

Techniques for Enhancing Compiler Error Messages

A Dissertation

Presented in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

Sanaa M. Algaraibeh

Approved by:

Major Professor: Terence Soule, Ph.D.

Co-Major Professor: Clinton Jeffery, Ph.D.

Committee Members: Jim Alves-Foss, Ph.D.; Tonia Dousay, Ph.D.

Department Administrator: Terence Soule, Ph.D.

May 2023

ii

Abstract

Bottom-up parsing technology advanced and efficiently automated static analysis of source code but

raised the challenge of maintaining understandable communication between compilers and humans.

Reporting errors in the source code in a humanly understandable language is essential for the

efficiency of the software development process, especially for students learning programming. This

research improves compiler error messages for students in introductory programming courses at the

college level. This study of compiler error messages is written from the compiler writer's perspective.

Analysis of hundreds of erroneous programs in different parsing states led to designing 3-phase

parsing techniques that overcome some of the limitations of LR parsers in reporting friendly error

messages. 3-phase parsing prioritizes the parsing of the large code components over diving into all

the details. The first phase parses the functional structures and ignores errors in the syntax of the

smaller constructions. The second phase parses the control structures and ignores errors in the

expressions and other statements. The third phase parses the expressions and statements excluded

from phase two. The design gives more control over when and from which grammar rules to report

errors first. The design minimizes the number of states in the parser automaton since each phase

parses a subset of the language grammar.

We evaluated the new design with a human-subject control experiment. The experiment compares the

quality of syntax error messages of an educationally customized compiler EduCC with error messages

produced by GNU GCC and Microsoft Visual C++. EduCC implements the 3-phase parsing

techniques for a subset of C++ language. The participants were 53 Computer Science and

Engineering students at the New Mexico Institute of Mining and Technology. In a within-group

experiment design, the participants had to find errors and fix erroneous C++ programs. The

experiment shows that 3-phase parsing techniques improved the quality of syntax error messages

iii

Acknowledgments

I am incredibly grateful to my advisor, Dr. Clinton Jeffery. His kindness, expertise, and intellectual

legacy guided me and will always do. Likewise, I thank my advisor Dr. Terence Soule for his

guidance, instructions, and mentoring. Without their support, this work was not have been possible.

I thank my committee member and my educational mentor, Dr. Tonia Dousay. She is my inspiration.

In addition, I thank my committee member, Dr. Jim Alves-Foss, for his support and encouragement.

I thank my friends and fellows, Amruta Kale and Nael Radwan, for their support and help. Finally, I

would like to thank Amy Knowles and the other professors at the New Mexico Institute of Mining

and Technology who encouraged their students to participate in the experiment of this work.

iv

Dedication

I dedicate this work to my mother, who is with Alzheimer and still loves and asks about me.

To my sisters, especially Fatima and Alia, whose endless support and encouragement make this work

possible.

Finally, I dedicate this work to my brothers, nieces, and nephews, who are proud of what I

accomplished before I did it.

v

Table of Contents

Abstract .. ii

Acknowledgments ... iii

Dedication ... iv

Table of Contents ... v

List of Figures ... viii

List of Tables .. x

Statement of Contribution ... xi

Biography ... xii

Chapter 1: Introduction .. 1

1.1 Introduction .. 1

1.2 Dissertation Objective .. 1

1.3 Research Question .. 2

1.4 Methodology .. 2

1.5 Terminology ... 2

Chapter 2: Background and Related Works ... 4

2.1 Compiler error messages are often unhelpful ... 4

2.2 How should compiler report syntax errors .. 4

2.3 Can we overcome some limitations of the parser in generating better error messages? 6

2.4 Methodology and measurement of effectiveness of compiler error messages 7

Chapter 3: Integrated Learning Development Environment for Learning and Teaching C/C++

Language to Novice Programmers ... 10

3.1 Introduction .. 10

3.2 Challenges facing novice programmers ... 11

3.3 ILDE .. 13

3.5 Conclusion .. 18

Chapter 4: Analysis of Syntax Error Messages from the Learner’s Perspective 19

vi

4.1 Analysis of common errors in the syntax of the function body .. 19

4.2 Analysis of common errors in the syntax of the if statement ... 25

4.3 Analysis of common errors in the syntax of the for statement ... 29

4.4 Conclusion .. 33

Chapter 5: Engineering a Compiler for Better Error Messages .. 34

5.1 Introduction .. 34

5.2 Compiler ... 34

5.3 Parser .. 35

5.4 Error detection .. 38

5.5 New solution: 3-phase parsing techniques. .. 45

5.6 Implementation of the 3-phase parsing techniques in an Educationally Customized Compiler:

 .. 47

5.7 Sample error messages generated by EduCC ... 55

5.8 Conclusion .. 64

Chapter 6: Evaluation of Error Message Quality Enabled by 3-Phase Parsing Techniques 65

6.1 Introduction .. 65

6.2 Methodology .. 65

6.3 Results .. 73

6.4 Limitations .. 76

6.5 Conclusion .. 77

Chapter 7: Conclusion and Future Work .. 78

References .. 81

Appendices ... 84

Appendix A: Study Materials for Experimental Approach to Evaluate Messages Enabled by 3-Phase

Parsing Techniques ... 84

A.1 Invitation Letter ... 84

A.2 Consent Form .. 85

vii

A.3 Tasks .. 86

A.4 T-Test for (RQ1: Is there a significant difference between the quality of syntax error

messages generated by EduCC, GCC, and MSVC in finding syntax errors?) 92

A.5 T-Test for (RQ2: Is there a significant difference between the quality of syntax error

messages generated by EduCC, GCC, and MSVC in fixing syntax errors?) 93

A.6 T-Test (6.3.1 RQ2: Is there a significant difference between the quality of syntax error

messages generated by EduCC, GCC, and MSVC in the time-to-find and -fix?) 94

Appendix B : Source code of the EduCC ... 95

B.1 meta.err for parser 1 ... 95

B.2 meta.err for parser 2 ... 96

B.3 yyerror.c for parser 1 ... 97

B.4 berror.c for parser 2 ... 99

B.5 main.c ... 101

viii

List of Figures

Figure 3.1 Example of misconception: “uninitialized memory allocation.” .. 13

Figure 3.2 Example of memory visualization of for(i=1; i<=7; i++) weekly_product

+=daily product; ... 16

Figure 3.3 Example of CPU visualization. ... 17

Figure 4.1 Some C++ programs with common syntax errors of novice programmers: unbalanced

curly brackets. .. 20

Figure 4.2 Good quality syntax error messages reported by GCC and VC++on compilation of

prog1.cpp in Figure 4.1 .. 20

Figure 4.3 Bad quality syntax error messages reported by GCC and VC++on compilation of

prog2.cpp in Figure 4.1 .. 21

Figure 4.4 Bad quality syntax error messages reported by GCC and VC++ on compilation of

prog3.cpp in Figure 4.1 .. 22

Figure 4.5 Bad quality syntax error messages reported by GCC and VC++on compilation of

prog4.cpp in Figure 4.1 .. 22

Figure 4.6 The C++ programs From Figure 4.1 with drawings that clarify how a parser recognizes the

function body boundaries. .. 24

Figure 4.7 C++ programs with common syntax errors of novice programmers if statement header. .. 25

Figure 4.8 Bad quality syntax error messages reported by GCC and VC++on compilation of

prog5.cpp in Figure 4.7 .. 26

Figure 4.9 Bad quality syntax error messages reported by GCC and VC++on compilation of

prog6.cpp in Figure 4.7 .. 26

Figure 4.10 Bad quality syntax error messages reported by GCC and VC++ on compilation of

prog7.cpp in Figure 4.7 .. 27

Figure 4.11 Bad quality syntax error messages reported by GCC and VC++ on compilation of

prog8.cpp in Figure 4.7 .. 28

Figure 4.12 C++ programs with common syntax errors of novice programmers, for statement header.

 .. 29

Figure 4.13 Bad quality syntax error messages reported by GCC and VC++on compilation of

prog9.cpp in Figure 4.12 .. 30

Figure 4.14 Bad quality syntax error messages reported by GCC and VC++on compilation of

prog9.cpp in Figure 4.12 .. 31

ix

Figure 4.15 Bad quality syntax error messages reported by GCC and VC++on compilation of

prog11.cpp in Figure 4. 12 ... 31

Figure 4.16 Bad quality syntax error messages reported by GCC and VC++on compilation of

prog12.cpp in Figure 4.12 .. 32

Figure 5.1 Compiler architecture .. 34

Figure 5.2 Model of an LR parser [47] ... 37

Figure 5.3 State 0 of the automaton of the grammar in Figure 5.1... 42

Figure 5.4 State 2 of the automaton of the grammar in Figure 5.1.. 42

Figure 5.5 State 34 of the automaton of the grammar in Figure 5.1.. 44

Figure 6.1 Example of page three/four of the Qualtrics web page for the experiment. 71

Figure 6.2 Example of part two of the Qualtrics web page for the experiment.................................... 72

Figure 6.3 Participants’ answers for the question "Do the compiler error messages correctly give the

location (line) of the actual error?” .. 74

Figure 6.4 Participants’ answers for the question " Do the compiler error messages describe what is

the actual error?” .. 75

Figure 6.5 Participants’ answers for the question “Do the compiler error messages suggest how to fix

the error?”... 76

https://d.docs.live.net/19ccee8106b38b2c/Documents/Dissertation%20Draft.docx#_Toc133588976
https://d.docs.live.net/19ccee8106b38b2c/Documents/Dissertation%20Draft.docx#_Toc133588977
https://d.docs.live.net/19ccee8106b38b2c/Documents/Dissertation%20Draft.docx#_Toc133588978
https://d.docs.live.net/19ccee8106b38b2c/Documents/Dissertation%20Draft.docx#_Toc133588979

x

List of Tables

Table 6.1 Age and gender of the participants. .. 66

Table 6.2 The participants programming experiences. ... 67

Table 6.3 The groups, programs, compiler, type of error, and number of respondents. 70

Table 6.4 Success rate of answering the question “what is the error in the program?” 74

Table 6.5 Success rate of answering the question “in which line is the error?” 74

Table 6.6 Success rate of answering the question “what is the cause of the error?” 74

Table 6.7 Success rate of answering the question “how to fix the error?" ... 75

xi

Statement of Contribution

The work described in Chapter 3 was primarily the work and authorship of Sanaa Algaraibeh. Dr.

Clinton Jeffery and Dr. Dousay acting in their role as Major Professor and Committee member gave

input on advising and reviewing the draft versions of the chapter.

xii

Biography

Sanaa Algaraibeh is an instructor at the New Mexico Institute of Mining and Technology. She

worked in academia for 14+ years as a lecturer, trainer, team leader, instructional designer, and CS

department chair at universities in Jordan and Saudi Arabia. She teaches Internet and Web

Programming, Object-Oriented Programming, Python for Data Science, and Introduction to

Programming. Her area of scholarship is computer science education. She is interested in developing

computational solutions integrated with modern pedagogy.

1

Chapter 1: Introduction

1.1 Introduction

Programming is a required competency in the journey of computer science students and for students

in related fields. Some students start learning to program in high school or earlier. They need to have

skills in converting real-life problems into computer solutions. They need to understand the notional

machine, the syntax, and semantics of one or more programming languages, develop problem-

solving skills, design solutions, write code, and debug their code. Many college CS curricula begin

with C++ or Java in their first courses for majors, and with good reason. But the relative difficulty of

these languages makes the need for an educationally customized compiler greater than it is in "easier"

first languages. The C++ language and its family of languages, like Java, are designed to be strict and

precise and are meant for expert programmers, not for novices.

Background and related works are presented in Chapter Two. Chapter Three presents our educational

development environment for C/C++. Chapter Four gives an analysis of the quality of syntax error

messages. Chapter Five presents a new solution, a 3-phase parsing technique to help generate better

error messages. Chapter Six presents an experimental design that evaluates the quality of syntax error

messages generated by a compiler implementing the proposed technique. Finally, Chapter Seven

summarizes the results of the dissertation.

1.2 Dissertation Objective

The objective of this dissertation is to enhance compiler error messages to be more helpful to learners.

To do this, the design of a 3-phase parsing technique is presented that overcomes some the limitations

of how parsers report errors.

The goals to achieve the dissertation objective are:

• Investigate the challenges that face novice programmers.

• Design a solution to the limitation of parsers in reporting syntax error messages.

“To err is human;

to fix is divine.”

2

• Evaluate the quality of syntax error messages of an educationally customized compiler

compared to mainstream compilers by testing whether the compiler messages help learners

find and fix syntax errors.

 1.3 Research Question

 Can modified parsing techniques help in generating better syntax error messages?

1.4 Methodology

This study begins by reviewing the common errors of novice programmers in the literature for C++

language and languages from the same family, such as Java. Next, it analyzes how popular compilers

used in introductory courses report these common errors. Then, it presents the design of a 3-phase

parsing technique that can be applied to many programming languages. The prototype for a compiler

that uses the proposed 3-phase parsing technique for C++ is presented. Finally, an experiment is

conducted to test whether the proposed parsing technique enhances the quality of syntax error

messages.

1.5 Terminology

Syntax error: a parsing failure during the validation of code against the rules of the language

grammar. The compiler judges whether the source code follows the rules or not; if not, it has a syntax

error. So, if a program has an error in the structure, such as missing or extra token(s), or if the order of

tokens is incorrect, the source code has one or more syntax errors. If the source code has an error, the

compiler stops the compilation process and tells the user about the errors.

Syntax error message: a message from a compiler to a user reporting a syntax error.

Quality of syntax error message: syntax error message can be classified as bad, good, or innovative.

The following definitions are inspired by the software engineering definition of quality [1].

Bad quality: a syntax error message does not deliver what the average programmer expects the

message to have. So, if the message is incorrect or not understandable, it is a bad message. This level

of quality confuses and misleads programmers, especially novices.

Good quality: the syntax error message achieves the basic requirements of error messages. It is

sufficient to help the programmer in finding and fixing a syntax error.

Innovative quality: the syntax error message exceeds good quality by incorporating one or more

novel values or features. For example, it may have tailored error messages to different programmer

levels, such as novice or expert.

3

Core elements from proposal of this dissertation were presented and published at the ACM

Conference on International Computing Education Research (ICER) doctoral consortium in August

2022, Lugano, Switzerland. Also, it received feedback from the ICER community [2]. Some of their

research is discussed in Section 2.4 of the literature chapter.

4

Chapter 2: Background and Related Works

A compiler is a communication tool; one of its primary roles is to detect errors and report those errors

in understandable messages. Today’s state-of-the-art compilers are efficient but still give poor error

messages for common syntax errors. In general, human-computer interaction research recommends

that a software system should help users recognize, diagnose, and recover from errors. Molich and

Nielsen assert that “Any system designed for people to use should be easy to learn and remember,

effective, and pleasant to use” [3]. For programmers, especially novices, it is important that the

compiler provides helpful error messages to enable them to correct their erroneous programs.

Mainstream compilers sometimes give good error messages for common syntax errors, but sometimes

they behave in strange ways, even for the same type of errors. Section 4.2 gives an in-depth example

of this type of troublesome behavior. These messages often confuse learners and make fixing errors

harder.

2.1 Compiler error messages are often unhelpful

In 2014, a study conducted at Google found that expert developers spent significant time and effort

correcting common compiling errors. The study analyzed 26.6 million builds of software written in

C++ and Java languages and involved 18,000 developers over nine months. The results showed that

the average number of builds for C++ developers is 10.1 times a day and for Java developers is 6.98

times a day, and 37.4% of C++ builds, and 29.7% of Java builds fail [4].

In 2019, a survey conducted by Becker et al. showed that both current and old research describes

compiler error messages as not understandable, useless, inadequate, frustrating, cryptic, and

confusing, undecipherable, intimidating, still very obviously less helpful than they could be, and a

barrier to progress [5].

2.2 How should compiler report syntax errors

The research community continues to study and discuss the quality of compiler error messages. In

1982, Shneiderman studied the impact of error messages on users [6]. They conducted several

controlled experiments. In one experiment, they modified a Cobol compiler to generate more specific

error messages, and they asked groups of students to repair erroneous programs using the modified

compiler and the regular one. Then they compared the results. They found that the modified compiler

increased the repair scores by 28 percent. Shneiderman recommended that the error message should

1) have a positive tone, 2) tell the user what must be done. 3) use the user's terms, 4) avoid negative

terms such as "illegal", "invalid", "error", or "incorrect". 5) avoid obscure terms such as "syntax

error." 6) be comprehensible.

5

 In 1983, Brown experimented with testing the quality of error messages [7]. He analyzed the error

messages of fifteen Pascal compilers for a group of simple and common erroneous programs. He

found that most compilers in the experiment ranged from "barely accepted" to "laughable." Brown

recommended that error messages be friendly, give an informative message, and provide help in

correcting the error. He also suggested that the system should show the correct possibilities. Compiler

writers should avoid compiler terminologies in the messages such as "lexical error" and "syntax

error". Brown focused on how helpful the error message would be if it pointed to the offending area

of the source code.

In 1998, Lewis and Mulley analyzed the usefulness of error and warning messages for different user

levels, received user feedback for years, and improved the compiler error messages accordingly [8].

The compiler was locally built for Modula-2 and used by students over several years in their

department. Although they didn’t measure the effectiveness of improved compiler warning and error

messages, they developed a group of merits of the useful compiler warning and error messages: 1)The

compiler error message needed to be helpful. 2)The compiler message hints at how to fix the

problem. 3)The compiler should take into consideration different user levels, for example, a user can

use -students flag for more detailed error checks. The compiler should also provide extra warnings

appropriate for first-year students. These warnings include checking for identifiers that look like

keywords, same name variables in different visible scopes, variables and parameters declared but

never used, and variables used before being initialized. 4) The compiler in some cases provides a

description of what the compiler believes it has seen.

In 2010, Traver proposed a set of principles that should guide compiler error message design [9].

These principles are clarity and brevity, specificity, context insensitivity, locality, proper phrasing,

consistency, suitable visual design , and extensible help. In addition, Traver discussed the problem of

the context-sensitivity of errors, in which the compiler gives different error messages for the same

error.

 In 2011, Marceau et al. investigated the effectiveness of error messages for the DrScheme

environment[10]. DrScheme is designed for students to teach and learn the Scheme language and to

deliver suitable multi-level error messages. To find the shortcomings in the DrScheme’s error

messages, they looked at how the students edited different errors, interviewed, and quizzed them.

They suggested that the metrics of a rubric that measures the effectiveness of good error messages

are: 1) students can read the message, 2) students can understand the message, 3) students can

formulate a response for the error. 4) students can fix the error. Also, they found that using technical

vocabularies in the error message makes it unclear instead of helpful. Encountering programming

6

terminologies that students have not studied before confuses them, such as “function body” for

beginner users. Marceau et al. found that students prefer a hint on how to fix the error over a highlight

of the error area in the source code.

