
 
 
 
 
 
 
 

Classifying Imbalanced Data for DDoS Attack Detection  
 
 
 
 

A Thesis 
 

Presented in Partial Fulfillment of the Requirements for the 
 

Degree of Master of Science 
 

with a 
 

Major in Computer Science 
 

in the 
 

College of Graduate Studies 
 

University of Idaho 
 

By 
 

Amal A. Alghamdi 
 
 
 
 
 
 
 

Approved by: 
 

Major Professor: Frederick Sheldon, PhD. 
 

Committee Members: Xiaogang Ma, Ph.D.; Jia Song, Ph.D. 
 

Department Administrator: Terry Soule 
 
 
 
 
 
 
 
 

December, 2021



ii 

 

 

Abstract 

In the first quarter of 2021, researchers witnessed over 2.8 million Distributed Denial 

of Service (DDoS) attacks —a 32% increase from the same period in 2020, as reported by Info-

Security magazine on May 18, 2021. The magazine also noted that the number of attacks against 

educational institutions has increased by 41% over the past three quarters. DDoS has become a 

serious issue for many organizations and individuals. The evolution of networks has ushered in 

a level of complexity that is the enemy of security. Currently, attacks are more prevalent and at 

the same time more noticeable due to the variety of features that exist on networks, a 

consequence of the constant escalation between attackers and defenders. Machine learning 

algorithms (MLAs) have become a tool to help thicken the layers of defense. To be effective, 

MLAs must be trained in ways that provide high confidence for detection and prevention, which 

boils down to precision and accuracy (i.e., low false positives and/or high true positives). This 

work has developed a setup for establishing a measured intrusion detection system (IDS) that 

can help to better understand and identify the various unique features of a network to better 

prevent DoS and DDoS attacks from being successful.  

The goal is to develop models that can predict (i.e., classify) with high precision and 

accurately identify different types of DoS/DDoS attacks with low false positive/negative rates. 

In addition to dealing with the multiclass classification and extremely imbalanced problems, 

the derived model leverages two feature selection techniques to reduce the number of features 

in the dataset and help improve the model's execution time, thereby reducing the IDS 

complexity.  A combination of under-sampling combined with adjusting weights was applied 

to handle the imbalance problem. The extracted data was evaluated using supervised MLAs, 

including Random Forest, Decision tree, Naive Bayes, Logistic regression, and ensemble 

methods. Ensemble methods using supervised outcomes aim to improve the overall 

performance of the classification. The experiments utilized the popular benchmark NSL-KDD 

and CICIDS2017 datasets. Random Forest achieved the best performance results, decreasing 

by 37% the training and testing time. In addition to solving the imbalance problem caused by 

feature selection, it increased accuracy 6.25% and FPR 21%. The random forest model has 

achieved 99% accuracy and 0.0001 for the False-Positive rate. Furthermore, using this setup, 

we can detect minor classes with more than 80% accuracy. 
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Chapter 1: Introduction 

1.1 Overview 

Security has become an integral part of any organization's operations. Cybersecurity is 

very important for the safety of the organization and the public. It is a significant issue that 

requires implementing a strategy focused on securing cyberspace. The increasing popularity of 

these technologies has raised the level of attacks by criminal elements. The ability to easily 

exploit existing limitations of the Internet has become a major concern for organizations. 

Developing new countermeasures will help to mitigate cybercrime and will go a long way in 

preventing attacks. 

An intrusion detection system is hardware or software that monitors the network traffic 

for suspicious or abnormal behavior. An anomaly-based detection approach is more prevalent 

than signature-based detection in detecting network threats. Traditional IDS still is not capable 

of detecting unknown attacks. In contrast, a distributed denial of service attack (DDoS) is a 

cyber-attack that attacks the network's resources. Usually, it overloads the bandwidth and 

prevents the intended users from accessing the network. DDoS is a distributed denial-of-service 

attack that uses TCP and UDP packets to flood a server with traffic. A DDoS attack is different 

from DoS because it uses multiple unique IP addresses to perform its operation. The attacks 

affect over a hundred Internet companies. 

Machine learning is a field of artificial intelligence that has had promising results in 

detecting cyber-attacks such as DDoS. In machine learning, supervised methods classify 

anomalous data and distinguish anomalous and normal data from a tagged dataset. 

Unsupervised methods can only distinguish normal data from anomalous data. Ensemble 

Feature Selection Method (FS) is another technique that can improve the detection of DDoS 

attacks by selecting the most important and relevant feature. Combining different supervised 

predictions by ensemble methods such as voting will increase the accuracy and reduce false 

alarms. Ensemble learning works more accurately than a single classifier. The performance 

evaluation metric is called the confusion metric. The simple calculation of probability called 

the ROC-AUC curve is based on the true positive rate against the false-positive rate, which will 

help evaluate the model performance. By combining all methods, a new model will be produced 

to handle imbalanced multiclass classification and detect types of DDoS attacks. The model 
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will increase accuracy, reduce false alarms, reduce training time, deal with imbalanced data, 

and detect minor attack types. 

1.2 Related Work 

Due to the increasing number of attacks on computer systems, the demand for computer 

security has also grown. This is why various firms are focusing on developing effective 

Intrusion Detection Systems (IDSs). A distributed denial of service attack is carried out by an 

attacker to disrupt the operation of a computer system. It can be initiated by exploiting a 

vulnerability in the network. In this field, various techniques have been surveyed to minimize 

the malicious actions within end systems and networks. Some of the studies prove that the use 

of network-based systems and host-based systems can improve the detection of attacks [4]. 

Rajput and Thakkar's research provides an overview of network intrusion detection and 

countermeasure selection (NICE) graph models to describe the various countermeasures that 

are used to prevent and detect attacks in the cloud environment. Machine learning and deep 

learning techniques are some of the techniques that are being used to improve the anomaly 

detection using IDS [4]. 

Some authors like Sharmila et al. [3] illustrate several taxonomies for anomaly detection 

that have been developed, based on six criteria to classify IDSs: alert, architecture, environment, 

time of detection, processing, and data source. In Vasilomanolakis et al.’s research [5], the 

concept of distributed intrusion detection systems (CIDSs) was introduced as associated with 

requirements when deployed in large environments. The various types of attacks that can be 

exploited against IDSs were discussed. The CIDSs are mainly considered as communication 

architecture models that can be either centralized or decentralized. For each class, a further 

refined taxonomy and a detailed discussion of representative approaches are provided. 

Recent work by Riza’ain et al. [7] introduces the concept of DDoS attack and its 

characteristics, along with discussing various techniques that are used to detect the attack. Their 

research provides the most accurate and up-to-date analysis and evaluation for each detection 

and prediction. It also provides a trusted source for information related to DDoS attack 

detection. Fifty-three articles from different libraries such as Science Direct, IEEE Xplore, 

Springer and Web of Science contributed to this taxonomy. About 30% used machine learning 

approaches in their detection system and had significant success. 



3 

 

 

In another study in detecting DoS attacks, Rohan et al. [8] applied five different ML 

classifiers for DoS attack traffic where the data was collected from the internet of things device 

network. The five tested algorithms are K-nearest neighbors algorithm (KNN), Support vector 

machine with the linear kernel (LSVM), Decision tree using Gini impurity scores (DT), 

Random Forest using Gini impurity scores (RF), and Neural Network (NN). The results 

revealed each classifier had higher accuracy at 99% and this could help other researchers in the 

field of machine learning anomaly detection. 

Some authors focus on detecting DDoS attacks using different machine learning 

methods such as entropy-based anomaly detection [10], neural network-based detection [11], 

and deep learning [12], which successfully mitigated denial of service attack in IoT and cloud 

system. Some researchers focus on studying the impact of imbalanced data on the performance 

of ML-Based DDoS detection systems. The class imbalance problem is a major issue that 

affects the performance of various machine learning techniques. Liang et al.’s paper [13] 

presents an analysis of the impact of this issue on the performance of various ML-based 

techniques. The results suggest that the issue should not be underestimated when it comes to 

identifying and suppressing DDoS attacks. 

To get an effective result by using SMOTE resampling before the train the model, Soe 

et al. [14], proposed a solution by designing an effective model to detect DDoS attacks in 

internet of things (IoT) system. They used a modern botnet attack dataset called Bot-IoT that 

contains a small number of benign samples with a large number of DDoS attack samples. Their 

work is focusing on solving the imbalanced data by using SMOTE oversampling before training 

the Artificial Neural Network (ANN) model. The outcome result shows that the model was 

effective to detect minor class with 99% reliability only using one hiding layer node and one 

output node in the ANN model. 

Some proposed solutions focused on generating a new dataset by extracting the data 

from others’ datasets to create a dataset that contains up-to-date DDoS attacks the same as 

Prasad et al.’s research [15]. They generated new dataset by combining CSE-CIC-IDS2018-

AWS, CICIDS2017, and CIC DoS dataset. They proposed a method to detect DDoS attacks by 

using a gradient boosting algorithm. The results show that SGB performed better than most of 

the competing algorithms, with 100% misclassifying for both balanced and imbalanced data set 

with and without feature selection methods. 
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1.3 Thesis Objective 

An IDS is designed to protect systems from different types of cyber-attacks. Its 

monitoring techniques should constantly be updated and should be capable of detecting unseen 

attacks. The rapid emergence and evolution of techniques and strategies for detecting DDoS 

attacks have greatly impacted the detecting system. Many of the techniques and approaches 

used to detect DDoS attacks have been refined and tested within a short time. However, due to 

the continuous growth of these techniques and approaches, they are no longer useful. Several 

experiments focus on detecting multi-class attacks, and others focus on binary classification of 

DDoS attacks. As discussed in Section 1.1, imbalanced data is still the major problem in many 

research works for binary classification and multi-class classification. Dividing the dataset into 

percentages (e.g. 80% of the dataset are attack and 20% are benign to increase the accuracy) 

can lead to the loss of some important information and behavior. 

 

We proposed a supervised-based ensemble model, aiming to improve the accuracy of 

the model to detect multi-imbalanced classes along with detect DDoS attacks. This experiment 

focuses on: 

• Providing a generic intrusion detection model that can be applied in multiclass 

classification. 

• Designing a model that can deal with imbalanced data problems using resampling method 

• Reducing training time of Machine learning models by minimizing dimensionality with 

Feature selection. 

• Detecting DDoS attacks along with reducing false alarms. 

• Comparing supervised ML models in terms of designing an accurate detection model. 

 

To achieve these goals, we designed a model using two ensembles that predict for each 

sample by combining four supervised kinds of machine learning. Two feature selections were 

combined and applied to the data to select the most relevant features. In this experiment, two 

intrusion datasets, NSL-KDD [16] and CICIDS2017 [19], are used. The proposed work and 

their datasets will be explained in detail throughout Chapters 3 and 4. 
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1.4 Process Flow of Thesis 

The proposed approach is divided into three stages. The first stage is preprocessing the 

data. In preprocessing data, Label Encoder will be applied to convert the non-numerical labels 

to numerical labels. After that, a combination of two feature selections is presented for the 

classification of IDS. Removing the irrelevant features can positively affect model 

performance. Feature reduction will be used to remove the irrelevant features, consisting of two 

different steps. First, Correlation will be applied to calculate the correlation between features 

for more data reduction. The higher correlation between two features will lead to removing one 

of the features because both features will contribute or affect similarly on the prediction process. 

The selected feature will be passed to Chi-square to calculate the relevance between feature and 

target. Then, the best 15 Chi-square scores will be selected and used to train the supervised ML 

model. In the second stage, supervised machine learning will be applied such as Decision Tree 

(DT), Random Forest (RF), Logistic Regression (LR), and Naive Bayes (NB). At the third 

stage, voting ensemble learning will be performed with soft voting to make the prediction for 

each sample in addition to train the stacking ensemble. Finally, a confusion matrix will be used 

to evaluate the model and compared the second stage result to the third stage result. A ROC-

AUC curve will be used to illustrate the prediction process. Figure 1.1 illustrates the process of 

proposed model. 

Figure 1.1 Process Flow of Thesis 
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1.5 Thesis Roadmap 

Chapter 2 gives a brief discussion of the background on intrusion detection system IDS, 

distribution denial of service DDoS, and types of machine learning approach, feature selection, 

and performance evaluation. It also summarizes the ensemble approaches in detail and 

highlights some shortcomings of resampling techniques. The datasets that are used in the 

proposed methods are discussed in depth in Chapter 3. Two interpretable feature selections are 

applied and their explanation will be included in Chapter 3 along with resampling methods and 

data preprocessing. Ensemble frameworks using supervised classifiers are shown in Chapter 4 

with their experimentation details. Finally, in Chapter 5, we conclude our thesis and 

demonstrate future directions in order to extend this thesis. 
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Chapter 2: Background 

To better understanding the research problem, this chapter presents detailed background 

about the Intrusion Detection System (IDS), Denial of Service and Distribution Denial of 

Service Attacks (DoS/DDoS), Machine Learning (ML), and Ensample with Resampling 

methods. 

2.1 Intrusion Detection System (IDs) 

2.1.1 What is IDS? 

Intrusion refers to various sorts of unauthorized activities that cause a potential threat to 

the availability, confidentiality, or integrity of information. An intrusion detection system (IDS) 

refers to a hardware system or software system that clearly identifies malicious behaviors on 

computer systems. It is a security mechanism that is used to protect the network against various 

types of attacks and malicious activities. It is deployed in combination with other security 

mechanisms such as firewalls and access control to secure the network. IDS is helpful to 

maintain system security and identify unusual or malicious behavior in network traffic. It aids 

in achieving high protection against harmful behavior. The intrusion detection process starts 

with monitoring network traffic and collecting data for analysis. It then identifies and 

investigates unusual behavior and patterns. It consists of various steps that are necessary to 

identify and prevent intrusions. IDSs can be placed anywhere in a network to monitor a system's 

activity. It can also be deployed inside an offline host to monitor its activities [1]. 

2.1.2 Types of IDS 

Due to the complexity of network configurations, there are several types of IDS 

technologies that exist. Each type has its advantages and disadvantages. IDS can be classified 

based on detection techniques, data resources, and functionality [2] [3]. 

2.1.2.1 IDS Based on Detection Techniques 

There are two main types of intrusion detection systems (IDS) that can be used to 

identify and prevent unauthorized activities. The first type is known as an Anomaly-based 

Intrusion Detection System (AIDS) and the second type is known as Signature-based 

Intrusion Detection System (SIDS). 

a. Anomaly-based IDS (AIDS): This is a type of intrusion detection system that uses 

techniques that are not designed to identify suspicious activities. It comes to cover 

the limitations of SIDS [1]. AIDS contains two development phases, the training and 
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testing phase. In the training phase, usual user behavior is recorded and used to train 

the model. A new dataset is used in the test phase to evaluate the model and identify 

the hidden intrusions [2]. 
 

b. Signature-based IDS (SIDS): SIDS is an intrusion detection system that can only detect 

attacks that have been previously classified as malware. It requires frequent updates and 

cannot prevent all attacks that have not previously been identified [2]. 

The essential difference between SIDS and AIDS is that AIDS can identify zero-day attacks 

and new attacks [1]. 

