

Classifying Imbalanced Data for DDoS Attack Detection

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

By

Amal A. Alghamdi

Approved by:

Major Professor: Frederick Sheldon, PhD.

Committee Members: Xiaogang Ma, Ph.D.; Jia Song, Ph.D.

Department Administrator: Terry Soule

December, 2021

ii

Abstract

In the first quarter of 2021, researchers witnessed over 2.8 million Distributed Denial

of Service (DDoS) attacks —a 32% increase from the same period in 2020, as reported by Info-

Security magazine on May 18, 2021. The magazine also noted that the number of attacks against

educational institutions has increased by 41% over the past three quarters. DDoS has become a

serious issue for many organizations and individuals. The evolution of networks has ushered in

a level of complexity that is the enemy of security. Currently, attacks are more prevalent and at

the same time more noticeable due to the variety of features that exist on networks, a

consequence of the constant escalation between attackers and defenders. Machine learning

algorithms (MLAs) have become a tool to help thicken the layers of defense. To be effective,

MLAs must be trained in ways that provide high confidence for detection and prevention, which

boils down to precision and accuracy (i.e., low false positives and/or high true positives). This

work has developed a setup for establishing a measured intrusion detection system (IDS) that

can help to better understand and identify the various unique features of a network to better

prevent DoS and DDoS attacks from being successful.

The goal is to develop models that can predict (i.e., classify) with high precision and

accurately identify different types of DoS/DDoS attacks with low false positive/negative rates.

In addition to dealing with the multiclass classification and extremely imbalanced problems,

the derived model leverages two feature selection techniques to reduce the number of features

in the dataset and help improve the model's execution time, thereby reducing the IDS

complexity. A combination of under-sampling combined with adjusting weights was applied

to handle the imbalance problem. The extracted data was evaluated using supervised MLAs,

including Random Forest, Decision tree, Naive Bayes, Logistic regression, and ensemble

methods. Ensemble methods using supervised outcomes aim to improve the overall

performance of the classification. The experiments utilized the popular benchmark NSL-KDD

and CICIDS2017 datasets. Random Forest achieved the best performance results, decreasing

by 37% the training and testing time. In addition to solving the imbalance problem caused by

feature selection, it increased accuracy 6.25% and FPR 21%. The random forest model has

achieved 99% accuracy and 0.0001 for the False-Positive rate. Furthermore, using this setup,

we can detect minor classes with more than 80% accuracy.

iii

Acknowledgment

First and foremost, I would like to thank God for letting me through all difficulties that

I have experienced day by day. Praises and thanks for his showers of blessings during my life.

I would also like to express my gratitude to my primary supervisor, Frederick Sheldon,

who gave me the golden opportunity to do this wonderful project and guided me throughout

this project. His guidance and advice carried me through my entire journey. Really grateful for

his patience, motivation, vision, energy, and immense knowledge.

Besides my advisor, I would also like to thank my committee members Doctor Marshall

Xiaogang and Doctor Jia Song for letting my defense be an enjoyable moment, and for their

brilliant comments and suggestions, thanks to you doctors.

Last but not the least, I would like to thank my family: my parents Ali and Thahaba

Alghamdi, for giving birth to me in the first place and for their love, prayers, and caring for

educating and preparing me for my future. I would also like to give special thanks to my

husband Rayan for his continuous support, love, and understanding when undertaking my

research and writing my project.

iv

Dedication

Dedicated to my Family for their faith and their advice, bless them. Dedicated especially to my

amazing husband Rayan and my son Tayem; you are my life, my happiness, and everything.

May Allah keep you all safe and happy. Remember that I will always love you.

v

Table of Contents
Abstract ... ii

Acknowledgment ... iii

Dedication .. iv

List of Figures ... vii

List of Tables ... viii

Chapter 1: Introduction .. 1

1.1 Overview .. 1

1.2 Related Work ... 2

1.3 Thesis Objective ... 4

1.4 Process Flow of Thesis .. 5

1.5 Thesis Roadmap ... 6

Chapter 2: Background ... 7

2.1 Intrusion Detection System (IDs) .. 7

2.2 Denial of Service Attack (DoS)/Distribution DoS ... 10

2.3 Machine Learning .. 14

2.4 Ensample Learning .. 16

2.5 Feature Selection .. 18

2.6 Resampling Methods .. 20

2.7 Performance Evaluation ... 21

2.8 Chapter Summary .. 23

Chapter 3: Dataset and Data Preprocessing .. 24

3.1 Dataset .. 24

3.1.1 NSL-KDD ... 24

3.1.2 CICIDS2017 .. 27

3.2 Data Preprocessing ... 29

3.3 Feature Reduction .. 30

3.4 Under Sampling and Weight Assign .. 31

3.5 Chapter Summary .. 33

Chapter 4: Benchmark Testing and Results .. 34

4.1 Introduction .. 34

4.2 Feature Selection .. 35

4.3 Sampling performance ... 37

4.4 Results and Discussion ... 39

vi

4.5 Chapter Summary .. 40

Chapter 5: Conclusion ... 41

5.1 Summary .. 41

5.2 Challenges .. 42

5.3 Future Work ... 42

References ... 43

Appendix A ... 48

A.1 Feature Selection Detailed Results .. 48

A.2 NSL-KDD Dataset Results ... 49

A.3 CICIDS2017 Dataset Results .. 55

Appendix B ... 61

B.1 NSL-KDD Dataset Detailed Codes ... 61

B.2 CICIDS-2017 Detailed Codes ... 70

vii

List of Figures

Figure 1.1 Process Flow of Thesis ... 5

Figure 2.1 DDoS Attack Architecture .. 11

Figure 2.2 Complete and Incomplete Connection of Three Handshake 13

Figure 2.3 Maps the Roc Curve in Different Accuracy Rate [29] ... 23

Figure 4.1 Feature Selection Performance Comparisons for CICIDS2017 36

Figure 4.2 Feature Selection Performance Comparisons for NSL-KDD 36

Figure 4.3 Supervised ML performance after sampling methods for CICIDS2017 38

Figure 4.4 Supervised ML performance after sampling methods for NSL-KDD.................... 38

Figure A.1 ROC-AUC curve for Logistic Regression model – NSL-KDD 52

Figure A.2 ROC-AUC curve for Decision Tree model – NSL-KDD 52

Figure A.3 ROC-AUC curve for Random Forest model – NSL-KDD 53

Figure A.4 ROC-AUC curve for Naive Bayes model – NSL-KDD .. 53

Figure A.5 ROC-AUC curve for Stacking Ensemble model – NSL-KDD 54

Figure A.6 ROC-AUC curve for Voting Ensemble model – NSL-KDD 54

Figure A.7 ROC-AUC curve for Logistic Regression model – CICIDS2017 58

Figure A.8 ROC-AUC curve for Decision Tree model – CICIDS2017 58

Figure A.9 ROC-AUC curve for Naive Bayes model – CICIDS2017 59

Figure A.10 ROC-AUC curve for Random Forest model – CICIDS2017 59

Figure A.11 ROC-AUC curve for Stacking Ensemble model – CICIDS2017 60

Figure A.12 ROC-AUC curve for Voting Ensemble model – CICIDS2017 60

file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89381049
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89381058
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89381059
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89381060
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89381066
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89381067
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89381068
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89381069
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89384029
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89384030
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89384031
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89384032
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89384033
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89384034
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89384035
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89384036
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89384037
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89384038
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89384039
file:///C:/Users/PC/Desktop/Amal%20thesis%20V5.docx%23_Toc89384040

viii

List of Tables

Table 2.1 Confusion Matric Explanation ... 21

Table 3.1 Maps the Attack Classes with Its Types [1] ... 25

Table 3.2 Number of record for each DoS attack .. 26

Table 3.3 Number of record for each NSL-KDD attack types .. 27

Table 3.4 CICIDS-2017 Dataset Summary [20] .. 28

Table 3.5 CICIDS2017 DDos attacks type’s description [21] ... 29

Table 3.6 Reduced feature sets for The Two dataset ... 31

Table 3.7 Number of CICIDS-DDoS Sampling After Applying Sampling Methods.............. 32

Table 3.8 Number of NSLKDD-DDoS Sampling After Applying Sampling Methods 32

Table 4.1 Hyper-parameter for Supervised Model and Ensemble Classifier........................... 34

Table 4.2 Feature Selection Comparisons for CICIDS2017 Dataset 35

Table 4.3 Feature Selection Comparisons for NSL-KDD Dataset .. 36

Table 4.4 Supervised models performance comparisons after sampling method for

CICIDS2017 ... 37

Table 4.5 Supervised models performance comparisons after sampling methods for NSL-

KDD ... 38

Table 4.6 Supervised models and Ensemble models performance for CICIDS2017 39

Table 4.7 Supervised models and Ensemble models performance for NSL-KDD 39

Table 4.8 Confusion Metric results for each class of CICIDS2017 ... 40

Table 4.9 Confusion Metric results for each class of NSL-KDD .. 40

Table A.1 Feature Selection Comparisons for NSL-KDD... 48

Table A.2 Feature Selection Comparisons for CICIDS2017 ... 48

Table A.3 Supervised Model performance after applying Correlation based feature selection –

NSL-KDD .. 49

Table A.4 Ensemble Classifier after applying Correlation Based Feature Selection - NSL-

KDD ... 49

Table A.5 Supervised models and Ensemble Classifier Performance – NSL-KDD................ 50

Table A.6 Supervised Model performance after applying Correlation and Chi-2 based feature

selection – NSL-KDD .. 50

Table A.7 Ensemble Classifier after applying Correlation and Chi-2- NSL-KDD 51

Table A.8 Supervised models and Ensemble Classifier Performance– NSL-KDD................. 51

ix

Table A.9 Supervised Model performance after applying Correlation based feature selection –

CICIDS2017 ... 55

Table A.10 Ensemble Classifier after applying Correlation Based Feature Selection –

CICIDS2017 ... 55

Table A.11 Supervised models and Ensemble Classifier Performance – CICIDS2017 56

Table A.12 Supervised Model performance after applying Correlation and Chi-2 based feature

selection – CICIDS2017 .. 56

Table A.13 Ensemble Classifier after applying Correlation and Chi-2 – CICIDS2017 57

Table A.14 Supervised models and Ensemble Classifier Performance after Correlation and

Chi-2 – CICIDS2017 ... 57

1

Chapter 1: Introduction

1.1 Overview

Security has become an integral part of any organization's operations. Cybersecurity is

very important for the safety of the organization and the public. It is a significant issue that

requires implementing a strategy focused on securing cyberspace. The increasing popularity of

these technologies has raised the level of attacks by criminal elements. The ability to easily

exploit existing limitations of the Internet has become a major concern for organizations.

Developing new countermeasures will help to mitigate cybercrime and will go a long way in

preventing attacks.

An intrusion detection system is hardware or software that monitors the network traffic

for suspicious or abnormal behavior. An anomaly-based detection approach is more prevalent

than signature-based detection in detecting network threats. Traditional IDS still is not capable

of detecting unknown attacks. In contrast, a distributed denial of service attack (DDoS) is a

cyber-attack that attacks the network's resources. Usually, it overloads the bandwidth and

prevents the intended users from accessing the network. DDoS is a distributed denial-of-service

attack that uses TCP and UDP packets to flood a server with traffic. A DDoS attack is different

from DoS because it uses multiple unique IP addresses to perform its operation. The attacks

affect over a hundred Internet companies.

Machine learning is a field of artificial intelligence that has had promising results in

detecting cyber-attacks such as DDoS. In machine learning, supervised methods classify

anomalous data and distinguish anomalous and normal data from a tagged dataset.

Unsupervised methods can only distinguish normal data from anomalous data. Ensemble

Feature Selection Method (FS) is another technique that can improve the detection of DDoS

attacks by selecting the most important and relevant feature. Combining different supervised

predictions by ensemble methods such as voting will increase the accuracy and reduce false

alarms. Ensemble learning works more accurately than a single classifier. The performance

evaluation metric is called the confusion metric. The simple calculation of probability called

the ROC-AUC curve is based on the true positive rate against the false-positive rate, which will

help evaluate the model performance. By combining all methods, a new model will be produced

to handle imbalanced multiclass classification and detect types of DDoS attacks. The model

2

will increase accuracy, reduce false alarms, reduce training time, deal with imbalanced data,

and detect minor attack types.

1.2 Related Work

Due to the increasing number of attacks on computer systems, the demand for computer

security has also grown. This is why various firms are focusing on developing effective

Intrusion Detection Systems (IDSs). A distributed denial of service attack is carried out by an

attacker to disrupt the operation of a computer system. It can be initiated by exploiting a

vulnerability in the network. In this field, various techniques have been surveyed to minimize

the malicious actions within end systems and networks. Some of the studies prove that the use

of network-based systems and host-based systems can improve the detection of attacks [4].

Rajput and Thakkar's research provides an overview of network intrusion detection and

countermeasure selection (NICE) graph models to describe the various countermeasures that

are used to prevent and detect attacks in the cloud environment. Machine learning and deep

learning techniques are some of the techniques that are being used to improve the anomaly

detection using IDS [4].

Some authors like Sharmila et al. [3] illustrate several taxonomies for anomaly detection

that have been developed, based on six criteria to classify IDSs: alert, architecture, environment,

time of detection, processing, and data source. In Vasilomanolakis et al.’s research [5], the

concept of distributed intrusion detection systems (CIDSs) was introduced as associated with

requirements when deployed in large environments. The various types of attacks that can be

exploited against IDSs were discussed. The CIDSs are mainly considered as communication

architecture models that can be either centralized or decentralized. For each class, a further

refined taxonomy and a detailed discussion of representative approaches are provided.

Recent work by Riza’ain et al. [7] introduces the concept of DDoS attack and its

characteristics, along with discussing various techniques that are used to detect the attack. Their

research provides the most accurate and up-to-date analysis and evaluation for each detection

and prediction. It also provides a trusted source for information related to DDoS attack

detection. Fifty-three articles from different libraries such as Science Direct, IEEE Xplore,

Springer and Web of Science contributed to this taxonomy. About 30% used machine learning

approaches in their detection system and had significant success.

3

In another study in detecting DoS attacks, Rohan et al. [8] applied five different ML

classifiers for DoS attack traffic where the data was collected from the internet of things device

network. The five tested algorithms are K-nearest neighbors algorithm (KNN), Support vector

machine with the linear kernel (LSVM), Decision tree using Gini impurity scores (DT),

Random Forest using Gini impurity scores (RF), and Neural Network (NN). The results

revealed each classifier had higher accuracy at 99% and this could help other researchers in the

field of machine learning anomaly detection.

Some authors focus on detecting DDoS attacks using different machine learning

methods such as entropy-based anomaly detection [10], neural network-based detection [11],

and deep learning [12], which successfully mitigated denial of service attack in IoT and cloud

system. Some researchers focus on studying the impact of imbalanced data on the performance

of ML-Based DDoS detection systems. The class imbalance problem is a major issue that

affects the performance of various machine learning techniques. Liang et al.’s paper [13]

presents an analysis of the impact of this issue on the performance of various ML-based

techniques. The results suggest that the issue should not be underestimated when it comes to

identifying and suppressing DDoS attacks.

To get an effective result by using SMOTE resampling before the train the model, Soe

et al. [14], proposed a solution by designing an effective model to detect DDoS attacks in

internet of things (IoT) system. They used a modern botnet attack dataset called Bot-IoT that

contains a small number of benign samples with a large number of DDoS attack samples. Their

work is focusing on solving the imbalanced data by using SMOTE oversampling before training

the Artificial Neural Network (ANN) model. The outcome result shows that the model was

effective to detect minor class with 99% reliability only using one hiding layer node and one

output node in the ANN model.

Some proposed solutions focused on generating a new dataset by extracting the data

from others’ datasets to create a dataset that contains up-to-date DDoS attacks the same as

Prasad et al.’s research [15]. They generated new dataset by combining CSE-CIC-IDS2018-

AWS, CICIDS2017, and CIC DoS dataset. They proposed a method to detect DDoS attacks by

using a gradient boosting algorithm. The results show that SGB performed better than most of

the competing algorithms, with 100% misclassifying for both balanced and imbalanced data set

with and without feature selection methods.

