fog node,

and the cloud uses the MQTT protocol. For this, an MQTT broker called Eclipse Mosquitto [97] is

installed in the Raspberry Pi acting as a fog device. The Mosquitto MQTT broker exchanges all messages

using the subscribe-publish model presented in [58]. The Mosquitto MQTT broker is also used to filter

58

all messages based on topics. A topic refers to an UTF-8 string that the broker (i.e., Mosquitto) uses to

filter messages for each connected IoT device. Each data type (i.e., humidity, temperature) in our

experiment is considered a separate topic. The data generated by the sensors and collected by the three

IoT devices is transmitted over the Internet to the Raspberry Pi acting as the fog node. This Raspberry Pi,

which contains the MQTT broker Mosquitto on it, is then connected over the Internet to the AWS cloud.

The communication between the three layers is through the Internet. Fig. 4.3 shows the hardware used to

implement the first architecture.

Figure 4.3 Hardware used in first architecture: IoT-Fog-Cloud.

4.4.1.2 Second Architecture

 In the second architecture, all three IoT devices, consisting of a sensor and a Raspberry Pi board

(i.e., connectivity enabler), are directly connected to the AWS cloud. Therefore, the huge real data

received by device one, device two, or device three is forwarded wirelessly to the AWS cloud layer. The

59

hardware used in the second architecture is identical to that used in Fig. 4.3, except that no fog node is

used in this architecture.

4.4.2 Software

 We installed Arduino IDE [112] software on top of the three Raspberry Pi boards used to connect

the IoT devices. Arduino IDE is a cross-platform application that is written in functions from C and C++

and is used to write and upload programs to Arduino-compatible boards like Raspberry Pi. We used

Arduino IDE to read the data collected by the sensors (i.e., temperature and humidity) and then publish

it over the Internet to the fog node. We used C++ scripts in Arduino IDE to perform the following

operations on the IoT devices: tagging, authentication, publish, and subscribe.

4.4.2.1 First Architecture

 In the first architecture, the algorithm gathers data from the IoT devices and forwards it to the

fog. This involves authenticating the IoT devices to communicate with the MQTT broker on the fog

device and publish data to it. The following two sections present two ways for fog nodes to communicate

with the cloud.

Algorithm 1: Gather data generated from the IoT device and forward it to the fog node – First architecture

/* This algorithm authenticates the IoT device to the fog device, generates temperature and humidity data via

DHT11 sensors, and publishes them to the Mosquitto MQTT broker on the fog device

1: Define the type of DHT sensor, which is DHT11

2: Define the input/output pins of the Raspberry Pi to which the DHT11 is connected

3: Define an object of the sensor with two arguments: DHT pin and DHT type

4: Define the name of the network

5: Define the password of the network

6: Define the variable of MQTT broker

7: Define only two variables of humidity topic and temperature topic for each IoT device (DHT11 +

Raspberry Pi) in each experiment

8: Create two instances of clients, one used to connect to the Internet and the other used to connect to

the MQTT broker

9: Run MQTT connection, setup, loop

10: Function: MQTT connection

11: Connect to Internet

12: If (the connection is established) then

13: Print “connected”

14: Connect to MQTT broker on fog device

15: Else (the connection isn’t established) then

16: Try reconnecting to Internet

17: Function: setup

60

18: Start a serial communication at 9600 board rates

19: Initialize the DHT11 sensor

20: While (MQTT connection is True):

21: Read humidity

22: Read temperature

23: Print humidity

24: Print temperature

25: Publish humidity topic with its read value to MQTT broker on fog device

26: Publish temperature topic with its read value to MQTT broker on fog device

27: end while

4.4.2.1.1 Bridging

 In our fog-aided IoT implementation, the MQTT broker (i.e., Mosquitto) is installed on top of a

Raspberry Pi board that serves as a fog node. In such cases, the MQTT broker needs to be very close to

where the sensors are deployed. The Mosquitto MQTT broker has a built-in capability that allows the

received data to be sent directly to the cloud (AWS IoT Core) by specifying the address of the AWS IoT

core service used. This operation is called bridging. (Please see [113] for more information.) The

following algorithm illustrates the connection of IoT devices to the AWS IoT core using a bridge

connection.

Algorithm 2: Bridge every message received from the IoT devices based on the topics of the messages to the

AWS broker on the cloud

/* This algorithm authenticates the IoT device to the MQTT broker on the fog device, bridges to the data

received from the sensors via the MQTT broker, filters them based on topics, authenticates to the AWS via

certificates, and then publishes the filtered data to the AWS IoT core service

1: Define the variable of endpoint of Amazon Web Service with port number 8883

2: Determine which topics of the messages to bridge to AWS

3: Define the version of the protocol to be used between the MQTT broker and the AWS broker

4: Create one instance of client to be used over the MQTT protocol

5: Define the name of the bridge connection

6: Start Connection

7: Configure the bridge using SSL/TLS support

8: Define bridge_cafile to hold the path of Amazon Root CA certificate

9: Define bridge_certfile to hold the path of Amazon certificate

10: Define bridge_keyfile to hold the path of Private key

4.4.2.1.2 Python Script

 Using the same Mosquitto MQTT broker, we developed a Python script on the fog device to

replace the Mosquitto built-in bridging capability to simultaneously authenticate the MQTT broker and

61

AWS, receive the data from the sensors, and filter and publish the data received to the AWS IoT core

service. This Python script provides more flexibility for future improvements in security and

performance. The following algorithm depicts the operations implemented in our Python script. This

algorithm is used to authenticate IoT devices to fog devices, gather the temperature and humidity data

from the DHT11 sensors, and publish the data to the Mosquitto MQTT broker on the fog device. The

algorithm also authenticates the fog node to interact with the AWS IoT Core (i.e., cloud). Afterward, the

algorithm filters the collected data and publishes it to the cloud.

Algorithm 3: Receive data from the IoT devices and forward it to the cloud

/* This algorithm authenticates the IoT device to the MQTT broker on the fog device, subscribes to the data

received from the sensors via the MQTT broker, filters the data based on topics, authenticates to the AWS via

certificates, and then publishes the filtered data to the AWS IoT core service

1: Define two variables (humidity topic and temperature topic) for each IoT device in each experiment

2: Define the variables of MQTT broker and MQTT port

3: Create two instances of clients, one used for the MQTT broker and the other used for the AWS broker

4: Connect the first client to the MQTT broker using the IP address of the fog device and MQTT port

5: Create a loop_start() method to start a new thread for the first client

6: Set the transport layer security (TLS) for the second client using the three paths of AWS certificates

and the current version of MQTT protocol

7: Connect the second client to AWS broker using AWS Endpoint and AWS port

8: Create a loop_start () method to start a new thread for the second client

9: While True do

10: Define a connection function

11: Subscribe for all topics in each IoT device

12: Print “connected” when the connection is established

13: Print “error” when the connection is disconnected

14: Define a message function

15: Get topic of the message

16: Get payload of the message

17: Print topic of the message

18: Print payload of the message

19: Publish topic and payload of the message to AWS cloud

20: Make the first client execute the two functions: (1) connection, and (2) message

21: Make the second client execute the message function to publish the recovered data to AWS

cloud

22: end while

4.4.2.2 Second Architecture

 In the second architecture, Arduino IDE is installed on top of the three Raspberry Pi boards used

to connect the IoT devices. Arduino IDE is used to read the data collected by the sensors (i.e., temperature

and humidity) and then publish it over the Internet directly to the cloud. This operation requires

62

authentication to the cloud before the data can be published. The process to authenticate the IoT device

(i.e., DHT11 + Raspberry Pi) to access the cloud (AWS IoT Core) using the AWS certificate and then to

publish the data generated by the sensors to the cloud is illustrated in the Algorithm 4.

Algorithm 4: Gather data generated from the IoT device and forward it to the cloud – Second architecture

/* This algorithm authenticates the IoT device to the AWS cloud via certificates, generates temperature and
humidity data via the DHT11 sensors, and publishes them to the AWS cloud

1: Define the type of DHT sensor, which is DHT11
2: Define the input/output pins of the Raspberry Pi to which the DHT11 is connected
3: Define an object of the sensor with two arguments, DHT pin and DHT type
4: Define the name of the network
5: Define the password of the network
6: Define the variable of endpoint of Amazon Web Service
7: Define only two variables (humidity topic and temperature topic) for each IoT device (DHT11 +

Raspberry Pi) in each experiment
8: Create a client to connect to AWS using AWS endpoint and port number 8883
9: Run connection, setup, loop
10: Function: connection
11: Connect to Internet
12: If (the connection is established) then
13: Print “connected”
14: Else (the connection isn’t established) then
15: Try reconnecting to Internet
16: Function: setup
17: Start a serial communication at 9600 board rates
18: Initialize the DHT11 sensor
19: Run a connection function
20: Convert the AWS certificates to .der Format
21: Open certificate
22: If (certificate is existing)
23: Load certificate
24: Else
25: Print “certificate is not existing”
26: Open Amazon Root CA certificate
27: If (Amazon Root CA certificate is existing)
28: Load Amazon Root CA certificate
29: Else
30: Print “Amazon Root CA certificate is not existing”
31: Open private key
32: If (private key is existing)
33: Load private key
34: Else
35: Print “Private key is not existing”
36: While (connection is True):
37: Read humidity
38: Read temperature
39: Print humidity

63

40: Print temperature
41: Publish humidity topic with its read value to MQTT broker on fog device
42: Publish temperature topic with its read value to MQTT broker on fog device
43: end while

 To monitor the Mosquitto MQTT broker, the following algorithm illustrates how $SYS-Topics

is used to provide metrics.

Algorithm 5: Monitoring script on fog device

/* This algorithm connects to the MQTT broker, subscribes to SYS-Topics via the MQTT broker to monitor

and provide benchmark metrics of the Mosquitto broker, and publishes the results based on these metrics

1: Create one instance of clients to connect to Mosquitto broker

2: Connect the client to MQTT broker using the IP address of fog device and MQTT port

3: Define a connection function

4: Print “connected” when the connection is established

5: Print “error” when the connection is disconnected

6: Subscribe to $SYS/# topics to monitor the mosquito MQTT broker (print the metrics

results of Mosquitto broker on fog device

7: Make the client execute the connection function

8: Create a loop forever() method for the client to remain monitoring the Mosquitto

4.5 Descriptions of Metrics

 Many metrics can be used to measure the performance in IoT systems. The following subsections

describe the metrics that we utilized to measure the performance in the cloud and fog layers.

4.5.1 Cloud Layer: AWS IoT Metrics

 Many metrics can be used to measure the performance of cloud-based IoT systems from the cloud

layer. Since we used the AWS IoT as the cloud service provider for our experiments, we used Amazon

CloudWatch to measure the performance. Amazon CloudWatch has been used in the literature to monitor

performance [114]–[116]. Amazon CloudWatch processes and analyzes data in real time and provides

the following metrics to measure our two architectures of cloud-based IoT environments:

1) Connect.Success:

 This metric is used to collect the number of successful connections from our IoT nodes or fog nodes to

the AWS message broker.

64

2) Ping.Success:

This metric is used to collect the number of ping messages received by the AWS message broker. These

ping messages are received from the fog node(s) in the first architecture and from the IoT node(s) in the

second architecture.

3) PublishIn.Success:

This metric is used to collect the number of publish requests successfully processed by the AWS

message broker. Like the ping messages, these messages are received from the fog node(s) in the first

architecture and from the IoT node(s) in the second architecture.

4) PublishOut.Success:

 This metric is used to collect the number of publish requests successfully made by the AWS message

broker to the fog nodes in the first architecture and to the IoT nodes in the second architecture.

5) Subscribe.Success:

 This metric is used to collect the number of successful subscribe requests processed by the AWS

message broker. These requests are made by the fog node in the first architecture and made directly by

the IoT devices in the second architecture.

6) PublishIn.Clienterror:

 This metric is used to collect the number of publish requests rejected because they did not meet the

AWS IoT requirements.

7) Unsubscribe.Success:

 This metric is used to collect the number of unsubscribe requests that were successfully processed by

the AWS message broker. These unsubscribe requests are made by the fog node in the first architecture

and made directly by the IoT devices in the second architecture.

8) Throttle.Exceeded:

65

This metric is used to collect the number of requests that were throttled because the client (i.e., the IoT

node or fog node) has sent too many messages and exceeded the allowed message rate.

9) PublishOut.Throttle:

This metric is used to collect the number of publish requests that were throttled because the client (i.e.,

IoT node or fog node) exceeded the allowed message rate.

4.5.2 Fog Layer: Eclipse Mosquitto Broker Metrics

 Likewise, many metrics can be used to measure the performance of the fog layer. MQTT has

been used in the literature as a lightweight protocol to communicate between messages [104], [105],

[117]. Since we used the MQTT protocol for the message broker on the fog node, we utilized Eclipse

Mosquitto [97] in our experiments. Eclipse Mosquitto [97] provides some metrics as $SYS topics, which

are described as follows:

1) $SYS/broker/uptime:

 This metric is used to measure the amount of time in seconds the broker has been online.

2) $SYS/broker/load/messages/received:

This metric is used to measure the moving average of the number of all types of MQTT messages

received by the broker over different time intervals.

3) $SYS/broker/load/messages/sent:

This metric is used to measure the moving average of the number of all types of MQTT messages sent

by the broker over different time intervals.

4) $SYS/broker/load/publish/received:

 This metric is used to measure the moving average of the number of publish messages received by the

broker over different time intervals.

5) $SYS/broker/load/publish/sent:

66

 This metric is used to measure the moving average of the number of publish messages sent by the broker

over different time intervals.

6) $SYS/broker/load/bytes/received:

 This metric is used to measure the moving average of the number of bytes received by the broker over

different time intervals.

7) $SYS/broker/load/bytes/sent:

This metric is used to measure the moving average of the number of bytes sent by the broker over

different time intervals.

8) $SYS/broker/load/sockets:

This metric is used to measure the moving average of the number of socket connections opened to the

broker over different time intervals.

9) $SYS/broker/load/connections:

 This metric is used to measure the moving average of the number of CONNECT packets received by

the broker over different time intervals.

10) $SYS/broker/messages/stored:

 This metric is used to measure the number of messages currently held in the message store. This

includes retained messages and messages queued for durable clients.

11) $SYS/broker/store/messages/bytes:

 This metric is used to measure the number of bytes currently held by message payloads in the message

store. This includes retained messages and messages queued for durable clients.

12) $SYS/broker/subscriptions/count:

This metric is used to measure the total number of subscriptions active on the broker.

13) $SYS/broker/heap/current:

 This metric is used to measure the current size of the heap memory in use by Mosquitto.

67

14) $SYS/broker/messages/received:

This metric is used to measure the total number of messages of any type received since the broker started.

15) $SYS/broker/messages/sent:

 This metric is used to measure the total number of messages of any type sent since the broker started.

16) $SYS/broker/publish/messages/received:

 This metric is used to measure the total number of PUBLISH messages received since the broker started.

17) $SYS/broker/publish/messages/sent:

 This metric is used to measure the total number of PUBLISH messages sent since the broker started.

18) $SYS/broker/bytes/received:

 This metric is used to measure the total number of bytes received since the broker started.

19) $SYS/broker/bytes/sent:

 This metric is used to measure the total number of bytes sent since the broker started.

20) $SYS/broker/publish/bytes/received:

 This metric is used to measure the total number of PUBLISH bytes received since the broker started.

21) $SYS/broker/publish/bytes/sent:

This metric is used to measure the total number of PUBLISH bytes sent since the broker started.