2.1.2.2 IDS Based on Data Resources 

IDS can be categorized as Network-based IDS (NIDS) and Host-based IDS (HIDS) 

based on data resources [2]. 

a. Host-based IDS (HIDS): HIDS is a single computer security system that can monitor 

the security of a system or a computer from both internal and external attacks. HIDS 

collects the data from the host system and audits sources such as firewall logs and 

database logs. When a certain activity is detected by HIDS, it is immediately reported 

to the appropriate authorities. HIDS does not require land bandwidth and it requires less 

training than NIDS. 
 

b. Network-based IDS (NIDS): NIDS collects the data from network traffic by capture 

packets and analyzes the capture information of the packet. NIDS uses advanced 

techniques to identify and prevent attacks on the network. It can identify and report the 

abnormal behavior of the network. It can also send an alert to the administrator when 

abnormal behavior is observed. NIDS is easily managed through a centralized 

environment and centrally managed. It is built-in to support cross-platform 

environments. But it requires more training and the failure rate is higher than HIDS. 

 

Both IDSs are installed on the workstation and are not connected to the network. During 

host compromise, a NIDS can be disabled by attackers. The main difference between a NIDS 

and a HID is that the latter is installed on the workstation while the former is on the network. 
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2.1.2.2 IDS Based on Functionality 

a. Intrusion Detection System (IDS) is a type of security system that monitors network 

activities and triggers alarms. It can also be used for monitoring, detecting, and 

preventing unauthorized activities on a network 
 

b. Intrusion Prevention System (IPS) is another type of security system. IPS is 

designed to prevent attacks before they can enter a network. It uses a combination 

of packet analysis and network profiling to identify the patterns of attacks and block 

them. 
 

c. Intrusion detection and prevention systems (IDPS) are designed to prevent and 

detect unauthorized access to an organization's network. It works by classifying and 

protecting the packet data before it is processed. The systems are equipped with 

various components, such as pre-processing, classification, and prevention. This 

feature can be used for various purposes such as phishing, spam, and unauthorized 

access. 

 

2.1.3 IDS Requirement 

Some factors need to be considered while we build an IDS model. Here are some of 

the requirements for building a IDSs [2]: 

Accuracy: the accuracy of an IDS is determined by the percentage of attacks that were 

successfully detected and the percentage of false negatives. Both percentage factors need to 

be taken into account to calculate the accuracy of an IDS. 
 

Scalability: requires that the IDS's performance increases linearly with the addition of 

new resources. It should not contain bottlenecks or special purpose objects. 
 

Resilience: in the event of a CIDS failure, it should still be able to maintain its 

availability and integrity. This is especially true in the event of internal attacks, where 

malicious components could cause damage. It should also be resilient to attacks from internal 

and external components. 

Minimal overhead: the overhead refers to the effort involved in generating and 

communicating intrusion alerts must be minimal. Also, the signaling inside the IDS should 

be as minimal as possible. 
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Privacy: in a collaborative environment, an exchange of alerts may contain sensitive 

information that should not be shared or disclosed to all parties involved. 
 

Self-configuration: is the ability to modify a system's configuration without requiring 

an administrator to do so. This feature allows the system to self-configure itself. It avoids the 

need for an administrator to enter configuration. 
 

Interoperability: is the ability of an IDS system to work seamlessly with other systems 

in the same network. This can be achieved through the utilization of various standardized 

formats such as the Intrusion Detection Message Exchange Format (IDMEF). 

 

2.2 Denial of Service Attack (DoS)/Distribution DoS 

DoS is a malicious attempt to overwhelm the target with a flood of Internet traffic for 

disruption or make services unavailable to users. The most common method of a DoS attack 

happens when the attacker floods the webserver with communication. In this kind of DoS 

attack, the attacker sends some requests to the target computer, overloading it with 

communication. These maintenance requests are illegal and have fabricated return addresses 

that inform the computer when it attempts to certify the requestor. As the junk requests are 

processed incessantly, the computer is overcome, which causes the DoS shape to legitimate 

requestors. 

The first known DoS attack was carried out by a 15-year-old hacker in February 2000, 

which targeted several e-commerce sites such as Amazon and eBay by using a series of 

distributed denial of service attacks. The attacks used various techniques to overwhelm the 

servers of the various Internet companies. The FBI estimated that the cost of the attacks was 

over $1 billion. A distributed denial of service (DDoS) attack happens when multiple systems 

flood a targeted system with enough bandwidth to render it unusable. The difference between 

DoS and DDoS is that DoS floods a server with TCP and UDP packets from single machine, 

but a DDoS attack usually uses more than a single unique IP address or machine [27]. DDoS 

attacks have increased recently and become a serious issue for organizations and the 

government. 

The well-known DDoS attack that targeted GitHub was executed on February 28, 2018, 

and caused a massive influx of traffic rate of 1.3TBps at a rate of 126.9 million per second. It 

was carried out using a database caching method known as Memcached. The attack lasted for 

10 minutes and the platform was down for 5 minutes. It was stopped within this timeframe only 
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due to the platform's DDoS protection. One week was the time taken for recovery. Designing 

new countermeasures will aid in reducing the flow of cybercrime. The latest and largest DDoS 

attack occurred in the first quarter of 2020. Amazon Web Services (AWS) detected a distributed 

denial-of-services attack with a volume of 2.3 TBps. This event was 44% larger than the 

previous record-breaking event detected by AWS. The architecture and the types of DDoS 

attacks will be explained in this section. 

2.1.1 DDoS Attack Architecture 

A distributed denial of service (DDoS) attack consists of four components: the attacker, 

the target, the handlers, and bots. The goal of the attack is to disrupt the services of the target. 

The attacker and the target are both systems that can be controlled through bots and controllers. 

Attacks usually require a large volume of traffic to crash a website or network. From a single 

computer it is usually difficult for attackers to generate large amounts of traffic. To do this, they 

often use botnets (hundreds or thousands of internet-connected computers). These computers 

are infected with malware and controlled by the attacker. The attacker uses controllers to infect 

many botnets and this allows attacker to execute a DDoS attack on target by installing threats 

or instructions to the bots about how or when to attack the target to cripple it. In most cases, the 

attacker creates a botnet with high-rate traffic and then infects other systems to make more bots 

with its malicious code. This method increases the attack's power and makes it possible to make 

any target down within a short time. These methods make it basically impossible to detect the 

original source to prevent the attack. Fig 1 shows the architecture of DDoS. 

Figure 2.1 DDoS Attack Architecture 
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2.1.2 DDoS attack types 

DoS and DDoS attacks can be divided into three types [30]: 

• Volumetric attacks: also known as floods, these are a type of DDoS that use UDP or 

ICMP to overwhelm a site. The goal is to inflict as much bandwidth as possible. It is 

measured in bits per second (Bps) and allows attackers to launch massive DDoS 

attacks, which can reach levels of up to terabits per second. 
 

• A Protocol attack: this is a type of network attack that uses a combination of various 

techniques to cause physical and virtual server resources to shut. Instead of attacking 

higher level resources, protocol attacks seek to exploit weaknesses in the protocols 

used to connect to the Internet. They usually involve the exploitation of the normal 

behavior of the protocols. A protocol attack can be initiated by sending multiple 

packets to a single server and it measured in packets per second (Pps). SYN floods, 

fragmented packet attacks, Ping of Death, Smurf DDoS are some types of protocol 

attacks. 
 

• Application layer attack: is a type of attack that targets web servers and web 

application platforms. The attackers try to crash the server and make it unusable to the 

users. Attacks are initiated by sending HTTP requests to a web server. These attacks 

can execute arbitrary code or expose known application vulnerabilities. They can also 

abuse higher-layer protocols (HTTPS and SNMP). 

Here are descriptions of some of the most common types of DDoS attacks: 

SYN flood: is a volumetric attack that floods a server with new connection requests and 

causes a server to ignore or stop processing new connection requests. In a three-way 

handshake: 

A client sends an SYN (synchronize) packet to a website to request a new 

connection. The server responds with an SYN-ACK (synchronize-acknowledge) 

packet. 

  
The server waits for the response with ACK (acknowledge) packet from the client. 

In an SYN flood attack, the attacker sends more SYN requests to the server without responding 

with the ACK packet. This causes the server to overload but cannot respond to new requests 

[26]. Figure 2.2 shows the complete three handshake and incomplete SYN flood. 
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UDP flood: is a volumetric and protocol attack that tries to abuse the normal behavior of 

the UDP protocol, which has no handshake mechanism. It does not create a session and cannot 

verify the sender's IP address. The attacker sends a large number of UDP packets with forged 

IP addresses to various ports on the victim's server. Once the server gets overwhelmed, it can 

no longer respond to the requests [26]. 

HTTP GET and POST floods: HTTP is a protocol that enables people to communicate with 

web servers. It is used to establish a connection. HTTP GET and HTTP POST are two 

commonly used methods to obtain data from a resource. An attacker can easily take down a 

website by sending HTTP or POST requests to it continuously. These attacks are difficult to 

detect because they mimic legitimate HTTP requests. They appear to be happening even though 

they are not [25]. 

A ping of death attack: This is a type of attack that uses several or malicious pings to a 

computer. The maximum frame size of a packet over an Ethernet network is locked to 1500 

bytes. In this case, the fragments are split into several IP packets. The Data Link Layer typically 

has limits to the frame size that are applicable to it. In this case, the recipient hosts partition the 

IP packet into fragments and reassemble them into a complete packet. In a Ping of Death 

scenario, an attacker can cause a packet to overflow its memory buffers by loading a packet 

with a size larger than 65,535 bytes. This can cause a denial of service due to memory overflow 

[26]. 

 

Figure 2.2 Complete and Incomplete Connection of Three Handshake 
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2.3 Machine Learning 

Machine learning (ML) refers to the process of extracting interesting data patterns from 

massive amounts of data, leading to the recognition of unusual behaviors. Supervised, 

unsupervised, and semi-supervised learning are the three types of Machine learning. Several 

algorithms and techniques have been applied to discover the attack patterns from intrusion 

datasets (e.g. neural networks, decision trees, and nearest neighbor methods). This section will 

briefly explain the types of machine learning and specifically focus on the supervised 

classification algorithms. 

2.3.1 Supervised Machine learning classification: 

Supervised learning uses the target in the training process and helps in the prediction 

process. In supervised machine learning, the algorithm is trained to predict the correct class 

of a given data. It can then predict the label based on its previous predictions. Through the 

training process, the model can learn the relationship between samples and their labels. With 

a sufficient amount of data and over time, the model can then observe a good label for any 

new given data.  

Classification and regression are the two types of supervised machine learning [38]. The 

classification model is employed when the target variable is a category, for instance, 

classified as normal or breast cancer diseases. Logistic Regression (LR), Naïve Bayes (NB), 

Decision Tree (DT), Random Forest (RF) are used on the proposed classification model. 

Here is a brief summary of each algorithm [39]: 
    

Decision Tree: Decision tree is a non-parametric supervised learning method that works 

by building a tree with multiple branching trees where each leaf shows a decision. The 

algorithms collect information about the subject and apply rules for the purpose of decision-

making. Both classification and regression can be used in decision tree methods. The goal 

of the decision tree is to create a training model that can lead to an accurate decision by 

classifying data according to predefined attributes. 
 

Random Forest: Random Forest contains a great number of individual decision trees 

that operate as an ensemble method. It is used for classification and regression. In the 

random forest, each tree predicts a class and the class with the most votes is final model’s 

prediction. Random forest is the modification of bagging which are mainly used for building 
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large collections of de-correlated trees. Sadly, bagging can have poor predictive power and 

suffers from tree correlation. 
 

Logistic Regression: Logistic Regression was mainly used in the biological sciences 

during the early twentieth century. It is also used in social science applications. Logistic 

Regression is a kind of parametric classification model that can classify linearly separable 

classes. It is used to explain data and calculating the probability of a class to demonstrate 

the relationship between the dependent variables. The idea behind logistic regression is 

similar to linear regression, but instead of using a line to fit into the giving data, it uses a 

curve to fit the data such as sigmoid. The best coefficients are those that minimize the error 

that the model produces and predict a value close to 1 for the default and normal classes. 

Naive Bayes: Naive Bayes is a set of supervised learning algorithms used for 

classification tasks based on the idea of dependent probability. The naive Bayes classifier 

is a simple and widely used probabilistic classifier. It uses the Bayes theorem to define the 

probability of an event after taking into account the conditions of prior knowledge of certain 

conditions associated with its events. Naive Bayes has several types, such as Gaussian 

Naive Bayes, Multinomial Naive Bayes, Complement Naive Bayes, and Bernoulli Naive 

Bayes. Gaussian Naive Bayes will be used in the proposed model and will be explained 

later in Chapter 4. 

2.3.2 Unsupervised Machine Learning: 

Unsupervised learning is an advanced form of machine learning that uses algorithms to 

analyze and cluster large amounts of unlabeled data. It is a technique that tries to identify 

previously unknown patterns in data. It is an ideal tool because of its ability to discover hidden 

patterns and differences in information. It is hard to directly apply on classification and 

regression algorithms because of the unlabeled data making it difficult to train the model as 

normally do in supervised machine learning. Most of the time, discovering the pattern may fail 

to provide the expected results. Since there is no way to know what the goals are and what the 

results should be, it is very difficult to measure the accuracy of the outputs, which makes 

supervised machine learning more suitable to real-world problems [38]. 
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2.3.3 Semi-Supervised Learning 

In semi-supervised learning, the learning is performed by means of supervised and 

unsupervised methods. The goal is to minimize the need for labeling and eliminate the need for 

skilled human experts. Semi-supervised learning algorithms can learn the structure of a data set 

by analyzing both labeled and unlabeled data. In semi-supervised learning, a combination of a 

small amount of labeled data and a large amount of unlabeled data will be used during training 

process. With the help of labeled data, the model can accurately classify the unlabeled data. 

Some of these algorithms include label propagation, generative methods, and hidden Markov 

models [38]. 

2.4 Ensample Learning 

Each model in machine learning makes predictions for each sample. Ensemble learning 

is a method that combines these predictions to form a more robust classifier in the ML 

community. The advantage of ensembles is that they can perform better than a single classifier 

by increasing accuracy and stability. This technique is used to minimize error that is caused by 

noise, variance, and bias. It has been used in the field of cyber security to detect Intrusion, 

distribution denial of service, malware, and fraud. Ensemble methods can be categorized under 

basic and advanced methods. Both categories will be explained in detail in this section. 

