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Abstract 

Interest in outlier detection methods is increasing because detecting outliers is an important operation 

for many applications such as detecting fraud transactions in credit card, network intrusion detection 

and data analysis in different domains. We are now in the big data era, and an important type of big data 

is data stream. With the increasing necessity for analyzing high-velocity data streams, it becomes 

difficult to apply older outlier detection methods efficiently. Local Outlier Factor (LOF) is a well-known 

outlier algorithm. A major challenge of LOF is that it requires the entire dataset and the distance values 

to be stored in memory. Another issue with LOF is that it needs to be recalculated from the beginning 

if any change occurs in the dataset. This research proposes a novel local outlier detection algorithm for 

data streams, called Genetic-based Incremental Local Outlier Factor (GILOF). Moreover, we further 

improved the GILOF performance in data streams by proposing a new calculation method for LOF, 

called Local Outlier Factor by Reachability distance (LOFR). The improved algorithm for local outlier 

detection in data stream is called the Genetic-based Incremental Local Outlier Factor by Reachability 

distance (GILOFR). The GILOF and GILOFR algorithms work without any previous knowledge of data 

distribution, and they are able to execute in limited memory. The outcomes of our experiments with 

various real-world datasets demonstrate that the proposed algorithms have very good performance in 

execution time and accuracy of outlier detection. 
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1 

Chapter 1: Introduction 

"Data Storage." In: Schintler L., McNeely C. (eds) Encyclopedia of Big Data. Springer, Cham. DOI: 

https://doi.org/10.1007/978-3-319-32001-4_323-1. 

"An Efficient Local Outlier Factor for Data Stream Processing: A Case Study" Forthcoming in the 7th 

International Conference on Computational Science and Computational Intelligence 2020, IEEE. 

1.1  Definition of outlier detection  

Outlier detection attempts to distinguish a data point that is distinct from the rest of the given 

data. Outliers occur during a procedure or as a consequence of an error of measurement [1]. By detecting 

outliers, essential information can be obtained to make better decisions in various applications, such as 

fraud transactions in credit card and intrusion detection [2]. Outlier detection techniques have been 

widely used in machine learning and data mining to extract information and to clean data, for example, 

in various domains for the purpose of decision-making, clustering, classification, and identifying 

frequent patterns [3, 4]. 

Outliers have two categories: global outliers and local outliers. If the data point p0 is far away 

from other data points, it is considered a global outlier [5]. Local outlier is a data point that is outlier 

with respect to it k-nearest neighbors. LOF introduced the idea of local outlier. It is considered a means 

Figure 1.1.  A two-dimensional example illustrating the outlier’s categories, where p2 and 

p3 are global outliers and p1 is a local outlier. 

https://doi.org/10.1007/978-3-319-32001-4_323-1
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of density-based outlier detection because it makes a comparison between the density of data points in 

the dataset and their local neighbors. To determine the local outlier score, LOF assigns a measured 

degree of the density of data points and their local neighbors (Figure 1.1).  

 

1.2 Big Data 

Big data is a set of data of a size that exceeds the ability of regular databases to process, store, 

transfer, manage, share and analyze within an acceptable period of time [6]. Big data comes in three 

different modes: structured data, semi-structured data, and unstructured data [7]. The most important 

type of big data is the data stream, which has the characteristics of volume, velocity, variety, value, and 

variability. Therefore, it is not possible to process big data by traditional methods. Currently, there is an 

urgent need to develop new algorithms of processing and managing big data. 

 

1.2.1 Data Stream  

A data stream is a collection of continuous data processed to collect knowledge and extract 

information [8]. Data streams represent big data as primary sources by having various applications in 

different properties such as volume, velocity, variety, value, and veracity [9, 10]. Volume refers to the 

large volume of data assembled and analyzed. Velocity involves the pace at which data between various 

systems and devices are generated and transported. Variety applies multiple types of data that may be 

used to obtain the required knowledge or performance; it involves the data modes of structured, 

unstructured, and semi-structured data [7, 10]. Value refers to the advantages in extracting the 

information from the big data. Lastly, veracity involves the quality of the data for precision, integrity, 

confidence, protection, and reliability. Due to the nature of the data stream with regard to these five 

significant data properties, data stream processing requires various methods to evaluate the data points 

in the data stream environment. 
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1.2.2 Data Modes 

There are various modes (forms) of data that are stored, such as texts, numbers, videos, etc. 

These data can be divided into the following three categories: structured, unstructured, and semi-

structured data. Structured data is considered high-level data that is in an organized form, such as data 

in an Excel sheet. For example, a university database has around half a million pieces of information for 

about 20 thousand students, which contain names, phone numbers, addresses, majors, and other data. 

Unstructured data is random and disorganized data, for example, data that is presented on a social 

network, such as text and multimedia data. Various unstructured data are posted to social media 

platforms like Twitter and YouTube every day. Semi-structured data is provided by several types of data 

combined to represent the data in a specific pattern or structure. For example, information about a user’s 

call contains an entity of information based on the logs of the call center. However, not all the data is 

structured, such as a complaint recorded in audio format, which is unstructured, so it is hard to be 

synthesized in data storage [11]. 

 

1.2.3 FAIR Data  

FAIR data is a new point of view on data management, which follows the guidelines of 

findability, accessibility, interoperability, and reusability [12]. FAIR data focuses on two principles 

which enhance machine’s ability for finding and using data automatically and supporting the data reuse 

via humans. 

Findability is based on placing the data with its metadata in searchable and global identifiers; 

then looking for data through several links on the World Wide Web should be possible. Accessibility is 

based on ensuring easy access to data and its metadata [13] through the Internet by an authorized person 

or a machine. Metadata should be made accessible even if the data is not accessible. Interoperability is 

based on containing qualified references for both data and metadata and by representing the records 

informal, shareable, and machine-readable language. Reusability is based on detailed information of 
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metadata with accessible license for suitable citation to the data. In addition, software tools and other 

related provenance information should also be accessible to support data reuse. 

 

1.3 Data Storage  

Data storage means storing and archiving data in electronic storage devices that are dedicated 

for preservation, where data can be accessed and used at any time. Storage devices are hardware that are 

used for reading and writing data through a storage medium. Storage media are physical materials for 

storing and retrieving data. The popular data storage devices are hard drives, flash drives, and cloud 

storage. The term big data reflects not only the massive volume of data but also the increased velocity 

and variety in data generation and collection, for example, the massive amounts of digital photos shared 

on the Web, social media networks, and even the Web search records. Many conventional documents 

such as books, newspapers, and blogs can also be data sources in the digital world. Storing big data in 

appropriate ways will greatly support data discovery, access, and analytics. Accordingly, various data 

storage devices and technologies have been developed to increase the efficiency in data management 

and enable information extraction and knowledge discovery from data. In domain-specific fields, a lot 

of scientific researches has been conducted to tackle the specific requirements on data collection, data 

formatting, and data storage, which have also generated beneficial feedback to computer science. 

Data storage is a key step in the data science life cycle. At the early stage of the cycle, well 

organized data will provide strong support to the research program where the data is collected. At the 

late stage, the data can be shared and made persistently reusable to other users. The FAIR data principles 

that already mentioned above (findable, accessible, interoperable, and reusable) provide a set of 

guidelines for data storage. 

 

1.3.1 Data Storage Devices  

There are many different types of devices that store data in digital forms, which have the 

fundamental capacity measurement unit called bit, and every eight bits are equal to one byte. Often, the 
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data storage device is measured in megabytes (MB), gigabytes (GB), terabytes (TB), and other bigger 

units. The data storage devices are categorized into two types based on their characteristics: the primary 

storage and the secondary storage. 

Primary storage devices such as cache memory, random-access memory (RAM), and read-only 

memory (ROM) are connected to a central processing unit (CPU) that reads and executes instructions 

and data stored on them. Cache memory is very fast memory, which is used as the buffer between the 

CPU and RAM. RAM is temporary memory, which means the content of stored data is lost once the 

power is turned off. ROM is nonvolatile memory, so the data stored on it cannot be changed because it 

has become permanent data [14]. In general, these memories have limited capacity, where it is difficult 

to handle big data streaming. 

Secondary storage such as hard disk drive (HDD), solid-state drive (SSD), server, CD, and DVD 

are external data storage that are not connected to the central processing unit [14]. This type of data 

storage device is usually used to increase computer capacity. Secondary storage is nonvolatile, and the 

data can be retained. HDD stores the data in the magnetic platter, and it uses the mechanical spindle to 

read and write data. The operating system identifies the paths and sectors of data stored on the platters. 

SSD is faster than HDD because it is a flash drive, which stores data in microchips and has no 

mechanical parts. Also, SSD is smaller in size, is less in weight, and is energy-efficient in comparison 

with HDD. 

 

1.3.2 Data Storage Technologies  

In recent years, data has grown fast and has become massive. With so many data generating 

sources, there is an urgent need to provide technologies that can deal with the storage of big data. This 

section provides an overview of well-known data storage technologies that are able to manipulate large 

volumes of data, such as relational database, NoSQL database, distributed file systems, and cloud 

storage. 
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Relational Database: The relational system that emerged in the 1980s is described as a cluster 

of relationships, each relationship having a unique single name. These relationships interconnect a 

number of tables. Each table contains a set of rows (records) and columns (attributes). The set of columns 

in each table is fixed, and each column has a specific pattern that is allowed to be used. In each row, the 

record represents a relationship that linked a set of values together. Relational database is functional in 

data storage, but it also has some limitations that make it less efficient to deal with big data. For example, 

relational database cannot tackle unstructured data. For datasets with network or graph patterns, it is 

difficult to use relational database to find the shortest route between two data points. 

NoSQL Database: “Not only SQL” (NoSQL) database is considered the most important big 

data storage technology in database management systems. It is a method that depends on disposal of 

restrictions. NoSQL databases aim to eliminate complex relationships and provide many ways to 

preserve and work on data for specific use cases, such as storing full-text documents. In NoSQL 

database, it is not necessary for data elements to have the same structure, because it is able to deal with 

structured, unstructured, and semi-structured data [15]. 

Distributed File Systems (DFS): DFS manages datasets that are stored in different servers. 

Moreover, DFS accesses the datasets and processes them as if they are stored in one server or device. 

The Hadoop Distributed File System (HDFS) is the most popular method in the field. HDFS separates 

the data into multiple servers. Thus, it supports big data storage and high-efficiency parallel processing 

[11]. 

Cloud Storage: Cloud storage can be defined as servers that contain large storage space where 

users can manage their files. In general, this service is provided by companies known in the field of 

cloud storage. Cloud storage led to the term cloud computing, which means using applications over a 

virtual interface by connecting to the Internet. For example, Microsoft installs the Microsoft Office on 

its cloud servers. If a user has an account in the Microsoft cloud storage service and an available Internet 

connection through a computer or smart phone, the user will be allowed to use the cloud system by 
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logging into the account from anywhere. Besides cloud computing, cloud storage also has many other 

features, such as file synchronization, file sharing, and collaborative file editing. 

 

1.3.3 Impacts of Big Data Storage 

Based on a McKinsey Global Institute study, the information that has been captured through 

organizations about their customers, operations, and suppliers by digital systems has been estimated as 

trillions of bytes. That means data volume grows at a great rate, so it needs advanced tools and 

technologies for storing and processing. Data storage has played a major role in the big data revolution 

[11]. 

Many companies are using emotion and behavior analysis from their data or social media to 

identify their audiences and costumers to predict the marketing and sales results. Smart decisions reduce 

costs and improve productivity. Data is the basis for informed big business decision-making. Analyzing 

the data offers more information options to make the right choice. 

There are many techniques for managing the big data, but Hadoop is currently the best 

technology for this purpose. Hadoop offers the data scientists and data analysts flexibility to deal with 

data and extract information from it whether the data is structured or unstructured, and it offers many 

other convenient services. Hadoop is designed to follow up on any system failures. It constantly 

monitors the stored data on the server. As a result, Hadoop provides reliable, fault-tolerant, and scalable 

servers to store and analyze data at a low cost. 

The development of cloud storage with the widespread use of Internet services, as well as the 

development of mobile devices such as smart phones and tablets, has enhanced the spread of cloud 

storage services. Many people carry their laptops when they are not in their offices, and they can easily 

access their files through their own cloud storage over the Internet. They can use cloud storage services 

like Google Docs, Dropbox, and many more to access their files wherever they are and whenever they 

want. 
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Companies are increasingly using cloud storage for several reasons, most notably because cloud 

services are becoming cheaper, faster, and easier to maintain and retrieve data. In fact, cloud storage is 

the better option for a lot of companies to address challenges caused by the lack of office space, the 

inability to host servers, and the expensive cost of using servers in the company, in terms of maintenance 

and cost of purchase. By using cloud storage, companies can save the servers’ space and cost for other 

things. Google, Amazon, and Microsoft are the most popular companies in cloud storage services, just 

to name a few. 

 

1.4 Significance and Contribution 

This is the big data era, where the data is important for many sectors to get benefit from it by 

extracting knowledge and information. This information is used to discover clusters, profiles, factors, 

relationships, predictions, outliers and patterns, which help for decision making. Detecting outliers is an 

important step in data mining and machine learning because if outliers are not detected, the extracting 

information will be inaccurate, and many challenges may occur such as wrong decision or prediction. 

An important type of big data is data stream. Local outlier factor (LOF) is an important algorithm for 

local outlier detection. In fact, the main challenge of traditional local outlier detection algorithms is their 

application in data streams, such as intrusion detection system. Thus, the major challenge of LOF is that 

it requires the entire dataset and the distance values to be stored in memory. Another issue with LOF is 

that it needs to be recalculated from the beginning if any change occurs in the dataset.  

This research proposes a novel local outlier detection algorithm for data streams and 

proves its efficiency in several experiments. The algorithm is called Genetic-based Incremental Local 

Outlier Factor (GILOF), which addresses the limiation of sevearl existing LOF algorithms. Furthermore, 

GILOF algorithm has been enhanced by proposing new calculation method for local outlier factor, 

which called Local Outlier Factor by Reachability distance (LOFR). LOFR has a positive impact on the 

accuracy of outlier detection in real-world datasets that have sequence of outliers and high-density 

region (i.e. data points are very close to each other). Specifically, this is true for the KDD Cup99 HTTP 
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dataset, which includes a simulation of normal data, with abnormal data as attack traffic, on an IP scale 

in computer networks for testing intrusion detection systems. The new GA-based process and new 

LOFR method are the major contribution of this Dissertation. Both algorithms have two versions: 

GILOF, GILOF_NS; and GILOFR, GILOFR_NS, where GILOF_NS and GILOFR_NS do not contain 

skipping scheme. 

 

1.5 Research Questions 

This Dissertation contained six research questions. These questions trying to improve the 

effeciency of Local Outlier Factor in data stream. The questions are: 

1) How can the GILOF algorithm solve the issue of memory consumption? 

2) How does the GILOF algorithm detect the LOF in a data stream? 

3) How does the genetic algorithm retain the shape of the density of data points? 

4) Can a skipping scheme make a difference in the accuracy of local outlier detection and why? 

5) Do GILOF and GILOF_NS perform better than DILOF and DILOF_NS when considering the 

accuracy of outlier detection? 

6) Do GILOF and GILOF_NS perform better than DILOF and DILOF_NS when considering 

execution time? 

 

1.6 Structure of the Dissertation 

This dissertation will greatly benefit researchers in the field of local outlier detection because it 

contains two novel methods for detecting local outlier in data stream. Also, a comprehensive review of 

local outlier algorithms in static and stream environments is provided. The dissertation has five 

remaining chapters: the second chapter is Background and Statement of Research Challenge ; the third 

chapter is The State-Of-The-Art Algorithms in Local Outlier Detection; the fourth chapter is Genetic-

Based Incremental Local Outlier Factor (GILOF) Algorithm; the fifth chapter is Improving the 
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Algorithm of Genetic-based Incremental Local Outlier Factor for Network Intrusion Detection; and the 

sixth chapter is the Synthesis and Conclusions. 
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Chapter 2: Background and Statement of Research Challenge 

"A Genetic-Based Incremental Local Outlier Factor Algorithm for Efficient Data Stream Processing." 

the 4th International Conference on Compute and Data Analysis, 2020 pp. 38-49, ACM. 

"An Efficient Local Outlier Factor for Data Stream Processing: A Case Study" Forthcoming in the 7th 

International Conference on Computational Science and Computational Intelligence 2020, IEEE. 

2.1 Background of Local Outlier Detection in Big Data Streams 

2.1.1 Data Stream Processing  

Data stream processing is a key topic in the field of information flow processing (IFP) [126]. 

The aim of processing the data stream is to understand the data behavior and extract the information to 

make a better decision. During a workflow, data stream needs to be analyzed and then stored. The data 

stream is generated in many places, such as a stock market, sensors, log activity, social media, and so 

on. Therefore, processing the data stream is useful and important. It can be conducted through two 

general categories of methods [127]:  

▪ Processing the data stream as queries.  

▪ Processing the data stream as data stream mining. 

A lot of studies show impressive results in both categories, which also prove the significance of 

the data stream processing in the big data era. For processing the data stream as queries, there are several 

systems that can manage the data stream sources. One of these systems is the data stream management 

system (DSMS). It processes the data as a structure of query which handles both continuous and updated 

data compared to the traditional database management system (DBMS) in a static environment [128, 7]. 

STREAM is another platform defined by Stanford University. It processes the data stream to get an 

approximate answer based on the need of the query optimization and data rate performance [129]. The 

other category, data stream mining, is about adapting data mining methods to process the data stream. 

There are various methods for data stream mining, such as classification, clustering, frequency item 

mining, and outlier detection [127]. 
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2.1.2 Outlier Detection Approaches  

Outlier detection is receiving increasing attention in research areas for discovering hidden 

information, data behavior, or long sequence data in an unexpected result. The main idea of outlier 

detection is to find a suspicious data point that is unusual compared to other data points. Several 

approaches have been introducing models such as distance-based outlier detection, density-based outlier 

detection, clustering based outlier detection, statistical based outliers detection, classification based 

outliers detection, and frequent pattern mining based outliers detection [2,3,4].  

Distance based outlier detection depends on the object’s distance from its neighbors. In [2,3], 

the authors defined the anomaly detection by using the object’s distance between k and R as a parameter. 

In [130], the authors described the benefit of using the k-mean distance as a measurement between object 

neighbors.  

Density based outlier detection depends on the comparison between the density of points and 

their local neighbors. Therefore, the outlier score is based on the local outlier factor (LOF). It gives a 

scale of the data point density and their neighbors [4]. In [91], the authors used sliding windows to 

distinguish between outlier and new data behavior. Also, in [88], the authors proposed an incremental 

local outlier factor (ILOF), which calculates the LOF value in the data stream. Despite the value, it 

cannot distinguish between the data behavior and an outlier. 

Clustering based outlier detection regards a set of similar data points as a cluster. Thus, the 

outliers can be either far from the center of the cluster or not belong to any cluster. In [131], the authors 

used the weight of other attributes according to the mining task. In [132], the authors defined the micro-

cluster, which is the differential between the outlier and the normal data.  

Statistical based outlier detection is based on the data distribution to identify the outlier data 

point and normal data point. The outlier usually has a lower probability generated from the data 

distribution. Statistical based outlier detection has two categories for detecting an outlier, which are the 

parametric method and the non-parametric method. The data distribution in the parametric method is 

known. The non-parametric method cannot assume the data distribution, so it is suitable to be used for 
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a part of the data stream [4, 133].  

Classification based outlier detection first trains the dataset through the classification method, 

then classifies the model into normal data or an outlier class. Moreover, in one class of unsupervised 

approach, the boundary learns about the normal data, and the data point that is outside the boundary is 

an outlier [134]. For example, the authors in [135] determined the decision boundary by using a kNN 

method. In [136], the authors defined two decision boundaries by using Support Vector Machine (SVM), 

polynomial kernel and kNN method [136 ,137].  

Frequent pattern mining based outlier detection is another unsupervised method used to find a 

frequent pattern under normal data behavior. The outlier is a pattern that does not fit to the basis of the 

normal data behavior. Usually, it has a smaller number of frequent patterns. In [138], the authors applied 

the MEFOP which is a measurement used between the data point and the set of maximum frequent 

pattern. 

 

2.1.3 Local Outlier Detection  

Outliers are divided into two categories: global outliers and local outliers. The data points p0 

and p1 are considered global outliers if they are very far from all data points [139]. In [140] and [141], 

the authors detected the global outliers by using a sliding window with respect to the current window. 

In [142] the authors detected outliers in the fast streaming data and sensors with limited resources by 

using a data editing technique. Their work needs normal data because they use a supervised approach. 

In [143] the time complexity and memory consumption were improved compared to [140] and [141]. 

When the outliers in any dataset are calculated based on all points, the outliers are considered global 

outliers. However, these methods fail to detect the outliers with good accuracy in data that has 

inhomogeneous density.  

Local outliers are the probability of data points to be outliers compared to their local 

neighborhood, which is measured based on the k-Nearest Neighbors (kNN) algorithm. Local outlier 

detection is extensively discussed in [58]. The LOF algorithm obtains good  performance in detecting 
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local outliers in inhomogeneous densities without previous knowledge about the dataset distribution, 

and it has become a widely used technique for local outlier detection. 

The accuracy of LOF has been improved by several techniques that use improved approaches 

for calculating kNN [67]. These approaches extend the range of kNN to detect outliers and discover the 

relationship of symmetrical neighborhoods [70]. For example, in [68] the authors improved the LOF 

time complexity by using approximate computations. Other LOF studies concentrated on covering the 

data types that are more complex such as spatial datasets [140] or categorical data sets [145]. 

Normalizing the outliers and finding the probabilities of local outliers is another type of LOF [71]. The 

authors of [88] proposed the efficient ILOF algorithm, which is designed to calculate the local outliers 

in data streams. In [96], the MILOF algorithm was used to address limitations of ILOF by using k-means 

to summarize old data points with respect to the LOF score. The authors of [104] proposed DILOF as a 

memory limited algorithm. DILOF used the gradient descent method to summarize the old data, which 

leads to better results than MILOF. 

 

2.1.4 Incremental Local Outlier Factor (ILOF) 

Although the LOF does not perform well in the stream environment, the Incremental Local 

Outlier Factor (ILOF) overcomes this weakness and is able to calculate the LOF score in a stream 

environment. The LOF algorithm is defined above and figure 2.1 shows the key definitions of the LOF. 

The core principle of the ILOF method is to discover outliers in the local density in the stream 

environment [88]. ILOF is a density-based outlier detection technique. The major task of the ILOF is to 

update and re-calculate the score of the LOF when a new data point np is inserted. 

ILOF uses the same components of the LOF for measuring the outlierness score: k-distance, k-

nearest neighbors, reachability distance (Rd), and local reachability distance (Lrd). There are two parts 

to the method of insertion for the ILOF: (1) the Rd, the Lrd, and the LOF scores are computed according 

to the np; and (2) it updates the k-distance, the Rd, the Lrd, and the LOF score for the existing data 

points. A strength of the ILOF algorithm is that it can calculate LOF scores in streaming data. Despite 
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the strengths of the ILOF algorithm for data streams, its main issue is memory consumption because it 

stores all of the previous data points. This takes up a large amount of memory and significantly increases 

the analysis time. 

 

2.1.5 Memory Efficient Incremental Local Outlier Factor (MILOF) 

The Memory Efficient Incremental Local Outlier Factor (MILOF) is an unsupervised outlier 

method for evaluating the local outliers in the data stream. The MILOF is able to reduce the time 

complexity and the memory requirements of ILOF, and it is suitable for a wide range of applications. 

The MILOF processes a data point in three phases: the summarization phase, the merging phase, and 

the revised insertion phase. 

The summarization phase is initiated when the number of points reaches the memory limit. The 

first half of the data points are then summarized, whereas the most recent points are left intact to keep a 

higher resolution of the present streaming data points. The k-mean algorithm is used for clustering the 

first half of the data points to summarize them [96]. 

The merging phase takes place after the last half of data points is obtained from the 

summarization phase; a new cluster is created from the incoming data points. Afterward, the new cluster 

is combined with the existing cluster to produce a single set of clusters. 

Figure 2.1. The Key definitions of LOF algorithm. 
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The revised insertion phase in the MILOF algorithm is determined based on both the recent data 

points and the cluster points, which have a similar concept of the ILOF algorithm as follows. First, it 

computes the LOF for the new incoming data point. Second, if necessary, it updates the k-distance, Rd, 

lrd and LOF values for the established data points [4]. 

The advantage of the MILOF is that it is able to reduce the computational complexity and 

memory requirements. The major weakness of this method is that the k-means cannot maintain the 

density of data points. 

2.1.6 Density Summarization Incremental Local Outlier Factor (DILOF) 

The DILOF algorithm was proposed to address the limitation of the ILOF when processing a 

data stream [104]. The DILOF contains two steps: the detection step and the summarization step. The 

detection step is used to detect the outliers and update the data points in the window when new data 

points are inserted. The ILOF algorithm is used in this step to detect the outliers while a skipping scheme 

is used to detect the sequence of outliers, such as during DoS attacks. The summarization step is used 

to summarize the older half of the data points in the window based on non-parametric density 

summarization (NDS). A strength of the DILOF is that it performs better than the MILOF for the 

accuracy of outlier detection and execution time [104]. However, the NDS algorithm depends on a 

gradient-descent method, which may get stuck in the local minima. 

 

2.2 Definition of Research Challenge 

In the big data era, outlier detection is a very important step in many applications, such as 

network intrusion detection systems and decision support systems. The objective of outlier detection is 

to detect suspicious items and unusual activities. For example, in practice, analyzing the dataset to 

extract information without removing the outlier’s data will lead to inaccurate information, which will 

result in wrong decisions. Recently, outlier detection has gained a lot of attention from researchers, 

especially regarding data streams. Nevertheless, there are challenges in applying traditional local outlier 

detection algorithms for data streams. One of the well-known algorithms of outlier detection is Local 
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Outlier Factor (LOF). The issue with LOF is that it needs to store the whole dataset with its distances’ 

results in memory. In addition, it needs to start from the beginning and recalculate all processes if any 

change happens in the dataset, such as inserting a new data point. 

The ILOF, MILOF and DILOF algorithms address the LOF issues in data streams, but they also 

have some issues that limit their performance. The major issue for the ILOF is that it needs to retain all 

data points in memory, which leads to a large usage of memory and long computational time. The 

MILOF algorithm used k-mean to summarize the old half data point in the window, but k-mean cannot 

preserve the density of data points. The DILOF algorithm summarize the old half of data points in the 

current window by using the gradient-descent method. An issue for gradient-descent is that it might be 

stuck in local minima. 

As mentioned before in Chapter 1, this research aims to develop the GILOF as a novel local 

outlier detection algorithm for data streams. The primary purpose of this work is to measure LOF score 

under the following conditions: 1) A small part of the dataset is stored in memory, 2) algorithm has no 

previous knowledge of the data distribution, 3) outlier detection for the data point pt should be done at 

the current time T and 4) the algorithm has no previous knowledge about the future data points when 

detecting the current outliers. Those four conditions lead to the six detailed research questions listed in 

Section 1.5, which in turn guide the algorithm development and experiment in this research.   

 

2.3 Datasets 

For practical reasons, label information is not processed and analyzed in unsupervised outlier 

detection because it must be compared and evaluated. When a new outlier detection algorithm is 

developed, it is usual to apply the new algorithm to publicly available datasets and compare the results 

of the new algorithm with the common unsupervised outlier detection algorithms, such as the LOF. 

There are many classification datasets that are fully available in the UCI machine learning repository 

[146]. Additionally, some outlier detection datasets are provided in [147]. The datasets below are real-

world datasets and they contain outlier data points. These benchmark datasets are used in this study, and 
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they were used to analyze the new GILOF and GILOFR algorithms and to compare them with existing 

algorithms. Table 2.1 summarizes the features of the following datasets. 

 

2.3.1 UCI Vowel Dataset 

A Vowels dataset is considered a multivariate time series dataset as well as a classification 

dataset, which classifies speakers. In one particular case, nine speakers spoke two Japanese vowels, 

respectively. One speech by a speaker shapes a time series from 7 to 29 lengths and each point in the 

time series consists of twelve characteristics. In outlier (anomaly) detection, any frame in the training 

dataset is treated as a single data point, although the UCI machine learning repository deems a block of 

frames (talk) as a single point. Furthermore, classes six, seven, and eight are considered as inliers. The 

dataset contains 12 dimensions with 1,456 data points and 3.4% of these data points are outliers [146, 

147]. 