4

1.3 Thesis Objective

An IDS is designed to protect systems from different types of cyber-attacks. Its

monitoring techniques should constantly be updated and should be capable of detecting unseen

attacks. The rapid emergence and evolution of techniques and strategies for detecting DDoS

attacks have greatly impacted the detecting system. Many of the techniques and approaches

used to detect DDoS attacks have been refined and tested within a short time. However, due to

the continuous growth of these techniques and approaches, they are no longer useful. Several

experiments focus on detecting multi-class attacks, and others focus on binary classification of

DDoS attacks. As discussed in Section 1.1, imbalanced data is still the major problem in many

research works for binary classification and multi-class classification. Dividing the dataset into

percentages (e.g. 80% of the dataset are attack and 20% are benign to increase the accuracy)

can lead to the loss of some important information and behavior.

We proposed a supervised-based ensemble model, aiming to improve the accuracy of

the model to detect multi-imbalanced classes along with detect DDoS attacks. This experiment

focuses on:

• Providing a generic intrusion detection model that can be applied in multiclass

classification.

• Designing a model that can deal with imbalanced data problems using resampling method

• Reducing training time of Machine learning models by minimizing dimensionality with

Feature selection.

• Detecting DDoS attacks along with reducing false alarms.

• Comparing supervised ML models in terms of designing an accurate detection model.

To achieve these goals, we designed a model using two ensembles that predict for each

sample by combining four supervised kinds of machine learning. Two feature selections were

combined and applied to the data to select the most relevant features. In this experiment, two

intrusion datasets, NSL-KDD [16] and CICIDS2017 [19], are used. The proposed work and

their datasets will be explained in detail throughout Chapters 3 and 4.

5

1.4 Process Flow of Thesis

The proposed approach is divided into three stages. The first stage is preprocessing the

data. In preprocessing data, Label Encoder will be applied to convert the non-numerical labels

to numerical labels. After that, a combination of two feature selections is presented for the

classification of IDS. Removing the irrelevant features can positively affect model

performance. Feature reduction will be used to remove the irrelevant features, consisting of two

different steps. First, Correlation will be applied to calculate the correlation between features

for more data reduction. The higher correlation between two features will lead to removing one

of the features because both features will contribute or affect similarly on the prediction process.

The selected feature will be passed to Chi-square to calculate the relevance between feature and

target. Then, the best 15 Chi-square scores will be selected and used to train the supervised ML

model. In the second stage, supervised machine learning will be applied such as Decision Tree

(DT), Random Forest (RF), Logistic Regression (LR), and Naive Bayes (NB). At the third

stage, voting ensemble learning will be performed with soft voting to make the prediction for

each sample in addition to train the stacking ensemble. Finally, a confusion matrix will be used

to evaluate the model and compared the second stage result to the third stage result. A ROC-

AUC curve will be used to illustrate the prediction process. Figure 1.1 illustrates the process of

proposed model.

Figure 1.1 Process Flow of Thesis

6

1.5 Thesis Roadmap

Chapter 2 gives a brief discussion of the background on intrusion detection system IDS,

distribution denial of service DDoS, and types of machine learning approach, feature selection,

and performance evaluation. It also summarizes the ensemble approaches in detail and

highlights some shortcomings of resampling techniques. The datasets that are used in the

proposed methods are discussed in depth in Chapter 3. Two interpretable feature selections are

applied and their explanation will be included in Chapter 3 along with resampling methods and

data preprocessing. Ensemble frameworks using supervised classifiers are shown in Chapter 4

with their experimentation details. Finally, in Chapter 5, we conclude our thesis and

demonstrate future directions in order to extend this thesis.

7

Chapter 2: Background

To better understanding the research problem, this chapter presents detailed background

about the Intrusion Detection System (IDS), Denial of Service and Distribution Denial of

Service Attacks (DoS/DDoS), Machine Learning (ML), and Ensample with Resampling

methods.

2.1 Intrusion Detection System (IDs)

2.1.1 What is IDS?

Intrusion refers to various sorts of unauthorized activities that cause a potential threat to

the availability, confidentiality, or integrity of information. An intrusion detection system (IDS)

refers to a hardware system or software system that clearly identifies malicious behaviors on

computer systems. It is a security mechanism that is used to protect the network against various

types of attacks and malicious activities. It is deployed in combination with other security

mechanisms such as firewalls and access control to secure the network. IDS is helpful to

maintain system security and identify unusual or malicious behavior in network traffic. It aids

in achieving high protection against harmful behavior. The intrusion detection process starts

with monitoring network traffic and collecting data for analysis. It then identifies and

investigates unusual behavior and patterns. It consists of various steps that are necessary to

identify and prevent intrusions. IDSs can be placed anywhere in a network to monitor a system's

activity. It can also be deployed inside an offline host to monitor its activities [1].

2.1.2 Types of IDS

Due to the complexity of network configurations, there are several types of IDS

technologies that exist. Each type has its advantages and disadvantages. IDS can be classified

based on detection techniques, data resources, and functionality [2] [3].

2.1.2.1 IDS Based on Detection Techniques

There are two main types of intrusion detection systems (IDS) that can be used to

identify and prevent unauthorized activities. The first type is known as an Anomaly-based

Intrusion Detection System (AIDS) and the second type is known as Signature-based

Intrusion Detection System (SIDS).

a. Anomaly-based IDS (AIDS): This is a type of intrusion detection system that uses

techniques that are not designed to identify suspicious activities. It comes to cover

the limitations of SIDS [1]. AIDS contains two development phases, the training and

8

testing phase. In the training phase, usual user behavior is recorded and used to train

the model. A new dataset is used in the test phase to evaluate the model and identify

the hidden intrusions [2].

b. Signature-based IDS (SIDS): SIDS is an intrusion detection system that can only detect

attacks that have been previously classified as malware. It requires frequent updates and

cannot prevent all attacks that have not previously been identified [2].

The essential difference between SIDS and AIDS is that AIDS can identify zero-day attacks

and new attacks [1].

2.1.2.2 IDS Based on Data Resources

IDS can be categorized as Network-based IDS (NIDS) and Host-based IDS (HIDS)

based on data resources [2].

a. Host-based IDS (HIDS): HIDS is a single computer security system that can monitor

the security of a system or a computer from both internal and external attacks. HIDS

collects the data from the host system and audits sources such as firewall logs and

database logs. When a certain activity is detected by HIDS, it is immediately reported

to the appropriate authorities. HIDS does not require land bandwidth and it requires less

training than NIDS.

b. Network-based IDS (NIDS): NIDS collects the data from network traffic by capture

packets and analyzes the capture information of the packet. NIDS uses advanced

techniques to identify and prevent attacks on the network. It can identify and report the

abnormal behavior of the network. It can also send an alert to the administrator when

abnormal behavior is observed. NIDS is easily managed through a centralized

environment and centrally managed. It is built-in to support cross-platform

environments. But it requires more training and the failure rate is higher than HIDS.

Both IDSs are installed on the workstation and are not connected to the network. During

host compromise, a NIDS can be disabled by attackers. The main difference between a NIDS

and a HID is that the latter is installed on the workstation while the former is on the network.

9

2.1.2.2 IDS Based on Functionality

a. Intrusion Detection System (IDS) is a type of security system that monitors network

activities and triggers alarms. It can also be used for monitoring, detecting, and

preventing unauthorized activities on a network

b. Intrusion Prevention System (IPS) is another type of security system. IPS is

designed to prevent attacks before they can enter a network. It uses a combination

of packet analysis and network profiling to identify the patterns of attacks and block

them.

c. Intrusion detection and prevention systems (IDPS) are designed to prevent and

detect unauthorized access to an organization's network. It works by classifying and

protecting the packet data before it is processed. The systems are equipped with

various components, such as pre-processing, classification, and prevention. This

feature can be used for various purposes such as phishing, spam, and unauthorized

access.

2.1.3 IDS Requirement

Some factors need to be considered while we build an IDS model. Here are some of

the requirements for building a IDSs [2]:

Accuracy: the accuracy of an IDS is determined by the percentage of attacks that were

successfully detected and the percentage of false negatives. Both percentage factors need to

be taken into account to calculate the accuracy of an IDS.

Scalability: requires that the IDS's performance increases linearly with the addition of

new resources. It should not contain bottlenecks or special purpose objects.

Resilience: in the event of a CIDS failure, it should still be able to maintain its

availability and integrity. This is especially true in the event of internal attacks, where

malicious components could cause damage. It should also be resilient to attacks from internal

and external components.

Minimal overhead: the overhead refers to the effort involved in generating and

communicating intrusion alerts must be minimal. Also, the signaling inside the IDS should

be as minimal as possible.

10

Privacy: in a collaborative environment, an exchange of alerts may contain sensitive

information that should not be shared or disclosed to all parties involved.

Self-configuration: is the ability to modify a system's configuration without requiring

an administrator to do so. This feature allows the system to self-configure itself. It avoids the

need for an administrator to enter configuration.

Interoperability: is the ability of an IDS system to work seamlessly with other systems

in the same network. This can be achieved through the utilization of various standardized

formats such as the Intrusion Detection Message Exchange Format (IDMEF).

2.2 Denial of Service Attack (DoS)/Distribution DoS

DoS is a malicious attempt to overwhelm the target with a flood of Internet traffic for

disruption or make services unavailable to users. The most common method of a DoS attack

happens when the attacker floods the webserver with communication. In this kind of DoS

attack, the attacker sends some requests to the target computer, overloading it with

communication. These maintenance requests are illegal and have fabricated return addresses

that inform the computer when it attempts to certify the requestor. As the junk requests are

processed incessantly, the computer is overcome, which causes the DoS shape to legitimate

requestors.

The first known DoS attack was carried out by a 15-year-old hacker in February 2000,

which targeted several e-commerce sites such as Amazon and eBay by using a series of

distributed denial of service attacks. The attacks used various techniques to overwhelm the

servers of the various Internet companies. The FBI estimated that the cost of the attacks was

over $1 billion. A distributed denial of service (DDoS) attack happens when multiple systems

flood a targeted system with enough bandwidth to render it unusable. The difference between

DoS and DDoS is that DoS floods a server with TCP and UDP packets from single machine,

but a DDoS attack usually uses more than a single unique IP address or machine [27]. DDoS

attacks have increased recently and become a serious issue for organizations and the

government.

The well-known DDoS attack that targeted GitHub was executed on February 28, 2018,

and caused a massive influx of traffic rate of 1.3TBps at a rate of 126.9 million per second. It

was carried out using a database caching method known as Memcached. The attack lasted for

10 minutes and the platform was down for 5 minutes. It was stopped within this timeframe only

11

due to the platform's DDoS protection. One week was the time taken for recovery. Designing

new countermeasures will aid in reducing the flow of cybercrime. The latest and largest DDoS

attack occurred in the first quarter of 2020. Amazon Web Services (AWS) detected a distributed

denial-of-services attack with a volume of 2.3 TBps. This event was 44% larger than the

previous record-breaking event detected by AWS. The architecture and the types of DDoS

attacks will be explained in this section.

2.1.1 DDoS Attack Architecture

A distributed denial of service (DDoS) attack consists of four components: the attacker,

the target, the handlers, and bots. The goal of the attack is to disrupt the services of the target.

The attacker and the target are both systems that can be controlled through bots and controllers.

Attacks usually require a large volume of traffic to crash a website or network. From a single

computer it is usually difficult for attackers to generate large amounts of traffic. To do this, they

often use botnets (hundreds or thousands of internet-connected computers). These computers

are infected with malware and controlled by the attacker. The attacker uses controllers to infect

many botnets and this allows attacker to execute a DDoS attack on target by installing threats

or instructions to the bots about how or when to attack the target to cripple it. In most cases, the

attacker creates a botnet with high-rate traffic and then infects other systems to make more bots

with its malicious code. This method increases the attack's power and makes it possible to make

any target down within a short time. These methods make it basically impossible to detect the

original source to prevent the attack. Fig 1 shows the architecture of DDoS.

Figure 2.1 DDoS Attack Architecture

12

2.1.2 DDoS attack types

DoS and DDoS attacks can be divided into three types [30]:

• Volumetric attacks: also known as floods, these are a type of DDoS that use UDP or

ICMP to overwhelm a site. The goal is to inflict as much bandwidth as possible. It is

measured in bits per second (Bps) and allows attackers to launch massive DDoS

attacks, which can reach levels of up to terabits per second.

• A Protocol attack: this is a type of network attack that uses a combination of various

techniques to cause physical and virtual server resources to shut. Instead of attacking

higher level resources, protocol attacks seek to exploit weaknesses in the protocols

used to connect to the Internet. They usually involve the exploitation of the normal

behavior of the protocols. A protocol attack can be initiated by sending multiple

packets to a single server and it measured in packets per second (Pps). SYN floods,

fragmented packet attacks, Ping of Death, Smurf DDoS are some types of protocol

attacks.

• Application layer attack: is a type of attack that targets web servers and web

application platforms. The attackers try to crash the server and make it unusable to the

users. Attacks are initiated by sending HTTP requests to a web server. These attacks

can execute arbitrary code or expose known application vulnerabilities. They can also

abuse higher-layer protocols (HTTPS and SNMP).

Here are descriptions of some of the most common types of DDoS attacks:

SYN flood: is a volumetric attack that floods a server with new connection requests and

causes a server to ignore or stop processing new connection requests. In a three-way

handshake:

A client sends an SYN (synchronize) packet to a website to request a new

connection. The server responds with an SYN-ACK (synchronize-acknowledge)

packet.

The server waits for the response with ACK (acknowledge) packet from the client.

In an SYN flood attack, the attacker sends more SYN requests to the server without responding

with the ACK packet. This causes the server to overload but cannot respond to new requests

[26]. Figure 2.2 shows the complete three handshake and incomplete SYN flood.

13

UDP flood: is a volumetric and protocol attack that tries to abuse the normal behavior of

the UDP protocol, which has no handshake mechanism. It does not create a session and cannot

verify the sender's IP address. The attacker sends a large number of UDP packets with forged

IP addresses to various ports on the victim's server. Once the server gets overwhelmed, it can

no longer respond to the requests [26].

HTTP GET and POST floods: HTTP is a protocol that enables people to communicate with

web servers. It is used to establish a connection. HTTP GET and HTTP POST are two

commonly used methods to obtain data from a resource. An attacker can easily take down a

website by sending HTTP or POST requests to it continuously. These attacks are difficult to

detect because they mimic legitimate HTTP requests. They appear to be happening even though

they are not [25].

A ping of death attack: This is a type of attack that uses several or malicious pings to a

computer. The maximum frame size of a packet over an Ethernet network is locked to 1500

bytes. In this case, the fragments are split into several IP packets. The Data Link Layer typically

has limits to the frame size that are applicable to it. In this case, the recipient hosts partition the

IP packet into fragments and reassemble them into a complete packet. In a Ping of Death

scenario, an attacker can cause a packet to overflow its memory buffers by loading a packet

with a size larger than 65,535 bytes. This can cause a denial of service due to memory overflow

[26].

Figure 2.2 Complete and Incomplete Connection of Three Handshake

14

2.3 Machine Learning

Machine learning (ML) refers to the process of extracting interesting data patterns from

massive amounts of data, leading to the recognition of unusual behaviors. Supervised,

unsupervised, and semi-supervised learning are the three types of Machine learning. Several

algorithms and techniques have been applied to discover the attack patterns from intrusion

datasets (e.g. neural networks, decision trees, and nearest neighbor methods). This section will

briefly explain the types of machine learning and specifically focus on the supervised

classification algorithms.

2.3.1 Supervised Machine learning classification:

Supervised learning uses the target in the training process and helps in the prediction

process. In supervised machine learning, the algorithm is trained to predict the correct class

of a given data. It can then predict the label based on its previous predictions. Through the

training process, the model can learn the relationship between samples and their labels. With

a sufficient amount of data and over time, the model can then observe a good label for any

new given data.

Classification and regression are the two types of supervised machine learning [38]. The

classification model is employed when the target variable is a category, for instance,

classified as normal or breast cancer diseases. Logistic Regression (LR), Naïve Bayes (NB),

Decision Tree (DT), Random Forest (RF) are used on the proposed classification model.

Here is a brief summary of each algorithm [39]:

Decision Tree: Decision tree is a non-parametric supervised learning method that works

by building a tree with multiple branching trees where each leaf shows a decision. The

algorithms collect information about the subject and apply rules for the purpose of decision-

making. Both classification and regression can be used in decision tree methods. The goal

of the decision tree is to create a training model that can lead to an accurate decision by

classifying data according to predefined attributes.

Random Forest: Random Forest contains a great number of individual decision trees

that operate as an ensemble method. It is used for classification and regression. In the

random forest, each tree predicts a class and the class with the most votes is final model’s

prediction. Random forest is the modification of bagging which are mainly used for building

15

large collections of de-correlated trees. Sadly, bagging can have poor predictive power and

suffers from tree correlation.