2.4.1 Basic Ensemble Techniques 

Voting Ensemble is the easiest ensemble method.  It is used by adding together the 

predictions of multiple classifiers. It then uses soft voting or hard voting to make the 

decision or prediction. This voting method is also a parallel ensemble method because there 

are no dependencies between the results of base methods. All base models will be separately 

trained and then combined into voting methods. The voting ensemble method can be used 

for regression and classification. In the hard voting the model will predict based on the 

majority vote that comes from the base classifiers. In soft voting, the prediction will be 

based on the average probability calculated using all the base model predictions. Voting 

ensemble will be better to use when all base models have a good performance. It has some 

limitations, however, as it treats all the base models equally, and not all models can have 

good performance. So, these ensemble methods sometimes cannot perform better than 

single methods [40]. 
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2.4.2 Advanced Ensemble Techniques 
 

The Advanced ensemble method is a sequential method where each base model depends 

on the previous one. With any poor result, the second model will correct the error of the 

previous model by improving the weight. In advanced ensemble, the two main ways to 

ensemble the classifiers are homogeneous and heterogeneous. Homogeneous refers to the 

methods that combine similar types of classifiers or use single base leaner such as bagging 

and boosting methods, while heterogeneous refers to the method that combines different 

types of classifiers or multi-base leaners such as stacking. Bagging, stacking, and boosting 

are some types of ensemble learning.  Here is a brief description [31] [32]: 
 

Stacking: stacking is an ensemble leaner method that combines multi-classifiers via the 

Meta model. Stacking contains two stages called level 0 and level 1, where level 0 is the 

level that contains the multi different models that will train the entire dataset and push the 

prediction to level 1. In level 1 the Meta model same as the base model will combine the 

prediction as a feature and trained the Meta model. The algorithm used in level 0 can reduce 

either bias or variance [32]. 

Bagging: is called Bootstrap Aggregation. It is a parallel method, similar to majority 

voting, where each model is trained alone and then combined to make a final prediction. 

The only difference is that in bagging a different subset of data will be used to train 

multiple models and aggregate them for the final decision. It runs faster than using a whole 

dataset and it can reduce the overfitting and variance. Bagged decision trees and extra trees 

are some examples of bagging. 

Boosting: boosting is a sequential method that adjusts a weight from the previous 

model. Boosting is designed to reduce bias in the result. For example, if the sample is 

classified incorrectly, then the weight of that sample will be increased in the next iteration. 

However, if the sample is classified correctly, then the weight of that sample will be 

decreased in the next iteration until it achieves the best result with low bias. The parameter 

turning is important in boosting because the model may face overfitting in the training 

process and parameters can help to reduce it. AdaBoost, Gradient Boosting Machine 

(GBM), XGBoost, and CatBoost are some examples of boosting. 
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2.5 Feature Selection 

Feature Selection is a process that selects the most relevant features that contribute 

primarily to the model predictions or output. It is an integral part of machine learning because 

the irrelevant features can negatively impact the training process, which may lead to poor 

prediction. In each model, cleaning data and feature selection should be the first step to help 

the model to accurately predict the attacks. Feature selection can improve the performance of 

the model by reducing overfitting, improving accuracy, and reducing training time. Less data 

with important content can reduce the training time and reduce the complexity of the model, in 

addition to reducing overfitting by removing the noisy data. All this leads to increased accuracy 

and better predictions. This section will explain briefly the three types of feature selection, 

which are Filter, Wrapper, and Embedded methods. The correlation feature selection and Chi-

square feature selection will also be explained in detail. 

2.5.1 Filter Methods 

Filter methods compute the properties of features by using univariate statistical 

techniques instead of using cross-validation. It is faster and cheaper than wrapper methods in 

terms of using high dimensionality data. In filter selection, features are selected according to 

their statistical tests' correlation with an outcome variable instead of using machine learning 

algorithms. Several methods were proposed, including Chi-square, which is applied to 

categorical variables, and correlation methods that were applied to continuous variables [37]. 

1) Chi-Square: 

The test determines the relationship between two or more random features. It tells how 

much difference exists between these two features. If the result of the test is very small, it means 

that the observed data fit very well and both features have a relationship. Otherwise, the 

observed data do not fit and have no relationship [33]. The O and E in the formula (1) are the 

observed and the expected values [33]. 

𝑋𝑐
2 =  ∑

(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖
 

2) Pearson’s Correlation: 

Pearson’s Correlation is a statistical equation that calculates the linear correlation between 

two features referred as x and y. The value of Pearson’s (r) can be 1, 0, or -1 [34]. 
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Where: 

+1 → positive correlation 

0 → no linear correlation 

-1 → negative correlation 

 

𝑟 =  
∑(𝑥𝑖 − �̅�)2 (𝑦𝑖 − �̅�)2

√∑(𝑥𝑖 − �̅�)2  ∑(𝑦𝑖 − �̅�)2
 

 

Where 

 𝑟 = correlation coefficient 

𝑥𝑖 = values of the x-variable in a sample 
 

�̅� = mean of the values of the x-variable 
 

𝑦𝑖  = values of the y-variable in a sample 
 

�̅� = mean of the values of the y-variable 

 

High correlation will be nearest or equal 1 and low correlation will result nearest to -1. The 

higher correlation between two features will lead to removing one of the features because both 

features will be contributed or affected similarly [34]. 

 

2.5.2 Wrapper Methods 

In a wrapper method, a set of features will be selected to train a model. After that, a decision 

will be made based on the inferences drawn from the previous model and it will be decided 

which features to add or remove. Wrapper methods are typically used to solve a search problem. 

They are very expensive to implement and are typically not used for large-scale problems. 

Forward feature selection, backward feature elimination, and recursive feature elimination are 

common examples in wrapper feature selection. The filter method is a statistical method that is 

measured the relevance between variables based on correlation, but wrapper methods use cross-

validation in their measurement by actually training a model. Compared to wrapper methods, 

filter methods are much faster and do not require training [37]. 
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2.5.3 Embedded Method 

The Embedded method combines the advantages of both the wrapper and filter methods. It 

has its own built-in features selection methods. This method performs the feature selection 

process during the construction of a machine learning algorithm. A learning algorithm performs 

feature selection and classification/regression at the same time. It uses its own variable selection 

process. They take into account the interaction between features like wrapper methods and filter 

methods. They are faster and more accurate than filter methods and are typically less prone to 

over-fitting [37]. 

2.6 Resampling Methods 

In designing a multiclass classification or regression model, it should be treated with an 

imbalanced dataset problem, especially on a supervised model. The accuracy may appear high, 

but the model can be biased and only detect the majority class. It cannot be robust in dealing 

with a minority class and that’s why designing a model within an imbalanced data could be 

tough. Resampling is an efficient method for dealing with highly imbalanced datasets [36]. 

Under-sampling: This is a widely used technique to remove samples from a dataset that is 

heavily imbalanced. This method is used to remove samples from the majority class and make 

it equal to the number of minority class in order to create balanced data. The major disadvantage 

is potentially losing some important information [23]. 

Over-sampling: Over-sampling works by taking advantage of the diversity of the sample 

and then adding more examples to the minority class. Oversizing the number of minority class 

to be equal to the number of majority class. The major disadvantage leads to an increase in 

overfitting by duplicating an existing sample and slowing down the training time [36]. 

Adjust weight: Adjusting weight could be a simple solution to avoid the problems of both 

over and under sampling methods. This concept proposes to weigh the loss of various samples 

differently depending on the class they belong to. It tries to assign high weight to the minority 

class and small weight to the majority class. It could be used to balance classes weighted to 

automatically adjust weight for classes. This method is truly effective when dealing with large 

dataset, because oversampling could be expensive and requires more memory space. So, weight 

can help estimators to train and learn without losing information or facing a lots of noise and 

overfitting [35]. 
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2.7 Performance Evaluation 

Different evaluation processes have been applied to evaluate the model and 

display results as a curve using an AUC-ROC curve. Confusion metric and AUC-ROC 

were used to evaluate the proposed model. This section will explain both in detail. 

2.7.1 Confusion Metric 

A confusion metric is a performance evaluation metric used to measure the detected 

class based on given predicted and real value. It is used for binary or multiclass types. False-

positive, false negative, true positive, and true negative are used to evaluate the model. Table 

2.1 illustrates how the confusion metric calculates the rates for class attack 2. False positive and 

false negative rates are important because they provide information when the model is 

classifying samples erroneously [28]. 

 

Table 2.1 Confusion Matric Explanation 

 predict class 

 

 

Real 

class 

 Normal Attack 1 Attack 2 Attack 3 Attack 4 

Normal  

TN 

 

FP 

 

TN Attack 1 

Attack 2 FN TP FN 

Attack 3 TN FP TN 

Attack 4 

 

To test the capability of the detection model, accuracy, precision, recall, F‐measure, FPR, 

and specificity are used to evaluate the performance of the model. The mathematical equations 

of these measures are as follows [4]: 

Where: 

Accuracy (ACC) = 
TP+TN

TP+TN+FP+FN
 

Precision (P) = 
TP

TP+FP
 

TPR/ Sensitivity/ Recall (R) = 
TP

TP+FN
 

F - Measure = 
2(P∗R)

P+R
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False-Positive Rate (FPR) = 
FP

FP+TN
 

Specificity =  
TN

TN+FP
 

FPR =  
FP

TN+FP
  or 1 - Specificity 

 

True-Positive (TP): the number of attacks accurately identified as malware. 
 

Ture-Negative (TN): the number of normal accurately identified as benign. 
 

False-Positive (FP): the number of normal inaccurately identified as malware. 
 

False-Negative (FN): the number of attacks inaccurately identified as benign. 
 

2.7.2 Receiver operating characteristic -AUC (Roc-AUC Curve) 

The ROC-AUC curve, where AUC is short of the area under the curve and ROC short 

of receiver operating characteristic, is a simple calculation that plots the curve of the probability 

of the true-positive rate against the false-positive rate for multiclass data. The former shows the 

percentage of observations that are correctly predicted to be positive while the latter shows the 

percentage of observations that are correctly predicted to be negative. It is also a performance 

measure that shows how much a model can improve its ability to classify classes. The Roc 

curve also exposes how much control the model has over distinguishing between normal with 

different attacks. An excellent model has AUC near the 1 which shows it has high separability. 

A model has AUC close to 0 which shows it has the worst separability. Fig I, Fig II, and Fig III 

illustrate how to evaluate the model from the Roc curve [6]. For each class in one model with 

different colors will be plotted to compare the differences. The curve result will be explained 

later in chapter 5. 
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Result when accuracy is 100% 

Result when accuracy is 70%  

Result when accuracy is 50% 

2.8 Chapter Summary 

This chapter covered the basic information necessary to understand the rest of the 

research. It illustrated the Intrusion Detection System (IDS) types and requirements in addition 

to Denial of service and Distribution denial of service attack (DoS/DDoS). It also explained 

supervised Machine learning (ML) types, ensemble learning models, and Feature selection 

types with resampling methods. Finally, the performance evaluation such as ROC-AUC and 

Confusion metric were explained in depth. Chapter 3 will cover the dataset and the 

preprocessing steps that were conducted on the research. 

 

 

 

 

 

 

 

Figure 2.3 Maps the Roc Curve in Different Accuracy Rate [29] 
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Chapter 3: Dataset and Data Preprocessing 

This section reviews the selected datasets in addition to explaining their pre-processing 

approaches. Both NSL-KDD and CICIDS-2017 datasets were used in the proposed model, later 

explained in Chapter 4. The proposed model was applied on the entire dataset and an extracted 

subset that only contained DoS/DDoS attacks for each dataset. The data will be explained in 

detail. In the preprocessing phases, the data transformation, normalization, scaling, and feature 

selection approaches will be discussed. 

3.1 Dataset 

The IDS datasets have been available since 1998. The first dataset called DARPA was 

produced in 1998 and includes not real-world network traffic. Another dataset called KDD’99 

is an update of the DARPA dataset. Several other datasets have been created across time. 

Sharafaldin et al.’s research [16] illustrates and evaluates eleven openly available IDS datasets 

along with their gaps and types of attacks. In the data collecting stage, creating new data is 

challenging and time‐consuming. Simultaneously, creating a dataset can be valuable, useful, 

and frequently used by several researchers. Using an existing dataset may be helpful in terms 

of comparing the results with previous studies. Two datasets were used in our research, namely 

NSL-KDD (the updated version on KDD’99) and the cicids2017 dataset. This section provides 

the details of these two datasets [17]. 

3.1.1 NSL-KDD 

NSL-KDD Analyze intrusion detection has become very valuable recently. Much 

research focused on diverse datasets to increase accuracy and to reduce the false-positive rate. 

KDD cup 99 dataset is an updated version of DAPRA 98. Because of some issues in the KDD 

cup 99 version that affect the performance of the systems and reduce the accuracy of anomaly 

detection approaches, the NSL-KDD dataset was proposed. The NSL-KDD contains all the 

KDD-cup 99 samples, which solves the gap in the KDD-cup 99 version. NSLKDD is used to 

apply several machine learning algorithms in order to detect malware attacks. The main 

advantages of the new NSL-KDD dataset are the following: 

• The training set has not included any redundant records that can lead to biased results. 

• The test set has no duplicate samples which will produce more trust prediction rates. 
 

• The number of samples in the dataset are sensible, which makes the dataset low-cost to 

run the experiments. 
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This section covers a brief explanation of the NSLKDD dataset. This selected dataset provides a 

beneficial analysis for different machine learning techniques based on intrusion detection. 

 

1) Attack Types 
 

The records in the NSL-KDD dataset are classified as normal or one of the four grouped 

attacks containing 37 different kinds. Table 3.1 maps the four attacks with types and examples. 

The four main classes are [18]: 

a. DoS: Denial of service is a malicious attempt to overwhelming the target with a 

flood of Internet traffic for disruption or make services unavailable to users (for 

example, SYN flooding). 
 

b. U2R: unauthorized access to victim device aiming to gain the root privileges by 

exposing some machine vulnerability such as buffer overflow attacks. 
 

c. Probe: another kind of attack that aims to gain information about the remote 

victim such as port scanning. 
 

d. R2L: illegal entrance to a remote machine that gains local access to the target 

machine (for example, guessing the password). 

 

Table 3.1 Maps the Attack Classes with Its Types [1] 

 

2) Features 

In the NSL-KDD dataset, each record reveals different traffic features with 43 attributes 

plus an assigned label classifying each record as either normal or attack. In addition, another 

label categorized the 37 types of attack in four groups ranged from 0 to 5. The features of the 

dataset hold three types of data: Nominal, Numeric, and Binary. The features 'protocol_type', 

Class Types Example 

DOS Back, Land, Neptune, Pod, Smurf, Teardrop, Mailbomb, 

Processtable, Udpstorm, Apache2, Worm 

SYN flooding 

Probe Satan, IPsweep, Nmap, Portsweep, Mscan, Saint 

Port-scanning 

R2L Guess_password, Ftp_write, Imap, Phf, Multihop, Warezmaster, 

Named, warezclient, spy, Xlock, Xsnoop, Snmpguess, 

Snmpgetattack, Httptunnel, Sendmail, 

Password-

guessing 

U2R Buffer_overflow, Loadmodule, Rootkit, Perl, Sqlattack, Xterm, Ps 

Buffer- overflow 



26 

 

 

'service', 'attack, and 'flag' have nominal values while the features 'logged in', 'root_shell', 

'su_attempted', 'num_root' and 'num_file_creations' contain binary values, and the other features 

are numeric types. Table 3.2 illustrates the number for each DoS attack class in the training and 

test set. Table 3.3 maps the numbers of records for each class for both training and test set where 

80% for training and 20% for test. 

