# EXPERIMENTAL AND COMPUTATIONAL STUDIES ON THE TEMPERATURE DEPENDENCE OF THERMAL CONDUCTIVITIES FOR WATER, ETHYLENE GLYCOL, GLYCEROL, AND PROPYLENE GLYCOL, USING THE TRANSIENT HOT-WIRE METHOD

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Mechanical Engineering

in the

College of Graduate Studies

University of Idaho

by

Salman M. Alharbi

Major Professor: Kamal Kumar, Ph.D.

Committee Members: John C. Crepeau, Ph.D., Behnaz Rezaie, Ph.D.

Department Administrator: Steven Beyerlein, Ph.D.

August 2018

## **Authorization to Submit Thesis**

This thesis of Salman M. Alharbi, submitted for the degree of Master of Science with a Major in Mechanical Engineering and titled "Experimental and Computational Studies on the Temperature Dependence of Thermal Conductivities for Water, Ethylene Glycol, Glycerol, and Propylene Glycol, Using the Transient Hot-Wire Method," has been reviewed in final form. Permission, as indicated by the signatures and dates below, is now granted to submit final copies to the College of Graduate Studies for approval.

| Major Professor:   |                         | Date: |
|--------------------|-------------------------|-------|
|                    | Kamal Kumar, Ph.D.      |       |
| Committee Members: |                         | Date: |
|                    | John C. Crepeau, Ph.D.  |       |
|                    |                         | Date: |
|                    | Behnaz Rezaie, Ph.D.    |       |
| Department         |                         |       |
| Administrator:     |                         | Date: |
|                    | Steven Beyerlein, Ph.D. |       |

## Abstract

The goal of this work is to provide experimental measurements of thermal conductivity of water, ethylene glycol, glycerol, and propylene glycol as a function of temperature. The transient hot wire method was used to measure the thermal conductivity over temperatures ranging from 235–340 K. This work also involved in-house apparatus fabrication along with integration of data acquisition and processing software. The experiments are carried out for a fixed current of 250 mA and the resulting temperature rise of a 95.33 mm long, 25-micron radius platinum wire is used to infer the thermal conductivity using the known solution to the heat conduction equation for a continuous line source in an infinite medium. It is important to account for the variable temperature coefficient of resistance of the platinum wire as a function of temperature when seeking to obtain the correct temperature dependence of the thermal conductivity. A data reduction procedure that improves the accuracy of the reported values by identifying the onset of convection in the fluid is proposed. We use the peak value of the slope (S) obtained using a third order polynomial fit to the apparent linear region to estimate the thermal conductivity. The high-resolution data acquired at closely spaced temperature intervals is used to derive a correlation between thermal conductivity values and the fluid temperature. Additionally, numerical results for temperature and velocity field near the heated wire are also presented to help understand the non-idealities present in the experiments. The experimental temperature rise obtained from the transient hot-wire experiments is compared to computed values for water at room temperature, and a good agreement is found. There is a fair agreement between the current data sets and the very limited data for the four liquids reported in the literature. This work provides robust and comprehensive experimental data for thermal conductivities of the four common heat transfer fluids over the typical range of temperatures they are frequently used.

## Acknowledgements

I gratefully acknowledge the financial support for my graduate studies from the ministry of interior and the ministry of education, Kingdom of Saudi Arabia.

I am thankful for the support from the department faculty and staff during my stay here, especially Prof. John Crepeau and Prof. Steve Beyerlein for initially helping me with the admissions process, and the initial advising related to coursework selection. I would like to thank Prof. John Crepeau and Prof. Behnaz Rezaie for periodically reviewing my research progress and serving on my thesis defense committee.

The assistance from my lab-members Rick Leathers and Samuel Stuhlman during the experiments is also acknowledged. Special thanks to Elyasa for sharing his knowledge and the insightful conversations.

Finally, I would like to thank Prof. Kamal Kumar for providing constant guidance during the course of this research. He kept me focused on my goals and pushed me to succeed in my professional efforts.

## **Dedication**

Dedicated to the memory of my mother.

I would also like to thank my father Mohammed Salman Alharbi for his encouragement and guidance throughout my life. My sincere gratitude to my brother Maher for his support. This work would not have been possible without the help from my wife Abrar, who was very patient and caring during my graduate studies. To my children Mira, Mohammed, and Abdullah for providing joy in my life.

# **Table of Contents**

| Authorization to Submit Thesis                                                   | ii     |
|----------------------------------------------------------------------------------|--------|
| Abstract                                                                         | iii    |
| Acknowledgements                                                                 | iv     |
| Dedication                                                                       | v      |
| List of Tables                                                                   | viii   |
| List of Figures                                                                  | ix     |
| Chapter 1. Introduction                                                          |        |
| 1.1 Heat Transfer—A Historical Perspective                                       |        |
| 1.2 Conduction Heat Transfer                                                     |        |
| 1.3 Thermal Conductivity                                                         | 7      |
| 1.4 Measurement Techniques for Thermal Conductivity                              |        |
| 1.4.1 Steady State Methods                                                       |        |
| 1.4.2 Transient Methods                                                          | 9      |
| 1.5 Objectives of this Work                                                      | 9      |
| Chapter 2: The Transient Hot-Wire Technique for Measuring Thermal Conductivity . |        |
| 2.1 Introduction and Theory                                                      |        |
| 2.2 Apparatus                                                                    |        |
| 2.3 Determination of Temperature Coefficient of Resistance                       |        |
| 2.4 Data Reduction Procedure                                                     |        |
| Chapter 3: Temperature Dependence of Thermal Conductivity for Water: Experiment  | ts and |
| 2.1 Thermal Conductivity Deputts for Water                                       |        |
| 2.1.1 Comparison with Providuals Perpented Data                                  |        |
| 2.2.C to the the                                                                 |        |
| 3.2 Computed Results                                                             |        |
| 3.2.1 Computational Specifications and Results                                   |        |
| 3.2.2 Temperature Distribution and Local Heat Transfer Coefficients              |        |
| 3.2.3 Velocity Field                                                             |        |
| 3.3 Comparison of Experimental and Computed Results                              |        |
| 3.4 Summary                                                                      |        |

| Chapter 4: Temperature Dependence of Thermal Conductivity for Ethylene Glycol<br>and Propylene Glycol | , Glycerol,<br> |
|-------------------------------------------------------------------------------------------------------|-----------------|
| 4.1. Ethylene Glycol                                                                                  |                 |
| 4.1.1 Thermal Conductivity Results for Ethylene Glycol                                                |                 |
| 4. 2 Glycerol                                                                                         | 41              |
| 4.2.1 Thermal Conductivity Results for Glycerol                                                       | 44              |
| 4.3 Propylene Glycol                                                                                  |                 |
| 4.3.1 Thermal Conductivity of Propylene Glycol                                                        | 49              |
| 4.4 Comparative Thermal Conductivities for the Four Liquids                                           | 52              |
| Chapter 5: Conclusions and Future Work                                                                | 55              |
| 5.1 Summary of this Study                                                                             | 55              |
| 5.2 Future Work                                                                                       | 56              |
| References Cited                                                                                      |                 |
| Appendix A: Tabulated Thermal Conductivity Results for Water                                          |                 |
| Appendix B: Tabulated Thermal Conductivity Results for Ethylene Glycol                                | 66              |
| Appendix C: Tabulated Thermal Conductivity Results for Glycerol                                       |                 |
| Appendix D: Tabulated Thermal Conductivity Results for Propylene Glycol                               |                 |

# List of Tables

| Table 1-1 Contributions leading to the heat diffusion equation [11] | . 6 |
|---------------------------------------------------------------------|-----|
| Table 3-1 Material Properties used in the simulations               | 27  |

# **List of Figures**

| Figure 1.1: Heat Flow in a one-dimensional rod                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 1.2: Variation of thermal conductivity with temperature for a solid [12], liquid [13], and gas [14]7                                                                                                                                                                                                                                              |
| Figure 2.1: Schematic of the transient hot-wire cell                                                                                                                                                                                                                                                                                                     |
| Figure 2.2: Variation of platinum wire resistance with temperature                                                                                                                                                                                                                                                                                       |
| Figure 2.3: Determination of local Slope                                                                                                                                                                                                                                                                                                                 |
| Figure 2.4: Variation of the temperature coefficient of resistance for platinum wire with temperature                                                                                                                                                                                                                                                    |
| Figure 2.5: Temperature-time history for experimental runs at varying liquid temperatures 19                                                                                                                                                                                                                                                             |
| Figure 2.6: Illustration of the three distinct temperature rise regions observed in the experiments                                                                                                                                                                                                                                                      |
| Figure 2.7: (a) Region of experiment used for fitting and extracting the slope (b) Comparison of slopes obtained using a linear and a 3rd order polynomial fit. The filled symbol represents the slope used in the experimental determination of thermal conductivity                                                                                    |
| Figure 3.1: Three sets of experimental runs showing thermal conductivity variation with temperature for water                                                                                                                                                                                                                                            |
| Figure 3.2: Consolidated data set for thermal conductivity as a function of temperature for current experimental sets for water                                                                                                                                                                                                                          |
| Figure 3.3: Residuals, confidence, and prediction bands (95%) for the linear fit to the current experimental data                                                                                                                                                                                                                                        |
| Figure 3.4: Comparison of current data with other recent studies for water                                                                                                                                                                                                                                                                               |
| Figure 3.5: (a) A zoomed in view of the grid distribution. Note that the total simulated domain extends to 150 and 600 non-dimensional units in the axial $(x/a)$ and radial $(r/a)$ directions respectively. Here <i>a</i> is the radius of the wire and <i>g</i> the acceleration due to gravity. (b) Streamtraces and temperature contours at t=6.0 s |
| Figure 3.6: Computed contours of non-dimensional (a) Temperature rise at $t = 6s$ , and (b) the radial temperature distribution midway at $x/a = 75$ at various times                                                                                                                                                                                    |
| Figure 3.7: (a) Scaled local heat transfer coefficient (a) as a function of distance (b) Fit (solid line) to the steady state distribution as a function of distance, $x'$ , from the entrance                                                                                                                                                           |
| Figure 3.8: Scaled local heat transfer coefficient at $xa = 75$ as a function of time                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                          |

| Figure 3.9: Non-dimensional radial temperature and axial velocity profiles at $x = L/$ | 2 33 |
|----------------------------------------------------------------------------------------|------|
|----------------------------------------------------------------------------------------|------|

| Figure 3.10: Comparative temperature-time history for (a) Experiments versus CFD results, and (b) Exact solution to heat diffusion equation for a line source in an infinite media versus CFD results |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 4.1: Three sets of experimental runs showing thermal conductivity variation with temperature for ethylene glycol                                                                               |
| Figure 4.2: Consolidated data set for thermal conductivity as a function of temperature for current experiments for ethylene glycol                                                                   |
| Figure 4.3: Residuals, confidence, and prediction bands (95%) for the linear fit to the current experimental data for ethylene glycol                                                                 |
| Figure 4.4: Comparison of current data with other recent studies for ethylene glycol                                                                                                                  |
| Figure 4.5: Three sets of experimental runs showing thermal conductivity variation with temperature for glycerol                                                                                      |
| Figure 4.6: Consolidated data set for thermal conductivity as a function of temperature for current experimental sets for glycerol                                                                    |
| Figure 4.7: Residuals, confidence, and prediction bands (95%) for the linear fit to the current experimental data for glycerol                                                                        |
| Figure 4.8: Comparison of current data with other recent studies for glycerol                                                                                                                         |
| Figure 4.9: Three sets of experimental runs showing thermal conductivity variation with temperature for propylene glycol                                                                              |
| Figure 4.10: Consolidated data set for thermal conductivity as a function of temperature for current experimental sets for propylene glycol                                                           |
| Figure 4.11: Residuals, confidence, and prediction bands (95%) for the linear fit to the current experimental data for propylene glycol                                                               |
| Figure 4.12: Comparison of current data with other recent studies for propylene glycol 52                                                                                                             |
| Figure 4.13: Comparative thermal conductivities of all four liquids obtained in this work 53                                                                                                          |
| Figure 4.14: Plot showing the variability in the thermal conductivity values for the four liquids in the neighborhood of $298 \pm 1$ K                                                                |

## **Chapter 1. Introduction**

## 1.1 Heat Transfer—A Historical Perspective

The flow of energy because of temperature differences forms the basis for the discipline of heat transfer. The distinction between heat and temperature was not clear during the 18th century. An anonymously published work titled "Scala Graduum Caloris" [1] was an initial attempt to establish a temperature scale. According to Sayre [2], the title of this article first published in 1701 had been translated as "Scales of the degree of heat", and uses the present concepts of 'heat' and 'temperature' interchangeably. There is some evidence to claim that the author of this work was probably Sir Isaac Newton. The scale for the degree of calor in the low range was determined using the principles of thermal expansion of liquid, with the melting calor of lead being the upper limit. The process for determining the higher degrees of calor involved the measurement of time required cooling of various combinations of different metal pieces placed on an initially glowing iron bar. The mention of the second method in this work, in the opinion of Sayre [2], is the only link between 'the law of cooling' and Newton. A key postulate of this work was that the uniform flow of air removed calor from the hot body in proportion to the calor difference.

In the later part of the eighteenth century, two rival theories of heat emerged. The first was the caloric theory of heat proposed by Antoine Lavoisier [3]. The concept of the caloric theory was that the heat was an invisible subtle fluid whose particles were in motion [4]. The fluid was tasteless, odorless, massless, and colorless. This fluid was transferred from a hot to a cold body during the heating process. This idea was popular among the chemists and presupposed the existence of atoms surrounded by the fluid. The caloric theory was successfully used to explain all known heat related phenomena and was accepted by scientists such as

Laplace, Lavoisier, Priestley, Petit and Dulong [5]. Based on this (incorrect) theory the French engineer Sadi Carnot (correctly) deduced the fundamental limitations of conversion of heat to work [6]. The second theory, accepted among physicists and mathematicians, stated that there was no such fluid and that the motion of 'atoms' could account for heat. Interestingly, the first law of thermodynamics and the atomic theory of matter were still unknown at the time. The cannon boring experiments of Count Rumford provided conclusive evidence against the caloric theory. A blunt cannon borer was seemingly able to provide a limitless amount of the caloric fluid. He stated the problem as [5]:

"Whence then came this heat? And what is heat actually? I must confess that it has always been impossible for me to explain the results of such experiments except by taking refuge in the very old doctrine which rests upon the supposition that heat is nothing but a vibratory motion taking place among the particles of the body".