In 2018, Barik et al. postulated that the quality of compiler error messages improved if they contained

explanations; the compiler error message should apply explanation theories, such as Toulmin’s model

of argument [11]. In their study, they mapped the compiler error messages to the reasoning model for

Toulmin. The simple components of argument theory are the claim, the ground (evidence), and the

warrant (the bridge between the claim and the ground). And it may have the extended component:

backing. The study conducted three experiments. The first one asked professional developers from

software companies to prefer selected error messages from OpenJDK, and Jikes, where some

messages follow the reasoning model, and some do not. The other experiments compare the structure

and content in Stack Overflow with compiler error messages. The authors recommended that the

designer and developers of compilers should distinguish fixes from explanations and apply argument

structure and content to the design and evaluation of error messages. The study showed that

developers prefer error messages that use the explanation model over the error messages that do not

use the explanation model, but also, they prefer the elaboration over the explanation. The authors

recommended that developers may selectively need more or less help in comprehending the problem,

and designers and developers of compilers should support mechanisms to progressively elaborate

error messages. For example, some static analysis tools, such as Error-Prone, implement such an

approach; the tool initially provides a simple argument for the error messages but also enables

additional backing through a supporting link.

 Some studies paid attention to the readability of error messages. For example, Barik et al. found that

programmers spent up to 25% of their task time reading error messages[12]. The study used eye-

tracking research techniques with programmers. Another study by Becker et al. found that the key

factors that affect the readability of error messages are 1) length of the message, 2) message tone, and

3) use of jargon [13].

2.3 Can we overcome some limitations of the parser in generating better error messages?

Hristova et al. developed a preprocessor tool called Expresso to detect common Java errors in the

novice Java codes and report friendly and better error messages with hints on how to fix them [14].

The implementation of the preprocessor was written in C++. They do not mention or discuss the

design of how they parse and detect these common errors in the source code. However, their paper

was well known for identifying and categorizing the common Java errors of novices using the survey

method.

7

Kohn developed a parser for Python programs capable of recognizing a group of error patterns [15].

He was addressing the problem of Python error messages for high school students. The group of error

patterns is identified as part of his research. He studied the issue of misconceptions, and he found part

of the problem is that students project the mathematical mental model when writing code. So, they

write incorrect expressions in Python programs. He implemented the parser as part of a successful

educational environment (TigerJython) that delivers error messages in the German language. The

limitation of their parser is that not all novice errors derive from incorrect mathematical mental

models.

Jeffery’s approach, which is applicable for different programming languages, is an open-source code

tool called Merr [16]. Merr takes additional information from the parsers generated by the Yacc and

Bison family and passes them to the compiler error message system. More accurately, Merr

automatically generates the code of the error reporting function in the compiler (e.g. yyerror()) from a

set of example errors and messages. In addition, it provides the state that the error occurs on and the

erroneous token. The downside of the Merr approach is that the compiler writer must come up with

erroneous fragments to associate messages with the states of the parser where errors can occur.

Pottier argued that an LR parser could generate good diagnostic messages using Jeffery’s approach

[17]. He elaborates on it by designing an algorithm that automatically generates erroneous fragments.

Also, he proposed three features of a good diagnostic message that is mapped from the erroneous

fragments by the Merr tool. Pottier proposed: “correctness (i.e., every sentence is erroneous),

irredundancy (i.e., no two sentences lead to the same state), and completeness (i.e., some sentence

reaches every state where an error can occur).” [17]

2.4 Methodology and measurement of effectiveness of compiler error messages

As the experimental approach is established in human-computer interaction and software engineering

research, this section reviews relevant empirical studies in enhancing compiler error messages.

Marcus et al., in their study "Measuring the Effectiveness of Error Messages Designed for Novice

Programmers," suggested a rubric to measure the edits students made to correct erroneous programs

using the enhanced error messages [10]. They collected data from 53 students in an introductory

programming course. They used the DrRocket programming environment to collect copies of

students’ edits during the course lab sessions. DrRocket has been part of the Scheme/Rocket ongoing

project for years and aims to enhance compiler error messages for the Scheme language. The rubric

categories are failure-on-read, failure-on-understand, failure-on-formulate, and fixed-error. Then they

combined the failure-to-read and failure-to-understand. The rubric components are:

8

“1) delete the problematic code wholesale, 2) unrelated to the error message and does not

help, 3) unrelated to the error message, but it correctly addresses a different error or makes

progress in some other way, 4) evidence that the student has understood the error message

(through perhaps not wholly) and is trying to take an appropriate action (though perhaps not

well) , 5) fixes the proximate error (though other cringing errors might remain).”

They reported at the end of the study that the analysis of students' edits provided them with insight

into students' performance with the DrRocket environment and in the course. However, they reported

that further data analysis is required to develop conceptual problems underlying the students' edits.

Becker, for his Ph.D., studied whether the enhanced compiler error messages are effective in helping

students learn to program[18]. They experimented with measuring the effectiveness of modified

compiler error messages. They used metrics to compare control and intervention groups: "the total

number of errors in each group, the number of errors per student, the number of repeated errors, and

the repeated error density."

They recruited two cohorts of 100 students each with one academic year between them. First, they

collected data from the control group that used the regular Java SE 7's compiler. Then, the following

year, they collected data from the intervention group that used 30 modified messages along with the

regular Java SE 7's messages. The collected data were compiler ID, line of code and class of error,

compiler error messages, enhanced compiler error messages (for the intervention group), and

date/time. For the analysis, they used Wilcoxon signed-rank and Mann-Whitney U tests. For the

results, they reported that the intervention group experienced reductions in the number of overall

errors, errors per student, and several repeated error metrics. Also, they claimed that the results are

generalizable to other programming languages, students, and institutions.

Kohn, in his Ph.D. dissertation, to answer the research question: "do the improved error messages

help in learning?" conducted a survey [15]. He developed a parser to enhance Python compiler error

messages and integrated it with the known TigerJython IDE that he created for learning and teaching

a subset of Python to high schools in Switzerland. He recruited 82 students from three different high

schools from teachers in an education program at a university. The questions were rating questions on

a scale from 1 (not helpful, do not agree) to 5 (very helpful, strongly agree). The questions were about

learning materials, and three were about error messages. The questions about error messages were

"Of how much help are the error messages shown in the environment for your learning? How strongly

do you agree to the following statements? 1)The German translations of error messages are helpful. 2)

I do not read the error messages." They used descriptive analysis for the survey. They calculated the

9

average and the standard deviation of the respondents' answers. Finally, they reported that they did

not find any correlation between error messages and learning. However, he found that students highly

appreciated translating the error messages into their native language.

Barik, in his Ph.D. dissertation, conducted studies with others on the impact of compiler error

messages on users [19]. The first experiment was to answer the research question: “Are compiler

errors presented as explanations helpful to developers?”. They recruited 68 expert full-time software

developers at Microsoft. A questionnaire presented Java erroneous snippets with accompanying error

messages from both Jikes and OpenJDK compilers and asked the participants which one they

preferred. They used five erroneous Java programs that were seeded with common errors. To infer

which compiler is better, they used the Chi-squared test. The second experiment was eye-tracking to

answer research questions “1) how effective and efficient are developers at resolving error messages?

2) do developers read compiler error messages? 3) are compiler errors difficult to resolve because of

the error message?”. They recruited 56 students from undergraduate and graduate software

engineering courses at North Carolina State University. They observed the participants as they

resolved common errors. For the analysis, for question one, they calculated efficiency from two time-

derived metrics: time to complete a task and participant effort. Then they performed a two-tailed t-test

between task times, excluding timeouts, under correct and incorrect solution conditions to gauge

response time effort. For question two, the measurement was for the meantime of fixations of reading;

they computed across participants the percentage of fixations for the areas of interest in the task.

Then, they compare the fixation time spent on the source code to the fixation time spent on the error

messages. For question three, they used the eye-tracking measure of revisits. That is, leaving an area

of interest and then returning to it as a measure of reading difficulty. Finally, they computed a

nominal logistic model between correctness and revisits to error messages. The model’s output is a

probability of correctness against the number of visits over a distribution of tasks. To evaluate the

model, they computed Nagelkerke’s coefficient of determination, R2, and a likelihood-ratio Chi-

square test (G2) .

10

Chapter 3: Integrated Learning Development Environment for Learning

and Teaching C/C++ Language to Novice Programmers

This chapter is adapted from:

S. M. Algaraibeh, T. A. Dousay and C. L. Jeffery, “Integrated Learning Development Environment

for Learning and Teaching C/C++ Language to Novice Programmers,” a work-in-progress paper that

appeared in 2020 IEEE Frontiers in Education Conference (FIE), 2020, pp. 1-5, Doi:

10.1109/FIE44824.2020.9273887.

This chapter presents an Integrated Learning Development Environment (ILDE) that integrates

technologies with pedagogies for first-year students learning to program. It is a proposed design,

within which the core contribution of this dissertation constitutes one component. Novice

programmers must overcome misconceptions, debugging, and problem-solving. ILDE employs

multimedia learning content, formative feedback, a customized compiler, and visualization using

modern pedagogical and cognitive psychology practices. Visualization and multimedia illustrate what

happens inside the computer as the program is running. Enhanced compiler messages with graphical

representation reduce the difficulty of compilation errors.

3.1 Introduction

A student in the first-year computer science course finds themselves like Alice in Wonderland. There

are many new mysterious concepts, and they must acquire a large amount of knowledge and many

new skills. Programming is a primary competency and a prerequisite for almost all CS courses. It is

the basic building block in their journey. Many CS educators express that their students lack

programming skills, even after prior programming courses [20]. Much like Wonderland, learning how

to program feels like a multidimensional journey filled with different perspectives and tasks.

ILDE integrates technologies with pedagogies. The design of ILDE is built upon Cognitive Load

Theory [21],[22], Kolb’s Experiential Learning Theory [23], Constructivism principles [24],

Cognitive Theory of Multimedia Learning [25], software visualization technology, and an

educationally customized compiler. The learning content addresses core programming competencies

taught in computer science education for first- and second-year university students. ILDE merges

related course topics: Computational Thinking and Problem Solving, Programming Languages,

Computer Operating Systems, System Software, and Discrete Mathematics. Further, ILDE uses

problems and projects from real-life contexts to support meaningful learning. The learning activities

target complex programming skills developed from related subskills.

11

The ILDE model is based upon two elements: 1) ILDE's Multimedia Learning Content deploys

visualization of computation to enhance novices’ performance and 2) ILDE’s Informative Feedback

utilizes a customized compiler that enhances novices’ performance. For both hypotheses, novice

performance will be measured by observing whether using ILDE changes course success rates

(defined as a grade of C or above) in a statistically measurable manner. This dissertation contributes

towards the evaluation of Hypothesis 2.

3.2 Challenges facing novice programmers

Learning to program is difficult. Required competencies include comprehension of programming

concepts and ability to write code. Students must learn to convert real-world problems into computer

solutions. Fuller et al.’s [26] learning taxonomy sums up the objectives of introductory programming

courses as follows: recognize, understand, analyze, and evaluate the programming concepts; apply

these concepts by writing code to solve a problem similar to the problems already learned; create

code to solve new problems. The learner must also understand the machine operations that a

programming language expresses [27]. Why is it so difficult to teach or learn to program? Novices

find programming challenging due to fundamental misconceptions, as well as their lack of debugging

and problem-solving skills [14, 28, 29].

Misconceptions

Coding misconceptions arise from a lack of knowledge or a false assumption. For example, students

may misunderstand the mechanism of a loop, or the relationship between language constructs and

underlying memory usage [14, 15, 27, 29, 31]. ILDE has an innovative method for fixing

misconceptions. Consider uninitialized memory allocation, a common error for novices: it arises due

to a misconception about the relation between memory and language elements. Figure 1.1 shows C++

and Java code that uses an object without initialization. When compiling mmr4.cpp, g++ doesn’t

report an error; when it is run, a “Segmentation fault” message appears. This message is mysterious to

novices and doesn’t help them understand or fix their problem. Encouraging novices to take the

compiler’s warnings seriously can help. g++ -Wall reports “ ‘generator’ may be used uninitialized in

this function”. The Java compiler produces a “variable number might not have been initialized” error.

Microsoft Visual Studio and BlueJ IDE show similar error messages for this type of error.

To address this misconception, ILDE will build a user profile that tracks the user’s progress and

diagnoses their level. The learning content has information about the exercises, such as the goal and

plan. ILDE will utilize the user profile on current and past exercises to give tailored compiler

messages. For the “uninitialized object” misconception at beginner levels, the ILDE feedback

12

subsystem will play a video that explains the memory allocation process and how uninitialized

memory affects program logic. For learners at the intermediate level, the feedback subsystem will

invoke an image that shows the memory simulation of the error with a link to the related lessons.

However, programming concepts are like icebergs that hide a lot of details. On one hand, researchers

of the psychology of programming urge the programming language designer to employ cognitive

principles to lower the barriers for programming[32]. On the other hand, it is very important that the

learner understands the ‘inner world’ of the programming language being used [27,32]. Hoc and

Nguyen-Xuan added that programming acquisition is about learning basic operating rules of the

processing device that underlies the language, the constraints of these operations upon the program

structure, and the relation between task structure and programming language semantics [33]. So,

understanding the smaller instructions that construct the programming statements and connecting

these instructions to the concepts of memory and CPU operations may solve the issue of the

fundamental misconceptions.

Error handling and debugging

Novices often fail to write the program structure correctly, misspell keywords, or omit or disorder the

components of a program structure [14, 34]. Even modern compilers and IDEs frequently report

inadequate, unclear error messages. Enhancing compiler error messages has a significant positive

effect on novice programmers’ learning by reducing the number of errors, and the number of repeated

errors [35-37].

A logic error is when the produced program does not perform the intended functionality, for example

due to improper conversion between data types, or incorrect division of a float number by an integer

[14, 34]. Ettles, Luxton-Reilly, and Denny report that misconceptions are the source of logic errors.

Finding and fixing logical errors is more difficult than fixing syntax errors. Debugging skills are

difficult and even good programmers often lack these skills [30].

Many tools have been integrated into IDEs to enhance messages for both syntax and logic errors.

Specialized IDEs have been created for educational purposes. These efforts include PROUST[38],

Merr [15], Expresso[14], BlueJ [39], TigerJython [15], Alice [40], Scratch [40], Greenfoot [40],

WebTigerJython [41]. These projects are focused efforts targeting specialized aspects of

programming instruction. Thus, novices still need assistance mastering basic concepts.

13

Figure 3.1 Example of misconception: “uninitialized memory allocation.”

ILDE will offer informative feedback for use in introductory programming courses where the focus is

on basic programming concepts. Other specialized educational IDEs prioritize support for the object-

first approach that focuses on recognizing the object-oriented concepts: class, object, and members. In

contrast, ILDE focuses on tailored feedback and learning of basic concepts: variable, data type,

mathematical and logical operation, expression, iteration structure, if statement, and function. Other

environments use block-based and graphic objects and are intended for younger learners. Those

environments are designed to cover a small subset of programming concepts. Also, using graphic

objects representing program constructs that are inserted and moved within a graphical environment

is tricky, because of the high level of abstractions. Such visual programming environments are easier

to use than text-based environments but may make it harder to learn the underlying programming

concepts[32, 33, 42].

3.3 ILDE

ILDE draws upon Cognitive Load Theory, Kolb’s Experiential Learning Theory, Constructivism

principles, and the Cognitive Theory of Multimedia Learning [21-24]. The learning material is

14

divided into phases that depend on learner performance levels. The programming concepts are highly

interactive elements. The sequence of the phases depends on the interactive relation between

programming elements. Phase X is not accessible to the learner until she/he reaches the intermediate

or better level of performance in the phases that phase X depends on. The levels of the learner are

beginner, elementary, intermediate, advanced, and expert. The learning content introduces one

programming concept at a time. The first lessons in each phase are easy, with direct instructions. The

lessons present worked examples, followed by guided practices and simple and detailed feedback

messages to lead the learner to develop the skills and achieve fluency. Then ILDE presents the

complex and related concepts together with higher-order reasoning and thinking problems. ILDE’s

feedback subsystem provides support and scaffolding. The sequence of instructions and lessons in

each phase follows Kolb’s learning cycle.

The design of multimedia learning content follows the assumptions of the Cognitive Theory of

Multimedia Learning, such as the dual channels assumption, where ILDE employs verbal and visual

learning content, and the active processing assumption, which entails that ILDE’s learning content is

a collection of self-paced training materials. Also, the same content is delivered in different ways.

Formative feedback in the interactive learning environment has major potential to enhance the

learning process and it can be effective in a well-defined domain [43].

Multimedia Learning Content with Visualization Tool.

The Multimedia Learning Content with Visualization (MLC) presents programming concepts using

video, audio, and text to explain programming structure, meaning, usage, and behavior. MLC is

integrated with a visualization tool that displays what is happening inside the computer at compilation

and runtime. Moreover, ILDE has a mascot named Reynold, a squirrel character helper who presents

the content and guides learners through the environment.

The following scenario illustrates how the ILDE works. The learner opens the learning content menu.

The first lesson is a video showing the course project. The objectives of the first lesson are: to

introduce the potential of programming to the learners and to let students recognize what they will be

able to do at the end of the course. The project is keeping financial records of a poultry production

farm, an inventory management problem. The lesson starts with a farmer asking the students to help

him to keep the financial records of his business. Then the video presents the software requirements

of the project. That is “the software must keep records of receipts, expenses, and purchases of egg

production and aggregate them by day, week, month, and year”. Then the lesson will show what a

solution for the project looks like and how the farmer is using it.

15

The second lesson starts by playing a video showing students how to develop their first program. It is

like the well-known “Hello world” program, but they will write the name of the poultry farm. The

video shows them how to use ILDE to write the program, to compile it, to correct errors, and to run

the program. In the second activity of the lesson, students will write the program by themselves.

Reynold will guide them, by pointing out where to write, what button to press to compile, and so on.

The task text will be available as an image lockable to the edge of the screen while they write their

program. This lesson is the first stage of the learning cycle of Kolb’s experiential learning theory. It

puts the learners in a concrete experiment. Then it is followed by a reflective activity; the second

stage of the learning cycle. Students fill in the form of questions asking them about what they see, and

how they do the task. The third activity is an explanation of how computers are dealing with their

program. It is a video that shows the students a visualization of the fetch-execute cycle. It is a simple

explanation of how the memory and CPU work in their first program. It shows the phases that the

program passes through, from source code to an executable program.