 

Table 3.2 Number of record for each DoS attack 

DoS attack class Training set Test set Total 

Normal 61,617 15,436 77,053 

Neptune 36,708 9161 45,869 

Smurf 2651 660 3311 

Back 1044 271 1315 

Teardrop 735 169 904 

Apache2 607 130 737 

Processtable 531 154 685 

Mailbomb 230 63 293 

Pod 204 38 242 

Land - - 25 

Worm - - 2 

Udpstorm - - 2 

Total 104,327 26,082 130,438 
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Table 3.3 Number of record for each NSL-KDD attack types 

 

 

 

 

 

 

 

 

 

 

3.1.2 CICIDS2017 

The Canadian Internet Incident Dataset 2017 (CICIDS2017), which was created by the 

University of New Brunswick's Institute for Cybersecurity, contains the most up-to-date records 

on several types of cyberattacks. The dataset contains real network traffic of over 2,830,108 

records where 471,454 of them are the malicious records. It was analyzed using real traces of 

the traffic. This unique dataset features an up-to-date attack list and is capable of handling 

different types of attacks comparison with other datasets such as UNSW-NB15 [21]. The 

attacks include Botnet, Web Attack, Infiltration Attack, DoS Attack, Brute Force Attack, 

HeartBleed Attack, and Distributed DoS (DDoS) Attack. This section provides an overview of 

the dataset, including traffic analysis conducted using CICFlowMeter, which is a tool that 

enables network traffic analysis. It includes the results of the labeled flows based on the 

timestamp, source, and destination IPs, source and destination ports, protocols, and attacks. The 

data was collected in 5 days from Monday morning, July 3, 2017 until Friday July 7, 2017 

afternoon. Table 3.4 illustrates the dataset files including their types of attacks. 

 

 

 

 

 

Attacks class Training set Test set Total 

Normal 61,697 15,356 77,053 

DOS 42,685 10,700 53,385 

Probe 11,219 2858 14,077 

R2L 3179 761 3880 

U2R 91 28 119 

Total 118,811 29,703 148,514 
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Table 3.4 CICIDS-2017 Dataset Summary [20] 

File Name Type of Traffic Number of Record 

Monday-

WorkingHours.pcap_ISCX.csv 

 

 

Benign 

 

 

529,918 

Tuesday-

WorkingHours.pcap_ISCX.csv 

Benign  

SSH-Patator 

FTP-Patator 

 

432,074 

5,897 

7,938 

 

Wednesday-

workingHours.pcap_ISCX.csv 

 

Benign 

DoS Hulk 

DoS GoldenEye 

DoS Slowlories 

DoS Slowhttptest 

Heartbleed 

440,031 

231,073 

10,293 

5,796 

5499 

11 

 

Thursday-WorkingHours-Morning-

WebAttacks.pcap_ISCX.csv 

 

Benign 

Web attack- 

Brute Force 

Web Attack-Sql injection 

Web Attack-XSS 

168,186 

 

1,507 

21 

652 

 

Thursday-WorkingHours-Afternoon-
Infilteration.pcap_ISCX.csv 

 

Benign  

Infiltration 

288,566 

36 

 

Friday-WorkingHours-

Morning.pcap_ISCX.csv 

 

Benign 

Bot 

189,067 

1966 

 

Friday-WorkingHours-Afternoon-

PortScan.pcap_ISCX.csv 

 

Benign 

Port-scan 

127,537 

158,930 

 

Friday-WorkingHours-Afternoon-

DDos.pcap_ISCX.csv 

Benign 

DDoS 

97,718 

128,027 

Total Instance/Record - 2,830,743 

 

1) Attack Types 

The CICIDS2017 dataset contains different types of DoS and DDoS. In our 

experiment, the two file Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv and 

Wednesday-workingHours.pcap_ISCX.csv were merged to generate one file that included 

random selected types of denial-of-service attack (DoS) with distributed denial of service 

attack (DDoS). Table 3.5 explains each type of Both DoS and DDoS attacks. 
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Table 3.5 CICIDS2017 DDos attacks type’s description [21] 

 

2) Features 

A total of 79 features were extracted and taken from the information present in the 

pcap file (e.g. time stamp, source and destination ports, source and destination IPs, protocols 

and attack) [21]. The best common features for DoS detection are the related features of the 

Flow Inter arrival time (IAT), such as Min, Mean, Max and also the Flow Duration. Finally, 

for DDoS attack, also some related features to IAT have been selected along with average 

packet size and backward packet length [16]. The feature reduction will be explained later in 

Section 3.3. The number of samples of DoS/DDoS for both training and testing data is 

explained in Table 3.5 for each type. 

 

3.2 Data Preprocessing 

Data cleansing, feature reduction, and resampling are the three phases of data 

preprocessing. In the first step, the data is cleansed by converting string instance to number 

using the label encoder in addition to deleting some columns that are not required in the training 

process. For example, some datasets include three-columns: one for binary labeled data 

(normal/attack), a column for the multi-class label, and the last column contains the name of 

attacks. Based on the purpose of the research, the column will be selected and the others will 

be deleted. In the second step, Chi-2 and correlation-based filter selection will be used to reduce 

the dimension of the data. After that, the dataset will split into 80% for the training set and 20% 

Traffic Type Size Description 

Benign 2,358,036 Normal traffic behavior 

DoS Hulk 231,073 The attacker uses the HULK tool to generate massive amounts of DoS 

traffic that can be obfuscated or unique. This method can also bypass 

server caching engines. 

DDoS 41,835 The attacker uses multiple machines that operate together to attack one 

victim machine 

DoS GoldenEye  10,293 The attacker uses the GoldenEye tool to perform a denial of service attack 

DoS Slow Loris 5796 The attacker uses the Slow Loris tool to execute a denial of service attack 

DoS Slow HTTP 

Test  

5499 The attacker exploits the HTTP Get request to exceed the number of 

HTTP connections allowed on a server, preventing other clients from 

accessing and giving the attacker the opportunity to open multiple HTTP 

connections to the same server 
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for the testing set. The data will be normalized to help the model read the structure of data in 

the same way. In the last step, resampling techniques will be used to handle imbalanced data. 

Dataset cleansing: in the NSL-KDD two data columns were deleted. The two-column 

attack map and attack that contain binary labeled (attack/normal) and general types of NSL-

KDD, which make these two columns out of the target and not necessarily in the experiments. 

This is because in our experiments we are trying to test models only on DoS and DDoS attack 

in NSL-KDD and CICIDS2017. 

Label encoder: used to convert each instance into values arrange between 0 to 1. It can also 

be used to convert non-numerical to numerical values. In our research, a label encoder was used 

to convert the non-numerical instances to numerical instances [24]. 

 

MinMax Scaler: is a normalization method used to rescale data by estimate minimum and 

maximum values. The goal is to make data more understandable to the model. The 

Sklearn.preprocessing library contains MinMaxScaler that was used in the experiment 

preprocessing step [22]. 

y = (x – min) / (max − min)  

 

Where: 

 

Y is the normalized 

result. X is a giving 

value. 
 

Min and Max are minimum and maximum values in the dataset. 

3.3 Feature Reduction 

The Feature selection was done for each dataset separately. Two methods were selected 

to remove irrelevant features with the goal of reducing training time and increasing model 

performance. The correlation-based feature selection will be applied first to calculate the 

correlation between features. The higher correlation between two features will lead to removing 

one of the features because both features will contribute or affect similarly. Next, the result of 

Correlation methods will be passed to the Chi-square to calculate the relevance between each 

feature and the target. Then, the highest 15 feature scores will be selected based on k highest 

scores. Finally, the residual features will be used to train the model. Table 3.6 explains the 
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number of the feature after each feature selection method, along with their original number of 

features for both datasets. 

 

Table 3.6 Reduced feature sets for The Two dataset 

Dataset Methods  

name 

Feature 

Count 

Features 

NSL-KDD 

DoS 

All set 42 All feature 

Chi-2 20 1, 5, 6, 8, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 38, 

39, 40, 41 

Correlation 20 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 30, 31, 32, 34, 35, 36, 37, 39, 

41, 43 

Both 15 1, 3, 5, 8, 23, 24, 29, 30, 31, 32, 34, 36, 37, 39, 41 

CICIDS2017 

DoS/DDos 

All set 79 All feature 

Chi-2 13 2, 15, 16, 17, 18, 19, 21 22, 23, 37, 38, 42, 43 

Correlation 15 1, 10, 15, 20, 25, 29, 30, 37, 38, 66, 72, 73, 74, 76, 79 

Both 15 1, 10, 15, 20, 25, 29, 30, 37, 38, 66, 72, 73, 74, 76, 79 

 

3.4 Under Sampling and Weight Assign 

Due to the nature of the class data, most machine learning algorithms are biased and 

many algorithms are not very useful when dealing with imbalanced data. The imbalance 

problem refers to the dataset that contains different variance numbers of classes. This problem 

affects classification performance. It can lead to a serious bias against the majority class. To 

solve this problem, two resampling methods, Neighborhood Cleaning Rule (NCL) and 

adjusting weight, were used in the preprocessing level in order to avoid biased data [23]. 
 

In the preprocessing stages, Neighborhood Cleaning Rule (NCL) was used to deal with 

the imbalance problem for both majority and minority classes on the selected dataset. NCL used 

the Edited Nearest Neighbor Rule (ENN), which is an under-sampling method based on the 

concept of nearest neighbor (NN) [23]. It is removing any instance from the majority class that 

belongs to a different class than most of the selected number of neighbors. NCL uses the same 

concept of ENN in removing from majority class but it also deals with minority instance by 

removing the nearest class that belongs to the majority. In our research, Neighborhood Cleaning 

Rule (NCL) was done by select 10 of Neighbor and 0.9 for threshold cleaning. After that, the 

outcomes were used in the next step to adjust the weight for each class. Because under sampling 
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the majority class in extremely imbalanced data is not helpful and NCL will not make the 

number of classes equal or even close, the weight was adjusted by using set different weights 

for each class. This method works by giving different weights to minority and majority classes. 

The goal is to give more weight to the minority groups that most likely will classify as the 

minority classes and set a small weight for the majority group. This helps the model in the 

training process to treat classes equally and focus more on minority classes to avoid biased 

prediction. Furthermore, it will increase the accuracy by accurately predict minor classes. Table 

3.7 and Table 3.8 represent the number of samples before and after the resampling technique 

along with their adjusted weight. 

 

Table 3.7 Number of CICIDS-DDoS Sampling After Applying Sampling Methods 

 

 

 Table 3.8 Number of NSLKDD-DDoS Sampling After Applying Sampling Methods 

 

 

 

 

Resampling  

Methods 

CICIDS2017 – DDoS/DoS 

 

Benign 

DoS Hulk  

DDoS 

DoS 

Golden 

Eye 

DoS  

Slow 

Loris 

DoS-Slow 

HTTP 

 

Heart 

bleed 

NCL Before 351,925 184,768 102,557 8260 4686 4379 9 

After 350.741 184.369 102,396 8153 4627 4337 9 

Adjust  Weight  0.26 0.50 0.91 11.47 20.21 21.56 1039.0 

 

Resampling  

Methods 

NSL-KDD - DoS 

B
en

ig
n

 

N
ep

tu
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e 

S
m
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ac
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T
ea
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ro

p
 

A
p
ac

h
e 

P
ro

ce
ss

 

ta
b
le

 

M
ai

l 

b
o
m

b
 

P
o
d
 

la
n
d

 

NCL Before 61,673 36,711 2606 1048 724 587 554 229 195 20 

After 61,402 36,688 2509 1040 718 585 547 224 158 19 

Adjust   

Weight  

0.16 0.28 4.14 9.9 14.4 17.7 18.9 46.3 56.1 519.5 
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3.5 Chapter Summary  

As shown above, this chapter gave brief information about the two popular benchmark 

NSL-KDD and CICIDS2017 datasets that were utilized in the experiments. It also explained 

the approaches that are used to handle the data such as using Label encoder and MinMax 

methods to normalize and scale data. In addition to that, it explained how we remove irrelevant 

features using Correlation and Chi-2 feature reduction. Because many ML algorithms are biased 

and not useful when dealing with imbalanced data, this chapter discussed the resampling 

methods that were used in the proposed framework to handle these issues. Chapter 4 will discuss 

and compare benchmark testing and results along with the feature reduction results. 
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Chapter 4: Benchmark Testing and Results 

4.1 Introduction 

The proposed framework is built based on the Scikit-learn library [41]. The proposed 

approach is separated into three steps: data preprocessing and reduction as described in Chapter 

3, supervised machine learning methods, and ensemble classifier. In preprocessing data, Label 

Encoder has been applied to convert the non-numerical labels to numerical labels. After that, 

two feature selections are used to remove the irrelevant features for a positive effect on the time. 

Chi-square and Pearson's correlation have been used and tested on both datasets. Section 2.5 

chapter 2 will explain the results for each test. Finally, the under-sampling model weight will 

be used to give weight for each class that has been applied to solve the problem of imbalanced 

data that will be caused by some types of feature selection. This chapter will explain the 

supervised machine learning experiment using Decision Tree (DT), Random Forest (RF), 

Logistic Regression (LR), and Naive Bayes (NB) models. In addition, the soft voting ensemble 

and stacking ensemble will be performed to make a prediction for each sample by combining 

the best results from the previous steps. Finally, each model will evaluate using a confusion 

matrix and ROC-AUC described in Section 2.7 Chapter 2. In this chapter, two experiments 

have been done on two benchmark datasets, CICIDS2017 DoS/DDoS attacks and NSL-KDD 

DoS attacks, for both supervised and ensemble and a detailed explanation for the results aiming 

to evaluate the model. Table 4.1 explains the hyper-parameter for each model used in our 

experiments. The same hyper-parameter is used in the two dataset training process. 

 

Table 4.1 Hyper-parameter for Supervised Model and Ensemble Classifier 

 
Classification 

type 

Classifier Name Abbreviated 

Name 

Hyper-parameter 

Supervised  Logistic 

Regression  

LR solver= 'liblinear' , C= 10, 

class_weight=class_weights 

Decision Tree DT criterion="entropy" , class_weight=class_weights 

Random Forest RF class_weight=class_weights 

Naïve Bayes NB Default  

Ensemble Stacking  Ens-Stack estimators=[(‘Best model performance’)], 

final_estimator=RandomForest, cv=3 

Voting Ens-Vote estimators=[( Best model performance’)], 

voting='soft' 
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4.2 Feature Selection 

Among all the feature selections, two methods were chosen based on the dataset's value 

types. The Chi-square and Correlation have been applied separately on the NSL-KDD dataset 

as the first step. Then, both features have been integrated and applied, with the correlation 

applied first and the chi-square second for more feature reduction. Both outcomes’ results will 

be compared before and after applying feature selections by using four supervised ML models. 

The comparison focused on how the feature selections have affected training time, model 

accuracy, and False-positive rate. Feature reduction may reduce training time but sometimes it 

has a negative impact on accuracy and False-Positive rate; that is because removing sufficient 

features to reduce training time will not help the models to learn enough from features with 

short of time. 
 

In our experiment, the correlation method provided the best performance that reduced 

training time without affected model accuracy and FPR. In contrast, applying both correlation 

and chi-square reduced more training time, but the accuracy and chi-square were affected. Table 

4.2 represents the results of CICIDS2017 before and after applying Chi-square and Correlation 

methods. From Figure 4.1, we can notice that there is a big improvement in the time after we 

used both methods together. Based on the results from Table 4.2, we can see that after applying 

correlation the time decreased 8% than before and 46% decreased after applying both methods. 