This idea helped to develop the law of conservation of energy, and J.P Joule established the equivalence between mechanical work and heat in 1842 [7]. This equivalence is what is now referred to as the First Law of Thermodynamics. Two decades prior, Fourier's work on the Analytic Theory of Heat outlined the basic principles of heat transfer [8]. His work showed that the flow of heat was a result of differences in temperature between adjacent particles, or simply put due to spatial temperature gradients. The principles of conduction heat transfer had now been firmly established.

## **1.2 Conduction Heat Transfer**

Heat transfer is thermal energy in motion. It involves exchange in thermal energy from one object to another object because of temperature differences. Thermal energy is always transferred from a high temperature to the low temperature object until both reach the same temperature. The origin of conduction heat transfer can be traced to molecular vibrations in a medium where there is no bulk motion. This mode can exist in either solids, liquids, or gases. For the case of solids the transfer of heat is attributed to lattice vibrations and electronic contributions, whereas for liquids and gases the random molecular motions are important [9].

For simplicity, let us consider the simple example of heat flow due to conduction in a solid onedimensional rod. Following the analysis in the text of Haberman [10] let us consider a rod of length L aligned with the x-axis. Let the thermal energy density be given by:

$$e(x,t) \equiv$$
 thermal energy density 1.1

Let the flow of thermal energy, i.e., the quantity of thermal energy flowing per unit time per unit area equal to

$$\phi(x,t) = \text{Heat Flux}$$

$$A \quad \phi(x,t) \qquad \phi(x + \Delta x, t) \qquad \\ x = 0 \qquad x + \Delta x \qquad x = L$$

Figure 1.1: Heat Flow in a one-dimensional rod.

For generality, let us assume that the rod possesses some source of internal energy generation whose strength (heat generated per unit volume per unit time) is given by

1.2

$$Q(x, t)$$
 = Heat generated per unit volume per unit time 1.3

The conservation of energy principle applied to the slice of length  $\Delta x$  can be stated as:

$$\begin{pmatrix} \text{Rate of change} \\ \text{of heat energy} \\ \text{in time} \end{pmatrix} = \begin{pmatrix} \text{heat energy flowing} \\ \text{across boundaries} \\ \text{per unit time} \end{pmatrix} + \begin{pmatrix} \text{Internal generation of} \\ \text{heat energy} \\ \text{per unit time} \end{pmatrix}$$
 1.4

For a thin slice of width  $\Delta x$  the total thermal energy generated is given by  $Q(x,t)A\Delta x$  while the heat energy contained within it is  $e(x,t)A\Delta x$ . Here we are assuming negligible variation in e(x,t) and Q(x,t) over the thin slice. The conservation principle stated in equation 1.4 can be more precisely stated as

$$\frac{\partial(e(x,t)A\Delta x)}{\partial t} = \phi(x,t)A - \phi(x+\Delta x)A + Q(x,t)A\Delta x$$
 1.5

Dividing throughout by  $\Delta x$  and taking the limit  $\Delta x \rightarrow 0$ , we obtain

$$\frac{\partial e}{\partial t} = \lim_{\Delta x \to 0} \frac{\phi(x,t) - \phi(x + \Delta x,t)}{\Delta x} + Q(x,t)$$
 1.6

While taking the limit  $\Delta x \rightarrow 0$  the time is held constant. Therefore, by the definition of the partial derivative one can simplify the above equation to

$$\frac{\partial e}{\partial t} = -\frac{\partial \phi}{\partial x} + Q \tag{1.7}$$

Equation 1.7 contains two variables e (thermal energy density) and  $\phi$  (heat flux) which must be represented or modeled in terms of some common variable. Physically, this variable is called the temperature T. We must therefore provide a relationship between the temperature and the thermal energy. This relationship can be shown to be of the form

$$e(x,t) = \rho(x)c(x)T(x,t)$$

Where  $\rho$  and *c* represent the density and specific heat. This relationship between thermal energy and temperature had confounded the early practitioners of the science of heat, and the notions of heat and temperature were often used interchangeably [2]

Next, we need to model the heat flux  $\phi$  in terms of the temperature field. This will reduce equation 1.7 to one unknown, namely *T*. Fourier established the relationship between the temperature field and the heat flux. He initially formulated heat conduction as an *n*-body problem similar to Biot who had worked on the problem it before him. Biot, who belonged to the Laplace's school of thought, adhered to the principle of action at a distance between bodies. His concept involved only the temperature difference between points, and that the temperature at a given point was influenced by all neighboring points. Critically, it did not involve distances and hence the temperature gradients. Fourier, subsequently abandoned the discontinuous *n*-body approach and adopted a continuous approach. He assumed that the temperature within an infinitesimal element was affected only by elements in its immediate vicinity, and consequently formulated the heat diffusion equation for a continuum. His empirical approach involved spatial transport of heat, storage of heat, and the interaction of the domain with the boundary conditions [11]. This approach also led to what is known as Fourier's law of heat conduction which relates the heat flux  $\phi$  to the spatial temperature gradient as

$$\vec{\phi} = -k\vec{\nabla}T \tag{1.8}$$

The quantity k is proportionality constant called the thermal conductivity and is a material dependent property. Fourier's 1807 work on the heat diffusion equation faced delays in publication and he would finally publish it himself as Théorie Analytique de la Chaleur in 1822. The delay resulted from his use of infinite trigonometric series in the solution of the problem which was not viewed favorably by Lagrange, one of the reviewers of his 1807

manuscript submitted to the French Academy [11]. The transient heat conduction equation of Fourier in the absence of heat sources is given by:

$$\rho c \frac{\partial T}{\partial t} = \vec{\nabla} \cdot k \vec{\nabla} T \tag{1.9}$$

|                          | Year | Contribution                                                   |
|--------------------------|------|----------------------------------------------------------------|
| Fahrenheit               | 1724 | Mercury thermometer and standardized temperature scale         |
| Abbé Nollet              | 1752 | Observation of osmosis across an animal membrane               |
| Bernoulli                | 1752 | Use of trigonometric series for solving differential equations |
| Black                    | 1760 | Recognition of latent heat and specific heat                   |
| Crawford                 | 1779 | Correlation between respiration of animals and their body heat |
| Lavoisier and<br>Laplace | 1783 | First calorimeter; measurement of heat capacity, latent heat   |
| Laplace                  | 1789 | Formulation of Laplace operator                                |
| Biot                     | 1804 | Heat conduction among discontinuous bodies                     |
| Fourier                  | 1807 | Partial differential equation for heat conduction in solids    |
| Fourier                  | 1882 | Théorie Analytique de la Chaleur                               |

#### *Table 1-1 Contributions leading to the heat diffusion equation [11].*

As noted earlier the heat diffusion equation includes the thermal conductivity term, which appears as a consequence of modeling the heat flux term as a function of the temperature field (gradient). Formally, the definition of thermal conductivity is based on Fourier's law of conduction and for a one-dimensional case can be written as:

$$k \equiv -\frac{\phi_x}{\partial T / \partial x}$$
 1.10

Where  $\phi_x$  is the heat flux and  $\partial T/\partial x$  is the temperature gradient. In order to utilize Fourier's law of conduction, we need to have knowledge of the thermal conductivity of the material. This material property may vary as a function of position for anisotropic solids, and

is often a function of temperature. It fundamentally relates to the idea of transport of heat and is a measure of the rate at which heat is transferred by diffusion [9].

## **1.3 Thermal Conductivity**

The transport of heat in the solid-state occurs due to contributions arising from two distinct processes. First the movement of free electrons and the other due to lattice vibration waves. These two effects are additive in that the observed thermal conductivity is the sum of these two components. Thermal conductivity for metallic solids generally tends to be much higher than nonmetals where the thermal conductivity arises primarily due to the lattice vibrations. In the case of liquids and gases theory states that the thermal conductivity bears a direct proportionality to factors such as particles per unit volume (*n*), the mean molecular speed ( $\bar{c}$ ), and the mean free path ( $\lambda$ ), i.e.  $k \propto n\bar{c}\lambda$  [9]. The effectiveness of thermal transport can vary over several orders of magnitude between solids, liquids, and gases as shown in Fig. 1.2.



Figure 1.2: Variation of thermal conductivity with temperature for a solid [12], liquid [13], and gas [14].

Furthermore, the thermal conductivity exhibits a strong temperature dependence, which may cause it to either increase or decrease with increasing temperature depending on the material.

It is therefore of fundamental and practical interest to obtain the temperature dependence of this transport property in order to optimally design engineering systems such as heat exchangers that typically operate over a wide temperature range.

## **1.4 Measurement Techniques for Thermal Conductivity**

There are several experimental techniques to measure thermal conductivity of materials. All of these methods can be fundamentally characterized as either steady state or transient. In this work, we use one of the transient techniques known as the transient-hot wire method to obtain the thermal conductivity as a function of temperature. A brief description of the two classes of techniques is provided in the following.

#### 1.4.1 Steady State Methods

The steady state methods mean that the thermal conductivity of sensing device does not change with time. A commonly used steady state method is known as the concentric cylinder method. In this method the gap between the two cylinders is filled with the test material and heat is supplied to the inner cylinder and flows across the specimen in the gap. Thermocouples placed located at the inner surface of the outer cylinder  $r_2$ , and the outer surface of the inner cylinder  $r_1$ , record the temperature difference across the gap. Under steady state conditions and for a known heat supply  $Q_n$  the thermal conductivity is determined as:

$$k = \frac{\ln\left(\frac{r_2}{r_1}\right) \times Q_n}{2\pi L \Delta T}$$
 1.11

Here L is the length of the inner cylinder;  $\Delta T$  is the different temperatures. The net power  $Q_n$  is equal to the total power supplied minus the heat loss. In general, the steady state

methods requires a long test time because the temperature one must let the system to first achieve steady state.

#### **1.4.2 Transient Methods**

The most commonly used transient technique in the literature is the transient hot-wire apparatus. Other techniques such as the transient plane source and the laser flash method also are used to determine the thermal conductivity of substances. The fundamental idea in these measurements is to quickly deposit a short pulse of energy in the medium and record the transient temperature response. This temperature-time response is then compared to fundamental solutions and a curve fit procedure is often used to estimate the thermal conductivity. Oftentimes, the heat source and the sensing material are the same such as a thin platinum wire. We will discuss the transient hot-wire technique in detail in Chapter 2.

### **1.5 Objectives of this Work**

- Design and construct a transient hot-wire apparatus for the measurement of thermal conductivity of liquids. The design of the overall measurement system involves construction of a hot-wire cell, integration of heating and cooling baths to the system with precision temperature control, a precision power source, and a high-resolutionhigh-speed data acquisition device. In addition to the hardware itself, a key component of the apparatus is the software that enables high-speed data acquisition and processing in near real-time.
- 2. Obtain the temperature dependence of thermal conductivity of four common heat transfer fluids, namely, water, ethylene glycol, glycerol, and propylene glycol. The thermal conductivity values obtained from the system were validated using water, which is the most widely available heat transfer fluid and has extensively been studied with

respect to the variation of its thermal conductivity with temperature. Post validation, we obtain results for the other three liquids that do not have a large volume of work on their thermal conductivity values. In this work, we wish to generate sufficient number of data points for thermal conductivity over the temperature range of interest so that a robust correlation of k vs. T can be obtained.

3. Computationally examine the temperature and velocity field in the vicinity of the transient hot-wire. The simulations are required to understand the physics of the heat up process for the micron sized wire and its interaction with the surrounding fluid media as it pertains to the onset of buoyancy driven flow. The computational results provide insights into the validity of assumptions made in the process of measuring thermal conductivity of liquids using this method.

# Chapter 2: The Transient Hot-Wire Technique for Measuring Thermal Conductivity

## **2.1 Introduction and Theory**

Thermal conductivity of a heat transfer liquid is among the important properties required for proper estimation of heat transfer rates in practical engineering systems. This fundamental transport property relates the temperature gradient to heat flux. A widely used technique used for the measurement of thermal conductivity is the transient hot-wire method. This method is based on the solution to the conduction problem  $(\partial T/\partial t = \kappa \nabla^2 T)$  of radial heat flow in an infinite solid medium with an instantaneous line source provided with a constant supply of heat [15]. In practice, a very thin platinum wire supplied with a constant current, and immersed in a liquid adequately approximates the ideal configuration. Assuming that the power is applied to line source at t = 0, and that the wire and the surrounding medium at the same temperature, the temperature at any subsequent time t and at a distance r is given by:

$$\Delta T(r,t) = \frac{q}{4\pi k} \int_{r^2/4\kappa t}^{\infty} \frac{e^{-u}}{u} du$$
(2.1)

Of particular interest is the temperature at the wire surface (r = a). The transient hot-wire method for measuring thermal conductivity relies on the fact that at large time  $(Fo = \frac{\kappa t}{a^2} \gg 1)$ the relationship between the temperature rise at the wire surface and the logarithm of time is linear. The slope of this linear fit is inversely related to the thermal conductivity for a constant heating rate. Specifically, the temperature rise of the wire (r = a) and for  $t \gg a^2/\kappa$  can be approximated as [16]:

$$\Delta T(a,t) = \frac{q}{4\pi k} ln\left(\frac{4\kappa t}{a^2 C}\right)$$
(2.2)

Here a is the radius of the wire, q the power per unit length supplied to the wire,  $\kappa$  and k the thermal diffusivity and conductivity of the medium surrounding the wire, and  $C = e^{\gamma}$  where  $\gamma = 0.577216$  is Euler's constant. The derivative of the temperature rise with respect to logarithm of time leads to:

$$\frac{d\Delta T}{dln(t)} = \frac{q}{4\pi k} \tag{2.3}$$

Referring to the quantity  $d\Delta T/dln(t)$  as the slope S of the plot of  $\Delta T$  versus ln(t) the thermal conductivity of the surrounding medium is inferred using:

$$k = \frac{q}{4\pi S} \tag{2.4}$$

Additional details on the theory of the transient hot-wire method can be found in the studies by Blackwell [17], Healy et al.[18], and Jaeger [15]

The application of this technique in experiments for determining the thermal conductivity of fluids has been described by Roder [19] who designed a new apparatus for measuring thermal conductivity of oxygen at elevated pressures. He also performed performance checks using nitrogen, helium and argon. His work also provides a brief overview of the evolution of this technique starting from the initial experiments of Pittman [20]. A method for simultaneous measurement of thermal diffusivity and conductivity for liquids has been reported by Nagasaka and Nagashima [21] who carried out measurements on toluene under atmospheric pressure and in the temperature range of 0 - 80 C. Among the recent studies describing the use of the transient hot-wire apparatus for liquid thermal conductivity measurements are the studies by Bleazard et al. [22], Codreanu et al. [23], Zhang et al. [24], and Kostic and Simham [25].