Logistic Regression: Logistic Regression was mainly used in the biological sciences

during the early twentieth century. It is also used in social science applications. Logistic

Regression is a kind of parametric classification model that can classify linearly separable

classes. It is used to explain data and calculating the probability of a class to demonstrate

the relationship between the dependent variables. The idea behind logistic regression is

similar to linear regression, but instead of using a line to fit into the giving data, it uses a

curve to fit the data such as sigmoid. The best coefficients are those that minimize the error

that the model produces and predict a value close to 1 for the default and normal classes.

Naive Bayes: Naive Bayes is a set of supervised learning algorithms used for

classification tasks based on the idea of dependent probability. The naive Bayes classifier

is a simple and widely used probabilistic classifier. It uses the Bayes theorem to define the

probability of an event after taking into account the conditions of prior knowledge of certain

conditions associated with its events. Naive Bayes has several types, such as Gaussian

Naive Bayes, Multinomial Naive Bayes, Complement Naive Bayes, and Bernoulli Naive

Bayes. Gaussian Naive Bayes will be used in the proposed model and will be explained

later in Chapter 4.

2.3.2 Unsupervised Machine Learning:

Unsupervised learning is an advanced form of machine learning that uses algorithms to

analyze and cluster large amounts of unlabeled data. It is a technique that tries to identify

previously unknown patterns in data. It is an ideal tool because of its ability to discover hidden

patterns and differences in information. It is hard to directly apply on classification and

regression algorithms because of the unlabeled data making it difficult to train the model as

normally do in supervised machine learning. Most of the time, discovering the pattern may fail

to provide the expected results. Since there is no way to know what the goals are and what the

results should be, it is very difficult to measure the accuracy of the outputs, which makes

supervised machine learning more suitable to real-world problems [38].

16

2.3.3 Semi-Supervised Learning

In semi-supervised learning, the learning is performed by means of supervised and

unsupervised methods. The goal is to minimize the need for labeling and eliminate the need for

skilled human experts. Semi-supervised learning algorithms can learn the structure of a data set

by analyzing both labeled and unlabeled data. In semi-supervised learning, a combination of a

small amount of labeled data and a large amount of unlabeled data will be used during training

process. With the help of labeled data, the model can accurately classify the unlabeled data.

Some of these algorithms include label propagation, generative methods, and hidden Markov

models [38].

2.4 Ensample Learning

Each model in machine learning makes predictions for each sample. Ensemble learning

is a method that combines these predictions to form a more robust classifier in the ML

community. The advantage of ensembles is that they can perform better than a single classifier

by increasing accuracy and stability. This technique is used to minimize error that is caused by

noise, variance, and bias. It has been used in the field of cyber security to detect Intrusion,

distribution denial of service, malware, and fraud. Ensemble methods can be categorized under

basic and advanced methods. Both categories will be explained in detail in this section.

2.4.1 Basic Ensemble Techniques

Voting Ensemble is the easiest ensemble method. It is used by adding together the

predictions of multiple classifiers. It then uses soft voting or hard voting to make the

decision or prediction. This voting method is also a parallel ensemble method because there

are no dependencies between the results of base methods. All base models will be separately

trained and then combined into voting methods. The voting ensemble method can be used

for regression and classification. In the hard voting the model will predict based on the

majority vote that comes from the base classifiers. In soft voting, the prediction will be

based on the average probability calculated using all the base model predictions. Voting

ensemble will be better to use when all base models have a good performance. It has some

limitations, however, as it treats all the base models equally, and not all models can have

good performance. So, these ensemble methods sometimes cannot perform better than

single methods [40].

17

2.4.2 Advanced Ensemble Techniques

The Advanced ensemble method is a sequential method where each base model depends

on the previous one. With any poor result, the second model will correct the error of the

previous model by improving the weight. In advanced ensemble, the two main ways to

ensemble the classifiers are homogeneous and heterogeneous. Homogeneous refers to the

methods that combine similar types of classifiers or use single base leaner such as bagging

and boosting methods, while heterogeneous refers to the method that combines different

types of classifiers or multi-base leaners such as stacking. Bagging, stacking, and boosting

are some types of ensemble learning. Here is a brief description [31] [32]:

Stacking: stacking is an ensemble leaner method that combines multi-classifiers via the

Meta model. Stacking contains two stages called level 0 and level 1, where level 0 is the

level that contains the multi different models that will train the entire dataset and push the

prediction to level 1. In level 1 the Meta model same as the base model will combine the

prediction as a feature and trained the Meta model. The algorithm used in level 0 can reduce

either bias or variance [32].

Bagging: is called Bootstrap Aggregation. It is a parallel method, similar to majority

voting, where each model is trained alone and then combined to make a final prediction.

The only difference is that in bagging a different subset of data will be used to train

multiple models and aggregate them for the final decision. It runs faster than using a whole

dataset and it can reduce the overfitting and variance. Bagged decision trees and extra trees

are some examples of bagging.

Boosting: boosting is a sequential method that adjusts a weight from the previous

model. Boosting is designed to reduce bias in the result. For example, if the sample is

classified incorrectly, then the weight of that sample will be increased in the next iteration.

However, if the sample is classified correctly, then the weight of that sample will be

decreased in the next iteration until it achieves the best result with low bias. The parameter

turning is important in boosting because the model may face overfitting in the training

process and parameters can help to reduce it. AdaBoost, Gradient Boosting Machine

(GBM), XGBoost, and CatBoost are some examples of boosting.

18

2.5 Feature Selection

Feature Selection is a process that selects the most relevant features that contribute

primarily to the model predictions or output. It is an integral part of machine learning because

the irrelevant features can negatively impact the training process, which may lead to poor

prediction. In each model, cleaning data and feature selection should be the first step to help

the model to accurately predict the attacks. Feature selection can improve the performance of

the model by reducing overfitting, improving accuracy, and reducing training time. Less data

with important content can reduce the training time and reduce the complexity of the model, in

addition to reducing overfitting by removing the noisy data. All this leads to increased accuracy

and better predictions. This section will explain briefly the three types of feature selection,

which are Filter, Wrapper, and Embedded methods. The correlation feature selection and Chi-

square feature selection will also be explained in detail.

2.5.1 Filter Methods

Filter methods compute the properties of features by using univariate statistical

techniques instead of using cross-validation. It is faster and cheaper than wrapper methods in

terms of using high dimensionality data. In filter selection, features are selected according to

their statistical tests' correlation with an outcome variable instead of using machine learning

algorithms. Several methods were proposed, including Chi-square, which is applied to

categorical variables, and correlation methods that were applied to continuous variables [37].

1) Chi-Square:

The test determines the relationship between two or more random features. It tells how

much difference exists between these two features. If the result of the test is very small, it means

that the observed data fit very well and both features have a relationship. Otherwise, the

observed data do not fit and have no relationship [33]. The O and E in the formula (1) are the

observed and the expected values [33].

𝑋𝑐
2 = ∑

(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

2) Pearson’s Correlation:

Pearson’s Correlation is a statistical equation that calculates the linear correlation between

two features referred as x and y. The value of Pearson’s (r) can be 1, 0, or -1 [34].

19

Where:

+1 → positive correlation

0 → no linear correlation

-1 → negative correlation

𝑟 =
∑(𝑥𝑖 − �̅�)2 (𝑦𝑖 − �̅�)2

√∑(𝑥𝑖 − �̅�)2 ∑(𝑦𝑖 − �̅�)2

Where

 𝑟 = correlation coefficient

𝑥𝑖 = values of the x-variable in a sample

�̅� = mean of the values of the x-variable

𝑦𝑖 = values of the y-variable in a sample

�̅� = mean of the values of the y-variable

High correlation will be nearest or equal 1 and low correlation will result nearest to -1. The

higher correlation between two features will lead to removing one of the features because both

features will be contributed or affected similarly [34].

2.5.2 Wrapper Methods

In a wrapper method, a set of features will be selected to train a model. After that, a decision

will be made based on the inferences drawn from the previous model and it will be decided

which features to add or remove. Wrapper methods are typically used to solve a search problem.

They are very expensive to implement and are typically not used for large-scale problems.

Forward feature selection, backward feature elimination, and recursive feature elimination are

common examples in wrapper feature selection. The filter method is a statistical method that is

measured the relevance between variables based on correlation, but wrapper methods use cross-

validation in their measurement by actually training a model. Compared to wrapper methods,

filter methods are much faster and do not require training [37].

20

2.5.3 Embedded Method

The Embedded method combines the advantages of both the wrapper and filter methods. It

has its own built-in features selection methods. This method performs the feature selection

process during the construction of a machine learning algorithm. A learning algorithm performs

feature selection and classification/regression at the same time. It uses its own variable selection

process. They take into account the interaction between features like wrapper methods and filter

methods. They are faster and more accurate than filter methods and are typically less prone to

over-fitting [37].

2.6 Resampling Methods

In designing a multiclass classification or regression model, it should be treated with an

imbalanced dataset problem, especially on a supervised model. The accuracy may appear high,

but the model can be biased and only detect the majority class. It cannot be robust in dealing

with a minority class and that’s why designing a model within an imbalanced data could be

tough. Resampling is an efficient method for dealing with highly imbalanced datasets [36].

Under-sampling: This is a widely used technique to remove samples from a dataset that is

heavily imbalanced. This method is used to remove samples from the majority class and make

it equal to the number of minority class in order to create balanced data. The major disadvantage

is potentially losing some important information [23].

Over-sampling: Over-sampling works by taking advantage of the diversity of the sample

and then adding more examples to the minority class. Oversizing the number of minority class

to be equal to the number of majority class. The major disadvantage leads to an increase in

overfitting by duplicating an existing sample and slowing down the training time [36].

Adjust weight: Adjusting weight could be a simple solution to avoid the problems of both

over and under sampling methods. This concept proposes to weigh the loss of various samples

differently depending on the class they belong to. It tries to assign high weight to the minority

class and small weight to the majority class. It could be used to balance classes weighted to

automatically adjust weight for classes. This method is truly effective when dealing with large

dataset, because oversampling could be expensive and requires more memory space. So, weight

can help estimators to train and learn without losing information or facing a lots of noise and

overfitting [35].

21

2.7 Performance Evaluation

Different evaluation processes have been applied to evaluate the model and

display results as a curve using an AUC-ROC curve. Confusion metric and AUC-ROC

were used to evaluate the proposed model. This section will explain both in detail.

2.7.1 Confusion Metric

A confusion metric is a performance evaluation metric used to measure the detected

class based on given predicted and real value. It is used for binary or multiclass types. False-

positive, false negative, true positive, and true negative are used to evaluate the model. Table

2.1 illustrates how the confusion metric calculates the rates for class attack 2. False positive and

false negative rates are important because they provide information when the model is

classifying samples erroneously [28].

Table 2.1 Confusion Matric Explanation

 predict class

Real

class

 Normal Attack 1 Attack 2 Attack 3 Attack 4

Normal

TN

FP

TN Attack 1

Attack 2 FN TP FN

Attack 3 TN FP TN

Attack 4

To test the capability of the detection model, accuracy, precision, recall, F‐measure, FPR,

and specificity are used to evaluate the performance of the model. The mathematical equations

of these measures are as follows [4]:

Where:

Accuracy (ACC) =
TP+TN

TP+TN+FP+FN

Precision (P) =
TP

TP+FP

TPR/ Sensitivity/ Recall (R) =
TP

TP+FN

F - Measure =
2(P∗R)

P+R

22

False-Positive Rate (FPR) =
FP

FP+TN

Specificity =
TN

TN+FP

FPR =
FP

TN+FP
 or 1 - Specificity

True-Positive (TP): the number of attacks accurately identified as malware.

Ture-Negative (TN): the number of normal accurately identified as benign.

False-Positive (FP): the number of normal inaccurately identified as malware.

False-Negative (FN): the number of attacks inaccurately identified as benign.

2.7.2 Receiver operating characteristic -AUC (Roc-AUC Curve)

The ROC-AUC curve, where AUC is short of the area under the curve and ROC short

of receiver operating characteristic, is a simple calculation that plots the curve of the probability

of the true-positive rate against the false-positive rate for multiclass data. The former shows the

percentage of observations that are correctly predicted to be positive while the latter shows the

percentage of observations that are correctly predicted to be negative. It is also a performance

measure that shows how much a model can improve its ability to classify classes. The Roc

curve also exposes how much control the model has over distinguishing between normal with

different attacks. An excellent model has AUC near the 1 which shows it has high separability.

A model has AUC close to 0 which shows it has the worst separability. Fig I, Fig II, and Fig III

illustrate how to evaluate the model from the Roc curve [6]. For each class in one model with

different colors will be plotted to compare the differences. The curve result will be explained

later in chapter 5.

23

Result when accuracy is 100%

Result when accuracy is 70%

Result when accuracy is 50%

2.8 Chapter Summary

This chapter covered the basic information necessary to understand the rest of the

research. It illustrated the Intrusion Detection System (IDS) types and requirements in addition

to Denial of service and Distribution denial of service attack (DoS/DDoS). It also explained

supervised Machine learning (ML) types, ensemble learning models, and Feature selection

types with resampling methods. Finally, the performance evaluation such as ROC-AUC and

Confusion metric were explained in depth. Chapter 3 will cover the dataset and the

preprocessing steps that were conducted on the research.

Figure 2.3 Maps the Roc Curve in Different Accuracy Rate [29]

24

Chapter 3: Dataset and Data Preprocessing

This section reviews the selected datasets in addition to explaining their pre-processing

approaches. Both NSL-KDD and CICIDS-2017 datasets were used in the proposed model, later

explained in Chapter 4. The proposed model was applied on the entire dataset and an extracted

subset that only contained DoS/DDoS attacks for each dataset. The data will be explained in

detail. In the preprocessing phases, the data transformation, normalization, scaling, and feature

selection approaches will be discussed.

3.1 Dataset

The IDS datasets have been available since 1998. The first dataset called DARPA was

produced in 1998 and includes not real-world network traffic. Another dataset called KDD’99

is an update of the DARPA dataset. Several other datasets have been created across time.

Sharafaldin et al.’s research [16] illustrates and evaluates eleven openly available IDS datasets

along with their gaps and types of attacks. In the data collecting stage, creating new data is

challenging and time‐consuming. Simultaneously, creating a dataset can be valuable, useful,

and frequently used by several researchers. Using an existing dataset may be helpful in terms

of comparing the results with previous studies. Two datasets were used in our research, namely

NSL-KDD (the updated version on KDD’99) and the cicids2017 dataset. This section provides

the details of these two datasets [17].

3.1.1 NSL-KDD

NSL-KDD Analyze intrusion detection has become very valuable recently. Much

research focused on diverse datasets to increase accuracy and to reduce the false-positive rate.

KDD cup 99 dataset is an updated version of DAPRA 98. Because of some issues in the KDD

cup 99 version that affect the performance of the systems and reduce the accuracy of anomaly

detection approaches, the NSL-KDD dataset was proposed. The NSL-KDD contains all the

KDD-cup 99 samples, which solves the gap in the KDD-cup 99 version. NSLKDD is used to

apply several machine learning algorithms in order to detect malware attacks. The main

advantages of the new NSL-KDD dataset are the following:

• The training set has not included any redundant records that can lead to biased results.

• The test set has no duplicate samples which will produce more trust prediction rates.

• The number of samples in the dataset are sensible, which makes the dataset low-cost to

run the experiments.

25

This section covers a brief explanation of the NSLKDD dataset. This selected dataset provides a

beneficial analysis for different machine learning techniques based on intrusion detection.

1) Attack Types

The records in the NSL-KDD dataset are classified as normal or one of the four grouped

attacks containing 37 different kinds. Table 3.1 maps the four attacks with types and examples.

The four main classes are [18]:

a. DoS: Denial of service is a malicious attempt to overwhelming the target with a

flood of Internet traffic for disruption or make services unavailable to users (for

example, SYN flooding).

b. U2R: unauthorized access to victim device aiming to gain the root privileges by

exposing some machine vulnerability such as buffer overflow attacks.

c. Probe: another kind of attack that aims to gain information about the remote

victim such as port scanning.

d. R2L: illegal entrance to a remote machine that gains local access to the target

machine (for example, guessing the password).