About the accuracy and false-positive rate, there are rare changes after applying correlation 

versus a huge decrease after applying Correlation and Chi-square methods. 

  

Table 4.2 Feature Selection Comparisons for CICIDS2017 Dataset 

 

 

 

 

 

ML 

model 

Before correlation Correlation + Chi-2 

ACC FPR Time ACC FPR Time ACC FPR Time 

LR 0.98 0.002 269.0 0.98 0.002 255.6 0.91 0.01 128.7 

DT 0.99 0.0002 34.09 0.99 0.0001 29.12 0.74 0.09 15.58 

RF 0.99 0.0001 309.12 0.99 0.0001 302.1 0.80 0.03 281.9 

NB 0.79 0.03 2.87 0.79 0.03 2.56 0.54 0.08 0.839 
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Same as the previous dataset, each feature selection has been applied separately and a 

collection of two applied next. Table 4.3 represents the results of the NSL-KDD DoS before 

and after applying feature selection methods and Figure 4.2 represent the data in more readable 

way. In this experiment, the feature selection has affected the accuracy, FPR, and time 

differently for each ML model. For instance, after applying both methods, the Decision Tree 

has been affected by increasing accuracy and reducing FPR and time. About the time and results 

from Table 4.3, the time was reduced by 16% after applying correlation and by 42% after 

applying both methods (Correlation and Chi-square). 

 

Table 4.3 Feature Selection Comparisons for NSL-KDD Dataset 

ML Before   correlation  Both   

model ACC FPR Time ACC FPR Time ACC FPR Time 

LR 0.99 0.0003 11.52 0.99 0.0008 8.39 0.97 0.004 6.31 

DT 0.72 0.20 0.53 0.72 0.02 0.43 0.99 0.0008 0.29 

RF 0.99 0.0001 8.15 0.99 0.0001 8.02 0.99 0.0001 7.52 

NB 0.95 0.010 0.38 0.95 0.010 0.30 0.94 0.006 0.11 

 

Figure 4.1 Feature Selection Performance Comparisons for CICIDS2017 

Figure 4.2 Feature Selection Performance Comparisons for NSL-KDD 
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The aim of feature reduction in our experiment is to reduce training time only. Based 

on the huge difference in time before and after applying both feature selections, the time was 

hugely reduced training time for both datasets. The combination of Correlation and Chi-square 

was selected to build the IDS model. However, this method produced another problem called 

imbalanced data. To solve this problem, a combination of two sampling methods have been 

used to reduce the number of sampling and adjust the weight. Section 0.0 will illustrate the 

process and the results of sampling methods. To conclude, feature selections reduced training 

time by 44% from the original training time. 

4.3 Sampling performance 

Sampling methods have been used to solve the problem of imbalanced data caused by 

feature selections. Neighborhood Rule Cleaning is the method that was used in this stage to 

remove some samples based on the concept of nearest neighbor (NN). This method was selected 

because it deals with minority instances by removing the nearest class that belongs to the 

majority. At this point, the minority class will not be affected much by this method. Removing 

some samples from the majority class that is misclassified by their 10-nearest neighbors will 

help models to avoid overlap between samples and avoid overfitting. This method still needs 

some help from other methods because the number of samples from each class did not get close. 

Adjusting weight for each class has been used to create a balance between classes when the 

model is trained. Table 4.4 and Figure 4.3 explain how the sampling methods help to improve 

the models' performance after applying feature selection on the CICIDS2017 dataset. Based on 

the results from Table 4.4, these two sampling methods have reduced FPR by 55% and 34% 

time, in addition, to increase accuracy by 12%. 

  

Table 4.4 Supervised models performance comparisons after sampling method for CICIDS2017 

 

ML model 
Feature selections  Sampling methods  

ACC FPR Time ACC FPR  Time 

LR 0.91 0.017 128.7 0.94 0.012  73.29 

DT 0.74 0.09 15.58 0.88 0.03  11.33 

RF 0.80 0.033 281.9 1.00 0.0005  172.17 

NB 0.54 0.084 0.839 0.64 0.058  0.58 
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Regarding the NSL-KDD dataset and from the results of Table 4.5, the accuracy 

improved rarely especially on Naive Bayes and Random Forest. For FPR in Figure 4.4, the FPR 

was improved by 20% specifically on Decision Tree and Naive Bayes. The time also improved 

by 8% for all models. 

 

Table 4.5 Supervised models performance comparisons after sampling methods for NSL-KDD 

 

ML model 
Feature selections  Sampling  

ACC FPR Time ACC FPR Time 

LR 0.97 0.004 6.31 0.97 0.004 5.76 

DT 0.99 0.0008 0.29 0.99 0.0003 0.27 

RF 0.99 0.0001 7.52 1.00 0.0001 6.98 

NB 0.94 0.006 0.11 0.95 0.005 0.10 

 

Finally, good performance resulted from CICIDS2017 because the number of samples 

that the models were trained and tested on is 820 thousand samples, as compared with NSL-

KDD, which contains 130 thousand samples. 

Figure 4.3 Supervised ML performance after sampling methods for CICIDS2017 

 

Figure 4.4 Supervised ML performance after sampling methods for NSL-KDD 

 



39 

 

 
 

4.4 Results and Discussion 

This section represents the best models' performance for both supervised ML models 

and Ensemble methods. In the Ensemble methods, soft voting is used to vote for each sample 

by calculating the average of predictions from multiple classifiers. About the stacking, multi-

classifiers will be combined via the Meta-model. Stacking contains two stages called level 0 

and level 1. Where level 0 is the level that contains the best-supervised ML models. In level 1 

the Meta model, the same as the base model, will combine the prediction as a feature and train 

the Meta-model, which is a random forest in our experiment. Tables 4.6 and 4.7 illustrate all 

the models' performance for CICIDS2017 and NSL-KDD datasets. 

  

Table 4.6 Supervised models and Ensemble models performance for CICIDS2017 

 

 

 

 

 

 

Table 4.7 Supervised models and Ensemble models performance for NSL-KDD 

 

 

 

 

 

 

With the minor classes Table, 4.8 and 4.9 represent the Precision, Recall, and F-1 for 

Random forest models for CICIDS2017 and NSL-KDD datasets. The model is robust in 

detecting the minor class such as in Table 4.8, where Heartbleed only has 2 samples in the test 

set. The same concept in Table 4.9 represents the types of NSL-KDD, where land only has 5 

samples in the test set. 

 

 

Class Accuracy FPR 

ROC-

AUC 

(Macro) 

ROC-AUC 

(Micro) 
Time 

LR 0.94 0.012 0.98 0.99 73.29 

DT 0.88 0.036 0.93 0.93 11.33 

RF 1.00 0.0001 1.00 1.00 172.17 

NB 0.64 0.058 0.93 0.93 0.58 

Stack 0.99 0.0003 1.00 1.00 250.12 

Voting 0.99 0.002 1.00 1.00 72.77 

Class Accuracy FPR ROC-AUC 
(Macro) 

ROC-AUC 
(Micro) 

Time 

LR 0.97 0.004 1.00 1.00 5.76 
DT 0.99 0.0003 0.89 0.99 0.27 
RF 1.00 0.0001 1.00 1.00 6.98 
NB 0.95 0.005 0.99 1.00 0.10 
Stack 1.00 0.0002 0.99 1.00 56.6 
Voting 0.99 0.0004 1.00 1.00 13.30 
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Table 4.8 Confusion Metric results for each class of CICIDS2017 

 

 

 

 

 

 

 

Table 4.9 Confusion Metric results for each class of NSL-KDD 

 

 

 

 

 

 

 

 

4.5 Chapter Summary 

In our proposed model, Random Forest achieved the best performance results. The 

model decreased 37% of the training and test time, in addition to solving the imbalance problem 

caused by feature selection, and increased accuracy 6.25% accuracy and FPR 21%. The random 

forest model has achieved 99% accuracy and 0.0001 for the False-Positive rate. Furthermore, 

it can detect minor classes with more than 80% accuracy. 

 

 

 

 

 

 

 

Class RF 
Precision Recall F1 

Benign 1.00 1.00 1.00 
DoS Hulk 1.00 0.99 0.99 
DDoS 0.99 0.99 0.99 
DoS GoldenEye 1.00 1.00 1.00 
DoS 
Slowhttptest 

0.98 0.98 0.98 

DoS slowloris 1.00 1.00 1.00 
Heartbleed 1.00 1.00 1.00 

Class RF 

Precision Recall F- 1 

Apache 1.00 0.99 0.99 

Back 1.00 1.00 1.00 

Land 0.80 0.80 0.80 

Mailbomb 1.00 1.00 1.00 

Neptune 1.00 1.00 1.00 

Normal 1.00 1.00 1.00 

Pod 0.94 0.98 0.96 

Processtable 1.00 1.00 1.00 

Smurf 1.00 1.00 1.00 

teardrop 0.98 0.99 0.99 
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Chapter 5: Conclusion 

Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks are a type of 

cyber-attack that can disrupt a server's normal operation. Typically, these use a network of 

computers to execute a DDoS. Even the most prominent service providers like Facebook, 

Amazon, and Instagram have experienced service disruption due to DDoS. Therefore, Intrusion 

detection systems (IDSs) should be used to build a system that should be able to identify and 

prevent an attack using artificial intelligence. Recently, deep learning and machine learning 

show promising results in solving these types of complicated problems. Machine learning is an 

AI tool that can provide solid intelligence when used by IDSs. The ability of machine learning 

to detect patterns of attacks makes it an ideal tool for cybersecurity. This thesis project aimed 

to design a model that uses the advantages of the feature selection process to reduce time and 

improve the overall performance of such a system. Further, we have addressed the problem of 

imbalanced data, characteristic of DoS and DDoS attacks, that demonstrates improved overall 

performance compared to other studies described in the literature. 

5.1 Summary 

To summarize our results from this research, we have designed a model using four 

supervised learning methods namely, Decision tree, Random Forest, Logistic Regression, and 

Naive Bayes, in addition to using two ensemble methods (i.e., stacking and voting). Two 

popular benchmarks called NSL-KDD and CICIDS2017 have been used as offline data to train 

the model, specifically the DoS and DDoS that have been extracted from both datasets. Both of 

the NSL-KDD DoS and CICIDS2017 DoS/DDoS attacks have been normalized and split into 

a training set and testing set. Two feature selections (i.e., Chi-square and correlation) and two 

resampling methods (i.e., Neighborhood Cleaning Rule and Adjust Weight) have been applied 

on both datasets. After that, the supervised models have been derived and the best results were 

used to train the ensemble model. Comparing all results, Random Forest achieved the best 

performance results. The model decreased 37% of the training and test time, in addition to 

solving the imbalanced problem caused by feature selection and increased accuracy 6.25% and 

FPR 21%. The Random Forest model has achieved 99% accuracy and 0.0001 for the False-

Positive rate. Furthermore, it can detect minor classes with better than 80% accuracy. The result 

has met our goals of designing a model that can detect DoS and DDoS attacks with high 
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accuracy, low false rates, and in less computational time in addition to dealing with extremely 

imbalanced data. 

5.2 Challenges 

Many interesting and difficult problems have been addressed in this thesis. Designing a 

detection model that can effectively detect various types of DoS and DDoS attacks with 

extremely imbalanced data was the biggest issue faced during this journey. IDSs require a 

robust model that can accurately detect minor types with low false alarms in a short period of 

time. Time was the most important aspect considered in designing the model. To reduce the 

time, feature selection was the second problem faced. Choosing the correct feature helped to 

improve time to detection. Regarding the accuracy and false alarm rates, with the help of 

resampling techniques many practices such as random over-sampling and random under-

sampling were tested and did not show an improvement with the false alarm rate. Another issue 

is that more samples can cause the model to exacerbate the overfitting problems and its side 

effects (i.e., higher false alarm rates, lower accuracy, and precision). 

5.3 Future Work 

In the near future, we will test the same model but we will use an unsupervised model 

instead of a supervised model. The best outcomes will be integrated with the decision tree to build 

a semi-supervised model. This model will be used in real-world traffic to train the unlabeled data 

that will be used along with the supervised offline labeled data. Different feature selection and 

resampling techniques will be studied toward developing a faster and more accurate system. 
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Appendix A 

This section will provide detailed results about each step that has been done in this 

thesis. Appendix A has been divided into three sections. Section A.1 explained the results for 

each supervised machine learning method before and after applying feature selection. The 

result after each feature selection method has been compared to select the best results. Section 

A.2 illustrated the results for the NSL-KDD dataset after applying the correlation method and 

applying correlation with the Chi-2 method. This section also shows the performance for each 

supervised method along with each ensemble method by using the ROC-AUC curve. The 

same order has been done for section A.3. This section focused on the results of the CICIDS-

2017 dataset in the same order as the previous section. 

A.1 Feature Selection Detailed Results  

 
Table A.1 Feature Selection Comparisons for NSL-KDD 

 

 
Table A.2 Feature Selection Comparisons for CICIDS2017 

 

 

 

 

 

ML 

model 

Before correlation Chi-2 

Acc FPR Time Acc FPR Time Acc FPR Time 

LR 0.99 0.0003 11.52 0.99 0.0008 8.39 0.98 0.003 8.27 

DT 0.72 0.20 0.53 0.72 0.02 0.43 0.99 0.0008 0.41 

RF 0.99 0.0001 8.15 0.99 0.0001 8.02 0.99 0.0001 8.28 

NB 0.95 0.010 0.38 0.95 0.010 0.30 0.93 0.006 0.14 

ML 

model 

Before correlation Chi-2 

Acc FPR Time Acc FPR Time Acc FPR Time 

LR 0.98 0.0027 269.0 0.98 0.0027 255.6 0.91 0.017 128.09 

DT 0.99 0.0002 34.09 0.99 0.0001 29.12 0.75 0.05 15.64 

RF 0.99 0.0001 309.12 0.99 0.0001 302.1 0.80 0.033 284.4 

NB 0.79 0.037 2.87 0.79 0.037 2.56 0.54 0.084 0.862 
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A.2 NSL-KDD Dataset Results 

 

Table A.3 Supervised Model performance after applying Correlation based feature selection – NSL-KDD 

 

 

 
Table A.4 Ensemble Classifier after applying Correlation Based Feature Selection - NSL-KDD 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class LR DT RF NB 

Precision Recall F- 1 Precision Recall F-1 Precision Recall F- 1 Precision Recall F-1 