The accurate experimental determination of thermal conductivity has generally been regarded as a problem of some difficulty [26]. One of the factors that tends to overwhelm

experimental efforts of measurements in fluids is the onset of convection. Note that the aforementioned solution holds for heat diffusion in a solid/stationary-fluid medium, and it breaks down if natural convection sets in due to heat input to the system. This work reports the thermal conductivity of water in the 273 - 305 K temperature range at a pressure of one atmosphere. Prior work on the temperature dependence of thermal conductivity of water includes the study of Woolf et al. [27] who used a concentric cylinder apparatus under steady state conditions and between 70 and 200 Fahrenheit. Lawson et al.[28] reported the thermal conductivity of water between 30 and 140 degree Celsius and for pressures between 1 to 8000 kg/cm2, also using the concentric cylinder technique. Theiss and Thodos [29] reviewed the experimental thermal conductivity and viscosity for gaseous and liquid water and developed a reduced state correlation for these transport properties. They note that while there is significant experimental work for viscosity, the thermal conductivity measurements were not as widely available. Their calculated values exhibited an average deviation of 2.31 % form the experimental data points considered in their study. A 1984 study by Sengers et al. [30] documents the available data on thermal conductivity of water since the promulgation of the first international formulation for transport properties of water substance in 1964. Their survey of experimental information summarized the thermal conductivity of water and steam from forty-three literature sources and only five sets were available for sub-ambient temperatures. About 40% of the datasets had been obtained using the transient hot-wire method. Another study by Nieto de Castro et al. [26] in 1986 examined the available thermal conductivity data for water with the purpose of establishing standard reference values along its saturation line. They noted that the thermal conductivity of fluids was one of the most difficult properties to measure and only after the technical advances during the 1970's the precision of these

measurements has significantly improved. Another set of standard reference data based on new experimental data was proposed by Ramires et al [31] nearly a decade later that led to a revised and more accurate correlation. Both the aforementioned studies [26, 31] fitted experimental data from multiple sources into a quadratic function of temperature. Ramires et al.[31] described the reduced thermal conductivity of water over the normal liquid range as  $k^* = -1.48445 + 4.12292T^* - 1.63866T^{*2}$  for  $274 \le T \le 370$  K.Where $T^* = T/298$  and  $k^* = k(T)/k(298)$  with  $k(298.15, 0.1 MPa) = 0.06065 \pm 0.0036$   $Wm^{-1}K^{-1}$  We will later compare the current experimental results to this correlation of Ramires et al. [31]. This study reports the thermal conductivity of water, ethylene glycol, glycerol, and propylene glycol.

### 2.2 Apparatus

The transient hot-wire apparatus used in the experiments consists of a stainless steel cylindrical cell 43 mm in diameter and 150 mm length. The cell is closed at the bottom and has a top lid with two electrical feedthroughs. Connected to these two electrical feeds are two copper conductors with tabs and screws to secure the platinum wire. The platinum wire is soldered to the copper conductor after securing it to the tabs to ensure a good contact. The platinum wire used in the measurement cell has a radius of 25 microns. Its purity is 99.99 % and it has is used in the hard drawn state. This wire acts as the line heat source. The length of the wire is estimated to be 95.33 mm. The length of the wire was obtained after the wire had been soldered in place by comparing its resistance to a known length of identical platinum wire. The resistance measurements were made in the 4-wire configuration using a Keithley 2440 sourcemeter. This sourcemeter was also used as a constant current source for heating the wire during the experiments. The terminal voltage at the feedthrough was measured using a 24 bit delta-sigma analog to digital converter with a nominal input voltage range of  $\pm 10$  V. The measuring cell

was maintained at a constant temperature by immersing it in a circulating bath such that only the top terminals were accessible for connections. A schematic of the test cell is shown in Fig. 2.1.



Figure 2.1: Schematic of the transient hot-wire cell.

The test cell is filled with technical grade distilled water such that it fully immerses the platinum wire. The cell is next immersed into the circulating bath and allowed to stabilize before starting measurements. The temperature of the test fluid is measured using a 1/16 inch K type thermocouple with exposed junction. This temperature was acquired by a national instruments module NI 9213, the accuracy of which is less than 0.02°C for high resolution mode, and less than 0.25°C for high speed mode. Also, the standard limits of error for the type K thermocouple in the range of 0 to 1250 °C is less than 2.2°C or 0.75%, and 2.2°C or 2 %.for -200 to 0°C.

The transient hot wire measurements consist of sending a 250 mA current pulse through the platinum wire and recording the terminal voltage using the 24 bit A/D converter. The sourcing

of the current and all other measurements are initiated using a LabView program developed specifically for this experiment. The voltage data is sampled at a frequency of 4167 Hz and 25,000 samples for a duration of 6 seconds are logged.

The temperature rise of the wire, when subjected to step current change, is determined by measuring the change in resistance with time. This change in resistance due to Joule heating is related to the temperature rise, and is given by [32]:

$$R(T) = R_{ref} \left[ 1 + \alpha_{ref} \left( T - T_{ref} \right) \right]$$
(2.5)

where the reference values correspond to the values at initial time (t = 0) prior to the passing the current. The value of  $R_{ref}$  is taken to be that of the first data point (t = 0) and the reference temperature corresponds to the temperature of the test liquid.



## 2.3 Determination of Temperature Coefficient of Resistance

#### *Figure 2.2: Variation of platinum wire resistance with temperature.*

Recognizing that we need to vary the reference temperature, it becomes necessary to first determine the temperature coefficient of resistance ( $\alpha_{ref}$ ) at each reference temperature. That is, the temperature coefficient of resistance needs to determine as a function of temperature. This is accomplished by a submerging the wire holder in a circulating bath and recording its resistance at varying bath temperatures. The resistance measurements are carried out in a 4-wire configuration with a small current (1 mA) that causes negligible heating in the wire. The variation in resistance of the wire as a function of temperature is shown in Fig. 2.2.

The local slope of the resistance versus temperature curve is next determined by selecting 75 consecutive points above and below the desired reference temperature. An example of the aforementioned procedure for obtaining the local slope in the neighborhood of  $T_{ref}$  =293.2 K is shown in Fig. 2.3.



#### Figure 2.3: Determination of local Slope.

A similar procedure is repeated at each reference temperature to obtain the dependence of  $\alpha$  on temperature, the results of which are shown in Fig. 2.4.



*Figure 2.4: Variation of the temperature coefficient of resistance for platinum wire with temperature.* 

Having determined the temperature coefficient of resistance, the temperature rise of the wire due to the passage of current can be calculated using equation (4). Note that we are now recording the temperature rise during the 6-second interval that corresponds to the passage of the current. Therefore, we assume that the very first deduced temperature data point corresponds (t = 0) corresponds to no heating of the wire, i.e.  $\Delta T = T_{wire} - T_{liquid} = 0$ . An example of the calculated temperature rise of the wire, for a 250 mA current, is shown in Fig. 2.5.



Figure 2.5: Temperature-time history for experimental runs at varying liquid temperatures. It can be seen from Fig. 2.5 that during the initial period of approximately 0 - 0.2 s the temperature rise exhibits a non-linear trend with respect to time on a logarithmic scale. This is followed by a linear rise in temperature with time on the log scale. A straight line is fit to the  $\Delta T$  with ln(t) trace in the region of linear temperature rise, and its slope (S) is used in equation (1), which is  $k = q/4\pi S$ .

#### **2.4 Data Reduction Procedure**

The choice of the range of times  $(t_1, t_2)$  to use in the linear fit in order to obtain the slope S has generally been determined based on the experience of the experimenter. This is also noted in the work by Roder at the National Bureau of Standards [19] who states that operator judgement is involved in the selection of times  $t_1$  and  $t_2$ . We find that this is true for our experiments as well and propose a method to make the data reduction procedure more objective and free from experimenter bias. The theory suggests fitting a straight line in the region of interest ( $Fo \gg 1$ ) assuming that the medium behaves as a solid. However, there is a practical problem with this in that the non-ideal effects are present both in the initial and terminal regions of the curve. They arise due to the finite heat capacity of the wire and the onset of convection at sufficiently large time. The existence of three distinct regions of increasing, apparently constant, and decreasing slopes due to these non-ideal effects is shown in Fig. 2.6 at a temperature of 320 K.



*Figure 2.6: Illustration of the three distinct temperature rise regions observed in the experiments.* 

For the current work, as a first estimate, we choose the start time corresponding to the 1000th data point ( $t_1 = 0.2398 s$ ) and the end time to be the last acquired data point ( $t_2 = 5.9998 s$ ). This choice is based on a visual determination of the linear region observed in the experimental curve for  $\Delta T$  versus time. An example of the range chosen for the fit is shown in Fig. 2.7a. The later onset of convection is however not apparent at lower temperatures of 274.5 K in the Fig. 2-7a. We find that a non-linear fit (3rd order polynomial) to region of interest helps us identify the regions of increasing and decreasing slope even in what visually appears to be straight-line segment for low temperature cases. For example, in Fig. 2-7a, the initial

curvature is obvious for -8 < ln(t) < -2, but the effect of the onset of convection is not readily obvious in the range -1.428 < ln(t) < 1.792. Performing a third order fit helps us identify the point where the slope begins to decrease at longer times. This point has been identified by a filled symbol in Fig. 2-7b. Note that the value of the peak slope for the polynomial fit is within 0.7 % of the linear slope for this specific case. The maximum slope for the polynomial fit allows for a consistent choice of a value for the slope, unlike the linear fit, where the value will depend on the start and end points chosen by the experimenter. We therefore use the peak value of the slope (S) obtained using a third order polynomial fit to the apparent linear region to estimate the thermal conductivity using  $k = q/(4\pi S)$ . Note that the region of interest (apparent linear) must still be carefully be chosen while performing the fit.



Figure 2.7: (a) Region of experiment used for fitting and extracting the slope (b) Comparison of slopes obtained using a linear and a 3rd order polynomial fit. The filled symbol represents the slope used in the experimental determination of thermal conductivity.

## Chapter 3: Temperature Dependence of Thermal Conductivity for Water: Experiments and Computations

## 3.1 Thermal Conductivity Results for Water

Experimental thermal conductivity values for water for three different sets of experiments are shown in Figs. 3.1 (a)-(c) to illustrate the reputability and extent of scatter in the experiments. The three sets of tests were conducted with different samples of technical grade water and the temperature was slowly raised from approximately 273 K to 300 K over a 12-hour duration. The data show an increasing trend of thermal conductivity with an increase in temperature.



*Figure 3.1: Three sets of experimental runs showing thermal conductivity variation with temperature for water.* 

It can be seen from Fig. 3.1 that the scatter in the experimental results tends to increase with rising temperatures. The three datasets are combined to obtain the overall results that show the temperature dependence of thermal conductivity of water. It is interesting to note that there is a local minimum in the thermal conductivity of water at around 276.89 K (3.74 °C). This slight dip appears in all the three data sets collected, as well as the consolidated data. We suspect that this is a related of the non-linear variation in density around this temperature range. Note that the maximum density for liquid water is close to 277.13 K (3.98 °C) [33].



*Figure 3.2: Consolidated data set for thermal conductivity as a function of temperature for current experimental sets for water.* 

The residuals of the fit to the experimental data are shown in Fig. 3.3. The plot in Fig. 3.3 shows that the largest one-sided residuals are observed at around 4 degree Celsius. The confidence and prediction bands for the regression analysis are shown as well.



*Figure 3.3: Residuals, confidence, and prediction bands (95%) for the linear fit to the current experimental data.* 

## 3.1.1 Comparison with Previously Reported Data

The current experimental results for the temperature dependence of thermal conductivity of water are compared to that reported in recent literature. The comparison also includes a dashed line showing the computed values obtained from the standard reference data from the study of Nieto de Castro et al.[26]. The work of Nieto de Castro et al. describes the reduced thermal conductivity of water as a second order polynomial over the temperature range of 274-370 K [26]. The plot in Fig. 3.4 shows that the current experiments consist of significantly larger number of data points over the temperature range of interest, exhibit the least scatter among all the experimental data sets, and are closest to the standard reference data. The current experimental observations are also nearly continuous over the entire temperature range. The

plot also illustrates the utility of the current work in that it extends the experimental data to lower temperature values close to the freezing point of water.