Table 3.1 Maps the Attack Classes with Its Types [1]

2) Features

In the NSL-KDD dataset, each record reveals different traffic features with 43 attributes

plus an assigned label classifying each record as either normal or attack. In addition, another

label categorized the 37 types of attack in four groups ranged from 0 to 5. The features of the

dataset hold three types of data: Nominal, Numeric, and Binary. The features 'protocol_type',

Class Types Example

DOS Back, Land, Neptune, Pod, Smurf, Teardrop, Mailbomb,

Processtable, Udpstorm, Apache2, Worm

SYN flooding

Probe Satan, IPsweep, Nmap, Portsweep, Mscan, Saint

Port-scanning

R2L Guess_password, Ftp_write, Imap, Phf, Multihop, Warezmaster,

Named, warezclient, spy, Xlock, Xsnoop, Snmpguess,

Snmpgetattack, Httptunnel, Sendmail,

Password-

guessing

U2R Buffer_overflow, Loadmodule, Rootkit, Perl, Sqlattack, Xterm, Ps

Buffer- overflow

26

'service', 'attack, and 'flag' have nominal values while the features 'logged in', 'root_shell',

'su_attempted', 'num_root' and 'num_file_creations' contain binary values, and the other features

are numeric types. Table 3.2 illustrates the number for each DoS attack class in the training and

test set. Table 3.3 maps the numbers of records for each class for both training and test set where

80% for training and 20% for test.

Table 3.2 Number of record for each DoS attack

DoS attack class Training set Test set Total

Normal 61,617 15,436 77,053

Neptune 36,708 9161 45,869

Smurf 2651 660 3311

Back 1044 271 1315

Teardrop 735 169 904

Apache2 607 130 737

Processtable 531 154 685

Mailbomb 230 63 293

Pod 204 38 242

Land - - 25

Worm - - 2

Udpstorm - - 2

Total 104,327 26,082 130,438

27

Table 3.3 Number of record for each NSL-KDD attack types

3.1.2 CICIDS2017

The Canadian Internet Incident Dataset 2017 (CICIDS2017), which was created by the

University of New Brunswick's Institute for Cybersecurity, contains the most up-to-date records

on several types of cyberattacks. The dataset contains real network traffic of over 2,830,108

records where 471,454 of them are the malicious records. It was analyzed using real traces of

the traffic. This unique dataset features an up-to-date attack list and is capable of handling

different types of attacks comparison with other datasets such as UNSW-NB15 [21]. The

attacks include Botnet, Web Attack, Infiltration Attack, DoS Attack, Brute Force Attack,

HeartBleed Attack, and Distributed DoS (DDoS) Attack. This section provides an overview of

the dataset, including traffic analysis conducted using CICFlowMeter, which is a tool that

enables network traffic analysis. It includes the results of the labeled flows based on the

timestamp, source, and destination IPs, source and destination ports, protocols, and attacks. The

data was collected in 5 days from Monday morning, July 3, 2017 until Friday July 7, 2017

afternoon. Table 3.4 illustrates the dataset files including their types of attacks.

Attacks class Training set Test set Total

Normal 61,697 15,356 77,053

DOS 42,685 10,700 53,385

Probe 11,219 2858 14,077

R2L 3179 761 3880

U2R 91 28 119

Total 118,811 29,703 148,514

28

Table 3.4 CICIDS-2017 Dataset Summary [20]

File Name Type of Traffic Number of Record

Monday-

WorkingHours.pcap_ISCX.csv

Benign

529,918

Tuesday-

WorkingHours.pcap_ISCX.csv

Benign

SSH-Patator

FTP-Patator

432,074

5,897

7,938

Wednesday-

workingHours.pcap_ISCX.csv

Benign

DoS Hulk

DoS GoldenEye

DoS Slowlories

DoS Slowhttptest

Heartbleed

440,031

231,073

10,293

5,796

5499

11

Thursday-WorkingHours-Morning-

WebAttacks.pcap_ISCX.csv

Benign

Web attack-

Brute Force

Web Attack-Sql injection

Web Attack-XSS

168,186

1,507

21

652

Thursday-WorkingHours-Afternoon-
Infilteration.pcap_ISCX.csv

Benign

Infiltration

288,566

36

Friday-WorkingHours-

Morning.pcap_ISCX.csv

Benign

Bot

189,067

1966

Friday-WorkingHours-Afternoon-

PortScan.pcap_ISCX.csv

Benign

Port-scan

127,537

158,930

Friday-WorkingHours-Afternoon-

DDos.pcap_ISCX.csv

Benign

DDoS

97,718

128,027

Total Instance/Record - 2,830,743

1) Attack Types

The CICIDS2017 dataset contains different types of DoS and DDoS. In our

experiment, the two file Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv and

Wednesday-workingHours.pcap_ISCX.csv were merged to generate one file that included

random selected types of denial-of-service attack (DoS) with distributed denial of service

attack (DDoS). Table 3.5 explains each type of Both DoS and DDoS attacks.

29

Table 3.5 CICIDS2017 DDos attacks type’s description [21]

2) Features

A total of 79 features were extracted and taken from the information present in the

pcap file (e.g. time stamp, source and destination ports, source and destination IPs, protocols

and attack) [21]. The best common features for DoS detection are the related features of the

Flow Inter arrival time (IAT), such as Min, Mean, Max and also the Flow Duration. Finally,

for DDoS attack, also some related features to IAT have been selected along with average

packet size and backward packet length [16]. The feature reduction will be explained later in

Section 3.3. The number of samples of DoS/DDoS for both training and testing data is

explained in Table 3.5 for each type.

3.2 Data Preprocessing

Data cleansing, feature reduction, and resampling are the three phases of data

preprocessing. In the first step, the data is cleansed by converting string instance to number

using the label encoder in addition to deleting some columns that are not required in the training

process. For example, some datasets include three-columns: one for binary labeled data

(normal/attack), a column for the multi-class label, and the last column contains the name of

attacks. Based on the purpose of the research, the column will be selected and the others will

be deleted. In the second step, Chi-2 and correlation-based filter selection will be used to reduce

the dimension of the data. After that, the dataset will split into 80% for the training set and 20%

Traffic Type Size Description

Benign 2,358,036 Normal traffic behavior

DoS Hulk 231,073 The attacker uses the HULK tool to generate massive amounts of DoS

traffic that can be obfuscated or unique. This method can also bypass

server caching engines.

DDoS 41,835 The attacker uses multiple machines that operate together to attack one

victim machine

DoS GoldenEye 10,293 The attacker uses the GoldenEye tool to perform a denial of service attack

DoS Slow Loris 5796 The attacker uses the Slow Loris tool to execute a denial of service attack

DoS Slow HTTP

Test

5499 The attacker exploits the HTTP Get request to exceed the number of

HTTP connections allowed on a server, preventing other clients from

accessing and giving the attacker the opportunity to open multiple HTTP

connections to the same server

30

for the testing set. The data will be normalized to help the model read the structure of data in

the same way. In the last step, resampling techniques will be used to handle imbalanced data.

Dataset cleansing: in the NSL-KDD two data columns were deleted. The two-column

attack map and attack that contain binary labeled (attack/normal) and general types of NSL-

KDD, which make these two columns out of the target and not necessarily in the experiments.

This is because in our experiments we are trying to test models only on DoS and DDoS attack

in NSL-KDD and CICIDS2017.

Label encoder: used to convert each instance into values arrange between 0 to 1. It can also

be used to convert non-numerical to numerical values. In our research, a label encoder was used

to convert the non-numerical instances to numerical instances [24].

MinMax Scaler: is a normalization method used to rescale data by estimate minimum and

maximum values. The goal is to make data more understandable to the model. The

Sklearn.preprocessing library contains MinMaxScaler that was used in the experiment

preprocessing step [22].

y = (x – min) / (max − min)

Where:

Y is the normalized

result. X is a giving

value.

Min and Max are minimum and maximum values in the dataset.

3.3 Feature Reduction

The Feature selection was done for each dataset separately. Two methods were selected

to remove irrelevant features with the goal of reducing training time and increasing model

performance. The correlation-based feature selection will be applied first to calculate the

correlation between features. The higher correlation between two features will lead to removing

one of the features because both features will contribute or affect similarly. Next, the result of

Correlation methods will be passed to the Chi-square to calculate the relevance between each

feature and the target. Then, the highest 15 feature scores will be selected based on k highest

scores. Finally, the residual features will be used to train the model. Table 3.6 explains the

31

number of the feature after each feature selection method, along with their original number of

features for both datasets.

Table 3.6 Reduced feature sets for The Two dataset

Dataset Methods

name

Feature

Count

Features

NSL-KDD

DoS

All set 42 All feature

Chi-2 20 1, 5, 6, 8, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 38,

39, 40, 41

Correlation 20 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 30, 31, 32, 34, 35, 36, 37, 39,

41, 43

Both 15 1, 3, 5, 8, 23, 24, 29, 30, 31, 32, 34, 36, 37, 39, 41

CICIDS2017

DoS/DDos

All set 79 All feature

Chi-2 13 2, 15, 16, 17, 18, 19, 21 22, 23, 37, 38, 42, 43

Correlation 15 1, 10, 15, 20, 25, 29, 30, 37, 38, 66, 72, 73, 74, 76, 79

Both 15 1, 10, 15, 20, 25, 29, 30, 37, 38, 66, 72, 73, 74, 76, 79

3.4 Under Sampling and Weight Assign

Due to the nature of the class data, most machine learning algorithms are biased and

many algorithms are not very useful when dealing with imbalanced data. The imbalance

problem refers to the dataset that contains different variance numbers of classes. This problem

affects classification performance. It can lead to a serious bias against the majority class. To

solve this problem, two resampling methods, Neighborhood Cleaning Rule (NCL) and

adjusting weight, were used in the preprocessing level in order to avoid biased data [23].

In the preprocessing stages, Neighborhood Cleaning Rule (NCL) was used to deal with

the imbalance problem for both majority and minority classes on the selected dataset. NCL used

the Edited Nearest Neighbor Rule (ENN), which is an under-sampling method based on the

concept of nearest neighbor (NN) [23]. It is removing any instance from the majority class that

belongs to a different class than most of the selected number of neighbors. NCL uses the same

concept of ENN in removing from majority class but it also deals with minority instance by

removing the nearest class that belongs to the majority. In our research, Neighborhood Cleaning

Rule (NCL) was done by select 10 of Neighbor and 0.9 for threshold cleaning. After that, the

outcomes were used in the next step to adjust the weight for each class. Because under sampling

32

the majority class in extremely imbalanced data is not helpful and NCL will not make the

number of classes equal or even close, the weight was adjusted by using set different weights

for each class. This method works by giving different weights to minority and majority classes.

The goal is to give more weight to the minority groups that most likely will classify as the

minority classes and set a small weight for the majority group. This helps the model in the

training process to treat classes equally and focus more on minority classes to avoid biased

prediction. Furthermore, it will increase the accuracy by accurately predict minor classes. Table

3.7 and Table 3.8 represent the number of samples before and after the resampling technique

along with their adjusted weight.

Table 3.7 Number of CICIDS-DDoS Sampling After Applying Sampling Methods

 Table 3.8 Number of NSLKDD-DDoS Sampling After Applying Sampling Methods

Resampling

Methods

CICIDS2017 – DDoS/DoS

Benign

DoS Hulk

DDoS

DoS

Golden

Eye

DoS

Slow

Loris

DoS-Slow

HTTP

Heart

bleed

NCL Before 351,925 184,768 102,557 8260 4686 4379 9

After 350.741 184.369 102,396 8153 4627 4337 9

Adjust Weight 0.26 0.50 0.91 11.47 20.21 21.56 1039.0

Resampling

Methods

NSL-KDD - DoS

B
en

ig
n

N
ep

tu
n
e

S
m

u
rf

B
ac

k

T
ea

rd
ro

p

A
p
ac

h
e

P
ro

ce
ss

ta
b
le

M
ai

l

b
o
m

b

P
o
d

la
n
d

NCL Before 61,673 36,711 2606 1048 724 587 554 229 195 20

After 61,402 36,688 2509 1040 718 585 547 224 158 19

Adjust

Weight

0.16 0.28 4.14 9.9 14.4 17.7 18.9 46.3 56.1 519.5

33

3.5 Chapter Summary

As shown above, this chapter gave brief information about the two popular benchmark

NSL-KDD and CICIDS2017 datasets that were utilized in the experiments. It also explained

the approaches that are used to handle the data such as using Label encoder and MinMax

methods to normalize and scale data. In addition to that, it explained how we remove irrelevant

features using Correlation and Chi-2 feature reduction. Because many ML algorithms are biased

and not useful when dealing with imbalanced data, this chapter discussed the resampling

methods that were used in the proposed framework to handle these issues. Chapter 4 will discuss

and compare benchmark testing and results along with the feature reduction results.

34

Chapter 4: Benchmark Testing and Results

4.1 Introduction

The proposed framework is built based on the Scikit-learn library [41]. The proposed

approach is separated into three steps: data preprocessing and reduction as described in Chapter

3, supervised machine learning methods, and ensemble classifier. In preprocessing data, Label

Encoder has been applied to convert the non-numerical labels to numerical labels. After that,

two feature selections are used to remove the irrelevant features for a positive effect on the time.

Chi-square and Pearson's correlation have been used and tested on both datasets. Section 2.5

chapter 2 will explain the results for each test. Finally, the under-sampling model weight will

be used to give weight for each class that has been applied to solve the problem of imbalanced

data that will be caused by some types of feature selection. This chapter will explain the

supervised machine learning experiment using Decision Tree (DT), Random Forest (RF),

Logistic Regression (LR), and Naive Bayes (NB) models. In addition, the soft voting ensemble

and stacking ensemble will be performed to make a prediction for each sample by combining

the best results from the previous steps. Finally, each model will evaluate using a confusion

matrix and ROC-AUC described in Section 2.7 Chapter 2. In this chapter, two experiments

have been done on two benchmark datasets, CICIDS2017 DoS/DDoS attacks and NSL-KDD

DoS attacks, for both supervised and ensemble and a detailed explanation for the results aiming

to evaluate the model. Table 4.1 explains the hyper-parameter for each model used in our

experiments. The same hyper-parameter is used in the two dataset training process.

Table 4.1 Hyper-parameter for Supervised Model and Ensemble Classifier

Classification

type

Classifier Name Abbreviated

Name

Hyper-parameter

Supervised Logistic

Regression

LR solver= 'liblinear' , C= 10,

class_weight=class_weights

Decision Tree DT criterion="entropy" , class_weight=class_weights

Random Forest RF class_weight=class_weights

Naïve Bayes NB Default

Ensemble Stacking Ens-Stack estimators=[(‘Best model performance’)],

final_estimator=RandomForest, cv=3

Voting Ens-Vote estimators=[(Best model performance’)],

voting='soft'

35

4.2 Feature Selection

Among all the feature selections, two methods were chosen based on the dataset's value

types. The Chi-square and Correlation have been applied separately on the NSL-KDD dataset

as the first step. Then, both features have been integrated and applied, with the correlation

applied first and the chi-square second for more feature reduction. Both outcomes’ results will

be compared before and after applying feature selections by using four supervised ML models.

The comparison focused on how the feature selections have affected training time, model

accuracy, and False-positive rate. Feature reduction may reduce training time but sometimes it

has a negative impact on accuracy and False-Positive rate; that is because removing sufficient

features to reduce training time will not help the models to learn enough from features with

short of time.

In our experiment, the correlation method provided the best performance that reduced

training time without affected model accuracy and FPR. In contrast, applying both correlation

and chi-square reduced more training time, but the accuracy and chi-square were affected. Table

4.2 represents the results of CICIDS2017 before and after applying Chi-square and Correlation

methods. From Figure 4.1, we can notice that there is a big improvement in the time after we

used both methods together. Based on the results from Table 4.2, we can see that after applying

correlation the time decreased 8% than before and 46% decreased after applying both methods.

About the accuracy and false-positive rate, there are rare changes after applying correlation

versus a huge decrease after applying Correlation and Chi-square methods.

Table 4.2 Feature Selection Comparisons for CICIDS2017 Dataset

ML

model

Before correlation Correlation + Chi-2

ACC FPR Time ACC FPR Time ACC FPR Time

LR 0.98 0.002 269.0 0.98 0.002 255.6 0.91 0.01 128.7

DT 0.99 0.0002 34.09 0.99 0.0001 29.12 0.74 0.09 15.58

RF 0.99 0.0001 309.12 0.99 0.0001 302.1 0.80 0.03 281.9

NB 0.79 0.03 2.87 0.79 0.03 2.56 0.54 0.08 0.839

36

Same as the previous dataset, each feature selection has been applied separately and a

collection of two applied next. Table 4.3 represents the results of the NSL-KDD DoS before

and after applying feature selection methods and Figure 4.2 represent the data in more readable

way. In this experiment, the feature selection has affected the accuracy, FPR, and time

differently for each ML model. For instance, after applying both methods, the Decision Tree

has been affected by increasing accuracy and reducing FPR and time. About the time and results

from Table 4.3, the time was reduced by 16% after applying correlation and by 42% after

applying both methods (Correlation and Chi-square).