Apache 0.96 0.98 0.97 0.98 0.63 0.76 1.00 0.99 0.99 0.95 0.99 0.97 

Back 0.99 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.99 

Land 0.80 0.80 0.80 0.00 0.00 0.00 1.00 0.80 0.89 0.00 0.00 0.00 

Mailbomb 0.94 0.70 0.80 0.97 0.92 0.94 1.00 1.00 1.00 0.00 0.00 0.00 

Neptune 1.00 1.00 1.00 1.00 0.22 0.37 1.00 1.00 1.00 0.98 1.00 0.99 

Normal 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.99 0.96 

Pod 0.92 0.98 0.95 1.00 1.00 1.00 0.98 1.00 0.99 0.00 0.00 0.00 

Processtable 0.92 0.92 0.92 0.02 0.99 0.04 1.00 1.00 1.00 0.97 1.00 0.98 

Smurf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 

teardrop 0.96 1.00 0.98 1.00 0.99 1.00 1.00 0.99 1.00 0.00 0.00 0.00 

Class Voting Stacking 

Precision Recall F- 1 Precision Recall F-1 

Apache 1.00 0.99 0.99 1.00 0.99 1.00 

Back 1.00 1.00 1.00 1.00 1.00 1.00 

Land 0.75 0.60 0.67 1.00 0.80 0.89 

Mailbomb 1.00 1.00 1.00 1.00 1.00 1.00 

Neptune 1.00 1.00 1.00 1.00 1.00 1.00 

Normal 1.00 1.00 1.00 1.00 1.00 1.00 

Pod 0.98 0.98 0.98 0.98 1.00 0.99 

Processtable 0.98 1.00 0.99 1.00 1.00 1.00 

Smurf 1.00 1.00 1.00 1.00 1.00 1.00 

teardrop 0.97 0.99 0.98 1.00 0.99 1.00 
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Table A.5 Supervised models and Ensemble Classifier Performance – NSL-KDD 

 

 

 

 

 

 

 

 

 

 
Table A.6 Supervised Model performance after applying Correlation and Chi-2 based feature selection – NSL-KDD 

 

 

 

 

 

 

 

Class Accuracy FPR ROC-AUC  

(Macro) 

ROC-AUC 

(Micro) 

Time 

LR 0.99 0.0008 1.00 1.00 8.29 

DT 0.72 0.028 0.87 0.85 0.41 

RF 1.00 0.0001 1.00 1.00 6.78 

NB 0.95 0.010 0.98 0.74 0.21 

Stack 1.00 0.0001 1.00 1.00 66.32 

Voting 1.00 0.0002 1.00 1.00 14.87 

Class LR DT RF NB 

Precision Recall F- 1 Precision Recall F-1 Precision Recall F- 1 Precision Recall F-1 

Apache 0.97 0.93 0.95 1.00 0.99 0.99 1.00 0.99 0.99 0.91 0.99 0.95 

Back 0.98 1.00 0.99 0.88 0.08 0.14 1.00 1.00 1.00 1.00 0.98 0.99 

Land 0.60 0.60 0.60 0.50 0.80 0.62 0.80 0.80 0.80 0.03 1.00 0.07 

Mailbomb 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 

Neptune 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 

Normal 0.98 0.99 0.98 0.98 1.00 0.99 1.00 1.00 1.00 0.99 0.94 0.96 

Pod 0.91 0.66 0.77 0.94 0.98 0.96 0.94 0.98 0.96 0.94 0.98 0.96 

Processtable 0.95 0.74 0.83 1.00 0.98 0.99 1.00 1.00 1.00 0.90 0.97 0.93 

Smurf 0.76 0.75 0.76 1.00 1.00 1.00 1.00 1.00 1.00 0.44 1.00 0.62 

teardrop 0.93 1.00 0.96 0.97 0.99 0.98 0.98 0.99 0.99 0.96 1.00 0.98 
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Table A.7 Ensemble Classifier after applying Correlation and Chi-2- NSL-KDD 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table A.8 Supervised models and Ensemble Classifier Performance– NSL-KDD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class Voting Stacking 

Precision Recall F- 1 Precision Recall F-1 

Apache 1.00 0.98 0.99 1.00 0.99 0.99 

Back 1.00 1.00 1.00 1.00 1.00 1.00 

Land 0.60 0.60 0.60 0.80 0.80 0.80 

Mailbomb 1.00 0.97 0.98 1.00 1.00 1.00 

Neptune 1.00 1.00 1.00 1.00 1.00 1.00 

Normal 1.00 1.00 1.00 1.00 1.00 1.00 

Pod 0.94 0.98 0.96 0.94 0.98 0.96 

Processtable 0.98 0.97 0.98 1.00 0.99 1.00 

Smurf 1.00 0.99 1.00 1.00 1.00 1.00 

teardrop 0.97 0.99 0.98 0.98 0.99 0.99 

Class Accuracy FPR ROC-AUC 

(Macro) 

ROC-AUC 

(Micro) 

Time 

LR 0.97 0.004 1.00 1.00 5.76 

DT 0.99 0.0003 0.89 0.99 0.27 

RF 1.00 0.0001 1.00 1.00 6.98 

NB 0.95 0.005 0.99 1.00 0.10 

Stack 1.00 0.0002 0.99 1.00 56.6 

Voting 0.99 0.0004 1.00 1.00 13.30 
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Figure A.1 ROC-AUC curve for Logistic Regression model – NSL-KDD 

Figure A.2 ROC-AUC curve for Decision Tree model – NSL-KDD 



53 

 

 

 

 

 
Figure A.3 ROC-AUC curve for Random Forest model – NSL-KDD 

Figure A.4 ROC-AUC curve for Naive Bayes model – NSL-KDD 
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Figure A.6 ROC-AUC curve for Voting Ensemble model – NSL-KDD 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.5 ROC-AUC curve for Stacking Ensemble model – NSL-KDD 
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A.3 CICIDS2017 Dataset Results  

 

 

Table A.9 Supervised Model performance after applying Correlation based feature selection – CICIDS2017 

 

 

 
Table A.10 Ensemble Classifier after applying Correlation Based Feature Selection – CICIDS2017 

 

 

 

 

 

 

 

 

 

 

 

Class RF DT LR NB 

Precision Recall F- 1 Precision Recall F-1 Precision Recall F- 1 Precision Recall F-1 

Benign 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.97 0.92 0.94 

DoS Hulk 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 

DDoS 1.00 1.00 1.00 0.99 0.96 0.96 0.99 0.95 0.97 0.54 0.65 0.59 

DoS 

GoldenEye 

1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 0.75 0.99 0.85 

DoS 

Slowhttptest 

1.00 0.99 0.99 0.99 0.99 0.99 0.95 0.96 0.96 0.06 0.66 0.11 

DoS 

slowloris 

0.99 1.00 0.99 0.99 0.99 0.99 0.96 0.84 0.90 0.21 0.96 0.34 

Heartbleed 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

Class Voting Stacking 

Precision Recall F- 1 Precision Recall F-1 

Benign 1.00 1.00 1.00 1.00 1.00 1.00 

DoS Hulk 1.00 1.00 1.00 1.00 1.00 1.00 

DDoS 1.00 0.97 0.98 1.00 0.99 1.00 

DoS 

GoldenEye 

1.00 1.00 1.00 1.00 1.00 1.00 

DoS 

Slowhttptest 

0.99 0.99 0.99 1.00 0.99 0.99 

DoS slowloris 0.99 1.00 0.99 0.99 1.00 1.00 

Heartbleed 1.00 1.00 1.00 1.00 1.00 1.00 
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Table A.11 Supervised models and Ensemble Classifier Performance – CICIDS2017 

 

 

 

 

 

 

 

 

 
Table A.12 Supervised Model performance after applying Correlation and Chi-2 based feature selection – CICIDS2017 

 

 

 

 

Class Accuracy FPR ROC-AUC 

(Macro) 

ROC-AUC (Micro) Time 

LR 0.99 0.0027 1.00 1.00 255.6 

DT 1.00 0.0001 1.00 1.00 32.67 

RF 1.00 0.0001 1.00 1.00 305.19 

NB 0.79 0.037 0.88 0.83 2.733 

Stack 1.00 0.0001 1.00 1.00 5.45 

Voting 0.99 0.0002 1.00 1.00 3.02 

Class RF DT LR NB 

Precision Recall F- 1 Precision Recall F-1 Precision Recall F- 1 Precision Recall F-1 

Benign 1.00 1.00 1.00 0.82 1.00 0.90 0.97 0.93 0.95 0.99 0.53 0.69 

DoS Hulk 1.00 1.00 1.00 0.99 1.00 0.99 0.98 0.99 0.98 0.36 0.99 0.53 

DDoS 0.99 0.99 0.99 1.00 0.98 0.99 0.34 0.66 0.45 0.07 0.13 0.09 

DoS 

GoldenEye 

1.00 1.00 1.00 0.99 0.58 0.74 0.95 0.95 0.95 0.92 0.68 0.78 

DoS 

Slowhttptest 

0.98 0.94 0.96 0.99 0.88 0.93 0.55 0.73 0.63 0.27 0.56 0.37 

DoS slowloris 1.00 0.97 0.98 0.99 0.88 0.93 0.30 0.51 0.37 0.13 0.81 0.23 

Heartbleed 1.00 1.00 1.00 1.00 1.00 1.00 0.20 0.50 0.29 1.00 1.00 1.00 
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Table A.13 Ensemble Classifier after applying Correlation and Chi-2 – CICIDS2017 

 

 

 

 

 

 

 

 

 

 

 
Table A.14 Supervised models and Ensemble Classifier Performance after Correlation and Chi-2 – CICIDS2017 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class Voting Stacking 

Precision Recall F- 1 Precision Recall F-1 

Benign 0.99 1.00 0.99 1.00 1.00 1.00 

DoS Hulk 0.99 1.00 1.00 0.99 1.00 1.00 

DDoS 1.00 0.98 0.99 0.99 0.99 0.99 

DoS GoldenEye 1.00 0.98 0.99 1.00 1.00 1.00 

DoS Slowhttptest 0.99 0.88 0.93 0.98 0.92 0.95 

DoS slowloris 0.99 0.88 0.93 1.00 0.97 0.98 

Heartbleed 1.00 1.00 1.00 1.00 1.00 1.00 

Class Accuracy FPR ROC-

AUC 

(Macro) 

ROC-AUC 

(Micro) 

Time 

LR 0.94 0.012 0.98 0.99 73.29 

DT 0.88 0.036 0.93 0.93 11.33 

RF 1.00 0.0005 1.00 1.00 172.17 

NB 0.64 0.058 0.93 0.93 0.58 

Stack 0.99 0.0007 1.00 1.00 5.12 

Voting 0.99 0.002 1.00 1.00 2.77 
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Figure A.7 ROC-AUC curve for Logistic Regression model – CICIDS2017 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.8 ROC-AUC curve for Decision Tree model – CICIDS2017 
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Figure A.9 ROC-AUC curve for Random Forest model – CICIDS2017 

Figure A.10 ROC-AUC curve for Naive Bayes model – CICIDS2017 
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Figure A.9 ROC-AUC curve for Stacking Ensemble model – CICIDS2017 

Figure A.10 ROC-AUC curve for Voting Ensemble model – CICIDS2017 
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Appendix B 

Appendix B contains two main sections B.1 and B.2. In section B.1, the code that has 

been applied in the NSL-KDD dataset is illustrated along with its comments for more 

understanding. Each step is illustrated in the comments above its code with the symbol # 

before it. Same as in section B.2, the code that has been applied on CICIDS-2017 is explained 

with its comments. 

B.1 NSL-KDD Dataset Detailed Codes 

 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn import preprocessing  

from sklearn.preprocessing import LabelEncoder 

from sklearn.model_selection import train_test_split 

from sklearn.feature_selection import SelectKBest, chi2 

from sklearn.metrics import confusion_matrix 

from sklearn.tree import DecisionTreeClassifier  

from sklearn.ensemble import RandomForestClassifier, VotingClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.naive_bayes import GaussianNB 

from sklearn.metrics import accuracy_score, f1_score, precision_score,recall_score 

from sklearn.metrics import roc_curve, auc 

from sklearn.metrics import classification_report 

from sklearn.metrics import plot_confusion_matrix 

from sklearn.preprocessing import label_binarize 

from sklearn.preprocessing import MinMaxScaler 

from itertools import cycle 

from sklearn.ensemble import StackingClassifier  

import time 

import keras 

 

#open NSL-KDD Dataset file  

file_path = 'NSLKDD_Dos.xlsx' 

dataset = pd.read_excel(file_path) 

dataset.head() 

 

#Set column names  

columns = ([ ‘name of columns’]) 

dataset.columns = columns 
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#print class attack with their number of sample 

print('Label distribution:') 

dataset[' Label'].value_counts() 

 

# divided dataset to x for data and y for target 

X = dataset.iloc[:,0:44] 

y = dataset.iloc[:, -4].values 

 

#plot the number of samples for each class of attack 

labels, counts = np.unique(y, return_counts=True) 

plt.figure(figsize=(13, 8)) 

plt.bar(labels, counts, align='center') 

plt.gca().set_xticks(labels) 

plt.show() 

 

#print the object feature to know which feature will convert to numeric 

s = (dataset.dtypes == 'object') 

object_cols = list(s[s].index) 

print("Categorical variables:") 

print(object_cols) 

 

#convert non numeric to numeric value for all features 

label_df = dataset.select_dtypes(include=['object']).copy() 

encoder = preprocessing.LabelEncoder() 

for col in columns: 

    label_df[col] = encoder.fit_transform(dataset[col]) 

label_df.head(5) 

 

#Re-divided the to x for data and y for target 

X = label_df.iloc[:,0:43] 

y = label_df.iloc[:, 3].values 

X = X.drop([ 'attack'], axis=1) 

 

#feature selection using chi2 

bestfeatures = SelectKBest(score_func=chi2, k=2) 

fit = bestfeatures.fit(X, y) 

feat_importances = pd.Series(fit.scores_, index=X.columns) 

topFatures = feat_importances.nlargest(25).copy().index.values 

print("TOP 25 Features (Best to worst) :\n") 

print(topFatures) 

 

#create new x with the selected feature and pass it to the correlation 

X = X[['dst_bytes','src_bytes', 'duration', 'srv_count' ,'count', 
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 'dst_host_srv_count', 'dst_host_srv_serror_rate' ,'dst_host_serror_rate', 

 'serror_rate' ,'srv_serror_rate', 'same_srv_rate' ,'dst_host_same_srv_rate', 

 'dst_host_same_src_port_rate' ,'dst_host_count', 'rerror_rate', 

 'srv_rerror_rate' ,'dst_host_srv_rerror_rate', 'dst_host_rerror_rate', 

 'srv_diff_host_rate', 'wrong_fragment', 'dst_host_srv_diff_host_rate', 

 'diff_srv_rate' ,'service', 'dst_host_diff_srv_rate' ,'land']] 

 

#Applying Correlation based feature selection 

def identify_correlated(df, threshold): 

    #A function to identify highly correlated features. 