*Figure 3.4: Comparison of current data with other recent studies for water.* 

## **3.2 Computed Results**

### **3.2.1** Computational Specifications and Results

The heat transfer problem of an electrically heated platinum wire immersed in water is solved using the ANSYS Fluent CFD code. The problem is treated as axisymmetric because of the cylindrical symmetry. The governing equations for mass, momentum and energy conservation are given by [34]

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v_x)}{\partial x} + \frac{\partial (\rho v_r)}{\partial r} + \frac{\rho v_r}{r} = 0$$
(3.1)

$$\frac{\partial(\rho\vec{v})}{\partial t} + \nabla \cdot (\rho\vec{v}\vec{v}) = -\nabla p + \nabla \cdot (\bar{\tau}) + \rho\vec{g} + \vec{F}$$
(3.2)

$$\frac{\partial(\rho E)}{\partial t} + \nabla \cdot \left(\vec{v}(\rho E + p)\right) = \nabla \cdot (k\nabla T) + S_h \tag{3.3}$$

Where x and r represent the axial and radial coordinates. The stress tensor  $\overline{\overline{\tau}}$  in the momentum equation is given by:[34]

$$\bar{\bar{\tau}} = \mu[(\nabla \vec{v}) + (\nabla \vec{v})^T - 2/3 \,\nabla \vec{v} l]$$
(3.4)

The quantities  $\vec{F}$  and  $S_h$  in the momentum and energy equation represent the external body force and volumetric heat source term, respectively. The current problem is treated as a natural convection problem, and the Boussinesq approximation is used for the density in the buoyancy term of the momentum equation.

$$\rho = \rho_o (1 - \beta (T - T_o)) \tag{3.5}$$

This approximation is valid as the temperature rise  $\Delta T$  in the system is less than 3 Kelvin with  $\Delta T \ll 1$ . Here  $\beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T}\right)$  is the volumetric thermal expansion coefficient, and  $\rho_o$  is the constant density of the flow at an operating temperature of  $T_o$ . The SIMPLE algorithm with a second order discretization scheme was used in the solution procedure.

Given the wide range of the length scales in the experimental apparatus ( $a = 25 \times 10^{-6}m$ ,  $L \approx 9.5 \ cm$ ) it is prohibitively expensive to compute the solution for the entire domain while resolving the flow and thermal features near the heated wire. A section of the wire corresponding to length  $150 \times a$  is considered along the axial direction, with r = 0 being treated as the axis. The radial extent of the problem is limited to four times the section of the wire length i.e.  $600 \times a$ . The grid distribution used is shown in Fig. 3.5 (a). A non-uniform grid distribution with a bias factor of 5 was used in the radial direction for the fluid domain while a constant number of equally spaced divisions was set for the solid. The electrical heating of the
wire is represented by a volumetric heat source within the platinum wire. The strength of the volumetric heat source (Q) is obtained from the known experimental value of the power supplied (317.95 mW) and the wire dimensions ( $a = 25 \ \mu m$ ;  $L = 9.533 \ cm$ ). Gravity acts along the axial direction as indicated by the arrow in Fig. 3.5 (a). The Material properties used in the simulations are summarized in Table 3-1.

| Property                            | Method     | Value        |  |  |
|-------------------------------------|------------|--------------|--|--|
| Water                               |            |              |  |  |
| Density (kg/m3)                     | Boussinesq | 9.987E + 02  |  |  |
| Cp (Specific Heat) (J/kg-K)         | constant   | 4.186E + 03  |  |  |
| Thermal Conductivity (W/m-K)        | constant   | 5.9374E - 01 |  |  |
| Viscosity (kg/m-s)                  | constant   | 1.0695E - 03 |  |  |
| Thermal Expansion Coefficient (1/K) | constant   | 1.7824E - 04 |  |  |
| Platinum                            |            |              |  |  |
| Density (kg/m3)                     | constant   | 2.145E + 04  |  |  |
| Cp (Specific Heat) (J/kg-K)         | constant   | 1.330E + 02  |  |  |
| Thermal Conductivity (W/m-K)        | constant   | 7.160E + 01  |  |  |

#### Table 3-1 Material Properties used in the simulations.

A pressure-inlet boundary condition was specified for the right and top boundaries with flow direction being normal to the boundary, while the left boundary was set to be of type pressureoutlet. The initial conditions correspond to a value of T = 290.53 K for both the fluid and solid domain, with a stationary fluid.

A solution corresponding to t = 6s is shown in Fig. 3.5 (b). This time corresponds closely to the last acquired data point in our experiments (Fo = 1363) when the effects of convection are quite apparent. The streamtraces in Fig. 3.5 (b) clearly show the buoyancy induced flow along with the contours of the temperature in the fluid as well as the solid at the end of t = 6 s. The maximum Rayleigh number based on the wire length, and the experimentally deduced  $\Delta T = 2.87 K$  at t = 6s, is calculated to be  $Ra_L = \frac{g\beta\Delta TL^3}{\nu\alpha} = 2.86 \times 10^7$ , and as such, a laminar free convection flow is to be expected. The transition to turbulence generally occurs over the range of  $10^8 < Ra < 10^{10}$  [34].



Figure 3.5: (a) A zoomed in view of the grid distribution. Note that the total simulated domain extends to 150 and 600 non-dimensional units in the axial (x/a) and radial(r/a) directions respectively. Here a is the radius of the wire and g the acceleration due to gravity. (b) Streamtraces and temperature contours at t=6.0 s.

For the given configuration, a characteristic reference velocity and can be defined as  $u_0 = \sqrt{ag\beta(T_w - T_\infty)}$ , where *a* is the wire radius. The wall temperature for evaluating this reference velocity is obtained at the axial midpoint of the wire. This velocity is can be used to non-dimensionalize the magnitude of the absolute velocities. Similarly, the temperature difference can be non-dimensionalized as  $\lambda(T - T_\infty)/(Qa^2)$ . Here *Q* is the strength of the volumetric heat source term in Watts per cubic meter.

#### **3.2.2** Temperature Distribution and Local Heat Transfer Coefficients

The computed non-dimensional temperature and velocity magnitude contours corresponding to a time of 6-seconds is shown are Fig. 3.6 (a) and (b) respectively



Figure 3.6: Computed contours of non-dimensional (a) Temperature rise at t = 6s, and (b) the radial temperature distribution midway at x/a = 75 at various times.

The contours of the non-dimensional temperature rise field show that the temperature along the wire surface increases as one traverses the axial direction from the right boundary inlet against the direction of gravity. This is expected since the coldest fluid is in contact with the wire surface at the inlet (x/a = 150). Fig. 3.6 (b) also shows the time evolution of the radial temperature distribution at the axial location corresponding to the wire midpoint. There is a relatively large change in  $\Delta T$  at a given radial location during the earlier times, in that the curves are widely spaced between t = 0.024 and t = 0.1 as compared to that between t = 4 and t = 5 seconds. An interesting feature of the radial temperature distribution is that at any given time the trend is mostly logarithmic (straight line on a log scale) with respect to the radial distance except at large distances. The slopes of the straight-line segments on log-plot shown in Fig. 3.6 (b) are also very similar. This seems to suggest that the heat transfer is dominated by conduction

and the fluid medium is apparently stationary. Furthermore, the radial extent diffusion of heat is limited to approximately 40 wire diameters.

Another important quantity of interest is the local heat transfer coefficient at the wire surface. The local heat transfer coefficient can be written as  $h_{\chi} = \frac{q_{W}'(a,\chi)}{T_{W}(a,\chi) - T_{\infty}} = \frac{-k_{f} \frac{\partial T}{\partial r}|_{r=a}}{T_{W}(a,\chi) - T_{\infty}}$ . Here  $k_f$  is the fluid thermal conductivity,  $T_w(a, x)$  the local wire surface temperature, and  $T_\infty$  the farfield temperature. The local heat transfer coefficient scaled as  $h_x 2a/k$  is shown in Fig. 3.7 (a) as a function of the axial co-ordinate at the instant corresponding to 6-seconds along with the steady-state value with dotted lines for comparison. Note that a steady solution exists because of the nature of the boundary conditions imposed. The right and top boundaries have been specified as pressure inlet while the left boundary is a pressure outlet. This would not hold true for an enclosed container, but is appropriate for an infinite fluid medium. In order to examine the variation of the local heat transfer coefficient with the distance from the 'entrance' on the right boundary of the simulation we define x' = 150a - x, where 150a is the total axial extent of the simulation domain. This x' is consistent with the distance commonly used in the literature. A plot of the variation of the scaled heat transfer coefficient under steady-state conditions is shown with x'/a in Fig. 3.7 (b). The local heat transfer coefficient for the steady state solution exhibits a power law variation with respect to the distance from the entrance. Note that the computed data shown in Fig. 3.7 (b) begins and ends at x'/a = 1 and 149 respectively, i.e. one wire diameter has been excluded from either end.



Figure 3.7: (a) Scaled local heat transfer coefficient (a) as a function of distance (b) Fit (solid line) to the steady state distribution as a function of distance, x', from the entrance.

The variation of the scaled local heat transfer coefficient with time at a fixed location axially midway is shown in Fig. 3.8. The plot in Fig. 3.8 shows that the magnitude of the local heat transfer coefficient midway along the wire (x/a = 75).



Figure 3.8: Scaled local heat transfer coefficient at x/a = 75 as a function of time. Its magnitude decays monotonically with time and approaches a value of 0.3996 for the steady solution. The rate of change of the local heat transfer coefficient with time at the centerline is extremely rapid for Fo < 1, gradually tapers off in the range of 1 < Fo < 100, and is negligible for Fo > 1000. Note that the appearance of the rapid change of slope has been somewhat suppressed due to the stretching out of the time axis on account of being plotted on a logarithmic axis. The smallest and largest values of times in the plot correspond to  $0.24 \times 10^{-3}$  and 6 seconds, respectively.

#### 3.2.3 Velocity Field

The velocity magnitude field for t = 6 seconds is shown in Fig. 3.9 (a). The contours correspond to values of  $\frac{|V|}{\sqrt{ag\beta(T_w - T_{\infty})}}$ . As noted previously, the wall temperature was evaluated at the axial midpoint on the surface of the wire. The peak velocity magnitude occurs radially at a distance of approximately 5 wire diameters from the surface and is shifted slightly toward the outlet side with respect to the center of the wire.

The peak velocity magnitude in Fig. 3.9 (a) is equal to 11.02 microns/second. This implies that a fluid parcel near the wire can translate roughly 0.441 wire diameters every second because of the buoyancy-induced force resulting from the density gradient. The axial velocity profile as a function of the radial coordinate is plotted for various times in Fig. 3.9 (b). The profiles were obtained at a fixed axial location in the middle of the domain. The axial velocity profiles exhibit a peak and then gradually reduce to zero within about 40 wire diameters.



*Figure 3.9: Non-dimensional radial temperature and axial velocity profiles at* x = L/2*.* 

## **3.3** Comparison of Experimental and Computed Results

While there have been several experimental efforts using the transient hot-wire method that are far less studies that computationally examine the temperature and flow-fields for this configuration. The computational study shown in the previous sections enables us to compare the experimentally deduced temperature profiles to those obtained from simulations as shown in Fig. 3.10 (a). The agreement between the experimental and computed temperature is within approximately 0.5 K within the entire time span. The difference in temperature rise ( $\Delta T$ ) increases for up to approximately 0.01s and then is nearly constant for the subsequent time duration. Furthermore, the shape of the experimental temperature rise on a log scale during the early part of the transient t < 0.01 s. The slopes of the experimental and computed results are also very similar during later times.



Figure 3.10: Comparative temperature-time history for (a) Experiments versus CFD results, and (b) Exact solution to heat diffusion equation for a line source in an infinite media versus CFD results.

The temperature rise from the CFD simulations is also compared to the analytical solution for the heated line source in an infinite solid medium, as shown in Fig. 3.10 (b). It can be seen that there is a very good agreement between the two, thereby implying that there is only a limited influence of the convective effects on the temperature rise for the duration of heating under consideration.

### **3.4 Summary**

The transient hot-wire technique was used to obtain the temperature dependence of the thermal conductivity of liquid water over a temperature range of 273 to 301 K. The experimentally determined values show close agreement to the standard reference values. We find that in order to obtain the correct temperature dependence of the thermal conductivity it is essential to determine the variation of temperature coefficient of resistance of the platinum wire and not assume it to be a constant. A method to minimize user bias in determining the slope of the temperature-rise versus logarithm of time curve used to determine the thermal conductivity was presented. 2-D Axisymmetric CFD simulations were conducted to understand the nature of the

temperature of velocity field in the vicinity of the wire. A comparison of the experimental and computed results showed a good agreement for the temperature rise of the wire with respect to time at a constant heating rate.

# Chapter 4: Temperature Dependence of Thermal Conductivity for Ethylene Glycol, Glycerol, and Propylene Glycol

### 4.1. Ethylene Glycol

Ethylene glycol is an organic compound produced on an industrial scale. The molecular formula of ethylene glycol is  $C_2H_6O_2$ , and the melting and boiling point are 260.5 *K* and 270 *K* respectively [35, 36] The compound is a common heat transfer fluid and used as an antifreeze and deicing agent. It is also used as a solvent and in hydraulic brake fluids. It is therefore important to study the thermal transport properties of this liquid.

DiGuillo and Teja [35] were two early experimentalists who measured the thermal conductivity of the first-six members of the poly ethylene glycols and their binary blends. Their study also included measurements for ethylene glycol. The temperature range of their experiment was from 298.6 K - 471.3 K, and the reported thermal conductivity for ethylene glycol was  $0.2541 W/(m \cdot K)$  to  $0.2444 W/(m \cdot K)$  at the high and low temperature limits. They used the transient hot-wire method to carry out their measurements. Their results exhibit a slight increase in the thermal conductivity of ethylene glycol with temperature for temperatures between 290 – 415 K followed by a reduction for temperatures up to 480 K.

Another study by Azarfar et al. [37] also used the transient hot-wire to study the thermal conductivity of ethylene glycol. They used a copper micro-wire instead of the conventional platinum wire in their apparatus. Measurements for ethylene glycol were carried out in the temperature range of 283 - 313K. Their reported thermal conductivity values for the thermal conductivity of ethylene glycol were 0.2433 and 0.2537  $W/m \cdot K$  for temperatures of 283 and 313 *K*, respectively. They reported that the average uncertainties were in the range of  $\pm 0.9$  percent.

Lin et al. [38] used molecular dynamics simulations to investigate the thermal conductivity of ethylene glycol. This study computationally identified the major contributions to thermal conductivity from rotational energy transfer, intramolecular interactions, and hydrogen bonds. They conclude that intramolecular hydrogen bonds can have a major influence on the variation of thermal conductivity with temperature. A temperature range of 298 - 470 K was investigated in their work. Various molecular models were used to obtain thermal conductivity as a function of temperature. The thermal conductivity was relatively high at 298 *K* compared to Digullo's and Teja's [35] experiment, but the thermal conductivity showed a good match at 470 *K*.