 

            Table 2.1. The Real-World Datasets Features 

 

2.3.2 UCI Pendigit Dataset 

The pendigits dataset is originally from the UCI machine learning repository [146]. This dataset 

is a multiclass classification that has 16 dimensions with 10 classes. The Pendigits dataset consists of 

25 samples, which were generated by 44 writers. Thirty of the writer’s samples are used for training, 

Datasets Number of data points Dimension Class 

UCI Vowel dataset 1,456 12 11 

UCI Pendigit dataset 3,498 16 10 

KDD Cup 99 Smtp dataset 95,156 3 unknown 

KDD Cup 99 Http dataset 567,479 3 unknown 
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while the other 14 writers’ samples are used for testing. The original training set contains 7,494 data 

points, and the testing set has 3,498 data points [147]. 

 

2.3.3 KDD Cup 99 SMTP Dataset 

In this instance, the SMTP service is used from the KDD CUP 1999 dataset, which is from the 

UCI machine learning repository [146]. The original dataset (KDDCUP99) contains 4,898,431 data 

points, where 3,925,651 data points are considered as attack (80.1%) data points. A smaller set is forged 

by 976,157 data points that include 3,377 (0.35%) attacks. The SMTP service data is used to create the 

SMTP KDDCUP99 dataset from this smaller dataset. The SMTP KDDCUP99 dataset contains 3 

dimensions and 95,156 data points that include (0.03%) outliers [147]. 

 

2.3.4 KDD Cup 99 HTTP Dataset 

KDD CUP 1999 is the original dataset from the UCI machine learning repository [146]. This 

dataset contains 41 attributes, but it is reduced to 4 (service, dst_bytes, src_bytes, duration), where 

service is only categorical. By using the service, the data is split into HTTP, FTP, FTP_data, SMTP. 

The original dataset KDDCUP99 contains 4,898,431 data points, where 3,925,651 data points are 

considered as attack (80.1%) data points. A smaller set is created by 976,157 data points that include 

3,377 (0.35%) attacks. The HTTP service data is used to create the HTTP KDDCUP99 dataset from that 

smaller dataset, which simulates normal data with attack traffic on an IP. The HTTP KDDCUP99 dataset 

contains 3 dimensions and 567,497 data points that include (0.4%) outliers [147]. 

 

2.4 Genetic Algorithm 

A Genetic Algorithm (GA) is a heuristic search algorithm that is based on Charles Darwin’s 

theory of natural evolution. It is based on the natural selection process, which selects the fittest 

chromosomes (individuals) for reproduction, to produce offspring for the next generation. A GA is a 
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form of evolutionary computation. GAs can often solve complex problems under time consuming or 

other difficult requirements. The search for optimal solutions is based on fitness and genetic operations 

such as selection, crossover, and mutation [148]. The authors in [149] described GAs as a powerful 

method for finding outliers compared to other data mining techniques in a static environment. The 

authors in [150] used classification method to preprocess the data stream and improved the performance 

of adaptive learning by using GA. In [151], the authors used the concept drift with GA to mine 

classification rules by taking a small portion of the data based on the fitness computation [152]. In [153], 

the authors proposed a solution to identify the number of clusters and separated the overlapping clusters 

by using GA and the Gaussian mixture model (GMM). In short, GA-based data stream processing has 

generated significant results because it is easier to adapt for many different environments. 

 

2.4.1 Steps in Genetic Algorithm 

Genetic Algorithm (GA) is a search algorithm from the field of evolutionary computation based 

on biological evolution. The purpose of the GA is to search for an optimum, which will improve the 

performance of a system. There are several GA operations which have analogs in biology [154,155]: 

1) Objective (Fitness) function: This function is used to calculate the fitness of each 

chromosome in the population. Usually, each chromosome’s fitness value represents the quality of the 

potential solution defined by the chromosome. Therefore, a fitness function is essential to know which 

are the fittest chromosomes [156].  

2) Chromosome (Individual): It is an array of binary or numerical values that represents the 

genes being evolved and it defines a candidate solution. Typically, each possible candidate solution is 

encoded as an array of parameters or as a bit string based on the problem given for the genetic algorithm 

[156,157]. For example, a chromosome represented as [0,1,1,0,0,0,1] means the 2nd, 3rd, and 7th 

candidates are to be selected for the fitness function. 
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3) Population: This is a set of chromosomes. A set of chromosomes is set randomly as an initial 

population. Then, each chromosome is evaluated based on the fitness function [156]. Thus, the 

population carries multiple possible solutions encoded in the chromosomes. This allows a GA to explore 

many areas within a search space simultaneously. 

4) Selection: It is an essential operation for the genetic algorithm to produce the offspring for 

the next generation.  It selects two parents from the population based on their fitness to undergo 

crossover [157,158]. The purpose of selection is to find chromosomes that have above average fitness 

values. Very strong selection reduces the diversity of the population and may reduce additional change 

and progress. Very weak selection can lead to slower evolution [157].  

Some of the most popular selection methods are roulette wheel selection (RWS), stochastic 

universal sampling selection (SUS), linear rank-based selection (RNK), linear rank-based selection with 

selective pressure (RSP), the Elitism, and tournament selection (TNT) [157,159,160]. 

RWS is based on the number of individuals within a population and their relative fitness values. 

Each chromosome has a segment of a virtual roulette wheel where the fitness of the chromosome 

determines the size of the segment [157]. Selecting the parent’s chromosome is based on the position of 

the selecting point in the wheel. The process of RWS is repeated until all the chromosomes are examined. 

In the end, the chromosomes with higher fitness values are more likely to be selected.  

SUS is derived from fitness proportionate selection. It samples all solutions by selecting them 

in equally spaced intervals. This gives a chance for a weak chromosome to be chosen [161].  

RNK was developed by Baker [162]. In ranking selection, each chromosome is ranked based 

on its fitness. Therefore, it reduces the disadvantages inherent in using the absolute fitness, which may 

converge too quickly when one chromosome has far better fitness than the next nearest chromosome 

[157].  

 In RSP, the selection pressure uses a mechanism to scale the selection pressure. It measures the 

range of fitness from maximum to average in the population and uses that to scale the selection pressure 

[160]. This manages the slope of selection pressure in the linear ranking method.  
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Elitism aims to find good chromosome fitness values in the population for the next generation 

by making sure that at least one copy of the best individual (or individuals) is preserved [157]. Thus, the 

next generation’s population will have at least one copy of the best chromosome based on the number 

of Elitism defined by the user.  

TNT selects a subset of chromosomes randomly from the population. Then each chromosome 

in the subset competes against the others [159]. The chromosome with the highest fitness from the subset 

of chromosomes is selected for crossover. 

5) Crossover: The name of crossover comes from crossing the ‘genes’ of two parents. It is 

conducted after the selection step to produce one or more new chromosomes, which are known as the 

children, which combine the characteristics of the parents. Crossover works by combining the first 

chromosome and the second chromosome based on a cut-off point defined in the crossover methods. 

The most common methods for the crossover are one-point crossover, two-point crossover, and uniform 

crossover [163,164].  

The one-point crossover involves two stages [164]. First, a point on both parent chromosomes 

is selected randomly as the crossover point. Second, the two chromosomes swap bits to the right of the 

point to generate two new chromosomes. 

Figure 2.2. Two-point crossover 
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Two-point crossover picks two crossover points instead of one. The two parent chromosomes 

swap the bits between the two points to generate the new chromosomes (Figure 2.2). 

In uniform crossover, usually each bit from either parent chromosome has equal possibility to 

be used in the two offspring. Sometimes a mixing ratio may be applied. Then, more bits from one parent 

chromosome are inherited in the offspring [164]. 

6) Mutation: is another GA operation used to preserve the diversity in the population and prevent 

the population from being stuck in a local minimum [165]. It is based on changing one or a few random 

values in a chromosome. The probability of changing a value is based on the mutation rate [158]. 

Usually, mutation creates one offspring compared to the two offspring created by crossover. There are 

several mutation methods, such as single point mutation (SPM), uniform mutation (UNM), and 

boundary mutation (BDM). SPM flips a value from 0 to 1 and vice versa based on the mutation rate 

[158]. In contrast, UNM is applied to non-binary chromosomes, it replaces the value of the selected gene 

with a uniform random value taken between the lower and upper bounds determined by a user-defined 

range [166,167]. BDM replaces the value of the selected bit with either the lower or upper bound, which 

is determined through a variable assigned by the user. 

 

2.5 Conclusion 

This chapter addressed the main issues of the LOF, also it shows the issues of the extension 

algorithms of the LOF in data stream. In addition, the related works such as data stream, outlier detection 

approaches, and genetic algorithm were highlighted. To test a new unsupervised local outlier detection 

algorithm, it usually applied to available real-world datasets. Then, the results are compared with the 

common local outlier detection algorithm. Therefore, the datasets that were used in this dissertation are 

covered in detail. 



24 
 

Chapter 3: The State-Of-The-Art Algorithms in Local Outlier 

Detection 

"A Review of Local Outlier Factor Algorithms for Outlier Detection in Big Data Streams." Big Data 

and Cognitive Computing. 2020, 5, 1. MDPI. https://doi.org/10.3390/bdcc5010001 

3.1 Introduction 

Outlier detection is the term used for anomaly detection, fraud detection, and novelty detection. 

The purpose of outlier detection is to detect rare events or unusual activities that differ from the majority 

of data points in a dataset [16]. Recently, outlier detection has become an important challenge in many 

applications such as in health care, fraud transaction detection for credit cards, and intrusion detection 

in computer networks. Therefore, many algorithms have been proposed and developed to detect outliers. 

However, most of these algorithms are designed for a static data environment and are difficult to apply 

to streams of data, which represent a significant number of important application areas. 

Outlier detection can be viewed as a specific application of generalized data mining. The process 

of data mining involves two steps: data processing and data mining. The aim of data processing is to 

create data in good form, i.e., the outliers are removed. Data mining is the next step, which involves the 

discovery and understanding of the behavior of the data and extracting this information by machine 

learning [17]. Outlier detection (or data cleaning) is an important step in data processing because, if an 

outlier data point is used during data mining, it is likely to lead to inaccurate outputs [18]. For example, 

a traffic pattern of outliers in the network might mean the data has been sent out by a hacked computer 

to an unauthorized device [19]; if the outliers cannot be detected and removed, a machine learning 

technique applied to the data is likely to be misled. Additionally, in many cases, the goal of data mining 

is to find the outliers. For example, an outlier image in magnetic resonance imaging could mean the 

presence of malignant tumors [20]. An outlier reading from an aircraft sensor may indicate a fault in 

some components of the aircraft [21].  

Outlier detection (also known as anomaly detection) is split into two types, global and local 

detection. For a global outlier, outlier detection considers all data points, and the data point pt is 
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considered an outlier if it is far away from all other data points [22]. The local outlier detection covers 

a small subset of data points at a time (Figure 1.1). A local outlier is based on the probability of data 

point pt being an outlier as compared to its local neighborhood, which is measured by the k-Nearest 

Neighbors (kNN) algorithm [4]. 

Recently, many studies have been published in the area of outlier detection, and there is a need 

for these studies to be reviewed to understand the depth of the field and the most promising areas for 

additional research. This review is focused on local outlier detection algorithms in data stream 

environments. This review is distinguished from previous reviews as it specifically covers the Local 

Outlier Factor (LOF) algorithms in data stream environments and reviews the most recent, state-of-the-

art techniques. In this chapter, different methods and algorithms for local outlier detection are 

summarized. The limitations and challenges of the LOF and other local outlier detection algorithms in 

a stream environment are analyzed. Moreover, new methods for the detection of an LOF score in a data 

stream are proposed. This literature review will greatly benefit re-searchers in the field of local outlier 

detection because it provides a comprehensive explanation of the features of each algorithm and shows 

their strengths and weaknesses, particularly in a data stream environment. The chapter has seven 

remaining parts: the second section is Outlier Detection Background; the third section is Literature 

Review Methodology; the fourth section is Literature Review Results; the fifth section is Applications 

of Outlier Detection; sixth section is Computational Complexity;  seventh section is Strengths and 

Weaknesses; and the eighth section is the Conclusion. 

 

3.2 Outlier Detection Background  

Many methods and algorithms have been developed to detect outliers in datasets. Most of these 

methods and algorithms have been developed for specific applications and domains. Outlier detection 

has been the focus of many review and survey papers, as well as several books. Patcha et al. and Snyder 

[23,24] published a survey of outlier detection techniques for intrusion detection. Markou and Singh 

[25,26] provided a review of outlier detection methods that use statistical approaches and neural 
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networks. A comprehensive survey of outlier detection algorithms developed in statistical domains and 

by machine learning was provided by Hodge et al. [27]. Goldstein et al. [28] provided a comparative 

evaluation of several unsupervised outlier detection algorithms. Wang et al. [29] provided the progress 

of outlier detection algorithms up until 2019 and illustrated the different methods of outlier detection. 

Tellis et al. [2] presented a survey that aimed to describe the various techniques for outlier detection in 

data streams. The objective of their paper was to identify the various techniques that can be used in the 

detection of an anomaly in applications involving data streams, such as criminal behaviors, fraud 

detection for credit cards, finding computer intrusions, and calling cards. Park et al. [30] presented a 

comprehensive review of concept drift detection, outlier detection, and anomaly pattern detection for 

data streams. The main contribution of their paper was that the approach used varied, based on the size 

of the streams of data. Other review and survey papers of outlier detection for different applications and 

domains are provided in [31-36]. 

 

3.2.1 Statistical Outlier Detection  

Outlier detection is a statistical process that aims to discover the data points that are inconsistent 

with the dataset [37]. In general, outliers and inliers are determined based on the model of data 

distribution. Statistical outlier detection techniques can be categorized as supervised, semi-supervised, 

and unsupervised modes. The scientific research on statistical outlier detection provides two approaches 

to handle outliers in a dataset. First, the outliers must be identified for further study. Second, the data 

model should be designed to accurately handle the outlier data points [38]. Statistical-based methods for 

outlier detection are further categorized into two methods: parametric and non-parametric [39]. 

 

3.2.1.1 Parametric Method 

Parametric-based methods assume an underlying distribution model (e.g., Gaussian 

distribution) for describing normal data and fit the assumed model to the data by estimating the model 

parameters. Such models are based on the Gaussian model or non-Gaussian data models. 
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One of the most common statistical methods for outlier detection is the Gaussian model. In the 

training process, the Gaussian model uses Maximum Likelihood Estimates (MLE) to estimate the 

variance and mean of the Gaussian distribution of the data [40]. Discordancy tests are then implemented 

to detect outliers. The unsupervised method for outlier detection with a globally optimal exemplar-based 

Gaussian Mixture Model (GMM) was introduced in [41]. For a more accurate outlier detection approach, 

the GMM with Locality Preserving Projections (LPP) was developed in [42] and involves the use of 

GMM combined with subspace learning. 

Another statistical method of outlier detection is to use a regression model. When implementing 

this technique, the first step is to build a regression model that is suitable for the data. For the test step, 

the regression model is tested by evaluating each data point as it relates to the model. A data instance is 

labeled an anomaly when a deviation occurs between the real value and the expected value generated 

by the regression model [43]. To detect an outlier in linear regression, Satman [44] proposed an 

algorithm based on a non-interacting covariance matrix and concentricity steps implemented using the 

least square estimation. Another method of regression-based outlier detection was proposed by Park et 

al. [45]. This method was created to detect outliers based on sensor measurement. In this method, the 

weighted summation approach is used to construct a synthesized independent variable from the observed 

values [29]. 

 

3.2.1.2 Non-Parametric Method 

A non-parametric method must be used when the data is not normally distributed and there is 

no prior knowledge about the data distribution. It is also called the distribution-free method because the 

data does not have a specific (known) distribution. To identify whether a data point is an inlier or outlier, 

some criteria must be implemented for the dataset. The most common approaches are histograms and 

kernel density. 

The main concept in histogram-based approaches is that for every dataset characteristic a 

histogram is created. It is similar to the Naïve Bayes algorithm, where all independent characteristic 
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probabilities are multiplied. Typically, it measures the distance between a histogram-based model of 

normality and a new test data point to determine if it is an inlier or outlier [32]. 

Kernel Density Estimation (KDE) is another popular non-parametric statistical approach for 

outlier detection [46]. Latecki et al. [47] proposed an unsupervised approach for detecting outliers using 

kernel features. Their process of outlier detection is executed by comparing every local density data 

point to the local density neighbor. A better method was proposed by Gao et al. [48]; their method 

improved the performance and showed better scalability in wide datasets using kernel-based methods. 

KDE was successfully used by [49] to estimate the distribution of sensor data points to detect malignant 

nodes [29]. 

 

3.3 Literature Review Methodology 

The aim of this literature review is to report on current works using the LOF with a focus on 

local outlier detection in data streams. It also proposes a new methodology for a more efficient LOF in 

data streams. This chapter focuses on the research that was conducted from May 2000 to April 2020. 

The search took place through research papers in electronic databases published in English. These 

databases were Google Scholar, IEEE Xplore, ACM, Springer, Science Direct, and MDPI. Keywords 

including outlier detection, local outlier detection, local outlier detection in data streams, Local Outlier 

Factor in data streams, and data stream mining were used. In the initial search, a total of 528 papers were 

reviewed by title and abstract. The selected papers were then categorized into two sections: the static 

environment and the stream environment. After that, the selected papers were filtered by the full text. 

The total number of selected papers was 47 (Figure 3.1). In the static environment subsection, the local 

outlier detection papers with the most citations were selected to be reviewed in greater detail, while the 

remaining papers were reviewed more briefly. In the stream environment subsection, the recent state-

of-the-art papers on the LOF in data streams were reviewed in detail, while the remaining papers were 

reviewed briefly. 
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The criteria for inclusion in this literature review were the following: (1) the article contained a 

new density—based local outlier detection algorithm in a static environment, (2) the local outlier 

detection algorithm was an unsupervised algorithm, (3) the article contained a new LOF algorithm for 

a stream environment, or (4) it included a local outlier detection algorithm in a stream environment. The  

research questions that have been answered in this literature review are the following: (1) what are the 

LOF algorithm issues and challenges in stream environments, (2) what are the existing methods and 

techniques that have been applied to the LOF in a stream environment, (3) what are the existing local 

outlier detection algorithms that need to be developed in order to work in a stream environment, and (4) 

how does the new methodology execute the LOF efficiently in a stream environment? 

 

 

Figure 3.1. The search strategy flowchart for selecting articles. 
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3.4 Literature Review Results 

Outlier detection in datasets has been studied since the nineteenth century [50]. A huge amount 

of research on detecting outliers has been conducted [16, 51–57]. As mentioned above, there are two 

forms of outlier detection: global and local. The LOF is a well-known algorithm for detecting local 

outliers [58]. This work reviews local outlier detection algorithms for numerical data for both static and 

stream environments. Generally, outlier detection algorithms work in the following three modes: 

Supervised Outlier Detection: Supervised algorithms assume the data includes fully labeled 

training and test datasets. A substantial approach in this situation is to develop a predictive model for 

non-normal and normal classes of data. Every hidden data point is compared with the model to decide 

in which class the data point belongs. The main issue of supervised outlier detection is that the outlier 

data points are much fewer than normal data points in training datasets. This issue appears to be due to 

the imbalance of class distribution. However, this issue has already been addressed in machine-learning 

and data-mining literature [59–62]. For instance, decision trees, such as C4.5 [63], cannot perform well 

with imbalanced data, while Artificial Neural Networks [64] perform better. 

Semi-supervised Outlier Detection: Semi-supervised algorithms assume the data includes 

labeled training data for the normal class only. Since labels are not required for the outlier class in semi-

supervised algorithms, they have wider applications than supervised algorithms. The main idea of semi-

supervised algorithms is that a normal class model is learned, and then, the outliers are detected by 

deviating from the model. This is also called a one-class classification [65]. The one-class Support 

Vector Machine [66] is a popular algorithm used in the semi-supervised technique. 

Unsupervised Outlier Detection: Unsupervised algorithms do not require labels in the data and 

there is no discrimination between training and testing datasets. Therefore, it is a more flexible mode 

than the others. The major idea of unsupervised outlier detection algorithms is to score the data points 

based on the essential characteristics of the dataset only. Generally, density or distance is used to provide 

an assessment about whether a data point is an inlier (normal) or outlier. This review is focused on 

unsupervised outlier detection. 
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3.4.1 Static Environment  

Outlier detection in static environments has received a lot of attention in the areas of data mining 

and machine learning. Many algorithms have been designed for the unsupervised outlier detection of 

global and local outliers. The LOF is the foundation for local outlier detection. Many researchers have, 

however, addressed local outlier detection from different perspectives. This section reviews the local 

outlier detection algorithms in general and goes deeper into the most popular algorithms. Table 3.1 

Summarizes the most-cited local outlier algorithms in a static environment. Figure 3.2 shows all of the 

reviewed papers included in this section. 

 

3.4.1.1 Local Outlier Factor (LOF) 

The LOF algorithm is defined in [58] by using density-based methods. For each data point, the 

process of finding the LOF includes calculating the degree of outlying. The idea of a local outlier is 

introduced by the LOF. The key definitions for the LOF [58] are: 

Definition 1. k-distance of a data point p. 

The distance between the two data points p and o can be calculated by using a Euclidean n-

dimensional space (Equation (1)). 

 

𝑑 (𝑝, 𝑜) = √∑ (𝑝𝑖 − 𝑜𝑖)2𝑛

𝑖=1
  

(

(1) 

Let the dataset be a D and a positive integer is k. For a data point p, the k-distance p is the 

distance d(p,o) between p and the farthest neighbor data point (record) o (o ∈ D) in the following 

conditions:  

(1) At the least, k data points (records) o’ ∈ D \ {p} maintains that d(p,o’) ≤ d(p,o); 

(2) At the most, k-1 data points (records) o’ ∈ D \ {p} maintains that d(p,o’) < d(p,o). 
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Table 3.1. Summary of the most-cited local outlier algorithms in a static environment. 

Authors and 

Year 
Algorithm Features 

Time 

Complexity 
Taxonomy Remarks 

Breunig et al., 

2000 [58] 
LOF 

Better in spherical 

data 
O(n2) 

Nearest 

neighbor based 

Introduced local outlier 

detection, and it uses Euclidian 

distance and kNN to estimate 

local density. 

Tang et al., 

2002 [67] 
COF Better in linear data O(n2) 

Nearest 

neighbor based 

Overcomes the linear distribution 

and it uses the chaining distance 

to find the local outlier. 

Jin et al., 

2006 [68] 
INFLO 

Reversing the data 

point’s nearest 

neighbors 

O(n2) 
Nearest 

neighbor based 

Overcomes the issue of the data 

points within the boundaries of 

the clusters. Effective for data 

points that include clusters with 

diverse densities. 

Kriegel et al., 

2009 [69] 
LoOP 

Presumes “half-

Gaussian” 

distribution of 

distances 

O(n2) 
Nearest 

neighbor based 

Estimates the local density by 

probabilistic set distance. 

Combines probability and 

statically approaches to provide 

outlier score. 

Papadimitriou 

et al., 2003 

[70] 

LOCI 

Presumes “half-

Gaussian” 

distribution of 

quantity of data 

points density in the 

neighbors 

O(n3) 
Nearest 

neighbor based 

Uses the same process as LoOP; 

the difference is the amount of 

instance is used rather than the 

distance. Long computation time 

but does not need parameters. 

Papadimitriou 

et al., 2003 

[70] 

aLOCI 
Uses the quad trees to 

speed up counts 

O(NLdg + 

NL(dg + 2d)) 

Nearest 

neighbor based 

Simple approximation of density 

based on occupancy and depth. 

Overcomes the high time 

complexity in LOCI. 

He et al., 

2003 [71] 
CBLOF 

Uses a heuristic 

procedure for small 

and large clusters 

O(n2) 
Clustering-

based 

Many parameters. Ineffective in 

detecting the local outliers. It 

takes into consideration the local 

variation of clusters. 

Amer et al., 

2012 [72] 
LDCOF 

Estimates the 

clusters’ densities. 

Spherical distribution 

is presumed for the 

cluster members 

O(n2) 
Clustering-

based 

Many parameters. Effective in 

detecting the local outliers. The 

threshold is included to 

determine whether or not the 

points are outliers. 

 

 

 

R
ef

er
en

ce
s 

[58] [67] 

[74] 

[73] 

[69] 

[68] [75] [76] [70] [77] [71] [72] [78] [79] [80] [81] 

[83] 

[82] 

[87] 

[86] 

[85] 

[84] 

Year 2000 2002 2003 2004 2005 2006 2008 2009 2012 2013 2014 2016 2017 2018 2019 

Figure 3.2. Summary of references used in the literature review for static data. 
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Definition 2. k-nearest neighbors of p. 

Here, the meaning of k-Nearest Neighbors (kNN) of p is any data point q whose distance to the 

p data point is not greater than the k-distance(p). Those k-Nearest Neighbors of q form the so-called k- 

distance neighborhood of p, as described in Equation (2).  

Definition 3. Reachability distance of p with respect to o. 

Let k be a positive integer. The reachability distance of a data point p with regard to the data 

point o is defined in Equation (3). 

reach-dist𝑘(𝑝, 𝑜) = 𝑚𝑎𝑥 { k-distance(𝑜), 𝑑(𝑝, 𝑜)} 

(

(3) 

 

𝑁k-distance(𝑝)(𝑝) = { 𝑞 ∈ 𝐷\{𝑝}|𝑑(𝑝, 𝑞) ≤ k-distance (𝑝) } 
(

(2) 

Figure 3.3. The reachability distance for different data points p with 

regard to o, when k equals 5. 
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Figure 3.3 shows an example of the reachability distance when the k value is 5. If the actual 

distance between a data point p4 and data point o is shorter than the k-distance (o), then the reachability 

distance of data point p4 will be the k-distance (o). On the other hand, if the actual distance between a 

data point p6 and data point o is greater than the k-distance (o), then the reachability distance of p6 is 

the actual distance. Such a smoothing operation is used to reduce the statistical fluctuations of d(p,o) for 

each data point close to o. The smoothing strength is controlled by k. 

Definition 4. Local reachability density of p. 

In density-based clustering algorithms, two parameters are used for defining the notion of 

density: (1) MinPts for a minimum number of data points and (2) a volume. The authors of [53] used 

reach-distMinPts(p,o) for o∈ NMinPts(p) as a volume measurement. Thus, the local reachability density (Lrd) 

of data point p is defined in Equation (4). 

𝐿𝑟𝑑𝑀𝑖𝑛𝑃𝑡𝑠(𝑝) = 1/ (
∑ reach-dist𝑀𝑖𝑛𝑃𝑡𝑠(𝑝, 𝑜)𝑜 ∈ 𝑁𝑀𝑖𝑛𝑃𝑡𝑠(𝑝) 

|𝑀𝑖𝑛𝑃𝑡𝑠(𝑝)|
) 

(

(4) 

In Equation (4), the average reachability distance based on the MinPts number of nearest 

neighbors of data point p is first calculated. Its inversion then generates the local reachability density 

(Lrd) of data point p. 

Definition 5. LOF of p. 

With all the above-mentioned work, the LOF score of a data point p can be calculated through 

Equation (5). 

𝐿𝑂𝐹𝑀𝑖𝑛𝑃𝑡𝑠(𝑝) =

∑
𝐿𝑟𝑑𝑀𝑖𝑛𝑃𝑡𝑠(𝑜)
𝐿𝑟𝑑𝑀𝑖𝑛𝑃𝑡𝑠(𝑝)𝑛 ∈ 𝑁𝑀𝑖𝑛𝑃𝑡𝑠(𝑝) 

|𝑁𝑀𝑖𝑛𝑃𝑡𝑠(𝑝)|
  

(

(5) 

 

Equation (5) calculates the average ratio of the local reachability density of data point p and the 

MinPts-nearest neighbors of data point p. Finally, an LOF score is assigned to each data point. To 

determine whether data point p is an outlier or not, the threshold score θ is used. The strength of the 
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LOF is that it can identify the local density and determine local outliers. The weaknesses are that it 

requires a long execution time and is sensitive to the minimum points value. 

 

3.4.1.2 Connectivity-Based Outlier Factor (COF) 

The COF algorithm [67] works like the LOF algorithm, except that the density estimation of the 

COF for the data points works differently. For the LOF, the kNN is determined by using the Euclidean 

distance, while the COF uses a different approach to determine the kNN, called the chaining distance. 