4.6 Analysis Methods

 We used two benchmark metrics to analyze the performance of the two IoT architectures

implemented in this paper. In the two architectures of cloud-based IoT environments, we set the number

of subscribes and publishes to two for each device. This is because the IoT devices (i.e., the DHT11

sensors) generate two types of data: (1) temperature and (2) humidity. Therefore, as the number of sensor

devices increase, the number of subscribes and publishes should also increase. This provides more

accurate, consistent, and real results about the environment performance and scalability. In this section,

we present the methods that we used to perform the experiment on both architectures.

68

4.6.1 Architecture 1 vs. Architecture 2

 The performance of the two architectures of cloud-based IoT environments was analyzed using

the AWS benchmark, and the results obtained were compared. The experiment was to be performed using

a different number of IoT devices each time (1, 2, or 3 IoT devices) to compare and analyze the results

in order to show the impact of the fog layer in the first architecture on IoT environments. Fig. 4.2 shows

the experiment setup and metrics applied to measure the performance of the two cloud-based IoT

environments. AWS, like any IoT platform provider, requires that any device be authenticated before

communicating with it. AWS uses certificates to authenticate devices. As shown in Fig. 4.2, the location

where the certificate is stored is different in the two architectures due the structure of the environments.

Since the first architecture has a fog layer between AWS and the IoT devices, the certificate is stored in

the fog device (i.e., the Raspberry Pi board serving as the fog layer). In the second architecture, however,

since the IoT devices are directly connected to AWS, the certificates are stored in each IoT device.

4.6.2 Architecture 1 Implementation: Python Script vs. Bridging

 The first architecture of the IoT-fog-cloud layer was implemented using two different

experiments, as shown in Fig 4.4 The first experiment is based on a Python script shown in Algorithm 3

that manually receives, filters, and forwards the messages to the cloud. The second experiment

(Algorithm 2) bridges all of the messages received from the IoT devices based on their topics to AWS.

The purpose of using the bridge in the first architecture is to connect two brokers, the MQTT message

broker “mosquitto” and the AWS message broker, to exchange messages based on the different topics

and to validate the results of the first architecture. AWS benchmarks were used to analyze the

performance of the first architecture in two different implementations. Although bridging offers faster

implementation, the Python script provides more flexibility to add features to optimize performance. The

objective of this analysis is to show the impact of both implementations.

69

Figure 4.4 IoT-Fog-Cloud Architecture using two methods: Python script and MQTT bridging.

4.6.3 Architecture 1 Measurement: Mosquitto Metrics vs. AWS Metrics

 The performance of the first architecture (i.e., IoT-fog-cloud) will be measured from both the fog

side and the cloud side. The fog-side metrics (i.e., Mosquitto Broker Metrics) were measured over

different durations (30 seconds, 1 minute, 5 minutes, 15 minutes, 30 minutes, 45 minutes, and 1 hour),

while the cloud-side metrics (i.e., AWS metrics) were measured over 30 seconds, 1 minute, 5 minutes,

15 minutes, and 1 hour. (Due to the AWS platform constraints, it was difficult to unify the experiment

durations.) Fig. 4.5 presents the different metrics used to measure the performance of the IoT environment

that uses a fog layer from two sides. Fig 4.5 (a) presents the metrics applied to measure performance of

the IoT environment at the fog layer, whereas Fig 4.5 (b) presents the metrics applied to measure the

70

performance of the IoT environment at the cloud layer. This was done to ensure that the performance of

the IoT environment remains consistent in the fog and cloud layers using different setups.

Figure 4.5 (a) Metrics applied in the fog layer vs. (b) metrics applied in the cloud layer.

4.7 Results and Description of Experiments

 In this section, the results of the two architectures of cloud-based IoT environments will be

analyzed using the two benchmarks metrics (Mosquitto and AWS) based on the selected architecture

using one, two, or three IoT devices with increasing numbers of subscribing and publishing requests. In

the following sections, the benchmark metrics of each architecture are described in detail, along with

observations.

71

4.7.1 Results: Description of the three experiments of the first architecture with one, two, or three IoT

devices using AWS benchmark metrics (cloud layer)

 The Amazon CloudWatch monitor has a variety of metrics to analyze the cloud layer that were

used in the experiments on the first architecture, as shown in Tables 4.2 and 4.3. The AWS metrics are:

(1) Connect.Success, (2) Ping.Success, (3) PublishIn.Success, (4) PublishOut.Success, (5)

Subscribe.Success, (6) Unsubscribe.Success, (7) PublishIn.Clienterror, (8) Throttle.Exceeded, and (9)

PublishOut.Throttle. These metrics are explained in detail in section 5.1, and the metrics were collected

for one hour, starting from 30 seconds, as shown in Tables 4.2 and 4.3. Before analyzing the results

obtained using the AWS metrics, there are a number of assumptions that should be taken in consideration.

First, the number of successful connections from either IoT devices or fog devices using the

Connect.Success metric must be equal to the number of subscribe requests received from either fog

devices or IoT devices using the Subscribe.Success metric because the loss of connections will lead to

the loss of subscribe requests in each device and the subscriptions will be renewed automatically once

the connection is reestablished. Second, the number of unsubscribe requests received from either IoT

devices or fog devices using the Unsubscribe.Success metric must reflect the number of subscribing and

publishing requests generated in each IoT device. In our experiments, there are three IoT devices, and

each of them generates two types of data: temperature and humidity. Therefore, the number of IoT devices

is three and the number of all subscribing and publishing requests is six. Third, the number of publish

requests received from either fog devices or IoT devices using the Publishin.Success metric should be

close to or the same as the number of publish requests made by AWS to either fog devices or IoT devices

using the Publishout.Success metric.

 The experiments using the first architecture, which includes a fog layer, were conducted with

one, two, or three IoT devices for different time periods (30 seconds, 1 minutes, 5 minutes, 15 minutes,

and 1 hour), as shown in Table 4.2 The first experiment used one IoT device attached to one fog device,

and the results showed that the Connect.Success and Subscribe.Success numbers reflect the number of

72

subscribing and publishing requests for one IoT device with two subscribe and publish requests. This is

because the connection is not disconnected and the subscribe request is not lost from either the IoT or the

fog device. Moreover, there is only one IoT device connected to only one fog device, which is then

authenticated to the AWS cloud, and no other devices interrupted them. In addition, the PublishIn.Success

and PublishOut.Success numbers are expected and stable because the data came from the IoT device and

were filtered based on topic on the fog device, then sent to the AWS cloud. Thus, it takes time for the

data to be transferred between the three layers of IoT, fog, and cloud. In the second experiment, on the

other hand, two IoT devices were attached to the fog device, as shown in Table 4.2 The results indicated

that the Connect.Success and Subscribe.Success numbers were equal to the number of subscribing and

publishing requests for both IoT devices, since two IoT devices are linked to one fog device with four

subscribing and publishing requests. Therefore, the PublishIn.Success and PublishOut.Success numbers

are significantly increased with two IoT devices compared to the previous experiment using only one IoT

device attached to one fog device. This is because two IoT devices are connected to only one fog device

serving as the middle layer between the IoT devices and the AWS cloud that is used to authenticate to

the AWS cloud. Thus, the fog device increased the number of messages published to the AWS cloud and

reduced the number of IoT devices that need to be authenticated to the AWS cloud. The third experiment

used three IoT devices connected to one fog device, as shown in Table 4.2 The Connect.Success and

Subscribe.Success numbers still reflected the actual number of subscribing and publishing requests for

all three IoT devices, even though there was only one fog device. Thus, the PublishIn.Success and

PublishOut.Success numbers were significantly increased due to the high volume of published messages

from the three IoT devices. Therefore, the fog device made a significantly impact in filtering and

transferring the actual volume of data from the three IoT devices to the AWS cloud and decreasing the

number of authentications required for the AWS cloud.

4.7.2 Results: Description of the three experiments on the second architecture with one, two, or three

IoT devices using AWS benchmark metrics (cloud layer)

73

 In Table 4.2, it can be seen that for one IoT device, the Connect.Success and Subscribe.Success

numbers are low because there is only one IoT device with two subscribe and publish requests

authenticated to the AWS, and no other IoT devices are attached with it. Thus, the connection and

subscription are established one time. In addition, the PublishIn.Success and PublishOut.Success

numbers are consistent and high due to the single authenticated IoT device. With two IoT devices with

four subscribe and publish requests, however, the Connect.Success and Subscribe.Success numbers

increase because there are two IoT devices attempting to authenticate to the AWS cloud at one time,

which increases the number of connections and subscriptions. The Publishin.Success and

PublishOut.Success numbers have not substantially changed compared to the previous experiment even

though the number of subscribe and publish requests increased with the second IoT device added because

the second IoT device tried to authenticate to the AWS cloud while the first IoT device tried to publish

messages to the AWS cloud; as a result, publish messages were lost in each period. The third experiment,

using three IoT devices with six subscribe and publish requests, shows that the number of connections

and subscriptions increases while the PublishIn.Success and PublishOut.Success numbers become low.

This is because the three IoT devices tried to authenticate to the

AWS cloud at once, causing a huge number of connections and subscriptions request.

Table 4.2 AWS IoT message broker metrics on N. Virginia datacenter (cloud layer) using bridge – First

Architecture vs. Second Architecture

AWS IoT message broker metrics on N. Virginia datacenter (cloud layer)

using bridge – First Architecture

AWS IoT message broker metrics on N. Virginia datacenter (cloud layer)

– Second Architecture

Number of IoT devices 1 Number of IoT devices 1

Number of subscribing &

publishing

2 Number of subscribing &

publishing

2

AWS IoT metrics in minutes (m) 0.

5

1 5 15 60 AWS IoT metrics in minutes (m) 0.

5

1 5 15 60

Connect.Success 2 2 2 2 2 Connect.Success 2 2 2 2 2

Ping.Success 2 2 8 29 120 Ping.Success 5 5 25 75 297

PublishIn.Success 44 4

4

206 586 236

0

PublishIn.Success 60 60 30

0

90

0

358

0

PublishOut.Success 44 4

4

206 586 236

0

PublishOut.Success 60 60 30

0

90

0

358

0

Subscribe.Success 2 2 2 2 2 Subscribe.Success 2 2 2 2 2

Unsubscribe.Success 2 2 2 2 2 Unsubscribe.Success 2 2 2 2 2

74

AWS IoT message broker metrics on N. Virginia datacenter (cloud layer)

using bridge – First Architecture

AWS IoT message broker metrics on N. Virginia datacenter (cloud layer)

– Second Architecture

Number of IoT devices 2 Number of IoT devices 2

Number of subscribing &

publishing

4 Number of subscribing &

publishing

4

AWS IoT metrics in minutes 0.5 1 5 15 60 AWS IoT metrics in minutes 0.5 1 5 15 60

Connect.Success 4 4 4 4 4 Connect.Success 6 6 35 111 432

Ping.Success 2 2 8 29 120 Ping.Success 1 1 8 20 85

PublishIn.Success 70 7

0

350 111

0

4590 PublishIn.Success 62 62 32

2

965 385

0

PublishOut.Success 70 7

0

350 111

0

4590 PublishOut.Success 51 51 32

2

965 385

0

Subscribe.Success 4 4 4 4 4 Subscribe.Success 6 6 35 111 432

Unsubscribe.Success 4 4 4 4 4 Unsubscribe.Success 4 4 4 4 4

AWS IoT message broker metrics on N. Virginia datacenter (cloud

layer) using bridge – First Architecture

AWS IoT message broker metrics on N. Virginia datacenter (cloud

layer) – Second Architecture

Number of IoT devices 3 Number of IoT devices 3

Number of subscribing &

publishing

6 Number of subscribing &

publishing
6

AWS IoT metrics in minutes 0.5 1 5 15 60 AWS IoT metrics in minutes 0.5 1 5 15 60

Connect.Success 6 6 6 6 6 Connect.Success 12 1

2

76 228 893

Ping.Success 2 2 9 29 119 Ping.Success 2 1 5 14 60

PublishIn.Success 115 115 54

8

166

0

651

0

PublishIn.Success 68 6

8

35

9

105

0

4240

PublishOut.Success 115 115 54

8

166

0

651

0

PublishOut.Success 58 6

8

35

9

105

0

4240

Subscribe.Success 6 6 6 6 6 Subscribe.Success 12 1

2

76 228 893

Unsubscribe.Success 6 6 6 6 6 Unsubscribe.Success 6 6 6 6 6

Table 4.3 AWS IoT message broker metrics on N. Virginia datacenter (cloud layer) using bridge vs.

Python – First Architecture

AWS IoT message broker metrics on N. Virginia datacenter (cloud

layer) using Python script – First Architecture

AWS IoT message broker metrics on N. Virginia datacenter (cloud

layer) using bridge – First Architecture

Number of IoT devices 1 Number of IoT devices 1

Number of subscribing &

publishing

2 Number of subscribing &

publishing

2

AWS IoT metrics in minutes 0.5 1 5 15 60 AWS IoT metrics in minutes 0.5 1 5 15 60

Connect.Success 2 2 2 2 2 Connect.Success 2 2 2 2 2

Ping.Success 2 2 10 30 119 Ping.Success 2 2 8 29 120

IoT PublishIn.Success 46 46 206 590 236

0

IoT PublishIn.Success 44 44 20

6

586 236

0

IoT PublishOut.Success 46 46 206 590 236

0

IoT PublishOut.Success 44 44 20

6

586 236

0

Subscribe.Success 2 2 2 2 2 Subscribe.Success 2 2 2 2 2

IoT Unsubscribe.Success 2 2 2 2 2 IoT Unsubscribe.Success 2 2 2 2 2

75

AWS IoT message broker metrics on N. Virginia datacenter (cloud

layer) using Python script – First Architecture

AWS IoT message broker metrics on N. Virginia datacenter (cloud

layer) using bridge – First Architecture

Number of IoT devices 2 Number of IoT devices 2

Number of subscribing &

publishing

4 Number of subscribing &

publishing

4

AWS IoT metrics in minutes 0.5 1 5 15 60 AWS IoT metrics in minutes 0.5 1 5 15 60

Connect.Success 4 4 4 4 4 Connect.Success 4 4 4 4 4

Ping.Success 2 2 9 29 118 Ping.Success 2 2 8 29 120

IoT PublishIn.Success 76 76 359 117

0

468

0

IoT PublishIn.Success 70 70 35

0

1110 459

0

IoT PublishOut.Success 76 76 359 117

0

468

0

IoT PublishOut.Success 70 70 35

0

1110 459

0

Subscribe.Success 4 4 4 4 4 Subscribe.Success 4 4 4 4 4

IoT Unsubscribe.Success 4 4 4 4 4 IoT Unsubscribe.Success 4 4 4 4 4

AWS IoT message broker metrics on N. Virginia datacenter (cloud

layer) using Python script – First Architecture

AWS IoT message broker metrics on N. Virginia datacenter (cloud

layer) using bridge – First Architecture

Number of IoT devices 3 Number of IoT devices 3

Number of subscribing &

publishing

6 Number of subscribing &

publishing
6

AWS IoT metrics in minutes 0.5 1 5 15 60 AWS IoT metrics in minutes 0.5 1 5 15 60

Connect.Success 6 6 6 6 6 Connect.Success 6 6 6 6 6

Ping.Success 1 2 10 30 118 Ping.Success 2 2 9 29 119

IoT PublishIn.Success 117 117 534 168

0

665

0

IoT PublishIn.Success 115 11

5

54

8

1660 651

0

IoT PublishOut.Success 117 117 534 168

0

665

0

IoT PublishOut.Success 115 11

5

54

8

1660 651

0

Subscribe.Success 6 6 6 6 6 Subscribe.Success 6 6 6 6 6

IoT Unsubscribe.Success 6 6 6 6 6 IoT Unsubscribe.Success 6 6 6 6 6

4.7.3 Results: Description of the three experiments of the first architecture with one, two, or three IoT

devices using Mosquitto benchmark metrics (fog layer)

 The MQTT Mosquitto broker using SYS-Topics has several metrics that were used in the

experiments on the first architecture from the fog layer, as shown in Tables 4.4, 4.5, and 4.6. The

Mosquitto broker metrics are: (1) load/messages/received, (2) load/messages/sent, (3)

load/publish/received, (4) load/publish/sent, (5) load/bytes/received, (6) load/bytes/sent, (7) load/sockets,

(8) load/connections, (9) messages/stored, (10) store/messages/bytes, (11) subscriptions/count, (12)

heap/current, (13) messages/received, (14) messages/sent, (15) publish/messages/received, (16)

publish/messages/sent, (17) bytes/received, (18) bytes/sent, (19) publish/bytes/received, and (20)

publish/bytes/sent. These metrics are described in detail in section 5.2 and were obtained over one hour,

76

starting from 30 seconds, as shown in Tables 4.4, 4.5, and 4.6. Before analyzing the Mosquitto broker

metrics on the fog device, a number of hypotheses should be discussed. First, the number of subscribe

requests received from each IoT device using the subscription/count metric must reflect the number of

subscribe and publish requests established in each IoT device. Second, the number of publish messages

received from each IoT device in the first architecture using the publish/messages/received metric should

be equal to the number of publish messages received from the fog device using the Publishin.Success

metric. Third, the number of publish messages sent by the Mosquitto broker on the fog device using the

publish/messages/sent metric should increase as the number of IoT devices increases due to the broker

capabilities and the high computational power of the fog device to process and publish many messages.