Table 4.3 Feature Selection Comparisons for NSL-KDD Dataset

ML Before correlation Both

model ACC FPR Time ACC FPR Time ACC FPR Time

LR 0.99 0.0003 11.52 0.99 0.0008 8.39 0.97 0.004 6.31

DT 0.72 0.20 0.53 0.72 0.02 0.43 0.99 0.0008 0.29

RF 0.99 0.0001 8.15 0.99 0.0001 8.02 0.99 0.0001 7.52

NB 0.95 0.010 0.38 0.95 0.010 0.30 0.94 0.006 0.11

Figure 4.1 Feature Selection Performance Comparisons for CICIDS2017

Figure 4.2 Feature Selection Performance Comparisons for NSL-KDD

37

The aim of feature reduction in our experiment is to reduce training time only. Based

on the huge difference in time before and after applying both feature selections, the time was

hugely reduced training time for both datasets. The combination of Correlation and Chi-square

was selected to build the IDS model. However, this method produced another problem called

imbalanced data. To solve this problem, a combination of two sampling methods have been

used to reduce the number of sampling and adjust the weight. Section 0.0 will illustrate the

process and the results of sampling methods. To conclude, feature selections reduced training

time by 44% from the original training time.

4.3 Sampling performance

Sampling methods have been used to solve the problem of imbalanced data caused by

feature selections. Neighborhood Rule Cleaning is the method that was used in this stage to

remove some samples based on the concept of nearest neighbor (NN). This method was selected

because it deals with minority instances by removing the nearest class that belongs to the

majority. At this point, the minority class will not be affected much by this method. Removing

some samples from the majority class that is misclassified by their 10-nearest neighbors will

help models to avoid overlap between samples and avoid overfitting. This method still needs

some help from other methods because the number of samples from each class did not get close.

Adjusting weight for each class has been used to create a balance between classes when the

model is trained. Table 4.4 and Figure 4.3 explain how the sampling methods help to improve

the models' performance after applying feature selection on the CICIDS2017 dataset. Based on

the results from Table 4.4, these two sampling methods have reduced FPR by 55% and 34%

time, in addition, to increase accuracy by 12%.

Table 4.4 Supervised models performance comparisons after sampling method for CICIDS2017

ML model
Feature selections Sampling methods

ACC FPR Time ACC FPR Time

LR 0.91 0.017 128.7 0.94 0.012 73.29

DT 0.74 0.09 15.58 0.88 0.03 11.33

RF 0.80 0.033 281.9 1.00 0.0005 172.17

NB 0.54 0.084 0.839 0.64 0.058 0.58

38

Regarding the NSL-KDD dataset and from the results of Table 4.5, the accuracy

improved rarely especially on Naive Bayes and Random Forest. For FPR in Figure 4.4, the FPR

was improved by 20% specifically on Decision Tree and Naive Bayes. The time also improved

by 8% for all models.

Table 4.5 Supervised models performance comparisons after sampling methods for NSL-KDD

ML model
Feature selections Sampling

ACC FPR Time ACC FPR Time

LR 0.97 0.004 6.31 0.97 0.004 5.76

DT 0.99 0.0008 0.29 0.99 0.0003 0.27

RF 0.99 0.0001 7.52 1.00 0.0001 6.98

NB 0.94 0.006 0.11 0.95 0.005 0.10

Finally, good performance resulted from CICIDS2017 because the number of samples

that the models were trained and tested on is 820 thousand samples, as compared with NSL-

KDD, which contains 130 thousand samples.

Figure 4.3 Supervised ML performance after sampling methods for CICIDS2017

Figure 4.4 Supervised ML performance after sampling methods for NSL-KDD

39

4.4 Results and Discussion

This section represents the best models' performance for both supervised ML models

and Ensemble methods. In the Ensemble methods, soft voting is used to vote for each sample

by calculating the average of predictions from multiple classifiers. About the stacking, multi-

classifiers will be combined via the Meta-model. Stacking contains two stages called level 0

and level 1. Where level 0 is the level that contains the best-supervised ML models. In level 1

the Meta model, the same as the base model, will combine the prediction as a feature and train

the Meta-model, which is a random forest in our experiment. Tables 4.6 and 4.7 illustrate all

the models' performance for CICIDS2017 and NSL-KDD datasets.

Table 4.6 Supervised models and Ensemble models performance for CICIDS2017

Table 4.7 Supervised models and Ensemble models performance for NSL-KDD

With the minor classes Table, 4.8 and 4.9 represent the Precision, Recall, and F-1 for

Random forest models for CICIDS2017 and NSL-KDD datasets. The model is robust in

detecting the minor class such as in Table 4.8, where Heartbleed only has 2 samples in the test

set. The same concept in Table 4.9 represents the types of NSL-KDD, where land only has 5

samples in the test set.

Class Accuracy FPR

ROC-

AUC

(Macro)

ROC-AUC

(Micro)
Time

LR 0.94 0.012 0.98 0.99 73.29

DT 0.88 0.036 0.93 0.93 11.33

RF 1.00 0.0001 1.00 1.00 172.17

NB 0.64 0.058 0.93 0.93 0.58

Stack 0.99 0.0003 1.00 1.00 250.12

Voting 0.99 0.002 1.00 1.00 72.77

Class Accuracy FPR ROC-AUC
(Macro)

ROC-AUC
(Micro)

Time

LR 0.97 0.004 1.00 1.00 5.76
DT 0.99 0.0003 0.89 0.99 0.27
RF 1.00 0.0001 1.00 1.00 6.98
NB 0.95 0.005 0.99 1.00 0.10
Stack 1.00 0.0002 0.99 1.00 56.6
Voting 0.99 0.0004 1.00 1.00 13.30

40

Table 4.8 Confusion Metric results for each class of CICIDS2017

Table 4.9 Confusion Metric results for each class of NSL-KDD

4.5 Chapter Summary

In our proposed model, Random Forest achieved the best performance results. The

model decreased 37% of the training and test time, in addition to solving the imbalance problem

caused by feature selection, and increased accuracy 6.25% accuracy and FPR 21%. The random

forest model has achieved 99% accuracy and 0.0001 for the False-Positive rate. Furthermore,

it can detect minor classes with more than 80% accuracy.

Class RF
Precision Recall F1

Benign 1.00 1.00 1.00
DoS Hulk 1.00 0.99 0.99
DDoS 0.99 0.99 0.99
DoS GoldenEye 1.00 1.00 1.00
DoS
Slowhttptest

0.98 0.98 0.98

DoS slowloris 1.00 1.00 1.00
Heartbleed 1.00 1.00 1.00

Class RF

Precision Recall F- 1

Apache 1.00 0.99 0.99

Back 1.00 1.00 1.00

Land 0.80 0.80 0.80

Mailbomb 1.00 1.00 1.00

Neptune 1.00 1.00 1.00

Normal 1.00 1.00 1.00

Pod 0.94 0.98 0.96

Processtable 1.00 1.00 1.00

Smurf 1.00 1.00 1.00

teardrop 0.98 0.99 0.99

41

Chapter 5: Conclusion

Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks are a type of

cyber-attack that can disrupt a server's normal operation. Typically, these use a network of

computers to execute a DDoS. Even the most prominent service providers like Facebook,

Amazon, and Instagram have experienced service disruption due to DDoS. Therefore, Intrusion

detection systems (IDSs) should be used to build a system that should be able to identify and

prevent an attack using artificial intelligence. Recently, deep learning and machine learning

show promising results in solving these types of complicated problems. Machine learning is an

AI tool that can provide solid intelligence when used by IDSs. The ability of machine learning

to detect patterns of attacks makes it an ideal tool for cybersecurity. This thesis project aimed

to design a model that uses the advantages of the feature selection process to reduce time and

improve the overall performance of such a system. Further, we have addressed the problem of

imbalanced data, characteristic of DoS and DDoS attacks, that demonstrates improved overall

performance compared to other studies described in the literature.

5.1 Summary

To summarize our results from this research, we have designed a model using four

supervised learning methods namely, Decision tree, Random Forest, Logistic Regression, and

Naive Bayes, in addition to using two ensemble methods (i.e., stacking and voting). Two

popular benchmarks called NSL-KDD and CICIDS2017 have been used as offline data to train

the model, specifically the DoS and DDoS that have been extracted from both datasets. Both of

the NSL-KDD DoS and CICIDS2017 DoS/DDoS attacks have been normalized and split into

a training set and testing set. Two feature selections (i.e., Chi-square and correlation) and two

resampling methods (i.e., Neighborhood Cleaning Rule and Adjust Weight) have been applied

on both datasets. After that, the supervised models have been derived and the best results were

used to train the ensemble model. Comparing all results, Random Forest achieved the best

performance results. The model decreased 37% of the training and test time, in addition to

solving the imbalanced problem caused by feature selection and increased accuracy 6.25% and

FPR 21%. The Random Forest model has achieved 99% accuracy and 0.0001 for the False-

Positive rate. Furthermore, it can detect minor classes with better than 80% accuracy. The result

has met our goals of designing a model that can detect DoS and DDoS attacks with high

42

accuracy, low false rates, and in less computational time in addition to dealing with extremely

imbalanced data.

5.2 Challenges

Many interesting and difficult problems have been addressed in this thesis. Designing a

detection model that can effectively detect various types of DoS and DDoS attacks with

extremely imbalanced data was the biggest issue faced during this journey. IDSs require a

robust model that can accurately detect minor types with low false alarms in a short period of

time. Time was the most important aspect considered in designing the model. To reduce the

time, feature selection was the second problem faced. Choosing the correct feature helped to

improve time to detection. Regarding the accuracy and false alarm rates, with the help of

resampling techniques many practices such as random over-sampling and random under-

sampling were tested and did not show an improvement with the false alarm rate. Another issue

is that more samples can cause the model to exacerbate the overfitting problems and its side

effects (i.e., higher false alarm rates, lower accuracy, and precision).

5.3 Future Work

In the near future, we will test the same model but we will use an unsupervised model

instead of a supervised model. The best outcomes will be integrated with the decision tree to build

a semi-supervised model. This model will be used in real-world traffic to train the unlabeled data

that will be used along with the supervised offline labeled data. Different feature selection and

resampling techniques will be studied toward developing a faster and more accurate system.

43

References

[1] A. Thakkar and R. Lohiya, "Attack classification using feature selection techniques: a

comparative study,” Journal of Ambient Intelligence and Humanized Computing, vol.

12, no. 1, pp. 1249-1266, 2020. Available: 10.1007/s12652-020-02167-9.

[2] D. A. Effendy, K. Kusrini, and S. Sudarmawan, “Classification of intrusion detection

system (IDS) based on computer network,” in 2017 2nd International conferences on

Information Technology, Information Systems and Electrical Engineering (ICITISEE),

2017.

[3] S. KishorWagh, V. K. Pachghare, and S. R. Kolhe, “Survey on intrusion detection

system using machine learning techniques,” Int. J. Comput. Appl., vol. 78, no. 16, pp.

30–37, 2013.

[4] D. Rajput and A. Thakkar, “A survey on different network intrusion detection systems

and Counter Measure,” in Emerging Research in Computing, Information,

Communication and Applications, Singapore: Springer Singapore, 2019, pp. 497–506.

[5] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, and M. Fischer, “Taxonomy and

survey of collaborative intrusion detection,” ACM Comput. Surv., vol. 47, no. 4, pp. 1–

33, 2015.

[6] T. Fawcett, "An introduction to ROC analysis,” Pattern Recognition Letters, vol. 27,

no. 8, pp. 861-874, 2006. Available: 10.1016/j.patrec.2005.10.010.

[7] A. Riza’, A. Yusof, N. I. Udzir, and A. Selamat, “Systematic literature review and

taxonomy for DDoS attack detection and prediction,” Int. J. Digit. Enterp. Technol.,

vol.

1, no. 3, p. 292, 2019.

[8] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning DDoS detection for

consumer Internet of Things devices,” arXiv [cs.CR], 2018.

[9] R. Wang, Z. Jia, and L. Ju, “An entropy-based distributed DDoS detection mechanism

in software-defined networking,” in 2015 IEEE Trustcom/BigDataSE/ISPA, 2015.

[10] A. S. S. Navaz, V. Sangeetha, and C. Prabhadevi, “Entropy based Anomaly detection

System to prevent DDoS attacks in cloud,” arXiv [cs.CR], 2013.

44

[11] J. Li, Y. Liu, and L. Gu, “DDoS attack detection based on neural network,” in 2010

2nd

International Symposium on Aware Computing, 2010.

[12] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach to network

intrusion detection,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 2, no. 1, pp. 41–

50, 2018.

[13] X. Liang and T. Znati, “An empirical study of intelligent approaches to DDoS

detection in large scale networks,” in 2019 International Conference on Computing,

Networking and Communications (ICNC), 2019.

[14] Y. N. Soe, P. I. Santosa, and R. Hartanto, “DDoS attack detection based on simple

ANN with SMOTE for IoT environment,” in 2019 Fourth International Conference

on

Informatics and Computing (ICIC), 2019.

[15] M. D. Prasad, P. Babu, and C. Amarnath, “Machine learning DDoS detection using

stochastic gradient boosting,” Int. J. Comput. Sci. Eng., vol. 7, no. 4, pp. 157–166,

2019.

[16] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward generating a new

intrusion detection dataset and intrusion traffic characterization,” in Proceedings of

the 4th International Conference on Information Systems Security and Privacy, 2018.

[17] “NSL-KDD,” Unb.ca. [Online]. Available: https://www.unb.ca/cic/datasets/nsl.html.

[Accessed: 29-Jun-2021].

[18] H. Gunes Kayacik, A. Nur Zincir-Heywood, and M. I. Heywood, “A hierarchical

SOM-based intrusion detection system,” Eng. Appl. Artif. Intell., vol. 20, no. 4, pp.

439– 451, 2007.

[19] R. Sahani, Shatabdinalini, C. Rout, J. Chandrakanta Badajena, A. K. Jena, and H.

Das,

“Classification of intrusion detection using data mining techniques,” in Advances in

Intelligent Systems and Computing, Singapore: Springer Singapore, 2018, pp. 753–

764.

[20] Kurniabudi, D. Stiawan, Darmawijoyo, M. Y. Bin Idris, A. M. Bamhdi, and R.

Budiarto,

45

“CICIDS-2017 dataset feature analysis with information gain for anomaly detection,”

IEEE Access, vol. 8, pp. 132911–132921, 2020.

[21] R. Abdulhammed, H. Musafer, A. Alessa, M. Faezipour, and A. Abuzneid, “Features

dimensionality reduction approaches for Machine Learning based network intrusion

detection,” Electronics (Basel), vol. 8, no. 3, p. 322, 2019.

[22] “sklearn.preprocessing.MinMaxScaler — scikit-learn 0.24.2 documentation,” Scikit-

learn.org. [Online]. Available: https://scikit

learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html.

[Accessed: 29-Jun-2021].

[23] "Using Under-Sampling Techniques for Extremely Imbalanced Data", Medium, 2021.

[Online]. Available: https://medium.com/dataman-in-ai/sampling-techniques-for-

extremely-imbalanced-data-part-i-under-sampling-a8dbc3d8d6d8. [Accessed: 28-Jun-

2021].

[24] "sklearn.preprocessing.LabelEncoder—scikit-learn 0.24.2 documentation,” Scikit-

learn.org, 2021.

[Online].Available:https://scikitlearn.org/stable/modules/generated/sklearn.prepr

ocessing.LabelEncoder.html. [Accessed: 28- Jun- 2021].

[25] T. Mahjabin, Y. Xiao, G. Sun and W. Jiang, "A survey of distributed denial-of-service

attack, prevention, and mitigation techniques,” International Journal of Distributed

Sensor Networks, vol. 13, no. 12, p. 155014771774146, 2017. Available:

10.1177/1550147717741463.

[26] K. N. Mallikarjunan, K. Muthupriya, and S. M. Shalinie, “A survey of distributed

denial of service attack,” in 2016 10th International Conference on Intelligent Systems

and

Control (ISCO), 2016.

[27] “Top 4 famous DDoS attacks in history,” Indusface.com, 03-Sep-2019. [Online].

Available: https://www.indusface.com/blog/famous-ddos-attacks/. [Accessed: 30-Jun-

2021].