In particular, the LOF assumes the data points are distributed in a spherical form, but the COF assumes 

the data points have a linear distribution. In mathematics, the chaining distances are the minimum of the 

total sum of the distances linking all neighbors. The advantage of the COF is that in datasets that have 

linear correlation, the COF performs with greater accuracy than the LOF. The COF builds a set path to 

determine the outlier. The COF weakness is that it requires a longer execution time than the LOF. 

 

3.4.1.3 Local Correlation Integral (LOCI) 

In the above-mentioned algorithms, selecting the k value is an important decision for the 

performance of an algorithm. However, the Local Correlation Integral (LOCI) uses the maximization 

approach to address the issue of choosing the k value [68]. The main idea is to use all possible k values 

for each data point and then take the top score. To implement this, the r-neighbor is defined, which uses 

the radius r. The radius r expands over time. Here, the estimation of local density is obtained by using 

a half-Gaussian distribution, similar to the LoOP, but the LOCI uses the quantity of data points in 

neighbors instead of using distances. Additionally, the estimation of local density in the LOCI is 

obtained by comparing two different sets of neighbors instead of the ratio of local densities. The 

parameter α controls the ratio of different neighbors. A disadvantage of the LOCI algorithm is that it 

requires a lot of time for large datasets because the radius r has to be expanded from one data point to 

the next. However, the strength of LOCI is that it can locate the maximum value for all radii. 
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3.4.1.4 Approximate Local Correlation Integral (aLOCI) 

To address the issue of run time in the LOCI, the Approximate Local Correlation Integral 

(aLOCI) was proposed [68]. To speed up the counting of two neighbors, the aLOCI uses quad trees and 

places some constraints on α. The count estimation will be accurate in the aLOCI when the data point is 

located in the middle of a cell of its quad tree. By contrast, the approximation might be poor if the data 

point is located at the border of a quad tree. Because of this, multiple quad trees are built with the hope 

that the approximate tree is perfect for every data point. However, the depth of the tree must be specified. 

The strength of this method is that it can speed up the process by using quad trees; its weakness is that 

the tree depth has a significant effect on the performance of the algorithm. 

 

3.4.1.5 Cluster-Based Local Outlier Factor (CBLOF) 

The Cluster-Based Local Outlier Factor (CBLOF) works by using a cluster to determine the 

density area in the dataset [69]. It estimates the density for each cluster. First, k-means is used to cluster 

the dataset. Next, the CBLOF uses a heuristic procedure to split the resulting clusters into two categories: 

large and small. Finally, the calculation of the outlier score is accomplished by using the distance of 

each data point to the central data point of its cluster, multiplied by the data points that belong to its 

cluster. In a small cluster, the distance to the nearest large cluster is used. The advantage of CBLOF is 

that it uses the cluster method instead of the nearest neighbor method. Its disadvantage is that it is 

sensitive to the k parameter in the k-means clustering. 

 

3.4.1.6 Influenced Outlierness (INFLO) 

The Influenced Outlierness (INFLO) algorithm [70] is applied when the data points include 

clusters with diverse densities that are near each other. The LOF algorithm fails to correctly score the 

data points within the boundaries of the clusters. The k-NN method is used in the INFLO algorithm. In 

addition, the set of reverse nearest neighbors, where data points are stored with existing data points, is 
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considered a neighbor. To calculate the INFLO score, both neighbor sets need to be combined. After 

this, the local reachability density and the score are calculated as in the LOF algorithm. The INFLO 

operation is illustrated in Figure 3.4, where the red data point has five nearest neighbors, as can be seen 

in the blue circle. The red data point will be detected as an outlier because the local density value of its 

four nearest neighbors is much higher. In the INFLO, the (green) data points are taken into consideration 

when the red data point is their neighbor. The INFLO algorithm calculates the score of outliers more 

accurately when the dataset contains multiple clusters of diverse densities that are near to each other. It 

can also detect outliers in different neighbor density distributions. The disadvantages are that it requires 

a long time to run, and it is only focused on local outliers. 

 

3.4.1.7 Local Outlier Probability (LoOP) 

Similar to the LOF, the Local Outlier Probability (LoOP) uses the set of nearest neighbors to 

estimate the local density [71]. However, the LoOP calculates the local density differently. While the 

LOF detects the outlier data points using the score of an outlier, the LoOP detects them by using the 

probability of an outlier. The main idea is that the distance of a data point to its nearest neighbors follows 

the Gaussian distribution. Because the distances have positive values, the LoOP presumes a “half-

Gaussian” distribution and uses its probabilistic set distance, which is considered the local density. The 

proportions of each data point are compared to the proportions of its nearest neighbors, which result in 

the local outlier detection score. Finally, the normalization and a Gaussian error function are 

implemented to convert the score to a probability. The advantage of LoOP is that it depends on the 

probability score. The disadvantages of LoOP are that it requires more time to execute and the 

probabilistic size of the data points may cause incorrect measurements. 

 

3.4.1.8 Local Density Cluster-Based Outlier Factor (LDCOF) 

In the CBLOF algorithm, only the quantity of cluster members is used, and the density of the 

cluster is not considered. The Local Density Cluster-based Outlier Factor (LDCOF) resolves this issue 
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by taking into consideration an estimation of the cluster densities, where the spherical distribution is 

assumed for the cluster members [72]. First, the LDCOF applies k-means to cluster the dataset, and then 

it uses the CBLOF process of dividing the clusters into large and small clusters. Next, the LDCOF 

calculates the average 

 

distance of the data points to the centroid for all clusters. The last step is to calculate the LDCOF value 

by dividing the distance of each data point to its centroid by the average distance of each point. A 

strength of the LDCOF is that it estimates cluster densities and presumes a spherical distribution. Its 

weakness is that it is sensitive to the k parameter. 

 

Figure 3.4. Comparison between the LOF and the INFLO. For the red data point, LOF will consider the 
data points in the blue area to be neighbors, which will result in a high outlier value. By contrast, the INFLO 
will take into account the green data points so that the value of the red data point will be more reasonable 
and will be more likely to be considered an outlier. 
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3.4.1.9 Other Local Outlier Detection Algorithms 

Chiu et al. [73] introduced three enhancement schemes, called the LOF’, the LOF’’, and the 

GridLOF. The LOF’ provides a more intuitive meaning for local outlierness. The advantage of this 

method is that it introduces another version of the LOF for the minimum number of points, and it can 

also process large datasets by eliminating rd and lrd. Its disadvantage is that the minimum points value 

could be inaccurate depending on the computational results. The LOF’’ handles cases that the LOF 

cannot properly handle by introducing a new calculation method to determine neighbors. The GridLOF 

improves the efficacy of outlier detection by pruning the inliers. The weaknesses of this method are that 

it requires a long run time due to its complexity and it is difficult to select its parameters.  

Jiang et al. [74] created a novel approach to determine the outlierness score, which is called the 

generalized local outlier factor (GLOF). They also proposed the rule of (k σ) that does not require a 

threshold or previous knowledge about the number of outliers in a dataset. The strength of this method 

is that it does not need thresholds. The weakness of this method is that it depends on the k value. Ren et 

al. [75] proposed an algorithm, called the Relative Density Factor (RDF), which detects an outlier using 

p-trees. A data point pt that has a high RDF score is an outlier. The advantage of this method is that it 

has better scalability when data size is increased; however, it requires more computational time. 

Lozano et al. [76] introduced two parallel algorithms: the first algorithm detects a distance-

based outlier, which depends on nested loops, randomization, and a pruning rule; the second algorithm 

is the parallel LOF algorithm, which detects density-based local outliers. The advantage of these 

algorithms is the fast execution time. Fan et al. [77] proposed an algorithm called Resolution-based 

Outlier Factor (ROF). This algorithm solves some impediments, such as poor accuracy. The strength of 

ROF is that it has a better outlierness score because it uses a growing window. The weaknesses of this 

method are that ROF cannot rank the outliers properly, cannot deal with different density clusters, and 

it requires more storage. Momtaz et al. [78] improved the ROF algorithm [77] by developing a new 

algorithm that detects the top-n outliers by assigning a score for each data point; it is called the Dynamic-

Window Outlier Factor (DWOF). The DWOF improves the ROF by taking into consideration the 
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varying-density clusters. This improves the ranking of the outliers even when presenting the same 

outliers. Its strength is that it identifies a new measurement using top-n, which improves outlier 

detection, while its weakness is that it is sensitive to the parameter choices.  

A new density-based local outlier concept based on uncertain data (UDLO) was proposed in 

[79]. To detect the outlier faster, they built an algorithm that calculates the density of a data point rather 

than calculating all k-neighbors in order to detect the outliers, as in the LOF. The strength of this 

algorithm is it does not need to calculate all the k-neighbors, but it focuses on Euclidean distance only. 

The Clustering-based Multivariate Gaussian Outlier Score algorithm (CMGOS) algorithm was proposed 

by Goldstein [80]. The estimation of local density for CMGOS [28] is achieved using the estimate of 

the multivariate Gaussian model, where the Mahalanobis distance is used as a basis for the calculation 

of the outlier score. As a first step, the CMGOS applies the k-means to cluster the dataset and divides 

them into large and small clusters. Then the covariance matrix is calculated for each cluster. Next, the 

CMGOS value is calculated by dividing the Mahalanobis distance for each data point to its closest 

cluster centroid through the distribution of a chi-square together with a certain confidence interval. A 

strength of this algorithm is that it uses the multivariate Gaussian model and the Mahalanobis distance 

to find the outlier score. The weaknesses of this algorithm are that it requires more k values and it is not 

suitable for large datasets. 

Tang et al. [81] proposed a method for detecting outliers using local kernel density estimation 

(KDE). They introduced the Relative Density-based Outlier Score (RDOS) to calculate the local outlier 

score of data points, where the estimation of the density distribution in the position of a data point, using 

a local KDE, depends on the extended nearest neighbors of the data point. KDE has the advantage of 

being able to estimate the density around a data point, and RDOS can find the local outlierness of a data 

point in the local KDE. Vázquez et al. [82] proposed a novel algorithm, called Sparse Data Observers 

(SDO), to locate outliers based on a model for low-density data. The strength of SDO is that it reduces 

the complexity of the quadratic formula used as well as the computational time. Ning et al. [83] 

developed a method, called relative density-based outlier detection, which uses a new technique to 
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calculate the density of a data point’s neighbors. The strength of this method is that it can handle the 

issues caused by low-density patterns. Su et al. [84] introduced an effective density-based scheme that 

depends on the local outlier detection approach. It is used for scattered data and is named E2DLOS. 

Instead of the LOF, they used the Local Deviation Coefficient (LDC) for their measurements. The 

advantage of this algorithm is that it improves computational efficiency. 

Zhao et al. [85] developed a framework, the Locally Selective Combination in Parallel Outlier 

Ensembles (LSCP) that works by determining a local region (area) around a test data point based on its 

compatibility with its nearest neighbors in randomly selected feature subspaces. LSCP selects and 

combines the best performing detectors in that local area. The strength of this algorithm is that it can 

quantify the degree of the local outliers. A new methodology of tuning the hyper-parameters for the 

LOF algorithm was proposed in [86]. The strength of this method is that it can handle small and large 

datasets; its weakness is that the algorithm has to well-sample the training data. Yang et al. [87] 

developed a new local outlier detection algorithm called the Neighbor Entropy Local Outlier Factor 

(NELOF) that improves the Self-Organizing Feature Map (SOFM) and uses it to cluster the dataset. 

 

3.4.2 Local Outlier Detection in Stream Environment 

Despite the contributions of the above research to local outlier detection, their focus has been 

on static environments rather than on steam environments, in which the data comes as a stream of points 

rather than a single, static dataset. The environments with streamed data have been much less studied. 

Thus, there has been growing interest in developing traditional local outlier detection algorithms to work 

in stream environments. This section reviews the research on local outlier detection algorithms in stream 

environments and focuses on the LOF-based approaches that contributed effectively to the calculation 

of the LOF score in these environments. Table 3.2 provides a summary of previous work on LOF in 

stream environments. Figure 3.5 shows all of the reviewed papers included in this section. 
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3.4.2.1 Overviwe of Local Outlier Detection Algorithms in Stream Environment 

Authors of [88] proposed Incremental Local Outlier Factor (ILOF). The idea of ILOF is to update and 

calculate the score of LOF in a data stream to determine if the newly incoming data point is an inlier or 

outlier using landmark window. However, ILOF needs to store all the data points in memory in order 

to calculate the LOF score. Pokraiac et al. [89] proposed an incremental COF (connectivity-based outlier 

factor) whose detection performance in a data stream is equivalent to that of the integrated static 

connectivity-based outlier factor (COF) algorithm. The contribution of the paper is that it shows that the 

number of data profiles that updates for every deletion or insertion does not in any way rely on the 

number of points found in a given set of data. Ren et al. [90] discussed the issue of data stream attributes 

in memory usage. They presented a new approach, Heterogeneous Data Streams Outlier Detection 

(HDSOD), to overcome issues in processing data streams. The strength of this approach is that it is 

based on a heterogeneous data stream that uses the partition-cluster approach for the data stream 

segments, after which the segment is stored in a reference as a cluster. The outlier result is computed 

based on the number of cluster references and the degree of representation. 

An improved version of the incremental LOF (ILOF) algorithm is introduced by [91], which 

uses a sliding window. The sliding window allows for updating data profiles, particularly during the 

window after which the profiles are declared an inlier/outlier. The strength of this paper is that it 

demonstrates that a false-positive rate could be reduced without incurring extra computational expense. 

For the Multiple Instance (MI) setting, Wang et al. [92] proposed an incremental MI algorithm, Inc. I-

MLOF, for detecting outliers. The algorithm is capable of achieving outlier detection results that are 

similar to those of I-MLOF, an original LOF extension for MI. This paper demonstrates that simple 

incremental algorithms can be used to produce outlier detection results that are similar to those of more 

complex algorithms. The focus of [93] is on local outliers, and hence, an incremental solution was 

introduced with the assumption that finite memory is available. The advantage of the paper is that it 
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shows that different outlier detection solutions are suitable for different application environments based 

on the available memory. 

Kontaki et al. [94] presented an algorithm that is applied to the continuous monitoring of streams 

of data outliers. The basis for the algorithm is sliding windows. The strength of the algorithm is that 

memory requirements are reduced. The paper also contributed to the introduction of more flexible and 

efficient techniques for detecting anomalies in streams of data. Zhang et al. [95] presented a technique 

for detecting faults in streams of data that are highly dimensional and non-stationary. The technique 

presented is angle-based and can identify sub-space faults that are low-dimensional from high-

dimensional dataset spaces. Salehi et al [96] proposed the Memory Efficient Incremental Local Outlier 

Factor (MILOF). The MILOF algorithm summarizes the old data by using k-means. However, this 

method usually performs badly because clustering old data points by using k-means does not retain the 

density.  Hamlet et al. [97] proposed a new incremental algorithm that is a modification of the LoOP 

(Local Outlier Probabilities) algorithm, which is usually utilized for anomaly detection. The advantage 

of the Hamlet et al. algorithm is that it can detect outliers almost immediately. It reduces computational 

time meaning that low-resource machines can be used in incremental anomaly detection, even on large 

static sets of data. The disadvantage of this method is that it needs to be executed on the dataset before 

accepting incremental data points.  

Siffer et al. [98] proposed a novel method for detecting outliers, particularly in the streaming of 

a univariate time series whose basis is the extreme value theory. An advantage of this method is that it 

does not make any distribution assumptions and it does not need a handset threshold. The objective of 

this paper was to develop a method where an anomaly can be detected in a more efficient manner. 

However, its weakness is the gap in terms of the multivariate case. Mu et al. [99] introduced an 

alternative technique as a solution to the problem of classifying new classes of data streams. The 

advantage of this work is that it demonstrates that it is possible to make use of random trees to find the 

solution to three key sub-problems: model updates, supervised learning, and unsupervised learning. The 

problem with this method is that it does not give true class labels. Ishimtsev et al. [100] considered a 
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model-free anomaly detection technique that uses a univariate time-series and generates a probabilistic 

abnormality score. The advantage of this work is that it demonstrated that simple methods, such as the 

Lazy Drifting Conformal Detector (LDCD), can be used for performing anomaly detection and achieve 

results similar to those of more complex anomaly detection techniques. The disadvantage of this work 

is that the procedure of LDCD, required for the suitable validity warranty, needs further research for the 

Numenta Anomaly Benchmark (NAB) corpus. 

A Neuromorphic Anomaly Detection (AnRAD) framework was introduced in [101] that can 

perform probabilistic inferences. The strength of the framework is that it improves memory efficiency 

and computing performance during anomaly detection. The paper also describes the improved speed of 

incremental learning and hence improved anomaly detection efficiency and accuracy. Yao et al. [102] 

introduced an incremental approach for detecting a local outlier aimed to evaluate the local outlier in a 

given stream of data in a dynamic manner. The strength of the work is that local outliers can be detected 

more accurately with advanced k nearest neighbor-based techniques. The weakness of the work is that 

it requires long computational time. Munir et al. [103] presented a new approach for detecting an 

anomaly, which is based on deep learning. The approach is known as DeepAnT and is used on time-

series data. The method can also be used in non-streaming cases. The advantage of the approach is that 

an anomaly can be detected in real-life cases in which labeling a relatively big data stream, as well as 

static data, is required. Na et al [104] proposed Density Summarization Incremental Local Outlier Factor 

(DILOF). The DILOF algorithm shows better performance than MILOF by summarizing the old data 

using gradient descent. However, gradient descent can get stuck in local minima. 

Manzoor et al. [105] proposed a method for detecting an outlier that is density based. The 

method, known as xSTREAM, is suitable for more extreme streaming data. The paper demonstrates that 

by making use of state-of-the-art methods, such as the xSTREAM, an anomaly can be detected more 

accurately, regardless of the size of the dimensions of the noise. Yang et al. [106] proposed a rather fast 

algorithm for outlier detection in data streams. The advantage of their method is a reduction in the time 

required for anomaly detection because the algorithm minimizes the required calculations in the LOF 
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while still generating accurate outlier detection. However, it is based on a prediction model. Novel 

outlier semantics are proposed by Qin et al. [107], which deal with the shortcomings associated with the 

existing methods in light of modern high-velocity streams of data. The algorithm leverages KDE (kernel 

density estimation) to enhance the effectiveness of detecting local outliers from streaming data. The 

strength of this paper is that it shows how KDE can be leveraged to enhance the effectiveness of local 

outlier detection. 

Kalliantzis et al. [108] focused on an outlier detection technique that is distributed and density 

based. The technique is applied to multi-dimensional streams of data. The strength of the work is that it 

establishes how the approximation computation method for LOCI (Local Correlation Integral) can be 

used to enhance the scalability and efficiency of detecting an anomaly, even when a largely distributed 

dataset is involved. Cai et al. [109] proposed an approach for detecting outliers that is two-phased and 

pattern-based and is known as Weighted Maximal Frequent Pattern-based Outlier (WMFP). The 

advantage of this method is that it shows that the impact of outliers, particularly from a weighted stream 

of data, can be detected more effectively. By accelerating the process of detecting outliers, the maximum 

frequent patterns are utilized rather than the frequent patterns. Novel methods for detecting and 

predicting outliers are introduced in [110]. The paper contributes to anomaly detection by showing that 

ensuring that an appropriate technique is used results in the achievement of accurate results, 

minimization of memory consumed, and the minimization of computational time. 

A new approach for classifying data streams proposed in [111] is known as Evolving Micro-

Clusters (EMC). The method learns the evolving micro-clusters in a dynamic manner in order to evaluate 

the evolution and concept drift. The advantage of this method is that it introduces the possibility of 

distinguishing evolution and concept drift from the distribution of noise. Alsini et al. [112] proposed a 

Grid Partition-based Local Outlier Factor (GP-LOF) algorithm for detecting a local outlier in a data 

stream. The GP-LOF has three phases: the first is the preprocessing phase where a sliding window is 

used to summarize the data points; the second is the processing phases that uses a grid method to split 
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the data points, and the third is the detection phase that detects the outliers using the LOF. The strength 

of the algorithm is that it summarizes the data stream. 

 

3.5 Applications of Outlier Detection 

3.5.1 Intrusion Detection 

Intrusion detection is a popular application of outlier detection. The purpose of its application is to 

monitor traffic networks. Outlier detection algorithms are used to identify intrusion attempts [113,114]. 

and programs usually inform the network manager of any suspicious violations and processes that have 

been observed. Intrusion Detection Systems can be split into two basic types: Network In-trusion 

Detection Systems (NIDS) and Host-based Intrusion Detection Systems (HIDS). Intrusion Detection 

Systems (IDS)  

 

Table 3.2. Previous works summary for LOF in a stream environment. 

Authors 

and Year 
Algorithm Method 

Window 

Form 

Time 

Complexity 

S. Technique 
Remark 

Opt Clus 

Pokrajac et 

al., 2007 

[88] 

ILOF 

Updating data 

when new 

data point np 

is inserted. 

Landmark 

window 
O(N log N)   

Need to store all data 

points in the memory, 

which requires high 

memory complexity and 

high time complexity. 

Salehi et 

al., 2016 

[96] 

MILOF 

Summarizing 

the data by 

using k-means. 

Sliding 

Window 
O(N log Ws)  ✓ 

Summarized data points 

using k-means which 

cannot preserve the 

density of data and 

addressed the issue of high 

time complexity in ILOF. 

Na et al., 

2018 [104] 

DILOF 

 

Summarizing 

the data by 

using gradient 

descent. 

Sliding 

Window 
O(N Ws) ✓  

Summarized data points 

using gradient descent. 

Addressed the issues of 

preserving the density of 

data points in MILOF. In 

contrast, it might be stuck 

in the local minima. 

 

Note: Summarization (S), Optimization (Opt), Clustering (Clus). 
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Figure 3.5. Summary of references used in the literature review for streaming data. 

 

are hardware or software that observe the operation of the computer network and detect suspicious data 

or violations of network management policies. These devices NIDS observes the operations of 

exchanged data on the network, and continuously compares it with normal data. It can therefore 

determine suspicious data or violations perpetrated on a network. HIDS works as software on devices 

and observes any modi-fication or deletion of files. It also observes the outgoing and incoming data 

from the network to detect any suspicious data transfer between the device and the network [115]. The 

challenge of intrusion detection applications is the processing of huge amounts of data streams. 

Therefore, these applications use more basic, but more rapid, outlier detection algorithms. 

 

3.5.2 Fraud Detection 

Fraud detection is another common application for outlier detection. Fraud detection is used in 

many industries and other sectors, such as banking, insurance, and law enforcement. It aims to detect 

and prevent fraud [116]. Fraud detection software analyzes data, such as financial transactions, to detect 

abnormalities and unusual activities [117,118]. The Internet has become a necessity of life for many 

people. This has vastly increased e-shopping, which has led to the growth of online payments using 

credit cards. Outlier detection algorithms are used to identify attempted fraud. 
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3.5.3 Medical Applications 

Outlier detection is also employed in many important medical applications. Outlier detection 

helps doctors monitor patients’ conditions when body sensors, such as electrocardiography (ECG), are 

used to detect critical situations [119,120]. Outlier detection algorithms are often used for analyzing 

medical images. For example, to detect abnormalities in a computed tomography scan (CT), doctors 

need to take into consideration the size, density, expansion, shape, structure, and location of suspicious 

tissue or structural part to compare the abnormality to normal tissue or structure. However, outlier 

detection algorithms in medical applications depend on image processing as a preprocessing stage. 

 

3.6 Computational Complexity  

The LOF and the related local outlier detection algorithms are nearest neighbor-based 

algorithms. The computational complexity of these algorithms is O(n2), except for LOCI. Therefore, 

the execution times of these algorithms are similar. The computational complexity of the LOCI 

algorithm is O(n3), which requires more execution time because of the repetition required for the radius 

expansion. Another version of the LOCI algorithm is the aLOCI, which is faster than the LOCI because 

the execution time is based on the number of quad trees. The nearest neighbor-based algorithms have 

better accuracy of outlier detection than cluster-based algorithms [121]. However, long computation 

times are the cost of these methods because of the long time spent calculating pairwise distances. 

When comparing the cluster-based algorithms with nearest neighbor-based algorithms, the 

cluster-based algorithms are more efficient; for example, the k-means computational complexity is 

O(nki), where n is the data point, k is the center of the cluster, and i is repetitions. By contrast, the nearest 

neighbor-base algorithms usually lead to quadratic computational complexity because they calculate the 

distances of all data points. The computational complexity of cluster-based algorithms, such as CBLOF, 

depends on the cluster algorithm, which is faster than O(n2) when using k-means. Therefore, the 

clustering algorithm is the essential reason for the computational complexity. 
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The most important issue for the LOF and its extensions is application in a stream environment. 

Few works exist in this domain, but some of them show better execution times. The ILOF algorithm 

addresses the issue of the LOF in a stream environment by updating and calculating the score of the 

LOF when a new data point arrives by using a landmark window. The computational complexity of the 

ILOF is O(N log N) and the memory usage complexity is O(Nk). The MILOF algorithm solved the issue 

of unlimited memory in the ILOF by summarizing the data points using k-means clustering and sliding 

windows, which limits the memory requirement. The computational complexity of the MILOF is O(N 

log Ws) and the memory usage complexity is O(Ws k), where N is the size of the data stream and Ws is 

the window size. The DILOF algorithm overcomes the issue of unbounded memory requirements by 

summarizing the data points using gradient-descent and sliding windows. The computational complexity 

of the DILOF is O(N Ws) and the memory usage complexity is O(Ws k). Finally, the MILOF and the 

DILOF solve the issue of the ILOF by summarizing and keeping only a small portion of the data points, 

which leads to reduced execution time. 

 

3.7 Strengths and Weaknesses 

3.7.1 Nearest Neighbor-Based Techniques 

Distance and similarity metrics can be determined by different approaches in the nearest 

neighbor-based outlier detection methods. The advantage of this approach is that it does not need an 

assumption for the data distribution and can be applied to different data types. However, it requires an 

appropriate distance calculation for the data. The Euclidean distance is the optimal approach for serving 

the outlier detection in continuous characteristics such as data streams [122]. The methods depend on 

two approaches: 

• The use of techniques to measure the distance of the data point as for the outlier score. 

• To identify the outlier score, the calculation of the relative density of each data point. 

However, nearest neighbor-based techniques require a long computational time for big data. 
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3.7.2 Clustering-Based Techniques 

In data mining, the clustering technique is a common alternative for clustering data with similar 

features [123,124]. Clustering is also an effective method for the study of outliers. In most of the 

clustering approaches, the primary assumption is that the normal data is often bound to density and 

significant clusters, where outliers can be separated into other classes [125]. The advantages of cluster 

approaches include the following: 

• With the incremental model, it is simple to adjust. 

• No oversight is required. 

• Suitable for temporal data to detect outliers. 

• Requires only a quick test step since the number of clusters needing comparison is typically 

small. 

The disadvantages in the clustering-based techniques are the following: 

• They depend strongly on the efficiency of the clustering algorithm for normal data points. 

• The majority of approaches that identify outliers are cluster by-products and thus are not 

designed to perform well for detecting outliers. 

• Several cluster approaches process each point to be distributed in some clusters. This could 

contribute to abnormalities in a large cluster, and techniques that work under the presumption that 

anomalies are included in each cluster may be viewed as normal data points. 

• Some algorithms demand that each data point is allocated on a cluster. A wide cluster may be 

used for outliers and handled by methods that often conclude that outliers are isolated. 

• Various approaches to the cluster are only applicable where outliers are not part of the main 

clusters. 

• The measurement of the clustering algorithm is complicated. 
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3.8 Conclusion  

Outlier detection is an important task for many applications in many different domains. The aim 

of outlier detection is to find abnormal events that differ from normal events. This chapter reviews local 

outlier detection algorithms in both static and stream environments. More specifically, it addresses the 

challenges of local outlier detection in stream environments and compares the different methods of local 

outlier detection that have been proposed. Extra attention has been given to the LOF in stream 

environments. Based on the results of this review, the chapter also provides the strengths and weaknesses 

of the LOF in stream environments. 
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Chapter 4: The Genetic-Based Incremental Local Outlier Factor (GILOF) 

Algorithm 

"A Genetic-Based Incremental Local Outlier Factor Algorithm for Efficient Data Stream Processing." 

the 4th International Conference on Compute and Data Analysis, 2020 pp. 38-49, ACM. 