The experiments on the first architecture, which has a fog device between the IoT device(s) and the AWS

cloud, is performed using one, two, or three IoT devices for different periods of 30 seconds, 1 minute, 5

minutes, 15 minutes, 30 minutes, 45 minutes, and 1 hour. The first experiment used one IoT device

attached to the fog device connected to the AWS cloud, as shown in Table 4.4. The results showed that

the number of subscribe requests using the subscriptions/count metric on the fog device reflects the

number of subscribe and publish requests of the single IoT device with two subscribe and publish

requests. This is because the fog device is subscribed to the topics of each message received from IoT

devices and filters them based on the topics of the messages, then publishes them to the AWS cloud.

Therefore, the message is identified by its topic in each layer. In addition, the number of publish messages

made by the fog device (publish/messages/sent) is high even though there is only one IoT device with

two subscribe and publish requests. This is because the fog device has high capabilities to filter and

publish many messages since it is located close to the IoT device that is generating the real data.

Moreover, the size of the heap memory used by Mosquitto on the fog device is stable over different

durations from 30 seconds to 1 hour. The second experiment was conducted using two IoT devices with

four subscribe and publish requests attached to the fog device, which connects to the AWS cloud, as

shown in Table 4.5. The results showed that the number of subscribe requests increased since the number

of IoT devices increased to two. In addition, the number of publish messages made by the fog device

77

(publish/messages/sent) significantly increased because two IoT devices with four subscribe and publish

requested were attached. The third experiment was conducted using three IoT devices with six subscribe

and publish requests attached to a fog device and then to the AWS cloud, as shown in Table 4.6. The

results demonstrated that the number of subscribe requests was six when the number of IoT devices

increased to three. In addition, the number of publish messages made by the fog device

(publish/messages/sent) became significantly higher when the number of IoT devices increased to three.

Table 4.4 Mosquitto message broker metrics on fog layer using bridge – First Architecture– One IoT

device

Number of IoT devices One IoT device

Number of subscribing & publishing Two subscribing & two publishing

Mosquitto message broker metrics as $SYS

topics

30 (seconds) 1

(minutes)

5

(minutes)

15

(minutes)

30

(minutes)

45

(minutes)

1 (hours)

$SYS/broker/load/messages/received 1(m) 25.31 36.26 27.43 46.25 47.81 25.96 44.70
$SYS/broker/load/messages/sent 1(m) 137.87 177.35 179.52 215.36 199.56 188.81 213.35

$SYS/broker/load/publish/received 1(m) 22.68 33.07 23.95 43.88 45.38 23.43 42.69

$SYS/broker/load/publish/sent 1(m) 135.23 174.15 176.03 213.00 197.14 186.28 211.34
$SYS/broker/load/bytes/received 1(m) 802.93 1135.98 849.26 1478.98 1524.90 791.00 1439.38

$SYS/broker/load/bytes/sent 1(m) 5315.03 6898.23 7230.76 8637.79 8029.54 7694.46 8610.21

$SYS/broker/load/sockets 1(m) 1.05 0.61 0.92 0.09 0.12 0.94 0.12
$SYS/broker/load/connections 1(m) 1.05 0.61 0.92 0.09 0.12 0.94 0.12

$SYS/broker/subscriptions/count 2 2 2 2 2 2 2

$SYS/broker/heap/current 30224 30232 30360 30148 30084 29744 30132
$SYS/broker/messages/received 37 65 225 663 1285 1885 2515

$SYS/broker/messages/sent 202 329 1144 3250 6356 9416 12552

$SYS/broker/publish/messages/received 32 58 209 625 1213 1787 2375
$SYS/broker/publish/messages/sent 197 322 1128 3212 6284 9310 12412

$SYS/broker/bytes/received 1154 2029 7149 21219 41165 60374 80633

$SYS/broker/bytes/sent 7730 12711 45329 129895 255029 378636 505171
$SYS/broker/publish/bytes/received 160 290 1045 3125 6065 8935 11875

$SYS/broker/publish/bytes/sent 806 1400 5505 16551 33192 49748 66818

Table 4.5 Mosquitto message broker metrics on fog layer using bridge – First Architecture– Two IoT

devices

Number of IoT devices Two IoT devices

Number of subscribing & publishing Four subscribing & four publishing

Mosquitto message broker metrics as $SYS

topics

30

(seconds)

1

(minutes)

5

(minutes)

15

(minutes)

30

(minutes)

45

(minutes)

1 (hours)

$SYS/broker/load/messages/received 1(m) 59.48 79.02 109.81 119.86 109.03 123.12 114.70

$SYS/broker/load/messages/sent 1(m) 175.38 226.02 296.83 312.57 296.21 307.21 298.85
$SYS/broker/load/publish/received 1(m) 38.21 53.18 73.62 79.78 74.34 82.05 78.49

$SYS/broker/load/publish/sent 1(m) 154.11 200.18 260.63 272.49 261.52 266.13 262.63

$SYS/broker/load/bytes/received 1(m) 2124.60 2767.93 3916.20 4291.54 3854.92 4393.78 4074.59
$SYS/broker/load/bytes/sent 1(m) 5981.40 7807.80 10344.23 10803.61 10424.09 10568.27 10457.24

$SYS/broker/load/sockets 1(m) 19.69 23.40 33.62 37.64 32.03 38.43 34.27

$SYS/broker/load/connections 1(m) 19.69 23.40 33.64 37.65 32.12 38.43 34.27
$SYS/broker/subscriptions/count 4 4 4 4 4 4 4

$SYS/broker/heap/current 30268 30268 30252 30268 30252 30260 30204

$SYS/broker/messages/received 84 143 593 1747 3433 5194 6954
$SYS/broker/messages/sent 253 416 1632 4686 9154 13704 18242

$SYS/broker/publish/messages/received 53 94 398 1157 2283 3451 4618

$SYS/broker/publish/messages/sent 222 367 1437 4096 8004 11961 15906

78

$SYS/broker/bytes/received 2976 5015 21111 62781 123353 186822 250274
$SYS/broker/bytes/sent 8609 14285 56570 162328 318376 476257 633619

$SYS/broker/publish/bytes/received 265 470 1990 5785 11415 17255 23090

$SYS/broker/publish/bytes/sent 942 1650 7159 21442 42979 65025 87076

Table 4.6 Mosquitto message broker metrics on fog layer using bridge – First Architecture– Three IoT

devices

Number of IoT devices Three IoT devices
Number of subscribing & publishing Six subscribing & six publishing

Mosquitto message broker metrics as $SYS

topics

30 (seconds) 1

(minutes)

5

(minutes)

15

(minutes)

30 (minutes) 45 (minutes) 1 (hours)

$SYS/broker/load/messages/received 1(m) 90.09 129.50 172.49 163.15 163.81 172.50 179.13

$SYS/broker/load/messages/sent 1(m) 207.44 279.24 359.50 357.54 353.60 352.41 369.72

$SYS/broker/load/publish/received 1(m) 55.43 81.41 109.62 99.23 98.21 107.07 115.52

$SYS/broker/load/publish/sent 1(m) 172.78 231.14 296.63 293.61 287.99 286.97 306.10

$SYS/broker/load/bytes/received 1(m) 3329.39 4744.07 6384.79 6124.10 6170.40 6480.58 6627.83
$SYS/broker/load/bytes/sent 1(m) 6672.01 8948.99 11686.44 11697.09 11528.00 11394.30 12088.13

$SYS/broker/load/sockets 1(m) 33.08 45.51 60.27 61.48 63.11 63.81 61.52

$SYS/broker/load/connections 1(m) 33.08 45.51 60.29 61.49 63.11 63.82 61.63
$SYS/broker/subscriptions/count 6 6 6 6 6 6 6

$SYS/broker/heap/current 30376 30320 30268 30312 30376 30240 30252

$SYS/broker/messages/received 129 228 951 2689 5310 7915 10503
$SYS/broker/messages/sent 299 505 1992 5639 11077 16495 21823

$SYS/broker/publish/messages/received 79 142 603 1699 3333 4973 6612

$SYS/broker/publish/messages/sent 249 419 1644 4649 9100 13553 17932
$SYS/broker/bytes/received 4736 8349 35210 100003 197975 295130 391395

$SYS/broker/bytes/sent 9603 16202 64301 183194 359880 536549 710168

$SYS/broker/publish/bytes/received 395 710 3015 8495 16665 24865 33060
$SYS/broker/publish/bytes/sent 1082 1920 8315 24546 49094 73862 98359

4.8 Evaluation of Results

4.8.1 First Architecture vs. Second Architecture

 The first experiment of each of the two architectures was performed by connecting one IoT

device to the cloud. We used two subscribes and two publishes to send the data. The results show that the

number of subscribes and publishes are the same for both architectures and matches the defined number

of subscribes and publishes for one IoT device. However, the number of published messages

(PublishIn.Success and PublishOut.Success in Figs. 4.6.a-4.7.a) in the first architecture is slightly less

than the number of published messages in the second architecture. This is because there is an additional

hop (i.e., fog layer) in the middle of the first architecture that processes the messages before transmitting

them to the AWS cloud; as a result, the messages take additional time to be delivered to the AWS cloud.

79

In contrast, the second architecture does not have a fog layer and the messages are forwarded directly to

the AWS cloud, so the number of published messages is slightly higher. Moreover, the IoT devices must

be authenticated to the AWS before publishing messages. Connect.Success and Subscribe.Success in

Figs. 4.8.a-4.9.a show that when using one IoT device, authentication did not impact these two metrics

in either architecture.

 The second experiment was conducted using two IoT devices and four subscribes and publishes.

The results show that the number of subscribes and publishes matches the defined number of subscribes

and publishes for two IoT devices only in the first architecture, as shown in Figs. 4.8.b-4.9.b

(Connect.Success and Subscribe.Success); the number of subscribes and publishes was significantly

increased in the second architecture. This is because in the second architecture, the two IoT devices need

to be authenticated separately to the AWS cloud, whereas in the first architecture, only one device (the

fog node) needs to be authenticated because the IoT devices are authenticated to the fog node in a

different, simpler process. Additionally, this high number of connect and subscribe requests in the second

architecture causes a loss in the number of messages published to the AWS cloud. This is because while

one of the IoT devices is subscribed and publishing, the other device remains trying to connect, as shown

in Figs. 4.6.b-4.7.b (PublishIn.Success and PublishOut.Success). Notably, the rate of published messages

in the first architecture is much better than in the second architecture. This is because in the first

architecture, there was no failure to subscribe and the fog node was always able to publish messages

successfully to the AWS cloud, as shown in Figs. 4.8.b-4.9.b (Connect.Success and Subscribe.Success).

 In the third experiment, we used three IoT devices with six subscribes and publishes. The results

show that the number of subscribes and publishes matches the defined number of subscribes and

publishes (PublishIn.Success and PublishOut.Success in Figs. 4.6.c-4.7.c) in the first architecture. In the

second architecture, however, the number of subscribes and publishes is significantly higher. This is

because the fog node in the first architecture authenticates three IoT devices and the AWS cloud

authenticates only the fog node. In contrast, in the second architecture, the AWS cloud authenticates three

80

IoT devices separately, which increases the number of subscribes and publishes. This also negatively

affects the number of published messages in the second architecture due to the time spent by the IoT

devices that are not connected trying to connect, as shown in Figs. 4.6.c-4.7.c (PublishIn.Success and

PublishOut.Success). In contrast, in the first architecture, there is no loss in the published messages, as

there is no sign of failure in the number of subscribes and publishes, as shown in Figs. 4.8.c-4.9.c

(Connect.Success and Subscribe.Success).

 In this experiment, we found that the performance of the second architecture was better than that

of the first architecture when using one IoT device. However, when using more than one IoT device, the

first architecture outperforms the second architecture in terms of performance. Moreover, when using

more than one IoT device, the resource utilization in the first architecture was better than in the second

architecture because all of the IoT devices were able to successfully connect to the fog node

simultaneously. Overall, with an increased number of IoT devices, the first architecture outperforms the

second architecture.

Figure 4.6 AWS IoT message broker PublishIn.Success metric with 1, 2, and 3 IoT devices on N. Virginia datacenter (cloud

layer)

Figure 4.7 AWS IoT message broker PublishOut.Success metric with 1, 2, and 3 IoT devices on N. Virginia datacenter

(cloud layer)

81

Figure 4.8 AWS IoT message broker Connect.Success metric with 1, 2, and 3 IoT devices on N. Virginia datacenter (cloud

layer)

Figure 4.9 AWS IoT message broker Subscribe.Success metric with 1, 2, and 3 IoT devices on N. Virginia datacenter (cloud

layer)

4.8.2 Architecture 1 Implementation: Python Script vs. Bridging

 In this experiment, we evaluated the first architecture (i.e., IoT-fog-cloud) using two different

implementations (Python Script vs. bridging) using AWS metrics. Three experiments were performed

using one, two, or three IoT devices. Using two subscribes and two publishes per device, both

implementations showed insignificant differences in performance using the AWS benchmark, as shown

in Figs. 4.10, 4.11,4.12, and 4.13. Comparing the performance results of the same architecture using two

different implementations shows that the results of our experiment are accurate.