The lessons will gradually introduce programming concepts. Following cognitive load theory

recommendations, each lesson focuses on one concept at a time. In addition, it takes into

consideration the different skills that must be developed, followed by exercises with no context to

master these skills.

A lesson later explains the C language for control structure, introducing a major concept of

programming. The lesson starts with a video explaining the iteration structure in the C language. It

shows the anatomy of the for loop. For example, the anatomy of the statement

for(i=1; I <=7; i++) weekly_product += daily_product ;

can be illustrated by:

1. Assign: i=1;

2. Compare: i, 7;

3. Branch (go to) if less than: step 7.

4. ADD: add the daily product to weekly product;

5. Increment: add 1 to the counter i;

6. Branch (go to) to the checkpoint of the loop step 2;

7. Rest of the code.

The lesson explains the usage of the iteration control structure and connects it with a simple problem

from the course project. The learners will compute the production for a week. To repeat the entries for

each day of the week, they will need to use the iteration structure. MLC introduces each programming

concept with a real-world context. This helps the learners to scaffold their knowledge and retain it

easier.

16

The lesson explains language structure behavior using visualization tools. In the next activity, the

lesson opens two screens. One shows a sample program’s source code and the other shows the

visualization of the program. An audio explanation accompanies the visualization screen, which

shows how the computer interprets a language structure via a series of smaller instructions, including

the variables used in a memory simulation picture and the flow of control. The visualization window

shows the fetch-execute cycle for this example. It shows how the CPU works in the program and how

the values of variables in memory change accordingly after each cycle. Figure 3.2 and Figure 3.3

show the visualization of memory and CPU consequently. After reviewing the example’s source code

execution, the learner can experiment with the source code and the visualization window reflects the

change.

Figure 3.2 Example of memory visualization of for(i=1; i<=7; i++) weekly_product +=daily product;

The feedback subsystem is integrated with a customized compiler that offers tailored error messages.

The MLC has exercises guided by an e-booklet. As the learner works on solving lesson problems,

they may consult this e-booklet with step-by-step instructions delivered by Reynold, who highlights

the relevant part of the code. Once the learner writes the source code in the editor and compiles it, the

ILDE will tailor informative feedback related to the error, problem, and level of the lesson. The ILDE

will also display frequent and common errors in an interactive graphical representation.

17

Figure 3.3 Example of CPU visualization.

The e-booklet learns the student’s problem-solving skills. As it graduates from easier to more

complex problems, it follows a problem-solving methodology: it teaches students how to extract the

requirement and what the results should be; how to design a solution; how to implement it; how to

test it. The e-booklet is an interactive screen that allows the user to write the requirements textboxes,

and the design of the problem in textboxes and then write the code in the editor. The students can

compare their writing of requirements and design with the correct answers. While in the editor, the

customized compiler produces the error messages. Reynold talks and explains the problem and points

to relevant parts of the screen.

The customized compiler takes the learner level and the problem the learner works on and gives

tailored informative messages about the syntax errors. The feedback subsystem opens the related

lesson video for common reported errors.

At the first level, students need intensive feedback while they work on tiny programs. Knowing the

problem and the expected results enables the feedback subsystem to give precise tailored messages,

and also connect these messages with the related lessons. The customized compiler compares the part

of the student’s code which is located before the detected error with possible correct solutions. This

allows it to predict what statement the student is trying to write and explain what the error is in it.

The help menu has pictures of the programming statements syntax and function signatures. It enables

the learner to dock these pictures on the edges of the working area of ILDE. Clicking on a syntax

picture copies the content as text that can be pasted, adding a statement into the editor. Moreover, the

feedback subsystem uses comic pictures accompanied by sounds when pointing to the errors. For

18

example, common errors novices frequently fall into are missing semicolons, or missing braces.

When this occurs, an animated icon with music sounds as the code is corrected. This will make an

unstressed and memorable learning experience.

3.5 Conclusion

ILDE is a specialized environment for learning and teaching novice programmers. The innovative

aspects of ILDE are:

• The integration of learning content into the environment using modern pedagogical and

cognitive psychology practice.

• Visualization of memory allocation and CPU operations. That makes it possible to explain

the hidden parts of programming and visualize dynamically what happens inside the program.

• Feedback subsystem with customized compiler. Integration of learning content with ILDE

enables the feedback subsystem to know the context of problems that students work on. This

enables ILDE to give tailored error messages to the learner.

ILDE is designed for C/C++ which is difficult to learn and has a complex syntax. Their relative

difficulty makes the need for an educational learning development environment greater, rather than

lesser than is needed in “easier” first languages.

Finally, the visualization features of ILDE may be used to learn other topics, such as data structures,

algorithms, and programming language design. Also, with selection of an appropriate subset of the

curriculum, ILDE may be used effectively in K-12 computer education.

19

Chapter 4: Analysis of Syntax Error Messages from the Learner’s

Perspective

To explore the problem of unhelpful syntax error messages, let us examine the behavior of two

popular compilers: GNU GCC version 10.3.1 (GCC) and Microsoft Visual C++ version 2019

(VC++), on a set of erroneous programs for common errors in the structures of the function body, the

if statement, and the for statement that we present in Figure 4.1, Figure 4.7, and Figure 4.12.

4.1 Analysis of common errors in the syntax of the function body

One of the common errors of the syntax of the function body is the unbalanced curly bracket. Let us

study how the compilers report this error on different programs, such as in Figure 4.1.

First, consider prog1.cpp. The program has a syntax error: unbalanced curly brackets. The close curly

bracket ‘}’ for the open curly bracket ‘{’ on line 5 is missing. GCC reports the error in a good error

message, as shown in Figure 4.2, it says: “error: expected ‘}’ at the end of input. Note: to match this

‘{‘ in line 5 ”. VC++ says for the same error, “ ‘{‘ no matching token found.” Both reports are

correct, and the messages are understandable, and they may help the novice find the error and fix the

problem. Unfortunately, both compilers report misleading messages for the same type of error in

other programs.

Second, GCC and VC++ report the error of prog2.cpp as shown in Figure 4.3 with poor quality error

messages. The GCC message says: “expected primary-expression before ‘}’ token” in line 7. It then

says “at global level, cout does not name a type” in line 8, and then it says “expected declaration

before ‘}’ token” in line 9 and in line 10. VC++ lists 11 errors for the same program. Some of them

are: “expected a statement” in line 7, “this declaration has no storage class or type specifier” in line 8,

and “ expected a ‘;’” in line 8. The content of the messages is incorrect and is not understandable.

They use compiler writers’ jargon such as “primary-expression,” and “storage class or type specifier.”

Third, analyzing the quality of syntax error messages for prog3.cpp and prog4.cpp as shown in Figure

4.4 and Figure 4.5, we will find that both GCC and VC++ reports are poor. The messages are

incorrect and aren’t understandable, and it may not help learners find or fix errors.

20

Prog1.cpp: Prog2.cpp:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

#include<iostream>
using namespace std;
int main()
{}
int recursive(int x){
if (x > 1){
return x * recursive(x -1);
} else {
return 1;
}

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:

#include<iostream>

using namespace std;

int main()

{

 int x=1;

 for(x=1; x<5;x++)

 }

 cout<<”x”<<endl;

 }

}

prog3.cpp: Prog4.cpp:

1:

2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:

#include<iostream>

using namespace std;
int main()
{
 int x=1;
 int c=x+10;}

 for(int x=1;x<5)
 {
 cout<<” x=”<<endl;
 x++;
 }
}

1:

2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:

#include<iostream>

using namespace std;
int f(int);
int main()
{
 int x,y, res;
 cin>>x>>y;
 ++x;
 y=x+9;
 res=f(x)+f(y};
 ++res;
 cout<<”result=”<<res;
)
int f(int x){ return x*x;}

Figure 4.1 Some C++ programs with common syntax errors of novice programmers: unbalanced curly brackets.

This is 20eparator

GNU GCC report:

Microsoft Visual C++ report:

Figure 4.2 Good quality syntax error messages reported by GCC and VC++on compilation of prog1.cpp in Figure 4.1

21

GNU GCC report:

Microsoft Visual C++ report:

Figure 4.3 Bad quality syntax error messages reported by GCC and VC++on compilation of prog2.cpp in Figure 4.1

GNU GCC report:

22

Microsoft Visual C++ report:

Figure 4.4 Bad quality syntax error messages reported by GCC and VC++ on compilation of prog3.cpp in Figure 4.1

GNU GCC report:

Microsoft Visual C++ report:

Figure 4.5 Bad quality syntax error messages reported by GCC and VC++on compilation of prog4.cpp in Figure 4.1

23

Analyzing the previous examples from a parsing techniques perspective, it is apparent that the quality

of error messages is bad when a parser recognizes part of the source code as a function body. So, the

rest of the source code is at the global scope of the program.

Figure 4.7 shows drawings that clarify the boundaries of function bodies for the previous examples.

Considering prog2.cpp from Figure 4.7, we will find GCC reported that in line 8 of the source code:

“At global scope: error: ‘cout’ does not name a type”, and in line 9 “error: expected declaration

before ‘}’ token.” Also, VC++ reported that for line 8 with a red line under the ‘cout’ : “ this

declaration has no storage class or type specifier” and another error for the same line “expected a ‘;’.”

However, line 8 itself has no syntax error if it is placed inside the boundaries of a function body,

while for prog1.cpp both GCC and VC++ reported good error messages indicating that there are

unbalanced curly brackets because the parser does not reduce the function body yet when it counters

the error.

GCC’s message is a good message for prog1.cpp, although it contains a compiler writer jargon

“primary-expression,” and this sometimes could be a distraction even if the message is correct. At this

point, it is time to focus on how a parser recognizes the source code and how they report the errors

accordingly. If the compiler can tell users how it has recognized the function boundaries and how

these statements are outside the function boundaries, it may leverage the quality of syntax error

messages for this type of syntax error.

24

Figure 4.6 The C++ programs From Figure 4.1 with drawings that clarify how a parser recognizes the function body

boundaries.

25

4.2 Analysis of common errors in the syntax of the if statement

GCC and VC++ reports for syntax errors in the control structures show that they generate poor error

messages for simple and common syntax errors. For example, Figures 4.8-4.11 show reports from

both compilers for erroneous programs where an if statement’s header is missing its parentheses. The

programs are listed in Figure 4.7. One may wonder how confusing and misleading these messages

are, despite most of them only having this single error. It is worse when there is one or more errors in

the expression inside the header parentheses besides missing one or both of its parentheses.

This is 25eparator

prog5.cpp prog6.cpp

1:
2:
3:
4:
5:
6:
7:
8:
9:

#include<iostream>
using namespace std;
int main()
{
 int a,b;
 cin>>a>>b;
 if(a*b<=200)&&(b<200)
 cout<<”You win!”<<endl;
}

1:
2:
3:
4:
5:
6:
7:
8:
9:

#include<iostream>
using namespace std;
int main()
{
 int a,b;
 cin>>a>>b;
 if(a*b<=200)&(b<200)
 cout<<”You win!”<<endl;
}

prog7.cpp:

prog8.cpp

1:
2:
3:
4:
5:
6:
7:
8:
9:

#include<iostream>
using namespace std;
int main()
{
 int a,b;
 cin>>a>>b;
 if(a*b<=200)||(b<200)
 cout<<”You win!”<<endl;
}

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:

#include<iostream>
using namespace std;
int main()
{
 int var1, var2, var3;
int sum = var1 + var2 + var3;
int avg = sum / 3;
cout << “The sum is “ << sum <<

endl;
cout << “The average is “ << avg <<

endl;

 if (var1 < (var2 && var3)
cout << “The smallest number is “ <<

var1;

}

Figure 4.7 C++ programs with common syntax errors of novice programmers if statement header.

26

s

GNU GCC report:

Microsoft Visual C++ report:

Figure 4.8 Bad quality syntax error messages reported by GCC and VC++on compilation of prog5.cpp in Figure 4.7

GNU GCC report:

Microsoft Visual C++ report:

Figure 4.9 Bad quality syntax error messages reported by GCC and VC++on compilation of prog6.cpp in Figure 4.7

27

GNU GCC report:

Microsoft Visual C++ report:

Figure 4.10 Bad quality syntax error messages reported by GCC and VC++ on compilation of prog7.cpp in Figure 4.7

28

GNU GCC report:

Microsoft Visual C++ report:

Figure 4.11 Bad quality syntax error messages reported by GCC and VC++ on compilation of prog8.cpp in Figure 4.7

29

4.3 Analysis of common errors in the syntax of the for statement

Loop control structures, especially the for statement, are problematic for learners. Many

misconceptions are related to them, but the compilers often do not help. On the contrary, they

generate bad error messages for the related common syntax errors. Figures 4.13 – 4.16 show compiler

behaviors for the programs in Figure 4.12. The programs have missing parentheses or writing ‘,’

instead of ‘;’ inside the for statement’s header. When the expression inside the header is wrongly

connected to the statements of the body, the compilers behave in ways that are confusing to learners.

Notice how both generate lists of incorrect error messages in Figure 4.16 for the prog12.cpp.

This is 29eparator

prog9.cpp prog10.cpp

1:
2:

3:
4:

5:
6:
7:

8:
9:

10:

#include<iostream>
using namespace std;

int main()
{

 int x=10;int y=8;
 for(x+0=2 || y<10)
 {

 cout<<”hello”;
 }

}

1:
2:

3:
4:

5:
6:
7:

8:
9:

10:

#include<iostream>
using namespace std;

int main()
{

 int x,y,sum=0;
 for(x=0, x<9,x++)
 cin>>y;

 sum=sum+y;
 cout<<”sum=”<<sum;

}

prog11.cpp: prog12.cpp

1:
2:

3:
4:
5:

6:
7:

8:
9:
10:

#include<iostream>
using namespace std;

int main()
{
 int x,y,sum=0;

 for(x=0, x<9,x+++)
 cin>>y;

 sum=sum+y;
 cout<<”sum=”<<sum;
}

1:
2:

3:
4:
5:

6:
7:

8:

#include<iostream>
using namespace std;

int main()
{
 int x,y;

 for(x=1,y<10,x+
 cin>>y;

}

Figure 4.12 C++ programs with common syntax errors of novice programmers, for statement header.

30

GNU GCC report:

Microsoft Visual C++ report:

Figure 4.13 Bad quality syntax error messages reported by GCC and VC++on compilation of prog9.cpp in Figure 4.12

31

GNU GCC report:

Microsoft Visual C++ report:

Figure 4.14 Bad quality syntax error messages reported by GCC and VC++on compilation of prog9.cpp in Figure 4.12

GNU GCC report:

Microsoft Visual C++ report:

Figure 4.15 Bad quality syntax error messages reported by GCC and VC++on compilation of prog11.cpp in Figure 4. 12

32

GNU GCC report:

Microsoft Visual C++ report:

Figure 4.16 Bad quality syntax error messages reported by GCC and VC++on compilation of prog12.cpp in Figure 4.12

33

4.4 Conclusion

This chapter studied the behavior of mainstream compilers: GNU GCC version 10.3.1 (GCC) and

Microsoft Visual C++ version 2019 (VC++), on a set of erroneous programs for common errors in the

structures of the function body, the if statement, and the for statement. It showed how these

compilers report common and simple errors with misleading and unclear error messages. Next, a new

solution is presented to generate better error messages.

34

Chapter 5: Engineering a Compiler for Better Error Messages

5.1 Introduction

Chapter Four presents the research problem. This chapter presents a solution design. Furthermore, the

next chapter presents an evaluation of the design.

5.2 Compiler

The compiler is a computer program that translates the source code of a high-level language into

machine code to create an executable program[44]. Compiler architecture mainly consists of the

following passes, shown in Figure 5.1:

Figure 5.1 Compiler architecture

1. The scanner is a lexical analyzer that scans the source code characters and groups them into

tokens. The scanner will report errors if characters are not allowed based on the program's

syntax. These types of errors are called lexical errors.

2. The Parser is responsible for the syntax analysis. It takes the input from the lexical analyzer

and builds the syntax tree depending on the language's grammar. In other words, it

determines if the source code is in the appropriate order based on the production rules of the

35

language's grammar. If the tokens from the scanner are in the correct order, the parser

generates an abstract syntax tree. Otherwise, it reports errors in the source code syntax. In

advanced compilers, it recovers and continues the parsing process to report all errors in the

input source code.

An abstract syntax tree (AST) represents the source code that conforms to the language's

grammar. Each tree node represents a language construct. The compiler uses the AST in the

following passes, so it does not reparse the source code.

The parser detects and reports syntax errors. Syntax errors arise du to many reason such as

incorrect order of tokens, missing punctuations, or misspelling keywords. Advanced

compilers have error-handling systems that implement one or more error recovery

mechanisms.

3. The semantic analyzer performs several task including type checking. The compiler creates

a table of names (variables, constants, etc.) used in the programs. The semantic analyzer's job

is to ensure that all the names are used in contexts where they are legal for the operations in

which they are being used. It checks their types to determine what operations are being

performed. After type checking, the semantic analyzer annotates the AST with extra

information about where variables are declared and their type. Semantic analyzer reports the

type-related errors, or what are called semantic errors.

4. The intermediate code generator conveys all information derived from previous passes

about the program being compiled in a representation. This representation is called the

intermediate representation. This pass calculates memory locations for all variables, control

flow, and function calls. It builds a list of machine-independent intermediate code

instructions.

5. The final code generator prepares the actual bytecode from the list of intermediate code

instructions in a file format ready to load and execute.

5.3 Parser

This section briefly discusses how the parser detects syntax errors and explains why and how the

proposed 3-phase parsing techniques improve syntax error messages. As discussed in the previous

section, if the parser decides that the input is a valid program, it builds the abstract syntax tree that is

used by the following passes of the compiler; otherwise, it announces that the program has syntax

errors. Context-free grammar notation is used to express the language's correct syntax.

36

The most challenging part of building a parser is finding a sequence of production rules from the

language grammar to apply to verify the input source code (string). Since this is one of the most

critical issues in software production, many parsing techniques have been developed and tested, and a

considerable amount of theory has accumulated. This research uses LALR(1) parsing techniques and

a tool called Bison to generate the parsers and test the presented grammar and the related automaton.

LALR is a widely used, powerful, efficient, and practical parsing technique. LALR(1), LR(0), and

LR(1) are all from the LR family, which are bottom-up parsers. YACC and Bison generate LR

parsers and employ LALR (1) parser tables.

LR methods are based on the combination of two ideas [45]:

1) They construct a finite-state automaton and read input from left to right. The aim is to find a valid

production rule as efficiently as possible.