4.1 Introduction 

Outlier detection is a method in data mining, which has obtained a lot of interest in the machine 

learning domain because it is important to detect unusual activities for practical applications, such as 

the credit card fraud and intrusion detection. In fact, many algorithms have been developed and applied 

to detect outliers in big data for static environments. In contrast, streaming data is a form of big data that 

keeps growing indefinitely and, as such, a unique feature of streaming data is its velocity. As the data 

keeps growing, it cannot be stored as a whole in the computer memory [1]. Specific designs are needed 

for outlier detection in data stream processing.  

Distance-based outlier detection algorithms are popular because they detect outliers without 

assuming an underlying distribution of data. Despite  the popularity of distance-based techniques, they 

have poor accuracy in analysis of multi-density data. In contrast, density-based outlier detection 

techniques have demonstrated their ability to find outliers in multi-density data. Local Outlier Factor 

(LOF) is a commonly used density-based technique [58]. Nevertheless, LOF faces two challenging 

issues in real-world applications. First, it requires a lot of memory to store data points in the whole 

dataset and the distances between data points. Second, for any change in the dataset, LOF needs to be 

recalculated from the beginning for the whole dataset, which is inefficient.  

Authors of [88] proposed an incremental technique for LOF called Incremental Local Outlier 

Factor (ILOF). This technique calculates the LOF in data streams, but it also needs the whole dataset to 

detect the outliers in a data stream. Moreover, ILOF cannot detect the sequence of outliers that represent 

a new type of outlier, such as outliers that represent a new type of attack. To solve these issues, the 

Memory efficient ILOF (MILOF) and Density summarizing ILOF (DILOF) algorithms were proposed. 

MILOF selects a few data points to store in memory by using k-means clustering of old data [96]. 
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However, this approach often performs significantly worse for some datasets because clustering old data 

by using k-means does not maintain the density of data. Also, it cannot detect the sequences (series) of 

outliers in a dataset. Researchers in [104] proposed DILOF to detect outliers by summarizing the old 

data. They used gradient descent and a skipping scheme to detect sequences of outliers. So far, DILOF 

has the best performance among recently developed algorithms. However, the gradient descent can get 

stuck in local minima. 

To further improve the accuracy and efficiency of outlier detection in data streams, in this 

chapter we propose a new algorithm called Genetic-based ILOF (GILOF), which is based on the Genetic 

Algorithm (GA). Like gradient descent, GAs can become stuck in local minima. However, because they 

are a population-based search technique and use a crossover operator to more widely explore the search 

space they are generally better than simple gradient descent for searching complex spaces with many 

local minima. Compared to the existing ILOF algorithms, GILOF has the following characteristics. First, 

GILOF is working under the limited memory. So, it is capable of handling the memory limitation by 

summarizing the data points. Second, it detects the outliers using ILOF. This new GA-based process is 

the major contribution of this chapter. In this research, GILOF was evaluated through a series of 

experiments using real-world datasets. The results show that the performance of GILOF is better than 

DILOF in several datasets.  

The remainder of this chapter is organized as follows: The methodology is described in section 

2. Section 3 shows the concept drift. Section 4 present the experiment. Section 5 presents and discusses 

the results of the experiments, and the conclusion of this chapter is presented in section 6. 

 

4.2 The Methodology 

To address the limitation of DILOF and MILOF, we propose GILOF in this paper. The primary 

purpose of GILOF is to measure LOF under the following situation: A small part of the dataset is stored 

in memory, no previous knowledge of the data distribution exists, and outlier detection for the data point 
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pt should be done at the current time T. The algorithm has no previous knowledge about the future data 

points in detecting the current outliers.  

Like DILOF, GILOF includes two phases: detection and summarization. During the detection 

phase, we used ILOF together with a skipping scheme [88,104]. During the summarization phase, we 

used the Genetic Density Summarization (GDS), which will be described in detail in the following text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed GILOF algorithm is described in Algorithm 1, and it works as follows: In the 

beginning, it determines the maximum window size (number of points) as W. Then, the LOF threshold 

is used to detect the outliers depending on the threshold θ, then applies the GDS for the summarization 

phase. After that, when the new data point arrives, the GILOF algorithm detects the outlier using the 

ILOF (lines 5-6 in Algorithm 1). GILOF will continue detecting outliers and computing the LOF score 

for each new data point until, the existing window reaches the W size. After that, GDS applies over the 

window to summarize the old 50%W data points in the window by selecting the best possible 25%W 

data points to represent the old 50%W data points (Figure 4.1). Then, the old 50%W data points will be 

Algorithm 1: GILOF 

Input: infinite data streams P={p1, p2, ..., pt , ...},  

maximum window size W 

threshold of LOF scores θ 

population size PS 

number of chromosomes NC 

              number of generations NG 

1   X ← {} // is the data points in the memory  

2   X’← {}// is the oldest 50% data points in the memory 

3   O←{} // is the detected outliers  

4   Skipping_Scheme  

5   For each pt ∈ P do  

6        LOFk(pt) ← ILOF(pt,o,O,θ)  

7        If LOFk (pt ) > 0 then  

8    X ← X ∪ {pt}  

9     If |X | = W then  

10            Z ←GDS(X’,PS, NC,NG) 

11            Delete the oldest 50%W data points in X  

12            X’←X’ ∪ Z  

13    End  

14        End  

15   End 
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deleted from the window and the selected 25%W data points will be inserted to the window to be with 

the remaining 50%W (lines 9-13 in Algorithm 1). Those 75%W data points will be selected to join with 

other new incoming data points in the window. When the window is full again (100%W), the GDS 

repeats the process. The GILOF video [168] displays a simulation of how the GDS algorithm works. 

 

4.2.1 Detection Phase 

There are two versions of Genetic based Incremental Local Outlier Factor (GILOF) algorithm. The first 

one is named GILOF which uses ILOF algorithm with skipping scheme to detect the local outlier. The 

second version is GILOF-NS which is not using skipping scheme. Below is an explanation of ILOF and 

skipping scheme procedures. 

 

4.2.1.1 Incremental Local Outlier Factor (ILOF) 

The concept of ILOF is to calculate and update the LOF score based on each data point on the 

data stream, and thus to determine if a data point is an outlier or not [88]. The LOF algorithm has its 

drawback when processing a data stream, for which the dataset is dynamic and new data points np 

Figure 4.1. GILOF process for a data stream in two dimensional from time T0 to Tcurrent. 
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continuously appear. It requires an update of the k-distance, reachability distance, and Lrd for the LOF 

value based on np. For this reason, the insert method of ILOF deals with a new data point np in two 

steps. First, it calculates the reachability distance, Lrd, and LOF score of np. Second, it updates the k-

distance, reachability distance, Lrd, and LOF score for the existing data points [88]. 

However, a main issue of ILOF is that it keeps all the old data points in the memory to calculate 

the LOF value for every streaming data point that arrives at different times. Thus, ILOF requires long-

term and large memory usage. 

 

4.2.1.2 Skipping Scheme 

In the detection phase of GILOF, the skipping scheme method keeps any new data point in the low 

density of the region, because it works together with ILOF to detect a sequence of outliers. Also, it 

ensures that if any new data point emerges with a new class, it will not affect the accuracy of outlier 

detection. The skipping scheme works by using the Euclidean distance in two steps. First, it calculates 

the distance between the data point p and the nearest neighbor to get the average of the distance 

𝑑1(𝑝)̅̅ ̅̅ ̅̅ ̅. Second, it calculates the distance between the last detected outlier ot and the current data point pi 

based on the condition of the return value. If the return value d(pi,ot) is less than the average of the 

distance 𝑑1(𝑝)̅̅ ̅̅ ̅̅ ̅̅ , then pi is considered an outlier and the method returns true. Otherwise, the method will 

return false. For more details of the algorithm readers can refer to [104]. 

 

4.2.2 Summarization Phase 

4.2.2.1 Genetic Density Summarization (GDS) 

In order to find the optimization, the GDS algorithm summarizes the data points in the existing 

window by selecting a few data points to minimize the density differences between the old 50%W data 

points and the new 25%W data points. The GDS algorithm works like the Nun-parametric Density 

Summarization (NDS) algorithm in [104]. The NDS algorithm is a part of DILOF algorithm [104]. NDS 
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algorithm used the gradient descent method to minimize the density difference, whereas GDS uses GA 

to apply the minimization of the density difference. GA is hypothesized to be better than the gradient 

descent because it is able to find enough optimal solutions and avoids the local minima. 

In Algorithm 2, the GDS algorithm starts by creating a population, where the individuals in the 

population contains chromosomes. After that, the Objective Function (Of) is applied to evaluate all 

chromosomes. The Of is the sum of ak (x’n). 

 

 

 

 

Where ak (x’n) is the density of  x’n  according to its kth nearest neighbors (lines 1-6 in Algorithm 

2).  

Then, for each generation, GDS first applies the selection method to the existing generation. 

Then GDS applies a crossover method for a pair of chromosomes. After that, the GDS applies the 

mutation method for pair of chromosomes too. When GA operations are completed for all generations, 

GDS will keep the best result (lines 7-12 in Algorithm 2). Following the above steps, the selected 

chromosomes are transformed into S. Then, S is projected into the binary domain, i.e., the best 25% of 

sn in S is set to 1 and the remaining to 0. The GDS algorithm will select a data point x’n in X’ if its 

corresponding sn in S equals to 1 (Figure 4.2). Finally, the selected data points will be output as Z 

(lines13-20 in Algorithm 2). 

 

4.3 Concept Drift 

Concept drift refers to unexpected change occurring over time in the underlying data distribution 

and to changes in the collected data over time. Concept drift as part of machine learning and data mining 

aims to predict the target value or class value. The processes accuracy can be increased over time or 

finding the missing data value of certain variables [169, 170]. 

𝑂𝑓 = ∑ 𝑎𝑘(𝑥𝑛
′ )

50%𝑊

𝑛=1

                                                                                                                           (6) 
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Algorithm 2: GDS 

   Input: set of data points X’= {x’1, x’2,.., x’50%
W },  

               population size PS 

               chromosomes C 

               number of chromosomes NC 

               number of generations NG 

   Output: represented the selected data points Z 

1  P ← {} populations 

2  Create Population P 

3  For each p ∈ P do  

4      Create chromosomes C in p  

5      Apply Objective (Fitness) Function to C. 

6  End 

7  For each G in NG 

8     Apply RWS selection to G.   

9     Apply cross-over to G. (two-point random  

       cross-over).      

10   Apply mutation to G. (BDM mutation) 

11   Keep the best results to next G 

12   End  

13  Transmit the result (chromosome) to S 

14  Project S into a binary domain 

15  For n=1:50%W do  

16       If sn =1 then  

17 Z ← Z ∪ {x’n } 

18       End  

19  End  

20  Return Z 

 

 

   In our work, the streaming data occurs when a new data element is inserted into the dataset. 

ILOF attempts to determine if each new data element is an outlier or inlier by following two steps. First, 

it calculates the reachability distance, Lrd, and LOF score of incoming data point. Second, it updates 

the k-distance, reachability distance, Lrd, and LOF score for the existing data points. The aim of the 

skipping scheme is to predict the sequence of outliers. When a sequence of outlier data points is inserted 

into the window, the skipping scheme attempts to detect this sequence of outliers.  

   Because a genetic algorithm (GA) evolves over time, and learns from the data itself, when a 

change occurs, a GA is inherently capable of handling concept drift without a separate complex 

computation [151].  
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Figure 4.2. GDS flowchart. 
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4.4 Experiment 

This section presents the experiment results of GILOF. We only compared the result with the 

state-of-the-art DILOF algorithm, as DILOF has already demonstrated advantage over MILOF. To make 

the comparison more comprehensive, we also tested GILOF and DILOF without the skipping scheme 

(GILOF_NS and DILOF_NS). The objective of the experiment is to answer the following two questions: 

 

1) Do GILOF and GILOF_NS perform better than DILOF and DILOF_NS in accuracy of outlier 

detection?  

2) Do GILOF and GILOF_NS perform better than DILOF and DILOF_NS in execution time? 

 

4.4.1 Experiment Procedures 

We compared our proposed algorithms GILOF and GILOF_NS with DILOF and DILOF_NS, 

which is the state-of-the-art competitors. We also listed the results of ILOF as a background for both 

GILOF and DILOF. The following metrics were used: 1) Accuracy of outlier detection and 2) Execution 

time. In particular, the Area Under the ROC Curve (AUC) method [171,172] was used for the first 

metric. All algorithms were implemented in C++ on a machine that has an Intel(R) Core(MT) i5-8250U 

CPU, 8GB RAM, 250 GB SSD hard disk, and Windows 10 (64-bit) operating system. 

We tested GILOF over different window sizes with normalized and unnormalized real-world 

datasets as described in Table 2.1. The UCI Vowel and Pendigit datasets were from the Machine 

Learning database repository at UCI [146], and the KDD Cup99 datasets were from [147]. The Vowel 

dataset was modified to a data stream format such as in [104,173]. The 5 percent uniform noise was 

added to the Pendigit dataset, where the noised data points were considered as outliers [104]. In the 

KDD Cup99 datasets, we did the same settings of [174] where the network attacks were considered as 

outliers. 

For DILOF, the hyperparameters were set as in [104], the ƞ and λ values were equal to 0.3 and 

0.001 respectively for each dataset. The hyperparameters of GILOF are fixed as follows: the population 
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size (PS) and number of generations (NG) were equal to 2 and 4. The selection type was RWS, two-

point crossover was used at rate of 0.7, and BDM mutation was used at rate of 0.07 for each dataset 

[175]. Those values of the hyperparameters in GILOF were determined after a series of tests. 

Furthermore, memory consumption was tested for all algorithms and the results are available at [176]. 

To obtain better results, we took the average (AVG) results of ten iterations for all algorithms. 

The parameter of kNN for datasets in those algorithms was assigned as follows: for UCI Vowel, k was 

19 for both unnormalized and normalized datasets in all algorithms, except that in ILOF it was 9 when 

the dataset was unnormalized and 7 when it was normalized. For UCI Pendigit, k was 9 for the 

unnormalized dataset and 18 for the normalized dataset in all the algorithms, except that in ILOF it was 

55 for normalized dataset and 8 for unnormalized dataset. For KDD Cup 99 smtp and KDD Cup 99 http 

datasets, k was 8 for unnormalized and normalized datasets in all algorithms. We did not use ILOF to 

process KDD Cup 99 smtp and http datasets due to an unacceptable execution time.   

GILOF, GILOF_NS, DILOF, and DILOF_NS all contained a summarization phase which was 

executed when the incoming data points reached window size W. According to the characteristics of 

datasets, we chose six standard window sizes for UCI Vowel and UCI Pendigit datasets, W = {100, 120, 

140, 160, 180, 200}. For KDD Cup 99 smtp and http datasets, we chose four standard window sizes, W 

= {100, 200, 300, 400}. Also, we chose a large window size W = {1000} for all datasets to test the 

accuracy of outlier detection in high dimensional data. 

 

4.5 Results Discussion  

4.5.1 Accuracy of Outlier Detection 

We tested the accuracy of GILOF, GILOF_NS, ILOF, DILOF and DILOF_NS in four datasets 

(Table 2.1). As mentioned before, the ILOF was not applied to KDD Cup 99 smtp and http due to the 

inadmissible execution time. Figures 4.4, 4.5, 4.8, 4.9, 4.12, 4.13, 4.16, and 4.17 present the accuracy 

results of all algorithms for unnormalized and normalized datasets, respectively.  

For the UCI Vowel dataset, the GILOF accuracy results were higher than DILOF in all window 
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sizes (Figures 4.4; and 4.5, Tables 4.1 and 4.2). GILOF, GILOF_NS and DILOF_NS algorithms reached 

the accuracy of ILOF which stored the whole dataset in the memory when W = 200, while DILOF did 

not reach ILOF accuracy when the dataset was unnormalized. For the normalized UCI Vowel dataset, 

GILOF, GILOF_NS and DILOF_NS reached the accuracy of ILOF when W = 200. GILOF_NS 

surpassed all algorithms and showed the best accuracy.  

For the normalized UCI Pendigit dataset (Figure 4.9; and Table 4.3 and 4.4), GILOF showed 

better accuracy than DILOF in all W sizes. GILOF and GILOF_NS reached the accuracy of ILOF when 

W ≥ 140. In contrast, all algorithms showed poor results when the dataset was unnormalized (Figure 

4.8).  

For the unnormalized KDD Cup 99 smtp dataset (Figure 4.12; and Table 4.5), GILOF_NS 

showed better accuracy when W = 200 and other algorithms were close to GILOF_NS. After that, 

DILOF dropped down when W = 300 and 400. In addition, DILOF_NS surpassed all algorithms when 

W = 300 and when W = 400, GILOF, GILOF_NS and DILOF_NS performed almost the same. For 

normalized KDD Cup 99 smtp (4.13), DILOF_NS surpassed other algorithms when W ≥ 200, while 

DILOF dropped down and showed a lower accuracy. GILOF and GILOF_NS showed a little wobbling 

result; however, they were close to DILOF_NS when W ≥ 300. 

For the unnormalized KDD Cup 99 http dataset that has sequence outliers (Figure 4.16; Table 

4.7), GILOF_NS and DILOF_NS showed poor accuracy results compared to GILOF and DILOF, and 

the performance of DILOF was slightly better than GILOF. When the dataset was normalized (Figure 

4.17; Table 4.8), GILOF_NS and DILOF_NS performed better, and they both were in the same level 

when W = 100 and 400, while DILOF_NS was slightly better than GILOF_NS in other window sizes. 

On another hand, the DILOF accuracy result was slightly better than GILOF, and they reached the same 

level when W = 400. In addition, our GitHub page provides the rest of the result tables for all algorithms 

[176]. 
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4.5.1.1 Accuracy of Outlier Detection in Large Window Size 

We tested the accuracy of all algorithms in the large window size of W = 1000. Actually, the 

GILOF and GILOF_NS were applicable to work in large window size better than DILOF and 

DILOF_NS, especially in a dataset that has high dimensional data [177] (Figure 4.3). For UCI Vowel 

dataset, the GILOF and GILOF_NS showed slightly better accuracy than DILOF and DILOF_NS in the 

normalized and unnormalized dataset. For UCI Pendigit dataset, GILOF and GILOF_NS showed better 

accuracy than DILOF and DILOF_NS in the normalized dataset. However, all algorithms have poor 

results in the unnormalized dataset. In KDD Cup 99 smtp, GILOF and DILOF have the same accuracy 

and DILOF_ NS is slightly better than GILOF_NS when the dataset is normalized. GILOF and DILOF 

have the same accuracy when the dataset is unnormalized, while DILOF_NS was slightly better than 

GILOF_NS. For KDD Cup 99 http, GILOF showed a slightly better accuracy than DILOF. GILOF_NS 

and DILOF_NS have almost the same accuracy when the dataset is normalized. When the dataset is 

unnormalized, DILOF showed slightly better accuracy than GILOF. GILOF_NS and DILOF_NS 

showed poor results. 

 

4.5.2 Execution Time 

Figures 4.6, 4.7, 4.10, 4.11, 4.14, 4.15, 4.18, and 4.19 present the execution time results of 

GILOF, GILOF_NS, ILOF, DILOF, and DILOF_NS for the unnormalized and normalized datasets, 

respectively. In general, GILOF was slightly better in execution time than other algorithms in most 

standard window sizes. ILOF took approximately 20 seconds for the UCI Vowel dataset and 300 to 322 

seconds for the UCI Pendigit dataset. The execution times of GILOF, GILOF_NS, DILOF, and 

DILOF_NS were close to each other, as the difference between them was very small. However, GILOF 

took 0.72 to 1.26 seconds on the UCI Vowel dataset and DILOF took 0.72 to 1.27 seconds (Figure 4.6 

and 4.7). For the UCI Pendigit dataset GILOF took 1.94 to 3.46 seconds and DILOF took 1.87 to 3.48 

seconds (Figure 4.10 and 4.11). For KDD Cup 99 smtp and KDD Cup 99 http, the ILOF was not 

executed due to inadmissible execution time. On the smtp dataset, GILOF took 46.4 to 173.5 seconds 
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and DILOF took 42.8 to 182.6 seconds (Figures 4.14 and 4.15). On the http dataset, GILOF took 265.8 to 

1028 seconds and DILOF took 253.8 to 1073 seconds (Figures 4.18 and 4.19; and Tables 4.1 to 4.8). Further, 

GILOF_NS and DILOF_NS were slightly slower than GILOF and DILOF in execution time. Moreover, GILOF 

and GILOF_NS have better execution time when W = 1000 (Tables 4.1 to 4.8). 

Figure 4.3. The accuracy of outlier detection for all datasets when W = 1000. 
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Figure 4.4 The comparisons of outlier detection accuracy for unnormalized UCI VOWEL 

datasets. 

Figure 4.5 The comparisons of outlier detection accuracy for normalized UCI VOWEL datasets. 
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Figure 4.6 The comparisons of outlier detection execution time for unnormalized UCI 

VOWEL datasets. 

Figure 4.7 The comparisons of outlier detection execution time for normalized UCI VOWEL 

datasets. 
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Figure 4.8. The comparisons of outlier detection accuracy for unnormalized UCI Pendigit datasets. 

Figure 4.9. The comparisons of outlier detection accuracy for normalized UCI Pendigit datasets. 
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Figure 4.10. The comparisons of outlier detection execution time for unnormalized UCI Pendigit 

datasets. 

Figure 4.11. The comparisons of outlier detection execution time for normalized UCI Pendigit 

datasets 
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Figure 4.12. The comparisons of outlier detection accuracy for unnormalized UCI KDD Cup99 

SMTP datasets. 

 

Figure 4.13. The comparisons of outlier detection accuracy for normalized UCI KDD Cup99 SMTP 

datasets. 
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Figure 4.14. The comparisons of outlier detection execution time for unnormalized KDD Cup 

SMTP 99 dataset. 

Figure 4.15. The comparisons of outlier detection execution time for normalized KDD Cup 

99 SMTP dataset. 
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Figure 4.16. The comparisons of outlier detection accuracy for unnormalized UCI KDD Cup99 

HTTP datasets. 

Figure 4.17. The comparisons of outlier detection accuracy for normalized UCI KDD Cup99 HTTP 

datasets. 
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Figure 4.18. The comparisons of outlier detection execution time for unnormalized KDD Cup 99 HTTP 

dataset. 

Figure 4.19. The comparisons of outlier detection execution time for normalized KDD Cup 99 HTTP 

dataset. 
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Table 4.1. The performance results of all algorithms for unnormalized UCI Vowel dataset. 

 

Table 4.2. The performance results of all algorithms for normalized UCI Vowel dataset. 

W Size 

Normalize UCI Vowel Dataset 

GILOF GILOF_NS DILOF DILOF_NS 

AUC% TIME AUC% TIME AUC% TIME AUC% TIME 

W100 72.54 0.729 73.7 0.792 69.51 0.713 70.66 0.804 

W120 81.26 0.829 82.64 0.907 78.72 0.823 81.95 0.912 

W140 86.02 0.917 86.87 1.005 84.4 0.919 85.57 1.005 

W160 87.73 1.045 87.53 1.134 85.88 1.021 86.97 1.111 

W180 89.62 1.16 90.36 1.259 88.82 1.149 88.89 1.25 

W200 90.65 1.25 92.48 1.379 89.54 1.271 91.16 1.4 

W1000 90.489 11.2 91.05 11.85 90.15 11.36 90.54 11.9 

 

Table 4.3. The performance results of all algorithms for unnormalized UCI Pendigit dataset. 

 

 

W Size 

Unnormalize UCI Vowel Dataset 

GILOF GILOF_NS DILOF DILOF_NS 

AUC% TIME AUC% TIME AUC% TIME AUC% TIME 

W100 74.21 0.721 74.41 0.787 69.21 0.720 72.09 0.786 

W120 82.96 0.82 82.23 0.887 75.52 0.822 81.16 0.903 

W140 86.23 0.918 86.84 0.993 83.95 0.922 85.07 1.007 

W160 87.06 1.039 87.57 1.12 85.51 1.041 86.47 1.122 

W180 89.47 1.157 90.23 1.24 88.46 1.156 89.27 1.26 

W200 89.58 1.263 91.82 1.358 88.74 1.275 91.11 1.406 

W1000 88.55 11.24 88.36 11.85 87.85 11.21 87.81 11.86 

W Size 

Unnormalize UCI Pendigit Dataset 

GILOF GILOF_NS DILOF DILOF_NS 

AUC% TIME AUC% TIME AUC% TIME AUC% TIME 

W100 50.86 1.94 50.21 1.95 50.96 1.874 50.66 1.868 

W120 49.75 2.224 50.06 2.23 51 2.102 51.78 2.168 

W140 50.63 2.45 50.77 2.46 52.27 2.422 51.11 2.432 

W160 50.81 2.81 51.27 2.81 52.33 2.809 52.44 2.763 

W180 50.64 3.14 51.69 3.14 52.17 3.13 52.87 3.148 

W200 52.86 3.46 51.97 3.45 52.85 3.485 52.62 3.453 

W1000 53.52 44.39 54.04 43.94 52.81 44.73 53.92 44.14 
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Table 4.4. The performance results of all algorithms for normalized UCI Pendigit dataset. 

 

Table 4.5. The performance results of all algorithms for unnormalized KDD Cup 99 SMTP dataset. 

 

Table 4.6. The performance results of all algorithms for normalized KDD Cup 99 SMTP dataset. 

 

W Size 

Normalize UCI Pendigit Dataset 

GILOF GILOF_NS DILOF DILOF_NS 

AUC% TIME AUC% TIME AUC% TIME AUC% TIME 

W100 95.7 1.955 95.56 1.95 94.59 1.899 94.53 1.904 

W120 97.29 2.241 97.47 2.23 96.05 2.186 95.98 2.205 

W140 98.17 2.474 98.15 2.47 96.66 2.492 96.8 2.491 

W160 98.61 2.827 98.69 2.81 97.61 2.822 97.57 2.812 

W180 98.89 3.144 98.87 3.13 97.98 3.145 97.74 3.135 

W200 98.43 3.463 98.41 3.44 97.46 3.494 97.28 3.513 

W1000 93.07 44.47 93.34 43.84 87.92 44.6 88.66 44.324 

W Size 

Unnormalize KDD Cup 99 SMTP Dataset 

GILOF GILOF_NS DILOF DILOF_NS 

AUC% TIME AUC% TIME AUC% TIME AUC% TIME 

W100 81.59 46. 5 81.11 47.38 83.45 42.87 81.22 43.68 

W200 85.57 81.21 87.04 82.2 86.08 82.03 85.6 82.51 

W300 86.7 125.5 86.28 125.7 83.19 126.2 87.92 126.7 

W400 86.09 175. 85.87 176 82.84 178.72 85.51 177.6 

W1000 71.47 1351.4 68.04 1352.8 71.66 1367 69.11 1367. 

W Size 

Normalize KDD Cup 99 SMTP Dataset 

GILOF GILOF_NS DILOF DILOF_NS 

AUC% TIME AUC% TIME AUC% TIME AUC% TIME 

W100 
85.7 46.45 81.18 46.96 83.57 43.05 81.35 43.7 

W200 
84.88 81.36 85.12 81.62 86.48 85.95 87.00 84.72 

W300 
86.48 124.4 86.53 125.5 84.57 130.6 88.02 132.1 

W400 
85.82 173.52 85.42 175.1 82.59 182.6 87.14 183.2 

W1000 
69.48 1351.1 68.2 1357.9 69.49 1369.8 68.83 1371.2 
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Table 4.7. The performance results of all algorithms for unnormalized KDD Cup 99 HTTP dataset. 