82

Figure 4.10 AWS IoT message broker PublishIn.Success metric with 1, 2, and 3 IoT devices on N. Virginia datacenter

(cloud layer)

Figure 4.11 AWS IoT message broker PublishOut.Success metric with 1, 2, and 3 IoT devices on N. Virginia datacenter

(cloud layer)

Figure 4.12 AWS IoT message broker Connect.Success metric with 1, 2, and 3 IoT devices on N. Virginia datacenter

(cloud layer)

83

Figure 4.13 AWS IoT message broker Subscribe.Success metric with 1, 2, and 3 IoT devices on N. Virginia datacenter

(cloud layer)

4.8.3 Architecture 1 Measurement: Mosquitto Metrics vs. AWS Metrics

 In this section, we evaluated the first architecture of a cloud-based IoT environment using AWS

and Mosquitto benchmarks. This is to prove that we have monitored the first architecture from two sides,

the cloud layer and the fog layer, as shown in Fig. 4.14

 The first experiment is conducted using one IoT device with two subscribes and two publishes.

The results show that the number of subscribes and publishes are the same for both the AWS (i.e.,

Subscribe.Success and Connect.Success) and Mosquitto (i.e., $SYS/broker/subscriptions/count)

benchmarks and reflect the defined number of subscribes and publishes for one IoT device, as shown in

Figs. 4.8.a, 4.9.a and 4.14.9. This experiment was implemented using the subscribe-publish mode

presented in [58]. In the architecture with three layers (IoT, fog, and cloud), the fog node subscribes to

all of the message topics sent from the IoT device(s). These messages are then processed and published

to the AWS cloud. Again, the cloud layer (i.e., the AWS cloud) subscribed to all of the message topics

sent from the fog device. This is important, as it ensures that the IoT device(s) are connected and able to

send data to the fog and then to the cloud without loss.

 The number of published messages on the fog device using the Mosquitto metric

(publish/messages/received) is equal to the number of published messages on the AWS cloud using the

AWS metric (PublishIn.Success), as shown in Figs. 4.14.13 and 4.6.a. This is because the messages

84

generated from one IoT device were received by both the fog and the AWS cloud and no messages were

lost during transmission. However, the number of messages processed by the Mosquitto broker

($SYS/broker/publish/messages/sent) on the fog device is significantly higher than the number of

messages processed by the AWS broker (PublishOut.Success) on the AWS cloud, as shown in Figs.

4.14.14 and 4.7.a. This is because the fog device is closer to the IoT devices, which reduces the latency

of transmitting all of the messages to the AWS cloud. In addition, fog devices play an important role in

decreasing the computation overhead caused by the IoT devices due to its close proximity. It also reduces

AWS resource consumption by bringing computation closer to the IoT devices. Therefore, the memory

consumption ($SYS/broker/heap/current) on the fog node remains stable even when the number of

messages processed increases, as shown in Fig. 4.14.10.

 The second and third experiments of the first architecture were performed using two or three IoT

devices with four and six subscribes and publishes, respectively. The results show that the number of

subscribes and publishes remains identical using the Mosquitto metric ($SYS/broker/subscriptions/count)

and the AWS metrics (Subscribe.Success and Connect.Success) and reflects the defined number of

subscribes and publishes, as shown in Figs. 4.8-b,4.8-c, 4.9-b,4.9-c and 4.14.9. In addition, the number

of published messages on the fog device remains equal to the number of published messages on the AWS

cloud, as shown in Fig. 4.14.13 and 4.6-b, and 4.6-c. However, we noticed that when we increased the

number of IoT devices, the number of messages made and processed by the Mosquitto broker on the fog

device significantly increased without affecting the performance, as shown in Fig. 4.14.14.

 Overall, in the first experiment with one IoT device, the number of messages processed by the

fog device (i.e., received from the IoT device and sent to the cloud) is higher than the number of messages

received by the AWS cloud. Similarly, as the number of IoT devices increased (i.e., using two and three

IoT devices), the number of messages made by the Mosquitto broker on fog device remains higher than

the number of messages made by the the AWS broker on the AWS cloud. This is because the messages

are transmitted through the three layers of the environment (i.e., IoT, fog, and cloud); thus, it takes more

85

time for the messages to be delivered to the AWS cloud due to the additional intermediate fog layer.

Moreover, since the fog device is located close to the IoT devices, message latency decreased and the

processing of the messages on the fog increased. Thus, using fog computing is very beneficial when

connecting more than one IoT device to the cloud. Overall, as the number of IoT devices increases, the

process ability of the fog device in the first architecture outperforms that of the AWS cloud.

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

86

(10) (11) (12)

(13) (14) (15)

(16) (17) (18)

Figure 4.14 Mosquitto message broker metrics on the fog layer using bridge (Architecture 1).

4.9 Threats to validity

 The experiments in this paper were implemented using real commercial sensors interacting with

a real-world cloud through a commercial IoT service. The environment is susceptible to real attacks and

simulates a real-life IoT environment. We used Raspberry Pi boards to enable the sensors to send

collected data through the Internet to the cloud or the fog node. We also used a Raspberry Pi board as a

fog node, the intermediate layer between the sensors and the cloud in the first architecture. The first

architecture consists of three layers (IoT, fog, and cloud), whereas the second architecture consists of

only two layers (IoT and cloud). Every layer operates on a separate network and all networks were

87

connected to the Internet to simulate real-life implementations. In both architectures, up to three sensors

were used to capture temperature and humidity data and send it to the cloud.

 Each experiment was performed for an hour, during which the data captured by the sensors was

sent to the cloud (i.e., the AWS N. Virginia datacenter) and stored there. It is of interest to investigate

whether the results can be applied to other cloud service providers or to other datacenters in different

geographical areas. In addition, three sensors were used to conduct the experiments by either connecting

the sensors to the cloud directly or connecting the sensors through a fog node to the cloud. Further

experiments are needed to determine how many sensors a fog node can handle before performance is

impact.

 Moreover, our results indicate that the first architecture outperforms the second architecture in

publishing the data captured by the sensors to the cloud. This is attributed to the fact that in the second

architecture, all of the sensors need a certificate for authentication, whereas in the first architecture, only

one certificate for authentication is needed and is placed on the fog node. Notably, this leaves the

communication between the IoT layer and the fog layer without a proper authentication mechanism. We

plan to utilize the computation and storage capability of the fog node to implement an authentication and

authorization model for the sensors interacting with the fog nodes in the future.

4.10 Discussion and Limitations

 Fog computing evolved to support cloud-based IoT environments in many ways. It is known for

its ability to lower communication latency, optimize communication bandwidth, and enable higher

scalability and heterogeneity of networks. In addition to these advantages, fog computing enjoys many

valuable characteristics, such as fog node mobility and location awareness, in addition to computational

ability that IoT devices lack. In this paper, we demonstrated that fog computing has a substantial impact

on cloud-based IoT environments in reducing latency and improving communication performance. In

addition to these benefits, fog computing has a great deal of advantages that were not extensively

discussed in our results.

88

 First, fog computing-aided IoT environments are known for their higher scalability, since every

group of IoT devices is connected to a fog node. This hierarchical structure enables better management,

tracking, and monitoring of IoT devices. In addition to this, compared to environments in which IoT

devices are connected directly to the cloud, fog-aided IoT environments improve resource utilization.

This is attributed to savings in processing capability that is wasted when the cloud authenticates a massive

number of IoT devices. At first sight, one might say that the same processing time and resources will be

consumed at the fog node to authenticate IoT devices. This is true; however, with a fog node, consumers

of cloud services will not be overcharged for service that was wasted on the cloud to authenticate a

significant number of IoT devices, especially because providers charge based on consumption.

 From a security standpoint, fog computing spreads risks across distributed fog nodes in fog-aided

IoT environments. In addition, authenticating IoT devices at the fog layer provides more flexibility in

adding sophistication to the authentication and authorization process, such as encryption-based access

control. Although the convenience of having a fog layer with semi-heavyweight computation capability

has a higher capital cost, in the long run, in saves ample resources, time, and money.

4.11 Conclusion and Future Works

 In this paper, we proposed two architectures of cloud-based IoT environments using a real

environment. In one architecture, we used a fog layer between IoT devices and the cloud, whereas in the

second, IoT devices published data directly to the cloud. In order to validate our results, we also examined

two ways of implementing fog-aided IoT-cloud environments: (1) bridging and (2) using a Python script

to forward the data to the cloud. For each architecture, we conducted several experiments and increased

the number of IoT devices as well as the number of subscribes and publishes in each experiment. To

evaluate performance in the experiments, we used two sets of benchmark metrics: (1) AWS message

broker metrics and (2) Mosquitto message broker metrics. Performance was evaluated based on the

following analysis methods. First, we compared the performance for the first and second architecture.

Second, we compared the performance for the two implementations of the fog-aided IoT environment

89

(i.e., Python script vs. bridging). Finally, to validate our results, the performance of the first architecture

was analyzed using Mosquitto metrics vs. AWS metrics. The results showed that the performance in the

IoT-cloud with a fog layer is significantly better than without the fog layer as the number of IoT devices

and the number of subscribes and publishes increases. The results also showed that using Python script

or bridging fog-aided IoT-cloud environments performs the same. The results of our third analysis

method showed that as the number of IoT devices increases, the processability of the fog device in the

fog-aided IoT-cloud architectures outperforms that of the AWS cloud. This work aimed to educate

readers on different methods to implement IoT-cloud environments and compares the performance for

each. It also guides researchers by providing different ways to implement fog-aided IoT-cloud systems.

 In the future, we plan to extend this work by using the same implementations presented in this

paper to analyze the performance using different cloud providers, protocols, fog devices, and IoT devices.

The presented implementations will also be used to investigate security and address issues in fog-aided

IoT-cloud systems.

90

Chapter 5: Novel Security Models for IoT–Fog–Cloud Architectures in a

Real-World Environment

M. A. Aleisa, A. Abuhussein, F. S. Alsubaei, and F. T. Sheldon, “ Novel Security Models for IoT-Fog-

Cloud Architectures in a Real-World Environment,” Sensors, vol. 21, no. 21, p. 6950, Mar. 2022.

(Under Review)

5.1 Introduction

 The Internet of Things (IoT) ecosystem includes multitudinous devices connected to the Internet

[118] with a variety of capabilities, such as sensing, processing, and communicating. The number of IoT

devices is expected to rise to over 75 billion in 2025 [119], [120] , driving a parallel rise in the already

massive amount of data that must be locally processed at the edges of networks to reduce latency and

save network bandwidth. Cloud computing offers high computation power and storage for thousands of

IoT devices [121]. However, due to the geographic centralization of cloud computing data centers, the

large volume of data generated by the distributed IoT devices will not be processed in a timely manner,

which will increase the latency between IoT devices and the cloud especially as the number of IoT

devices continues to grow. To overcome these challenges, fog computing has emerged to deal with high

processing demand and temporary storage. Fog computing acts as an intermediate layer between the

cloud and IoT devices [58], [75], [122], solving the data transmission latency between them.

 Despite the benefits of fog computing for IoT devices and the cloud, there are several security

issues between the IoT–Fog–Cloud layers. For example, the Dyn cyberattack (October 21, 2016)

disrupted Internet service across Europe and US [123] through a series of distributed denial-of-service

(DDoS) attacks that targeted IoT-enabled devices such as cameras, residential gateways, and baby

monitors. Many services were affected by this cyberattack, including businesses like Amazon, Comcast,

PayPal, and Netflix and news networks like Fox News and CNN.

 Further significant threats to IoT devices include eavesdropping [20], [43], [118], [121] and

unauthorized access [43], [124], [125], which can lead to device failure. Because there is no human

91

interaction involved in the communication between these devices and because they have extensive

operating times, it is difficult to monitor and detect their security issues. Therefore, it is essential to build

a security model that meets the security requirements of the IoT–Fog–Cloud architecture by applying

authentication and authorization between the IoT–Fog–Cloud layers.

 Because there is a lack of real-life implementations of cloud-based IoT environments, as

highlighted in our earlier work [58], we proposed two architectures of cloud-based IoT environments

and three analysis methods using a real-world environment [75], [122]. In the first architecture, we used

a fog layer between IoT devices and the cloud, whereas in the second, IoT devices published data directly

to the cloud [75], [122]. We conducted several experiments and evaluated our results of the

methodologies and the three analysis methods [122], finding that the first architecture outperforms the

second. This was attributed to the fact that in the second architecture, all of the sensors require a

certificate for authentication whereas, in the first, only one authentication certificate is needed and is

placed on the fog node. Notably, this left the communication between the IoT layer and fog layer without

proper authentication and authorization models [122].

 To fill the gap in security requirements between IoT layer and fog layer and overcome the

limitations and challenges presented by these security issues [58], [75], [122], this paper makes the

following contributions:

• We propose a fine-grained data access control model based on the attribute-based encryption (ABE)

of the IoT–Fog–Cloud architecture to limit access to sensor data to meet the authorization aim.

• We propose a blockchain-based certificate model of the IoT–Fog–Cloud architecture to authenticate

IoT devices to fog devices to meet the authentication aim.

• We evaluate the performance of the security model (fine-grained data access control and blockchain-

based certificate) using AWS message broker metrics for a real-life scenario of the IoT–Fog–Cloud

architecture.

92

• We compare the performance of the IoT–Fog–Cloud architecture with and without our security

model using AWS message broker metrics and present its efficiency and feasibility.

 The remainder of this paper is structured as follows: In section 2, we present the authentication

model, a blockchain-based certificate of the IoT–Fog–Cloud architecture. In section 3, we present the

authorization model, a fine-grained data access control model based on the ABE of the IoT–Fog–Cloud

architecture. In section 4, we detail the setup of the IoT–Fog–Cloud architecture experiments. In section

5, we explain the analysis methods used to evaluate the IoT–Fog–Cloud architecture with the two

security models. In section 6, we evaluate the performance of the IoT–Fog–Cloud architecture with the

two security models based on the analysis methods. Finally, section 7 concludes the paper.

5.2 Proposed Authentication Model: Blockchain-based Certificate

To fill the gap of the security requirements between the IoT layer and fog layer[58], [75], [122],

we propose a blockchain-based certificate model of the IoT–Fog–Cloud architecture to authenticate the

IoT devices to fog devices and achieve the authentication aim of this study. Figure 5.1 presents the

operations comprising the model, which are as follows: 1) the IoT devices make a connection request to

the fog devices; 2) the fog devices distribute a valid certificate to the IoT devices; 3) the handshake

mechanism using TLS cryptographic protocol is established between IoT devices and fog devices; 4)

encrypted communication is established between the IoT devices and fog devices; 5) because the fog

devices are expected to be limited, the blockchain technology is applied to a set of fog devices within

their geographical location; and 6) each fog device inside the blockchain has a copy of transactions, such

as the distributed IoT devices certificates. Figure 5 shows how the blockchain-based certificate model

was applied to the IoT–Fog–Cloud architecture using a real-life environment.

93

Figure 5.1 Blockchain-based certificate model applied in IoT–Fog–Cloud architecture.

5.3 Proposed Authorization Model: Attribute-based Encryption for Access Control

To fill the gap in the security requirements between the IoT and fog layers [58], [75], [122], we

propose a fine-grained data access control model based on the ABE of the IoT–Fog–Cloud architecture

to limit access to sensor data and achieve the authorization aim of this study.

Figure 5.2 illustrates the several operations comprising the model, which are as follows: 1)

attributes are generated for each sensor data type; 2) keys containing a set of attributes or corresponding

to attributes are generated; 3) the generated sensor data type value are encrypted with the corresponding

key that contains its attribute; 4) the encrypted message is published to the fog device using a secure

94

Figure 5.2 Access control model for the IoT–Fog–Cloud architecture.

95

communication channel; 5) the access tree that specifies the policy of the set of attributes is generated;

6) the ciphertext is decrypted if the key containing a set of attributes satisfies the access policy tree; and

7) the decrypted message is published to the AWS cloud. The model is designed such that each data

type in an IoT device is associated with attributes, which represent the topic of each sensor data type.