[28] S. Loukas, “Multi-class Classification: Extracting performance metrics from the

confusion matrix,” Towards Data Science, 19-Jun-2020. [Online]. Available:

46

https://towardsdatascience.com/multi-class-classification-extracting-performance-

metrics-from-the-confusion-matrix-b379b427a872. [Accessed: 30-Jun-2021].

[29] S. Narkhede, “Understanding AUC - ROC Curve - Towards Data Science,” Towards

Data Science, 26-Jun-2018. [Online]. Available:

https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5.

[Accessed: 30-Jun-2021].

[30] L. Babarinde, Patrick Wall, and G. McKeever, “DDoS Attack Types & Mitigation

Methods,” Imperva.com. [Online]. Available:

https://www.imperva.com/learn/ddos/ddos-attacks/. [Accessed: 30-Jun-2021].

[31] S. Sun, “A survey of multi-view machine learning,” Neural Comput. Appl., vol. 23,

no.

7–8, pp. 2031–2038, 2013.

[32] H. Rajadurai and U. D. Gandhi, “A stacked ensemble learning model for intrusion

detection in wireless network,” Neural Comput. Appl., 2020.

[33] “Chi-square statistic: How to calculate it / distribution,” Statisticshowto.com, 04-Dec-

2020. [Online]. Available: https://www.statisticshowto.com/probability-and-

statistics/chi-square/. [Accessed: 30-Jun-2021].

[34] “Python - Pearson correlation test between two variables - GeeksforGeeks,”

Geeksforgeeks.org, 06-Apr-2020. [Online]. Available:

https://www.geeksforgeeks.org/python-pearson-correlation-test-between-two-

variables/. [Accessed: 30-Jun-2021].

[35] Procrastinator, “How to dealing with imbalanced classes in machine learning,”

Analyticsvidhya.com, 06-Oct-2020. [Online]. Available:

https://www.analyticsvidhya.com/blog/2020/10/improve-class-imbalance-

class-weights/. [Accessed: 30-Jun-2021].

[36] R. Mohammed, J. Rawashdeh, and M. Abdullah, “Machine learning with

oversampling and undersampling techniques: Overview study and experimental

results,” in 2020

11th International Conference on Information and Communication Systems (ICICS),

2020.

47

[37] Aman, “Feature selection techniques in machine learning,” Analyticsvidhya.com, 10-

Oct-2020. [Online]. Available:

https://www.analyticsvidhya.com/blog/2020/10/feature-selection-techniques-in-

machine-learning/. [Accessed: 30-Jun-2021].

[38] H. Heidenreich, “What are the types of machine learning? - Towards Data Science,”

TowardsDataScience,04-Dec-2018.[Online].Available:

https://towardsdatascience.com/what-are-the-types-of-machine-learning-

e2b9e5d1756f. [Accessed: 30-Jun-2021].

[39] O. F.y et al., “Supervised machine learning algorithms: Classification and

comparison,”

Int. J. Comput. Trends Technol., vol. 48, no. 3, pp. 128–138, 2017.

[40] N. Bhati and M. Khari, "A new ensemble based approach for intrusion detection

system using voting,” Journal of Intelligent & Fuzzy Systems, pp. 1-11, 2021.

Available: 10.3233/jifs-189764.

[41] G. Varoquaux, L. Buitinck, G. Louppe, O. Grisel, F. Pedregosa, and A. Mueller,

“Scikit-learn: Machine learning without learning the machinery,” GetMob. Mob.

Comput. Commun., vol. 19, no. 1, pp. 29–33, 2015.

48

Appendix A

This section will provide detailed results about each step that has been done in this

thesis. Appendix A has been divided into three sections. Section A.1 explained the results for

each supervised machine learning method before and after applying feature selection. The

result after each feature selection method has been compared to select the best results. Section

A.2 illustrated the results for the NSL-KDD dataset after applying the correlation method and

applying correlation with the Chi-2 method. This section also shows the performance for each

supervised method along with each ensemble method by using the ROC-AUC curve. The

same order has been done for section A.3. This section focused on the results of the CICIDS-

2017 dataset in the same order as the previous section.

A.1 Feature Selection Detailed Results

Table A.1 Feature Selection Comparisons for NSL-KDD

Table A.2 Feature Selection Comparisons for CICIDS2017

ML

model

Before correlation Chi-2

Acc FPR Time Acc FPR Time Acc FPR Time

LR 0.99 0.0003 11.52 0.99 0.0008 8.39 0.98 0.003 8.27

DT 0.72 0.20 0.53 0.72 0.02 0.43 0.99 0.0008 0.41

RF 0.99 0.0001 8.15 0.99 0.0001 8.02 0.99 0.0001 8.28

NB 0.95 0.010 0.38 0.95 0.010 0.30 0.93 0.006 0.14

ML

model

Before correlation Chi-2

Acc FPR Time Acc FPR Time Acc FPR Time

LR 0.98 0.0027 269.0 0.98 0.0027 255.6 0.91 0.017 128.09

DT 0.99 0.0002 34.09 0.99 0.0001 29.12 0.75 0.05 15.64

RF 0.99 0.0001 309.12 0.99 0.0001 302.1 0.80 0.033 284.4

NB 0.79 0.037 2.87 0.79 0.037 2.56 0.54 0.084 0.862

4
9

A.2 NSL-KDD Dataset Results

Table A.3 Supervised Model performance after applying Correlation based feature selection – NSL-KDD

Table A.4 Ensemble Classifier after applying Correlation Based Feature Selection - NSL-KDD

Class LR DT RF NB

Precision Recall F- 1 Precision Recall F-1 Precision Recall F- 1 Precision Recall F-1

Apache 0.96 0.98 0.97 0.98 0.63 0.76 1.00 0.99 0.99 0.95 0.99 0.97

Back 0.99 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.99

Land 0.80 0.80 0.80 0.00 0.00 0.00 1.00 0.80 0.89 0.00 0.00 0.00

Mailbomb 0.94 0.70 0.80 0.97 0.92 0.94 1.00 1.00 1.00 0.00 0.00 0.00

Neptune 1.00 1.00 1.00 1.00 0.22 0.37 1.00 1.00 1.00 0.98 1.00 0.99

Normal 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.99 0.96

Pod 0.92 0.98 0.95 1.00 1.00 1.00 0.98 1.00 0.99 0.00 0.00 0.00

Processtable 0.92 0.92 0.92 0.02 0.99 0.04 1.00 1.00 1.00 0.97 1.00 0.98

Smurf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00

teardrop 0.96 1.00 0.98 1.00 0.99 1.00 1.00 0.99 1.00 0.00 0.00 0.00

Class Voting Stacking

Precision Recall F- 1 Precision Recall F-1

Apache 1.00 0.99 0.99 1.00 0.99 1.00

Back 1.00 1.00 1.00 1.00 1.00 1.00

Land 0.75 0.60 0.67 1.00 0.80 0.89

Mailbomb 1.00 1.00 1.00 1.00 1.00 1.00

Neptune 1.00 1.00 1.00 1.00 1.00 1.00

Normal 1.00 1.00 1.00 1.00 1.00 1.00

Pod 0.98 0.98 0.98 0.98 1.00 0.99

Processtable 0.98 1.00 0.99 1.00 1.00 1.00

Smurf 1.00 1.00 1.00 1.00 1.00 1.00

teardrop 0.97 0.99 0.98 1.00 0.99 1.00

5
0

Table A.5 Supervised models and Ensemble Classifier Performance – NSL-KDD

Table A.6 Supervised Model performance after applying Correlation and Chi-2 based feature selection – NSL-KDD

Class Accuracy FPR ROC-AUC

(Macro)

ROC-AUC

(Micro)

Time

LR 0.99 0.0008 1.00 1.00 8.29

DT 0.72 0.028 0.87 0.85 0.41

RF 1.00 0.0001 1.00 1.00 6.78

NB 0.95 0.010 0.98 0.74 0.21

Stack 1.00 0.0001 1.00 1.00 66.32

Voting 1.00 0.0002 1.00 1.00 14.87

Class LR DT RF NB

Precision Recall F- 1 Precision Recall F-1 Precision Recall F- 1 Precision Recall F-1

Apache 0.97 0.93 0.95 1.00 0.99 0.99 1.00 0.99 0.99 0.91 0.99 0.95

Back 0.98 1.00 0.99 0.88 0.08 0.14 1.00 1.00 1.00 1.00 0.98 0.99

Land 0.60 0.60 0.60 0.50 0.80 0.62 0.80 0.80 0.80 0.03 1.00 0.07

Mailbomb 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

Neptune 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99

Normal 0.98 0.99 0.98 0.98 1.00 0.99 1.00 1.00 1.00 0.99 0.94 0.96

Pod 0.91 0.66 0.77 0.94 0.98 0.96 0.94 0.98 0.96 0.94 0.98 0.96

Processtable 0.95 0.74 0.83 1.00 0.98 0.99 1.00 1.00 1.00 0.90 0.97 0.93

Smurf 0.76 0.75 0.76 1.00 1.00 1.00 1.00 1.00 1.00 0.44 1.00 0.62

teardrop 0.93 1.00 0.96 0.97 0.99 0.98 0.98 0.99 0.99 0.96 1.00 0.98

51

Table A.7 Ensemble Classifier after applying Correlation and Chi-2- NSL-KDD

Table A.8 Supervised models and Ensemble Classifier Performance– NSL-KDD

Class Voting Stacking

Precision Recall F- 1 Precision Recall F-1

Apache 1.00 0.98 0.99 1.00 0.99 0.99

Back 1.00 1.00 1.00 1.00 1.00 1.00

Land 0.60 0.60 0.60 0.80 0.80 0.80

Mailbomb 1.00 0.97 0.98 1.00 1.00 1.00

Neptune 1.00 1.00 1.00 1.00 1.00 1.00

Normal 1.00 1.00 1.00 1.00 1.00 1.00

Pod 0.94 0.98 0.96 0.94 0.98 0.96

Processtable 0.98 0.97 0.98 1.00 0.99 1.00

Smurf 1.00 0.99 1.00 1.00 1.00 1.00

teardrop 0.97 0.99 0.98 0.98 0.99 0.99

Class Accuracy FPR ROC-AUC

(Macro)

ROC-AUC

(Micro)

Time

LR 0.97 0.004 1.00 1.00 5.76

DT 0.99 0.0003 0.89 0.99 0.27

RF 1.00 0.0001 1.00 1.00 6.98

NB 0.95 0.005 0.99 1.00 0.10

Stack 1.00 0.0002 0.99 1.00 56.6

Voting 0.99 0.0004 1.00 1.00 13.30

52

Figure A.1 ROC-AUC curve for Logistic Regression model – NSL-KDD

Figure A.2 ROC-AUC curve for Decision Tree model – NSL-KDD

53

Figure A.3 ROC-AUC curve for Random Forest model – NSL-KDD

Figure A.4 ROC-AUC curve for Naive Bayes model – NSL-KDD

54

Figure A.6 ROC-AUC curve for Voting Ensemble model – NSL-KDD

Figure A.5 ROC-AUC curve for Stacking Ensemble model – NSL-KDD

5
5

A.3 CICIDS2017 Dataset Results

Table A.9 Supervised Model performance after applying Correlation based feature selection – CICIDS2017

Table A.10 Ensemble Classifier after applying Correlation Based Feature Selection – CICIDS2017

Class RF DT LR NB

Precision Recall F- 1 Precision Recall F-1 Precision Recall F- 1 Precision Recall F-1

Benign 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.97 0.92 0.94

DoS Hulk 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00

DDoS 1.00 1.00 1.00 0.99 0.96 0.96 0.99 0.95 0.97 0.54 0.65 0.59

DoS

GoldenEye

1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 0.75 0.99 0.85

DoS

Slowhttptest

1.00 0.99 0.99 0.99 0.99 0.99 0.95 0.96 0.96 0.06 0.66 0.11

DoS

slowloris

0.99 1.00 0.99 0.99 0.99 0.99 0.96 0.84 0.90 0.21 0.96 0.34

Heartbleed 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Class Voting Stacking

Precision Recall F- 1 Precision Recall F-1

Benign 1.00 1.00 1.00 1.00 1.00 1.00

DoS Hulk 1.00 1.00 1.00 1.00 1.00 1.00

DDoS 1.00 0.97 0.98 1.00 0.99 1.00

DoS

GoldenEye

1.00 1.00 1.00 1.00 1.00 1.00

DoS

Slowhttptest

0.99 0.99 0.99 1.00 0.99 0.99

DoS slowloris 0.99 1.00 0.99 0.99 1.00 1.00

Heartbleed 1.00 1.00 1.00 1.00 1.00 1.00

5
6

Table A.11 Supervised models and Ensemble Classifier Performance – CICIDS2017

Table A.12 Supervised Model performance after applying Correlation and Chi-2 based feature selection – CICIDS2017

Class Accuracy FPR ROC-AUC

(Macro)

ROC-AUC (Micro) Time

LR 0.99 0.0027 1.00 1.00 255.6

DT 1.00 0.0001 1.00 1.00 32.67

RF 1.00 0.0001 1.00 1.00 305.19

NB 0.79 0.037 0.88 0.83 2.733

Stack 1.00 0.0001 1.00 1.00 5.45

Voting 0.99 0.0002 1.00 1.00 3.02

Class RF DT LR NB

Precision Recall F- 1 Precision Recall F-1 Precision Recall F- 1 Precision Recall F-1

Benign 1.00 1.00 1.00 0.82 1.00 0.90 0.97 0.93 0.95 0.99 0.53 0.69

DoS Hulk 1.00 1.00 1.00 0.99 1.00 0.99 0.98 0.99 0.98 0.36 0.99 0.53

DDoS 0.99 0.99 0.99 1.00 0.98 0.99 0.34 0.66 0.45 0.07 0.13 0.09

DoS

GoldenEye

1.00 1.00 1.00 0.99 0.58 0.74 0.95 0.95 0.95 0.92 0.68 0.78

DoS

Slowhttptest

0.98 0.94 0.96 0.99 0.88 0.93 0.55 0.73 0.63 0.27 0.56 0.37

DoS slowloris 1.00 0.97 0.98 0.99 0.88 0.93 0.30 0.51 0.37 0.13 0.81 0.23

Heartbleed 1.00 1.00 1.00 1.00 1.00 1.00 0.20 0.50 0.29 1.00 1.00 1.00

57

Table A.13 Ensemble Classifier after applying Correlation and Chi-2 – CICIDS2017

Table A.14 Supervised models and Ensemble Classifier Performance after Correlation and Chi-2 – CICIDS2017

Class Voting Stacking

Precision Recall F- 1 Precision Recall F-1

Benign 0.99 1.00 0.99 1.00 1.00 1.00

DoS Hulk 0.99 1.00 1.00 0.99 1.00 1.00

DDoS 1.00 0.98 0.99 0.99 0.99 0.99

DoS GoldenEye 1.00 0.98 0.99 1.00 1.00 1.00

DoS Slowhttptest 0.99 0.88 0.93 0.98 0.92 0.95

DoS slowloris 0.99 0.88 0.93 1.00 0.97 0.98

Heartbleed 1.00 1.00 1.00 1.00 1.00 1.00

Class Accuracy FPR ROC-

AUC

(Macro)

ROC-AUC

(Micro)

Time

LR 0.94 0.012 0.98 0.99 73.29

DT 0.88 0.036 0.93 0.93 11.33

RF 1.00 0.0005 1.00 1.00 172.17

NB 0.64 0.058 0.93 0.93 0.58

Stack 0.99 0.0007 1.00 1.00 5.12

Voting 0.99 0.002 1.00 1.00 2.77

58

Figure A.7 ROC-AUC curve for Logistic Regression model – CICIDS2017

Figure A.8 ROC-AUC curve for Decision Tree model – CICIDS2017

59

Figure A.9 ROC-AUC curve for Random Forest model – CICIDS2017

Figure A.10 ROC-AUC curve for Naive Bayes model – CICIDS2017

60

Figure A.9 ROC-AUC curve for Stacking Ensemble model – CICIDS2017

Figure A.10 ROC-AUC curve for Voting Ensemble model – CICIDS2017

61

Appendix B

Appendix B contains two main sections B.1 and B.2. In section B.1, the code that has

been applied in the NSL-KDD dataset is illustrated along with its comments for more

understanding. Each step is illustrated in the comments above its code with the symbol #

before it. Same as in section B.2, the code that has been applied on CICIDS-2017 is explained

with its comments.