W Size 

Unnormalize KDD Cup 99 HTTP Dataset 

GILOF GILOF_NS DILOF DILOF_NS 

AUC% TIME AUC% TIME AUC% TIME AUC% TIME 

W100 
75.62 267.11 34.89 277.89 77.75 256.38 34.82 272.94 

W200 
76.08 479.25 40.94 487.96 79.83 492.95 39.51 516.72 

W300 
76.89 738.37 45.74 748.99 78.02 760.73 46.563 806.55 

W400 
76.91 1026.7 52.59 1046 76.98 1064.8 49.42 1118.8 

W1000 
72.08 8052.8 55.655 8140 73.02 8142.6 56.571 8278.2 

 

Table 4.8. The performance results of all algorithms for normalized KDD Cup 99 HTTP dataset 

W Size 

Normalize KDD Cup 99 HTTP Dataset 

GILOF GILOF_NS DILOF DILOF_NS 

AUC% TIME AUC% TIME AUC% TIME AUC% TIME 

W100 89.68 265.87 68.17 276.5 90.11 253.88 68.47 271.41 

W200 91.48 473.84 78.39 489.89 92.72 494.62 79.81 514.27 

W300 90.48 733.53 80.78 753.19 91.96 758.46 82.17 787.89 

W400 90.24 1028.5 79.47 1059.3 90.69 1073 80.14 1084.1 

W1000 85.12 7978.4 69.85 8112.9 84.61 8126.4 70.04 8271.7 

 

4.6 Conclusion 

The aim of the proposed GILOF algorithm is to further improve the accuracy and efficiency of 

the LOF algorithm in data stream processing and mining. LOF requires a large memory to store all the 

data points and the distances between data points. Moreover, LOF recalculates the whole dataset again 

for any new change. In this chapter, a new local outlier detection algorithm in data stream is discussed 

in detail. 

Among the previous works, DILOF has the best performance so far. The GILOF algorithm 

developed in our work is based on the genetic algorithm, which addresses the limitation of DILOF. 

GILOF has been evaluated together with DILOF over several real-world datasets. The results showed 
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that GILOF is better than DILOF in accuracy of outlier detection and execution time for most of the 

datasets. 
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Chapter 5: Improving the Algorithm of Genetic-based Incremental Local 

Outlier Factor for Network Intrusion Detection 

 "Improving the Efficiency of Genetic based Incremental Local Outlier Factor Algorithm for Network 

Intrusion Detection" Forthcoming in Proceedings of the 4th International Conference on Applied 

Cognitive Computing, 2020. Springer 

5.1 Introduction  

Outlier detection is an important process in big data, which has received a lot of attention in the 

area of machine learning. The reason is that it is important to detect suspicious items and unusual 

activities. Outlier detection has a significant impact on many applications such as detecting fraud 

transactions for credit cards and network intrusion detection [127]. 

    Local outlier factor (LOF) [58] is the most common local outlier (anomaly) detection 

algorithm, it is a nearest-neighbor-based algorithm [28]. LOF has become popular because it can detect 

an outlier without any previous knowledge about the data distribution. Also, it can detect outliers in data 

that has heterogeneous densities [178, 179]. However, LOF is designed for static data, which means the 

size of data is fixed. LOF needs very large memory because it requires storage of the whole dataset with 

the distances value in memory. Therefore, LOF cannot be applied to a data stream, where the size of 

data is increasing continuously [1, 7, 180]. To overcome this issue, the Incremental Local Outlier Factor 

(ILOF) has been developed that can handle data streams [88]. Nevertheless, ILOF also needs to store all 

the data in the memory. Moreover, it cannot detect the sequence of outliers in the data stream such as 

unexpecting surges of outliers in several streaming segments. However, it is important to detect the 

sequence of outliers in a data stream; if they are not detected, many problems may occur, such as network 

attacks and sensor malfunctions. For instance, the KDD Cup 99 http dataset has several outlier 

sequences. This dataset contains a simulation of normal data with attack traffic on an IP scale in 

computer networks for testing intrusion detection systems.  

    To solve the issues with ILOF, several algorithms have been proposed that are Genetic-based 

Incremental Local Outlier Factor (GILOF) [181], Memory Efficient Incremental Local Outlier Factor 

(MILOF) [96], Density summarizing Incremental Local Outlier Factor (DILOF) [104]. The GILOF 
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demonstrates an efficient performance in the state-of-the-art LOF algorithms in data streams. Our work 

aims to further improve the performance of the GILOF algorithm by proposing a new calculation method 

for LOF, called Local Outlier Factor by Reachability distance (LOFR). In LOF, the resulting score is 

based on the local reachability density while in LOFR the resulting score is based on the reachability 

distance. The newly proposed algorithm is Genetic-based Incremental Local Outlier Factor by 

Reachability distance (GILOFR). GILOFR includes two stages: 1) the detection stage; and, 2) the 

summarization stage. The detection stage detects the outliers and updates the old data information in the 

memory (window) and determines whether a new data point is an inlier or outlier. The summarization 

stage summarizes the old data in order to reduce the memory consumption and takes into account the 

old data density. Thus, GILOFR is able to work in limited memory. This new calculation method 

(LOFR) is the main contribution of this research paper. In this research, GILOFR was evaluated via a 

series of experiments by using real-world datasets. The results show that the performance of GILOFR 

is better than GILOF on several of the datasets.  

    The remainder of this chapter is as follows: The network intrusion detection system (NIDS) 

is introduced in Section 2; Section 3 describes the methodology; Section 4 presents the experiments; 

Section 5 presents and discusses the results of the experiments; and Section 6 presents the conclusion of 

chapter five. 

 

5.2 Network Intrusion Detection System (NIDS) 

The basic purpose of using data mining techniques for intrusion detection in networks is to 

detect security violations in information systems. To detect an intrusion in networks, data mining 

processes and analyzes a massive amount of data [182]. Data mining and the knowledge extracted from 

big data has become more efficient with the new developments in machine learning [183]. Many new 

algorithms in data mining have been developed that can be applied to datasets to discover clusters, 

profiles, factors, relationships, predictions and patterns. Nowadays, data mining algorithms are widely 

used in different domains, such as business, marketing, laboratory research, weather forecasting, and 
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network intrusion detection [184]. Our work is related to the Network Intrusion Detection System 

(NIDS). In order to test the effectiveness of the proposed algorithm in NIDS, we used the KDD Cup 99 

HTTP service dataset, which is a subset of the KDD 99 Cup dataset [184]. This HTTP dataset has 

surprising surges of outliers in several streaming segments [185]. 

The intrusion detection system is classified by two categories: misuse detection and outlier 

(anomaly) detection. In outlier detection, it aims to recognize the suspicious items and unusual activity 

of the network or host. The NIDS monitors and tests the activity in the network, which provides the 

necessary security for the network of a system [186]. For instance, it detects malicious activities like a 

denial-of-service attack (DoS) or a network traffic attack. The LOF algorithm has been used in different 

models and methods for NIDS [187, 188, 86, 189, 104]. Despite the researchers’ interest in outlier 

detection, they focus more on global outlier detection in a data stream rather than the local outliers, 

which have been less studied [93]. Therefore, it is difficult to use this traditional LOF algorithm in data 

streams for NIDS. However, the ILOF algorithm addressed the limitation of the LOFs in data streams, 

and other algorithms, such as GILOF, addressed the limitation of time complexity in the ILOFs by 

summarizing big data streams. The aim of our proposed algorithm GILOFR is to achieve an efficient 

performance for outlier detection in data streams for NIDS. 

 

5.3 The Methodology 

5.3.1 Local Outlier Factor by Reachability Distance (LOFR) 

In this section, we introduce a new calculation method for LOF, which is named LOFR. In fact, 

LOFR is like LOF [58], except the LOFR does not use the local reachability density when calculating 

its score. The score of LOFR is based on the Reachability distance of the data point p and its nearest 

neighbors. Below are the key definitions of LOFR; note that the first three definitions are the same as 

for the LOF [58]. 
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Definition 1:  calculating the k-dist of the data point p 

The distance between two data points p and o in a Euclidean is calculated using Equation 1. 

𝑑 (𝑝, 𝑜) = √∑ (𝑝𝑖 − 𝑜𝑖)2𝑛

𝑖=1
                                                                                 (1) 

Let D be a dataset. For the data point p, the k-dist(p) is the distance between (p) and the farthest 

neighbor point o (o∈D) with the following conditions:  

k is a positive integer, 1) with regard to at least k data points o’∈D \ {p} it maintains that d(p,o’) 

≤ d(p,o), and  2) with regard to at most k-1 data points o’∈D \ {p} it maintains that d(p,o’) < d(p,o) [58]. 

Definition 2:  calculating the k-nearest neighbor of p 

In this situation, the k-nearest neighbors of p are each a data point q whose distance to p is equal 

or smaller than the k-dist(p). The k-nearest neighbor is described in Equation 2. 

𝑁k-distance(𝑝)(𝑝) = { 𝑞 ∈ 𝐷\{𝑝}|𝑑(𝑝, 𝑞) ≤ k-dist (𝑝) }                                          (2) 

Definition 3: Calculating the Reachability distance (Rd) of p in relation to o 

The Rd between two data points such as p with regard to o is defined in Equation 3. 

reach-dist𝑘(𝑝, 𝑜) = 𝑚𝑎𝑥 { k-dist(𝑜), 𝑑(𝑝, 𝑜) }                                                      (3) 

Some examples of Rd when k- nearest neighbor = 5 are represented in Figure 5.1. When the 

distance between two data points (e.g., p2) and o is not larger than the k-dist(o), then the k-dist(o) is the 

Rd. On the other hand, when the distance between two data points (e.g., p3) and o is larger than the k-

dist(o), the actual distance between them is the Rd. 

Figure 5.1. The reachability distance for different data points (p) with 

regard to o, when k equals 5. 
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Definition 4: LOFR score of p 

After all previous steps, the score of LOFR is calculated by the following Equation 4. 

 

𝐿𝑂𝐹𝑅𝑘(𝑝) = ∑
𝑅𝑑𝑘(𝑝)

(
𝑅𝑑𝑘(𝑜)

𝑘
)

𝑜∈𝑁𝑘(𝑝)

                                                                       (4) 

LOFR takes the Reachability distance (Rd) of data point (p) and divides it by the average Rd of 

its neighbors. This method of calculation can provide a little lower “outlierness” score than LOF. 

 

5.3.2 Genetic-based Incremental Local Outlier Factor by Reachability Distance (GILOFR) 

The main objective of GILOFR is to find the outlierness score in the following instances: 1) 

when detecting the local outlier with no prior knowledge about the data distribution; 2) when only a 

small part from the running dataset will be stored in memory; 3) when detecting that the outlier of data 

point (p) has to be finished at current time T; and, 4) the algorithm does not have any prior knowledge 

about future incoming data points when it detects the current outliers. 

The designed GILOFR has two stages: detection and summarization. In the detection stage, the 

ILOFR and skipping scheme are used together to detect an outlier. Note: ILOFR is like ILOF [88], 

except the ILOFR uses the new calculation that is mentioned above. In the summarization stage, the 

Genetic Density Summarization (GDS) is applied to summarize the old data points in memory (the 

window). Algorithm 1 is the GILOFR, which works in the following steps: 1) it determines the window 

(W) size, where the W size equals the amount of data points; 2) it uses the LOFR threshold θ to detect 

outliers; and, 3) during the summarizing stage, GDS is applied to summarize the data points. Then, when 

the new data point np occurs, GILOFR detects the outliers by using ILOFR along with the skipping 

scheme (lines 4-6 in Algorithm 1) [181, 104]. GILOFR will keep detecting outliers and calculating the 

score of LOFR for every new data point until the present window reaches the W size. Thereafter, the 

GDS algorithm is applied on the window to summarize the 50% of older data points in the window 

through choosing 25% of data points from that older 50%. After that, the 50% of older data points will 
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be removed from the window and the chosen 25% will be transferred to the window; this 25% of data 

points will be combined with the remaining data points in the window (lines 9-13 in Algorithm 1). At 

this point, the window contains 75% of data points. This 75% of data points will be chosen to combine 

with the new streaming data points. This process is repeated when the window becomes full again 

(Figure 4.1). 

 

Algorithm 1: GILOFR 

Inputs:  unlimited data streams P={p1, p2, ..., pt , ...},  

The max window size W 

The threshold scores θ of LOFR  

The population size PS 

The number of chromosomes NC 

              The number of generations NG 

1   X ← {}// is the data points in the memory  

2   X’← {}// is the oldest 50% data points in the memory 

3   O ← {}// is the detected outliers  

4   Skipping_Scheme  

5   For each pt ∈ P do  

6        LOFRk(pt) ← ILOFR(pt,o,O,θ)  

7        If LOFRk (pt ) > 0 then  

8    X ← X ∪ {pt}  

9     If |X | = W then  

10            Z ←GDS(X’,PS, NC,NG) 

11            Delete the oldest 50%W data points in X  

12            X’←X’ ∪ Z  

13    End  

14        End  

15   End 

 

5.3.2.1 Genetic Density Summarization (GDS) 

GDS depends on the Genetic Algorithm (GA). A GA is a search algorithm in the evolutionary 

computation field, which is based on biological evolution [155, 163]. GA includes several components, 

Population, Chromosome (or individual), Objective (or fitness) function (Of), Selection, Crossover, and 

Mutation [157, 190]. The chromosomes are an array of numerical or binary values that represent the 

genes evolving and are known as candidate solutions. A population contains a set of chromosomes, 

which are set randomly as the initial population. The objective function aims to calculate the fitness 
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value for every chromosome in the population. The goal of selection is to find two chromosomes that 

acquired above-average fitness values. There are many types of selection, which include roulette wheel 

selection (RWS), linear rank-based selection (RNK), tournament selection (TNT), stochastic universal 

sampling selection (SUS), and linear rank-based selection with selective pressure (RSP) [159]. 

Crossover combines the characteristics of the two chromosomes based on a cut-off point to produce new 

chromosomes. Crossover has several types, as well, such as one-point, two-point, and uniform crossover 

[164]. Mutation aims to preserve the population diversity and prevent the population from becoming 

stuck in the local minima. There are also several types of mutation, such as single-point mutation, 

uniform mutation, and boundary mutation (BDM) [166]. 

To find the optimal data points, the GDS algorithm is going to summarize 50% of old data points 

in the window to balance the density differences between the chosen old 50% and the new candidates, 

which are 25% of data points. The GDS algorithm begins by producing a population, where the 

population contains random chromosomes assigned with data points. Then, the Objective Function (Of) 

is executed to evaluate each chromosome. The Of is the sum of ak(x'n). 

𝑂𝑓  = ∑ 𝑎𝑘(𝑥𝑛
′ )

50%𝑊

𝑛=1
                                                                                      (5) 

 

Where ak(x'n) is the density of x'n according to its kth nearest neighbors. x'n is the 50% of old data points in 

the window. 

After that, in every generation, GDS executes the selection operation on the present generation. 

Then GDS executes a crossover operation on two chromosomes. Thereafter, the GDS executes the 

mutation operation on two chromosomes as well. When GA operations are completed for each 

generation, GDS stores the best results. After the above steps, the chosen chromosomes are converted 

into S. After that, S is projected into the binary domain, and the better 25% of sn in S is adjusted to 1, 

and the rest to 0. The GDS is going to choose a data point x'n in X' if its corresponding sn in S equals 1 

(Figure 4.2). Finally, the chosen data points will be presented as Z, which is 25% of the new data points. 

For more detail, refer to [181]. 
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5.3.2.2 Skipping Scheme 

The purpose of the Skipping scheme is to keep data points in the dataset in a lower density of 

the region. Therefore, when the new data points emerge into a new class, that data point will have no 

effect on the outlier detection accuracy. Because of the benefit of the skipping scheme in outlier 

detection, it combines with ILOFR to detect any long sequence (series) of outliers [104]. 

Let a ∈ A, the skipping scheme works by using Euclidean distance in two steps: 1) the average 

distance 𝑑1(𝐴)̅̅ ̅̅ ̅̅ ̅̅  is computed according to the distance between the data point a with its first nearest 

neighbor d1(a); and, 2) the distance between a new data point (p) and the latest detected outlier lo is 

calculated. If the distance between p to lo is less than the distance between p to 𝑑1(𝐴)̅̅ ̅̅ ̅̅ ̅̅  , the data point p 

is considered an outlier [104]. Otherwise, the data point p will be an inlier. 

 

5.4 Empirical Experiment 

In this section, the experiment results for GILOFR are presented. We compared the GILOFR 

results with the results of GILOF and we compared both algorithms without the skipping scheme 

(GILOFR_NS, GILOF_NS). The metrics that are used in the experiment are the execution time and the 

accuracy of outlier detection. For the accuracy of outlier detection, we used the Area Under the ROC 

Curve (AUC) [171, 172]. All algorithms in the experiment were implemented in C++ on a machine that 

has an Intel(R) Core(MT) i5-8250U CPU, 250 GB SSD hard disk, 8GB RAM, and Windows 10 (64-

bit). 

The GILOFR is tested with different window sizes on unnormalized and normalized datasets, 

described in Table 2.1. Those datasets are available in the Machine Learning database repository [146] 

and [147]. The Vowel dataset is modified to the format of the data stream, such as that in [181,173]. The 

five percent of uniform noise is added to the Pendigit dataset, so any noised data point will be considered 

as an outlier [104]. For the KDD Cup99 datasets, the same settings as in [174] are used, where the 

network attacks are the outliers. 
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The hyperparameters of GILOF were set as in [181], the population size (PS) is 2, number of 

generations (NG) is 4, and the selection type is RWS. The crossover used a two-point crossover at a rate 

of 0.7, and mutation used a BDM mutation at a rate of 0.07 for each dataset [175]. For the GILOFR 

algorithm, we used the same hyperparameters of GILOF, except the number of generations (NG) was 

changed to 2. The k-nearest neighbors for each dataset were determined as the following for all 

algorithms: for the Vowel dataset k = 19; Pendigit dataset k = 18; KDD Cup 99 SMTP dataset k = 8 

when the dataset is normalized and k = 9 when the dataset is unnormalized for GILOFR and 

GILOFR_NS while k = 8 for GILOF and GILOF_NS; for the KDD Cup 99 HTTP dataset k = 9 when 

the dataset is normalized and k = 8 when the dataset is unnormalized in all algorithms. In addition, we 

determined 10 window sizes for all datasets, W = {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}. 

 

5.5 Experiment Results 

5.5.1 Accuracy of Outlier Detection 

The accuracy of all algorithms was tested by applying them to several real-world datasets (Table 

2.1). Figures 5.2 to 5.9 show the AUC of all algorithms for the four datasets. In the unnormalized Vowel 

dataset, all algorithms were close to each other, but GILOFR_NS was better in most W sizes and 

demonstrated the highest accuracy result (95.3%). In the normalized dataset, GILOFR_NS was also a 

little better in most W sizes and demonstrated the highest accuracy result (96.2%). Tables 5.1 and 5.2. 

In the unnormalized Pendigit dataset, all algorithms showed poor results for accuracy. By 

contrast, for the normalized dataset all algorithms were close to each other when W ≤ 400, but GILOF 

and GILOF_NS were better when W ≥ 500, and they demonstrated the highest accuracy result (98.7%). 

Tables 5.3 and 5.4. 

In the unnormalized KDD Cup 99 SMTP dataset, all algorithms were in competition when W ≤ 

500; therefore, there is a specific algorithm that surpasses others in each W size. GILOFR and 

GILOFR_NS showed better results and GILOFR_NS demonstrated the highest accuracy result (88%) 

in W = 300. In the normalized KDD Cup99 SMTP dataset, all algorithms were in competition. Every 
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algorithm showed better accuracy in specific W sizes, while GILOFR_NS demonstrated the highest 

accuracy result (89%) in W = 200. Tables 5.5 and 5.6. 

In the unnormalized KDD Cup 99 HTTP dataset, GILOFR showed better results for accuracy 

in all W sizes, except when W = 700. However, GILOFR demonstrated the highest accuracy result 

(79.3%). Moreover, GILOFR_NS and GILOF_NS showed poor results for accuracy in most W sizes, 

while GILOFR_NS demonstrated a moderate result for accuracy in W = 800 (65.3%). For the normalized 

KDD Cup99 HTTP dataset, GILOFR showed better results for accuracy in all W sizes except when W 

= 900. However, GILOFR demonstrated the highest results for accuracy (93.6%). GILOFR_NS and 

GILOF_NS became better when the dataset was normalized, in which case GILOFR_NS surpasses 

GILOF_NS in all W sizes. Tables 5.7 and 5.8. 

Finally, the experiment results prove that our new method of calculation can improve the GILOF 

algorithm, where GILOFR and GILOFR_NS show better results for accuracy than GILOF and 

GILOF_NS in several datasets, especially in the UCI Vowel and the KDD Cup99 HTTP datasets. 

 

5.5.2 Execution time 

In Figures 5.10 to 5.17, the results for the execution time are presented for all algorithms in the 

unnormalized and normalized datasets, respectively. In the experiments, execution times are measured 

by seconds. Generally, all algorithms are close to each other in most W sizes. In the UCI Vowel dataset, 

GILOFR took 0.73 to 12.3 seconds and GILOF took 0.75 to 12.4 seconds. In the UCI Pendigit dataset, 

GILOFR took 1.96 to 47.19 seconds and GILOF took 2.05 to 47.12 seconds. In KDD Cup99 SMTP 

dataset, GILOFR took 45.09 to 1442.1 seconds and GILOF took 46.2 to 1420.4 seconds. In KDD Cup99 

HTTP dataset, GILOFR took 269.7 to 8436.5 seconds and GILOF took 274.5 to 8356.6 seconds. 

Moreover, GILOFR_NS and GILOF_NS were very close to GILOFR and GILOF in execution time for 

most W sizes. Tables 5.1 to 5.8. 
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Figure 5.2. An accuracy comparison of outlier detection for unnormalized UCI Vowel dataset. 

Figure 5.3. An accuracy comparison of outlier detection for normalized UCI Vowel dataset. 
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Figure 5.4. An accuracy comparison of outlier detection for unnormalized UCI Pendigit dataset. 

Figure 5.5. An accuracy comparison of outlier detection for normalized UCI Pendigit dataset. 
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Figure 5.7. An accuracy comparison of outlier detection for normalized KDD Cup 99 SMTP dataset. 

Figure 5.6. An accuracy comparison of outlier detection for unnormalized KDD Cup 99 SMTP dataset. 



90 
 

 

Figure 5.8. An accuracy comparison of outlier detection for unnormalized KDD Cup 99 HTTP dataset. 

Figure 5.9. An accuracy comparison of outlier detection for normalized KDD Cup 99 HTTP dataset. 
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Figure 5.10. The execution time comparison of outlier detection for unnormalized UCI Vowel 

dataset. 

Figure 5.11. The execution time comparison of outlier detection for normalized UCI Vowel dataset. 
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Figure 5.13. The execution time comparison of outlier detection for normalized UCI Pendigit dataset 

Figure 5.12. The execution time comparison of outlier detection for unnormalized UCI Pendigit 

dataset 
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Figure 5.14. The execution time comparison of outlier detection for unnormalized KDD 

Cup99 SMTP dataset. 
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Figure 5.15. The execution time comparison of outlier detection for normalized KDD 

Cup99 SMTP dataset. 
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W Size 

Unnormalize UCI Vowel Dataset 

GILOFR GILOFR_NS GILOF GILOF_NS 

AUC% TIME AUC% TIME AUC% TIME AUC% TIME 

W100 73.4 0.73 74.3 0.79 76.5 0.75 76.1 0.8 

W200 89.8 1.36 92 1.36 89.2 1.38 91.8 1.4 

W300 92.8 1.94 93.7 2.03 92.6 1.94 93.6 2.03 

W400 93.4 2.58 95.3 2.68 93 2.52 94.6 2.67 

W500 93.8 3.41 94.4 3.42 92.7 3.3 94.2 3.42 

W600 93.5 4.4 93.9 4.33 93.8 4.21 93.5 4.27 

W700 92.5 6.04 95 5.93 92 5.78 94.9 6.61 

W800 89.3 8.07 93.7 8.19 88 7.8 92.8 8.29 

W900 90.8 10.18 92.3 10.51 92.2 10.28 91.2 10.65 

W1000 89.1 12.3 89.6 12.63 88.5 12.23 88.9 13.17 
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Figure 5.16. The execution time comparison of outlier detection for unnormalized KDD Cup99 HTTP 

dataset. 
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Figure 5.17. The execution time comparison of outlier detection for normalized KDD Cup99 HTTP 

dataset. 
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Table 5.1. The performance results of GILOFR and GILOF algorithms for unnormalized UCI Vowel dataset. 

 

 

Table 5.2. The performance results of GILOFR and GILOF algorithms for normalized UCI Vowel dataset. 

 

 

W Size 

Unnormalize UCI Vowel Dataset 

GILOFR GILOFR_NS GILOF GILOF_NS 

AUC% TIME AUC% TIME AUC% TIME AUC% TIME 

W100 73.4 0.73 74.3 0.79 76.5 0.75 76.1 0.8 

W200 89.8 1.36 92 1.36 89.2 1.38 91.8 1.4 

W300 92.8 1.94 93.7 2.03 92.6 1.94 93.6 2.03 

W400 93.4 2.58 95.3 2.68 93 2.52 94.6 2.67 

W500 93.8 3.41 94.4 3.42 92.7 3.3 94.2 3.42 

W600 93.5 4.4 93.9 4.33 93.8 4.21 93.5 4.27 

W700 92.5 6.04 95 5.93 92 5.78 95.9 6.61 

W800 89.3 8.07 93.7 8.19 88 7.8 92.8 8.29 

W900 90.8 10.18 92.3 10.51 92.2 10.28 91.2 10.65 

W1000 89.1 12.3 89.6 12.63 88.5 12.23 88.9 13.17 

W Size 

Normalize UCI Vowel Dataset 

GILOFR GILOFR_NS GILOF GILOF_NS 

AUC% TIME AUC% TIME AUC% TIME AUC% TIME 

W100 73.6 0.74 74.7 0.798 73.6 0.77 71.5 0.83 

W200 90.6 1.33 92 1.4 90.8 1.37 92.6 1.41 

W300 94 1.92 94.3 2.03 93.5 1.93 94.5 2.03 

W400 93.9 2.54 96.2 2.68 94.1 2.54 94.7 2.67 

W500 94.2 3.39 95.5 3.42 94.6 3.32 94.8 3.41 

W600 94.2 4.32 95.2 4.35 94.4 4.2 94.8 4.36 

W700 94.4 6.03 96.2 6.11 93 5.8 95.4 5.97 

W800 92.1 8.18 94.5 8.13 90.1 7.91 94.2 8.15 

W900 93.2 10.13 93.8 10.31 92.9 10.17 93.2 10.38 

W1000 91.2 12.24 91.3 12.64 90.7 12.41 90.8 12.63 
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Table 5.3. The performance results of GILOFR and GILOF algorithms for unnormalized UCI Pendigit dataset. 

 

 

 

Table 5.4. The performance results of GILOFR and GILOF algorithms for normalized UCI Pendigit dataset. 

 

W Size 

Unnormalize UCI Pendigit Dataset 

GILOFR GILOFR_NS GILOF GILOF_NS 

AUC% TIME AUC% TIME AUC% TIME AUC% TIME 

W100 50.7 1.96 51.5 1.93 51.9 2.05 50.2 1.98 

W200 51.9 3.61 52.9 3.53 52.5 3.61 52.1 3.56 

W300 50.7 5.43 51.7 5.28 54.2 5.43 54.7 5.28 

W400 52.5 7.2 55.1 7.14 53.7 7.24 53.2 7.11 

W500 53.5 9.72 52.3 9.43 53.3 9.93 52.3 9.44 

W600 52.8 12.64 51.4 12.62 50.9 12.95 51 12.65 

W700 53.4 18.25 53.8 18.07 52.4 19.1 55.4 18.49 

W800 53.5 26.6 53.8 26.08 54.2 27.01 54.3 26.48 

W900 53.4 35.68 53.8 35.23 54 36.38 54.8 36.31 

W1000 54.1 46.28 54.2 46.21 55.1 47.12 54.2 46.96 

W Size 

Normalize UCI Pendigit Dataset 

GILOFR GILOFR_NS GILOF GILOF_NS 

AUC% TIME AUC% TIME AUC% TIME AUC% TIME 

W100 95.6 1.99 95.6 1.94 95.9 2.1 96 1.99 

W200 98.2 3.6 98.3 3.53 98.6 3.71 98.6 3.52 

W300 98.7 5.39 98.7 5.21 98.7 5.52 98.7 5.26 

W400 98.1 7.32 98 7.13 98.4 7.22 98.4 7.11 

W500 97.1 9.92 97.2 9.41 97.9 9.68 97.7 9.46 

W600 96.4 13.22 96.4 12.66 97.7 12.66 97.5 12.64 

W700 95 18.9 95.4 18.35 97.2 18.89 96.6 18.05 

W800 94 27.24 93 26.41 96.2 26.51 95.3 26.04 

W900 92.4 36.27 92.5 35.53 95.7 36.01 95.1 35.49 

W1000 89.8 47.19 90.2 46.72 93.5 47.12 93.1 46.31 
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Table 5.5. The performance results of GILOFR and GILOF algorithms for unnormalized KDD Cup 99 SMTP 

dataset. 