For example, the DHT11 sensor attached to Raspberry Pi is considered an IoT device [75], [122] and

generates two types of data: 1) temperature and 2) humidity. The temperature value is encrypted

according to the key that contains a set of attributes, and then published to the fog device.

The fog device then generates an access policy tree according to the attributes of each data type

in the IoT device, an example of which is presented in Figure 5.3. Once the fog device receives the

ciphertext from the IoT device, it decrypts it if the ciphertext key that contains the attributes satisfies the

access policy tree. Otherwise, it will decline the decryption request. Then, the temperature degree value

will be published to the AWS cloud. Figure 5.4 shows how the ABE for the access control model was

applied to the IoT–Fog–Cloud architecture.

Figure 5.3 Access policy tree for access control model for the IoT–Fog–Cloud architecture.

96

Figure 5.4 Access control model applied to the IoT–Fog–Cloud architecture.

5.4 Experiment Setup

In this paper, we propose a security model of the IoT–Fog–Cloud architecture [122] to meet

its security requirements [43], [121]. The following subsections present the hardware and software

configurations used for this security model and our IoT–Fog–Cloud architecture experiment.

5.4.1 Hardware

 The experiment discussed in this section involved the first architecture [122] of IoT–Fog–Cloud

as shown in Figure 5.4 We first describe the devices that were used in the IoT–Fog–Cloud architecture

97

and then explain it in detail. For the experiment, we used DHT11 devices [110] and a Raspberry Pi 3

Model B [126]. DHT11 is a low-cost sensor that measures the temperature and humidity of the

surrounding air and was used in this experiment to generate real data. The Raspberry Pi is a low-cost,

single-board computer with built-in WiFi and processing capabilities that is used across several domains,

such as weather monitoring, smart homes, and smart health care. In this experiment, the purpose of the

Raspberry Pi was to provide light computational capabilities for the DHT11 sensor data. It also provided

light storage for the DHT11 configurations. Moreover, the Raspberry Pi can be easily moved to different

locations. A complete list of the hardware used in this experiment is available in Table 5.1

Table 5.1 Summary of the equipment used in the IoT-Fog-Cloud architecture.

Equipment Name Equipment Type Quantity Purpose

DHT11 Temperature–humidity sensor 3 Generate real-life data

Raspberry Pi Version 3 Model B 4 Enable WiFi and provide

substantial processing power

and storage

Micro SD Card 32GB ImageMate Plus 130 mb/s

Read

4 Initial storage for the operating

system and files

Monitor HP 4 Provide a visual display

Keyboard & mice HP 4 Facilitate working on a

Raspberry Pi

Power

Supply/Adapter

CanaKit 4 Supply the power for the

Raspberry Pi

HDMI Cable onn 4 Connect the Raspberry Pi to a

monitor

 In the IoT–Fog–Cloud architecture, each DHT11 sensor was connected to only one Raspberry

Pi board (i.e., connectivity enabler), which is considered an IoT device in the IoT layer. The Raspberry

Pi was used here to enable WiFi connectivity, as the DHT11 sensors are not equipped with network

interfaces. Each IoT device was connected via WiFi to another Raspberry Pi board that acted as a fog

node in the fog layer. Communication between the IoT devices, the fog nodes, and the cloud used the

MQTT protocol, for which an MQTT broker called Eclipse Mosquitto [127] was installed in the

Raspberry Pi, acting as a fog device. The Mosquitto MQTT broker exchanged all messages using the

subscribe–publish model presented in [58] and filtered all messages based on topics, which are UTF-8

98

strings used by the broker specifically for this task. Each data type in our experiment (i.e., humidity,

temperature) was considered a separate topic. The data generated by the sensors and collected by the

three IoT devices were transmitted over the Internet to the Raspberry Pi acting as the fog node. This

Raspberry Pi, with the MQTT broker Mosquitto, was then connected to the AWS cloud over the Internet.

The communication between the three layers occurred through the Internet. Figure 6 shows the hardware

used to implement the IoT–Fog–Cloud architecture.

5.4.2 Software

 We installed Python on the three IoT devices (DHT sensor + Raspberry Pi) and the fog device.

Then, we installed the Circuit Python DHT Library on the three IoT devices to allow communication

between the DHT11 sensor and Raspberry Pi. Next, we installed the cryptography library on the three

IoT devices and fog device to perform the security operations. Algorithm 1 illustrates the authentication

and authorization operations from IoT devices (DHT11 sensor + Raspberry Pi) to the fog device, and

Algorithm 2 illustrates the authentication and authorization operations from the fog device to the IoT

devices (DHT11 sensor + Raspberry Pi) and from the fog device to the AWS cloud.

Algorithm 1: Gather data generated from the IoT device and forward it to the fog device – IoT–Fog–Cloud

architecture- /* This algorithm provides authentication and authorization operations from IoT devices

(DHT11 sensor + Raspberry Pi) to fog devices.

44: Import board

45: Import adafruit_dht

46: Import paho.mqtt.client as mqtt

47: From Crypto.Cipher import ABS

48: Import base64

49: Define the type of DHT sensor, which is DHT11

50: Define the input/output pins of the Raspberry Pi to which the DHT11 is connected

51: Define a Python library (adafruit_dht.DHT11) to read the DHT series of humidity and temperature

sensors on a Raspberry Pi with one argument, DHT pin connected

52: Define the key length which must be either 16, 24, or 32 bytes long

53: Define only two variables (humidity topic and temperature topic) for each IoT device (DHT11 +

Raspberry Pi) in each experiment

54: Define the variable of MQTT broker

55: Define the variable of MQTT port

56: While True do

57: Define a connection function

58: Connect to Internet

59: If (the connection is established) then

60: Print “connected”

61: Else (the connection isn’t established) then

99

62: Try reconnecting to Internet

63: Define a message function

64: Read humidity degree from Raspberry Pi serial port using (dhtDevice.humidity)

65: Read temperature degree from Raspberry Pi serial port using

(dhtDevice.temperature)

66: Print humidity degree

67: Print temperature degree

68: Generate keys containing a set of attributes for each sensor data type in each IoT

device

69: Generate a first key containing a set of attributes for temperature sensor in each

IoT device

70: Generate a second key containing a set of attributes for humidity sensor in each

IoT device

71: Create the cipher config for first key (temperature sensor)

72: Create the cipher config for second key (humidity sensor)

73: Use the cipher of the first key to encrypt the humidity degree message using

cipher.encrypt

74: Use the cipher of second key to encrypt the temperature degree message using

cipher.encrypt

75: Encode the cipher and humidity degree message using the base64 module

76: Encode the cipher and temperature degree message using the base64 module

77: Print the encrypted message

78: Publish humidity topic with its encrypted message to fog device

79: Publish temperature topic with its encrypted message to fog device

80: end while

81: Create a client to connect to fog device

82: Make the client run connect, and message function

83: Set the transport layer security (TLS) for the client using fog device certificates and the current

version of MQTT protocol

84: Connect the client to the MQTT broker using the IP address of the fog device and MQTT port

1883

85: Create a loop_start() method to start a new thread for the client

Algorithm 2: Gather data generated from the fog device and forward it to the cloud – IoT–Fog–Cloud

architecture- /* This algorithm provides authentication and authorization operations from fog device to IoT

devices (DHT11 sensor + Raspberry Pi) & from fog device to AWS cloud

1: Import sys

2: Import ssl

3: Import adafruit_dht

4: Import paho.mqtt.client as mqtt

5: From Crypto.Cipher import ABS

6: Import base64

7: Define the key length which must be either 16, 24, or 32 bytes long

8: Define the variable of MQTT broker

9: Define the variable of MQTT port

10: While True do

11: Define a connection function

12: Subscribe for all topics in each IoT devices

13: Connect to Internet

100

14: If (the connection is established) then

15: Print “connected”

16: Else (the connection isn’t established) then

17: Try reconnecting to Internet

18: Define a message function

19: Define keys containing a set of attributes for each sensor data type in each IoT

device based on access policy

20: Define a first key containing a set of attributes for temperature sensor in each IoT

device

21: Define a second key containing a set of attributes for humidity sensor in each IoT

device

22: Create the cipher config for first key (temperature sensor)

23: Create the cipher config for second key (humidity sensor)

24: Decode the encrypted message using the base64 module

25: Use the cipher of the first key to decrypt the humidity degree message using

cipher.decrypt

26: Use the cipher of second key to decrypt the temperature degree message using

cipher.decrypt

27: Print the decrypted message

28: Publish humidity topic with its decrypted message to AWS cloud

29: Publish temperature topic with its decrypted message to AWS cloud

30: end while

31: Create two instances of clients, one used for the MQTT broker and the other used for the AWS

broker

32: Make the first client run connect, and message function

33: Connect the first client to the MQTT broker using the IP address of the fog device and MQTT port

34: Create a loop_start() method to start a new thread for the first client

35: Set the transport layer security (TLS) for the second client using the three paths of AWS

certificates and the current version of MQTT protocol

36: Connect the second client to AWS broker using AWS Endpoint and AWS port

37: Create a loop_start () method to start a new thread for the second client

5.5 Analysis Methods

We used AWS benchmark metrics to analyze the performance of our security model for the

IoT–Fog–Cloud architecture proposed in our paper [75], [122]. We set the number of subscribers and

publishers to two for each device because the IoT devices (i.e., the DHT11 sensors) generated two types

of data, namely (1) temperature and (2) humidity data; therefore, as the number of sensor devices

increases, the numbers of subscribers and publishers should also increase. This provides more accurate,

consistent, and real results about the environment’s performance and scalability. In this section, we

present the methods used to perform the experiments on the security model for the IoT–Fog–Cloud

architecture.

101

5.5.1 IoT–Fog–Cloud architecture with blockchain-based certificate model versus without blockchain-

based certificate model

 The performance of the IoT–Fog–Cloud architecture with the blockchain-based certificate

model was analyzed and compared with the architecture without the blockchain-based certificate model,

which was presented in the previous work [122], using AWS metrics. The experiment was conducted

using different numbers of IoT devices (1, 2, or 3) two times, once with the blockchain-based certificate

model and once without. The results were compared and analyzed to show the impacts of our

blockchain-based certificate model on the proposed IoT–Fog–Cloud architecture [75], [122]. Because

the AWS cloud provider requires a certificate to authenticate any device, and because the fog device is

the next layer, the certificate was paced in the fog device (i.e., the Raspberry Pi board serving as the fog

layer). This left the communication between the IoT layer and the fog layer without a proper

authentication model [122]; this gap was filled by the proposed security model. The fog device

distributed the certificates to the IoT devices after a connection request was made by IoT devices. The

fog device certificate was paced in each IoT device to allow them to be authenticated to the fog device.

The objective of this method was to illustrate the impact of the blockchain-based certificate model on

the IoT–Fog–Cloud architecture and that the performance of the model remains identical when using

different numbers of IoT devices.

5.5.2 IoT–Fog–Cloud architecture with access control model versus without access control model

 The performance of the IoT–Fog–Cloud architecture with the access control model was

evaluated by comparison with the architecture without the model [122]. The experiment was performed

using one, two, and three IoT devices. The experiment was performed twice, once with the access control

model and once without. The results were compared and evaluated to show the impact of our access

control model on the proposed IoT–Fog–Cloud architecture [122]. Because the IoT devices were

authenticated to the fog device using a blockchain-based certificate model, the sensor data needed to be

unavailable to the other IoT devices and have limited access. Therefore, the access control model

102

proposed in this paper fills the authorization requirement gap between the IoT layer and fog layer. The

objective of the analysis method was to show the impact of the access control model on the IoT–Fog–

Cloud architecture and how the performance changed using different numbers of IoT devices.

5.6 Evaluation of Results

5.6.1 IoT–Fog–Cloud architecture with blockchain-based certificate model versus without blockchain-

based certificate model

 In this section, we evaluate the IoT–Fog–Cloud architecture with our blockchain-based

certificate model using AWS cloud metrics, as shown in Table 5.2.

Table 5.2 AWS cloud message broker metrics results on N. Virginia datacenter (cloud layer) IoT–Fog–

Cloud architecture with blockchain-based certificate model versus without blockchain-based certificate

model.

AWS IoT message broker metrics on N. Virginia datacenter (cloud

layer) using Python script – IoT–Fog–Cloud architecture without

blockchain-based certificate model

AWS IoT message broker metrics on N. Virginia datacenter (cloud

layer) using Python script – IoT–Fog–Cloud architecture with

blockchain-based certificate model

Number of IoT devices 1 Number of IoT devices 1

Number of subscribing &

publishing

2 Number of subscribing &

publishing

2

AWS IoT metrics in minutes (m) 0.

5

1 5 15 60 AWS IoT metrics in minutes (m) 0.

5

1 5 15 60

Connect.Success 2 2 2 2 2 Connect.Success 2 2 2 2 2

Ping.Success 2 2 8 29 120 Ping.Success 2 2 8 29 120

PublishIn.Success 44 4

4

206 586 236

0

PublishIn.Success 44 44 20

6

58

6

236

0

PublishOut.Success 44 4

4

206 586 236

0

PublishOut.Success 44 44 20

6

58

6

236

0

Subscribe.Success 2 2 2 2 2 Subscribe.Success 2 2 2 2 2

Unsubscribe.Success 2 2 2 2 2 Unsubscribe.Success 2 2 2 2 2

Number of IoT devices 2 Number of IoT devices 2

Number of subscribing &

publishing

4 Number of subscribing &

publishing

4

AWS IoT metrics in minutes 0.5 1 5 15 60 AWS IoT metrics in minutes 0.5 1 5 15 60

Connect.Success 4 4 4 4 4 Connect.Success 4 4 4 4 4

Ping.Success 2 2 8 29 120 Ping.Success 2 2 8 29 120

PublishIn.Success 70 7

0

350 111

0

4590 PublishIn.Success 70 70 35

0

111

0

459

0

PublishOut.Success 70 7

0

350 111

0

4590 PublishOut.Success 70 70 35

0

111

0

459

0

Subscribe.Success 4 4 4 4 4 Subscribe.Success 4 4 4 4 4

103

Unsubscribe.Success 4 4 4 4 4 Unsubscribe.Success 4 4 4 4 4

Number of IoT devices 3 Number of IoT devices 3

Number of subscribing &

publishing

6 Number of subscribing &

publishing

6

AWS IoT metrics in minutes 0.5 1 5 15 60 AWS IoT metrics in minutes 0.5 1 5 15 60

Connect.Success 6 6 6 6 6 Connect.Success 6 6 6 6 6

Ping.Success 2 2 9 29 119 Ping.Success 2 2 9 29 119

PublishIn.Success 115 115 54

8

166

0

651

0

PublishIn.Success 11

5

115 54

8

166

0

651

0

PublishOut.Success 115 115 54

8

166

0

651

0

PublishOut.Success 11

5

115 54

8

166

0

651

0

Subscribe.Success 6 6 6 6 6 Subscribe.Success 6 6 6 6 6

Unsubscribe.Success 6 6 6 6 6 Unsubscribe.Success 6 6 6 6 6

 The first experiment of the IoT–Fog–Cloud architecture was performed using one IoT device.

We ran the first experiment twice simultaneously, one without our blockchain-based certificate model

and the other with the model. We used two subscribes and two publishes because the IoT device

generated two types of data: (1) temperature and (2) humidity data. The results show that the number of

subscribes and publishes (i.e., Subscribe.Success and Connect.Success) for the IoT–Fog–Cloud

architecture with and without the blockchain-based certificate model were the same and reflect the

defined number of subscribes and publishes for one IoT device. This is because the connection of neither

experiment (with vs. without the security model) was disconnected and, thus, the subscribe request was

not lost. Although the first experiment with the security model had a certificate in the authentication

process of the IoT–Fog–Cloud layers, it did not affect the number of subscribes and publishes.