B.1 NSL-KDD Dataset Detailed Codes

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn import preprocessing

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.feature_selection import SelectKBest, chi2

from sklearn.metrics import confusion_matrix

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier, VotingClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score, f1_score, precision_score,recall_score

from sklearn.metrics import roc_curve, auc

from sklearn.metrics import classification_report

from sklearn.metrics import plot_confusion_matrix

from sklearn.preprocessing import label_binarize

from sklearn.preprocessing import MinMaxScaler

from itertools import cycle

from sklearn.ensemble import StackingClassifier

import time

import keras

#open NSL-KDD Dataset file

file_path = 'NSLKDD_Dos.xlsx'

dataset = pd.read_excel(file_path)

dataset.head()

#Set column names

columns = ([‘name of columns’])

dataset.columns = columns

62

#print class attack with their number of sample

print('Label distribution:')

dataset[' Label'].value_counts()

divided dataset to x for data and y for target

X = dataset.iloc[:,0:44]

y = dataset.iloc[:, -4].values

#plot the number of samples for each class of attack

labels, counts = np.unique(y, return_counts=True)

plt.figure(figsize=(13, 8))

plt.bar(labels, counts, align='center')

plt.gca().set_xticks(labels)

plt.show()

#print the object feature to know which feature will convert to numeric

s = (dataset.dtypes == 'object')

object_cols = list(s[s].index)

print("Categorical variables:")

print(object_cols)

#convert non numeric to numeric value for all features

label_df = dataset.select_dtypes(include=['object']).copy()

encoder = preprocessing.LabelEncoder()

for col in columns:

 label_df[col] = encoder.fit_transform(dataset[col])

label_df.head(5)

#Re-divided the to x for data and y for target

X = label_df.iloc[:,0:43]

y = label_df.iloc[:, 3].values

X = X.drop(['attack'], axis=1)

#feature selection using chi2

bestfeatures = SelectKBest(score_func=chi2, k=2)

fit = bestfeatures.fit(X, y)

feat_importances = pd.Series(fit.scores_, index=X.columns)

topFatures = feat_importances.nlargest(25).copy().index.values

print("TOP 25 Features (Best to worst) :\n")

print(topFatures)

#create new x with the selected feature and pass it to the correlation

X = X[['dst_bytes','src_bytes', 'duration', 'srv_count' ,'count',

63

 'dst_host_srv_count', 'dst_host_srv_serror_rate' ,'dst_host_serror_rate',

 'serror_rate' ,'srv_serror_rate', 'same_srv_rate' ,'dst_host_same_srv_rate',

 'dst_host_same_src_port_rate' ,'dst_host_count', 'rerror_rate',

 'srv_rerror_rate' ,'dst_host_srv_rerror_rate', 'dst_host_rerror_rate',

 'srv_diff_host_rate', 'wrong_fragment', 'dst_host_srv_diff_host_rate',

 'diff_srv_rate' ,'service', 'dst_host_diff_srv_rate' ,'land']]

#Applying Correlation based feature selection

def identify_correlated(df, threshold):

 #A function to identify highly correlated features.

 # Compute correlation matrix with absolute values

 matrix = df.corr().abs()

 # Create a boolean mask

 mask = np.triu(np.ones_like(matrix, dtype=bool))

 # Subset the matrix

 reduced_matrix = matrix.mask(mask)

 # Find cols that meet the threshold

 to_drop = [c for c in reduced_matrix.columns if

 any(reduced_matrix[c] > threshold)]

 plt.figure(figsize=(15,15))

 sns.heatmap(matrix)

 plt.show()

 return to_drop

to_drop = identify_correlated(X, threshold=.9)

len(to_drop)

#the heatmap correlation is not good option for large feature

Drop the high correlated cols and print the selected one

data_reduced = X.drop(to_drop, axis=1)

X = data_reduced

print(type(X))

X.head()

#spilt the dataset to train and test set

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=42)

y_train_onehot = keras.utils.to_categorical(y_train)

#scale the data using MinMaxScaler / data normalization

scaler = MinMaxScaler()

x_train = scaler.fit_transform(x_train)

x_test = scaler.fit_transform(x_test)

Under-sampling + adjusted weight

#print number of test set and train set for each class before applying Sampling methods

from collections import Counter

counter = Counter(y_train)

64

print(counter)

counter1 = Counter(y_test)

print(counter1)

labels = ['apache2' , 'back' ,'mailbomb' , 'neptune' , 'normal' ,'pod' ,'processtable', 'smurf' ,

'teardrop']

#Applying UnderSampling Methods - NeighbourhoodCleaningRule

from imblearn.under_sampling import NeighbourhoodCleaningRule

undersample = NeighbourhoodCleaningRule(n_neighbors=10, threshold_cleaning=0.9)

x_train, y_train = undersample.fit_resample(x_train, y_train)

#Adjusting weight

from sklearn.utils import class_weight

class_weights = dict(enumerate(class_weight.compute_class_weight('balanced',

 np.unique(y_train),y_train)))

print(class_weights)

evaluation metrix

#used to calculate the overall accuracy and precision for each class

def myEvaluation(y, y_pred):

 # calculate the overall acc

 correct_preds = np.sum(y == y_pred, axis=0)

 acc = correct_preds / y.shape[0]

 # calculate the precision for each class

 cm = confusion_matrix(y , y_pred)

 #print(cm)

 precision = np.array([])

 for i in range(y_train_onehot.shape[1]):

 first_part = cm[i][i]

 #print('i : ' ,i , 'first_part = ' , first_part)

 sec_part = 0

 for j in range(y_train_onehot.shape[1]):

 sec_part = sec_part + cm[j][i]

 result = first_part / sec_part

 #print('the presision of class', i , 'is = ' , result)

 precision = np.append(precision,result)

 # return acc and precision array

 return acc ,precision

'''This function is used from this website

https://towardsdatascience.com/multi-class-classification-extracting-

performance-metrics-from-the-confusion-matrix-b379b427a872

to evluate the models '''

65

from statistics import *

def met_eval(cnf_matrix):

 FP = cnf_matrix.sum(axis=0) - np.diag(cnf_matrix)

 FN = cnf_matrix.sum(axis=1) - np.diag(cnf_matrix)

 TP = np.diag(cnf_matrix)

 TN = cnf_matrix.sum() - (FP + FN + TP)

 FP = FP.astype(float)

 FN = FN.astype(float)

 TP = TP.astype(float)

 TN = TN.astype(float)

 # Sensitivity, hit rate, recall, or true positive rate

 TPR = TP/(TP+FN)

 # Specificity or true negative rate

 PPV = TP/(TP+FP)

 # false positive rate

 FPR = FP/(FP+TN)

 # Overall accuracy for each class

 ACC = (TP+TN)/(TP+FP+FN+TN)

 print(labels)

 print('ACC : ', ACC)

 print('Sensitivity : ', TPR)

 print('FPR : ', mean(FPR))

 print('Precision :', PPV)

ROC-AUC curve

y_test_onehot = keras.utils.to_categorical(y_test)

y = label_binarize(y_test_onehot, classes=[0, 1,2 ,3 ,4,5,6 ,7,8,9,10])

n_classes = y.shape[1]

def ROC(n_classes,y_test_onehot, pred_prob):

 fpr = dict()

 tpr = dict()

 roc_auc = dict()

 for i in range(n_classes):

 fpr[i], tpr[i], _ = roc_curve(y_test_onehot[:, i], pred_prob[:, i])

 roc_auc[i] = auc(fpr[i], tpr[i])

 # Compute micro-average ROC curve and ROC area

 fpr["micro"], tpr["micro"], _ = roc_curve(y_test_onehot.ravel(),pred_prob.ravel())

 roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

 return roc_auc,fpr,tpr

def plot_classes(n_classes , fpr ,tpr):

 # First aggregate all false positive rates

 all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))

 # Then interpolate all ROC curves at this points

 mean_tpr = np.zeros_like(all_fpr)

66

 for i in range(n_classes):

 mean_tpr += np.interp(all_fpr, fpr[i], tpr[i])

 # Finally average it and compute AUC

 mean_tpr /= n_classes

 fpr["macro"] = all_fpr

 tpr["macro"] = mean_tpr

 roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])

 # Plot all ROC curves

 plt.figure(figsize=(10, 10))

 plt.plot(fpr["micro"], tpr["micro"],

 label='micro-average ROC curve (area = {0:0.2f})'

 ''.format(roc_auc["micro"]),

 color='deeppink', linestyle=':', linewidth=4)

 plt.plot(fpr["macro"], tpr["macro"],

 label='macro-average ROC curve (area = {0:0.2f})'

 ''.format(roc_auc["macro"]),

 color='navy', linestyle=':', linewidth=4)

 colors = cycle(['aqua', 'darkorange', 'blue', 'red', 'orange', 'yellow' , 'olive' , 'pink' , 'purple'])

 for i, color in zip(range(n_classes), colors):

 plt.plot(fpr[i], tpr[i], color=color,

 label='ROC curve of class {0} (area = {1:0.2f})'

 ''.format(labels[i], roc_auc[i]))

 plt.plot([0, 1], [0, 1], 'k--')

 plt.xlim([0.0, 1.0])

 plt.ylim([0.0, 1.05])

 plt.xlabel('False Positive Rate')

 plt.ylabel('True Positive Rate')

 plt.title('Some extension of Receiver operating characteristic to multi-class')

 plt.legend(loc="lower right")

 plt.show()

###Supervised/stacking/voting --machine learning models

#Logistic Regression

LogReg_clf = LogisticRegression(solver= 'liblinear' , C= 10)

start = time.time()

LogReg_clf.fit(x_train, y_train)

LogReg_pred = LogReg_clf.predict(x_test)

LogReg_pred_prob = LogReg_clf.predict_proba(x_test)

LogReg_pred_score = accuracy_score(LogReg_pred, y_test)

print('LogReg_pred_score :', LogReg_pred_score)

acc , precision= myEvaluation(y_test, LogReg_pred)

print('my accuracy: {:.2f}'.format(acc))

print('my precision:', precision)

67

print(classification_report(y_test, LogReg_pred))

cnf_matrix_lr = confusion_matrix(y_test, LogReg_pred)

class_names = labels

disp = plot_confusion_matrix(LogReg_clf, x_test, y_test,

 display_labels=class_names,

 cmap=plt.cm.Blues)

plt.show()

met_eval(cnf_matrix_lr)

end = time.time()

print(end - start, 'seconds')

#print Roc accuracy for each class of attack

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, LogReg_pred_prob)

plot_classes(n_classes , fpr ,tpr)

#Decision Tree

DTree_clf = DecisionTreeClassifier(criterion="entropy")

DTree_clf.fit(x_train, y_train)

start = time.time()

DTree_pred = DTree_clf.predict(x_test)

end = time.time/()

DTree_pred_prob = DTree_clf.predict_proba(x_test)

DTtree_pred_score = accuracy_score(DTree_pred, y_test)

print('DTtree_pred_score :', DTtree_pred_score)

acc , precision= myEvaluation(y_test, DTree_pred)

print('my accuracy: {:.2f}'.format(acc))

print('my precision:', precision)

print(classification_report(y_test, DTree_pred))

cnf_matrix_dt = confusion_matrix(y_test, DTree_pred)

class_names = labels

disp = plot_confusion_matrix(DTree_clf, x_test, y_test,

 display_labels=class_names,

 cmap=plt.cm.Blues)

plt.show()

met_eval(cnf_matrix_dt)

print(end - start, 'seconds')

#Print Roc curve for decision tree

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, DTree_pred_prob)

plot_classes(n_classes , fpr ,tpr)

#Random Forest

RF_clf = RandomForestClassifier()

RF_clf.fit(x_train, y_train)

RF_pred = RF_clf.predict(x_test)

end = time.time()

RF_pred_prob = RF_clf.predict_proba(x_test)

RF_pred_score = accuracy_score(RF_pred, y_test)

68

print('RF_pred_score :', RF_pred_score)

acc , precision= myEvaluation(y_test, RF_pred)

print('my accuracy: {:.2f}'.format(acc))

print('my precision:', precision)

cnf_matrix_rf = confusion_matrix(y_test, RF_pred)

print(classification_report(y_test, RF_pred))

class_names = labels

disp = plot_confusion_matrix(RF_clf, x_test, y_test,

 display_labels=class_names,

 cmap=plt.cm.Blues)

plt.show()

met_eval(cnf_matrix_rf)

print(end - start, 'seconds')

#Roc Curve for random forest results

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, RF_pred_prob)

plot_classes(n_classes , fpr ,tpr)

#Naive Bayes

NB_clf = GaussianNB()

NB_clf.fit(x_train, y_train)

start = time.time()

NB_pred = NB_clf.predict(x_test)

end = time.time()

NB_pred_prob = NB_clf.predict_proba(x_test)

NB_pred_score = accuracy_score(NB_pred, y_test)

print('NB_pred_score :', NB_pred_score)

acc , precision= myEvaluation(y_test, NB_pred)

print('my accuracy: {:.2f}'.format(acc))

print('my precision:', precision)

print(classification_report(y_test, NB_pred))

cnf_matrix_nb = confusion_matrix(y_test, NB_pred)

class_names = labels

disp = plot_confusion_matrix(NB_clf, x_test, y_test,

 display_labels=class_names,

 cmap=plt.cm.Blues)

plt.show()

met_eval(cnf_matrix_nb)

print(end - start, 'seconds')

#Roc Curve for NB reslts

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, NB_pred_prob)

plot_classes(n_classes , fpr ,tpr)

Stacking ensamble classifier

define meta learner model

level1 = RandomForestClassifier()

define the stacking ensemble

69

model = StackingClassifier(estimators=[('DTree', DTree_clf),('RF' , RF_clf)],

final_estimator=level1, cv=3)

fit the model on all available data

model.fit(x_train, y_train)

start = time.time()

y_preds = model.predict(x_test)

end = time.time()

model_pred_prob = model.predict_proba(x_test)

stacking_pred_score = accuracy_score(y_preds, y_test)

print('voting_pred_score :', stacking_pred_score)

acc , precision= myEvaluation(y_test, y_preds)

print('my accuracy: {:.2f}'.format(acc))

print('my precision:', precision)

print(classification_report(y_test, y_preds))

cnf_matrix_vot = confusion_matrix(y_test, y_preds)

class_names = labels

disp = plot_confusion_matrix(model, x_test, y_test,

 display_labels=class_names,

 cmap=plt.cm.Blues)

plt.show()

met_eval(cnf_matrix_vot)

print(end - start, 'seconds')

#Plot Roc Curve for stacking ensamble classifier

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, model_pred_prob)

plot_classes(n_classes , fpr ,tpr)

#Applying Voting ensamble classifier

voting_clf = VotingClassifier(estimators=[('DTree', DTree_clf), ('RF' , RF_clf)], voting='soft')

voting_clf.fit(x_train, y_train)

start = time.time()

preds = voting_clf.predict(x_test)

end = time.time()

voting_pred_prob = voting_clf.predict_proba(x_test)

voting_pred_score = accuracy_score(preds, y_test)

print('voting_pred_score :', voting_pred_score)

acc , precision= myEvaluation(y_test, preds)

print('my accuracy: {:.2f}'.format(acc))

print('my precision:', precision)

print(classification_report(y_test, preds))

cnf_matrix_vot = confusion_matrix(y_test, preds)

class_names = labels

disp = plot_confusion_matrix(voting_clf, x_test, y_test,

 display_labels=class_names,

 cmap=plt.cm.Blues)

plt.show()

met_eval(cnf_matrix_vot)

70

print(end - start, 'seconds')

#Plot Roc curve for voting ensamble classifier

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, voting_pred_prob)

plot_classes(n_classes , fpr ,tpr)

B.2 CICIDS-2017 Detailed Codes

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn import preprocessing

from sklearn.feature_selection import mutual_info_regression, mutual_info_classif

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.feature_selection import SelectKBest, chi2

from sklearn.metrics import confusion_matrix

from sklearn.tree import DecisionTreeClassifier

import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestClassifier, VotingClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score, f1_score, precision_score,recall_score

from sklearn.metrics import roc_curve, auc

from sklearn.metrics import classification_report

from sklearn.metrics import plot_confusion_matrix

from sklearn.preprocessing import label_binarize

from sklearn.preprocessing import MinMaxScaler

from itertools import cycle

from sklearn.ensemble import StackingClassifier

from sklearn.metrics import log_loss

import time

import keras

#open Dos Dataset file and DDos Dataset file

df1 = pd.read_csv("cicids/Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv")

df8=pd.read_csv("cicids/Wednesday-workingHours.pcap_ISCX.csv")

#Combined Both dataset with deleting BENIGN case from first dataset

data = df1.loc[df1[" Label"] != 'BENIGN']

dataset = pd.concat([df8,data]).reset_index(drop=True)

#print class attack with their number of sample

print('Label distribution:')

dataset[' Label'].value_counts()

71

divided dataset to x for data and y for target

X = dataset.iloc[:,0:78]

y = dataset.iloc[:, -1].values

#plot the number of samples for each class of attack

labels, counts = np.unique(y, return_counts=True)

plt.figure(figsize=(13, 8))

plt.bar(labels, counts, align='center')

plt.gca().set_xticks(labels)

plt.show()

#print the object feature to know which feature will convert to numeric

s = (dataset.dtypes == 'object')

object_cols = list(s[s].index)

print("Categorical variables:")

print(object_cols)

#convert non numeric to numeric value for all features

label_df = dataset.select_dtypes(include=['object']).copy()

encoder = preprocessing.LabelEncoder()

for col in columns:

 label_df[col] = encoder.fit_transform(dataset[col])

label_df.head(5)

#Re-divided the to x for data and y for target

X = label_df.iloc[:,0:79]

y = label_df.iloc[:, 0].values

X = X.drop([' Label'], axis=1)

#feature selection using chi2

bestfeatures = SelectKBest(score_func=chi2, k=2)

fit = bestfeatures.fit(X, y)

feat_importances = pd.Series(fit.scores_, index=X.columns)

topFatures = feat_importances.nlargest(25).copy().index.values

print("TOP 25 Features (Best to worst) :\n")

print(topFatures)

#create new x with the selected feature and pass it to the correlation

X = X[[' Bwd Packets/s' ,' Flow IAT Mean' ,' Flow Duration', ' Flow IAT Std',

 'Flow Bytes/s' ,' Packet Length Std' ,' Packet Length Variance',

 ' Fwd IAT Mean' ,' Fwd IAT Std', ' Flow Packets/s' ,' Flow IAT Max',

 'Fwd Packets/s' ,' Fwd IAT Max' ,'Fwd IAT Total' ,' Bwd Packet Length Std',

 ' Bwd IAT Std' ,' Idle Min' ,' Packet Length Mean' ,' Average Packet Size',

 'Idle Mean', ' Bwd Packet Length Mean', ' Avg Bwd Segment Size',

 ' Bwd IAT Mean', ' Idle Max' ,'Bwd IAT Total']]

72

#Applying Correlation based feature selection

def identify_correlated(df, threshold):

 #A function to identify highly correlated features.