 

 

 

 

 

Table 5.6. The performance results of GILOFR and GILOF algorithms for normalized KDD Cup 99 SMTP 

dataset. 

W Size 

Unnormalize KDD Cup 99 SMTP Dataset 

GILOFR GILOFR_NS GILOF GILOF_NS 

AUC% TIME AUC% TIME AUC% TIME AUC% TIME 

W100 84 46.2 81.7 46.5 85.2 47.1 81.3 46.7 

W200 85.6 84.9 85.9 83.4 86.2 84.5 86.8 83.5 

W300 85.1 129.8 88 128.5 87.5 128 85.4 127.4 

W400 86.3 179.4 85.3 178.8 86 184.5 86.3 177.8 

W500 83.6 246.1 83.9 242.9 83.9 244.9 82.8 242.8 

W600 82.6 336.4 80.6 333.8 78.8 335.4 76.1 329.7 

W700 76.7 502.1 80.1 503.3 70.4 495.7 72.7 493.5 

W800 75.7 749 72 759.8 72.7 742.6 69.3 765.1 

W900 76.7 1084.9 72 1059 67.9 1058.6 68.3 1061.3 

W1000 75.7 1442.1 74.3 1406.6 69.2 1410.8 68.2 1413.6 

W Size 

Normalize KDD Cup 99 SMTP Dataset 

GILOFR GILOFR_NS GILOF GILOF_NS 

AUC% TIME AUC% TIME AUC% TIME AUC% TIME 

W100 87.6 45.09 82.9 45.6 85.1 46.2 81.1 46.8 

W200 84.2 83.7 89 83.6 85.2 85.2 86.1 83.8 

W300 84 128.4 86.7 129 86.7 147.2 86 127.8 

W400 85.5 178.3 83.8 179.1 85.5 201.3 85 177.6 

W500 78.2 247.2 79.2 250.5 82.2 250.6 82.7 242.9 

W600 74.3 335.5 74 333.5 76.5 337.2 75.7 330.2 

W700 69.8 495.3 71.6 497.4 74 497.4 71.3 495.1 

W800 70 742.3 68.9 745.7 76.2 746.8 68.2 746.3 

W900 75 1060.6 67.9 1063.7 68 1065.1 67.1 1071.8 

W1000 70.1 1411.5 67.6 1414.8 69.2 1420.4 68.2 1432.4 
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Table 5.7. The performance results of GILOFR and GILOF algorithms for unnormalized KDD Cup 99 HTTP 

dataset. 

 

 

 

 

Table 5.8. The performance results of GILOFR and GILOF algorithms for normalized KDD Cup 99 HTTP 

dataset. 

W Size 

Unnormalize KDD Cup 99 HTTP Dataset 

GILOFR GILOFR_NS GILOF GILOF_NS 

AUC% TIME AUC% TIME AUC% TIME AUC% TIME 

W100 77.9 270.9 35.9 280.2 76.2 283.3 34.8 284.4 

W200 79.3 489.7 43.2 503.4 76.5 496.8 43.6 513.6 

W300 78.4 760.5 47.9 781.1 77.6 766 47.2 781.1 

W400 78 1062.7 59.5 1090.8 77.2 1080.6 49.3 1094.1 

W500 78.1 1485.3 59.2 1488.4 75.4 1533.1 55.4 1522.5 

W600 77.4 1986.4 58 2018.8 75.7 2065.7 55.4 2027.7 

W700 76.3 2948.6 60 3001.4 77.5 2924.3 56.1 2985.5 

W800 74.5 4459.8 65.3 4516.3 73.2 4339.8 61.6 4507.9 

W900 77.6 6284 60.7 6514.2 72 6135.9 57.4 6402.4 

W1000 76.2 8410 58.2 8555.8 72.7 8158.3 55.6 8560.5 

W Size 

Normalize KDD Cup 99 HTTP Dataset 

GILOFR GILOFR_NS GILOF GILOF_NS 

AUC% TIME AUC% TIME AUC% TIME AUC% TIME 

W100 91.4 269.7 72.4 280.4 89.2 274.5 66.4 288.4 

W200 93.6 488.5 81.4 503.1 91.6 490.1 77.1 506.9 

W300 92.7 760.7 84 795.1 90.5 757 80.7 780.1 

W400 92.2 1075.2 82 1130.1 90.7 1058.8 79.5 1103.4 

W500 92.2 1444.3 81.3 1506.5 91.2 1465.8 78.9 1472.7 

W600 89.9 2003 80.7 2013.1 89.2 1976.2 77.9 2011.1 

W700 88.5 3005.9 78.7 3002 88.3 2975.1 76.3 2989.1 

W800 87.3 4523.9 76.6 4520.9 85.6 4440.7 73.9 4545.2 

W900 84.6 6372.5 77.1 6403.3 85.2 6289.1 74.9 6398.8 

W1000 88.4 8436.5 72.4 8479.5 85.9 8356.6 69.1 8431.5 
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5.6 Conclusion 

The objective of the proposed GILOFR algorithm is to further improve the accuracy of outlier 

detection in the GILOF algorithm for data stream mining. Like GILOF, GILOFR addresses the 

limitation of the LOF algorithm in a data stream, but GILOFR further improves GILOF. Accordingly, 

GILOFR does not need to recalculate all previous steps when a new data point occurs. Additionally, it 

does not require the storage of all the data points in memory, because it can work under the limited 

memory. Our new calculation of LOF, which is called LOFR, has a positive impact on the GILOF 

algorithm and leads to more accurate results. The outcomes of experiments demonstrate that GILOFR 

and GILOFR_NS are better than GILOF and GILOF_NS for the accuracy of outlier detection in real-

world datasets that have sequence of outliers and high-density region i.e. data points are very close to 

each other. Specifically, this is true for the KDD Cup99 HTTP dataset, which includes a simulation of 

normal data, with abnormal data as attack traffic, on an IP scale in computer networks for testing 

intrusion detection systems. 
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Chapter 6: Synthesis and Conclusions 

"A Review of Local Outlier Factor Algorithms for Outlier Detection in Big Data Streams." Big Data 

Cognitive Computing. 2020, 5, 1. MDPI. https://doi.org/10.3390/bdcc5010001 

"An Efficient Local Outlier Factor for Data Stream Processing: A Case Study" Forthcoming in the 7th 

International Conference on Computational Science and Computational Intelligence 2020, IEEE. 

6.1 A Summary of the Key Research Activities and Outcomes 

Outlier detection is a statistical procedure that aims to find suspicious events or items that are 

different from the normal form of a dataset. It has drawn considerable interest in the field of data mining 

and machine learning. Outlier detection is important in many applications, including fraud detection in 

credit card transactions and network intrusion detection. There are two general types of outlier detection: 

global and local. Global outliers fall outside the normal range for an entire dataset, whereas local outliers 

may fall within the normal range for the entire dataset, but outside the normal range for the surrounding 

data points. This paper addresses local outlier detection. The best-known technique for local outlier 

detection is the Local Outlier Factor (LOF), a density-based technique. LOF algorithm cannot be applied 

directly to data streams, which are an important type of big data. In general, local outlier detection 

algorithms for data streams are still deficient and better algorithms need to be developed that can 

effectively analyze the high velocity of data streams to detect local outliers. The issue with LOF is that 

it needs to store the whole dataset with its distances’ results in memory. In addition, it needs to start 

from the beginning and recalculate all processes if any change happens in the dataset, such as inserting 

a new data point. This dissertation provide two solution methods for local outlier detection in data 

stream. In addition, it presents a literature review of local outlier detection algorithms in static and stream 

environments, with an emphasis on LOF algorithms. It collects and categorizes existing local outlier 

detection algorithms and analyzes their characteristics. 

To address the limitation of the LOF in data streams, new methods should be developed. The 

primary purpose of any new method would be to measure the LOF score in all of the following 

circumstances: (1) keeping only a small part of the dataset in the computer memory; (2) the algorithm 

has no prior knowledge about the data distribution; (3) for an incoming data point pt, the algorithm 

https://doi.org/10.3390/bdcc5010001
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should verify whether it is an outlier or inlier at the current time T; and (4) when the algorithm detects 

the current outlier, it has no prior knowledge about future data points. 

To overcome the challenges of the LOF in stream environments, we have designed a new 

methodology to detect local outliers. This methodology contains two phases: (1) the detection phase and 

(2) the summarization phase. For the detection phase, the ILOF is used with a skipping scheme [88,104]. 

For the summarization phase, the Genetic Density Summarization algorithm (GDS), based on the 

genetic algorithm (GA), is used to summarize the dataset. The framework of our methodology, named 

Genetic-based Incremental Local Outlier Factor (GILOF) [181], works as follows: First, the maximum 

size of the window (W) is determined as W-size. After that, the threshold of the LOF is applied to detect 

the local outliers, relying on the threshold θ, then using the GDS to summarize the data points. 

Thereafter, the GILOF uses the ILOF together with a skipping scheme to detect the local outlier when 

an incoming data point arrives. It is worth noting that the skipping scheme is used in order to detect the 

sequence of outliers, when the sequence of outliers is outlier data points that are trying to build a new 

class. The GILOF continues to detect the outlier data points and to compute the LOF values for every 

new data point until the window reaches the W-size. When the window becomes full, the GDS algorithm 

is applied to the window in order to summarize 50%W of the older data points in the window; it does so 

by choosing 25%W of the fittest data points to represent the 50%W of the older data points. After this, 

the GILOF deletes the older 50%W of the data points from the window and the selected 25%W of data 

points is transferred to the window and merges with the remaining 50%W. These 75%W of data points 

joins with the newly incoming data points in the window. When the window reaches the W-size again, 

the GDS repeats the same process. The video in [168] displays a simulation of the GILOF system 

process. Figure 6.1 shows the overall design and workflow for the methodology. 

Local Outlier Factor by Reachability Distance (LOFR) is similar to the LOF, but the LOFR has 

a different calculation method, in which it does not need to apply the local reachability density [191]. 

To calculate the score of outlierness, the LOFR uses k-distance, k-nearest neighbor, and Reachability 

distance Rd. Subsequently, the Reachability distance Rd of data point p will be divided by the average 
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Rd of the data point p neighbors. This new calculation method for local outlier detection can produce a 

lower “outlierness” score than the LOF. The LOFR can produce a more accurate outlierness score in 

various datasets. The LOFR score is calculated by using Equation (6). 

 

𝐿𝑂𝐹𝑅𝑘(𝑝) = ∑
𝑅𝑑𝑘(𝑝)

(
𝑅𝑑𝑘(𝑜)

𝑘
)

𝑜∈𝑁𝑘(𝑝)

                                                   (6) 1) ( 

The GILOF algorithm is discussed extensively in [181]. By trying to enhance the effectiveness 

of the GILOF algorithm, we propose another calculation method for the LOF, which is named LOFR. 

The newly adapted algorithm in the data stream is named Genetic-based Incremental Local Outlier 

Factor by Reachability Distance (GILOFR). The GILOFR algorithm is also extensively discussed in 

[191]. 

 

6.2 Summary of answers to research questions 

In this dissertation, six research questions have been addressed. This section aims to summarize 

the answers of the research questions, which are already mentioned in chapter 1. However, the research 

questions are listed below again, to facilitate the process of linking questions and answers to the reader. 

The research questions of this dissertation are: 

1) How can the GILOF algorithm solve the issue of memory consumption? 

2) How does the GILOF algorithm detect the LOF in a data stream? 

3) How does the genetic algorithm retain the shape of the density of data points? 

4) Can a skipping scheme make a difference in the accuracy of local outlier detection and why? 

5) Do GILOF and GILOF_NS perform better than DILOF and DILOF_NS when considering the 

accuracy of outlier detection? 

 

6) Do GILOF and GILOF_NS perform better than DILOF and DILOF_NS when considering 

execution time? 
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Figure 6.1. The overall design and workflow for the methodology. 
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To answer the first question, we used limited memory by summarizing the dataset and 

determining a specific window size by using sliding window. The second question was solved by using 

ILOF and ILOFR algorithms. In the third question, we used two strategies, first, we summarized the old 

50% of data points and kept the rest. Second, we summarized the old 50% of data points by using the 

genetic algorithm. For the fourth question, we developed two versions of the GILOF algorithm, one with 

a skipping scheme, which is called GILOF and another one without a skipping scheme, which is called 

GILOF_NS. The goal of that is to show the different results between them. In addition, the reason for 

the impact of the skipping scheme is that it calculates the average distance of data points in the window, 

and also it calculates the distance between the new inserted data point and the latest detected outlier. If 

the distance between the new inserted data point and the last detected outlier is less than the distance 

between the new inserted data point and the average distance of data points, the new data point is 

considered an outlier. For the questions 5 and 6, GILOF, GILOF_NS, and their next improvement, 

GILOFR and GILOFR_NS, show better results in accuracy of outlier detection and execution time for 

the most datasets. the results comparison of all algorithms is extensively discussed in the chapters 4 and 

5. Table 6.1 shows the direction to the research question answers. In addition, figure 6.2 shows the 

outline of the dissertation chapters. 

 

Table 6.1. The direction to the research question answers. 

No. Research Questions Chapters Pages 

1 
How can the GILOF algorithm solve the issue of memory 

consumption? 
Ch4 Pg53 

2 How does the GILOF algorithm detect the LOF in a data stream? Ch2 & Ch5 Pg14 & Pg79 

3 
How does the genetic algorithm retain the shape of the density of 

data points? 
Ch4 & Ch5 Pg56 & Pg81 

4 
Can a skipping scheme make a difference in the accuracy of local 

outlier detection and why? 
Ch4 Pg56 

5 
Do GILOF and GILOF_NS perform better than DILOF and 

DILOF_NS when considering the accuracy of outlier detection? 
Ch4 & Ch5 Pg61 & Pg85 

6 
Do GILOF and GILOF_NS perform better than DILOF and 

DILOF_NS when considering execution time? 
Ch4 & Ch5 Pg63 & Pg86 
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6.3 Main Conclusions 

In the big data era, outlier detection is a very important step in many applications, such as 

network intrusion detection systems and decision support systems. The objective of outlier detection is 

to detect suspicious items and unusual activities. For example, in practice, analyzing the dataset to 

extract information without removing the outlier’s data will lead to inaccurate information, which will 

result in wrong decisions. Recently, outlier detection has gained a lot of attention from researchers, 

especially regarding data streams. This dissertation proposed a new possibility for local outlier detection 

in data streams by developing two methods, which are called the Genetic Based-Incremental Local 

Outlier factor (GILOF) and the Local Outlier Factor by Reachability Distance (LOFR). As mentioned 

above, the GA is assumed to be better than the gradient-descent because the genetic algorithm is a 

population-based search technique and can jump the local minima by the aid of its crossover and 

mutation operators for a more wide search of spaces. The GILOF algorithm is already compared with 

the DILOF algorithm [104] and the results are extensively discussed in [181]. By trying to improve the 

Figure 6.2. The dissertation division map. 
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efficiency of the GILOF algorithm, we developed another calculation method for the LOF, which is 

called LOFR. The new algorithm is named GILOFR. The GILOFR algorithm was compared with the 

GILOF algorithm; the outcomes are also extensively discussed in [191].  

For future work, the other traditional local outlier detection algorithms, such as the COF, LoOP, 

LOCI, and the INFLO, etc., can be adapted to work in a data stream. To execute these traditional 

algorithms in a data stream, the mechanisms of the above-mentioned methods, such as the GILOF and 

DILOF algorithms, should be applied. The LOFR was also applied to another algorithm that is called 

Grid Partition-Based Local Outlier Factor and it showed slight improvement in some datasets [112]. this 

new calculation method of the LOFR can be applied in the DILOF algorithm instead of the LOF, which 

may lead to more accurate results. Finally, this dissertation addressed specific issues and challenges of 

the LOF in stream environments and provided new methods to improve the efficiency of local outlier 

detection in data streams. It also recommend new works of local outlier detection in data streams. 

 

6.4 List of Publications 

During my study, I published one book chapter for Encyclopedia of Big Data. I participated in 

the UI Research Computing and Data Science Symposium by presenting (poster) the research idea about 

summarizing big data using a genetic algorithm for local outlier detection. On the other hand, I invited 

to review for IEEE Access Journal. In addition, I gained two Travel Awards from GPSA at University 

of Idaho. The following is the list of publications: 

 

6.4.1 As a first author  

[1] Paper title: Data Storage 

Description: Book chapter in the encyclopedia of big data. published online by Springer. 

Reference: Alghushairy, O. and Ma, X., 2019. Data Storage. Encyclopedia of Big Data; Schintler, 

L., McNeely, C., Eds. 
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[2] Paper title: A Genetic-Based Incremental Local Outlier Factor Algorithm for Efficient Data Stream 

Processing. 

Description: Conference paper in the 4th international conference in compute and data analysis. 

Silicon Valley CA USA March, 2020. published online by ACM. 

Reference: Alghushairy, O., Alsini, R., Ma, X. and Soule, T., 2020, March. A Genetic-Based 

Incremental Local Outlier Factor Algorithm for Efficient Data Stream Processing. In Proceedings 

of the 2020 the 4th International Conference on Compute and Data Analysis (pp. 38-49). 

 

[3] Paper title: Improving the Efficiency of Genetic based Incremental Local Outlier Factor Algorithm 

for Network Intrusion Detection. 

Description: Conference paper in of the 4th International Conference on Applied Cognitive 

Computing, Las Vegas, NV, USA. published online by Springer. 

Reference: Alghushairy, O., Alsini, R., Ma, X. and Soule, T., 2020, July. Improving the Efficiency 

of Genetic based Incremental Local Outlier Factor Algorithm for Network Intrusion Detection. 

In Proceedings of the 4th International Conference on Applied Cognitive Computing, Las Vegas, 

NV, USA (pp. 27-30). 

 

[4] Paper title: A Review of Local Outlier Factor Algorithms for Outlier Detection in Big Data Streams. 

Description: Journal paper in the Journal of Big Data and Cognitive Computing. published online 

by MDPI. 

Reference: Alghushairy, O., Alsini, R., Soule, T. and Ma, X., 2021. A Review of Local Outlier 

Factor Algorithms for Outlier Detection in Big Data Streams. Big Data and Cognitive 

Computing, 5(1), p.1. 

 

[5] Paper title: An Efficient Local Outlier Factor for Data Stream Processing: A Case Study. 

Description: Conference paper in the 7th International Conference on Computational Science and 

Computational Intelligence. published online by IEEE. 

Reference: Alghushairy, O., Alsini, R and Ma, X., 2020, December. An Efficient Local Outlier 

Factor for Data Stream Processing: A Case Study. In 2020 International Conference on 

Computational Science and Computational Intelligence (CSCI), IEEE. Las Vegas, NV, USA. 
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6.4.2 As Co-Author 

 

[6] Paper title: A Grid Partition-based Local Outlier Factor for Data Stream Processing. 

Description: Conference paper in the 4th International Conference on Applied Cognitive Computing, 

Las Vegas, NV, USA. published online by Springer. 

Reference: Alsini, R., Alghushairy, O., Ma, X. and Soule, T., 2020, July. A Grid Partition-based 

Local Outlier Factor for Data Stream Processing. In Proceedings of the 4th International Conference 

on Applied Cognitive Computing, Las Vegas, NV, USA. 

 

[7] Paper title: A Grid Partition-Based Local Outlier Factor by Reachability Distance for Data Stream 

Processing. 

Description: Conference paper in the 7th International Conference on Computational Science and 

Computational Intelligence. published online by IEEE. 

Reference: Alsini, R., Alghushairy, O., Ma, X. and Soule, T., 2020, December. A Grid Partition-

Based Local Outlier Factor by Reachability Distance for Data Stream Processing. In 2020 

International Conference on Computational Science and Computational Intelligence (CSCI), IEEE., 

Las Vegas, NV, USA. 

 

[8] Paper title: Local Outlier Detection Techniques in Real-World Big Data Processing: A Literature 

Review. 

Description: Journal paper that submitted to the Journal of Algorithm. Will published online by 

MDPI. 
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Appendix A – Experiment’s performance results with different 

hyperparameters 

The following tables represents the performance results of the algorithms based on certain 

windows size. For GILOF and GILOF_NS, each table shows the experiment’s performance 

results with different hyperparameters.  

 

 

 

GILOF Performance in Normalized UCI Vowel Dataset 

PS=2. NG=4. Two Points Crossover=0.7. BDM Mutation=0.07. Selection= RWS. 

 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 77.3 72.3 70.8 73.4 70.1 70.6 71.8 71.6 74 73.5 72.54 

W 120 80.4 83.4 83.4 81.7 82.5 80 79.2 79.6 81.8 80.6 81.26 

W 140 87.8 86.7 85.3 84 85.1 85.3 87.2 85.5 85.7 87.6 86.02 

W 160 87.4 86.1 88.1 87.3 87.2 88.2 88 88.8 88.6 87.6 87.73 

W 180 89.7 89.7 88.6 89.7 90.1 89.8 89.4 90.5 89.6 89.1 89.62 

W 200 90.8 90.7 91.2 90.5 90.7 91.5 89.8 90 90.2 91.1 90.65 

W Size Time Time Time Time Time Time Time Time Time Time AVG of Time Total Time 

W 100 0.074 0.076 0.071 0.074 0.074 0.073 0.073 0.073 0.073 0.071 0.0729 0.729 

W 120 0.082 0.085 0.082 0.081 0.084 0.082 0.082 0.083 0.082 0.084 0.0829 0.829 

W 140 0.093 0.092 0.096 0.092 0.093 0.089 0.089 0.09 0.09 0.092 0.0917 0.917 

W 160 0.107 0.103 0.106 0.105 0.106 0.103 0.103 0.104 0.103 0.104 0.1045 1.045 

W 180 0.118 0.117 0.118 0.117 0.115 0.114 0.114 0.117 0.115 0.114 0.116 1.16 

W 200 0.129 0.124 0.129 0.127 0.128 0.124 0.124 0.124 0.124 0.123 0.1258 1.258 

           

 

 

GILOF Performance in Unnormalized UCI Vowel Dataset 

PS=2. NG=4. Two Points Crossover=0.7. BDM Mutation=0.07. Selection= RWS. 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 72.8 75.1 74.9 74.1 76.5 73.1 74.7 72.1 75.4 73.4 74.21 

W 120 83.6 84.2 82.3 84.4 84.2 82.1 83.2 80.8 82.8 82 82.96 

W 140 87.4 86 87.3 85.9 86.1 87.8 85.6 85.6 87.3 83.3 86.23 

W 160 88.3 87.5 85.9 87.4 86.8 86.6 86.9 86.2 86.7 88.3 87.06 

W 180 90 89.4 89.8 88.9 88.8 88.6 90.1 89.3 89.7 90.1 89.47 

W 200 89.9 89.2 89.1 89.5 90.6 90.1 89.7 89.2 89.2 89.3 89.58 

W Size Time Time Time Time Time Time Time Time Time Time AVG of Time Total Time 

W 100 0.074 0.073 0.073 0.069 0.071 0.073 0.074 0.068 0.073 0.073 0.0721 0.721 

W 120 0.085 0.082 0.079 0.08 0.083 0.082 0.082 0.082 0.084 0.081 0.082 0.82 

W 140 0.092 0.092 0.092 0.092 0.091 0.092 0.092 0.092 0.9 0.093 0.1728 1.728 

W 160 0.104 0.106 0.104 0.103 0.104 0.102 0.103 0.104 0.105 0.104 0.1039 1.039 

W 180 0.117 0.115 0.117 0.115 0.117 0.116 0.115 0.115 0.115 0.115 0.1157 1.157 

W 200 0.129 0.124 0.125 0.135 0.126 0.124 0.126 0.124 0.124 0.126 0.1263 1.263 
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GILOF_NS Performance in Normalized UCI Vowel Dataset 

PS=2. NG=4. One Point Crossover=0.7. BDM Mutation=0.07. Selection= RWS. 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 75.2 74.9 72.7 76.5 73.9 72 72.6 75.7 74.4 76.5 74.44 

W 120 83.3 81.3 81.5 82.7 84.2 83.5 82.2 82.1 82.9 82.4 82.61 

W 140 87.4 86.7 84.8 88.6 84.7 87.8 88 86.4 86.9 86.3 86.76 

W 160 87.6 88 87.5 88.1 87.9 88.3 88.1 87.6 88.1 87.8 87.9 

W 180 91.2 90.7 90.8 91.1 89.8 91.3 90.3 90 90 90.9 90.61 

W 200 92.1 92.2 92.5 92.5 92.5 92.1 93 92.9 91.3 92.4 92.35 

W Size Time Time Time Time Time Time Time Time Time Time AVG of Time Total Time 

W 100 0.082 0.081 0.079 0.079 0.078 0.079 0.079 0.078 0.08 0.081 0.0796 0.796 

W 120 0.095 0.09 0.09 0.09 0.09 0.089 0.092 0.089 0.09 0.089 0.0904 0.904 

W 140 0.101 0.1 0.099 0.099 0.099 0.099 0.101 0.099 0.098 0.099 0.0994 0.994 

W 160 0.115 0.111 0.11 0.112 0.114 0.112 0.112 0.112 0.114 0.114 0.1126 1.126 

W 180 0.124 0.124 0.126 0.124 0.124 0.124 0.124 0.124 0.124 0.126 0.1244 1.244 

W 200 0.14 0.135 0.137 0.139 0.137 0.137 0.139 0.137 0.145 0.135 0.1381 1.381 

          

 

 

 

GILOF_NS Performance in Unnormalized UCI Vowel Dataset 

PS=2. NG=4. One Point Crossover=0.7. BDM Mutation=0.07. Selection= TNT. 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 76.9 75.3 77 75.7 73.9 76.2 73.7 73.1 75.4 75.7 75.29 

W 120 82.9 81.6 82.1 82.6 83.5 82.7 82.2 84.1 80.6 81.1 82.34 

W 140 87.2 88.6 86.4 86.9 86.5 87.2 87.3 86 86 87.6 86.97 

W 160 88.1 87.4 87.3 87.5 88.3 87.8 87.9 87.9 87.4 87.5 87.71 

W 180 90.4 90 90.3 90.6 90.1 90.2 91.1 90.3 91 90.2 90.42 

W 200 91.9 92 91.8 92.2 91.9 91.8 91.7 91.8 91.8 92.1 91.9 

W Size Time Time Time Time Time Time Time Time Time Time AVG of Time Total Time 

W 100 0.084 0.081 0.081 0.079 0.081 0.081 0.081 0.081 0.081 0.081 0.0811 0.811 

W 120 0.092 0.09 0.09 0.092 0.09 0.092 0.089 0.09 0.09 0.092 0.0907 0.907 

W 140 0.101 0.101 0.101 0.103 0.101 0.101 0.098 0.101 0.101 0.101 0.1009 1.009 

W 160 0.115 0.115 0.114 0.115 0.114 0.114 0.114 0.115 0.114 0.112 0.1142 1.142 

W 180 0.128 0.127 0.126 0.124 0.123 0.126 0.124 0.126 0.128 0.124 0.1256 1.256 

W 200 0.139 0.14 0.139 0.139 0.137 0.135 0.139 0.137 0.137 0.137 0.1379 1.379 

            

 

 

 

DILOF Performance in Normalized UCI Vowel Dataset 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 69.1 70 73.7 72.8 65.9 67.7 68.8 68 70 69.1 69.51 

W 120 77.2 79.4 83.5 81.6 78.8 76.9 80.7 75.2 76.9 77 78.72 

W 140 83.4 85.5 84.8 85.7 83 84.4 83.3 84.8 84.6 84.5 84.4 

W 160 85.5 86.8 85.1 88.7 87.2 85.8 85.6 84.8 85.1 84.2 85.88 

W 180 88.5 87.3 88.3 90.1 88.4 88.4 89 89.3 89 89.9 88.82 

W 200 89.6 89.9 91.2 90.3 88.9 89.9 89.2 89.1 89.4 87.9 89.54 

W Size Time Time Time Time Time Time Time Time Time Time AVG of Time Total Time 

W 100 0.074 0.075 0.073 0.073 0.073 0.067 0.066 0.071 0.07 0.071 0.0713 0.713 

W 120 0.082 0.084 0.085 0.084 0.083 0.08 0.081 0.083 0.081 0.08 0.0823 0.823 

W 140 0.095 0.09 0.093 0.093 0.091 0.09 0.092 0.091 0.092 0.092 0.0919 0.919 

W 160 0.1 0.104 0.104 0.104 0.101 0.102 0.099 0.101 0.103 0.103 0.1021 1.021 

W 180 0.11 0.118 0.115 0.115 0.117 0.114 0.115 0.114 0.116 0.115 0.1149 1.149 

W 200 0.12 0.13 0.13 0.13 0.129 0.126 0.128 0.124 0.126 0.128 0.1271 1.271 
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DILOF Performance in Unnormalized UCI Vowel Dataset 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 67.5 68.1 67.6 69.2 72.9 66.8 68.6 69.8 70.1 71.5 69.21 