Beck et al. [39] enhanced the thermal conductivity of ethylene glycol by adding aluminum oxide nanoparticles to ethylene glycol. They measured the thermal conductivity by using the hot-wire transient method, and the temperature range was 290 to 298 411 K. The volume fraction of  $Al_2O_3$  was 1% to 4%, and the thermal conductivity exhibited and increase to 0.285  $W/(m \cdot K)$  at 409 K in 3.71% of the volume fraction of  $Al_2O_3$ .

For the current experiments presented in this thesis, ethylene glycol was purchased from Fisher Scientific, and the purity of ethylene glycol is greater than 99.96%. In this current work, the thermal conductivity of ethylene glycol was measured over a temperature range of 260 - 340 K using the transient hot-wire method. The temperature range was traversed thrice to produce three data sets which were the aggregated to obtain the final results for the temperature dependence of the thermal conductivity.

#### 4.1.1 Thermal Conductivity Results for Ethylene Glycol

The results for three different experimental runs for ethylene glycol are shown in Figs. 4(a)-(c). It can be seen that the thermal conductivity of the three sets shows an increasing trend with

temperature. For the current ethylene glycol experiments, more than 300 pieces of individual data are collected for each run. It was found that for each run, convection starts at around 340 to 350 K. Therefore, the data collection was stopped in that temperature range. There is an excellent run-to-run reproducibility among the three datasets shown in Fig. 4.1.



*Figure 4.1: Three sets of experimental runs showing thermal conductivity variation with temperature for ethylene glycol.* 

The three datasets are combined to obtain a consolidated plot for the thermal conductivity as a function of temperature and is shown in Fig. 4.2. A linear fit to the data is also shown as a dashed line. It can be seen that overall the thermal conductivity shows an increasing trend with temperature for the given test range. The slope of the straight line for ethylene glycol  $(b = 1.8548 \times 10^{-4})$  though is significantly lower compared to that of water  $(b = 18.482 \times 10^{-3})$ . The thermal conductivity variation for ethylene glycol is approximately 6.16 % over the entire temperature range.



Figure 4.2: Consolidated data set for thermal conductivity as a function of temperature for current experiments for ethylene glycol.

The experimental results a 6.2 percent change in thermal conductivity when the temperature varies over the range of 260 - 340 K.

For clarity, Fig. 4.3 separately plots the residuals, confidence, and prediction bands (95%) for the linear fit to the current experimental data for ethylene glycol. There are very few data points that are outliers when assessed by the criterion of inclusion within the prediction band.



*Figure 4.3: Residuals, confidence, and prediction bands (95%) for the linear fit to the current experimental data for ethylene glycol.* 

In order to validate the current results we compare it with data reported in some recently published work. Figure 4.4 shows the comparison between the current work, the study Azarfar et al. [37], Digullo et al. [35], and Pastoriza-Gallego et al. [40]. The current results are in good comparison with all three previously reported work. Interestingly, the current experimental results fall between the results of DiGuilio et al. [35], and Pastoriza-Gallego et al. [40] over the entire temperature range, with the results from Pastoriza-Gallego et al. [40] being consistently lower than the current study. The results for the other two studies are slightly on the higher side as compared to the current data. Furthermore, though the results of Pastoriza-Gallego et al. [40] exhibit as slope similar to the current data for temperatures below 323 *K*. Another noteworthy point is that all the datasets, including that of the current work, show an increase in thermal conductivity of ethylene glycol with increasing temperature. Note that that the comparison in Fig. 4.4 has been restricted to the first of the three runs in the current study. This is to enable

clarity in the Fig. 4.4, as the combination of all three sets would suppress the limited number of data points from the other studies.



Figure 4.4: Comparison of current data with other recent studies for ethylene glycol.

### 4.2 Glycerol

The word glycerol derives from the Greek term for sweet "glykys", because of its sweet taste. Glycerol was discovered in 1779 by the Swedish chemist Carl W Scheele. The molecular formula of glycerol is  $C_3H_5(OH)_3$ . It has a melting point close to room temperature (291.35 *K*), and the boiling point is 563.15 *K* [41, 42]. It is also commonly referred to as glycerin or glycerine. Glycerol-water solution is used to prevent freezing at low temperatures, and it was used as antifreeze before the discovery of ethylene glycol. At low temperatures, glycerol has a tendency to supercool rather than crystallize [43]. Given its interesting heat transfer characteristics it was decided to study the response of its thermal conductivity to temperature variation at temperatures near and above room temperatures.

Among the studies related to the measurement of transport properties of glycerol are those of Sun et al. [44] who used a laser based thermal pulse technique to make simultaneous measurements of thermal conductivity and diffusivity. There experimental efforts yielded a value of  $0.29 W/(m \cdot K)$  corresponding to a temperature value of 296.45 K. The principle of their measurements was based on photothermal deflection of a laser probe beam that occurs due to a temperature gradient resulting from a prior square heating pulse applied to a thin heating wire. This work provided values for thermal conductivity at a single temperature. Determination of the thermophysical/transport properties in their work was done by fitting computed results for solutions to the heat conduction problem to the measured time-dependent beam deflection.

Another experimental study that reported the thermal conductivity of glycerol is that by LeBrun and Markides [45] who used deionized water and glycerol as validation targest for a Galinstan-filled capillary probe for thermal conductivity measurement of molten salts. Their apparatus was a modified transient-hot wire and was designed to function in harsh environments and work with ionic liquids under high temperature conditions. The sensing element in their device comprised of a U-shaped quartz-capillary filled with liquid Galinstan. The temperature range of their measurements for the thermal conductivity of glycerol was between 301.7 - 431.2 K, and the thermal conductivity at those two temperatures were  $0.2903 W/(m \cdot K)$  and  $0.3028 W/(m \cdot K)$ , respectively. Their reported estimate of error for the measurements was less than 2%.

There have also been attempts to enhance the thermal conductivity of heat transfer liquids by dispersing nanoparticles in them in order to create so-called nanofluid. A study by Sharifpur et al. [46] looked at enhancing the thermal conductivity of glycerol by mixing glycerol with nanoparticles of aluminum oxide. They measured the thermal conductivity with nanoparticles of three different sizes corresponding to 31 nm, 55 nm and 134 nm in diameter. They pointed out that the thermal conductivity of the glycerol-based nanofluids with aluminum oxide  $Al_2O_3$  increased by 19.5% at a 4% volume fraction for the 31 nm particles. The device used in their measurements was from a commercial vendor (KD2 Pro, Decagon Devices, Pullman, WA) and the temperature range reported in their study was from 293.15 – 318.15 *K*. The underlying principle of KD2 Pro was the transient hot-wire method. The reported uncertainty in measurements of the thermal conductivity was between 5.1% – 8.5%.

Another effort to increase the thermal conductivity of glycerol was reported by S. Akilu et al. [47] who dispersed silicon carbide nanoparticles in a mixture of glycerol and ethylene glycol The ratio of the glycerol to ethylene glycol was in the proportion of 60: 40 by weight. The temperature range of their experiment was between 288.15 - 348.15 K, and the size of the *SiC* nanoparticles of ranged between 45 - 65 nm. The maximum concentration of nanoparticles in the mixture was 1% of weight. They noted that the thermal conductivity of the mixture with the nanoparticles of (*SiC*) increased 24.5% at 304 K compared to the base liquid mixture.

The current experiments examine the thermal conductivity of neat glycerol in the temperature range of 290 - 350 K. Glycerol for this study was obtained from Macron Fine Chemicals<sup>TM</sup>, and had a purity of 99.99%. The temperature dependence was obtained by concatenating three independent sets of data that were collected during different days over a one-month period. Note that the test for glycerol begin very close to the room temperature since it has a melting point of 291.35 *K*.

## 4.2.1 Thermal Conductivity Results for Glycerol

The plots in Fig. 4.5 (a-c) show the results of the three sets of experiments conducted to obtain the thermal conductivity of glycerol. There is a relatively larger scatter in the data compared to ethylene glycol over the same temperature range. One must not over-interpret the result since the variation at a given temperature is still less than  $0.003 W/m \cdot K$ . The plots show a very good run-to-run reproducibility with very similar thermal conductivity values both the lower and higher temperature ends.



*Figure 4.5: Three sets of experimental runs showing thermal conductivity variation with temperature for glycerol.* 

The data points obtained from the three distinct runs are combined into a single plot. A linear regression is performed on the consolidated data set. The slope of the line fit to thermal conductivity versus the temperature for glycerol ( $b = 1.1321 \times 10^{-4}$ ) is of the same order of magnitude, but slightly lesser that of ethylene glycol ( $b = 1.8548 \times 10^{-4}$ ). The thermal conductivity variation for glycerol is approximately 3.34 % over the entire temperature range while a 6.16 % was observed for ethylene glycol for the same temperature range.



Figure 4.6: Consolidated data set for thermal conductivity as a function of temperature for current experimental sets for glycerol.

A most remarkable point is that the current apparatus can distinguish very minute differences in thermal conductivity with relative ease. This can be clearly seen if one compares the values for thermal conductivities for glycerol with ethylene glycol as predicted by the straight line fit for the two liquids at, say 300 K. At that temperature the difference in the predicted thermal conductivities differ by only 0.02752 units.

For clarity, Fig. 4.7 separately shows the residuals, confidence, and prediction bands (95%) for the linear fit to the current experimental data for glycerol. Most of the outliers are seen to occur in the high temperature range with data points located outside the upper line for the prediction band.



Figure 4.7: Residuals, confidence, and prediction bands (95%) for the linear fit to the current experimental data for glycerol.

The current experimental data is next compared to some previously reported results in the literature. The comparative plot in Fig. 4.8 shows that the study of Sharifpur [46] shows a good agreement in the low temperature region but deviates towards higher values for higher temperatures. Another set of data from the study of Gelder [48] is higher by approximately 4% over the entire temperature range. Finally, the results reported by LeBrun and Markides [45] are the highest among all the reported results. These differences, except for the results by LeBrun and Markides [45] are less than 10%. Therefore, we can say that the current experiments are in fair agreement with most of the previous studies. Note however, that all the three datasets predict an increasing thermal conductivity for glycerol with increasing temperature, similar to the current results.



Figure 4.8: Comparison of current data with other recent studies for glycerol.

## 4.3 Propylene Glycol

Propylene glycol is a synthetic liquid which is hygroscopic in nature. It is also known as such as 1,2-dihydroxypropane, and 1,2-propanediol. The molecular formula of propylene glycol is  $C_3H_8O_2$ . Propylene glycol is used in producing polyester compounds, de-icing solutions, antifreeze and in heat transfer the same way ethylene glycol is used. For safety reasons, it is preferable to use propylene glycol instead of ethylene glycol because of the high toxicity of ethylene glycol [49]. The melting point of propylene glycol is 213.15 *K* and the boiling point is 460.15 *K* [50] Sun and Teja [51] studied the thermal conductivities, densities, and viscosities of propylene glycol, dipropylene glycol, and tripropylene glycol. The technique used in their experiment was the transient hot-wire method. The temperature range for their experiment was 290 K - 460 K. The reported uncertainty of their results was  $\pm 2\%$ .

Deng et al. [52] examined the thermal conductivities of 1, 2-Ethanediol and 1, 2-Propanediol also using the transient hot-wire method, and the temperature range for the experiments was 253.15 - 373.15 K, at atmospheric pressure condition. The uncertainty in the results for thermal conductivity was better than  $\pm 2\%$ . Interestingly, their results showed that the thermal conductivity decreased with increasing temperature.

Another study by Palabiyik et al [53] was related to the enhancement of the thermal conductivity of propylene glycol by the addition of  $Al_2O_3$  and  $TiO_2$  nanoparticles. The temperature range for this study was 293.15 – 353.15 K. The size of nanoparticles of  $Al_2O_3$  and  $TiO_2$  nanoparticles were 13 nm and 21 nm, respectively. They compared their result for thermal conductivity of pure propylene glycol with Sun's and Teja's work [51], and found that the difference between their and Sun's and Teja's results was less than ± 5%. They reported that the thermal conductivities of propylene glycol based  $Al_2O_3$  and  $TiO_2$  nanofluids showed an increase of 11%, and 9%, respectively.

Suganthi et al. [54] obtained the thermal conductivity of propylene glycol based ZnO nanofluids as a function of temperature and nanoparticles concentration. The temperature range for their study was 283.15 – 333.15 *K*. The volume fraction of nanoparticles was less than 2%. The size of nanoparticles was between 35 and 40 nm. They report that the highest enhancement of the thermal conductivity occurred at the lowest temperature.

We examine the thermal conductivity of pure propylene glycol in this study in the temperature range of 235 - 360 K. Propylene glycol was purchased from Tokyo Chemical Industry Co., Ltd, and its purity was greater than 99.0 %.

#### **4.3.1 Thermal Conductivity of Propylene Glycol**

In a procedure similar to the other three liquids, we obtain three independent data sets over a wide range of temperature, which are shown in Fig. 4.9. The three are very similar to each other. The only difference for these three sets is that the readings were collected while the temperature range was traversed from the high to the low temperature region. The data for the three other fluids presented previously were collected with the temperature range being traversed from the low to the high region. Regardless of the direction of traversal, the propylene glycol thermal conductivity still shows an increase with increasing temperature. The experiments had to be limited to a value of 360K because of the onset of convection for the current operating conditions. Typically, about 180 thermal conductivity data points were collected over the entire temperature range for each of the three runs.





*Figure 4.9: Three sets of experimental runs showing thermal conductivity variation with temperature for propylene glycol.* 

The three sets of data shown in Fig. 4.9 are combined to produce a consolidated data set. A linear regression is done on the combined data set to assess the influence of temperature by examining the slope of the fitted thermal conductivity values with respect to temperature.



*Figure 4.10: Consolidated data set for thermal conductivity as a function of temperature for current experimental sets for propylene glycol.* 



Figure 4.11: Residuals, confidence, and prediction bands (95%) for the linear fit to the current experimental data for propylene glycol.

The slope of the fit for propylene glycol lies midway between those of ethylene glycol and glycerol. It shows a 4.89 % variation in thermal conductivity between the temperatures of 260 - 340 K as determined from the coefficients of the linear fit. The linear fit for the entire propylene glycol data, and the residuals, confidence, and prediction bands (95%) are shown in Fig. 4.10 and 4.11, respectively.