Furthermore, the number of published messages (PublishIn.Success and PublishOut.Success) for the

IoT–Fog–Cloud architecture with the blockchain-based certificate model remained the same as that of

the architecture without the model.

 The second and third experiments of the IoT–Fog–Cloud architecture were performed using two

and three IoT devices with four and six subscribes and publishes, respectively. The results show that the

number of subscribes and publishes (i.e., Subscribe.Success and Connect.Success) were the same for

the IoT–Fog–Cloud architecture with and without the blockchain-based certificate model and reflect the

defined number of subscribes and publishes for two or three IoT devices. This is because when the fog

104

device distributed the certificates to the two or three IoT devices, those devices were authenticated

simultaneously to the fog device. Therefore, there was no sign of failure in the number of connects and

subscribes because the two or three IoT devices remained authenticated to the fog device and started

publishing messages. Moreover, the number of published messages (PublishIn.Success and

PublishOut.Success) for the IoT–Fog–Cloud architecture with and without the blockchain-based

certificate model also remained identical using two or three IoT devices; there was no loss in the number

of published messages, as there was no sign of failure in the number of connects and subscribes

(Connect.Success and Subscribe.Success) because the two or three IoT devices remain authenticated to

fog device and start publishing messages at the same time.

 Overall, we found that the performance of the IoT–Fog–Cloud architecture with and without

the blockchain-based certificate model was the same when using one, two, or three IoT devices. Thus,

there was no delay in the number of published messages for the IoT–Fog–Cloud architecture with the

blockchain-based certificate model, as shown in table 3. This is because the first layer of security

requirements, authentication, was proposed and added to the IoT–Fog–Cloud architecture, and it did not

affect its performance. This means that the IoT–Fog–Cloud architecture had improved performance and

security simultaneously.

5.6.2 IoT–Fog–Cloud architecture with access control model versus without access control model

 In this section, we evaluate the IoT–Fog–Cloud architecture with our access control model using

AWS cloud metrics, as shown in Table 5.3.

Table 5.3 AWS cloud message broker metrics results on N. Virginia datacenter (cloud layer) IoT–

Fog–Cloud architecture with access control model versus without access control model.

AWS IoT message broker metrics on N. Virginia datacenter (cloud

layer) using Python script – IoT–Fog–Cloud architecture without

access control model

AWS IoT message broker metrics on N. Virginia datacenter (cloud

layer) using Python script – IoT–Fog–Cloud architecture with

access control model

Number of IoT devices 1 Number of IoT devices 1

Number of subscribing &

publishing

2 Number of subscribing &

publishing

2

AWS IoT metrics in minutes (m) 0.

5

1 5 15 60 AWS IoT metrics in minutes (m) 0.

5

1 5 15 60

105

Connect.Success 2 2 2 2 2 Connect.Success 2 2 2 2 2

Ping.Success 2 2 8 29 120 Ping.Success 2 2 8 29 120

PublishIn.Success 44 4

4

206 586 236

0

PublishIn.Success 42 42 20

4

58

4

235

8

PublishOut.Success 44 4

4

206 586 236

0

PublishOut.Success 42 42 20

4

58

4

235

8

Subscribe.Success 2 2 2 2 2 Subscribe.Success 2 2 2 2 2

Unsubscribe.Success 2 2 2 2 2 Unsubscribe.Success 2 2 2 2 2

Number of IoT devices 2 Number of IoT devices 2

Number of subscribing &

publishing

4 Number of subscribing &

publishing

4

AWS IoT metrics in minutes 0.5 1 5 15 60 AWS IoT metrics in minutes 0.5 1 5 15 60

Connect.Success 4 4 4 4 4 Connect.Success 4 4 4 4 4

Ping.Success 2 2 8 29 120 Ping.Success 2 2 8 29 120

PublishIn.Success 70 7

0

350 111

0

4590 PublishIn.Success 68 68 34

8

110

8

458

8

PublishOut.Success 70 7

0

350 111

0

4590 PublishOut.Success 68 68 34

8

110

8

458

8

Subscribe.Success 4 4 4 4 4 Subscribe.Success 4 4 4 4 4

Unsubscribe.Success 4 4 4 4 4 Unsubscribe.Success 4 4 4 4 4

Number of IoT devices 3 Number of IoT devices 3

Number of subscribing &

publishing

6 Number of subscribing &

publishing

6

AWS IoT metrics in minutes 0.5 1 5 15 60 AWS IoT metrics in minutes 0.5 1 5 15 60

Connect.Success 6 6 6 6 6 Connect.Success 6 6 6 6 6

Ping.Success 2 2 9 29 119 Ping.Success 2 2 9 29 119

PublishIn.Success 115 115 54

8

166

0

651

0

PublishIn.Success 11

3

113 54

6

165

8

650

8

PublishOut.Success 115 115 54

8

166

0

651

0

PublishOut.Success 11

3

113 54

6

165

8

650

8

Subscribe.Success 6 6 6 6 6 Subscribe.Success 6 6 6 6 6

Unsubscribe.Success 6 6 6 6 6 Unsubscribe.Success 6 6 6 6 6

 The first experiment of the IoT–Fog–Cloud architecture was conducted using one IoT device.

We ran this experiment twice simultaneously, one instance without our access control model and the

other with the model. We used two subscribes and two publishes because the IoT device generated two

types of data: (1) temperature and (2) humidity data. The results show that the number of subscribes and

publishes (i.e., Subscribe.Success and Connect.Success) for the IoT–Fog–Cloud architecture with and

without the access control model were the same and reflect the defined number of subscribes and

publishes for one IoT device. This is because the connection of neither experiment (with vs. without the

access control model) was disconnected so the subscribe request was not lost. Although the first

experiment with the security model had a certificate in the authentication process of the IoT–Fog-Cloud

106

layers, it did not affect the number of subscribes and publishes. In contrast, the number of published

messages (PublishIn.Success and PublishOut.Success) for the IoT–Fog–Cloud architecture with the

access control model was slightly less than that of the architecture without the model. This is because

the IoT device performed some security operations that took one second for each sensor data type. Each

sensor data type (i.e., temperature data and humidity data) took one second to generate keys containing

a set of attributes and encrypt the generated sensor data type value with the corresponding key containing

its attribute.

 The second experiment of the IoT–Fog–Cloud architecture was performed by connecting two

IoT devices and making four subscribe and publish requests. This experiment was also run twice

simultaneously, with and without our access control model. The results show that the numbers of

subscribe and publish requests (i.e., Subscribe.Success and Connect.Success) for the IoT–Fog–Cloud

architecture with and without the access control model were the same for two IoT devices and match

the defined number of subscribe and publish requests for one IoT device. However, the number of

published messages (PublishIn.Success and PublishOut.Success) for the architecture with the access

control model was slightly less than that of the architecture without the model. This is because each of

the two IoT devices performed security operations, which took one second for each sensor data type

(i.e., temperature data or humidity data) for each of the two IoT devices. Each sensor data type (i.e.,

temperature data or humidity data) of each of the two IoT devices took one second to generate a key

containing a set of attributes and encrypt the generated sensor data type value with the corresponding

key containing its attribute.

 Overall, we found that the performance of the IoT–Fog–Cloud architecture without the access

control model was slightly better than that of the architecture with the model when using one, two, or

three IoT devices. However, when using one, two, or three IoT devices, the number of published

messages was delayed two seconds when using the access control model, as shown in table 3. This is

because the second layer of security requirements, authorization, was proposed and added to the IoT–

107

Fog–Cloud architecture. Therefore, this makes the IoT–Fog–Cloud architecture has a better performance

and security at the same time.

5.7 Conclusion

 In this paper, we proposed a blockchain-based certificate model and a fine-grained data access

control model based on ABE for the IoT–Fog–Cloud architecture using a real environment. The two

proposed models meet the authentication and authorization security requirements of the architecture.

We conducted several experiments and increased the numbers of IoT devices, subscribes, and publishes

in each experiment. We used AWS cloud metrics to evaluate the performance of the models based on

the following analysis methods. First, we compared the performance of the IoT–Fog–Cloud architecture

with and without the blockchain-based certificate model. Second, we compared the performance of the

architecture with and without the access control model. The results showed that the performance of the

IoT–Fog–Cloud architecture with and without the blockchain-based certificate model was the same

when using one, two, or three IoT devices. Furthermore, the performance of the IoT–Fog–Cloud

architecture without the access control model was slightly better than that of the architecture with the

model when using one, two, or three IoT devices. This work aimed to improve the performance and

security of the IoT–Fog–Cloud architecture.

108

Chapter 6: Conclusion

6.1 Main Conclusion and Future Works

 The fog layer provides a substantial benefit in cloud-based IoT applications because it can serve

as an aggregation layer and brings the computations near the IoT devices. However, it is important to

ensure performance in such applications, as they usually communicate frequently and authenticate with

the cloud. This can cause performance and availability issues, which can be dangerous in critical

applications such as the those used in the healthcare sector. Therefore, this research proposed two

architectures of cloud-based IoT environments and three analysis methods. The two proposed

architectures are evaluated based on the three analysis methods to show the efficacy of the fog layer in

different experiments in a real-world environment by examining performance metrics on the cloud and

fog layers using different numbers of IoT devices. In the first architecture, we used a fog layer between

IoT devices and the cloud, whereas in the second, IoT devices published data directly to the cloud. In

order to validate our results, we also examined two ways of implementing fog-aided IoT–cloud

environments, namely (1) bridging and (2) using a Python script to forward the data to the cloud. For

each architecture, we conducted several experiments and increased the number of IoT devices as well

as the number of subscribe and publish in each experiment. To evaluate the experimental performance,

we used two sets of benchmark metrics, namely (1) AWS message broker metrics and (2) Mosquitto

message broker metrics. The performance was evaluated based on the following analysis methods. First,

we compared the performance of the first and second architectures. Second, we compared the

performance of the two implementation frameworks of the fog-aided IoT environments (i.e., Python

script vs. bridging). Finally, to validate our results, the performance of the first architecture was analyzed

using Mosquitto metrics vs. AWS metrics. The results showed that the performance in the IoT–cloud

with a fog layer was significantly better than without the fog layer, as the number of IoT devices and

the number of subscribe and publish commands increased. The results also showed that the use of a

Python script or fog-aided IoT–cloud environment resulted in the same performance. The results of our

109

third analysis showed that as the number of IoT devices increased, the processability of the fog device

in the fog-aided IoT–cloud architectures outperformed that of the AWS cloud.

 To overcome the security challenges between the IoT layer and fog layer and, thus, meet the

security requirements, this research also proposed a blockchain-based certificate model and a fine-

grained data access control model based on ABE for the IoT–Fog–Cloud architecture using a real

environment. The two proposed models meet the authentication and authorization security requirements

of the architecture. We conducted several experiments and increased the numbers of IoT devices,

subscribes, and publishes in each experiment. We used AWS cloud metrics to evaluate the performance

of the models based on the following analysis methods. First, we compared the performance of the IoT–

Fog–Cloud architecture with and without the blockchain-based certificate model. Second, we compared

the performance of the architecture with and without the access control model. The results showed that

the performance of the IoT–Fog–Cloud architecture with and without the blockchainbased certificate

model was the same when using one, two, or three IoT devices. Furthermore, the performance of the

IoT–Fog–Cloud architecture without the access control model was slightly better than that of the

architecture with the model when using one, two, or three IoT devices. This work aimed to improve the

performance and security of the IoT–Fog–Cloud architecture.

For future works, we plan to apply the two proposed architecture of cloud-based IoT environment to

different types of sensors attached to the IoT devices and different cloud service providers and evaluate

the performance and security. Also, we plan to apply the two proposed architecture to the medical

domains and evaluate the performance and security.

6.2 list of publications

6.2.1 As a first author

[1] Paper title: Access Control in Fog Computing: Challenges and Research Agenda

Description: Journal paper published online by IEEE Access

110

Impact Factor: 3.367

Reference: M. A. Aleisa, A. Abuhussein and F. T. Sheldon, "Access Control in Fog Computing:

Challenges and Research Agenda," in IEEE Access, vol. 8, pp. 83986-83999, 2020, doi:

10.1109/ACCESS.2020.2992460.

[2] Paper title: Performance Analysis of Two Cloud-Based IoT Implementations: Empirical Study

Description: Conference paper in the 7th International Conference on Cyber Security and Cloud

Computing (CSCloud) and the 6th International Conference on Edge Computing and Scalable Cloud

(EdgeCom). published online by IEEE.

Reference: M. Aleisa, A. A. Hussein, F. Alsubaei and F. T. Sheldon, "Performance Analysis of Two

Cloud-Based IoT Implementations: Empirical Study," 2020 7th IEEE International Conference on Cyber

Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing

and Scalable Cloud (EdgeCom), 2020, pp. 276-280, DOI: 10.1109/CSCloud-EdgeCom49738.2020.00055

[3] Paper title: Examining Performance in Fog-Aided Cloud-Centered IoT in a Real-World Environment

Description: Journal paper published online by MDPI sensors

Impact Factor: 3.576

Reference: M. A. Aleisa, A. Abuhussein, F. S. Alsubaei, and F. T. Sheldon, “Examining the Performance

of Fog-Aided, Cloud-Centered IoT in a Real-World Environment,” Sensors, vol. 21, no. 21, p. 6950, Oct.

2021, doi: 10.3390/s21216950

111

[4] Paper title: Novel Security Models for IoT-Fog-Cloud Architectures in a Real-World Environment

Description: Journal paper submitted online to MDPI sensors

Impact Factor: 3.576

Reference: M. A. Aleisa, A. Abuhussein, F. S. Alsubaei, and F. T. Sheldon, “Novel Security Models for

IoT-Fog-Cloud Architectures in a Real-World Environment,” Sensors, vol. 21, no. 21, p. 6950, Mar.

2022.

112

References

[1] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A toolkit for modeling

and simulation of resource management techniques in the Internet of Things, Edge and Fog

computing environments,” Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296,

Sep. 2017, doi: 10.1002/spe.2509.

[2] Fog Computing. (2015). Fog Computing and the Internet of Things: Extend the Cloud to Where

the Things Are. [Online]. Available:

https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computingoverview.pdf.

[3] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. Goren, and C. Mahmoudi, “Fog computing

conceptual model,” National Institute of Standards and Technology, Gaithersburg, MD, NIST

SP 500-325, Mar. 2018. doi: 10.6028/NIST.SP.500-325.

[4] A. Abuhussein, H. Bedi, and S. Shiva, “Evaluating security and privacy in cloud computing

services: A Stakeholder’s perspective,” in 2012 International Conference for Internet

Technology and Secured Transactions, Dec. 2012, pp. 388–395.

[5] A. Abuhussein, F. Alsubaei, and S. Shiva, “Toward an Effective Requirement Engineering

Approach for Cloud Applications,” in Software Engineering in the Era of Cloud Computing,

M. Ramachandran and Z. Mahmood, Eds. Cham: Springer International Publishing, 2020, pp.

29–50. doi: 10.1007/978-3-030-33624-0_2.

[6] R. K. Naha et al., “Fog Computing: Survey of Trends, Architectures, Requirements, and

Research Directions,” IEEE Access, vol. 6, pp. 47980–48009, 2018, doi:

10.1109/ACCESS.2018.2866491.