W 120 73.1 71.8 77.8 71.8 80.2 77 77.3 73.7 74.4 78.1 75.52 

W 140 82.5 83.4 84.1 81.4 86.2 85.7 85 82.9 84.7 83.6 83.95 

W 160 85.1 85.8 84.2 84.8 87.5 85.1 85.2 86 85.7 85.7 85.51 

W 180 88.8 87.9 88.3 88.6 88.4 88.9 88.7 88.7 88.2 88.1 88.46 

W 200 88.6 88.9 88.2 88.7 90.2 89.1 88.6 88.3 88.6 88.2 88.74 

W Size Time Time Time Time Time Time Time Time Time Time AVG of Time Total Time 

W 100 0.07 0.075 0.075 0.0751 0.073 0.074 0.07 0.07 0.07 0.068 0.07201 0.7201 

W 120 0.08 0.085 0.082 0.087 0.085 0.082 0.079 0.079 0.081 0.082 0.0822 0.822 

W 140 0.09 0.095 0.092 0.094 0.093 0.093 0.093 0.092 0.09 0.09 0.0922 0.922 

W 160 0.1 0.104 0.103 0.112 0.104 0.104 0.104 0.104 0.103 0.103 0.1041 1.041 

W 180 0.11 0.118 0.118 0.12 0.114 0.115 0.117 0.114 0.115 0.115 0.1156 1.156 

W 200 0.12 0.131 0.128 0.133 0.127 0.128 0.126 0.131 0.125 0.126 0.1275 1.275 

           

 

 

 

DILOF_NS Performance in Normalized UCI Vowel Dataset 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 71.3 75.1 68.8 72.5 71.4 67.1 68.9 69.3 72.4 69.8 70.66 

W 120 81.6 83 81.9 83.5 80.7 82.4 81.9 81.1 81.7 81.7 81.95 

W 140 84.5 87.2 86.6 87.1 83.9 85.5 86.5 83.9 85.8 84.7 85.57 

W 160 86.1 88.2 85.5 88.6 86.9 87.5 86.6 86.5 87.5 86.3 86.97 

W 180 88.9 90 88.9 89.1 89.9 88.3 88.9 87.6 88.3 89 88.89 

W 200 91.3 92 90.4 91.5 90.4 91.3 90.4 91.1 91.2 92 91.16 

W Size Time Time Time Time Time Time Time Time Time Time AVG of Time Total Time 

W 100 0.074 0.075 0.073 0.073 0.073 0.067 0.066 0.071 0.07 0.071 0.0713 0.713 

W 120 0.082 0.084 0.085 0.084 0.083 0.08 0.081 0.083 0.081 0.08 0.0823 0.823 

W 140 0.095 0.09 0.093 0.093 0.091 0.09 0.092 0.091 0.092 0.092 0.0919 0.919 

W 160 0.1 0.104 0.104 0.104 0.101 0.102 0.099 0.101 0.103 0.103 0.1021 1.021 

W 180 0.11 0.118 0.115 0.115 0.117 0.114 0.115 0.114 0.116 0.115 0.1149 1.149 

W 200 0.12 0.13 0.13 0.13 0.129 0.126 0.128 0.124 0.126 0.128 0.1271 1.271 

          

 

 

 

DILOF_NS Performance in Unnormalized UCI Vowel Dataset 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 74.3 73.9 73.7 70.8 73.9 72.8 69.9 71.7 69.6 70.3 72.09 

W 120 82.9 82.8 80.6 80.2 80.3 81.2 81.4 80.3 80.6 81.3 81.16 

W 140 85.1 85.6 87.5 86.5 84.8 83.4 85.6 83.4 84.8 84 85.07 

W 160 86.5 87.9 84.7 87 86.5 86.4 87.1 85.7 86.8 86.1 86.47 

W 180 89.7 88.9 90 89.1 89 89.3 89.7 89.3 88.9 88.8 89.27 

W 200 91.1 90.9 92.6 91.2 90.5 90.9 90.9 90.6 91.3 91.1 91.11 

W Size Time Time Time Time Time Time Time Time Time Time AVG of Time Total Time 

W 100 0.082 0.08 0.081 0.081 0.082 0.082 0.074 0.074 0.076 0.074 0.0786 0.786 

W 120 0.093 0.092 0.091 0.092 0.091 0.09 0.089 0.087 0.089 0.089 0.0903 0.903 

W 140 0.103 0.103 0.102 0.102 0.102 0.099 0.098 0.101 0.099 0.098 0.1007 1.007 

W 160 0.114 0.113 0.114 0.114 0.114 0.11 0.112 0.11 0.109 0.112 0.1122 1.122 

W 180 0.128 0.128 0.126 0.128 0.128 0.124 0.124 0.124 0.124 0.126 0.126 1.26 

W 200 0.142 0.142 0.141 0.143 0.143 0.14 0.139 0.14 0.137 0.139 0.1406 1.406 
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GILOF Performance in Normalized UCI Pendgit Dataset 

PS=2. NG=4. Two Points Crossover=0.7. BDM Mutation=0.07. Selection= TNT. 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 95.9 95.1 95.2 95.4 95.6 95.6 95.9 95.5 95.3 95.1 95.46 

W 120 97.6 97.1 97.6 97.5 97.5 97.4 97.7 97.4 97.8 97.6 97.52 

W 140 97.9 98.2 98 98 98.1 98 98.1 98.2 98.1 97.9 98.05 

W 160 98.7 98.8 98.6 98.7 98.5 98.7 98.7 98.6 98.7 98.7 98.67 

W 180 99 98.9 98.8 99 98.9 98.8 98.9 98.8 98.9 98.8 98.88 

W 200 98.3 98.5 98.4 98.5 98.4 98.1 98.5 98.5 98.4 98.6 98.42 

W Size Time Time Time Time Time Time Time Time Time Time AVG of Time Total Time 

W 100 0.198 0.194 0.195 0.195 0.196 0.196 0.194 0.192 0.195 0.193 0.1948 1.95 

W 120 0.225 0.222 0.223 0.223 0.223 0.223 0.224 0.223 0.223 0.224 0.2233 2.23 

W 140 0.249 0.247 0.248 0.247 0.248 0.249 0.247 0.248 0.247 0.248 0.2478 2.47 

W 160 0.282 0.281 0.282 0.282 0.282 0.281 0.282 0.283 0.283 0.285 0.2823 2.82 

W 180 0.316 0.315 0.317 0.316 0.317 0.317 0.314 0.315 0.315 0.315 0.3157 3.15 

W 200 0.349 0.348 0.35 0.348 0.347 0.346 0.35 0.346 0.346 0.347 0.3477 3.47 

           

 

 

 

GILOF Performance in Unnormalized UCI Pendgit Dataset 

PS=2. NG=4. Two Points Crossover=0.7. BDM Mutation=0.07. Selection= RWS. 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 51.4 52.1 50.1 49.6 51.8 51.8 50.1 51.2 50.1 50.4 50.86 

W 120 49.7 49.2 49.8 47.6 49.1 50 49.7 51.2 50.3 50.9 49.75 

W 140 51.2 51.7 50.4 50.9 49.8 50.5 50.4 51.1 50.3 50 50.63 

W 160 49.9 50.9 51 51.3 51 51.9 50.7 51.9 50.3 49.2 50.81 

W 180 51.1 50.9 51.8 49.5 50.4 51 49.9 52.4 49.1 50.3 50.64 

W 200 52.9 54.1 53 52.4 51.5 52.7 53 53.2 52.7 53.1 52.86 

W Size Time Time Time Time Time Time Time Time Time Time AVG of Time Total Time 

W 100 0.199 0.193 0.193 0.194 0.201 0.195 0.194 0.193 0.193 0.194 0.1949 1.949 

W 120 0.224 0.221 0.221 0.222 0.228 0.222 0.221 0.222 0.221 0.222 0.2224 2.224 

W 140 0.242 0.242 0.243 0.249 0.251 0.246 0.246 0.247 0.245 0.246 0.2457 2.45 

W 160 0.282 0.283 0.282 0.281 0.282 0.282 0.282 0.282 0.281 0.281 0.2818 2.81 

W 180 0.315 0.317 0.32 0.314 0.315 0.314 0.312 0.312 0.313 0.313 0.3145 3.14 

W 200 0.348 0.348 0.35 0.349 0.347 0.343 0.345 0.343 0.344 0.344 0.3461 3.46 

           

 

 

 

Memory consumption for KDD Cup 99 http Dataset Memory consumption for KDD Cup 99 smtp Dataset 

W Size GILOF GILOF_NS DILOF DILOF_NS GILOF GILOF_NS DILOF DILOF_NS 

W 100 47.5 MB 47.5 MB 47.7 MB 47.7 MB 11.2 MB 11.2 MB 11.3MB 11.3MB 

W 200 50 MB 50 MB 49.5 MB 49.5 MB 12.6 MB 12.6 MB 12.5 MB 12.5MB 

W 300 51.7 MB 51.7 MB 51.2 MB 51.2 MB 15.1 MB 15.1 MB 14.8 MB 14.8 MB 

W 400 52.6 MB 52.6 MB 52.8 MB 52.8 MB 16.6 MB 16.6 MB 16.4 MB 16.4 MB 

W 1000 69.2 MB 69.2 MB 69.2 MB 69.2 MB 35.6 MB 35.6 MB 35.6 MB 35.6 MB 
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GILOF_NS Performance in Normalized UCI Pendgit Dataset 

PS=2. NG=4. Two Points Crossover=0.7. BDM Mutation=0.07. Selection= RWS. 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 95.8 95.2 95.3 95.7 95.6 95.6 96.2 95.7 95.4 95.1 95.56 

W 120 97.5 97.6 97.6 97.1 97.8 97.5 97.1 97.8 97.2 97.5 97.47 

W 140 98.3 98.1 98.4 98 98.3 97.9 98 98 98.2 98.3 98.15 

W 160 98.5 98.9 98.7 98.7 98.6 98.7 98.7 98.6 98.8 98.7 98.69 

W 180 98.9 98.9 99 99 98.8 98.8 98.8 98.9 98.7 98.9 98.87 

W 200 98.3 98.4 98.3 98.6 98.5 98.4 98.4 98.2 98.4 98.6 98.41 

W Size Time Time Time Time Time Time Time Time Time Time AVG of Time Total Time 

W 100 0.199 0.195 0.195 0.195 0.196 0.193 0.193 0.193 0.197 0.195 0.1951 1.95 

W 120 0.22 0.221 0.225 0.223 0.217 0.223 0.224 0.223 0.225 0.22 0.2221 2.23 

W 140 0.247 0.248 0.252 0.243 0.248 0.246 0.248 0.246 0.248 0.248 0.2474 2.47 

W 160 0.284 0.281 0.282 0.281 0.279 0.281 0.281 0.282 0.282 0.281 0.2814 2.81 

W 180 0.315 0.313 0.321 0.312 0.313 0.313 0.313 0.312 0.315 0.312 0.3139 3.13 

W 200 0.345 0.348 0.346 0.345 0.343 0.345 0.345 0.343 0.343 0.343 0.3446 3.44 

 

GILOF_NS Performance in Unnormalized UCI Pendgit Dataset 

PS=2. NG=4. Two Points Crossover=0.7. BDM Mutation=0.07. Selection= RWS. 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 50.1 49.6 49.9 51.6 49.7 49.9 50 51 50.1 50.2 50.21 

W 120 50.5 50.5 49.1 50.7 50.7 48.6 51 51 48.8 49.7 50.06 

W 140 50.3 50.5 51.3 51.4 50.1 50.9 50.6 51.6 50.4 50.6 50.77 

W 160 52.4 51.3 50.2 50.8 52.4 49.5 51.9 52 51.2 51 51.27 

W 180 52 51.4 52.4 50.9 50.6 52.8 52.4 51.9 51.7 50.8 51.69 

W 200 52.2 52 51.2 51.8 52.9 51 53.3 51.4 51.6 52.3 51.97 

W Size Time Time Time Time Time Time Time Time Time Time AVG of Time Total Time 

W 100 0.199 0.195 0.194 0.194 0.195 0.195 0.194 0.195 0.199 0.195 0.1955 1.95 

W 120 0.226 0.223 0.222 0.222 0.226 0.223 0.222 0.223 0.227 0.222 0.2236 2.23 

W 140 0.247 0.245 0.246 0.246 0.243 0.253 0.247 0.248 0.247 0.246 0.2468 2.46 

W 160 0.282 0.283 0.281 0.276 0.279 0.286 0.281 0.285 0.282 0.283 0.2818 2.81 

W 180 0.315 0.315 0.313 0.317 0.312 0.313 0.314 0.314 0.314 0.315 0.3142 3.14 

W 200 0.345 0.356 0.346 0.345 0.342 0.345 0.344 0.345 0.345 0.345 0.3458 3.45 

           

DILOF Performance in Normalized UCI Pendigit Dataset 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 94.5 94.8 95.4 94.5 94.3 94.2 94.3 94.5 94.8 94.6 94.59 

W 120 95.9 96.2 97.4 96.2 95.3 96 96.3 95.7 95.6 95.9 96.05 

W 140 96.3 96.1 98 96.6 96.5 97 96.6 96.3 96.5 96.7 96.66 

W 160 97.6 97.6 98.7 97.7 97.5 97.6 97.5 97.1 97.4 97.4 97.61 

W 180 98.1 98.1 99 97.5 98.1 97.6 98.1 98.1 97.5 97.7 97.98 

W 200 97.1 97.1 98.7 97 97.8 97.3 96.9 97.5 97.5 97.7 97.46 

W Size Time Time Time Time Time Time Time Time Time Time AVG of Time Total Time 

W 100 0.19 0.192 0.193 0.192 0.189 0.193 0.187 0.185 0.194 0.184 0.1899 1.899 

W 120 0.218 0.219 0.22 0.218 0.216 0.218 0.221 0.22 0.218 0.218 0.2186 2.186 

W 140 0.249 0.256 0.251 0.25 0.252 0.248 0.244 0.248 0.248 0.246 0.2492 2.492 

W 160 0.282 0.291 0.287 0.285 0.282 0.282 0.281 0.274 0.281 0.277 0.2822 2.822 

W 180 0.315 0.321 0.317 0.315 0.316 0.315 0.311 0.31 0.312 0.313 0.3145 3.145 

W 200 0.353 0.353 0.355 0.347 0.35 0.345 0.349 0.346 0.348 0.348 0.3494 3.494 

           

Memory Consumption for UCI Pendigit Dataset Memory Consumption for UCI Vowel Dataset 
W Size GILOF GILOF_NS DILOF DILOF_NS ILOF GILOF GILOF_NS DILOF DILOF_NS ILOF 
W 100 4.3 MB 4.3 MB 4.3 MB 4.3 MB 

202 MB 

3.8 MB 3.8 MB 3.7 MB 3.7 MB 

36.7 MB 

W 120 4.7 MB 4.7 MB 4.6 MB 4.6 MB 4.1 MB 4.1 MB 4.2 MB 4.2 MB 

W 140 5.1 MB 5.1 MB 4.9 MB 4.9 MB 4.8 MB 4.8 MB  4.6 MB 4.6 MB 

W 160 5.4 MB 5.4 MB 5.4 MB 5.4 MB 5 MB 5 MB 4.9 MB 4.9 MB 

W 180 5.7 MB 5.7 MB 5.7 MB 5.7 MB 5.1 MB 5.1 MB 5.1 MB 5.1 MB 

W 200 5.9 MB 5.9 MB 6 MB 6 MB 5.2 MB 5.2 MB 5.2 MB 5.2 MB 

W 1000 26.4 MB 26.4 MB 26.5 MB 26.5 MB 23.8 MB 23.8 MB 23.8 MB 23.8 MB 
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DILOF Performance in Unnormalized UCI Pendigit Dataset 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 49.8 50 51.2 50.3 51.1 52.4 50.9 51.8 50.4 51.7 50.96 

W 120 52.8 50.2 50.7 51.8 53.7 49.5 50.7 49.9 50.2 50.5 51 

W 140 51.8 52 53.4 53.5 54.3 52.5 51.7 51.1 49.5 52.9 52.27 

W 160 54.2 54.1 54.7 53.7 54.6 48.9 50.9 50.5 50.6 51.1 52.33 

W 180 52.2 54.4 54.5 53.3 53.4 50.6 50 51.6 50.8 50.9 52.17 

W 200 54.7 54 53 53.1 53.9 50.4 52.9 51.9 52.2 52.4 52.85 

W Size Time Time Time Time Time Time Time Time Time Time AVG of 
Time 

Total 
Time 

W 100 0.19 0.185 0.186 0.187 0.183 0.192 0.185 0.187 0.191 0.188 0.1874 1.874 

W 120 0.212 0.218 0.2 0.193 0.19 0.221 0.217 0.218 0.216 0.217 0.2102 2.102 

W 140 0.247 0.235 0.234 0.245 0.246 0.249 0.242 0.24 0.242 0.242 0.2422 2.422 

W 160 0.283 0.284 0.274 0.284 0.284 0.282 0.277 0.276 0.283 0.282 0.2809 2.809 

W 180 0.291 0.32 0.318 0.318 0.316 0.318 0.312 0.313 0.31 0.314 0.313 3.13 

W 200 0.38 0.342 0.345 0.344 0.342 0.348 0.345 0.345 0.346 0.348 0.3485 3.485 

   

 

 

DILOF_NS Performance in Normalized UCI Pendigit Dataset 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 95.1 93.9 95.2 94.6 94 94.4 94.6 94.8 94.8 93.9 94.53 

W 120 95.8 95.9 97 95.7 95.6 96 95.8 95.5 96.6 95.9 95.98 

W 140 96.8 96.3 97.9 97.2 96 96.6 96.9 96.7 96.7 96.9 96.8 

W 160 97.5 97.2 98.5 97.4 96.9 97.6 97.9 97.3 97.5 97.9 97.57 

W 180 97.5 98 98.2 97.7 97.1 97.4 98.2 98 97.9 97.4 97.74 

W 200 96.8 97.6 98.7 97.1 96.4 97.3 97.3 97.3 97.1 97.2 97.28 

W Size Time Time Time Time Time Time Time Time Time Time AVG of 
Time 

Total 
Time 

W 100 0.19 0.192 0.19 0.192 0.194 0.185 0.19 0.193 0.188 0.19 0.1904 1.904 

W 120 0.221 0.222 0.221 0.221 0.22 0.219 0.222 0.223 0.218 0.218 0.2205 2.205 

W 140 0.251 0.25 0.253 0.252 0.247 0.249 0.249 0.248 0.246 0.246 0.2491 2.491 

W 160 0.284 0.286 0.284 0.285 0.284 0.282 0.28 0.279 0.271 0.277 0.2812 2.812 

W 180 0.317 0.322 0.315 0.317 0.316 0.309 0.313 0.31 0.31 0.306 0.3135 3.135 

W 200 0.353 0.367 0.354 0.352 0.352 0.349 0.346 0.346 0.346 0.348 0.3513 3.513 

 

 

 

DILOF_NS Performance in Unnormalized UCI Pendigit Dataset 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 51.2 49.7 51.4 50.6 50.6 50.6 50.6 51.8 50.3 49.8 50.66 

W 120 52.4 53.4 51.2 55.2 52.6 49 51.3 50.5 50.6 51.6 51.78 

W 140 51.7 49.8 52.2 52.2 51.3 49.3 50.9 50.5 52.6 50.6 51.11 

W 160 55.2 54.7 53.9 54.8 53.3 51.3 49.6 50.8 50.5 50.3 52.44 

W 180 53.2 54 54.3 54.9 55.9 49.5 52.8 51.7 50.9 51.5 52.87 

W 200 54 55.2 53.9 53.9 53.7 52.1 52.1 51.5 49.7 50.1 52.62 

W Size Time Time Time Time Time Time Time Time Time Time AVG of 
Time 

Total 
Time 

W 100 0.187 0.186 0.185 0.19 0.192 0.189 0.184 0.182 0.187 0.186 0.1868 1.868 

W 120 0.217 0.213 0.21 0.219 0.217 0.218 0.22 0.219 0.217 0.218 0.2168 2.168 

W 140 0.243 0.241 0.24 0.247 0.247 0.243 0.24 0.249 0.237 0.245 0.2432 2.432 

W 160 0.275 0.273 0.275 0.277 0.274 0.28 0.278 0.276 0.277 0.278 0.2763 2.763 

W 180 0.313 0.313 0.317 0.316 0.323 0.313 0.316 0.312 0.312 0.313 0.3148 3.148 

W 200 0.344 0.346 0.347 0.346 0.344 0.342 0.346 0.345 0.346 0.347 0.3453 3.453 
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GILOF Performance in Unnormalized KDD CUP99 SMTP Dataset 

PS=2. NG=4. Uniform Crossover=0.7. BDM Mutation=0.07. Selection= RWS. 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 86.6 84.2 85.7 80.5 82.9 83 79 83.6 85.5 79.6 83.06 

W 200 89.2 84.5 85.1 84.5 83.8 87.3 82.9 85.6 87.8 84.5 85.52 

W 300 87.3 85.4 82.9 86.6 86 86.6 86.5 85.8 84.4 85.7 85.72 

W 400 86 87 84.6 86.5 85.4 87.8 88.4 84.8 89 88 86.75 

W Size Time Time Time Time Time Time Time Time Time Time AVG of 
Time 

Total 
Time 

W 100 4.6 4.58 4.58 4.46 4.58 4.52 4.62 4.58 4.59 4.58 4.569 45.69 

W 200 8.43 8.22 8.17 9.06 8.5 8.17 8.26 8.25 8.14 8.19 8.339 83.39 

W 300 12.81 12.55 12.5 12.86 12.52 12.56 12.46 12.49 12.47 12.61 12.583 125.83 

W 400 17.99 17.48 17.74 17.64 18.41 17.44 17.48 17.53 17.51 17.62 17.684 176.84 

          

GILOF_NS Performance in Normalized KDD CUP99 SMTP Dataset 

PS=2. NG=4. Two Points Crossover=0.7. BDM Mutation=0.07. Selection= RWS. 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 81.3 82.3 80.3 81.4 81 81.3 81.2 81.1 80.7 81.2 81.18 

W 200 83.9 85.4 86.5 82.5 86.5 85 86.2 86.2 82 87 85.12 

W 300 86.9 87.6 84.8 85.7 88 87.8 84.9 85.7 87.3 86.6 86.53 

W 400 86.6 84.8 86.3 86 84.6 83.9 84.9 84.6 87.5 85 85.42 

W Size Time Time Time Time Time Time Time Time Time Time AVG of 
Time 

Total 
Time 

W 100 4.66 4.71 4.71 4.7 4.7 4.71 4.7 4.71 4.66 4.7 4.696 46.96 

W 200 8.16 8.16 8.16 8.17 8.16 8.18 8.16 8.15 8.17 8.15 8.162 81.62 

W 300 12.59 12.57 12.53 12.53 12.56 12.58 12.55 12.51 12.54 12.55 12.551 125.51 

W 400 17.61 17.5 17.45 17.47 17.5 17.55 17.54 17.42 17.57 17.49 17.51 175.1 

          

 

GILOF_NS Performance in Unnormalized KDD CUP99 SMTP Dataset 

PS=2. NG=4. Two Points Crossover=0.7. BDM Mutation=0.07. Selection= TNT. 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 82.4 81.1 81.3 80.8 81.1 80.1 81.1 81.3 80.4 81.2 81.08 

W 200 84.3 88.1 87.8 86.3 84.1 84.4 87.1 84.1 88.2 88.2 86.26 

W 300 86.5 85.6 85.7 86.2 88.2 86.6 89.1 85.2 86 85.4 86.45 

W 400 87.4 85.8 84.9 85.1 86.6 83.6 87.5 86.1 86.9 88.2 86.21 

W Size Time Time Time Time Time Time Time Time Time Time AVG of 
Time 

Total 
Time 

W 100 4.22 4.19 4.27 4.18 4.2 4.2 4.29 4.27 2.36 4.27 4.045 40.45 

W 200 8.05 8.05 8.28 8.02 7.97 8.32 7.96 7.88 7.84 8.31 8.068 80.68 

W 300 12.28 12.29 12.46 12.37 12.32 12.57 12.49 12.44 12.19 12.29 12.37 123.7 

W 400 17.23 17.34 17.58 17.33 17.22 17.25 17.32 17.41 17.07 17.76 17.351 173.51 

           

 

DILOF Performance in Normalized KDD CUP99 SMTP Dataset 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 83.6 83.5 86.7 85.2 85.8 83.3 80.5 82.2 80 84.9 83.57 

W 200 89.5 85.6 84.3 85 85.5 89.2 86.1 85.8 86.6 87.2 86.48 

W 300 82.2 85.4 88.9 86.7 82.9 79 86 82.4 84.2 88 84.57 

W 400 83.9 82.7 82.9 80.4 81.9 82.4 85.7 81.1 82.5 82.4 82.59 

W Size Time Time Time Time Time Time Time Time Time Time AVG of 
Time 

Total 
Time 

W 100 4.31 4.31 4.3 4.34 4.28 4.34 4.28 4.29 4.29 4.31 4.305 43.05 

W 200 8.37 8.35 9.66 8.63 8.4 9.08 8.26 8.32 8.66 8.22 8.595 85.95 

W 300 13.02 13.01 14.27 13.27 13.12 12.81 13.17 12.66 12.63 12.66 13.062 130.62 

W 400 17.84 18.12 19.03 18.48 18.79 18.68 17.84 17.96 17.78 18.08 18.26 182.6 
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DILOF Performance in Unnormalized KDD CUP99 SMTP Dataset 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 83.3 83.5 81.2 87.2 86.5 77.6 84.2 85.6 82.2 83.2 83.45 

W 200 86.2 87 87.6 82.2 85.7 88.1 87.3 85.6 85.2 85.9 86.08 

W 300 81.8 86.5 83.3 84.3 84.3 84.9 82.2 80.8 82.1 81.7 83.19 

W 400 81.2 87.9 83.1 79.6 84.3 84.3 81 79.3 81.8 85.9 82.84 

W Size Time Time Time Time Time Time Time Time Time Time AVG of Time Total Time 

W 100 4.33 4.28 4.28 4.29 4.28 4.28 4.32 4.28 4.26 4.27 4.287 42.87 

W 200 8.33 8.2 8.21 8.21 8.23 8.21 8.21 8.16 8.13 8.14 8.203 82.03 

W 300 12.75 12.58 12.62 12.56 12.6 12.57 12.64 12.6 12.7 12.62 12.624 126.24 

W 400 17.81 17.83 17.82 17.72 17.61 17.97 18.24 17.86 18.17 17.69 17.872 178.72 

           

 

DILOF_NS Performance in Normalized KDD CUP99 SMTP Dataset 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 81.7 81.6 80.4 81.6 79.7 81.9 81.6 80.7 81.7 82.6 81.35 

W 200 88.4 89.8 87.7 88.2 88.1 82.8 87.7 86.4 87.9 83 87 

W 300 87 88.4 88.7 87.7 88.5 88.2 86.9 86.9 88.4 89.5 88.02 

W 400 86.2 85.3 88.5 86.7 89.2 85.1 88 87.5 85.3 89.6 87.14 

W Size Time Time Time Time Time Time Time Time Time Time AVG of Time Total Time 

W 100 4.41 4.36 4.33 4.31 4.43 4.37 4.38 4.37 4.37 4.37 4.37 43.7 

W 200 8.83 8.72 8.57 8.38 8.77 8.28 8.3 8.29 8.28 8.3 8.472 84.72 

W 300 13.1 13.74 13.21 13.19 13.14 12.74 12.75 12.76 14.67 12.81 13.211 132.11 

W 400 18.88 18.65 18.93 18.18 19.12 17.85 17.81 17.96 18.05 17.78 18.321 183.21 

           