2) They start the automaton with the start rule of the grammar and only consider right-hand sides that

could be derived from the start symbol to find a left-most reducible substring. The resulting

automaton is started in its initial state and stopped at the accepting state when it recognizes the end of

the production rule at the right. LALR uses the shift-reduce technique and constructs a parsing table

to help parse the input string in linear time cost.

The LR Parsing Algorithm [46]:

As shown in Figure 5.2, the model of an LR parser consists of an input, an output, a stack, a driver

program, and a parsing table with two parts: action and goto. The parsing program takes tokens from

the scanner one at a time and stores the state number and the deriving information of the nonterminal

and terminal into the stack. So, it first pushes onto the stack the initial State, then proceeds depending

on the current token from the scanner. It consults the parsing table to determine what to do next: shift

or reduce. The table has two parts, action, and goto. So, from Figure 5.3, if the top of the stack is state

2, and the current token is *, the action part tells the program to shift s7, which means pushing State

seven into the top of the stack. The program should do one of the following actions while the top of

the stack is state m, and the current token is ai depending on the parsing table:

37

1. Shift: push the current token and the state number into the top of the stack.

2. Reduce: replace the right side of the grammar with the left side (A→β). In other words, pop up

the input, corresponding state numbers, and related derivation from the stack; 2*|β|.

In both shift and reduce actions, the stack configuration will change. Alternatively, the parser

tables terminate parsing with one of the following actions.

3. Accept the input source code, and parsing is completed. If the parsing program reaches the end

of the input and the stack is empty. It means the input source code was derived correctly from

the production rules.

4. Error, in this case, when the program reaches a state where no action is related to the current

token. The cell in the action table is empty. Or the end of the input is reached and the stack in

not empty. It will call the error function and report errors in the input.

Example of parsing erroneous string for the grammar in Figure 5.3 and using the LALR parser in the

exact figure. Input is 5+*9:

Step 1: The automaton starts from the initial State, s0, and a first token is a number, so the action is

shifted and goes to state 4.

Step 2: the stack has State 0, number, State 4, and the next token is +, so the action is reduce using

rule 5 (F→ number), pop from the stack State 4 and number, and push F. The stack has s0 and F, so

the GOTO is to push State 3.

Figure 5.2 Model of an LR parser [47]

38

Step 3: the stack has State 0, F, and State 3, so the action is reduce using rule 4 (T → F), and pop

from the stack F, State 3, and push T, the stack now has State 0 and T, the GOTO is to push State 2.

Step 4: the stack has State 0, T, and State 2, so the action is reduce using rule 2 (E → T), pop State 2

and T, and push E. the GOTO is to push State 1.

Step 5: the stack has State 0, and E, State 1, and the action is to shift the + and enter State 5.

Step 6: the stack has State 0, E, State 2, and State 5, and the next token is *, but the table slot for the *

in State 5 is empty, so an error is detected.

Figure 5.3 Grammar for an expression and the LALR parsing table for the grammar on the left. Where si means to shift and

stack State i, rj means to reduce by production numbered j, acc means to accept, and blank means error.

5.4 Error detection

An LR parser detects an error when the parsing program consults the parsing table and finds a blank

entry. So, the LR parser reports an error because there is no valid continuation related to the current

token, and as a result, for the portion of the scanned input. While all LR parsers will never shift an

erroneous input into the stack, the simple LR(SLR) and LALR may make several reduction actions

before reporting an error. The main point here is the information the LR parser has when an error is

detected, which it can use to communicate with the user about the error. Of course, just announcing

there is a "syntax error," "parser error," or " stack overflow" is not very helpful for the user because it

39

does not help then find and fix errors. LR uses the parse state and the current input token to decide

that there is an error [46].

Many error recovery systems were designed to generate better error messages such as panic mode,

minimum distance, error productions, or empty table slots. Error recovery systems attempt to detect

all syntax errors in the input by continuing parsing after error discovery, and they try to avoid

spurious error messages. The spurious error messages are not real errors in the input but result from

the continuation of the parser after an error is detected. However, error correction systems were also

designed because a parser with an error recovery method can no longer deliver a parse tree if the

input contains errors. Error correction systems transform input into syntactically correct input to be

able to generate a parse tree with the associated semantic actions. Error correction systems commonly

change the input by deleting, inserting, or changing symbols. [45].

The parser generated by Bison has a Look Ahead Correction. This mechanism suspends the normal

parser whenever it fetches a new token from the scanner, runs an exploratory parser, and uses a

temporary state stack. When the exploratory parse reaches a shift action, normal parsing is resumed.

If the exploratory parse reaches an error, the parser announces a syntax error. When the compiler

writer enables verbose syntax error messages, the parser must discover the list of expected tokens and

perform a separate exploratory parse for each token in the grammar. However, in a consistent parser

state with a default reduction, no lookahead is needed to determine the following parser action, so the

parser will not attempt to fetch a token from the scanner [47].

An efficient and automatic way of generating error messages is using the Merr (Meta Error

Generator) tool, which was mentioned in Chapter 2. Merr, or its underlying concept, is used by many

other syntax analysis tools, such as the Menhir parser generator used for OCaml language and iYacc,

a parser generator for Unicon language. This research also uses Merr. Merr uses parse states and

current input tokens to generate an error reporting function and allow the compiler designer to craft

customized error messages for each State in the parser automaton. Moreover, it enables writing

different error messages for each erroneous input token for the same State [48].

Why do we still need better syntax error messages despite all these techniques? Chapter 4 shows

cases where the state of art compilers such as GNU GCC (GCC) and Microsoft Visual C++ Compiler

(MSVC) report common and simple syntax errors with misleading error messages. To explain some

of the limitations of the LR parser to report syntax errors, let us examine how the LALR(1) parser

(Let us call it ToyC) of the grammar in Figure 5.4 reports the error in the program in Figure 5.5 which

is similar to the examples that were discussed in Chapter 4. Because the grammar for C++ is giant, a

40

grammar with a small number of production rules is shown. However, drawing the parsing table or

the automaton on one page is hard, even for such a small grammar. Following the LR algorithm that

is presented in the previous section, the ToyC's configuration at the point of reaching token ''}'' at line

6 is as the following:

Step N: the stack has

State 0 DeclarationList State 4 FunctionHeader State 9 { State 16 OptStatementList State 34

The action is shift } and enter State 56:

Step N+1: the stack has

State 0 DeclarationList State 4 FunctionHeader State 9 { State 16 OptStatementList State 34 } State 56

The next token is IDENTIFIER, the action is reduce by the rule

BlockStatement→ '{' OptStatementList '}'

The length of right of the rule side is 3, so the parser pops 6 elements from the stack, pushes

BlockStatement, and enters State 17

Step N+2: the stack has

State 0 DeclarationList State 4 FunctionHeader State 9 Block Statement State 17

The action is reduce by the rule

FunctionDefinition → FunctionHeader BlockStatement

 The length of the right side of the rule is 2, so the parser pops 4 elements, pushes FunctionDefinition,

and enters the State 6.

Step N+3: the stack has

 State 0 DeclarationList State 4 FunctionDefinition State 6

The action is reduce by the rule

 Declaration → FunctionDefinition

The parser pops 2, pushes Declaration, and enters State 14

41

Step N+4: the stack has

State 0 DeclarationList State 4 Declaration State 14

The action is reduce by the rule

DeclarationList → Declaration

The parser pops 2, pushes DeclarationList, and enters State 4

Step N+5: the stack has

State 0 DeclarationList State 4

The action is reduce by the rule

 GlobRegion → DeclarationList

The parser pops 2, pushes DeclarationList, and enters State 3

Step N+6: the stack has

State 0 GlobRegion State 3

The action is reduce by the rule

Program→GlobRegion

The parser pops 2, pushes DeclarationList, and enters State 2

Step N+7: the stack has

State 0 Program State 2

The State at the top of the stack is State 2, and the current input token is IDENTIFIER. The parser

finds no action related to IDENTIFIER, so it announces an error. Figure 5.3 and Figure 5.4 show

State 0 and State 2.

The information available at this point does not help generate clear and helpful error messages. This

is in agreement with the analysis of error messages of GCC and MSVC in Chapter Four, which

showed that compiler error messages are often unclear and/or unhelpful. For example, the GCC error

message in Figure 5.6 for the program in Figure 5.5 agrees with the idea that error messages are

unhelpful. At the global level of the program, the parser does not expect the expressions and

42

statements level of the programs. There are no rules or corresponding automaton states to recognize

them or have allow those tokens in those parse.

%token IDENTIFIER DATATYPE NUMBER RETURN WHILE ASSIGN LOP

%%

Program:GlobRegion

GlobRegion:DeclarationList

DeclarationList:Declaration

|DeclarationList Declaration

Declaration:FunctionDeclaration

|VariableDeclaration

|FunctionDefinition

FunctionDefinition: FunctionHeader BlockStatement

FunctionDeclaration: FunctionHeader ';'

VariableDeclaration:DATATYPE ParameterList ';'

FunctionHeader: DATATYPE Identifier '(' OptParamaterList ')'

OptParamaterList:ParameterList

|/*empty*/

ParameterList:Identifier

|ParameterList ',' Identifier

StatementList: Statement

|StatementList Statement

State 0

 0 $accept: • Program $end

 DATATYPE shift, and go to state 1

 Program go to state 2

 GlobRegion go to state 3

 DeclarationList go to state 4

 Declaration go to state 5

 FunctionDefinition go to state 6

 FunctionDeclaration go to state 7

 VariableDeclaration go to state 8

 FunctionHeader go to state 9

State 2

 0 $accept: Program • $end

 $end shift, and go to state 13

Figure 5.4 State 2 of the automaton of the grammar in Figure 5.1

Figure 5.3 State 0 of the automaton of the grammar in Figure 5.1

43

Statement: ExpressionStatement

|AssignmentStatement

|VariableDeclaration

|EmptyStatement

|BlockStatement

|WhileStatement

|ReturnStatement

BlockStatement:'{' OptStatementList '}'

WhileStatement:WHILE '(' Expression ')' Statement

EmptyStatement: ';'

ReturnStatement: RETURN OptExpression ';'

OptStatementList:StatementList

|/*empty*/

OptExpression: Expression

| /*empty*/

ExpressionStatement: Expression ';'

Expression:LogicalExpression

LogicalExpression:LogicalExpression LOP AdditiveExpression

|AdditiveExpression

AssignmentStatement: Identifier ASSIGN ExpressionStatement;

AdditiveExpression:AdditiveExpression '+' MultiplicativeExpression

|AdditiveExpression '-' MultiplicativeExpression

|MultiplicativeExpression

MultiplicativeExpression:MultiplicativeExpression '*' PrimaryExpression

MultiplicativeExpression '/' PrimaryExpression

|PrimaryExpression

PrimaryExpression:Literal

|Identifier

|ParenthesizedExpression

Literal:NumericLiteral

NumericLiteral:NUMBER

ParenthesizedExpression:'(' Expression ')'

Identifier: IDENTIFIER

%%

Figure 5.4 A grammar for ToyC.

Figure 5.5 An Erroneous program for the language of the grammar in Figure 5.4

44

Figure 5.6 GCC's error message for the program in Figure 5.5

To get a closer look, let us compare the parser configuration for the program in Figure 5.5 and the

parser configuration for program 2 in Figure 5.7 when the error was detected. For example, Figure 5.5

shows State 34, that when the error is detected for program 2 :

In this case, knowing the state number is helpful. The expected token is ''}'' while the current token is

$end. Also, this agrees with the GCC's error message for program 2, as shown in Figure 5.8. It is a

helpful error message.

Figure 5.7 Erroneous program.

State 34

 25 BlockStatement: '{' OptStatementList • '}'

 '}' shift, and go to state 56

Figure 5.5 State 34 of the automaton of the grammar in Figure 5.1

45

Figure 5.8 GCC’s error message for the program in Figure 5-7

Summarizing the available information from the LR parser or the previously mentioned recovery or

Merr tool are the state number, the current token, and the expected legal tokens available from the

State where the error is detected. All this information is insufficient to tell the user that the error is

outside the function boundaries. So, the previous examples show the limitation of the parser in

reporting some cases of detected errors. The proposed solution for this problem aims to overcome the

parser's limitations in these cases.

5.5 New solution: 3-phase parsing techniques.

From studying the parser behavior in detecting syntax errors in the previous section, analysis of the

mainstream compilers in Chapter 4, and the available information provided by the Merr tool, we

attack the problem with the following strategy:

1. Divide and Conquer: minimize the number of states by focusing on the subset of the

production rule that governs the validation of the skeleton of the large component of the input

source code. Moreover, separating the rules for the outer skeleton from those for the inner

skeleton will give us more advantages in customizing error messages. The number of states in

a giant grammar like the C++ grammar is in the thousands. Using LALR, which merges

similar states, only helps a little because it increases the number of expected input tokens in

each state.

2. The proposed solution uses the lexical analysis to customize the error messages and ignore

some erroneous input.

3. Imitate how the teachers of introductory programming courses correct the erroneous

programs with their students.

46

As a result, the proposed technique is to parse the source code in three phases. Phase one analyzes the

source code into its major constituent parts: functions. Phase two analyzes control structures inside

the functions' bodies in phase one. Finally, phase three analyzes the fine-grained statements and

expressions of the source code. Each phase does lexical analysis and syntax analysis and generates

abstract syntax trees. Also, it uses Merr [48] with each phase’s parser to automatically produce a

mapping of parse states to diagnostic messages, so each parser has its own error reporting function.

Phase one

Phase one analyzes the outer skeletal structure of the functions in the source code. Phase one decides

whether the source code conforms to function declaration and function definition rules. The lexical

analysis of this phase recognizes only the tokens related to the function declaration and definition.

This phase's syntax analysis validates the rules related to the function declaration and definition. It

reports errors using a function yyerror_a() that is generated by the Merr tool and generates an abstract

syntax tree (AST-a). The AST-a has a branch for each function in the source code that contains

notations such as the function name, the return type, the location, and pointers to children. In phase

one, the first child of a function is the header part, and the second is the body part. These children are

of type string and are not validated at this phase for any rules. The next phase analyzes the second

child's body and decides if it follows the rules for the control structures.

Phase two

Phase two analyzes the functions' bodies that are generated from phase one. Phase two decides

whether function bodies conform to the rules for all kinds of loops and conditional control structure

rules. The lexical analysis of this phase recognizes only the tokens related to the iterations, if-

statement, and switch structures and validates the rules related to the iteration, if-statement, and

switch structures. It reports errors using the function yyerror_b() generated by the Merr tool and

generates an abstract syntax tree (AST-b). The AST-b has a node for each control structure that holds

information about the location and pointers to the children. The first child is the header part, and the

second child is the body part. The children are of type string, and they are not validated at this phase

for any rules. The next phase analyzes the header and body parts processed in phases one and two.

Phase three

Phase three analyzes the statements found in the functions' headers and bodies, control structures'

headers and bodies, and those found outside the function boundaries. These statements are aggregated

47

into one string buffer and are notated with their parents' information. Finally, it reports errors using

the Merr tool, has its yyerror_d(), and generates an abstract syntax tree (AST-d).

5.6 Implementation of the 3-phase parsing techniques in an Educationally Customized

Compiler:

A compiler prototype for C++ for the introductory level was developed. The prototype is developed

for phases one and two, and the code is written to make both parsers work together. The following

sections present the grammar and the lexical analysis rules. However, the rest of the code is presented

in Appendix B, which includes yyerror.c and meta.err for parser 1, berror.c, meta.err for the parser 2,

and the main.c.

Parser 1 Grammar

%{

 int yylex();

 int _yyerror(char *, int);

#include<string.h>

#include "yyerror.h"

#include "p.h"

char gfuncName[50];

int glastLine;

 extern struct tree *root;

 struct location loc={-1,-1,-1,-1};

 extern int yylineno;

 extern char* mybuff;

 int _initial_preprocess=0, _initial_rawtxt=0, _initial_out_rawtxt=0, _initial_para=0,

_initial_curlybracket=0, _initial_rawtxt_body=0;

%}

%define parse.trace

%locations

%token <s> OPENPARA CLOSEPARA OPENB CLOSEB

%token <s> VAR DATATYPE

%token <s> RAWTXT

%token <s> NUM

%token <s> KEY

%token <s> SEMICOLON

%token <s> LSTRING

%token <s> LT LT2 CIN COUT

%token <s> GT GT2

%token <s> HASH INCLUDE USING DEFINE

%union {

 char *s;

 struct tree *n;

}

%type <n> file program component funcsdef funcsdec funcheader funcbody

%type <s> rawtxt out_rawtxt curlybracket para unbalanced_para preprocess rawtxt_header_seq

rawtxt_body_seq

%%

file: program {$$=newTree("file 1",loc,1,$1);root=$$;}

48

;

program: component {$$=newTree("program 2",loc,1,$1);}

| program component{$$=newTree("program 2",loc,2,$1,$2);}

;

component: funcsdef {$$=newTree("c_fdef 7",loc, 1,$1);}

|out_rawtxt {$$=newTree("c_raw 7",loc, 1,$1);}

|funcsdec{$$=newTree("c_raw 7",loc, 1,$1);}

;

funcsdec: funcheader SEMICOLON {/*$$=newTree("funcsdec 4",loc, 2,$1, newLeaf("funcsdec",$2));*/}

;

out_rawtxt:DATATYPE VAR SEMICOLON {$$=NULL;}

|preprocess{$$=NULL;}

;

preprocess:HASH INCLUDE {$$=NULL;}

|HASH DEFINE {$$=NULL;}

|USING {$$=NULL;}

;

funcsdef:funcheader funcbody {$$=newTree("funcdef 3",loc, 2,$1,$2);}

;

funcheader:DATATYPE VAR OPENPARA rawtxt_header_seq CLOSEPARA {$$=newTree("funcheader 5",loc,

5,newLeaf("funcheader",$1),newLeaf("funcheader",$2),

newLeaf("funcheader",$3),$4,newLeaf("funcheader",$5));strncpy(gfuncName,$2,50);}

;

funcbody:OPENB rawtxt_body_seq CLOSEB

 {

 loc.first_column=@1.first_column;

 loc.first_line=@1.first_line;

 loc.last_column=@3.last_column;

 loc.last_line=@3.last_line;

 glastLine=@3.last_line;

 $$=newTree("funcbody 6",loc, 3,newLeaf("funcbody",$1),$2,newLeaf("funcbody",$3));}