A comparison of the current experimental data set with previous studies in the literature for propylene glycol is shown in Fig. 4.12. The experiment results of Cabaleiro et al.[55] are about 8% higher than the current study, but show an increase with temperature similar to this work. On the other hand, the experimental of Sun et al.[51], and the experiment of Suganthi et al.[54] show that the thermal conductivity decreases when the temperature increases. Note however that both their results are in good agreement with the current study in the high temperature region. This inconsistency related to the trend of variation of a materials thermal conductivity,

especially for liquids can be commonly found in the literature. This illustrates the importance of developing further systematic experimental and computational approaches to examine transport property trends with temperatures especially for fluids commonly using in engineering heat transfer applications.



Figure 4.12: Comparison of current data with other recent studies for propylene glycol.

## **4.4 Comparative Thermal Conductivities for the Four Liquids**

A summary plot of the thermal conductivity of all of the four heat transfer liquids is shown in Fig. 4.13. The thermal conductivities for the four liquids can be ranked in the following order:

Water > Glycerol > Ethylene Glycol > Propylene Glycol

It can be seen that the temperature range of the results for water is significantly smaller than the other liquids. This is because it is extremely difficult to measure thermal conductivities for low viscosity liquids in general. Water also shows the largest variation in thermal conductivity even over this limited range. Another important conclusion that can be drawn is that the apparatus

and techniques developed in this work are capable of consistently resolving small differences between liquids such as glycerol and ethylene glycol. This minute difference is of the order of the experimental uncertainty and scatter that are found in data reported in the literature (cf. comparison plots with literature data for the fluids)



Figure 4.13: Comparative thermal conductivities of all four liquids obtained in this work. Having described the capabilities of the apparatus developed and the results obtained, it is also important to provide a measure of the variability in the current data set. We chose a small temperature interval 297 < T < 299 K, centered on 298 K to provide the extent of scatter. The bounds of the boxes indicate the limits of 25th and 75th percentile with the line as the median. The whiskers from the top and bottom of each extend to values that are 1.5 times the interquartile range, and the outliers are shown as empty circles.



Figure 4.14: Plot showing the variability in the thermal conductivity values for the four liquids in the neighborhood of  $298 \pm 1K$ .

## **Chapter 5: Conclusions and Future Work**

## 5.1 Summary of this Study

A transient hot-wire apparatus was used to obtain the thermal conductivities of four common heat transfer liquids. A transient hot-wire apparatus was designed and constructed to enable these measurements. The cell used a 25 micron radius platinum wire that was 95.33 mm long. In addition to the cell, the setup required the integration of heating and cooling baths, highspeed data acquisition system, and the processing software. It was found that in order to obtain reliable estimates of the variation of the thermal conductivities with temperature it is important to account for the variation of temperature coefficient of resistance of the platinum heating/temperature sensing wire.

This study used a constant current of 250 mA for all the fluids studied, and the test time was limited to six seconds. A data reduction procedure for the unambiguous identification of the slope and the portion of the  $\Delta T$  vs ln(t) was outlined. It was found that for the lowest viscosity fluid, water, effects of natural convection led to a non-linear relationship between the temperature rise and the logarithm of time after a time of approximately six seconds for the given current and wire length. Based on the experience for measuring the four different liquids it can be concluded that the measurement of thermal conductivity of low viscosity liquids is an extremely challenging task, especially as the temperature is raised. An earlier onset of convection occurs as the temperature is raised.

Liquid water was used for validating the results from this test cell, and the results showed a very agreement with the recommended values over the entire temperature range. Numerical studies were carried out to understand the effect of the transient heating of the wire on the temperature and velocity field in the surrounding medium. It was found that the computationally observed temperature rise of the wire agreed quite well with the theoretical results for a line source in an infinite medium, as well as the experimental data. This implies that there is only a limited influence of the convective effects on the temperature rise for the duration of heating under consideration. The effect of wire heating on the velocity field over a heating duration of six seconds (similar to the experiments) was found to be negligible beyond 40 wire diameters for the computations.

The temperature dependence of the thermal conductivities of water, ethylene glycol, glycerol, and propylene glycol were measured. All four liquids exhibited an increase in their respective thermal conductivities with increasing temperature. As previously noted, it was difficult to measure thermal conductivity of water above 300 *K* on account of its low viscosity. However, good experimental data for water was obtained from near its freezing point up to room temperature. The high temperature limit was approximately 340*K* for this study.

#### **5.2 Future Work**

There are several possibilities of improvement and additional work that could enhance this research. It may be worthwhile to obtain improved measurements of the local slope for the temperature coefficient of resistance as a function of temperature. Furthermore, these experiments could be extended to measure the thermal diffusivity of the liquids by suitable modifications to the apparatus. There is need for further research on explaining the differences observed in the temperature rise profiles between the experimental and computed results. Two specific suggestions for future work include (a) using the current apparatus to examine the effect of nanoparticle addition to the base fluid, and (b) characterization of thermal conductivity of phase change materials for both solid and liquid phases.

# **References Cited**

[1] Anonymous, Scala Graduum Caloris. Calorum Descriptiones & Figna, Philosophical Transactions (1683-1775) 22 (1700) 824-829.

[2] R. M. Sayre, The "Scala Granduum Caloris" and Sir Isaac Newton, Proceedings of the Oklahoma Academy of Science 43 (1963) 198-202.

[3] H. L. Callendar, The caloric theory of heat and Carnot's principle, Proc. Phys. Soc. Lond. 23 (1911) 153-189.

[4] S. C. Brown, The caloric theory of heat, Am. J. Phys. 18 (6) (1950) 367-373.

[5] M. Wilson, Count Rumford, Scientific American 203 (4) (1960) 158-171.

[6] D. S. L. Cardwell, From Watt to Clausius: The rise of thermodynamics in the early industrial age, Cornell University Press, 1971

[7] J. P. Joule, On the Mechanical Equivalent of Heat, Philosophical Transactions of the Royal Society of London 140 (1850) 61-82.

[8] J. B. J. Fourier, Théorie analytique de la chaleur, Breslau: Guillaume Koebner, 1883

[9] F. P. Incropera, D. P. D. Witt, Introduction to Heat Transfer, John Wiley & Sons, 1990

[10] R. Haberman, Elementary applied partial differential equations, Prentice Hall Englewood Cliffs, NJ, 1983

[11] T. Narasimhan, Fourier's heat conduction equation: History, influence, and connections, Reviews of Geophysics 37 (1) (1999) 151-172.

[12] R. Powell, C. Y. Ho, P. E. Liley, Thermal conductivity of selected materials; National Standards Reference Data Series, 1966.

[13] E. W. Lemmon, M. L. Huber, M. O. McLinden, NIST reference fluid thermodynamic and transport properties—REFPROP, NIST standard reference database 23 (2002) v7.

[14] M. L. Huber, A. H. Harvey, Thermal Conductivity of Gases: CRC Handbook of Chemistry and Physics, 2011

[15] J. Jaeger, Conduction of heat in an infinite region bounded internally by a circular cylinder of a perfect conductor, Australian Journal of Physics 9 (2) (1956) 167-179.

[16] H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 1959

[17] J. Blackwell, A transient-flow method for determination of thermal constants of insulating materials in bulk part I—Theory, Journal of Applied Physics 25 (2) (1954) 137-144.

[18] J. J. Healy, J. J. deGroot, J. Kestin, The theory of the transient hot-wire method for measuring thermal conductivity, Physica 82C (1976) 392-408.

[19] H. M. Roder, A Transient Hot Wire Thermal Conductivity Apparatus for Fluids, Journal of Research of the National Bureau of Standards 86 (5) (1981) 457-493.

[20] J. F. T. Pittman, Fluid thermal conductivity determination by the transient, line source method. Imperial College of Science and Technology, University of London, 1968.

[21] Y. Nagasaka, A. Nagashima, Simultaneous measurement of the thermal conductivity and the thermal diffusivity of liquids by the transient hot-wire method, Review of Scientific Instruments 52 (2) (1981) 229-232.

[22] J. G. Bleazard, T. F. Sun, R. D. Johnson, R. M. DiGuillio, A. S. Teja, The transport properties of seven alkanediols, Fluid Phase Equilibria 117 (1) (1996) 386-393.

[23] C. Codreanu, N. Codreanu, V. Obreja, Experimental set-up for the measurement of the thermal conductivity of liquids, Romanian Journal of Information Science and Technology 10 (3) (2007) 215-231.

[24] X. Zhang, H. Gu, M. Fujii, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, Experimental Thermal and Fluid Science 31 (6) (2007) 593-599.

[25] M. Kostic, K. C. Simham, Computerized, transient hot-wire thermal conductivity (HWTC) apparatus for nanofluids, Proceedings of the 6th WSEAS International Conference on Heat and Mass Transfer, 2009; 71-78.

[26] C. Nieto de Castro, S. Li, A. Nagashima, R. Trengove, W. Wakeham, Standard reference data for the thermal conductivity of liquids, Journal of physical and chemical reference data 15 (3) (1986) 1073-1086.

[27] J. Woolf, W. Sibbitt, Thermal conductivity of liquids, Industrial & Engineering Chemistry 46 (9) (1954) 1947-1952.

[28] A. Lawson, R. Lowell, A. Jain, Thermal conductivity of water at high pressures, The Journal of Chemical Physics 30 (3) (1959) 643-647.

[29] R. V. Theiss, G. Thodos, Viscosity and Thermal Conductivity of Water: Gaseous and liquid States, Journal of Chemical and Engineering Data 8 (3) (1963) 390-395.

[30] J. Sengers, J. Watson, R. Basu, B. Kamgar-Parsi, R. Hendricks, Representative equations for the thermal conductivity of water substance, Journal of physical and chemical reference data 13 (3) (1984) 893-933.

[31] M. L. V. Ramires, C. A. N. d. Castro, Y. Nagasaka, A. Nagashima, M. J. Assael, W. A. Wakeham, Standard Reference Data for the Thermal Conductivity of Water, Journal of Physical and Chemical Reference Data 24 (3) (1995) 1377-1381.

[32] R. S. Figliola, Theory and design for mechanical measurements, Hoboken : John Wiley & Sons, Hoboken, 2015

[33] E. W. Lemmon, M. L. Huber, M. O. McLinden NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 2013.

[34] in: Ansys Fluent Theory Guide, Release 18.1, 2017.

[35] R. DiGuilio, A. S. Teja, Thermal conductivity of poly(ethylene glycols) and their binary mixtures, Journal of Chemical & Engineering Data 35 (2) (1990) 117-121.

[36] O. Faroon, U. S. A. f. T. Substances, D. Registry, Toxicological Profile for Ethylene Glycol, U.S. Department of Health & Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, 2010

[37] S. Azarfar, S. Movahedirad, A. A. Sarbanha, R. Norouzbeigi, B. Beigzadeh, Low cost and new design of transient hot-wire technique for the thermal conductivity measurement of fluids, Appl. Therm. Eng. 105 (2016) 142-150.

[38] Y. S. Lin, P. Y. Hsiao, C. C. Chieng, Constructing a force interaction model for thermal conductivity computation using molecular dynamics simulation: Ethylene glycol as an example, J. Chem. Phys. 134 (15) (2011) 12.

[39] M. P. Beck, T. F. Sun, A. S. Teja, The thermal conductivity of alumina nanoparticles dispersed in ethylene glycol, Fluid Phase Equilibria 260 (2) (2007) 275-278.

[40] M. J. Pastoriza-Gallego, L. Lugo, J. L. Legido, M. M. Pineiro, Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids, Nanoscale Research Letters 6 (2011) 11.

[41] M. Pagliaro, M. Rossi, in: The Future of Glycerol, The Royal Society of Chemistry: 2010; pp 1-28.

[42] T. T. Duong, H. Tanaka, N. Tsuzuki, H. Kawai, H. Kikura, Measurement of Joule-heating flow convection induced by internal heat generation using ultrasound velocity profiler in glycerin fluid, Flow Meas. Instrum. 52 (2016) 261-268.

[43] C. A. G. Quispe, C. J. R. Coronado, J. A. Carvalho, Glycerol: Production, consumption, prices, characterization and new trends in combustion, Renewable & Sustainable Energy Reviews 27 (2013) 475-493.

[44] J. Sun, J. P. Longtin, T. F. Irvine, Laser-based thermal pulse measurement of liquid thermophysical properties, International Journal of Heat and Mass Transfer 44 (3) (2001) 645-657.

[45] N. Le Brun, C. N. Markides, A Galinstan-Filled Capillary Probe for Thermal Conductivity Measurements and Its Application to Molten Eutectic -- (HTS) up to 700 K, International Journal of Thermophysics 36 (10-11) (2015) 3222-3238.

[46] M. Sharifpur, N. Tshimanga, J. P. Meyer, O. Manca, Experimental investigation and model development for thermal conductivity of alpha-Al2O3-glycerol nanofluids, Int. Commun. Heat Mass Transf. 85 (2017) 12-22.

[47] S. Akilu, K. V. Sharma, T. B. Aklilu, M. S. M. Azman, P. T. Bhaskoro, in: Proceeding of 4th International Conference on Process Engineering and Advanced Materials, M. A. Bustam; Z. Man; L. K. Keong; A. A. Hassankiadeh; Y. Y. Fong; M. Ayoub; M. Moniruzzaman; P. Mandal, (Eds.) Elsevier Science Bv: Amsterdam, 2016; Vol. 148, pp 774-778.

[48] M. F. v. Gelder, A Thermistor Based Method for Measurement of Thermal Conductivity and Thermal Diffusivity of Moist Food Materials at High Temperatures. Virginia Polytechnic Institute and State University, 1998.

[49] C. Talon, Q. W. Zou, M. A. Ramos, R. Villar, S. Vieira, Low-temperature specific heat and thermal conductivity of glycerol, Phys. Rev. B 65 (1) (2002) 4.

[50] G. Committee on Spacecraft Exposure, T. Committee on, T. Board on Environmental Studies and, S. Division on Earth and Life, C. National Research, Propylene Glycol, 2008

[51] T. Sun, A. S. Teja, Density, Viscosity and Thermal Conductivity of Aqueous Solutions of Propylene Glycol, Dipropylene Glycol, and Tripropylene Glycol between 290 K and 460 K, Journal of Chemical & Engineering Data 49 (5) (2004) 1311-1317.