 

DILOF_NS Performance in Unnormalized KDD CUP99 SMTP Dataset 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 79.6 81.1 82 79.9 81.4 83.7 81.7 81.5 80 81.3 81.22 

W 200 82.9 88.6 83.3 88.7 88.1 86.5 83.3 82.2 85.5 86.9 85.6 

W 300 90 87.8 87.1 88.3 87.6 86.2 89.8 87.7 88.2 86.5 87.92 

W 400 86.8 84.3 83.1 85 83 88.4 83.7 88.5 86.7 85.6 85.51 

W Size Time Time Time Time Time Time Time Time Time Time AVG of Time Total Time 

W 100 4.38 4.37 4.38 4.38 4.38 4.35 4.35 4.36 4.36 4.37 4.368 43.68 

W 200 8.23 8.26 8.27 8.26 8.25 8.24 8.25 8.25 8.24 8.26 8.251 82.51 

W 300 12.68 12.74 12.63 12.57 12.69 12.73 12.63 12.68 12.66 12.68 12.669 126.69 

W 400 17.78 17.99 17.82 17.81 17.67 17.8 17.6 17.66 17.79 17.71 17.763 177.63 

           

 

GILOF Performance in Normalized KDD CUP99 HTTP Dataset 

PS=2. NG=4. Two Points Crossover=0.7. BDM Mutation=0.07. Selection= RWS. 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 90.6 90.6 88.7 90.6 89.4 86.7 89 90.6 90 90.6 89.68 

W 200 91.7 91.5 91.4 92 91.5 91.2 91.4 91.5 91 91.6 91.48 

W 300 91.3 89.8 90 90.7 90.8 90.2 90.6 90 90.3 91.1 90.48 

W 400 89.6 90.1 90.5 89.3 90.3 90.8 90.9 90.6 89.6 90.7 90.24 

W Size Time Time Time Time Time Time Time Time Time Time AVG of 
Time 

Total 
Time 

W 100 26.53 26.47 26.41 26.61 26.347 26.46 27.48 26.46 26.68 26.43 26.5877 265.877 

W 200 47.81 47.42 47.19 47.16 47.31 47.11 47.68 47.28 47.6 47.28 47.384 473.84 

W 300 73.8 72.84 73.09 73.08 72.79 72.85 73.41 72.53 76.49 72.65 73.353 733.53 

W 400 103.57 102.21 103.83 103.75 102.22 102.2 103.7 102.37 103.44 101.23 102.852 1028.52 
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GILOF_NS Performance in Normalized KDD CUP99 HTTP Dataset 

PS=2. NG=4. Two Points Crossover=0.7. BDM Mutation=0.07. Selection= RWS. 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 67.5 68.8 67.9 67.5 67.7 69.9 68.2 67.5 67.9 68.8 68.17 

W 200 78.8 78.9 78.6 78 78.5 77.8 77.7 78.3 78 79.3 78.39 

W 300 80.4 80.1 80.3 81 80.9 80.7 81.6 80.8 80.9 81.1 80.78 

W 400 79 79.6 79.2 79.4 79.9 79.8 79.4 79.6 79.5 79.3 79.47 

W Size Time Time Time Time Time Time Time Time Time Time AVG of 
Time 

Total 
Time 

W 100 27.86 27.62 27.47 27.71 27.79 27.63 27.6 27.63 27.54 27.65 27.65 276.5 

W 200 48.73 48.64 48.51 48.8 48.47 51.34 48.69 48.6 49.17 48.94 48.989 489.89 

W 300 74.85 74.59 74.65 74.91 75.39 77.5 75.22 74.79 75.87 75.42 75.319 753.19 

W 400 105.12 104.99 104.78 104.88 105.15 108.74 108.06 105.35 106.63 105.61 105.931 1059.31 

           

 

GILOF_NS Performance in Unnormalized KDD CUP99 HTTP Dataset 

PS=2. NG=4. Two Points Crossover=0.7. BDM Mutation=0.07. Selection= RWS. 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 34.8 34.5 34.8 35 34.5 34.8 36.7 34.8 35.1 33.9 34.89 

W 200 39.2 42.4 40.1 41.4 41.3 39.7 41.3 41.5 41.6 40.9 40.94 

W 300 44.3 42.7 44.6 47 46.1 46.1 44.7 49.6 46.4 45.9 45.74 

W 400 53.7 52 53.6 53.2 52.4 52.1 53.2 51.5 52.2 52 52.59 

W Size Time Time Time Time Time Time Time Time Time Time AVG of 
Time 

Total 
Time 

W 100 27.86 27.74 27.7 27.9 27.62 27.74 27.76 27.78 27.96 27.83 27.789 277.89 

W 200 48.9 48.92 48.7 48.72 48.64 48.81 48.67 48.71 48.79 49.1 48.796 487.96 

W 300 74.83 74.72 75.69 74.92 74.59 74.45 75.02 74.93 74.89 74.95 74.899 748.99 

W 400 104.53 104.62 104.02 105.66 104.54 104.51 104.44 104.94 104.29 104.48 104.603 1046.03 

           

 

DILOF Performance in Normalized KDD CUP99 HTTP Dataset 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 89.7 91 89.5 90.1 91.5 90.2 88.6 90.1 90.4 90 90.11 

W 200 92.6 93.3 92.9 93 93.2 92.3 92.2 92.7 92.3 92.7 92.72 

W 300 91.3 91.9 92 92.2 91.8 91.7 92.1 91.8 91.7 93.1 91.96 

W 400 90.3 90.6 90.4 91.2 91.4 89.7 91.3 90.3 90.7 91 90.69 

W Size Time Time Time Time Time Time Time Time Time Time AVG of 
Time 

Total 
Time 

W 100 24.8 25.37 25.19 25.62 25.54 25.51 25.34 25.57 25.56 25.38 25.388 253.88 

W 200 48.5 49.94 49.32 49.39 49.26 50.92 49.45 49.09 49.35 49.4 49.462 494.62 

W 300 75.7 75.78 75.02 75.4 75.52 77.97 77.3 75.4 75.26 75.11 75.846 758.46 

W 400 109.6 106.93 109.63 104.84 108.86 107.66 106.13 106.55 106.57 106.23 107.3 1073 

           

 

DILOF Performance in Unnormalized KDD CUP99 HTTP Dataset 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 76.4 76.3 77.9 78.8 77 79.3 77.3 79.1 77.5 77.9 77.75 

W 200 78.7 80.2 79.7 81.1 80 79.5 79.6 79.5 80.2 79.8 79.83 

W 300 77.6 77.2 77.5 79.1 77.8 77.7 77.5 78.8 78.9 78.1 78.02 

W 400 79.7 76.4 77.3 77.3 76.1 75.6 76.4 77 76.6 77.4 76.98 

W Size Time Time Time Time Time Time Time Time Time Time AVG of 
Time 

Total 
Time 

W 100 26.6 24.89 24.89 25.68 25.04 25.85 25.57 26.38 26.04 25.44 25.638 256.38 

W 200 48.7 48.63 48.9 50.34 49.24 49.46 49.78 49.32 48.8 49.78 49.295 492.95 

W 300 77.8 75.04 74.95 75.27 76.11 75.29 75.56 79.98 75.16 75.57 76.073 760.73 

W 400 106.1 105.5 105.66 108.34 108.32 105.93 106.72 105.95 106.21 106.07 106.48 1064.8 

           

           

 



131 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DILOF_NS Performance in Unnormalized KDD CUP99 HTTP Dataset 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 35.3 34.4 34.4 35 34.4 34.3 35.1 34.8 36 34.5 34.82 

W 200 39.9 39.6 40 40 39.9 39.9 37.2 38.6 39.9 40.1 39.51 

W 300 45.6 47.2 49.3 45.4 46.9 46.9 46.3 47.23 43.9 46.9 46.563 

W 400 50.6 48.8 48.6 50.3 48.4 48.7 48.3 48.7 51.6 50.2 49.42 

W Size Time Time Time Time Time Time Time Time Time Time AVG of 
Time 

Total 
Time 

W 100 28.1 26.32 26.53 32.32 26.4 26.74 26.57 26.81 26.69 26.46 27.294 272.94 

W 200 53.7 50.84 51.05 52.67 50.73 51.22 50.68 52.42 51.54 51.87 51.672 516.72 

W 300 84.3 77.95 77.89 85.15 76.97 81.9 80.86 79.82 80.26 81.45 80.655 806.55 

W 400 122.7 109.3 115.29 108.91 107.94 109.32 109.86 111.93 114.73 108.82 111.88 1118.8 

           

GILOF_NS Performance in Unnormalized KDD CUP99 HTTP Dataset 

PS=5. NG=10. Two Points Crossover=0.7. BDM Mutation=0.07. Selection= RSP. 

W Size AUC Time AUC Time AUC Time AUC Time AUC TIME AVG - 
AUC 

AVG - Time Total - 
Time 

W 100 35.5 46.64 35 46.42 34.3 46.53 35.7 46.11 35.9 46.39 35.28 46.418 464.18 

W 200 41.4 63.71 40.3 64.89 42.2 63.47 44.4 60.86 41.4 62.44 41.94 63.074 630.74 

W 300 47.5 86.73 46.8 85.82 47 85.66 43.5 85.08 45.2 85.75 46 85.808 858.08 

W 400 53.46 115.46 54.1 114.84 53.6 114.72 53.9 114.8 52.7 114.91 53.552 114.946 1149.4
6 

            

GILOF_NS Performance in Normalized KDD CUP99 HTTP Dataset 

PS=5. NG=10. Two Points Crossover=0.7. BDM Mutation=0.07. Selection= RWS. 

W Size AUC Time AUC Time AUC Time AUC Time AUC TIME AVG - 
AUC 

AVG - Time Total - 
Time 

W 100 69 45.85 70 45.67 67.6 46.27 69 46.34 68.3 46.53 68.78 46.132 461.32 

W 200 78.9 60.9 79.5 60.83 79.3 61.7 79.5 60.94 78.3 60.646 79.1 61.0032 610.032 

W 300 81.2 85.23 80.8 85.35 81.6 85.33 81.7 85.1 81.4 85.37 81.34 85.276 852.76 

W 400 79.5 114.91 78.6 115.17 79.8 115.2 79.1 115.45 79.5 115.23 79.3 115.192 1151.92 

            

GILOF Performance in Unnormalized KDD CUP99 HTTP Dataset 

PS=2. NG=4. Two Points Crossover=0.7. BDM Mutation=0.05. Selection= RNK. 

W Size AUC Time AUC Time AUC Time AUC Time AUC TIME AVG - 
AUC 

AVG - 
Time 

Total - 
Time 

W 100 76.6 26.69 76 26.72 75.4 26.61 76.5 26.72 75.6 26.62 76.02 26.672 266.72 

W 200 76.4 47.57 75.5 47.45 76.6 47.65 75.9 47.38 75.3 47.44 75.94 47.498 474.98 

W 300 76.1 76.02 75.6 73.16 76.8 72.96 76.9 73.47 76.5 73.31 76.38 73.784 737.84 

W 400 76.4 104.39 74.9 103.88 75.6 103.29 74.7 103 76.6 103.56 75.64 103.62
4 

1036.24 

             

GILOF Performance in Normalized KDD CUP99 HTTP Dataset 

PS=2. NG=4. Two Points Crossover=0.8. Uniform Mutation=0.07. Selection= SUS. 

W Size AUC Time AUC Time AUC Time AUC Time AUC TIME AVG - 
AUC 

AVG - Time Total - 
Time 

W 100 88.5 26.69 89.7 26.42 89.5 26.5 89.1 26.94 89.3 26.6 89.22 26.63 266.3 

W 200 91.9 47.21 91 48.59 92 47 91.4 48.67 91.9 47.04 91.64 47.702 477.02 

W 300 90.9 72.92 90.1 73.59 91 72.62 90.8 72.49 91 72.71 90.76 72.866 728.66 

W 400 90.3 102.26 90.3 102.34 90.1 101.9
8 

90 102.5
1 

90.4 102.2
4 

90.22 102.266 1022.66 

              

GILOF Performance in Normalized KDD CUP99 SMTP Dataset 

PS=4. NG=8. One Point Crossover=0.5. BDM Mutation=0.07. Selection= SUS. 

W Size AUC Time AUC Time AUC Time AUC Time AUC TIME AVG - AUC AVG - 
Time 

Total - 
Time 

W 100 85.6 6.27 85.1 6.32 83.2 6.31 87 6.32 86.2 6.3 85.42 6.304 63.04 

W 200 82.6 9.31 85.8 9.11 84.3 9.15 85.1 9.2 84.1 9.19 84.38 9.192 91.92 

W 300 83.9 14.89 86.8 13.38 85.8 13.4 87.1 13.39 85.4 13.45 85.8 13.702 137.02 

W 400 82.7 19.93 86.2 18.47 84.2 18.43 83.6 19.43 84.3 18.53 84.2 18.958 189.58 
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GILOF Performance in Unnormalized KDD CUP99 SMTP Dataset 

PS=5. NG=10. One Point Crossover=0.5. Uniform Mutation=0.07. Selection= TNT. 

W Size AUC Time AUC Time AUC Time AUC Time AUC Time AVG - 
AUC 

AVG - 
Time 

Total - 
Time 

W 100 82.2 7.65 85.8 7.75 84.7 7.46 85.9 7.65 83.3 7.67 84.38 7.636 76.36 

W 200 82.6 10.18 84.4 10.47 86 10.05 85.5 10.22 88.3 10.13 85.36 10.21 102.1 

W 300 86.5 14.22 87.1 14.48 86 14.12 86.1 14.1 85.3 14.56 86.2 14.296 142.96 

W 400 84.8 19.18 84.5 19.55 88.8 19.2 84.7 19.43 88.6 19.48 86.28 19.368 193.68 

         

 

GILOF_NS Performance in Normalized KDD CUP99 SMTP Dataset 

PS=2. NG=6. Uniform Crossover=0.7. Uniform Mutation=0.07. Selection= RNK. 

W Size AUC Time AUC Time AUC Time AUC Time AUC Time AVG - 
AUC 

AVG - 
Time 

Total - 
Time 

W 100 85.1 4.81 82.4 4.79 82.9 4.8 83.2 4.8 83.5 4.8 83.42 4.8 48 

W 200 86.4 8.41 84.6 8.27 87.1 8.22 85.1 8.24 84.4 8.22 85.52 8.272 82.72 

W 300 85.5 12.86 85.5 12.53 87.3 12.59 86.2 12.55 87.6 12.52 86.42 12.61 126.1 

W 400 87.3 17.7 84.5 17.49 84.4 17.55 85.4 17.5 84.4 17.42 85.2 17.532 175.32 

          

 

GILOF Performance in Normalized KDD CUP99 SMTP Dataset 

PS=2. NG=4. One Point Crossover=0.7. Uniform Mutation=0.07. Selection= TNT. 

W Size AUC Time AUC Time AUC Time AUC Time AUC Time AVG - 
AUC 

AVG - 
Time 

Total - 
Time 

W 100 83.2 4.58 83.8 4.61 82.5 4.68 82.1 4.68 86.5 4.67 83.62 4.644 46.44 

W 200 84 8.21 85.8 8.1 88 8.12 84.4 8.21 83.3 8.13 85.1 8.154 81.54 

W 300 86.5 12.53 86 12.4 87.3 12.43 86.2 12.51 86.6 12.41 86.52 12.456 124.56 

W 400 86 17.52 86.4 17.36 82.2 17.44 85.8 17.42 89.3 17.31 85.94 17.41 174.1 

          

 

GILOF Performance in Unnormalized UCI Pendgit Dataset 

PS=5. NG=10. One Point Crossover=0.6. BDM Mutation=0.07. Selection= TNT. 

W Size AUC Time AUC Time AUC Time AUC Time AUC Time AVG - AUC AVG - 
Time 

Total - 
Time 

W 100 52.6 0.309 51.5 0.299 51.1 0.302 52.5 0.301 51.7 0.301 51.88 0.3024 3.024 

W 120 50.7 0.321 49.7 0.315 51.8 0.316 49.9 0.312 50.5 0.312 50.52 0.3152 3.152 

W 140 51.2 0.335 50.7 0.335 50.2 0.332 50.2 0.329 51.8 0.328 50.82 0.3318 3.318 

W 160 50.4 0.363 50.5 0.371 49.5 0.37 50.8 0.357 49.7 0.36 50.18 0.3642 3.642 

W 180 52 0.385 52.4 0.415 51.3 0.388 51.7 0.385 50.6 0.462 51.6 0.407 4.07 

W 200 51.9 0.417 51.6 0.427 51.7 0.426 52.3 0.413 52 0.44 51.9 0.4246 4.246 

          

 

GILOF_NS Performance in Unnormalized UCI Pendgit Dataset 

PS=2. NG=5. Two Points Crossover=0.8 Uniform Mutation=0.08. Selection= SUS. 

W Size AUC Time AUC Time AUC Time AUC Time AUC Time AVG - 
AUC 

AVG - 
Time 

Total - 
Time 

W 100 50.5 0.202 49.1 0.199 50 0.198 50.8 0.198 50.4 0.198 50.16 0.199 1.99 

W 120 49.9 0.228 49.8 0.226 49.8 0.226 50 0.226 50.7 0.226 50.04 0.2264 2.264 

W 140 50 0.249 50.2 0.249 51.6 0.25 51 0.249 50.2 0.249 50.6 0.2492 2.492 

W 160 51 0.283 52.2 0.283 52.2 0.283 53 0.283 51.4 0.283 51.96 0.283 2.83 

W 180 51.1 0.315 51.8 0.315 52.1 0.315 52.4 0.315 50.8 0.315 51.64 0.315 3.15 

W 200 51.3 0.348 53.1 0.354 52.4 0.347 50.6 0.347 52.1 0.356 51.9 0.3504 3.504 
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GILOF Performance in Normalized UCI Pendgit Dataset 

PS=7. NG=14. One Point Crossover=0.5. Uniform Mutation=0.07. Selection= RNK. 

W Size AUC Time AUC Time AUC Time AUC Time AUC Time AVG - AUC AVG - 
Time 

Total - 
Time 

W 100 95.5 0.431 95.4 0.424 95.3 0.425 95.1 0.424 95.9 0.424 95.44 0.4256 4.256 

W 120 97.1 0.43 97.5 0.424 97.3 0.425 97.1 0.424 97.5 0.424 97.3 0.4254 4.254 

W 140 98.4 0.432 98.1 0.428 98.4 0.427 98.2 0.429 98.3 0.427 98.28 0.4286 4.286 

W 160 98.5 0.456 98.6 0.452 98.7 0.459 98.5 0.451 98.7 0.45 98.6 0.4536 4.536 

W 180 98.9 0.472 98.9 0.427 98.8 0.474 99 0.472 98.7 0.472 98.86 0.4634 4.634 

W 200 98.4 0.497 98.2 0.496 98.4 0.498 98.4 0.497 98.4 0.498 98.36 0.4972 4.972 

          

GILOF Performance in Normalized UCI Pendgit Dataset 

PS=2. NG=4. Uniform Crossover=0.6. Uniform Mutation=0.08. Selection= RSP. 

W Size AUC Time AUC Time AUC Time AUC Time AUC TIME AVG - 
AUC 

AVG - 
Time 

Total - 
Time 

W 100 95.7 0.206 95.6 0.201 95.6 0.201 95.5 0.201 95.3 0.202 95.54 0.2022 2.022 

W 120 97.8 0.232 96.9 0.23 97.4 0.23 97.2 0.229 97.3 0.23 97.32 0.2302 2.302 

W 140 98.3 0.256 98.1 0.255 98.2 0.255 98.1 0.254 98.3 0.254 98.2 0.2548 2.548 

W 160 98.7 0.291 98.5 0.29 98.8 0.291 98.6 0.29 98.7 0.29 98.66 0.2904 2.904 

W 180 98.8 0.324 98.8 0.326 98.8 0.325 98.9 0.324 98.8 0.323 98.82 0.3244 3.244 

W 200 98.5 0.357 98.3 0.358 98.1 0.356 98.2 0.357 98.3 0.355 98.28 0.3566 3.566 

          

GILOF Performance in Unnormalized UCI Vowel Dataset 

PS=2. NG=4. One Point Crossover=0.7. BDM Mutation=0.07. Selection= RSP. 

W Size AUC Time AUC Time AUC Time AUC Time AUC TIME AVG - 
AUC 

AVG - 
Time 

Total - 
Time 

W 100 73.5 0.078 76.1 0.073 75.1 0.073 74.1 0.074 73.9 0.073 74.54 0.0742 0.742 

W 120 79.3 0.085 84.5 0.082 83.6 0.084 84.4 0.084 82.4 0.082 82.84 0.0834 0.834 

W 140 85.3 0.095 85.7 0.093 85.7 0.095 85.2 0.094 84.1 0.095 85.2 0.0944 0.944 

W 160 86.9 0.107 86.4 0.106 87.9 0.104 88.5 0.103 88.6 0.104 87.66 0.1048 1.048 

W 180 88.9 0.118 90 0.117 89.6 0.115 89.8 0.118 90.4 0.115 89.74 0.1166 1.166 

W 200 88.9 0.128 89.4 0.129 89.2 0.129 90.5 0.128 89.9 0.128 89.58 0.1284 1.284 

          

GILOF_NS Performance in Unnormalized UCI Vowel Dataset 

PS=2. NG=6. Uniform Crossover=0.5. BDM Mutation=0.05. Selection= RWS. 

W Size AUC Time AUC Time AUC Time AUC Time AUC TIME AVG - 
AUC 

AVG - 
Time 

Total - 
Time 

W 100 73.8 0.859 74.5 0.082 74.2 0.816 75.8 0.082 76.4 0.082 74.94 0.3842 3.842 

W 120 84.2 0.842 81.5 0.093 83.5 0.906 82.8 0.095 80.1 0.095 82.42 0.4062 4.062 

W 140 86.9 0.101 86.5 0.104 85.4 0.104 87.7 0.103 87.8 0.104 86.86 0.1032 1.032 

W 160 87.2 0.117 87.7 0.113 88.2 0.115 88.3 0.114 87.7 0.118 87.82 0.1154 1.154 

W 180 90.1 0.129 89.8 0.129 90 0.131 90.7 0.128 91 0.129 90.32 0.1292 1.292 

W 200 91.8 0.142 92.6 0.139 91.9 0.145 92.3 0.14 91.8 0.14 92.08 0.1412 1.412 

            

GILOF Performance in Normalized UCI Vowel Dataset 

PS=3. NG=6. One Point Crossover=0.7. BDM Mutation=0.07. Selection= TNT. 

W Size AUC Time AUC Time AUC Time AUC Time AUC Time AVG - 
AUC 

AVG - 
Time 

Total - 
Time 

W 100 74.8 0.087 71.4 0.082 75.5 0.079 74.3 0.082 76.5 0.082 74.5 0.0824 0.824 

W 120 78.1 0.092 83.1 0.09 80.7 0.09 79.9 0.092 81.5 0.095 80.66 0.0918 0.918 

W 140 84.8 0.101 87.6 0.098 86.6 0.098 87.2 0.099 84 0.098 86.04 0.0988 0.988 

W 160 89.1 0.112 87.7 0.112 89 0.112 88.8 0.109 89.8 0.11 88.88 0.111 1.11 

W 180 89.7 0.123 89.5 0.121 90.1 0.121 89.6 0.121 90.2 0.124 89.82 0.122 1.22 

W 200 91.2 0.134 91 0.132 90.3 0.132 91 0.132 91.3 0.137 90.96 0.1334 1.334 
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GILOF Performance in Normalized UCI Vowel Dataset 

PS=100. NG=200. Two points Crossover=0.7. BDM Mutation=0.07. Selection= RWS. 

W Size AUC Time AUC Time AUC Time AUC Time AUC Time AVG - 
AUC 

AVG - 
Time 

Total - 
Time 

W 100 73 18.86 73.3 22.15 70.8 17.49 72.5 17.48 74.1 17.52 72.74 18.7 187 

W 120 79.9 15.99 80 19.4 80.3 15.17 80 15.11 81.5 15.13 80.34 16.16 161.6 

W 140 86.5 14.9 84.3 15.38 87.4 13.56 85.9 13.61 88.9 13.54 86.6 14.198 141.98 

W 160 88.6 13.28 90.7 12.61 90.9 12.49 89.8 12.42 90.3 12.34 90.06 12.628 126.28 

W 180 90.3 11.9 91.4 11.56 90.9 11.54 90.2 11.45 89.4 11.55 90.44 11.6 116 

W 200 91.8 11.72 90.9 10.83 89.9 10.88 90.5 10.79 91.5 10.79 90.92 11.002 110.02 

 

 

DILOF_NS Performance in Normalized KDD CUP99 HTTP Dataset 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 71 71.1 70.7 66.6 67.9 66.6 66 70.6 66.9 67.3 68.47 

W 200 79.7 79.8 79.1 80.3 80 79.7 79.7 80.4 80 79.4 79.81 

W 300 82.1 82.3 81.9 81.9 82.8 82.7 82.3 81.6 82.7 81.4 82.17 

W 400 79.7 80 79.5 80.3 80.6 80.5 80.3 79.9 80.5 80.1 80.14 

W Size Time Time Time Time Time Time Time Time Time Time AVG of 
Time 

Total 
Time 

W 100 26.4 26.97 27.32 27.12 27.05 27.01 26.92 26.93 28.11 27.58 27.141 271.41 

W 200 50.8 51.48 51.45 51.45 51.47 51.36 51.65 51.6 51.63 51.38 51.427 514.27 

W 300 79.2 77.86 78.17 84.38 77.94 77.79 77.96 78.17 78.08 78.34 78.789 787.89 

W 400 108.3 108.37 108.05 108.52 108.71 108.86 109.22 108.82 107.75 107.53 108.413 1084.13 

 

 

GILOF Performance in Unnormalized KDD CUP99 HTTP Dataset 

PS=2. NG=4. Two Points Crossover=0.7. BDM Mutation=0.07. Selection= RWS. 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 73.8 75.3 75.4 74.1 76.8 76.1 75.1 76 76.8 76.8 75.62 

W 200 76.8 75.5 76.3 76.3 76.4 75.2 75.8 76.3 75.6 76.6 76.08 

W 300 77.6 78.2 76.3 76.8 76.4 78.1 76.4 76.4 76.7 76 76.89 

W 400 77.7 76.5 76 75.2 76.7 78.4 77.2 77.6 76.5 77.3 76.91 

W Size Time Time Time Time Time Time Time Time Time Time AVG of 
Time 

Total 
Time 

W 100 26.59 26.56 26.76 26.41 26.64 26.47 26.7 27.52 26.72 26.74 26.711 267.11 

W 200 47.57 47.71 48.94 47.79 47.54 48.61 48.13 47.42 47.78 47.76 47.925 479.25 

W 300 73.26 73.3 73.06 73.44 75.26 73.92 75.98 73.37 73.28 73.5 73.837 738.37 

W 400 103.63 101.73 102.41 102.5 103.93 101.75 103.57 103.1 102.35 101.73 102.67 1026.7 

 

 

GILOF Performance in Normalized KDD CUP99 SMTP Dataset 

PS=2. NG=4. Two Points Crossover=0.7. BDM Mutation=0.07. Selection= RWS. 

W Size AUC AUC AUC AUC AUC AUC AUC AUC AUC AUC AVG of AUC 

W 100 83.5 85.4 85.4 86.4 85.4 85.4 85.5 88 86.6 85.4 85.7 

W 200 83.6 83.7 85.2 86.8 84.8 88.8 80 86.1 84 85.8 84.88 

W 300 88.6 86.6 85.8 85.9 86 84.9 86.5 85.9 88.6 86 86.48 

W 400 85 82.5 88 87.4 83 88.7 84.1 86.1 88.2 85.2 85.82 

W Size Time Time Time Time Time Time Time Time Time Time AVG of 
Time 

Total 
Time 

W 100 4.57 4.66 4.66 4.6 4.65 4.66 4.67 4.66 4.66 4.66 4.645 46.45 

W 200 8.58 8.1 8.1 8.06 8.08 8.06 8.14 8.07 8.11 8.06 8.136 81.36 

W 300 12.53 12.45 12.4 12.45 12.44 12.44 12.43 12.39 12.44 12.45 12.442 124.42 

W 400 17.38 17.3 17.33 17.4 17.36 17.43 17.28 17.39 17.4 17.25 17.352 173.52 

 