;

rawtxt_header_seq:%empty {$$=NULL;}

|rawtxt {$$=NULL;}

|para {$$=NULL;}

|rawtxt_header_seq rawtxt {$$=NULL;}

|rawtxt_header_seq para {$$=NULL;}

;

curlybracket:OPENB rawtxt_body_seq CLOSEB {$$=NULL;}

|OPENB CLOSEB {$$=NULL;}

;

para:OPENPARA rawtxt_header_seq CLOSEPARA {$$=NULL;}

|OPENPARA CLOSEPARA {$$=NULL;}

;

rawtxt_body_seq: %empty{$$=NULL;}

|rawtxt {$$=NULL;}

|curlybracket {$$=NULL;}

|unbalanced_para {$$=NULL;}

|rawtxt_body_seq rawtxt {$$=NULL;}

49

|rawtxt_body_seq curlybracket {$$=NULL;}

|rawtxt_body_seq unbalanced_para {$$=NULL;}

;

unbalanced_para:OPENPARA {$$=NULL;}

|CLOSEPARA {$$=NULL;}

;

rawtxt:KEY {$$=NULL;}/*sprintf(mybuff,"%s",$2);$$=mybuff;*/

|CIN {$$=NULL;}

|COUT {$$=NULL;}

|VAR {$$=NULL;}

|DATATYPE {$$=NULL;}

|LSTRING {$$=NULL;}

|SEMICOLON {$$=NULL;}

|RAWTXT {$$=NULL;}

|NUM {$$=NULL;}

|GT {$$=NULL;}

|LT {$$=NULL;}

|GT2 {$$=NULL;}

|LT2 {$$=NULL;};

Parser 1 Lexical Specification

%option yylineno

%option noyywrap

float ([0-9]*\.[0-9]+)|([0-9]+\.)

exponent [eE][-+]?[0-9]+

%{

#include <stdio.h>

#include "gram.tab.h"

 #define YY_USER_ACTION \

 yylloc.first_line=yylloc.last_line;\

 yylloc.first_column=yylloc.last_column;\

 for(int i= 0; yytext[i]!='\0'; i++){\

 if(yytext[i]=='\n') {\

 yylloc.last_line++;\

 yylloc.last_column=0;\

 }\

 else{\

 yylloc.last_column++; } }

 %}

%%

"/*"([^*]|"*"+[^*/])*"*"+"/" {}

"//".*"\n" {}

[\t\f\v\r\n]+ { /* Ignore whitespace. */ }

"(" {yylval.s=strdup(yytext);return OPENPARA; }

")" {yylval.s=strdup(yytext);return CLOSEPARA;}

"{" {yylval.s=strdup(yytext);return OPENB;}

"}" {yylval.s=strdup(yytext);return CLOSEB;}

";" {yylval.s=strdup(yytext);return SEMICOLON;}

">" {yylval.s=strdup(yytext);return GT;}

"<" {yylval.s=strdup(yytext);return LT;}

">>" {yylval.s=strdup(yytext);return GT2;}

"<<" {yylval.s=strdup(yytext);return LT2;}

"char" {yylval.s=strdup(yytext);return DATATYPE;}

50

"int" {yylval.s=strdup(yytext);return DATATYPE;}

"float" {yylval.s=strdup(yytext);return DATATYPE;}

"double" {yylval.s=strdup(yytext);return DATATYPE;}

"void" {yylval.s=strdup(yytext);return DATATYPE;}

"string" {yylval.s=strdup(yytext);return DATATYPE;}

"while" {yylval.s=strdup(yytext);return KEY;}

"do" {yylval.s=strdup(yytext);return KEY;}

"switch" {yylval.s=strdup(yytext);return KEY;}

"case" {yylval.s=strdup(yytext);return KEY;}

"if" {yylval.s=strdup(yytext);return KEY;}

"for" {yylval.s=strdup(yytext);return KEY;}

"return" {yylval.s=strdup(yytext);return KEY;}

"cin" {yylval.s=strdup(yytext);return CIN;}

"cout" {yylval.s=strdup(yytext);return COUT;}

"#" {yylval.s=strdup(yytext);return HASH;}

"include".*"\n" {yylval.s=strdup(yytext);return INCLUDE;}

"using".*"\n" {yylval.s=strdup(yytext);return USING;}

"define" {yylval.s=strdup(yytext);return DEFINE;}

[a-zA-Z_][a-zA-Z_0-9]* {yylval.s=strdup(yytext); return VAR;}

"0"[xX][0-9a-fA-F]+ {yylval.s=strdup(yytext); return NUM;}

"0"[0-7]+ {yylval.s=strdup(yytext); return NUM;}

[0-9]+ {yylval.s=strdup(yytext); return NUM;}

{float}{exponent}? {yylval.s=strdup(yytext); return NUM;}

[0-9]+{exponent}? {yylval.s=strdup(yytext); return NUM;}

"\""(\\.|[^\\"])*"\"" {yylval.s=strdup(yytext); return LSTRING;}

. {/* fprintf(stderr, "lexical error: %d\n", yytext[0]);*/yylval.s=strdup(yytext);return

RAWTXT;}

51

Parser 2 Grammar

%{

 int blex(void);

 int _berror(char *s, int);

#define BDEBUG 1;

#include "berror.h"

#include "p.h"

extern struct tree *b_root;

struct location b_loc={-1,-1,-1,-1};

%}

%define parse.trace

%token <s> WHILE FOR DO IF ELSE SWITCH

%token <s> OPENPARA CLOSEPARA OPENB CLOSEB RAWTXT

%token <s> COLON SEMICOLON CASE DEFAULT

%token <s> OP INC DECL STREAM OBJ STAT PRE NUM STRING VAR HASH

%union {

 char *s;

 struct tree *n;

}

%%

func_body:statement_seq

;

statement:iteration_statement

|selection_statement

|compound_statement

|rawtxt_seq

;

compound_statement:OPENB statement_seq_opt CLOSEB

;

statement_seq_opt:%empty

|statement_seq

;

statement_seq:statement

|statement_seq statement

;

iteration_statement:WHILE OPENPARA rawtxt_seq1 CLOSEPARA statement_seq

|DO OPENB statement_seq CLOSEB WHILE OPENPARA rawtxt_seq1 CLOSEPARA SEMICOLON

|FOR OPENPARA rawtxt_seq1 SEMICOLON rawtxt_seq1 SEMICOLON rawtxt_seq1 CLOSEPARA statement_seq

;

selection_statement:IF OPENPARA rawtxt_seq1 CLOSEPARA statement_seq_opt

|IF OPENPARA rawtxt_seq1 CLOSEPARA statement_seq_opt ELSE statement_seq_opt

|SWITCH OPENPARA rawtxt_seq1 CLOSEPARA OPENB case_stmt_seq CLOSEB

;

case_stmt_seq:case_stmt_seq case_stmt

52

|case_stmt

;

case_stmt:CASE rawtxt_seq COLON statement_seq_opt

| DEFAULT rawtxt COLON statement_seq_opt

rawtxt_seq:rawtxt_seq1

|rawtxt_seq1 SEMICOLON

;

rawtxt_seq1: stat

|stat rawtxt1

|exp_seq

|exp_seq rawtxt1

;

rawtxt1:rawtxt

|rawtxt1 rawtxt

;

rawtxt:RAWTXT

|rawtxt RAWTXT

|STREAM

|rawtxt STREAM

|NUM

|STRING

;

exp_seq: exp

|exp_seq OP

|exp_seq OP exp

;

exp:VAR

|NUM

|STRING

|VAR OPENPARA exp_seq CLOSEPARA

|VAR OPENPARA CLOSEPARA

|OPENPARA exp_seq CLOSEPARA

;

stat:STAT

|DECL

|OBJ

|INC VAR

|VAR INC

;

Parser 2 Lexical Specification

%option yylineno

%option noyywrap

float ([0-9]*\.[0-9]+)|([0-9]+\.)

exponent [eE][-+]?[0-9]+

%{

#include <stdio.h>

#include "gramb.tab.h"

#define YY_DECL extern int blex(void)

%}

%%

"/*"([^*]|"*"+[^*/])*"*"+"/" {}

53

"//".*"\n" {}

[\t\f\v\r\n]+ { /* Ignore whitespace. */ }

"(" {return OPENPARA;}

")" {return CLOSEPARA;}

"{" {return OPENB;}

"}" {return CLOSEB;}

"*" {return OP;}

"+" {return OP;}

"++" {return INC;}

"-" {return OP;}

"--" {return INC;}

"|" {return OP;}

"%" {return OP;}

"&" {return OP;}

"||" {return OP;}

"&&" {return OP;}

"/" {return OP;}

"!" {return OP;}

"=" {return OP;}

"!=" {return OP;}

"==" {return OP;}

"while" {return WHILE;}

"for" {return FOR;}

"do" {return DO;}

"if" {return IF;}

"switch" {return SWITCH;}

"else" {return ELSE;}

"case" {return CASE;}

"default" {return DEFAULT;}

":" {return COLON;}

";" {return SEMICOLON;}

">" {blval.s=strdup(yytext);return OP;}

"<" {blval.s=strdup(yytext);return OP;}

">=" {blval.s=strdup(yytext);return OP;}

"<=" {blval.s=strdup(yytext);return OP;}

">>" {blval.s=strdup(yytext);return STREAM;}

"<<" {blval.s=strdup(yytext);return STREAM;}

"char" {blval.s=strdup(yytext);return DECL;}

"int" {blval.s=strdup(yytext);return DECL;}

"float" {blval.s=strdup(yytext);return DECL;}

"double" {blval.s=strdup(yytext);return DECL;}

"void" {blval.s=strdup(yytext);return DECL;}

"return" {blval.s=strdup(yytext);return STAT;}

"cin" {blval.s=strdup(yytext);return OBJ;}

"cout" {blval.s=strdup(yytext);return OBJ;}

"#" {blval.s=strdup(yytext);return HASH;}

"include".*"\n" {blval.s=strdup(yytext);return PRE;}

"using".*"\n" {blval.s=strdup(yytext);return PRE;}

"define" {blval.s=strdup(yytext);return PRE;}

[a-zA-Z_][a-zA-Z_0-9]* {blval.s=strdup(yytext); return VAR;}

"0"[xX][0-9a-fA-F]+ {blval.s=strdup(yytext); return NUM;}

"0"[0-7]+ {blval.s=strdup(yytext); return NUM;}

[0-9]+ {blval.s=strdup(yytext); return NUM;}

54

{float}{exponent}? {blval.s=strdup(yytext); return NUM;}

[0-9]+{exponent}? {blval.s=strdup(yytext); return NUM;}

"\""(\\.|[^\\"])*"\"" {blval.s=strdup(yytext); return STRING;}

. {return RAWTXT;}

55

5.7 Sample error messages generated by EduCC

This section shows a typical error message for the associated code. Note that the error message

clearly gives more friendly content, some code associated with the error, and explanations.

Message 1, function boundaries

56

Message 2, function boundaries

57

Message 3, function boundaries

58

Message 4, control structure header

59

Message 5, control structure header

60

Message 6, control structure header

61

Message 7, control structure body

62

Message 8, control structure body

63

Message 9, control structure body

64

5.8 Conclusion

This chapter explained how the 3-phase parsing works. First, it discussed the limitation of LR parsers

in detecting errors and justified the need for a solution such as the developed new solution. Then, it

showed the code for Phase One and Phase Two. Presenting the parsers' code will help other

researchers and developers to advance the new solution. Finally, the sample error messages in section

5.4 showed the results of running this code and solution. Next, empirical experiments with actual

novice coders are used to measure whether the error messages generated are actually beneficial.

65

Chapter 6: Evaluation of Error Message Quality Enabled by 3-Phase

Parsing Techniques

6.1 Introduction

This study evaluated the innovative model of 3-phase parsing techniques with an experimental

approach. The design of the experiment followed the guidelines from Jonathan Lazar et al.'s book

"Research Methods in Human-Computer Interaction" [49] and Creswell and Creswell's book

"Research Design: Qualitative, Quantitative and Mixed Methods Approaches" [50].

6.2 Methodology

The experiment aims to evaluate the quality of syntax error messages of the 3-phase parsing

techniques. It used EduCC an Educationally Customized Compiler, to generate the error messages.

EduCC is a compiler prototype for the C++ language, we developed for this study that implements

the 3-phase parsing techniques. The experiment compared the error messages of EduCC with the

error messages of the mainstream compilers used in the introductory programming course: GNU

GCC version 10.3.1 (GCC) and Microsoft Visual C++ Compiler version 2019 (MSVC).

The study is a controlled experiment and within-group design. The independent variable is the

compiler type (EduCC, GCC, MSVC). The dependent variable is the quality of syntax error

messages. The quality of syntax error messages is measured by three factors: the success rate of

finding errors in erroneous programs, the success rate of fixing syntax errors in erroneous programs

and mean-time-to-find and -fix erroneous programs.

The within-group design requires each participant to be exposed to multiple experimental conditions.

So, each participant was required to find and fix errors in a program using accompanying error

messages from MSCV or GCC as the control group. Then, find and fix errors in another program

using error messages from EduCC as the intervention group. The order of programs and compilers

was randomized using Qualtrics, as shown in Table 6-3. The participants were assigned randomly to a

different set of programs.

6.2.1 Theses

The Null hypotheses for the experiment are:

Hypothesis 1: There is no significant difference between the quality of syntax error messages

generated by EduCC, GCC, and MSVC in finding syntax errors.

66

Hypothesis 2: There is no significant difference between the quality of syntax error messages

generated by EduCC, GCC, and MSVC in fixing syntax errors.

Hypothesis 3: There is no significant difference between the quality of syntax error messages

generated by EduCC, GCC, and MSVC in the time-to-find and -fix.

The alternative hypotheses for the experiment are:

Hypothesis 1: There is a significant difference between the quality of syntax error messages

generated by EduCC, GCC, and MSVC in finding syntax errors.

Hypothesis 2: There is a significant difference between the quality of syntax error messages

generated by EduCC, GCC, and MSVC in fixing syntax errors.

Hypothesis 3: There is a significant difference between the quality of syntax error messages

generated by EduCC, GCC, and MSVC in the time-to-find and -fix.

6.2.2 Participant

The participants were undergraduate and graduate students enrolled in lower- and upper-division

computer science courses at the New Mexico Institute of Mining and Technology in Fall of 2022.

Invitations were sent to all the students in the Computer Science department. 66 participants

responded to the invitation. After cleaning collected data from empty records, the number of

respondents became 53.Table 6.1 shows the age and gender of the participants. Table 6.2 shows the

participant's experience in programming.

Table 6.1 Age and gender of the participants.

age Gender Count

18 - 24 Man 35

18 - 24 Non-binary / third gender 2

18 - 24 Prefer not to say 2

18 - 24 Woman 7

25 - 34 Man 4

35 - 44 Woman 1

45 - 54 Man 2

67

Table 6.2 The participants programming experiences.

person-months of coursework or

professional experience
C/C++ Python Java Others

 count of

participants

count of

participants

count of

participants

count of

participants

1-6 months 24 16 14 12

7-12 months 10 12 11 7

13-24 months 8 5 6 1

25-36 months 10 1 - 1

> 36 months 1 - 2 -

6.2.3 Instrument

Part one: experiment tasks: find and fix erroneous programs in C++ using accompanying error

messages.

The experiment tasks required the participants to find and fix errors in a set of erroneous programs

written in the C++ programming language. Each program is provided with error messages from one

of the compilers (GCC, MSVC, or EduCC). The time that the participant used to find and fix errors

was recorded. There was no bound on how much time the participant had to find and fix errors. After

that, there was an optional second part, where the participants were asked to reflect on their

experience with the presented error messages for finding and fixing the erroneous programs.

The experiment used nine programs from Soule’s textbook [51]. The nine programs were seeded with

common syntax errors. The programs used are equivalent in complexity. Moreover, Program 1,

Program 2, and Program 3 were seeded with the same error, a syntax error in the function boundaries.

Program 4, Program 5, and Program 6 were seeded with errors in the syntax of control structure

headers. Program 7, Program 8, and Program 9 were seeded with errors in the syntax of control

structure bodies (see Appendix A for the list of programs). Also, the same program was used once

with GCC or MSVC error messages and another with the EduCC error messages.

Since the experiment design is within-group, each participant finds and fixes an erroneous program

with GCC or MSVC error messages and another with EduCC error messages. Moreover, some

participants start with a program with GCC/MSVC error messages, and others start with EduCC error

messages. Table 6.1 shows the groups, programs, compiler, error type, and the number of

respondents.

Qualtrics was used for the experiment implementation. It included two parts; part one had four pages.

The first page presented the consent form (see section A.2 of Appendix A). The second page

68

presented three questions about age group, gender, and programming experience (see section A.3 od

Appendix A). The third page presented a program with accompanying error messages. The name of

the compiler was hidden in the presented messages. Then, the page presented the following questions:

Q1: What is the error in the progX.cpp?

Q2: In which line is the error?

Q3: What is the cause of the error?

Q4: How to fix the error?

The fourth page is like the third page, with different programs and accompanying error messages

generated by a different compiler. Pages three and four each have a timer to record the time to find

and fix the program. Figure 6.1 shows an example of pages three and four. Furthermore, the

workflow features of Qualtrics were used to design the groups and assign respondents randomly to

the groups.

Part two: experiment tasks: reflect on the participant's experience with error messages after finishing

part one.

After the participant finished the first part of the experiment, they were asked if they wanted to

continue to the second part. Part two asked the participants to reflect on their experience with error

messages in the first part of the experiment. Part two has four questions. Questions five and six are

open ended, and question four asked how friendly the error messages were. However, only questions

one, two, and three are covered in this chapter. These questions asked the participants whether the

error messages helped them find and fix the errors. It presented the same programs and the

accompanying error messages they worked on in part one but showed the actual errors as in Figure

6.2. Then it asks the following yes/no questions:

Q1: Do the compiler error messages correctly give the location (line) of the actual error?

Q2: Do the compiler error messages describe what is the actual error correctly?

Q3: Do the compiler error messages suggest how to fix the error?

6.2.4 Pilot Study

This experiment was designed based on our experience with a pilot experiment. The participants in

the pilot experiment were six undergraduate students in lower-division computer science courses at

the University of Idaho in the Spring of 2022. The experiment design required each participant to find

69

and fix errors in all the nine programs instead of just two of the programs. Moreover, in the second

part, they reflect on their experiences with error messages. We designed it on Canvas Learning

Management System. The expected time for the participant to answer the questions was 90 minutes.

The pilot study faced many obstacles that influenced the version of the experiment design that was

ran at the New Mexico Institute of Mining and Technology. For example, the experiment's long time

significantly hindered recruiting sufficient participants. Furthermore, the respondents who answered

the experiment got tired or bored; some participants skipped half of the questions, and some wrote the

same answers to a group of questions. As a result, we redesigned the experiment so that the expected

time was 20-30 minutes. This reduction in time was primarily achieved by having the participants

answer questions about two programs instead of nine.