 # Compute correlation matrix with absolute values

 matrix = df.corr().abs()

 # Create a boolean mask

 mask = np.triu(np.ones_like(matrix, dtype=bool))

 # Subset the matrix

 reduced_matrix = matrix.mask(mask)

 # Find cols that meet the threshold

 to_drop = [c for c in reduced_matrix.columns if

 any(reduced_matrix[c] > threshold)]

 plt.figure(figsize=(15,15))

 sns.heatmap(matrix)

 plt.show()

 return to_drop

to_drop = identify_correlated(X, threshold=.9)

len(to_drop)

#the heatmap correlation is not good option for large feature

Drop the high correlated cols and print the selected one

data_reduced = X.drop(to_drop, axis=1)

X = data_reduced

print(type(X))

X.head()

#spilt the dataset to train and test set

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=42)

y_train_onehot = keras.utils.to_categorical(y_train)

#scale the data using MinMaxScaler / data normalization

scaler = MinMaxScaler()

x_train = scaler.fit_transform(x_train)

x_test = scaler.fit_transform(x_test)

Under-sampling + adjusted weight

#print number of test set and train set for each class before applying Sampling methods

from collections import Counter

counter = Counter(y_train)

print(counter)

counter1 = Counter(y_test)

print(counter1)

labels = ['BENIGN' , 'DDoS' , 'DoS GoldenEye' , 'DoS slowloris' , 'DoS Slowhttptest']

#Applying UnderSampling Methods - NeighbourhoodCleaningRule

73

from imblearn.under_sampling import NeighbourhoodCleaningRule

undersample = NeighbourhoodCleaningRule(n_neighbors=10, threshold_cleaning=0.9)

x_train, y_train = undersample.fit_resample(x_train, y_train)

#Adjusting weight

from sklearn.utils import class_weight

class_weights = dict(enumerate(class_weight.compute_class_weight('balanced',

 np.unique(y_train),y_train)))

print(class_weights)

evaluation metrix

#used to calculate the overall accuracy and precision for each class

def myEvaluation(y, y_pred):

 # calculate the overall acc

 correct_preds = np.sum(y == y_pred, axis=0)

 acc = correct_preds / y.shape[0]

 # calculate the precision for each class

 cm = confusion_matrix(y , y_pred)

 #print(cm)

 precision = np.array([])

 for i in range(y_train_onehot.shape[1]):

 first_part = cm[i][i]

 #print('i : ' ,i , 'first_part = ' , first_part)

 sec_part = 0

 for j in range(y_train_onehot.shape[1]):

 sec_part = sec_part + cm[j][i]

 result = first_part / sec_part

 #print('the presision of class', i , 'is = ' , result)

 precision = np.append(precision,result)

 # return acc and precision array

 return acc ,precision

'''This function is used from this website

https://towardsdatascience.com/multi-class-classification-extracting-

performance-metrics-from-the-confusion-matrix-b379b427a872

to evluate the models '''

from statistics import *

def met_eval(cnf_matrix):

 FP = cnf_matrix.sum(axis=0) - np.diag(cnf_matrix)

 FN = cnf_matrix.sum(axis=1) - np.diag(cnf_matrix)

 TP = np.diag(cnf_matrix)

 TN = cnf_matrix.sum() - (FP + FN + TP)

 FP = FP.astype(float)

74

 FN = FN.astype(float)

 TP = TP.astype(float)

 TN = TN.astype(float)

 # Sensitivity, hit rate, recall, or true positive rate

 TPR = TP/(TP+FN)

 # Specificity or true negative rate

 PPV = TP/(TP+FP)

 # false positive rate

 FPR = FP/(FP+TN)

 # Overall accuracy for each class

 ACC = (TP+TN)/(TP+FP+FN+TN)

 print(labels)

 print('ACC : ', ACC)

 print('Sensitivity : ', TPR)

 print('FPR : ', mean(FPR))

 print('Precision :', PPV)

ROC-AUC curve

y_test_onehot = keras.utils.to_categorical(y_test)

y = label_binarize(y_test_onehot, classes=[0, 1,2 ,3 ,4,5,6])

n_classes = y.shape[1]

def ROC(n_classes,y_test_onehot, pred_prob):

 fpr = dict()

 tpr = dict()

 roc_auc = dict()

 for i in range(n_classes):

 fpr[i], tpr[i], _ = roc_curve(y_test_onehot[:, i], pred_prob[:, i])

 roc_auc[i] = auc(fpr[i], tpr[i])

 # Compute micro-average ROC curve and ROC area

 fpr["micro"], tpr["micro"], _ = roc_curve(y_test_onehot.ravel(),pred_prob.ravel())

 roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

 return roc_auc,fpr,tpr

def plot_classes(n_classes , fpr ,tpr):

 # First aggregate all false positive rates

 all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))

 # Then interpolate all ROC curves at this points

 mean_tpr = np.zeros_like(all_fpr)

 for i in range(n_classes):

 mean_tpr += np.interp(all_fpr, fpr[i], tpr[i])

 # Finally average it and compute AUC

 mean_tpr /= n_classes

 fpr["macro"] = all_fpr

 tpr["macro"] = mean_tpr

 roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])

75

 # Plot all ROC curves

 plt.figure(figsize=(10, 10))

 plt.plot(fpr["micro"], tpr["micro"],

 label='micro-average ROC curve (area = {0:0.2f})'

 ''.format(roc_auc["micro"]),

 color='deeppink', linestyle=':', linewidth=4)

 plt.plot(fpr["macro"], tpr["macro"],

 label='macro-average ROC curve (area = {0:0.2f})'

 ''.format(roc_auc["macro"]),

 color='navy', linestyle=':', linewidth=4)

 colors = cycle(['aqua', 'darkorange', 'blue', 'red', 'orange', 'yellow' , 'olive' , 'pink' , 'purple'])

 for i, color in zip(range(n_classes), colors):

 plt.plot(fpr[i], tpr[i], color=color,

 label='ROC curve of class {0} (area = {1:0.2f})'

 ''.format(labels[i], roc_auc[i]))

 plt.plot([0, 1], [0, 1], 'k--')

 plt.xlim([0.0, 1.0])

 plt.ylim([0.0, 1.05])

 plt.xlabel('False Positive Rate')

 plt.ylabel('True Positive Rate')

 plt.title('Some extension of Receiver operating characteristic to multi-class')

 plt.legend(loc="lower right")

 plt.show()

###Supervised/stacking/voting --machine learning models

#Logistic Regression

LogReg_clf = LogisticRegression(solver= 'liblinear' , C= 10)

start = time.time()

LogReg_clf.fit(x_train, y_train)

LogReg_pred = LogReg_clf.predict(x_test)

LogReg_pred_prob = LogReg_clf.predict_proba(x_test)

LogReg_pred_score = accuracy_score(LogReg_pred, y_test)

print('LogReg_pred_score :', LogReg_pred_score)

acc , precision= myEvaluation(y_test, LogReg_pred)

print('my accuracy: {:.2f}'.format(acc))

print('my precision:', precision)

print(classification_report(y_test, LogReg_pred))

cnf_matrix_lr = confusion_matrix(y_test, LogReg_pred)

class_names = labels

disp = plot_confusion_matrix(LogReg_clf, x_test, y_test,

 display_labels=class_names,

 cmap=plt.cm.Blues)

plt.show()

76

met_eval(cnf_matrix_lr)

end = time.time()

print(end - start, 'seconds')

#print Roc accuracy for each class of attack

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, LogReg_pred_prob)

plot_classes(n_classes , fpr ,tpr)

#Decision Tree

DTree_clf = DecisionTreeClassifier(criterion="entropy")

DTree_clf.fit(x_train, y_train)

start = time.time()

DTree_pred = DTree_clf.predict(x_test)

end = time.time/()

DTree_pred_prob = DTree_clf.predict_proba(x_test)

DTtree_pred_score = accuracy_score(DTree_pred, y_test)

print('DTtree_pred_score :', DTtree_pred_score)

acc , precision= myEvaluation(y_test, DTree_pred)

print('my accuracy: {:.2f}'.format(acc))

print('my precision:', precision)

print(classification_report(y_test, DTree_pred))

cnf_matrix_dt = confusion_matrix(y_test, DTree_pred)

class_names = labels

disp = plot_confusion_matrix(DTree_clf, x_test, y_test,

 display_labels=class_names,

 cmap=plt.cm.Blues)

plt.show()

met_eval(cnf_matrix_dt)

print(end - start, 'seconds')

#Print Roc curve for decision tree

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, DTree_pred_prob)

plot_classes(n_classes , fpr ,tpr)

#Random Forest

RF_clf = RandomForestClassifier()

RF_clf.fit(x_train, y_train)

RF_pred = RF_clf.predict(x_test)

end = time.time()

RF_pred_prob = RF_clf.predict_proba(x_test)

RF_pred_score = accuracy_score(RF_pred, y_test)

print('RF_pred_score :', RF_pred_score)

acc , precision= myEvaluation(y_test, RF_pred)

print('my accuracy: {:.2f}'.format(acc))

print('my precision:', precision)

cnf_matrix_rf = confusion_matrix(y_test, RF_pred)

print(classification_report(y_test, RF_pred))

class_names = labels

77

disp = plot_confusion_matrix(RF_clf, x_test, y_test,

 display_labels=class_names,

 cmap=plt.cm.Blues)

plt.show()

met_eval(cnf_matrix_rf)

print(end - start, 'seconds')

#Roc Curve for random forest results

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, RF_pred_prob)

plot_classes(n_classes , fpr ,tpr)

#Naive Bayes

NB_clf = GaussianNB()

NB_clf.fit(x_train, y_train)

start = time.time()

NB_pred = NB_clf.predict(x_test)

end = time.time()

NB_pred_prob = NB_clf.predict_proba(x_test)

NB_pred_score = accuracy_score(NB_pred, y_test)

print('NB_pred_score :', NB_pred_score)

acc , precision= myEvaluation(y_test, NB_pred)

print('my accuracy: {:.2f}'.format(acc))

print('my precision:', precision)

print(classification_report(y_test, NB_pred))

cnf_matrix_nb = confusion_matrix(y_test, NB_pred)

class_names = labels

disp = plot_confusion_matrix(NB_clf, x_test, y_test,

 display_labels=class_names,

 cmap=plt.cm.Blues)

plt.show()

met_eval(cnf_matrix_nb)

print(end - start, 'seconds')

#Roc Curve for NB reslts

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, NB_pred_prob)

plot_classes(n_classes , fpr ,tpr)

Stacking ensamble classifier

define meta learner model

level1 = RandomForestClassifier()

define the stacking ensemble

model = StackingClassifier(estimators=[('DTree', DTree_clf),('RF' , RF_clf)],

final_estimator=level1, cv=3)

fit the model on all available data

model.fit(x_train, y_train)

start = time.time()

y_preds = model.predict(x_test)

end = time.time()

78

model_pred_prob = model.predict_proba(x_test)

stacking_pred_score = accuracy_score(y_preds, y_test)

print('voting_pred_score :', stacking_pred_score)

acc , precision= myEvaluation(y_test, y_preds)

print('my accuracy: {:.2f}'.format(acc))

print('my precision:', precision)

print(classification_report(y_test, y_preds))

cnf_matrix_vot = confusion_matrix(y_test, y_preds)

class_names = labels

disp = plot_confusion_matrix(model, x_test, y_test,

 display_labels=class_names,

 cmap=plt.cm.Blues)

plt.show()

met_eval(cnf_matrix_vot)

print(end - start, 'seconds')

#Plot Roc Curve for stacking ensamble classifier

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, model_pred_prob)

plot_classes(n_classes , fpr ,tpr)

#Applying Voting ensamble classifier

voting_clf = VotingClassifier(estimators=[('DTree', DTree_clf), ('RF' , RF_clf)], voting='soft')

voting_clf.fit(x_train, y_train)

start = time.time()

preds = voting_clf.predict(x_test)

end = time.time()

voting_pred_prob = voting_clf.predict_proba(x_test)

voting_pred_score = accuracy_score(preds, y_test)

print('voting_pred_score :', voting_pred_score)

acc , precision= myEvaluation(y_test, preds)

print('my accuracy: {:.2f}'.format(acc))

print('my precision:', precision)

print(classification_report(y_test, preds))

cnf_matrix_vot = confusion_matrix(y_test, preds)

class_names = labels

disp = plot_confusion_matrix(voting_clf, x_test, y_test,

 display_labels=class_names,

 cmap=plt.cm.Blues)

plt.show()

met_eval(cnf_matrix_vot)

print(end - start, 'seconds')

#Plot Roc curve for voting ensamble classifier

roc_auc,fpr,tpr = ROC(n_classes,y_test_onehot, voting_pred_prob)

plot_classes(n_classes , fpr ,tpr)

	Abstract
	Acknowledgment
	Dedication
	List of Figures
	List of Tables
	Chapter 1: Introduction
	1.1 Overview
	1.2 Related Work
	1.3 Thesis Objective
	1.4 Process Flow of Thesis
	1.5 Thesis Roadmap

	Chapter 2: Background
	2.1 Intrusion Detection System (IDs)
	2.2 Denial of Service Attack (DoS)/Distribution DoS
	2.3 Machine Learning
	2.4 Ensample Learning
	2.5 Feature Selection
	2.6 Resampling Methods
	2.7 Performance Evaluation
	2.8 Chapter Summary

	Chapter 3: Dataset and Data Preprocessing
	3.1 Dataset
	3.1.1 NSL-KDD
	3.1.2 CICIDS2017

	3.2 Data Preprocessing
	3.3 Feature Reduction
	3.4 Under Sampling and Weight Assign
	3.5 Chapter Summary

	Chapter 4: Benchmark Testing and Results
	4.1 Introduction
	4.2 Feature Selection
	4.3 Sampling performance
	4.4 Results and Discussion
	4.5 Chapter Summary

	Chapter 5: Conclusion
	5.1 Summary
	5.2 Challenges
	5.3 Future Work

	References
	Appendix A
	A.1 Feature Selection Detailed Results
	A.2 NSL-KDD Dataset Results
	A.3 CICIDS2017 Dataset Results

	Appendix B
	B.1 NSL-KDD Dataset Detailed Codes
	B.2 CICIDS-2017 Detailed Codes