[7] R. K. Naha, S. Garg, and A. Chan, “Fog Computing Architecture: Survey and Challenges,”

arXiv:1811.09047 [cs], Nov. 2018, Accessed: Jan. 28, 2020. [Online]. Available:

http://arxiv.org/abs/1811.09047

[8] P. Zhang, J. K. Liu, F. R. Yu, M. Sookhak, M. H. Au, and X. Luo, “A Survey on Access

Control in Fog Computing,” IEEE Commun. Mag., vol. 56, no. 2, pp. 144–149, Feb. 2018, doi:

10.1109/MCOM.2018.1700333.

[9] M. Aazam and E.-N. Huh, “Fog Computing Micro Datacenter Based Dynamic Resource

Estimation and Pricing Model for IoT,” in 2015 IEEE 29th International Conference on

Advanced Information Networking and Applications, Gwangiu, South Korea, Mar. 2015, pp.

687–694. doi: 10.1109/AINA.2015.254.

113

[10] J. Dizdarevic, F. Carpio, A. Jukan, and X. Masip-Bruin, “Survey of Communication Protocols

for Internet-of-Things and Related Challenges of Fog and Cloud Computing Integration,” ACM

Comput. Surv., vol. 51, no. 6, pp. 1–29, Feb. 2019, doi: 10.1145/3292674.

[11] F. Alsubaei, A. Abuhussein, and S. Shiva, “An Overview of Enabling Technologies for the

Internet of Things,” in Internet of Things A to Z, John Wiley & Sons, Ltd, 2018, pp. 77–112.

doi: 10.1002/9781119456735.ch3.

[12] Q. Wang, D. Chen, N. Zhang, Z. Ding, and Z. Qin, “PCP: A Privacy-Preserving Content-Based

Publish–Subscribe Scheme With Differential Privacy in Fog Computing,” IEEE Access, vol. 5,

pp. 17962–17974, 2017, doi: 10.1109/ACCESS.2017.2748956.

[13] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog Computing: Platform and Applications,” in 2015 Third

IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), Washington DC,

DC, USA, Nov. 2015, pp. 73–78. doi: 10.1109/HotWeb.2015.22.

[14] A. Ahmed et al., “Fog Computing Applications: Taxonomy and Requirements,”

arXiv:1907.11621 [cs], Jul. 2019, Accessed: Jan. 28, 2020. [Online]. Available:

http://arxiv.org/abs/1907.11621

[15] Y. Guan, J. Shao, G. Wei, and M. Xie, “Data Security and Privacy in Fog Computing,” IEEE

Network, vol. 32, no. 5, pp. 106–111, Sep. 2018, doi: 10.1109/MNET.2018.1700250.

[16] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing: architecture, key

technologies, applications and open issues,” Journal of Network and Computer Applications,

vol. 98, pp. 27–42, Nov. 2017, doi: 10.1016/j.jnca.2017.09.002.

[17] Z. Wan, “Cloud Computing infrastructure for latency sensitive applications,” in 2010 IEEE

12th International Conference on Communication Technology, Nanjing, China, Nov. 2010, pp.

1399–1402. doi: 10.1109/ICCT.2010.5689022.

[18] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and Q. Yang ‘‘A hierarchical distributed fog

computing architecture for big data analysis in smart cities,’’ in Proc. ASE BigData

SocialInformatics, 2015, pp. 1–6.

[19] F. Y. Okay and S. Ozdemir, “A fog computing based smart grid model,” in 2016 International

Symposium on Networks, Computers and Communications (ISNCC), Yasmine Hammamet,

Tunisia, May 2016, pp. 1–6. doi: 10.1109/ISNCC.2016.7746062.

[20] S. Khan, S. Parkinson, and Y. Qin, “Fog computing security: a review of current applications

and security solutions,” J Cloud Comp, vol. 6, no. 1, p. 19, Dec. 2017, doi: 10.1186/s13677-

017-0090-3.

[21] K. Lee, D. Kim, D. Ha, U. Rajput, and H. Oh, “On security and privacy issues of fog

computing supported Internet of Things environment,” in 2015 6th International Conference on

114

the Network of the Future (NOF), Montreal, QC, Canada, Sep. 2015, pp. 1–3. doi:

10.1109/NOF.2015.7333287.

[22] I. Stojmenovic and S. Wen, ‘‘The fog computing paradigm: Scenarios and security issues,’’ in

Proc. Federated Conf. Comput. Sci. Inf. Syst., Sep. 2014, pp. 1–8.

[23] G. Rahman and C. C. Wen, “Fog Computing, Applications, Security and Challenges, Review,”

IJET, vol. 7, no. 3, p. 1615, Jul. 2018, doi: 10.14419/ijet.v7i3.12612.

[24] Y. Miao, J. Ma, X. Liu, J. Weng, H. Li, and H. Li, “Lightweight Fine-Grained Search Over

Encrypted Data in Fog Computing,” IEEE Trans. Serv. Comput., vol. 12, no. 5, pp. 772–785,

Sep. 2019, doi: 10.1109/TSC.2018.2823309.

[25] P. Zhang, Z. Chen, J. K. Liu, K. Liang, and H. Liu, “An efficient access control scheme with

outsourcing capability and attribute update for fog computing,” Future Generation Computer

Systems, vol. 78, pp. 753–762, Jan. 2018, doi: 10.1016/j.future.2016.12.015.

[26] J. Sun, X. Wang, S. Wang, and L. Ren, “A searchable personal health records framework with

fine-grained access control in cloud-fog computing,” PLoS ONE, vol. 13, no. 11, p. e0207543,

Nov. 2018, doi: 10.1371/journal.pone.0207543.

[27] “Health Information Privacy | HHS.gov.” https://www.hhs.gov/hipaa/index.html (accessed

Mar. 14, 2020).

[28] W. Stallings and L. Brown, “Computer Security: Principles and Practice, 4th Edition.”

/content/one-dot-com/one-dot-com/us/en/higher-education/program.html (accessed Jan. 28,

2020).

[29] M. Mammass and F. Ghadi, “Access Control models: State of the art and comparative study,”

in 2014 Second World Conference on Complex Systems (WCCS), Agadir, Morocco, Nov. 2014,

pp. 431–435. doi: 10.1109/ICoCS.2014.7060973.

[30] N. Smyth, Security+ Essentials. eBookFrenzy, 2010. [Online]. Available:

http://www.lulu.com/shop/neil-smyth/security-essentials/ebook/product-12565906.html

[31] K. Yang, X. Jia, K. Ren, and B. Zhang, “DAC-MACS: Effective data access control for multi-

authority cloud storage systems,” in 2013 Proceedings IEEE INFOCOM, Turin, Italy, Apr.

2013, pp. 2895–2903. doi: 10.1109/INFCOM.2013.6567100.

[32] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog Computing: A Taxonomy, Survey and Future

Directions,” in Internet of Everything, B. Di Martino, K.-C. Li, L. T. Yang, and A. Esposito,

Eds. Singapore: Springer Singapore, 2018, pp. 103–130. doi: 10.1007/978-981-10-5861-5_5.

[33] K. Vohra and M. Dave, “Multi-Authority Attribute Based Data Access Control in Fog

Computing,” Procedia Computer Science, vol. 132, pp. 1449–1457, 2018, doi:

10.1016/j.procs.2018.05.078.

115

[34] Q. Huang, Y. Yang, and L. Wang, “Secure Data Access Control With Ciphertext Update and

Computation Outsourcing in Fog Computing for Internet of Things,” IEEE Access, vol. 5, pp.

12941–12950, 2017, doi: 10.1109/ACCESS.2017.2727054.

[35] F. Alsubaei, A. Abuhussein, and S. Shiva, “Ontology-Based Security Recommendation for the

Internet of Medical Things,” IEEE Access, vol. 7, pp. 48948–48960, 2019, doi:

10.1109/ACCESS.2019.2910087.

[36] A. Abuhussein, S. Shiva, and F. T. Sheldon, “CSSR: Cloud Services Security Recommender,”

in 2016 IEEE World Congress on Services (SERVICES), Jun. 2016, pp. 48–55. doi:

10.1109/SERVICES.2016.13.

[37] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and Secure Sharing of Personal Health

Records in Cloud Computing Using Attribute-Based Encryption,” IEEE Trans. Parallel

Distrib. Syst., vol. 24, no. 1, pp. 131–143, Jan. 2013, doi: 10.1109/TPDS.2012.97.

[38] Z. Zhou and D. Huang, “Efficient and secure data storage operations for mobile cloud

computing,” p. 9.

[39] M. R. Asim, M. Petkovic, and T. Ignatenko, “Attribute-based encryption with encryption and

decryption outsourcing,” 2014, pp. 21–28. doi: 10.4225/75/57b65cc3343d0.

[40] C. Zuo, J. Shao, G. Wei, M. Xie, and M. Ji, “CCA-secure ABE with outsourced decryption for

fog computing,” Future Generation Computer Systems, vol. 78, pp. 730–738, Jan. 2018, doi:

10.1016/j.future.2016.10.028.

[41] E. Fujisaki and T. Okamoto, “Secure Integration of Asymmetric and Symmetric Encryption

Schemes,” J Cryptol, vol. 26, no. 1, pp. 80–101, Jan. 2013, doi: 10.1007/s00145-011-9114-1.

[42] R. Canetti, S. Halevi, and J. Katz, “Chosen-Ciphertext Security from Identity-Based

Encryption,” Springer, Berlin, Heidelberg, vol. 3027, p. 16, 2004, doi:

https://doi.org/10.1007/978-3-540-24676-3_13.

[43] A. Alrawais, A. Alhothaily, C. Hu, X. Xing, and X. Cheng, “An Attribute-Based Encryption

Scheme to Secure Fog Communications,” IEEE Access, vol. 5, pp. 9131–9138, 2017, doi:

10.1109/ACCESS.2017.2705076.

[44] M. Mukherjee et al., “Security and Privacy in Fog Computing: Challenges,” IEEE Access, vol.

5, pp. 19293–19304, 2017, doi: 10.1109/ACCESS.2017.2749422.

[45] F. Alsubaei, A. Abuhussein, and S. Shiva, “Security and Privacy in the Internet of Medical

Things: Taxonomy and Risk Assessment,” in 2017 IEEE 42nd Conference on Local Computer

Networks Workshops (LCN Workshops), Oct. 2017, pp. 112–120. doi:

10.1109/LCN.Workshops.2017.72.

116

[46] F. Alsubaei, A. Abuhussein, V. Shandilya, and S. Shiva, “IoMT-SAF: Internet of Medical

Things Security Assessment Framework,” Internet of Things, vol. 8, p. 100123, Dec. 2019, doi:

10.1016/j.iot.2019.100123.

[47] S. Yi, Z. Qin, and Q. Li, ‘‘Security and privacy issues of fog computing: A survey,’’ in Proc.

Int. Conf. Wireless Algorithms, Syst., Appl., 2015, pp. 685–695.

[48] I. Stojmenovic, S. Wen, X. Huang, and H. Luan, “An overview of Fog computing and its

security issues,” Concurrency and Computation: Practice and Experience, vol. 28, no. 10, pp.

2991–3005, Jul. 2016, doi: 10.1002/cpe.3485.

[49] N. Abubaker, L. Dervishi, and E. Ayday, “Privacy-preserving fog computing paradigm,” in

2017 IEEE Conference on Communications and Network Security (CNS), Las Vegas, NV, Oct.

2017, pp. 502–509. doi: 10.1109/CNS.2017.8228709.

[50] M. A. Ferrag, A. Derhab, L. Maglaras, M. Mukherjee, and H. Janicke, “Privacy-preserving

Schemes for Fog-based IoT Applications: Threat models, Solutions, and Challenges,” in 2018

International Conference on Smart Communications in Network Technologies (SaCoNeT), El

Oued, Oct. 2018, pp. 37–42. doi: 10.1109/SaCoNeT.2018.8585538.

[51] Y. Zhang et al., “Privacy-Preserving Data Aggregation against False Data Injection Attacks in

Fog Computing,” Sensors, vol. 18, no. 8, p. 2659, Aug. 2018, doi: 10.3390/s18082659.

[52] K. Xue, J. Hong, Y. Ma, D. S. L. Wei, P. Hong, and N. Yu, “Fog-Aided Verifiable Privacy

Preserving Access Control for Latency-Sensitive Data Sharing in Vehicular Cloud

Computing,” IEEE Network, vol. 32, no. 3, pp. 7–13, May 2018, doi:

10.1109/MNET.2018.1700341.

[53] H. Wang, D. He, J. Shen, Z. Zheng, C. Zhao, and M. Zhao, “Verifiable outsourced ciphertext-

policy attribute-based encryption in cloud computing,” Soft Comput, vol. 21, no. 24, pp. 7325–

7335, Dec. 2017, doi: 10.1007/s00500-016-2271-2.

[54] K. Fan, J. Wang, X. Wang, H. Li, and Y. Yang, “A Secure and Verifiable Outsourced Access

Control Scheme in Fog-Cloud Computing,” Sensors, vol. 17, no. 7, p. 1695, Jul. 2017, doi:

10.3390/s17071695.

[55] Q. Xu, C. Tan, Z. Fan, W. Zhu, Y. Xiao, and F. Cheng, “Secure Data Access Control for Fog

Computing Based on Multi-Authority Attribute-Based Signcryption with Computation

Outsourcing and Attribute Revocation,” Sensors, vol. 18, no. 5, p. 1609, May 2018, doi:

10.3390/s18051609.

[56] X. Mao, J. Lai, Q. Mei, K. Chen, and J. Weng, “Generic and Efficient Constructions of

Attribute-Based Encryption with Verifiable Outsourced Decryption,” IEEE Trans. Dependable

117

and Secure Comput., vol. 13, no. 5, pp. 533–546, Sep. 2016, doi:

10.1109/TDSC.2015.2423669.

[57] J. Li, X. Lin, Y. Zhang, and J. Han, “KSF-OABE: Outsourced Attribute-Based Encryption with

Keyword Search Function for Cloud Storage,” IEEE Trans. Serv. Comput., vol. 10, no. 5, pp.

715–725, Sep. 2017, doi: 10.1109/TSC.2016.2542813.

[58] M. A. Aleisa, A. Abuhussein, and F. T. Sheldon, “Access Control in Fog Computing:

Challenges and Research Agenda,” IEEE Access, vol. 8, pp. 83986–83999, May 2020, doi:

10.1109/ACCESS.2020.2992460.

[59] F. Alsubaei, A. Abuhussein, and S. Shiva, “An Overview of Enabling Technologies for the

Internet of Things,” in Internet of Things A to Z, Wiley-IEEE Press, 2018, pp. 77–112. doi:

10.1002/9781119456735.ch3.

[60] M. Arlitt, M. Marwah, G. Bellala, A. Shah, J. Healey, and B. Vandiver, “IoTAbench: an

Internet of Things Analytics Benchmark,” in Proceedings of the 6th ACM/SPEC International

Conference on Performance Engineering - ICPE ’15, Austin, Texas, USA, 2015, pp. 133–144.

doi: 10.1145/2668930.2688055.

[61] A. Das, S. Patterson, and M. Wittie, “EdgeBench: Benchmarking Edge Computing Platforms,”

in 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion

(UCC Companion), Zurich, Dec. 2018, pp. 175–180. doi: 10.1109/UCC-

Companion.2018.00053.

[62] T. Hao et al., “Edge AIBench: Towards Comprehensive End-to-End Edge Computing

Benchmarking,” in Benchmarking, Measuring, and Optimizing, vol. 11459, C. Zheng and J.