6.2.5 Procedure

1. The experiment was designed as an online self-administered questionnaire using Qualtrics.

2. The researcher got the institutional review boards (IRB) exemption from the New Mexico

Institute of Mining and Technology (NMT) for the human-subject experiment.

3. Dr. Jeffery, the chair of the Computer Science department, sent the letter of invitation to his

department’s students via email. The invitation includes a web link to the Qualtrics online

questionnaire. Also, three faculty encourage their students in four courses to answer the

questionnaire and sent the invitation using Canvas.

4. The questionnaire asked demographic questions, including years of programming experience

and proficiency in programming languages.

5. Data was collected anonymously.

6. Participants generally needed 25-30 minutes to complete our study, but no time constraint

was forced.

6.2.6 Data Collection

7. The 66 participants' answers were downloaded from the Qualtrics website as a CSV file.

Then, we designed a database system in MS Access for the study and imported the data from

the Qualtrics CSV file. Some of the rows were empty, so they were deleted. As a result, the

records were reduced to 53.

8. Each group’s answers were moved to a table in the database.

9. The answers were graded by the researcher.

10. Descriptive and inferential analysis were done using SQL queries of MS Access.

11. Reports of accumulative data was formatted using MS Excel.

70

Table 6.3 The groups, programs, compiler, type of error, and number of respondents.

Group Program Compiler
Type of error:

syntax error in the

Number of

respondents

group1
1st program prog1.cpp GCC

function body 5
2nd program prog3.cpp EduCC

group2
1st program prog2.cpp MSVC

function body 5
2nd program prog3.cpp EduCC

group3
1st program prog4.cpp GCC

control structure header 6
2nd program prog6.cpp EduCC

group4
1st program prog5.cpp MSVC

control structure header 4
2nd program prog6.cpp EduCC

group5
1st program prog7.cpp GCC

control structure body 6
2nd program prog9.cpp EduCC

group6
1st program prog8.cpp MSVC

control structure body 5
2nd program prog9.cpp EduCC

group7
1st program prog1.cpp EduCC

function body 4
2nd program prog2.cpp GCC

group8
1st program prog1.cpp EduCC

function body 4
2nd program prog3.cpp MSVC

group9
1st program prog4.cpp EduCC

control structure header 5
2nd program prog5.cpp GCC

group10
1st program prog4.cpp EduCC

control structure header 5
2nd program prog6.cpp MSVC

group11
1st program prog7.cpp EduCC

control structure body 6
2nd program prog8.cpp GCC

group12
1st program prog7.cpp EduCC

control structure body 4
2nd program prog9.cpp MSVC

71

Figure 6.1 Example of page three/four of the Qualtrics web page for the experiment.

72

Figure 6.2 Example of part two of the Qualtrics web page for the experiment.

73

6.3 Results

To evaluate the "helping in finding errors" quality of error message, three questions were used:

 1) what is the error in the program?

2) in which line is the error?

3) what is the cause of the error?

 To evaluate the "helping in fixing errors" quality, one question was used "how to fix the error?" Also,

Qualtrics's timer for each program was employed, which calculates the time the participant spent on

the page until the last click.

The success rate for each question are presented in Tables 6.3-6.8 and Figures 6.6-6.9. For the

inference analysis, the paired-sample t-test with one-tail was used. The grades of questions were used

to calculate the difference between the control and intervention groups' answers. Correct answer was

graded as 2. Partially correct answer was graded as 1. Incorrect answer was graded as 0. There was

one record that the participant left one question blank and answered the other three questions for a

program; it was graded as 0 because the assumption was that they failed to answer it.

RQ1: Is there a significant difference between the quality of syntax error messages generated

by EduCC, GCC, and MSVC in finding syntax errors?

Table 6.4 shows the success rate of answering question one, "what is the error in the program?". As

can be seen, the average success rate for EduCC is higher than GCC and MSVC. Also, the poorest

performance for GCC and MSVC was answering question three, "What is the cause of the error?" as

shown in Table 6.6. On the other hand, the average success rate for the three compilers is acceptable

for answering question two, "In which line is the error?" as in Table 6.5. Moreover, these results

agree with the participants' answers in part two when they reflect on their experience with error

messages in part one. Figure 6.3 shows a chart summarizing participants' answers to question one,

"Do the compiler error messages correctly give the location (line) of the actual error?". Figure 6.4

shows a chart summarizing the participants' answers to question two, "Do the compiler error

messages describe the actual error?"

74

Table 6.4 Success rate of answering the question “what is the error in the program?”

Table 6.5 Success rate of answering the question “in which line is the error?”

Table 6.6 Success rate of answering the question “what is the cause of the error?”

Figure 6.3 Participants’ answers for the question "Do the compiler error messages correctly give the location (line) of the

actual error?”

Question 1: What is error in the program?

Compiler EduCC EduCC EduCC GCC GCC GCC MSVC MSVC MSVC

Category of Answers Correct Incorrect

Partial

Correct

Answer

Correct Incorrect

Partial

Correct

Answer

Correct Incorrect

Partial

Correct

Answer

Count of particpant who answer according to

the category
44 2 7 14 11 6 12 6 4

Success rate of answering find question 1 (%) 83% 4% 13% 45% 35% 19% 55% 27% 18%

Question 2: In which line is the error?

Compiler EduCC EduCC EduCC GCC GCC MSVC MSVC MSVC

Category of Answers Correct Incorrect

Partial

Correct

Answer

Correct Incorrect Correct Incorrect

Partial

Correct

Answer

Count of particpant who answer according to

the category
42 9 2 24 7 16 4 2

Success rate of answering find question 1 (%) 79% 17% 4% 77% 23% 73% 18% 9%

Question 3: What is the cause of error?

Compiler EduCC EduCC EduCC GCC GCC GCC GCC MSVC MSVC MSVC

Category of Answers Correct Incorrect

Partial

Correct

Answer

Correct Incorrect Left Blank

Partial

Correct

Answer

Correct Incorrect

Partial

Correct

Answer

Count of particpant who answer according to

the category
49 2 2 18 9 1 3 16 5 1

Success rate of answering find question 1 (%) 92% 4% 4% 58% 29% 3% 10% 73% 23% 5%

75

Figure 6.4 Participants’ answers for the question " Do the compiler error messages describe what is the actual error?”

Finally, a paired-sample t-test suggests that there is a significant difference between the mean of

participants' answers when they used accompanying error messages from EduCC and when they used

accompanying error messages from GCC or MSVC for finding errors (t= 4.548825, df=52, p =

1.63228E-05).

RQ2: Is there a significant difference between the quality of syntax error messages generated

by EduCC, GCC, and MSVC in fixing syntax errors?

Table 6.7 shows the success rate of answering “How to fix the error?”. As can be seen, the average

success rate for EduCC is higher than GCC and MSVC. Participants' performance answering “how to

fix the error” is acceptable. The average rate is higher than 50%. However, the reflection of

participants in part two clarifies that they do not think that the accompanying error messages from

GCC and MSVC were helpful, as shown in Figure 6.5.

Table 6.7 Success rate of answering the question “how to fix the error?"

Question 4: How to fix the error?

Compiler EduCC EduCC EduCC EduCC GCC GCC GCC GCC MSVC MSVC MSVC

Category of Answers Correct Incorrect Left Blank

Partial

Correct

Answer

Correct Incorrect Left Blank

Partial

Correct

Answer

Correct Incorrect

Partial

Correct

Answer

Count of particpant who answer according to

the category
47 3 1 2 17 9 1 4 16 5 1

Success rate of answering find question 1 (%) 89% 6% 2% 4% 55% 29% 3% 13% 73% 23% 5%

76

Figure 6.5 Participants’ answers for the question “Do the compiler error messages suggest how to fix the error?”

A paired-sample t-test suggests that there is a significant difference between the mean of participants'

answers for the question "how to fix the error?" when they used accompanying error messages from

EduCC and when they used accompanying error messages from GCC or MSVC (t= 3.954749, df=52,

p= 1.16408 E-04).

RQ3: Is there a significant difference between the quality of syntax error messages generated

by EduCC, GCC, and MSVC in the time-to-find and -fix?

A paired-sample t-test suggests that there is no significant difference in the task completion time

between the time used to find and fix error when the participants used accompanying error messages

of EduCC, and the time used when they used accompanying error messages of GCC or MSVC.

(t = -1.63144 while the critical t-value is -1.68, df = 52, p = 0.054419).

6.4 Limitations

This study compared EduCC with versions of MSVC (2019) and GCC (10.3.1), which may have new

versions and enhanced error messages in the future. It was very difficult to recruit students to spend

hours on a lengthy experiment. This happened in the pilot study, so we were forced to shorten the

experiment time for the full experiment.

In implementing the experiment, it was difficult to separate the time to find errors from the time to fix

the error using Qualtrics. So, developing a specialized environment for studying programmers'

performance will be more helpful in the future. Finally, this study shows how to improve some

common syntax errors for novices, but the more advanced students may need help with semantics and

run-time errors.

77

6.5 Conclusion

The research question of this dissertation is:

 Can modified parsing techniques help in generating better syntax error messages?

This question was evaluated using a controlled experiment and within-group design. The independent

variable is the compiler type (EduCC, GCC, MSVC). The dependent variable is the quality of syntax

error messages. The quality of syntax error messages is measured by three factors: the success rate of

finding errors in erroneous programs, the success rate of fixing syntax errors in erroneous programs,

and mean-time-to-find and -fix erroneous programs.

The Null hypotheses for the experiment are:

Hypothesis 1: There is no significant difference between the quality of syntax error messages

generated by EduCC, GCC, and MSVC in finding syntax errors.

Hypothesis 2: There is no significant difference between the quality of syntax error messages

generated by EduCC, GCC, and MSVC in fixing syntax errors.

Hypothesis 3: There is no significant difference between the quality of syntax error messages

generated by EduCC, GCC, and MSVC in the time-to-find and -fix.

The success rate of questions “what is the error?”, “in which line is the error?” and “ what is the cause

of the error?” are 83%, 79%, and 92% consequentially for the programs that the participants used

EduCC. While 45%, 77%, and 58% for the programs where the participants used GCC, and 55%,

73%, and 73% for the programs that used MSVC. This supports that EduCC enhanced compiler error

messages in finding the error. Also, the sample-paired t-test defended Null Hypothesis 1.

The success rate of the question “how to fix the error” is 89% for EduCC, 55%, and 73% for GCC

and MSVC, consequentially. This supports that EduCC enhanced compiler error messages in fixing

the error. Also, the sample-paired t-test defended Null Hypothesis 2. However, the study did not

prove that the EduCC reduced the time to find and fix the error.

Finally, this chapter evaluated the 3-phase parsing techniques using an experimental approach. The

results proved that the 3-phase parsing techniques could significantly enhance compiler error

messages.

78

Chapter 7: Conclusion and Future Work

The research question of this dissertation is:

 Can modified parsing techniques help in generating better syntax error messages?

This question was evaluated using a controlled experiment and within-group design. The experiments

proved that the 3-phase parsing techniques enhanced compiler error messages. As a result, they help

the user in finding and fixing errors. Previous studies showed that enhanced compiler error messages

impact student learning in introductory programming courses and reduce the number of repeated

errors.

This study complemented the efforts of researchers in this area. Many scientists focus on enhancing

the structure and wording of the error message contents. Others focus on designing solutions to

implement these recommendations. For example, Becker worked on proving that enhanced error

messages have a positive impact on students learning. Barik focuses on the structure of the content of

the error messages. Marcus suggested a rubric to measure the effectiveness of modified error

messages. Kohn studied the connection between misconceptions and error messages and designed a

parser to address these misconceptions within the error messages. The contributions of this study are:

1. Analyzing and studying the behavior of mainstream compilers with novices’ common

errors.

2. Designing an innovative 3-phase parsing technique

3. Developing a proof-of-concept compiler prototype that demonstrates the utility of the 3-

phase parsing techniques for C/C++ languages.

4. Developing metrics to measure the quality of syntax error messages.

5. Conducting an experiment to measure the quality of syntax error messages.

The innovative model of 3-phase parsing techniques made it possible to implement some of the

recommendations of previous studies. Barik, in his recommendations, indicated that they proved that

the rational model of error messages is preferable by experts and that the next research should

interview the compiler writers and understand why they do not implement these recommendations

about the error messages' content and structure. The 3-phase parser generated in this dissertation can

be an answer to Barik and others’ recommendations. Furthermore the 3-phase parser utilizes the Merr

tool. Merr enables writing good error message content that is connected to the parsing states. Using

multiple parsing techniques gives the compiler writers more control over writing more specific error

messages for each parsing state and closer to the location of the errors.

79

Kohn developed a parser to report error messages for 80% of predefined common errors. However,

Kohn reported that the major limitation of their approach is the need to hard code the predefined

errors that connected to students' misconceptions. They cannot always write the correct message for

the error since they cannot guess what the students thought when they wrote the code. And for the

same error, different students may need different explanations. The 3-phase parser is a more general

approach that depends on the parsing states, not writing specific code for each error. Also, Kohn's

parser works only on small programs for a subset of Python grammars. Whereas the 3-phase parser

should not be limited by the program size. Future studies should test the 3-phase parser on large

programs. Also, it is expected that the 3-phase parsing techniques have the potential to be applied to

the other programming languages, especially those that are from the C language family, due to the

similarities in their grammars.

Future research

For future work, I plan to work on the other subsystems of the proposed ILDE: software visualization

tool, multimedia learning content production, eTutoring tool, and ILDE's mascot character. Next, I

will integrate these subsystems into the ILDE and test these subsystems with mixed-method studies.

Also, I plan to work on two studies; their need arises while working on this research. The first study

is developing a goodness rating system for the quality of syntax error messages. The second study is

developing a practical syntax error message coverage tool.

Undergraduate Students Co-design Educational Compiler Error Messages

The research project aims to provide insight into how compiler error messages should be written from

undergraduate computer science students' perspectives. The core idea of co-design is co-creation

between users and design experts to learn from the collective creativity of potential users. The project

aims to involve users of the EduCC Compiler, students, in the innovative design of compiler error

messages. Letting students write error messages by themselves can generate more friendly content of

error messages. That uses the students' terminology instead of compiler writer jargon. It will give

more insight into what the students find helpful for them. The suggested research method is the focus

group.

Toward a Goodness Rating System for The Quality of Syntax Error Messages

Not all compiler error messages are equal! This research describes error messages as bad and good

quality. Not all good error messages are at the same level. Criteria to measure the quality of error

messages include readability, relevancy, compiler writer jargon, consistency, or hints to fix.

80

Developing metrics for measuring compiler error messages' quality helps compiler writers and

researchers. First, it will help compare different compilers' error messages. Then it will enable the

researcher to search for causes of low-quality error messages and address these causes. Alternatively,

if there is a compiler with better error messages, questioning the source of its strength and sharing it

will help other compiler writers craft good error messages.

A plan for this future study may include the following:

1. Investigating the literature for evidence-based research on the quality of compiler error

messages.

2. Conducting focus group meetings with compiler writers and teachers of introductory

programming courses.

3. Developing a rubric and testing it.

4. Applying this rubric to a set of error messages of different compilers, report and discuss the

results.

A Practical Syntax Error Message Coverage Tool

Good compiler error messages are a challenge for LR parsers. Studying the common errors of novices

and seeing how the compiler responds to these errors is a good step. However, also needed is the

ability to generate erroneous code fragments that lead to each state in the LR parser automaton where

error can happen, which is reachability. Offering a practical algorithm and tool that generates a

complete set of erroneous snippets for a programming language helps researchers study, enhance, and

evaluate how compilers diagnose these erroneous snippets. It also enables compiler writers to craft

comprehensive diagnostic syntax error messages.

A plan for this future study may include the following:

1. Designing an algorithm that generates a complete set of erroneous fragments for a language

grammar.

2. Developing an open-source tool that implements this algorithm.

3. Testing and verifying generated snippets of this tool on a test suite of LR grammars.

81

References

[1] L. Westfall. Certified Software Quality Engineer Handbook. ASQ Quality Press, pp.4-6, 2009, [E-book]

Available: Ebook Central Academic Complete.

[2] S. M. Algaraibeh, “Techniques for enhancing compiler error messages,” in Proceedings of the 2022

ACM Conference on International Computing Education Research-Volume 2, 2022, pp. 1–2.

[3] R. Molich, and J. Nielsen, “Improving a Human-Computer Dialogue: What Designers Know about

Traditional Interface Design”. vol. 33, no. 3, ACM, New York, 1990, pp. 338-348.

[4] S. Hyunmin, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge, “Programmers’ build errors: A

case study (at Google)”. In International Conference on Software Engineering (ICSE). 2014, pp. 724–

734.

[5] B. Becker, P. Denny, R. Pettit, D. Bouchard, D. Bouvier, B. Harrington, A. Kamil, A. Karkare, C.

McDonald, P. Osera, J. Pearce, and J. Prather. “Compiler Error Messages Considered Unhelpful: The

Landscape of Text-Based Programming Error Message Research”. In the Proceedings of the Working

Group Reports on Innovation and Technology in Computer Science Education, ITiCSE-WGR '19. ACM,

New York, 2019, pp. 177–210.

[6] B. Shneiderman. “Designing Computer System Messages”. ACM, New York, Sep 1982, pp. 610–611.

[7] P. Brown. “ Error messages: the neglected area of the man/machine interface”. ACM, New York, 1983,

pp. 246–249.

[8] S. Lewis and G. Mulley.” A Comparison Between Novice and Experienced Compiler Users in a

Learning Environment”. In Proceedings of the 6th Annual Conference on the Teaching of Computing

and the 3rd Annual Conference on Integrating Technology into Computer Science Education: Changing

the Delivery of Computer Science Education (ITiCSE ’98). ACM, New York, 1998, pp.157–161.

[9] V. Traver ,"On Compiler Error Messages: What They Say and What They Mean." Advances in Human-

computer Interaction 2010, Hindawi Publishing Corporation, June 2010, Available:

doi:10.1155/2010/602570

[10] G. Marceau, K. Fisler, and S. Krishnamurthi. “Measuring the Effectiveness of Error Messages Designed

for Novice Programmers”. In Proceedings of the 42nd ACM Technical Symposium on Computer Science

Education (SIGCSE ’11). ACM, New York, 2011, pp. 499-504.

[11] T. Barik, D. Ford, E. Murphy-Hill, and C. Parnin, “How Should Compilers Explain Problems to

Developers?”, In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018). ACM, New

York, 2018, pp.633–643.

[12] T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng, E. Murphy-Hill, and C. Parnin, “Do developers read

compiler error messages?”, In International Conference on Software Engineering (ICSE), 2017, 575–585.

[13] B. Becker, P. Denny, J. Prather, R. Pettit, R. Nix ,and C. Mooney, “Towards Assessing the Readability of

Programming Error Messages “, 2021, ACE ’21 The 23rd Australasian Computing Education

Conference, 2021.