    # Compute correlation matrix with absolute values 

    matrix = df.corr().abs() 

    # Create a boolean mask 

    mask = np.triu(np.ones_like(matrix, dtype=bool)) 

    # Subset the matrix 

    reduced_matrix = matrix.mask(mask) 

    # Find cols that meet the threshold 

    to_drop = [c for c in reduced_matrix.columns if 

               any(reduced_matrix[c] > threshold)] 

    plt.figure(figsize=(15,15)) 

    sns.heatmap(matrix) 

    plt.show() 

    return to_drop 

to_drop = identify_correlated(X, threshold=.9) 

len(to_drop) 

#the heatmap correlation is not good option for large feature  

 

# Drop the high correlated cols and print the selected one 

data_reduced = X.drop(to_drop, axis=1) 

X = data_reduced 

print(type(X)) 

X.head() 

 

#spilt the dataset to train and test set 

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=42 ) 

y_train_onehot = keras.utils.to_categorical(y_train) 

 

#scale the data using MinMaxScaler / data normalization 

scaler = MinMaxScaler() 

x_train = scaler.fit_transform(x_train) 

x_test = scaler.fit_transform(x_test) 

 

### Under-sampling + adjusted weight 

#print number of test set and train set for each class before applying Sampling methods 

from collections import Counter 

counter = Counter(y_train) 
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print(counter) 

counter1 = Counter(y_test) 

print(counter1) 

labels = ['apache2' , 'back'  ,'mailbomb' , 'neptune' , 'normal' ,'pod' ,'processtable', 'smurf' , 

'teardrop'] 

 

#Applying UnderSampling Methods - NeighbourhoodCleaningRule 

from imblearn.under_sampling import NeighbourhoodCleaningRule 

undersample = NeighbourhoodCleaningRule(n_neighbors=10, threshold_cleaning=0.9) 

x_train, y_train = undersample.fit_resample(x_train, y_train) 

 

#Adjusting weight 

from sklearn.utils import class_weight 

class_weights = dict(enumerate(class_weight.compute_class_weight('balanced', 

                                                np.unique(y_train),y_train))) 

print(class_weights) 

 

 

### evaluation metrix 

#used to calculate the overall accuracy and precision for each class 

def myEvaluation(y, y_pred): 

    # calculate the overall acc 

    correct_preds = np.sum(y == y_pred, axis=0) 

    acc = correct_preds / y.shape[0] 

    # calculate the precision for each class 

    cm = confusion_matrix(y , y_pred) 

    #print(cm) 

    precision = np.array([]) 

    for i in range(y_train_onehot.shape[1]): 

        first_part = cm[i][i] 

        #print('i : ' ,i , 'first_part = ' , first_part) 

        sec_part = 0 

        for j in range(y_train_onehot.shape[1]): 

            sec_part = sec_part + cm[j][i] 

        result = first_part / sec_part 

        #print('the presision of class', i , 'is = ' , result) 

        precision = np.append(precision,result) 

    # return acc and precision array 

    return acc ,precision  

     

 

'''This function is used from this website  

https://towardsdatascience.com/multi-class-classification-extracting- 

performance-metrics-from-the-confusion-matrix-b379b427a872 

to evluate the models ''' 
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from statistics import * 

def met_eval(cnf_matrix): 

    FP = cnf_matrix.sum(axis=0) - np.diag(cnf_matrix)  

    FN = cnf_matrix.sum(axis=1) - np.diag(cnf_matrix) 

    TP = np.diag(cnf_matrix) 

    TN = cnf_matrix.sum() - (FP + FN + TP) 

    FP = FP.astype(float) 

    FN = FN.astype(float) 

    TP = TP.astype(float) 

    TN = TN.astype(float) 

    # Sensitivity, hit rate, recall, or true positive rate 

    TPR = TP/(TP+FN) 

    # Specificity or true negative rate 

    PPV = TP/(TP+FP) 

    # false positive rate 

    FPR = FP/(FP+TN) 

    # Overall accuracy for each class 

    ACC = (TP+TN)/(TP+FP+FN+TN) 

    print(labels) 

    print('ACC : ', ACC) 

    print('Sensitivity : ', TPR) 

    print('FPR : ', mean(FPR)) 

    print('Precision :', PPV) 

 

 

### ROC-AUC curve 

y_test_onehot = keras.utils.to_categorical(y_test) 

y = label_binarize(y_test_onehot, classes=[0, 1,2 ,3 ,4,5,6 ,7,8,9,10 ]) 

n_classes = y.shape[1] 

def ROC(n_classes,y_test_onehot, pred_prob): 

    fpr = dict() 

    tpr = dict() 

    roc_auc = dict() 

    for i in range(n_classes): 

        fpr[i], tpr[i], _ = roc_curve(y_test_onehot[:, i], pred_prob[:, i]) 

        roc_auc[i] = auc(fpr[i], tpr[i]) 

    # Compute micro-average ROC curve and ROC area 

    fpr["micro"], tpr["micro"], _ = roc_curve(y_test_onehot.ravel(),pred_prob.ravel()) 

    roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) 

    return roc_auc,fpr,tpr 

 

def plot_classes(n_classes , fpr ,tpr): 

    # First aggregate all false positive rates 

    all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) 

    # Then interpolate all ROC curves at this points 

    mean_tpr = np.zeros_like(all_fpr) 
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    for i in range(n_classes): 

        mean_tpr += np.interp(all_fpr, fpr[i], tpr[i]) 

    # Finally average it and compute AUC 

    mean_tpr /= n_classes 

    fpr["macro"] = all_fpr 

    tpr["macro"] = mean_tpr 

    roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) 

    # Plot all ROC curves 

    plt.figure(figsize=(10, 10)) 

    plt.plot(fpr["micro"], tpr["micro"], 

             label='micro-average ROC curve (area = {0:0.2f})' 

                   ''.format(roc_auc["micro"]), 

             color='deeppink', linestyle=':', linewidth=4) 

 

    plt.plot(fpr["macro"], tpr["macro"], 

             label='macro-average ROC curve (area = {0:0.2f})' 

                   ''.format(roc_auc["macro"]), 

             color='navy', linestyle=':', linewidth=4) 

 

    colors = cycle(['aqua', 'darkorange', 'blue', 'red', 'orange', 'yellow' , 'olive' , 'pink' , 'purple']) 

    for i, color in zip(range(n_classes), colors): 

        plt.plot(fpr[i], tpr[i], color=color,  

                 label='ROC curve of class {0} (area = {1:0.2f})' 

                 ''.format(labels[i], roc_auc[i])) 

 

    plt.plot([0, 1], [0, 1], 'k--') 

    plt.xlim([0.0, 1.0]) 

    plt.ylim([0.0, 1.05]) 

    plt.xlabel('False Positive Rate') 

    plt.ylabel('True Positive Rate') 

    plt.title('Some extension of Receiver operating characteristic to multi-class') 

    plt.legend(loc="lower right") 

    plt.show() 

 

###Supervised/stacking/voting --machine learning models 

#Logistic Regression 

LogReg_clf = LogisticRegression(solver= 'liblinear' , C= 10 ) 

start = time.time() 

LogReg_clf.fit(x_train, y_train) 

LogReg_pred = LogReg_clf.predict(x_test) 

LogReg_pred_prob = LogReg_clf.predict_proba(x_test) 

LogReg_pred_score = accuracy_score(LogReg_pred, y_test) 

print('LogReg_pred_score :', LogReg_pred_score) 

acc , precision= myEvaluation(y_test, LogReg_pred) 

print('my accuracy:    {:.2f}'.format(acc)) 

print('my precision:', precision) 
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print(classification_report(y_test, LogReg_pred)) 

cnf_matrix_lr = confusion_matrix(y_test, LogReg_pred) 

class_names = labels 

disp = plot_confusion_matrix(LogReg_clf, x_test, y_test, 

                                 display_labels=class_names, 

                                 cmap=plt.cm.Blues) 

plt.show() 

met_eval(cnf_matrix_lr) 

end = time.time() 

print(end - start, 'seconds') 

#print Roc accuracy for each class of attack 

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, LogReg_pred_prob) 

plot_classes(n_classes , fpr ,tpr) 

 

#Decision Tree 

DTree_clf = DecisionTreeClassifier(criterion="entropy" ) 

DTree_clf.fit(x_train, y_train) 

start = time.time() 

DTree_pred = DTree_clf.predict(x_test) 

end = time.time/() 

DTree_pred_prob = DTree_clf.predict_proba(x_test) 

DTtree_pred_score = accuracy_score(DTree_pred, y_test) 

print('DTtree_pred_score :', DTtree_pred_score) 

acc , precision= myEvaluation(y_test, DTree_pred) 

print('my accuracy:    {:.2f}'.format(acc)) 

print('my precision:', precision) 

print(classification_report(y_test, DTree_pred)) 

cnf_matrix_dt = confusion_matrix(y_test, DTree_pred) 

class_names = labels 

disp = plot_confusion_matrix(DTree_clf, x_test, y_test, 

                                 display_labels=class_names, 

                                 cmap=plt.cm.Blues) 

plt.show() 

met_eval(cnf_matrix_dt) 

print(end - start, 'seconds') 

#Print Roc curve for decision tree 

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, DTree_pred_prob) 

plot_classes(n_classes , fpr ,tpr) 

 

#Random Forest 

RF_clf = RandomForestClassifier() 

RF_clf.fit( x_train, y_train) 

RF_pred = RF_clf.predict(x_test) 

end = time.time() 

RF_pred_prob = RF_clf.predict_proba(x_test) 

RF_pred_score = accuracy_score(RF_pred, y_test) 



68 

 

 

print('RF_pred_score :', RF_pred_score) 

acc , precision= myEvaluation(y_test, RF_pred) 

print('my accuracy:    {:.2f}'.format(acc)) 

print('my precision:', precision) 

cnf_matrix_rf = confusion_matrix(y_test, RF_pred) 

print(classification_report(y_test, RF_pred)) 

class_names = labels 

disp = plot_confusion_matrix(RF_clf, x_test, y_test, 

                                 display_labels=class_names, 

                                 cmap=plt.cm.Blues) 

plt.show() 

met_eval(cnf_matrix_rf) 

print(end - start, 'seconds') 

#Roc Curve for random forest results 

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, RF_pred_prob) 

plot_classes(n_classes , fpr ,tpr) 

 

#Naive Bayes 

NB_clf = GaussianNB() 

NB_clf.fit( x_train, y_train) 

start = time.time() 

NB_pred = NB_clf.predict(x_test)  

end = time.time() 

NB_pred_prob = NB_clf.predict_proba(x_test) 

NB_pred_score = accuracy_score(NB_pred, y_test) 

print('NB_pred_score :', NB_pred_score) 

acc , precision= myEvaluation(y_test, NB_pred) 

print('my accuracy:    {:.2f}'.format(acc)) 

print('my precision:', precision) 

print(classification_report(y_test, NB_pred)) 

cnf_matrix_nb = confusion_matrix(y_test, NB_pred) 

class_names = labels 

disp = plot_confusion_matrix(NB_clf, x_test, y_test, 

                                 display_labels=class_names, 

                                 cmap=plt.cm.Blues) 

plt.show() 

met_eval(cnf_matrix_nb) 

print(end - start, 'seconds') 

#Roc Curve for NB reslts 

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, NB_pred_prob) 

plot_classes(n_classes , fpr ,tpr) 

 

# Stacking ensamble classifier 

# define meta learner model 

level1 = RandomForestClassifier() 

# define the stacking ensemble 
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model = StackingClassifier(estimators=[('DTree', DTree_clf),('RF' , RF_clf)], 

final_estimator=level1, cv=3) 

# fit the model on all available data 

model.fit(x_train, y_train) 

start = time.time() 

y_preds = model.predict(x_test) 

end = time.time() 

model_pred_prob = model.predict_proba(x_test) 

stacking_pred_score = accuracy_score(y_preds, y_test) 

print('voting_pred_score :', stacking_pred_score) 

acc , precision= myEvaluation(y_test, y_preds) 

print('my accuracy:    {:.2f}'.format(acc)) 

print('my precision:', precision) 

print(classification_report(y_test, y_preds)) 

cnf_matrix_vot = confusion_matrix(y_test, y_preds) 

class_names = labels 

disp = plot_confusion_matrix(model, x_test, y_test, 

                                 display_labels=class_names, 

                                 cmap=plt.cm.Blues) 

plt.show() 

met_eval(cnf_matrix_vot) 

print(end - start, 'seconds') 

#Plot Roc Curve for stacking ensamble classifier 

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, model_pred_prob) 

plot_classes(n_classes , fpr ,tpr) 

 

#Applying Voting ensamble classifier 

voting_clf = VotingClassifier(estimators=[('DTree', DTree_clf), ('RF' , RF_clf)], voting='soft') 

voting_clf.fit(x_train, y_train) 

start = time.time() 

preds = voting_clf.predict(x_test) 

end = time.time() 

voting_pred_prob = voting_clf.predict_proba(x_test) 

voting_pred_score = accuracy_score(preds, y_test) 

print('voting_pred_score :', voting_pred_score) 

acc , precision= myEvaluation(y_test, preds) 

print('my accuracy:    {:.2f}'.format(acc)) 

print('my precision:', precision) 

print(classification_report(y_test, preds)) 

cnf_matrix_vot = confusion_matrix(y_test, preds) 

class_names = labels 

disp = plot_confusion_matrix(voting_clf, x_test, y_test, 

                                 display_labels=class_names, 

                                 cmap=plt.cm.Blues) 

plt.show() 

met_eval(cnf_matrix_vot) 
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print(end - start, 'seconds') 

#Plot Roc curve for voting ensamble classifier 

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, voting_pred_prob) 

plot_classes(n_classes , fpr ,tpr) 

 
B.2 CICIDS-2017 Detailed Codes 

 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn import preprocessing 

from sklearn.feature_selection import mutual_info_regression, mutual_info_classif 

from sklearn.preprocessing import LabelEncoder 

from sklearn.model_selection import train_test_split 

from sklearn.feature_selection import SelectKBest, chi2 

from sklearn.metrics import confusion_matrix 

from sklearn.tree import DecisionTreeClassifier 

import matplotlib.pyplot as plt 

from sklearn.ensemble import RandomForestClassifier, VotingClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.naive_bayes import GaussianNB 

from sklearn.metrics import accuracy_score, f1_score, precision_score,recall_score 

from sklearn.metrics import roc_curve, auc 

from sklearn.metrics import classification_report 

from sklearn.metrics import plot_confusion_matrix 

from sklearn.preprocessing import label_binarize 

from sklearn.preprocessing import MinMaxScaler 

from itertools import cycle 

from sklearn.ensemble import StackingClassifier 

from sklearn.metrics import log_loss 

import time 

import keras 

 

#open Dos Dataset file and DDos Dataset file 

df1 = pd.read_csv("cicids/Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv") 

df8=pd.read_csv("cicids/Wednesday-workingHours.pcap_ISCX.csv") 

 

#Combined Both dataset with deleting BENIGN case from first dataset 

data = df1.loc[df1[" Label"] != 'BENIGN'] 

dataset = pd.concat([df8,data]).reset_index(drop=True) 

 

#print class attack with their number of sample 

print('Label distribution:') 

dataset[' Label'].value_counts() 
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# divided dataset to x for data and y for target 

X = dataset.iloc[:,0:78] 

y = dataset.iloc[:, -1].values 

 

 

#plot the number of samples for each class of attack 

labels, counts = np.unique(y, return_counts=True) 

plt.figure(figsize=(13, 8)) 

plt.bar(labels, counts, align='center') 

plt.gca().set_xticks(labels) 

plt.show() 

 

#print the object feature to know which feature will convert to numeric 

s = (dataset.dtypes == 'object') 

object_cols = list(s[s].index) 

print("Categorical variables:") 

print(object_cols) 

 

#convert non numeric to numeric value for all features 

label_df = dataset.select_dtypes(include=['object']).copy() 

encoder = preprocessing.LabelEncoder() 

for col in columns: 

    label_df[col] = encoder.fit_transform(dataset[col]) 

label_df.head(5) 

 

#Re-divided the to x for data and y for target 

X = label_df.iloc[:,0:79] 

y = label_df.iloc[:, 0].values 

X = X.drop([ ' Label'], axis=1) 

 

#feature selection using chi2 

bestfeatures = SelectKBest(score_func=chi2, k=2) 

fit = bestfeatures.fit(X, y) 

feat_importances = pd.Series(fit.scores_, index=X.columns) 

topFatures = feat_importances.nlargest(25).copy().index.values 

print("TOP 25 Features (Best to worst) :\n") 

print(topFatures) 

 

#create new x with the selected feature and pass it to the correlation 

X = X[[' Bwd Packets/s' ,' Flow IAT Mean' ,' Flow Duration', ' Flow IAT Std', 

 'Flow Bytes/s' ,' Packet Length Std' ,' Packet Length Variance', 

 ' Fwd IAT Mean' ,' Fwd IAT Std', ' Flow Packets/s' ,' Flow IAT Max', 

 'Fwd Packets/s' ,' Fwd IAT Max' ,'Fwd IAT Total' ,' Bwd Packet Length Std', 

 ' Bwd IAT Std' ,' Idle Min' ,' Packet Length Mean' ,' Average Packet Size', 

 'Idle Mean', ' Bwd Packet Length Mean', ' Avg Bwd Segment Size', 

 ' Bwd IAT Mean', ' Idle Max' ,'Bwd IAT Total']] 
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#Applying Correlation based feature selection 

def identify_correlated(df, threshold): 

    #A function to identify highly correlated features. 