Zhan, Eds. Cham: Springer International Publishing, 2019, pp. 23–30. doi: 10.1007/978-3-030-

32813-9_3.

[63] M. Poess, R. Nambiar, K. Kulkarni, C. Narasimhadevara, T. Rabl, and H.-A. Jacobsen,

“Analysis of TPCx-IoT: The First Industry Standard Benchmark for IoT Gateway Systems,” in

2018 IEEE 34th International Conference on Data Engineering (ICDE), Paris, Apr. 2018, pp.

1519–1530. doi: 10.1109/ICDE.2018.00170.

[64] “AWS IoT - Amazon Web Services,” Amazon Web Services, Inc. https://aws.amazon.com/iot/

(accessed Nov. 20, 2020).

[65] Amazon Web Services, Inc. Amazon CloudWatch - User Guide. (2020). Accessed: May 15,

2020. [Online]. Available:

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/acw-ug.pdf.

[66] Amazon Web Services, Inc., “AWS IoT - Developer Guide.” Accessed: May 15, 2020. [Online].

Available: https://docs.aws.amazon.com/iot/latest/developerguide/iot-dg.pdf

118

[67] A. A. Ismail, H. S. Hamza, and A. M. Kotb, “Performance Evaluation of Open Source IoT

Platforms,” in 2018 IEEE Global Conference on Internet of Things (GCIoT), Alexandria,

Egypt, Dec. 2018, pp. 1–5. doi: 10.1109/GCIoT.2018.8620130.

[68] Transaction Processing Performance Council (TPC). TPC Express Benchmark IoT (TPCx-IoT)

Standard Specification Version 1.0.5. (2020). Accessed: May 15, 2020. [Online]. Available:

http://www.tpc.org/tpc_documents_current_versions/pdf/tpcx-iot_v1.0.5.pdf

[69] B. Boyd et al., Building Realtime Mobile Solutions with MQTT and IBM MessageSight.

Poughkeepsie, NY, USA: IBM Redbooks, 2014. Accessed: May 15, 2020. [Online]. Available:

http://www.redbooks.ibm.com/redbooks/pdfs/sg248228.pdf

[70] Shinho Lee, Hyeonwoo Kim, Dong-kweon Hong, and Hongtaek Ju, “Correlation analysis of

MQTT loss and delay according to QoS level,” in The International Conference on Information

Networking 2013 (ICOIN), Bangkok, Jan. 2013, pp. 714–717. doi:

10.1109/ICOIN.2013.6496715.

[71] A. Industries, “DHT11 basic temperature-humidity sensor + extras.”

https://www.adafruit.com/product/386 (accessed May 15, 2020).

[72] Raspberry Pi Foundation. “Buy a Raspberry Pi 3 Model B – Raspberry Pi.” Accessed: May 15,

2020. [Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[73] K. Albulayhi, A. Abuhussein, F. Alsubaei, and F. T. Sheldon, “Fine-Grained Access Control in

the Era of Cloud Computing: An Analytical Review,” in 2020 10th Annual Computing and

Communication Workshop and Conference (CCWC), Jan. 2020, pp. 0748–0755. doi:

10.1109/CCWC47524.2020.9031179.

[74] F. Alsubaei, A. Abuhussein, V. Shandilya, and S. Shiva, “IoMT-SAF: Internet of Medical

Things Security Assessment Framework,” Internet of Things, vol. 8, p. 100123, Dec. 2019, doi:

10.1016/j.iot.2019.100123.

[75] M. Aleisa, A. A. Hussein, F. Alsubaei, and F. T. Sheldon, “Performance Analysis of Two

Cloud-Based IoT Implementations: Empirical Study,” in 2020 7th IEEE International

Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International

Conference on Edge Computing and Scalable Cloud (EdgeCom), New York, NY, USA, Aug.

2020, pp. 276–280. doi: 10.1109/CSCloud-EdgeCom49738.2020.00055.

[76] Fog Computing. (2015). Fog Computing and the Internet of Things: Extend the Cloud to Where

the Things Are. [Online]. Available:

https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computingoverview.pdf

119

[77] J. Ni, K. Zhang, X. Lin, and X. Shen, “Securing Fog Computing for Internet of Things

Applications: Challenges and Solutions,” IEEE Communications Surveys Tutorials, vol. 20, no.

1, pp. 601–628, Firstquarter 2018, doi: 10.1109/COMST.2017.2762345.

[78] “What is an IoT Platform & What Role Does it Play In Your Business?,” AT&T Business.

/content/attbusiness/en/learn/research-reports/whats-an-iot-platform-and-what-role-does-it-

play.html (accessed Feb. 13, 2021).

[79] “AWS IoT Core Overview - Amazon Web Services,” Amazon Web Services, Inc.

https://aws.amazon.com/iot-core/ (accessed Feb. 13, 2021).

[80] “Azure IoT – Internet of Things Platform | Microsoft Azure.” https://azure.microsoft.com/en-

us/overview/iot/ (accessed Feb. 13, 2021).

[81] “Internet of Things | IBM.” https://www.ibm.com/cloud/internet-of-things (accessed Feb. 13,

2021).

[82] “Cloud IoT Core,” Google Cloud. https://cloud.google.com/iot-core (accessed Feb. 13, 2021).

[83] “Home | IoTivity.” https://iotivity.org/ (accessed Feb. 13, 2021).

[84] “Zetta - An API-First Internet of Things (IoT) Platform - Free and Open Source Software,”

Zetta - An API-First Internet of Things (IoT) Platform - Free and Open Source Software.

https://www.zettajs.org/ (accessed Feb. 13, 2021).

[85] “What is Arduino?” https://www.arduino.cc/en/Guide/Introduction (accessed Feb. 13, 2021).

[86] “DeviceHive - Open Source IoT Data Platform with the wide range of integration options.”

https://devicehive.com/ (accessed Feb. 13, 2021).

[87] “OpenRemote | The 100% Open Source IoT Platform,” OpenRemote. https://openremote.io/

(accessed Feb. 13, 2021).

[88] “WhatsApp,” WhatsApp.com. https://www.whatsapp.com/?lang=en (accessed Feb. 13, 2021).

[89] “Telegram – a new era of messaging,” Telegram. https://telegram.org/?setln=en (accessed Feb.

14, 2021).

[90] H. Wang, D. Xiong, P. Wang, and Y. Liu, “A Lightweight XMPP Publish/Subscribe Scheme

for Resource-Constrained IoT Devices,” IEEE Access, vol. 5, pp. 16393–16405, 2017, doi:

10.1109/ACCESS.2017.2742020.

[91] S. Bendel, T. Springer, D. Schuster, A. Schill, R. Ackermann, and M. Ameling, “A service

infrastructure for the Internet of Things based on XMPP,” in 2013 IEEE International

Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops),

San Diego, CA, Mar. 2013, pp. 385–388. doi: 10.1109/PerComW.2013.6529522.

[92] A. Stanford-Clark and H. L. Truong, “MQTT For Sensor Networks (MQTT-SN) Protocol

Specification,” p. 28, 1999.

120

[93] “Home | AMQP.” https://www.amqp.org/ (accessed Feb. 28, 2021).

[94] N. Naik, “Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and

HTTP,” in 2017 IEEE International Systems Engineering Symposium (ISSE), Oct. 2017, pp. 1–

7. doi: 10.1109/SysEng.2017.8088251.

[95] Amazon Web Services, Inc., “AWS IoT - Developer Guide.” Accessed: May 15, 2020. [Online].

Available: https://docs.aws.amazon.com/iot/latest/developerguide/iot-dg.pdf

[96] Amazon Web Services, Inc. Amazon CloudWatch - User Guide. (2020). Accessed: May 15,

2020. [Online]. Available:

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/acw-ug.pdf

[97] “Eclipse Mosquitto,” Eclipse Mosquitto, Jan. 08, 2020. https://mosquitto.org/ (accessed Nov.

20, 2020).

[98] “Messaging that just works — RabbitMQ.” https://www.rabbitmq.com/ (accessed Feb. 13,

2021).

[99] “ActiveMQ.” https://activemq.apache.org/ (accessed Feb. 13, 2021).

[100] “Mosquitto man page,” Eclipse Mosquitto, Apr. 17, 2019. https://mosquitto.org/man/mosquitto-

8.html (accessed Nov. 21, 2020).

[101] “SPEC - Standard Performance Evaluation Corporation.” https://www.spec.org/ (accessed Dec.

12, 2020).

[102] “TPC-Homepage.” http://tpc.org/ (accessed Dec. 12, 2020).

[103] “tpcx-iot_v1.0.5.pdf.” Accessed: Nov. 20, 2020. [Online]. Available:

http://tpc.org/tpc_documents_current_versions/pdf/tpcx-iot_v1.0.5.pdf

[104] E. Vanneback, “Using the Mosquitto implementation in an embedded environment,” p. 56.

[105] S. Maksuti, O. Schluga, G. Settanni, M. Tauber, and J. Delsing, “Self-Adaptation Applied to

MQTT via a Generic Autonomic Management Framework,” in 2019 IEEE International

Conference on Industrial Technology (ICIT), Melbourne, Australia, Feb. 2019, pp. 1179–1185.

doi: 10.1109/ICIT.2019.8754937.

[106] M. Aazam, S. Zeadally, and K. A. Harras, “Fog Computing Architecture, Evaluation, and

Future Research Directions,” IEEE Communications Magazine, vol. 56, no. 5, pp. 46–52, May

2018, doi: 10.1109/MCOM.2018.1700707.

[107] S. E. Kafhali, K. Salah, and S. B. Alla, “Performance Evaluation of IoT-Fog-Cloud

Deployment for Healthcare Services,” in 2018 4th International Conference on Cloud

Computing Technologies and Applications (Cloudtech), Nov. 2018, pp. 1–6. doi:

10.1109/CloudTech.2018.8713355.

121

[108] P. H. Vilela, J. J. P. C. Rodrigues, P. Solic, K. Saleem, and V. Furtado, “Performance

evaluation of a Fog-assisted IoT solution for e-Health applications,” Future Generation

Computer Systems, vol. 97, pp. 379–386, Aug. 2019, doi: 10.1016/j.future.2019.02.055.

[109] J. McChesney, N. Wang, A. Tanwer, E. de Lara, and B. Varghese, “DeFog: Fog Computing

Benchmarks,” arXiv:1907.10890 [cs], Jul. 2019, Accessed: Dec. 12, 2020. [Online]. Available:

http://arxiv.org/abs/1907.10890

[110] A. Industries, “DHT11 basic temperature-humidity sensor + extras.”

https://www.adafruit.com/product/386 (accessed Nov. 20, 2020).

[111] Raspberry Pi Foundation. “Buy a Raspberry Pi 3 Model B – Raspberry Pi.” Accessed: May 15,

2020. [Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[112] “Software.” https://www.arduino.cc/en/software (accessed Feb. 13, 2021).

[113] “How to Bridge Mosquitto MQTT Broker to AWS IoT,” Amazon Web Services, May 04, 2020.

https://aws.amazon.com/blogs/iot/how-to-bridge-mosquitto-mqtt-broker-to-aws-iot/ (accessed

Feb. 13, 2021).

[114] M. N. Birje and C. Bulla, “Commercial and Open Source Cloud Monitoring Tools: A Review,”

in Advances in Decision Sciences, Image Processing, Security and Computer Vision, vol. 3, S.

C. Satapathy, K. S. Raju, K. Shyamala, D. R. Krishna, and M. N. Favorskaya, Eds. Cham:

Springer International Publishing, 2020, pp. 480–490. doi: 10.1007/978-3-030-24322-7_59.

[115] M. S. Aslanpour, S. S. Gill, and A. N. Toosi, “Performance evaluation metrics for cloud, fog

and edge computing: A review, taxonomy, benchmarks and standards for future research,”

Internet of Things, vol. 12, p. 100273, Dec. 2020, doi: 10.1016/j.iot.2020.100273.

[116] A. Stephen, S. Benedict, and R. P. A. Kumar, “Monitoring IaaS using various cloud monitors,”

Cluster Comput, vol. 22, no. S5, pp. 12459–12471, Sep. 2019, doi: 10.1007/s10586-017-1657-

y.

[117] P. Jutadhamakorn, T. Pillavas, V. Visoottiviseth, R. Takano, J. Haga, and D. Kobayashi, “A

Scalable and Low-Cost MQTT Broker Clustering System,” p. 5, 2017.

[118] G. Nebbione and M. C. Calzarossa, “Security of IoT Application Layer Protocols: Challenges

and Findings,” Future Internet, vol. 12, no. 3, p. 55, Mar. 2020, doi: 10.3390/fi12030055.

[119] K. Yunana, A. A. Alfa, S. Misra, R. Damasevicius, R. Maskeliunas, and J. Oluranti, “Internet

of Things: Applications, Adoptions and Components - A Conceptual Overview,” in Hybrid

Intelligent Systems, Cham, 2021, pp. 494–504. doi: 10.1007/978-3-030-73050-5_50.

[120] W. Zhou, Y. Jia, A. Peng, Y. Zhang, and P. Liu, “The Effect of IoT New Features on Security

and Privacy: New Threats, Existing Solutions, and Challenges Yet to Be Solved,” IEEE

122

Internet of Things Journal, vol. 6, no. 2, pp. 1606–1616, Apr. 2019, doi:

10.1109/JIOT.2018.2847733.

[121] Y. I. Alzoubi, V. H. Osmanaj, A. Jaradat, and A. Al-Ahmad, “Fog computing security and

privacy for the Internet of Thing applications: State-of-the-art,” SECURITY AND PRIVACY,

vol. 4, no. 2, p. e145, 2021, doi: 10.1002/spy2.145.

[122] M. A. Aleisa, A. Abuhussein, F. S. Alsubaei, and F. T. Sheldon, “Examining the Performance

of Fog-Aided, Cloud-Centered IoT in a Real-World Environment,” Sensors, vol. 21, no. 21, p.

6950, Jan. 2021, doi: 10.3390/s21216950.

[123] “The DDoS Attack on Dyn’s DNS Infrastructure.” https://www.thousandeyes.com/blog/dyn-

dns-ddos-attack/ (accessed Feb. 13, 2022).

[124] “A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy,

and Applications.” https://ieeexplore.ieee.org/abstract/document/7879243/ (accessed Feb. 13,

2022).

[125] A. A.-N. Patwary et al., “Authentication, Access Control, Privacy, Threats and Trust

Management Towards Securing Fog Computing Environments: A Review,” arXiv:2003.00395

[cs], Feb. 2020, Accessed: Feb. 13, 2022. [Online]. Available: http://arxiv.org/abs/2003.00395

[126] Raspberry Pi Foundation. “Buy a Raspberry Pi 3 Model B – Raspberry Pi.” Accessed: May 15,

2020. [Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[127] “Eclipse Mosquitto,” Eclipse Mosquitto, Jan. 08, 2018. https://mosquitto.org/ (accessed Feb.

13, 2022).

123

Appendix A: Awards and Honors

During my study at the University of Idaho, I have published three journal papers with high impact

factors and one conference paper. I have been eligible for funding the first journal paper from the

University of Idaho Open Access Publishing Fund (OAPF) for the year of 2020. Also, I have been

awarded for funding the second journal paper from the University of Idaho Open Access Publishing

Fund (OAPF) for the year of 2021. In addition, I have received a Travel Award for my conference paper

from the University of Idaho Graduate and Professional Student Association (GPSA) for the year of

2020. Moreover, I have been invited to be a reviewer for some journals such as IEEE Access, and Wiley.