[14] M. Hristova, A. Misra, M. Rutter, and R. Mercuri, “Identifying and Correcting Java Programming Errors

for Introductory Computer Science Students,” ACM Special Interest Group Computer Science Education

(SIGCE) Bulletin, ACM, vol. 35, no. 1, New York , 2003, pp. 153–156.

[15] T. Kohn, Teaching python programming to novices: addressing misconceptions and creating a

development environment. ETH Zurich, 2017.

https://na01.alma.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=2235325266140001851&institutionId=1851&customerId=1840

82

[16] C. Jeffery, “Generating LR syntax error messages from examples”, ACM Transactions on Programming

Languages and Systems (TOPLAS), vol. 25, no. 5, ACM, New York , 2003, pp. 631-640.

[17] F. Pottier, “Reachability and error diagnosis in LR(1) parsers”, In Proceedings of the 25th International

Conference on Compiler Construction (CC 2016). ACM, New York, 2016, pp. 88–98.

[18] B. A. Becker, G. Glanville, R. Iwashima, C. McDonnell, K. Goslin, and C. Mooney, “Effective compiler

error message enhancement for novice programming students,” Computer Science Education, vol. 26, no.

2-3, 2016,pp. 148–75.

[19] T. Barik, Error messages as rational reconstructions. North Carolina State University, 2018.

[20] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas,

I. Utting, and T. Wilusz, “A multi-national, multi-institutional study of assessment of programming skills

of first-year cs students,” in Working group reports from ITiCSE on Innovation and technology in

computer science education, ACM, New York, 2001, pp. 125–180.

[21] J. Sweller, J. van Merriënboer and F. Paas, "Cognitive architecture and instructional design: 20 years

later", Educ Psychol Rev, vol. 31, pp. 261-292, Jan. 2019.

[22] A. J. Martin and P. Evans, "Load reduction instruction: Sequencing explicit instruction and guided

discovery to enahnce students' motivatin engagment learning and achivemnt," in Advances in Cognitive

Load Theory. London and New York, UK and US:Routledge, pp. 13-29, 2020.

[23] D. A. Kolb, "The process of experiential learning," in Experiential Learning: Experience as the Source of

Learning and Development. FT Press, 2014.

[24] C. Bonk and D. Cunningham, "Searching for learner-centered constructivist and sociocultural

components of collaborative educational learning tools," in Electronic Collaborators: Learner-Centered

Technologies for Literacy apprenticeship, and discourse. Routledge, New York, 1998, pp. 25-50.

[25] R. E. Mayer, "Cognitive theory of multimedia learning", in The Cambridge handbook of multimedia

learning. Cambridge university press, 2014, pp. 43-71.

[26] U. Fuller et al., "Developing a computer science-specific learning taxonomy", ACM Special Interest

Group Computer Science Education (SIGCE) Bulletin, vol. 39, no. 4, ACM, New York, 2007, pp. 152-

170.

[27] B. Du Boulay, "Some difficulties of learning to program", Journal of Educational Computing Research,

vol. 2, no. 1, SAGE Publications, Los Angeles, CA,1986, pp. 57-73.

[28] A. F. Blackwell, "First steps in programming: A rationale for attention investment models", Proceedings

IEEE 2002 Symposia on Human Centric Computing Languages and Environments, 2002, pp. 2-10.

[29] J. Bonar and E. M. Soloway, "Pre-programming knowledge: A major source of misconceptions in novice

programmers", Human-Computer Interaction, vol. 1, Taylor & Francis, 1985, pp. 133-162.

[30] A. Ettles, A. Luxton-Reilly and P. Denny, "Common logic errors made by novice programmers",

Proceedings of the 20th Australasian Computing Education Conference (ACE), ACM, New York, 2018,

pp. 83-89.

[31] L. Kaczmarczyk, E. Petrick, J. East and G. Herman, "Identifying student misconceptions of

programming", Proceedings of the 41st ACM technical symposium on Computer science education,

ACM, New York, pp. 107-111.

[32] T. Green, "Language design and acquisition of programming: Programming languages as information

structures" in Psychology of Programming, Academic Press, 1990 pp. 117-137.

83

[33] J. Hoc and A. Nguyen-Xuan, "Language design and acquisition of programming: Language semantics

mental models and analogy" in Psychology of Programming, Academic Press, 1990, pp. 139-156.

[34] A. Altadmri and N. Brown, "37 million compilations: Investigating novice programming mistakes in

large-scale student data", Proceedings of the 46th ACM technical symposium on computer science

education, pp. 522-527, 2015.

[35] T. Kohn, "The error behind the message: Finding the cause of error messages in python", Proceedings of

the 50th ACM Technical Symposium on Computer Science Education, 2019, pp. 524-530.

[36] M. Nienaltowski, M. Pedroni and B. Meyer, "Compiler error messages: What can help novices?",

Proceedings of the ACM Technical Symposium on Computer Science Education, 2008, pp. 168-172.

[37] M. Ahmadzadeh, D. Elliman and C. Higgins, "An analysis of patterns of debugging among novice

computer science students", Proceedings of the 10th annual SIGCSE conference on Innovation and

technology in computer science education, ACM, New York, 2005, pp. 84-88.

[38] W. L. Johnson and E. Soloway, "PROUST: Knowledge-based program understanding", IEEE

Transactions on Software Engineering, vol. SE-11, no. 3, 1985,pp. 267-275.

[39] M. Kolling, B. Quig, A. Patterson and J. Rosenberg, "The BlueJ system and its pedagogy", Journal of

Computer Science Education Special Issue on Learning and Teaching Object Technology, vol. 13, no. 4,

Taylor & Francis 2003.

[40] S. Fincher, S. Cooper, M. Kölling and J. Maloney, "Comparing alice greenfoot & scratch", ACM

Transactions on Computing Education (TOCE), ACM, New York, 2010, pp. 192-193.

[41] N. Trachsler, "WebTigerJython - A Browser-based programming IDE for education", Master's Thesis,

ETH Zurich, 2018.

[42] T. Green and M. Petre, "Usability analysis of visual programming environments: A 'cognitive

dimensions' framework", Visual Languages and Computing, Elsevier,1996 pp. 131-174.

[43] I. Goldin, S. Narciss, P. Foltz and M. Bauer, "New directions in formative feedback in interactive

learning environments", International Journal of Artificial Intelligence in Education, vol. 27, no. 3,

Springer, 2017, pp. 385-392.

[44] C. L. Jeffery,”Parsing” in Build Your Own Programming Language. Packt Publishing, 2021

[45] D. Grune and C. J. H. Jacobs, Parsing Techniques: A Practical Guide. New York, NY: Springer New

York, 2008, pp. 263–341. Available: https://doi.org/10.1007/978-0-387-68954-89

[46] A. V. Aho, R. Sethi, and J. D. Ullman, “LR Parsing” section of “Syntax Analysis” in Compilers:

principles, techniques, and tools. Addison-wesley Reading, 2007, vol. 2.

[47] G. G. P. LICENSE, “Bison 2.7,” 2007.

[48] C. L. Jeffery, “Merr user’s guide”, Accessed: March 23, 2023. [Online]. Available:

http://unicon.org/merr/ , 2002.

[49] J. Lazar, J. H. Feng, and H. Hochheiser, “Experimental Design” in Research methods in human-computer

interaction. Morgan Kaufmann, 2017. [Online]

[50] J. W. Creswell, and J. D. Creswell, “Quantitative Methods” in Research design: Qualitative, quantitative,

and mixed methods approaches. Sage publications, 2017.

[51] T. Soule, A Project-Based Introduction to C++. Kendall Hunt, 2014, pp. 5, 36, 54, 71, 92.

84

Appendices

Appendix A: Study Materials for Experimental Approach to Evaluate

Messages Enabled by 3-Phase Parsing Techniques

A.1 Invitation Letter

Invitation to Participate in a Compiler Research Experiment

Dear Computer Science and Engineering Students,

You are invited to participate in the "Techniques for Enhancing Compiler Error Messages"
experiment. This research aims to enhance the learning and teaching of introductory programming
courses. One of programming learners' main difficulties is handling and debugging code errors. The
study will evaluate the quality of a new compiler developed by the researchers. Furthermore, the
study will compare the quality of the error messages generated by the newly developed compiler
with the used compilers by the students of introductory programming courses, GNU GCC and
Microsoft Visual C++.

Dr. Clinton Jeffery and Sana'a Algaraibeh are leading this study. Dr. Clinton Jeffery is a professor and
chair, and Sana’a Algaraibeh is an instructor in the Computer Science and Engineering Department
at the New Mexico Institute of Mining and Technology.

The survey is light and divided into parts. Each part is only 15 minutes. If you do the first part, you
will help this research proceed. If you do two parts, you will help make the study more valuable.

Best regards,
Dr. Clinton Jeffery
Chair, Computer Science and Engineering Department
clinton.jeffery@nmt.edu

85

A.2 Consent Form

Figure A- 1 shows the consent form, the first page of the experiment on Qualtrics.

86

A.3 Tasks

Figure A- 2 shows the second page of part 1 of the experiment for group 1 on Qualtrics. First page is same for all the groups.

87

Figure A- 3 shows page 3 of part 1 of the experiment for group 1 on Qualtrics.

88

Figure A- 4 shows page 4 of part 1 of the experiment for group 1 on Qualtrics.

89

Figure A- 5 shows page 1 of part 2 of the experiment for group 1on Qualtrics.

90

Figure A- 6 shows the questions of page 1 of part 2 of the experiment for group 1on Qualtrics.

91

Figure A- 7 shows page 2 of part 2 of the experiment for group 1 on Qualtrics.

92

A.4 T-Test for (RQ1: Is there a significant difference between the quality of syntax error

messages generated by EduCC, GCC, and MSVC in finding syntax errors?)

𝑡 =
𝑥𝑑−𝜇
𝑠

√𝑛⁄
 = 4.548825, where 𝑥𝑑 = 1.452830189 , 𝑠 =2.325163665, df=52, t-crit=1.68 (one-tail),

and 𝛼 = 0.05.

P-value = 1.63E-05.

Table A- 1 shows the results of participants answers for the questions related to RQ1.

Q1) what is the error in the program?

Q2) in which line is the error?

Q3) what is the cause of the error.

Participant # Group #

 Grade for Q1

with GCC/MSVC

error messages

 Grade for Q2

with GCC/MSVC

error messages

 Grade for Q3

with GCC/MSVC

error messages

X1: Sum of grades

of Q1, Q2, Q3 with

GCC/MSVC error

messages

 Grade for Q1

with EduCC error

messages

 Grade for Q2 with

EduCC error

messages

 Grade for Q3 with

EduCC error

messages

X2:Sum of grades

of Q1, Q2, Q3 with

EduCC error

messages

Xd=X2 -X1

1 1 2 2 2 6 2 2 2 6 0

2 1 0 0 0 0 2 2 2 6 6

3 1 0 0 0 0 2 2 2 6 6

4 1 0 0 0 0 2 2 2 6 6

5 1 2 2 2 6 2 2 2 6 0

6 3 2 2 2 6 2 2 2 6 0

7 3 2 2 2 6 2 2 2 6 0

8 3 0 2 0 2 2 2 2 6 4

9 3 0 2 2 4 2 2 2 6 2

10 3 2 2 2 6 2 2 2 6 0

11 3 0 2 0 2 2 2 2 6 4

12 5 2 2 2 6 2 2 2 6 0

13 5 0 0 0 0 2 1 2 5 5

14 5 2 2 2 6 2 2 2 6 0

15 5 2 2 2 6 2 2 2 6 0

16 5 2 2 2 6 2 2 2 6 0

17 5 2 2 2 6 2 1 2 5 -1

18 7 0 0 0 0 2 2 1 5 5

19 7 2 2 2 6 2 2 2 6 0

20 7 0 0 0 0 2 2 2 6 6

21 7 1 2 2 5 2 2 2 6 1

22 9 1 2 1 4 1 2 2 5 1

23 9 1 2 2 5 1 2 2 5 0

24 9 1 2 1 4 1 2 2 5 1

25 9 1 2 1 4 0 2 2 4 0

26 11 1 2 2 5 2 2 2 6 1

27 11 0 0 0 0 2 2 2 6 6

28 11 2 2 2 6 2 2 2 6 0

29 11 0 2 0 2 2 2 2 6 4

30 11 2 2 2 6 1 2 2 5 -1

31 11 2 2 2 6 2 2 2 6 0

32 2 0 0 0 0 2 2 2 6 6

33 2 0 0 0 0 2 2 0 4 4

34 2 0 1 0 1 0 2 0 2 1

35 2 2 2 2 6 2 2 2 6 0

36 2 2 2 2 6 2 2 2 6 0

37 4 1 2 1 4 2 2 2 6 2

38 4 0 2 0 2 2 2 2 6 4

39 4 2 2 2 6 2 0 1 3 -3

40 4 2 2 2 6 2 2 2 6 0

41 6 0 0 0 0 2 0 2 4 4

42 6 2 2 2 6 2 2 2 6 0

43 6 2 2 2 6 2 2 2 6 0

44 6 0 2 2 4 2 2 2 6 2

45 6 1 0 2 3 1 0 2 3 0

46 8 2 2 2 6 2 2 2 6 0

47 8 2 2 2 6 2 2 2 6 0

48 8 2 2 2 6 2 2 2 6 0

49 8 2 2 2 6 1 2 2 5 -1

50 12 1 2 2 5 2 2 2 6 1

51 12 2 2 2 6 2 2 2 6 0

52 12 1 1 2 4 1 2 2 5 1

53 12 2 2 2 6 2 2 2 6 0

93

A.5 T-Test for (RQ2: Is there a significant difference between the quality of syntax error

messages generated by EduCC, GCC, and MSVC in fixing syntax errors?)

𝑡 =
𝑥𝑑−𝜇
𝑠

√𝑛⁄
 = 3.954749, where 𝑥𝑑 =0.471698, 𝑠 =0.868327, df=52, t-crit=1.68 (one-tail), and 𝛼 =

0.05.

P-value = 1.16E-04.

Table A- 2 shows the results of participants answers for the question related to RQ2.

Participant # Group #

 Grade for "How to fix

error?" with GCC/MSVC

error messages

 Grade for "How to fix

error?" with EduCC

error messages

Xd=X2 -X1

1 1 1 2 1

2 1 0 0 0

3 1 0 2 2

4 1 0 2 2

5 1 2 2 0

6 3 2 2 0

7 3 2 2 0

8 3 2 2 0

9 3 2 2 0

10 3 2 2 0

11 3 0 2 2

12 5 2 2 0

13 5 0 0 0

14 5 2 2 0

15 5 2 2 0

16 5 2 2 0

17 5 2 2 0

18 7 0 2 2

19 7 2 2 0

20 7 0 2 2

21 7 2 2 0

22 9 1 2 1

23 9 2 2 0

24 9 1 2 1

25 9 1 2 1

26 11 2 2 0

27 11 0 2 2

28 11 0 2 2

29 11 0 2 2

30 11 2 2 0

31 11 2 2 0

32 2 0 0 0

33 2 0 1 1

34 2 0 1 1

35 2 2 2 0

36 2 2 2 0

37 4 1 2 1

38 4 0 2 2

39 4 2 2 0

40 4 2 2 0

41 6 0 2 2

42 6 2 2 0

43 6 2 2 0

44 6 2 2 0

45 6 2 2 0

46 8 2 2 0

47 8 2 2 0

48 8 2 0 -2

49 8 2 2 0

50 12 2 2 0

51 12 2 2 0

52 12 2 2 0

53 12 2 2 0

94

A.6 T-Test (6.3.1 RQ2: Is there a significant difference between the quality of syntax error

messages generated by EduCC, GCC, and MSVC in the time-to-find and -fix?)

𝑡 =
𝑥𝑑−𝜇
𝑠

√𝑛⁄
 = - 1.631444786, where 𝑥𝑑 = -95.19998113, 𝑠 = 424.8175176, df=52, t-crit=-1.68 (one-

tail), and 𝛼 = 0.05. P-value = 5.44E-02.

Table A- 3 shows the results of participants answers for the questions related to RQ3.

Participant # Group #
X1: Time in seconds for the time particpant spent for find

and fix questions with GCC/MSVC error messages

X2: Time in seconds for the time particpant spent for find and

fix questions with EduCC messages
Xd=X2-X1

1 1 166.032 143.357 -22.675

2 1 436.633 735.402 298.769

3 1 213.155 48.405 -164.75

4 1 247.641 151.544 -96.097

5 1 74.988 65.088 -9.9

6 3 37.948 23.222 -14.726

7 3 365.368 124.872 -240.496

8 3 811.175 166.733 -644.442

9 3 898.682 78.823 -819.859

10 3 154.944 143.446 -11.498

11 3 141.992 162.391 20.399

12 5 60.022 96.624 36.602

13 5 291.374 74.524 -216.85

14 5 206.875 173.36 -33.515

15 5 90.339 70.694 -19.645

16 5 142.518 69.833 -72.685

17 5 119.414 87.091 -32.323

18 7 104.079 89.666 -14.413

19 7 211.157 221.815 10.658

20 7 31.241 173.836 142.595

21 7 435.546 943.072 507.526

22 9 232.168 711.978 479.81

23 9 534.229 297 -237.229

25 9 122.681 304.158 181.477

26 9 397.713 93.907 -303.806

27 11 119.222 57.294 -61.928

28 11 526.315 528.826 2.511

29 11 252.921 187.895 -65.026

30 11 115.654 74.915 -40.739

31 11 141.159 107.103 -34.056

32 11 310.498 60.801 -249.697

33 2 572.931 175.203 -397.728

34 2 2187.456 576.406 -1611.05

35 2 2714.305 1246.942 -1467.363

36 2 125.365 259.576 134.211

37 2 797.05 109.868 -687.182

38 4 166.691 462.561 295.87

39 4 754.254 463.727 -290.527

40 4 65.433 53.398 -12.035

41 4 143.86 75.265 -68.595

42 6 864.72 292.405 -572.315

43 6 285.535 83.861 -201.674

44 6 609.157 1532.494 923.337

45 6 496.434 180.595 -315.839

46 6 272.255 77.498 -194.757

47 8 211.125 221.192 10.067

48 8 132.485 810.364 677.879

49 8 114.49 175.117 60.627

50 8 272.622 221.063 -51.559

56 12 170.75 769.494 598.744

57 12 150.156 85.38 -64.776

58 12 110.879 3.267 -107.612

59 12 111.364 134.05 22.686

95

Appendix B : Source code of the EduCC

B.1 meta.err for parser 1

int main()

{}

var ;

:::A statement is written outside function boundaries that start with the word/character:

int main()

{}

cout<<"hi";

:::A print statement is written outside function boundaries that start with the word:

int main()

{}

cin<<"hi";

:::A read statement is written outside function boundaries that start with the word:

int main()

{}

return

::: A statement is written outside function boundaries that start with the word:

void foo()for(int i=0; i<10; i++)

::: Curly bracket "{" is required for the function body, expected "{" before the word:

void foo()(for(int i=0; i<10; i++)

::: "{" or ";" is expected; if this is a function definition a "{" is required, but if this is a

function declaration a ';' is required before the word/character:

x

int main(){}

::: this statement is before the boundaries of a function!! token of type VAR

9.1

float main(){}

::: this statement is before the boundaries of a function!!token of type NUM

for

int main(){}

:::this statement is before the boundaries of a function!!token of type KEY

int 90 {}

::: this statement neither a function header!! nor a preprocessor directives!! and it is out the

boundaries of a function!!