[52] C. Deng, K. Zhang, T. Yang, Thermal Conductivity of 1,2-Ethanediol and 1,2-Propanediol Binary Aqueous Solutions at Temperature from (253 to 373) K, (2017).

[53] I. Palabiyik, Z. Musina, S. Witharana, Y. L. Ding, Dispersion stability and thermal conductivity of propylene glycol-based nanofluids, Journal of Nanoparticle Research 13 (10) (2011) 5049-5055.

[54] K. S. Suganthi, M. Parthasarathy, K. S. Rajan, Liquid-layering induced, temperaturedependent thermal conductivity enhancement in ZnO-propylene glycol nanofluids, Chemical Physics Letters 561 (2013) 120-124.

[55] D. Cabaleiro, J. Nimo, M. J. Pastoriza-Gallego, M. M. Pineiro, J. L. Legido, L. Lugo, Thermal conductivity of dry anatase and rutile nano-powders and ethylene and propylene glycol-based TiO2 nanofluids, J. Chem. Thermodyn. 83 (2015) 67-76.

|        | Ther   | mal Con | ductivity | y V | alues fo | r Water | ' in | W/m.K  | (R     | Run | -1)    |        |
|--------|--------|---------|-----------|-----|----------|---------|------|--------|--------|-----|--------|--------|
| Т (К)  | k      | Т (К)   | k         |     | Т (К)    | k       |      | T (K)  | k      |     | T (K)  | k      |
| 275.14 | 0.5676 | 285.37  | 0.5809    |     | 290.79   | 0.5908  |      | 296.08 | 0.6013 |     | 299.39 | 0.6034 |
| 275.29 | 0.5667 | 285.45  | 0.5832    |     | 290.87   | 0.5982  |      | 296.26 | 0.5979 |     | 299.42 | 0.6046 |
| 275.69 | 0.5645 | 285.53  | 0.5843    |     | 290.96   | 0.5921  |      | 296.30 | 0.6014 |     | 299.71 | 0.6117 |
| 275.91 | 0.5635 | 285.65  | 0.5819    |     | 291.13   | 0.5933  |      | 296.36 | 0.6069 |     | 299.84 | 0.6097 |
| 276.16 | 0.5641 | 285.82  | 0.5802    |     | 291.28   | 0.5890  |      | 296.48 | 0.5981 |     | 299.96 | 0.6054 |
| 276.97 | 0.5625 | 285.89  | 0.5822    |     | 291.33   | 0.5901  |      | 296.54 | 0.6002 |     | 299.96 | 0.6067 |
| 277.86 | 0.5625 | 286.00  | 0.5856    |     | 291.50   | 0.5931  |      | 296.58 | 0.5998 |     | 300.07 | 0.6099 |
| 278.02 | 0.5647 | 286.10  | 0.5847    |     | 291.61   | 0.5911  |      | 296.69 | 0.5977 |     | 300.09 | 0.6078 |
| 278.16 | 0.5624 | 286.26  | 0.5900    |     | 291.67   | 0.5914  |      | 296.79 | 0.6001 |     | 300.14 | 0.6155 |
| 278.35 | 0.5636 | 286.49  | 0.5830    |     | 292.03   | 0.5910  |      | 296.82 | 0.6027 |     | 300.19 | 0.6062 |
| 278.52 | 0.5667 | 286.63  | 0.5877    |     | 292.27   | 0.5959  |      | 296.98 | 0.6009 |     | 300.27 | 0.6143 |
| 278.65 | 0.5647 | 286.91  | 0.5849    |     | 292.31   | 0.5947  |      | 297.03 | 0.6059 |     | 300.28 | 0.6092 |
| 278.95 | 0.5683 | 287.00  | 0.5842    |     | 293.20   | 0.5922  |      | 297.15 | 0.6053 |     | 300.33 | 0.6112 |
| 279.41 | 0.5669 | 287.05  | 0.5824    |     | 293.32   | 0.5976  |      | 297.23 | 0.6102 |     | 300.40 | 0.6068 |
| 280.11 | 0.5701 | 287.26  | 0.5843    |     | 293.47   | 0.5987  |      | 297.33 | 0.6009 |     | 300.47 | 0.6117 |
| 280.42 | 0.5740 | 287.36  | 0.5825    |     | 293.50   | 0.5954  |      | 297.40 | 0.6079 |     | 300.49 | 0.6110 |
| 280.53 | 0.5769 | 287.44  | 0.5896    |     | 293.67   | 0.5954  |      | 297.66 | 0.6035 |     | 300.52 | 0.6069 |
| 280.65 | 0.5707 | 287.62  | 0.5847    |     | 293.72   | 0.6006  |      | 297.73 | 0.5994 |     | 300.57 | 0.6115 |
| 280.77 | 0.5737 | 287.71  | 0.5854    |     | 293.76   | 0.5944  |      | 297.85 | 0.6036 |     | 300.64 | 0.6049 |
| 281.02 | 0.5716 | 287.75  | 0.5861    |     | 293.82   | 0.5958  |      | 297.86 | 0.6013 |     | 300.69 | 0.6056 |
| 281.13 | 0.5721 | 287.95  | 0.5865    |     | 293.88   | 0.5956  |      | 297.92 | 0.6014 |     | 300.72 | 0.6082 |
| 281.25 | 0.5735 | 287.98  | 0.5892    |     | 294.05   | 0.5970  |      | 298.09 | 0.6016 |     | 300.80 | 0.6082 |
| 281.69 | 0.5745 | 288.07  | 0.5914    |     | 294.22   | 0.6019  |      | 298.15 | 0.6053 |     | 300.84 | 0.6108 |
| 281.94 | 0.5768 | 288.20  | 0.5868    |     | 294.22   | 0.6019  |      | 298.18 | 0.6027 |     | 300.86 | 0.6138 |
| 282.05 | 0.5738 | 288.28  | 0.5885    |     | 294.46   | 0.5935  |      | 298.33 | 0.6059 |     | 300.90 | 0.6110 |
| 282.65 | 0.5784 | 288.36  | 0.5898    |     | 294.52   | 0.5947  |      | 298.38 | 0.6045 |     | 300.93 | 0.6125 |
| 282.76 | 0.5751 | 288.45  | 0.5862    |     | 294.58   | 0.5966  |      | 298.44 | 0.6086 |     | 301.00 | 0.6097 |
| 283.17 | 0.5772 | 288.58  | 0.5863    |     | 294.84   | 0.5960  |      | 298.45 | 0.6010 |     | 301.06 | 0.6074 |
| 283.34 | 0.5804 | 288.99  | 0.5882    |     | 294.87   | 0.5980  |      | 298.54 | 0.6038 |     |        |        |
| 283.46 | 0.5814 | 289.26  | 0.5880    |     | 294.94   | 0.5963  |      | 298.62 | 0.6025 |     |        |        |
| 283.54 | 0.5779 | 289.42  | 0.5880    |     | 295.22   | 0.6000  |      | 298.64 | 0.6075 |     |        |        |
| 283.62 | 0.5805 | 289.60  | 0.5899    |     | 295.26   | 0.5995  |      | 298.69 | 0.6037 |     |        |        |
| 283.92 | 0.5808 | 289.74  | 0.5882    |     | 295.63   | 0.5984  |      | 298.78 | 0.6037 |     |        |        |
| 284.25 | 0.5779 | 289.94  | 0.5914    |     | 295.73   | 0.6035  |      | 298.83 | 0.6048 |     |        |        |
| 284.32 | 0.5817 | 290.09  | 0.5865    |     | 295.80   | 0.5994  |      | 298.94 | 0.6074 |     |        |        |
| 284.89 | 0.5839 | 290.18  | 0.5892    |     | 295.82   | 0.5965  |      | 298.96 | 0.6062 |     |        |        |
| 285.08 | 0.5801 | 290.37  | 0.5937    |     | 295.89   | 0.5978  |      | 299.16 | 0.6115 |     |        |        |
| 285.16 | 0.5809 | 290.53  | 0.5919    |     | 295.93   | 0.5984  |      | 299.28 | 0.6074 |     |        |        |
| 285.27 | 0.5854 | 290.73  | 0.5944    |     | 296.03   | 0.5968  |      | 299.34 | 0.6064 |     |        |        |

Appendix A: Tabulated Thermal Conductivity Results for Water
|        | Th     | ern | nal Cono | ductivit | y V | alues fo | r Water | 'n | W/m.K  | (F     | Run | -2)    |        |
|--------|--------|-----|----------|----------|-----|----------|---------|----|--------|--------|-----|--------|--------|
| Т(К)   | k      |     | Т (К)    | k        |     | Т (К)    | k       |    | Т (К)  | k      |     | Т (К)  | k      |
| 271.72 | 0.5577 |     | 275.19   | 0.5623   |     | 279.11   | 0.5651  |    | 282.60 | 0.5754 |     | 285.76 | 0.5824 |
| 271.66 | 0.5576 |     | 275.26   | 0.5595   |     | 279.20   | 0.5637  |    | 282.65 | 0.5760 |     | 285.80 | 0.5808 |
| 271.61 | 0.5558 |     | 275.33   | 0.5660   |     | 279.28   | 0.5669  |    | 282.72 | 0.5745 |     | 285.86 | 0.5860 |
| 271.60 | 0.5592 |     | 275.45   | 0.5632   |     | 279.36   | 0.5670  |    | 282.82 | 0.5779 |     | 285.92 | 0.5800 |
| 271.60 | 0.5584 |     | 275.54   | 0.5641   |     | 279.42   | 0.5642  |    | 282.87 | 0.5708 |     | 286.03 | 0.5794 |
| 271.62 | 0.5568 |     | 275.64   | 0.5625   |     | 279.50   | 0.5650  |    | 282.94 | 0.5738 |     | 286.06 | 0.5814 |
| 271.76 | 0.5568 |     | 275.73   | 0.5600   |     | 279.58   | 0.5704  |    | 283.00 | 0.5742 |     | 286.13 | 0.5814 |
| 271.93 | 0.5633 |     | 275.83   | 0.5599   |     | 279.67   | 0.5653  |    | 283.15 | 0.5772 |     | 286.21 | 0.5796 |
| 271.98 | 0.5634 |     | 275.90   | 0.5631   |     | 279.75   | 0.5719  |    | 283.24 | 0.5765 |     | 286.26 | 0.5804 |
| 272.07 | 0.5609 |     | 275.98   | 0.5592   |     | 279.82   | 0.5677  |    | 283.28 | 0.5758 |     | 286.42 | 0.5880 |
| 272.16 | 0.5597 |     | 276.06   | 0.5581   |     | 279.88   | 0.5686  |    | 283.33 | 0.5750 |     | 286.43 | 0.5823 |
| 272.33 | 0.5602 |     | 276.14   | 0.5593   |     | 279.97   | 0.5666  |    | 283.39 | 0.5777 |     | 286.49 | 0.5808 |
| 272.43 | 0.5608 |     | 276.22   | 0.5612   |     | 280.04   | 0.5662  |    | 283.46 | 0.5760 |     | 286.56 | 0.5814 |
| 272.51 | 0.5554 |     | 276.29   | 0.5598   |     | 280.15   | 0.5702  |    | 283.49 | 0.5784 |     | 286.60 | 0.5842 |
| 272.71 | 0.5579 |     | 276.36   | 0.5597   |     | 280.21   | 0.5711  |    | 283.58 | 0.5746 |     | 286.64 | 0.5809 |
| 272.81 | 0.5541 |     | 276.42   | 0.5621   |     | 280.37   | 0.5656  |    | 283.71 | 0.5730 |     | 286.69 | 0.5843 |
| 272.91 | 0.5600 |     | 276.50   | 0.5622   |     | 280.43   | 0.5726  |    | 283.80 | 0.5759 |     | 286.77 | 0.5865 |
| 273.02 | 0.5577 |     | 276.57   | 0.5635   |     | 280.48   | 0.5688  |    | 283.99 | 0.5755 |     | 286.85 | 0.5833 |
| 273.11 | 0.5609 |     | 276.63   | 0.5652   |     | 280.55   | 0.5723  |    | 284.06 | 0.5788 |     | 286.96 | 0.5786 |
| 273.20 | 0.5605 |     | 276.69   | 0.5623   |     | 280.71   | 0.5729  |    | 284.12 | 0.5815 |     | 287.01 | 0.5833 |
| 273.28 | 0.5623 |     | 276.78   | 0.5604   |     | 280.88   | 0.5729  |    | 284.17 | 0.5798 |     | 287.08 | 0.5854 |
| 273.35 | 0.5583 |     | 276.85   | 0.5599   |     | 280.91   | 0.5741  |    | 284.21 | 0.5794 |     | 287.18 | 0.5844 |
| 273.42 | 0.5574 |     | 276.91   | 0.5609   |     | 281.06   | 0.5687  |    | 284.26 | 0.5822 |     | 287.29 | 0.5820 |
| 273.54 | 0.5602 |     | 277.12   | 0.5614   |     | 281.13   | 0.5714  |    | 284.33 | 0.5786 |     | 287.34 | 0.5814 |
| 273.66 | 0.5624 |     | 277.23   | 0.5605   |     | 281.29   | 0.5694  |    | 284.59 | 0.5802 |     | 287.37 | 0.5818 |
| 273.74 | 0.5565 |     | 277.62   | 0.5610   |     | 281.34   | 0.5694  |    | 284.67 | 0.5784 |     | 287.42 | 0.5837 |
| 273.80 | 0.5628 |     | 277.68   | 0.5617   |     | 281.42   | 0.5719  |    | 284.75 | 0.5783 |     | 287.47 | 0.5869 |
| 273.92 | 0.5608 |     | 277.78   | 0.5594   |     | 281.50   | 0.5753  |    | 284.89 | 0.5813 |     | 287.51 | 0.5895 |
| 274.02 | 0.5585 |     | 277.89   | 0.5644   |     | 281.55   | 0.5741  |    | 284.95 | 0.5807 |     | 287.57 | 0.5888 |
| 274.11 | 0.5621 |     | 277.98   | 0.5623   |     | 281.71   | 0.5761  |    | 285.02 | 0.5802 |     | 287.63 | 0.5831 |
| 274.31 | 0.5630 |     | 278.16   | 0.5654   |     | 281.75   | 0.5720  |    | 285.08 | 0.5802 |     | 287.73 | 0.5840 |
| 274.38 | 0.5609 |     | 278.24   | 0.5642   |     | 281.84   | 0.5720  |    | 285.18 | 0.5791 |     | 287.82 | 0.5813 |
| 274.52 | 0.5606 |     | 278.33   | 0.5660   |     | 281.91   | 0.5732  |    | 285.26 | 0.5811 |     | 288.02 | 0.5879 |
| 274.58 | 0.5619 |     | 278.50   | 0.5648   |     | 282.14   | 0.5771  |    | 285.38 | 0.5823 |     | 288.06 | 0.5826 |
| 274.65 | 0.5647 |     | 278.59   | 0.5635   |     | 282.19   | 0.5707  |    | 285.47 | 0.5841 |     | 288.11 | 0.5862 |
| 274.74 | 0.5609 |     | 278.66   | 0.5662   |     | 282.34   | 0.5698  |    | 285.55 | 0.5815 |     | 288.31 | 0.5865 |
| 274.83 | 0.5627 |     | 278.80   | 0.5658   |     | 282.40   | 0.5725  |    | 285.60 | 0.5797 |     | 288.37 | 0.5823 |
| 274.91 | 0.5605 |     | 278.89   | 0.5659   |     | 282.45   | 0.5735  |    | 285.67 | 0.5816 |     | 288.43 | 0.5868 |
| 275.11 | 0.5627 |     | 279.02   | 0.5666   |     | 282.55   | 0.5761  |    | 285.69 | 0.5819 |     | 288.49 | 0.5876 |