    # Compute correlation matrix with absolute values 

    matrix = df.corr().abs() 

    # Create a boolean mask 

    mask = np.triu(np.ones_like(matrix, dtype=bool)) 

    # Subset the matrix 

    reduced_matrix = matrix.mask(mask) 

    # Find cols that meet the threshold 

    to_drop = [c for c in reduced_matrix.columns if 

               any(reduced_matrix[c] > threshold)] 

    plt.figure(figsize=(15,15)) 

    sns.heatmap(matrix) 

    plt.show() 

    return to_drop 

to_drop = identify_correlated(X, threshold=.9) 

len(to_drop) 

#the heatmap correlation is not good option for large feature  

 

# Drop the high correlated cols and print the selected one 

data_reduced = X.drop(to_drop, axis=1) 

X = data_reduced 

print(type(X)) 

X.head() 

 

#spilt the dataset to train and test set 

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=42 ) 

y_train_onehot = keras.utils.to_categorical(y_train) 

 

#scale the data using MinMaxScaler / data normalization 

scaler = MinMaxScaler() 

x_train = scaler.fit_transform(x_train) 

x_test = scaler.fit_transform(x_test) 

 

### Under-sampling + adjusted weight 

#print number of test set and train set for each class before applying Sampling methods 

from collections import Counter 

counter = Counter(y_train) 

print(counter) 

counter1 = Counter(y_test) 

print(counter1) 

labels = ['BENIGN' , 'DDoS' , 'DoS GoldenEye' , 'DoS slowloris' , 'DoS Slowhttptest'] 

 

#Applying UnderSampling Methods - NeighbourhoodCleaningRule 
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from imblearn.under_sampling import NeighbourhoodCleaningRule 

undersample = NeighbourhoodCleaningRule(n_neighbors=10, threshold_cleaning=0.9) 

x_train, y_train = undersample.fit_resample(x_train, y_train) 

 

#Adjusting weight 

from sklearn.utils import class_weight 

class_weights = dict(enumerate(class_weight.compute_class_weight('balanced', 

                                                np.unique(y_train),y_train))) 

print(class_weights) 

 

 

### evaluation metrix 

#used to calculate the overall accuracy and precision for each class 

def myEvaluation(y, y_pred): 

    # calculate the overall acc 

    correct_preds = np.sum(y == y_pred, axis=0) 

    acc = correct_preds / y.shape[0] 

    # calculate the precision for each class 

    cm = confusion_matrix(y , y_pred) 

    #print(cm) 

    precision = np.array([]) 

    for i in range(y_train_onehot.shape[1]): 

        first_part = cm[i][i] 

        #print('i : ' ,i , 'first_part = ' , first_part) 

        sec_part = 0 

        for j in range(y_train_onehot.shape[1]): 

            sec_part = sec_part + cm[j][i] 

        result = first_part / sec_part 

        #print('the presision of class', i , 'is = ' , result) 

        precision = np.append(precision,result) 

    # return acc and precision array 

    return acc ,precision  

     

 

'''This function is used from this website  

https://towardsdatascience.com/multi-class-classification-extracting- 

performance-metrics-from-the-confusion-matrix-b379b427a872 

to evluate the models ''' 

 

from statistics import * 

def met_eval(cnf_matrix): 

    FP = cnf_matrix.sum(axis=0) - np.diag(cnf_matrix)  

    FN = cnf_matrix.sum(axis=1) - np.diag(cnf_matrix) 

    TP = np.diag(cnf_matrix) 

    TN = cnf_matrix.sum() - (FP + FN + TP) 

    FP = FP.astype(float) 
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    FN = FN.astype(float) 

    TP = TP.astype(float) 

    TN = TN.astype(float) 

    # Sensitivity, hit rate, recall, or true positive rate 

    TPR = TP/(TP+FN) 

    # Specificity or true negative rate 

    PPV = TP/(TP+FP) 

    # false positive rate 

    FPR = FP/(FP+TN) 

    # Overall accuracy for each class 

    ACC = (TP+TN)/(TP+FP+FN+TN) 

    print(labels) 

    print('ACC : ', ACC) 

    print('Sensitivity : ', TPR) 

    print('FPR : ', mean(FPR)) 

    print('Precision :', PPV) 

 

 

### ROC-AUC curve 

y_test_onehot = keras.utils.to_categorical(y_test) 

y = label_binarize(y_test_onehot, classes=[0, 1,2 ,3 ,4,5,6  ]) 

n_classes = y.shape[1] 

def ROC(n_classes,y_test_onehot, pred_prob): 

    fpr = dict() 

    tpr = dict() 

    roc_auc = dict() 

    for i in range(n_classes): 

        fpr[i], tpr[i], _ = roc_curve(y_test_onehot[:, i], pred_prob[:, i]) 

        roc_auc[i] = auc(fpr[i], tpr[i]) 

    # Compute micro-average ROC curve and ROC area 

    fpr["micro"], tpr["micro"], _ = roc_curve(y_test_onehot.ravel(),pred_prob.ravel()) 

    roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) 

    return roc_auc,fpr,tpr 

 

def plot_classes(n_classes , fpr ,tpr): 

    # First aggregate all false positive rates 

    all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) 

    # Then interpolate all ROC curves at this points 

    mean_tpr = np.zeros_like(all_fpr) 

    for i in range(n_classes): 

        mean_tpr += np.interp(all_fpr, fpr[i], tpr[i]) 

    # Finally average it and compute AUC 

    mean_tpr /= n_classes 

    fpr["macro"] = all_fpr 

    tpr["macro"] = mean_tpr 

    roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) 
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    # Plot all ROC curves 

    plt.figure(figsize=(10, 10)) 

    plt.plot(fpr["micro"], tpr["micro"], 

             label='micro-average ROC curve (area = {0:0.2f})' 

                   ''.format(roc_auc["micro"]), 

             color='deeppink', linestyle=':', linewidth=4) 

 

    plt.plot(fpr["macro"], tpr["macro"], 

             label='macro-average ROC curve (area = {0:0.2f})' 

                   ''.format(roc_auc["macro"]), 

             color='navy', linestyle=':', linewidth=4) 

 

    colors = cycle(['aqua', 'darkorange', 'blue', 'red', 'orange', 'yellow' , 'olive' , 'pink' , 'purple']) 

    for i, color in zip(range(n_classes), colors): 

        plt.plot(fpr[i], tpr[i], color=color,  

                 label='ROC curve of class {0} (area = {1:0.2f})' 

                 ''.format(labels[i], roc_auc[i])) 

 

    plt.plot([0, 1], [0, 1], 'k--') 

    plt.xlim([0.0, 1.0]) 

    plt.ylim([0.0, 1.05]) 

    plt.xlabel('False Positive Rate') 

    plt.ylabel('True Positive Rate') 

    plt.title('Some extension of Receiver operating characteristic to multi-class') 

    plt.legend(loc="lower right") 

    plt.show() 

 

###Supervised/stacking/voting --machine learning models 

#Logistic Regression 

LogReg_clf = LogisticRegression(solver= 'liblinear' , C= 10 ) 

start = time.time() 

LogReg_clf.fit(x_train, y_train) 

LogReg_pred = LogReg_clf.predict(x_test) 

LogReg_pred_prob = LogReg_clf.predict_proba(x_test) 

LogReg_pred_score = accuracy_score(LogReg_pred, y_test) 

print('LogReg_pred_score :', LogReg_pred_score) 

acc , precision= myEvaluation(y_test, LogReg_pred) 

print('my accuracy:    {:.2f}'.format(acc)) 

print('my precision:', precision) 

print(classification_report(y_test, LogReg_pred)) 

cnf_matrix_lr = confusion_matrix(y_test, LogReg_pred) 

class_names = labels 

disp = plot_confusion_matrix(LogReg_clf, x_test, y_test, 

                                 display_labels=class_names, 

                                 cmap=plt.cm.Blues) 

plt.show() 
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met_eval(cnf_matrix_lr) 

end = time.time() 

print(end - start, 'seconds') 

#print Roc accuracy for each class of attack 

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, LogReg_pred_prob) 

plot_classes(n_classes , fpr ,tpr) 

 

#Decision Tree 

DTree_clf = DecisionTreeClassifier(criterion="entropy" ) 

DTree_clf.fit(x_train, y_train) 

start = time.time() 

DTree_pred = DTree_clf.predict(x_test) 

end = time.time/() 

DTree_pred_prob = DTree_clf.predict_proba(x_test) 

DTtree_pred_score = accuracy_score(DTree_pred, y_test) 

print('DTtree_pred_score :', DTtree_pred_score) 

acc , precision= myEvaluation(y_test, DTree_pred) 

print('my accuracy:    {:.2f}'.format(acc)) 

print('my precision:', precision) 

print(classification_report(y_test, DTree_pred)) 

cnf_matrix_dt = confusion_matrix(y_test, DTree_pred) 

class_names = labels 

disp = plot_confusion_matrix(DTree_clf, x_test, y_test, 

                                 display_labels=class_names, 

                                 cmap=plt.cm.Blues) 

plt.show() 

met_eval(cnf_matrix_dt) 

print(end - start, 'seconds') 

#Print Roc curve for decision tree 

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, DTree_pred_prob) 

plot_classes(n_classes , fpr ,tpr) 

 

#Random Forest 

RF_clf = RandomForestClassifier() 

RF_clf.fit( x_train, y_train) 

RF_pred = RF_clf.predict(x_test) 

end = time.time() 

RF_pred_prob = RF_clf.predict_proba(x_test) 

RF_pred_score = accuracy_score(RF_pred, y_test) 

print('RF_pred_score :', RF_pred_score) 

acc , precision= myEvaluation(y_test, RF_pred) 

print('my accuracy:    {:.2f}'.format(acc)) 

print('my precision:', precision) 

cnf_matrix_rf = confusion_matrix(y_test, RF_pred) 

print(classification_report(y_test, RF_pred)) 

class_names = labels 
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disp = plot_confusion_matrix(RF_clf, x_test, y_test, 

                                 display_labels=class_names, 

                                 cmap=plt.cm.Blues) 

plt.show() 

met_eval(cnf_matrix_rf) 

print(end - start, 'seconds') 

#Roc Curve for random forest results 

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, RF_pred_prob) 

plot_classes(n_classes , fpr ,tpr) 

 

#Naive Bayes 

NB_clf = GaussianNB() 

NB_clf.fit( x_train, y_train) 

start = time.time() 

NB_pred = NB_clf.predict(x_test)  

end = time.time() 

NB_pred_prob = NB_clf.predict_proba(x_test) 

NB_pred_score = accuracy_score(NB_pred, y_test) 

print('NB_pred_score :', NB_pred_score) 

acc , precision= myEvaluation(y_test, NB_pred) 

print('my accuracy:    {:.2f}'.format(acc)) 

print('my precision:', precision) 

print(classification_report(y_test, NB_pred)) 

cnf_matrix_nb = confusion_matrix(y_test, NB_pred) 

class_names = labels 

disp = plot_confusion_matrix(NB_clf, x_test, y_test, 

                                 display_labels=class_names, 

                                 cmap=plt.cm.Blues) 

plt.show() 

met_eval(cnf_matrix_nb) 

print(end - start, 'seconds') 

#Roc Curve for NB reslts 

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, NB_pred_prob) 

plot_classes(n_classes , fpr ,tpr) 

 

# Stacking ensamble classifier 

# define meta learner model 

level1 = RandomForestClassifier() 

# define the stacking ensemble 

model = StackingClassifier(estimators=[('DTree', DTree_clf),('RF' , RF_clf)], 

final_estimator=level1, cv=3) 

# fit the model on all available data 

model.fit(x_train, y_train) 

start = time.time() 

y_preds = model.predict(x_test) 

end = time.time() 
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model_pred_prob = model.predict_proba(x_test) 

stacking_pred_score = accuracy_score(y_preds, y_test) 

print('voting_pred_score :', stacking_pred_score) 

acc , precision= myEvaluation(y_test, y_preds) 

print('my accuracy:    {:.2f}'.format(acc)) 

print('my precision:', precision) 

print(classification_report(y_test, y_preds)) 

cnf_matrix_vot = confusion_matrix(y_test, y_preds) 

class_names = labels 

disp = plot_confusion_matrix(model, x_test, y_test, 

                                 display_labels=class_names, 

                                 cmap=plt.cm.Blues) 

plt.show() 

met_eval(cnf_matrix_vot) 

print(end - start, 'seconds') 

#Plot Roc Curve for stacking ensamble classifier 

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, model_pred_prob) 

plot_classes(n_classes , fpr ,tpr) 

 

#Applying Voting ensamble classifier 

voting_clf = VotingClassifier(estimators=[('DTree', DTree_clf), ('RF' , RF_clf)], voting='soft') 

voting_clf.fit(x_train, y_train) 

start = time.time() 

preds = voting_clf.predict(x_test) 

end = time.time() 

voting_pred_prob = voting_clf.predict_proba(x_test) 

voting_pred_score = accuracy_score(preds, y_test) 

print('voting_pred_score :', voting_pred_score) 

acc , precision= myEvaluation(y_test, preds) 

print('my accuracy:    {:.2f}'.format(acc)) 

print('my precision:', precision) 

print(classification_report(y_test, preds)) 

cnf_matrix_vot = confusion_matrix(y_test, preds) 

class_names = labels 

disp = plot_confusion_matrix(voting_clf, x_test, y_test, 

                                 display_labels=class_names, 

                                 cmap=plt.cm.Blues) 

plt.show() 

met_eval(cnf_matrix_vot) 

print(end - start, 'seconds') 

#Plot Roc curve for voting ensamble classifier 

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, voting_pred_prob) 

plot_classes(n_classes , fpr ,tpr) 
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