#includ <iostream>

:::is this preprocessor directive, it should be include or define!!

#99 include

::: preprocessor errors, is this preprocessor , the # should be followed by defince or inclue ex.

#include

void foo()cout<<"hello"

::: function header should followed by { and this statment should be part of function boidy inside {}

void foo()"hi"

::: function header should followed by { and this statment/string should be part of function boidy

inside {}

void foo()y=x+9

::: function header should followed by { and this statment should be part of function boidy inside {}

void foo ()

void foo2();

::: function header should followed by ; to be declaration for the function

void foo {}

::: before this token , it should be ; to declare variable or "()" for function header

int foo(){ x=90+x;

:::the function body need closed curly bracket "}"

int main (){} }

96

::: too many curly bracket

int main() { int x; } y=x+9 }

::: statement (raw text) out (after) the function boundaries

int main() { int x; } y 9+9 }

::: track the state of this case

int foo(){}

90

:::statement (number) out (after) the function boundaries

int foo(){}"literal string out the boundaries" ;

::: statement (literal string) out (after) the function boundaries

int foo(){} 9rawtxt

::: statement (raw text-unrecognized)out the function boundaries

"string before the function boundaries"

int main {}

::: part of the function header is missed, ex. int func()

int f()

::: {} body is expected, ex. int func(){...}

B.2 meta.err for parser 2

if(x>10)||(z<100)

 cout<<"correct answer"<<endl;

:::Is the following operator continuing the condition of a if, for, while, do-while, or switch

statment? I? In that case, you need additional parentheses around the whole condition. The operator is

int x=10, sum=0;

for(x<50)

 sum=sum+x;

:::Semicolons is required in the for header, expected two semicolons inside the for parentheses (i.e

for(int x=1;x<10;x++). You may fix that by adding two ';' in the propoer places: for (statement;

condition ; statment) before

for(x<50, int i, i++)

 sum=sum+x;

:::Semicolons is required in the for header, expected two semicolons inside the for parentheses(i.e.

for(int x=1;x<10;x++). You may fix that by adding two ';' in the propoer places: for (statement;

condition ; statment) before

while(i<10) }

cout<<"hi";

:::Do you mean open bracket ‘{‘ instead of close bracket '}'? because usually while statement start

with ‘{‘ , or any other correct statment before:

if(i<10) }

cout<<"hi";

:::Do you mean open bracket ‘{‘ instead of close bracket '}'? because usually if statement start with

‘{‘ , or any other correct statement before:

statement start with ‘{‘ instead of:

do }

:::Do you mean open bracket ‘{‘ instead of close bracket '}'? because usually do-while statement start

with ‘{‘ , or any other statement(s) before:

do{

sum=sum+x;

cin>>more;

}while(x<10)||(more);

:::Is the following operator continuing the condition of a if, for, while, do-while, or switch

statment? In that case, you need additional parentheses around the whole condition. The operator is

for(i = 0; i < n; i+

 cout << i << ":" <<die << " ";

:::Missing close parenthesis ')' of for header before the word/charater:

do{

sum=sum+x;

97

}(x<10);

:::Missing 'while' keyword of the do-while statement before word/character:

for(x==1;;)

 cout<<"hi";

 :::Missing the condition part of the for statement, which is required: for(; condition ;) before:

B.3 yyerror.c for parser 1

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

extern char gfuncName[50];

extern int glastLine;

int yyerror_isinitialized, yymaxstate = 39;

struct errtable {

 int i;

 union {

 char *msg;

 struct errtable *p;

 } u;

 } errtab[40];

void yyerror_init()

{

 errtab[0].i = 4;

 errtab[0].u.p = (struct errtable *)calloc(1,5 * sizeof(struct errtable));

 errtab[0].u.p[0].u.msg = "this statement is before the boundaries of a function!! token of type

VAR";

 errtab[0].u.p[1].i = 266;

 errtab[0].u.p[1].u.msg = "this statement is before the boundaries of a function!!token of type

KEY";

 errtab[0].u.p[2].i = 265;

 errtab[0].u.p[2].u.msg = "this statement is before the boundaries of a function!!token of type

NUM";

 errtab[0].u.p[3].i = 268;

 errtab[0].u.p[3].u.msg = "part of the function header is missed, ex. int func()";

 errtab[0].u.p[4].i = 262;

 errtab[0].u.p[4].u.msg = "this statement is before the boundaries of a function!! token of type

VAR";

 errtab[4].i = 7;

 errtab[4].u.p = (struct errtable *)calloc(1,8 * sizeof(struct errtable));

 errtab[4].u.p[0].u.msg = "A statement is written outside function boundaries that start with the

word:";

 errtab[4].u.p[1].i = 272;

 errtab[4].u.p[1].u.msg = "A print statement is written outside function boundaries that start with

the word:";

 errtab[4].u.p[2].i = 261;

 errtab[4].u.p[2].u.msg = "too many curly bracket";

 errtab[4].u.p[3].i = 266;

 errtab[4].u.p[3].u.msg = "A statement is written outside function boundaries that start with the

word:";

 errtab[4].u.p[4].i = 271;

 errtab[4].u.p[4].u.msg = "A read statement is written outside function boundaries that start with

the word:";

 errtab[4].u.p[5].i = 265;

 errtab[4].u.p[5].u.msg = "statement (raw text-unrecognized)out the function boundaries";

 errtab[4].u.p[6].i = 268;

 errtab[4].u.p[6].u.msg = "statement (literal string) out (after) the function boundaries";

 errtab[4].u.p[7].i = 262;

98

 errtab[4].u.p[7].u.msg = "track the state of this case";

 errtab[39].i = 1;

 errtab[39].u.msg = "the function body need closed curly bracket \"}\"";

 errtab[2].i = 2;

 errtab[2].u.p = (struct errtable *)calloc(1,3 * sizeof(struct errtable));

 errtab[2].u.p[0].u.msg = "is this preprocessor directive, it should be include or define!!";

 errtab[2].u.p[1].i = 265;

 errtab[2].u.p[1].u.msg = "preprocessor errors, is this preprocessor , the # should be followed by

defince or inclue ex. #include";

 errtab[2].u.p[2].i = 262;

 errtab[2].u.p[2].u.msg = "is this preprocessor directive, it should be include or define!!";

 errtab[12].i = 1;

 errtab[12].u.msg = "before this token , it should be ; to declare variable or \"()\" for function

header";

 errtab[1].i = 1;

 errtab[1].u.msg = "this statement neither a function header!! nor a preprocessor directives!! and

it is out the boundaries of a function!!";

 errtab[11].i = 7;

 errtab[11].u.p = (struct errtable *)calloc(1,8 * sizeof(struct errtable));

 errtab[11].u.p[0].u.msg = "Curly bracket \"{\" is required for the function body, expected \"{\"

before the word:";

 errtab[11].u.p[1].i = 0;

 errtab[11].u.p[1].u.msg = "{} body is expected, ex. int func(){...}";

 errtab[11].u.p[2].i = 272;

 errtab[11].u.p[2].u.msg = "function header should followed by { and this statment should be part of

function boidy inside {}";

 errtab[11].u.p[3].i = 266;

 errtab[11].u.p[3].u.msg = "Curly bracket \"{\" is required for the function body, expected \"{\"

before the word:";

 errtab[11].u.p[4].i = 258;

 errtab[11].u.p[4].u.msg = "\"{\" or \";\" is expected; if this is a function definition a \"{\" is

required, but if this is a function declaration a ';' is required before the word/character:";

 errtab[11].u.p[5].i = 263;

 errtab[11].u.p[5].u.msg = "function header should followed by ; to be declaration for the

function";

 errtab[11].u.p[6].i = 268;

 errtab[11].u.p[6].u.msg = "function header should followed by { and this statment/string should be

part of function boidy inside {}";

 errtab[11].u.p[7].i = 262;

 errtab[11].u.p[7].u.msg = "function header should followed by { and this statment should be part of

function boidy inside {}";

}

int __merr_errors;

extern int yychar;

extern int yylineno;

extern char *yyfilename;

extern char *yytext;

int _yyerror(char *s, int state)

{

 int i;

 char sbuf[128];

 if (! yyerror_isinitialized++) yyerror_init();

 if (strstr(s, "stack")) {fprintf(stderr,"%s", s); return 0;}

99

 if (__merr_errors++ > 10) {

 fprintf(stderr, "too many errors, aborting");

 exit(__merr_errors); }

 if (yyfilename) fprintf(stderr, "\nCompilation of (%s):\n", yyfilename);

 if ((!strcmp(s, "syntax error") || !strcmp(s,"parse error"))&&

 (state>=0 && state<=yymaxstate)) {

 if (errtab[state].i==1)

 s = errtab[state].u.msg;

 else {

 for(i=1;i<=errtab[state].i;i++)

 if(yychar == errtab[state].u.p[i].i) {

 s=errtab[state].u.p[i].u.msg;break;}

 if(i>errtab[state].i && errtab[state].i > 0)

 s=errtab[state].u.p[0].u.msg;

 }

 }

 if (!strcmp(s, "syntax error") || !strcmp(s,"parse error")){

 sprintf(sbuf,"%s (%d;%d)", s, state, yychar);

 s=sbuf;

 }

 fprintf(stderr, "\n Error message: %s \"%s\".\n Look at line: %d, in the program: \"%s\".\n

Function %s() ends at line %d is that what you intend?\n\n",

s,yytext,yylineno,yyfilename,gfuncName,glastLine);

 return 0;

}

B.4 berror.c for parser 2

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int berror_isinitilialized, bmaxstate = 88;

struct berrtable {

 int i;

 union {

 char *msg;

 struct berrtable *p;

 } u;

 } berrtab[89];

void berror_init()

{

 berrtab[15].i = 2;

 berrtab[15].u.p = (struct berrtable *)calloc(1,3 * sizeof(struct berrtable));

 berrtab[15].u.p[0].u.msg = "Is the following operator continuing the condition of an if, for,

while, do-while, or switch statement? In that case, you need additional parentheses around the whole

condition. The operator is";

 berrtab[15].u.p[1].i = 267;

 berrtab[15].u.p[1].u.msg = "Do you mean open bracket \xe2\x80\x98{\xe2\x80\x98 instead of close

bracket '}'? because usually if statement start with \xe2\x80\x98{\xe2\x80\x98 , or any other correct

statement before:";

 berrtab[15].u.p[2].i = 273;

 berrtab[15].u.p[2].u.msg = "Is the following operator continuing the condition of an if, for,

while, do-while, or switch statment? In that case, you need additional parentheses around the whole

condition. The operator is";

 berrtab[62].i = 1;

100

 berrtab[62].u.msg = "Do you mean open bracket \xe2\x80\x98{\xe2\x80\x98 instead of close bracket

'}'? because usually while statement start with \xe2\x80\x98{\xe2\x80\x98 , or any other correct

statement before:";

 berrtab[88].i = 1;

 berrtab[88].u.msg = "Is the following operator continuing the condition of an if, for, while, do-

while, or switch statement? In that case, you need additional parentheses around the whole condition.

The operator is";

 berrtab[50].i = 2;

 berrtab[50].u.p = (struct berrtable *)calloc(1,3 * sizeof(struct berrtable));

 berrtab[50].u.p[0].u.msg = "Semicolons is required in the for header, expected two semicolons

inside the for's parentheses (i.e for(int x=1;x<10;x++). You may fix that by adding two ';' in the

propoer places: for (statement; condition ; statment) before ";

 berrtab[50].u.p[2].i = 265;

 berrtab[50].u.p[2].u.msg = "Semicolons is required in the for header, expected two semicolons

inside the for's parentheses (i.e for(int x=1;x<10;x++). You may fix that by adding two ';' in the

propoer places: for (statement; condition ; statment) before ";

 berrtab[50].u.p[3].i = 275;

 berrtab[50].u.p[3].u.msg = "Semicolons is required in the for header, expected two semicolons

inside the for's parentheses(i.e. for(int x=1;x<10;x++). You may fix that by adding two ';' in the

propoer places: for (statement; condition ; statment) before ";

 berrtab[33].i = 1;

 berrtab[33].u.msg = "Do you mean open bracket \xe2\x80\x98{\xe2\x80\x98 instead of close bracket

'}'? because usually do-while statement start with \xe2\x80\x98{\xe2\x80\x98 , or any other

statement(s) before:";

 berrtab[80].i = 1;

 berrtab[80].u.msg = "Missing close parenthesis ')' of for header before the word/charater:";

 berrtab[64].i = 1;

 berrtab[64].u.msg = "Missing 'while' keyword of the do-while statement before word/character:";

 berrtab[63].i = 1;

 berrtab[63].u.msg = "Missing the condition part of the for statement, which is required: for(;

condition ;) before:";

}

int __mberr_errors;

extern int bchar;

extern int blineno;

extern char *bfilename;

extern char *btext;

int _berror(char *s, int state)

{

 int i;

 char sbuf[128];

 if (! berror_isinitilialized++) berror_init();

 if (strstr(s, "stack")) {fprintf(stderr,"%s", s); return 0;}

 if (__mberr_errors++ > 10) {

 fprintf(stderr, "too many errors, aborting");

 exit(__mberr_errors); }

 if (bfilename) fprintf(stderr, "\nCompilation of: (%s)\n", bfilename);

 if ((!strcmp(s, "syntax error") || !strcmp(s,"parse error"))&&

 (state>=0 && state<=bmaxstate)) {

 if (berrtab[state].i==1)

 s = berrtab[state].u.msg;

 else {

 for(i=1;i<=berrtab[state].i;i++)

101

 if(bchar == berrtab[state].u.p[i].i) {

 s=berrtab[state].u.p[i].u.msg;break;}

 if(i>berrtab[state].i && berrtab[state].i > 0)

 s=berrtab[state].u.p[0].u.msg;

 }

 }

 if (!strcmp(s, "syntax error") || !strcmp(s,"parse error")){

 sprintf(sbuf,"%s (%d;%d)", s, state, bchar);

 s=sbuf;

 }

 fprintf(stderr, "\n Error message: look at line %d, in the program \"%s\".\n %s \"%s\".\n

\n",blineno,bfilename, s,btext);

 return 0;

}

B.5 main.c

#include <stdio.h>

#include <stdlib.h>

#include<string.h>

#include<unistd.h>

#include "p.h"

int yyparse();

char *yyfilename;

char *body="";

char *filename;

char *bfilename;

struct tree *root;

struct tree *branch;

struct tree *b_root;

struct branch_list *head_branch_list;

struct tree *b;

extern FILE *yyin;

extern int yylineno;

extern int yydebug;

extern int bdebug;

int bwrap()

{

 return (1);

}

char *mybuff;

int main(int argc, char *argv[])

{

 mybuff=malloc(5000);

 int i;

 if (argc<2) {

 fprintf(stderr, "usage: sample file\n");

 }

 if ((yyin = fopen(argv[1],"r")) == NULL) {

 fprintf(stderr, "no %s\n", argv[1]); exit(1);

 }

 yyfilename=argv[1];

 bfilename=argv[1];

 // printf("\nfunctions analysis by parser one\n");

 i = yyparse();

 // treeprint(root,1);

102

 // printf("yyaparse returned %d\n", i);

 if(i==0)

 parser2(root);

 return 0;

}

	Abstract
	Acknowledgments
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Statement of Contribution
	Biography
	Chapter 1: Introduction
	1.1 Introduction
	1.2 Dissertation Objective
	1.3 Research Question
	1.4 Methodology
	1.5 Terminology

	Chapter 2: Background and Related Works
	2.1 Compiler error messages are often unhelpful
	2.2 How should compiler report syntax errors
	2.3 Can we overcome some limitations of the parser in generating better error messages?
	2.4 Methodology and measurement of effectiveness of compiler error messages

	Chapter 3: Integrated Learning Development Environment for Learning and Teaching C/C++ Language to Novice Programmers
	3.1 Introduction
	3.2 Challenges facing novice programmers
	3.3 ILDE
	3.5 Conclusion

	Chapter 4: Analysis of Syntax Error Messages from the Learner’s Perspective
	4.1 Analysis of common errors in the syntax of the function body
	4.2 Analysis of common errors in the syntax of the if statement
	4.3 Analysis of common errors in the syntax of the for statement
	4.4 Conclusion

	Chapter 5: Engineering a Compiler for Better Error Messages
	5.1 Introduction
	5.2 Compiler
	5.3 Parser
	5.4 Error detection
	5.5 New solution: 3-phase parsing techniques.
	5.6 Implementation of the 3-phase parsing techniques in an Educationally Customized Compiler:
	5.7 Sample error messages generated by EduCC
	5.8 Conclusion

	Chapter 6: Evaluation of Error Message Quality Enabled by 3-Phase Parsing Techniques
	6.1 Introduction
	6.2 Methodology
	6.3 Results
	6.4 Limitations
	6.5 Conclusion

	Chapter 7: Conclusion and Future Work
	References
	Appendices
	Appendix A: Study Materials for Experimental Approach to Evaluate Messages Enabled by 3-Phase Parsing Techniques
	A.1 Invitation Letter
	A.2 Consent Form
	A.3 Tasks
	A.4 T-Test for (RQ1: Is there a significant difference between the quality of syntax error messages generated by EduCC, GCC, and MSVC in finding syntax errors?)
	A.5 T-Test for (RQ2: Is there a significant difference between the quality of syntax error messages generated by EduCC, GCC, and MSVC in fixing syntax errors?)
	A.6 T-Test (6.3.1 RQ2: Is there a significant difference between the quality of syntax error messages generated by EduCC, GCC, and MSVC in the time-to-find and -fix?)

	Appendix B : Source code of the EduCC
	B.1 meta.err for parser 1
	B.2 meta.err for parser 2
	B.3 yyerror.c for parser 1
	B.4 berror.c for parser 2
	B.5 main.c