|        | Th     | ern | nal Conc | ductivit | y V | alues fo | r Water | ' in | W/m.K  | (R     | lun | -2)    |        |
|--------|--------|-----|----------|----------|-----|----------|---------|------|--------|--------|-----|--------|--------|
| T (K)  | k      |     | Т (К)    | k        |     | Т (К)    | k       |      | Т (К)  | k      |     | T (K)  | k      |
| 288.52 | 0.5837 |     | 290.93   | 0.5930   |     | 292.96   | 0.5911  |      | 294.65 | 0.5959 |     | 296.76 | 0.6009 |
| 288.60 | 0.5911 |     | 291.06   | 0.5911   |     | 292.96   | 0.5961  |      | 294.73 | 0.5941 |     | 296.85 | 0.6029 |
| 288.67 | 0.5874 |     | 291.09   | 0.5907   |     | 293.00   | 0.5944  |      | 294.76 | 0.5930 |     | 297.13 | 0.6012 |
| 288.74 | 0.5877 |     | 291.14   | 0.5926   |     | 293.13   | 0.5974  |      | 294.79 | 0.5982 |     | 297.39 | 0.6036 |
| 288.78 | 0.5869 |     | 291.18   | 0.5906   |     | 293.16   | 0.5947  |      | 294.86 | 0.5935 |     | 297.50 | 0.6027 |
| 288.81 | 0.5880 |     | 291.24   | 0.5907   |     | 293.25   | 0.5966  |      | 294.88 | 0.5918 |     | 297.80 | 0.6028 |
| 288.85 | 0.5860 |     | 291.27   | 0.5881   |     | 293.27   | 0.5876  |      | 294.92 | 0.5943 |     | 298.12 | 0.6051 |
| 288.90 | 0.5857 |     | 291.40   | 0.5884   |     | 293.34   | 0.5915  |      | 294.99 | 0.5945 |     | 298.45 | 0.6122 |
| 289.01 | 0.5893 |     | 291.43   | 0.5885   |     | 293.46   | 0.5956  |      | 295.02 | 0.5982 |     | 298.55 | 0.6029 |
| 289.06 | 0.5876 |     | 291.47   | 0.5961   |     | 293.49   | 0.5925  |      | 295.14 | 0.6015 |     | 298.63 | 0.6053 |
| 289.11 | 0.5863 |     | 291.51   | 0.5935   |     | 293.55   | 0.5967  |      | 295.15 | 0.5963 |     | 298.82 | 0.6075 |
| 289.16 | 0.5857 |     | 291.56   | 0.5910   |     | 293.55   | 0.5971  |      | 295.19 | 0.5972 |     | 298.84 | 0.6072 |
| 289.18 | 0.5864 |     | 291.65   | 0.5892   |     | 293.58   | 0.5958  |      | 295.23 | 0.5953 |     | 299.13 | 0.6044 |
| 289.22 | 0.5894 |     | 291.68   | 0.5921   |     | 293.64   | 0.5935  |      | 295.26 | 0.6026 |     | 299.44 | 0.6038 |
| 289.29 | 0.5861 |     | 291.71   | 0.5902   |     | 293.65   | 0.5929  |      | 295.32 | 0.5983 |     | 299.49 | 0.6089 |
| 289.32 | 0.5871 |     | 291.77   | 0.5909   |     | 293.70   | 0.5941  |      | 295.36 | 0.5935 |     | 299.59 | 0.6074 |
| 289.43 | 0.5914 |     | 291.85   | 0.5938   |     | 293.71   | 0.5955  |      | 295.40 | 0.5960 |     | 299.62 | 0.6115 |
| 289.47 | 0.5866 |     | 291.87   | 0.5940   |     | 293.71   | 0.5972  |      | 295.45 | 0.5996 |     | 299.75 | 0.6096 |
| 289.51 | 0.5872 |     | 291.92   | 0.5946   |     | 293.84   | 0.5906  |      | 295.47 | 0.5967 |     | 300.05 | 0.6083 |
| 289.56 | 0.5940 |     | 291.99   | 0.5928   |     | 293.92   | 0.5964  |      | 295.47 | 0.5928 |     | 300.13 | 0.6076 |
| 289.61 | 0.5881 |     | 292.05   | 0.5905   |     | 293.94   | 0.5930  |      | 294.68 | 0.5983 |     | 300.20 | 0.6129 |
| 289.65 | 0.5886 |     | 292.08   | 0.5896   |     | 293.99   | 0.5930  |      | 294.35 | 0.5939 |     | 300.25 | 0.6089 |
| 289.68 | 0.5885 |     | 292.15   | 0.5937   |     | 294.02   | 0.5981  |      | 294.27 | 0.5918 |     |        |        |
| 289.78 | 0.5897 |     | 292.16   | 0.5908   |     | 294.07   | 0.5935  |      | 294.19 | 0.5980 |     |        |        |
| 289.84 | 0.5861 |     | 292.22   | 0.5858   |     | 294.11   | 0.5977  |      | 294.33 | 0.5931 |     |        |        |
| 289.88 | 0.5889 |     | 292.25   | 0.5957   |     | 294.16   | 0.5918  |      | 294.32 | 0.5894 |     |        |        |
| 289.95 | 0.5891 |     | 292.29   | 0.5909   |     | 294.18   | 0.5942  |      | 294.35 | 0.5920 |     |        |        |
| 290.00 | 0.5946 |     | 292.37   | 0.5917   |     | 294.21   | 0.5988  |      | 294.52 | 0.5941 |     |        |        |
| 290.07 | 0.5907 |     | 292.45   | 0.5902   |     | 294.24   | 0.5963  |      | 294.64 | 0.5925 |     |        |        |
| 290.12 | 0.5902 |     | 292.48   | 0.5910   |     | 294.26   | 0.5906  |      | 294.67 | 0.5962 |     |        |        |
| 290.16 | 0.5925 |     | 292.50   | 0.5911   |     | 294.30   | 0.5956  |      | 294.70 | 0.5917 |     |        |        |
| 290.20 | 0.5874 |     | 292.59   | 0.5937   |     | 294.38   | 0.5955  |      | 294.77 | 0.5915 |     |        |        |
| 290.28 | 0.5899 |     | 292.58   | 0.5932   |     | 294.43   | 0.5909  |      | 294.93 | 0.5929 |     |        |        |
| 290.63 | 0.5922 |     | 292.63   | 0.5930   |     | 294.46   | 0.5924  |      | 295.01 | 0.5958 |     |        |        |
| 290.67 | 0.5880 |     | 292.70   | 0.5916   |     | 294.47   | 0.5958  |      | 295.20 | 0.5935 |     |        |        |
| 290.74 | 0.5875 |     | 292.75   | 0.5925   |     | 294.51   | 0.5986  |      | 296.08 | 0.5924 |     |        |        |
| 290.79 | 0.5864 |     | 292.85   | 0.5962   |     | 294.54   | 0.5933  |      | 296.15 | 0.5955 |     |        |        |
| 290.81 | 0.5937 |     | 292.88   | 0.5918   |     | 294.55   | 0.5990  |      | 296.34 | 0.5978 |     |        |        |
| 290.85 | 0.5896 |     | 292.91   | 0.5924   |     | 294.64   | 0.5957  |      | 296.50 | 0.5973 |     |        |        |

|        | Th     | ermal Con | ductivit | y V | alues fo | r Water | ' in | W/m.K  | (F     | Run | -3) |  |
|--------|--------|-----------|----------|-----|----------|---------|------|--------|--------|-----|-----|--|
| Т(К)   | k      | Т (К)     | k        |     | Т (К)    | k       |      | Т (К)  | k      |     |     |  |
| 273.28 | 0.5662 | 282.33    | 0.5768   |     | 290.42   | 0.5925  |      | 296.39 | 0.5965 |     |     |  |
| 273.15 | 0.5646 | 282.53    | 0.5750   |     | 290.53   | 0.5884  |      | 296.50 | 0.5988 |     |     |  |
| 273.12 | 0.5631 | 282.93    | 0.5740   |     | 290.63   | 0.5881  |      | 296.60 | 0.5993 |     |     |  |
| 273.12 | 0.5650 | 283.15    | 0.5791   |     | 290.82   | 0.5924  |      | 296.76 | 0.6034 |     |     |  |
| 273.31 | 0.5570 | 283.31    | 0.5797   |     | 290.93   | 0.5940  |      | 296.79 | 0.5994 |     |     |  |
| 273.51 | 0.5560 | 283.51    | 0.5760   |     | 291.06   | 0.5935  |      | 297.13 | 0.6001 |     |     |  |
| 273.74 | 0.5605 | 283.67    | 0.5754   |     | 291.25   | 0.5926  |      | 297.37 | 0.6027 |     |     |  |
| 273.98 | 0.5568 | 283.89    | 0.5826   |     | 291.32   | 0.5902  |      | 297.49 | 0.6092 |     |     |  |
| 274.16 | 0.5622 | 284.06    | 0.5799   |     | 291.76   | 0.5975  |      | 297.59 | 0.6031 |     |     |  |
| 274.41 | 0.5612 | 284.20    | 0.5787   |     | 291.89   | 0.5964  |      | 297.71 | 0.6013 |     |     |  |
| 274.62 | 0.5539 | 284.43    | 0.5827   |     | 292.06   | 0.5950  |      | 297.80 | 0.6045 |     |     |  |
| 275.03 | 0.5637 | 284.59    | 0.5766   |     | 292.18   | 0.5958  |      | 297.93 | 0.6056 |     |     |  |
| 275.30 | 0.5592 | 284.76    | 0.5794   |     | 292.25   | 0.5926  |      | 298.12 | 0.6069 |     |     |  |
| 275.68 | 0.5611 | 284.94    | 0.5789   |     | 292.39   | 0.5965  |      | 298.30 | 0.6010 |     |     |  |
| 275.83 | 0.5661 | 285.11    | 0.5786   |     | 292.70   | 0.5939  |      | 298.40 | 0.6054 |     |     |  |
| 276.42 | 0.5613 | 285.30    | 0.5787   |     | 292.80   | 0.5923  |      | 298.48 | 0.6036 |     |     |  |
| 276.64 | 0.5579 | 285.65    | 0.5811   |     | 292.96   | 0.5967  |      | 298.55 | 0.6071 |     |     |  |
| 276.74 | 0.5582 | 285.81    | 0.5822   |     | 293.25   | 0.5940  |      | 298.61 | 0.6056 |     |     |  |
| 276.90 | 0.5574 | 285.96    | 0.5843   |     | 293.32   | 0.5950  |      | 298.82 | 0.6112 |     |     |  |
| 277.04 | 0.5577 | 286.17    | 0.5833   |     | 293.39   | 0.5967  |      | 298.91 | 0.6063 |     |     |  |
| 277.26 | 0.5599 | 286.55    | 0.5820   |     | 293.56   | 0.5931  |      | 298.96 | 0.6068 |     |     |  |
| 277.89 | 0.5651 | 286.68    | 0.5815   |     | 293.74   | 0.5949  |      | 299.08 | 0.6131 |     |     |  |
| 278.19 | 0.5619 | 286.79    | 0.5847   |     | 293.84   | 0.5978  |      | 299.19 | 0.6147 |     |     |  |
| 278.40 | 0.5653 | 287.30    | 0.5829   |     | 293.96   | 0.5983  |      | 299.24 | 0.6030 |     |     |  |
| 278.59 | 0.5652 | 287.48    | 0.5858   |     | 294.19   | 0.5941  |      | 299.35 | 0.6120 |     |     |  |
| 279.08 | 0.5665 | 287.64    | 0.5801   |     | 294.36   | 0.5974  |      | 299.53 | 0.6075 |     |     |  |
| 279.31 | 0.5668 | 287.80    | 0.5850   |     | 294.72   | 0.5941  |      | 299.58 | 0.6039 |     |     |  |
| 279.53 | 0.5685 | 288.01    | 0.5914   |     | 294.85   | 0.5958  |      | 299.67 | 0.6099 |     |     |  |
| 279.72 | 0.5663 | 288.12    | 0.5871   |     | 295.06   | 0.5959  |      | 299.79 | 0.6066 |     |     |  |
| 280.11 | 0.5712 | 288.46    | 0.5880   |     | 295.15   | 0.5932  |      | 299.94 | 0.6099 |     |     |  |
| 280.34 | 0.5715 | 288.60    | 0.5835   |     | 295.37   | 0.5953  |      | 300.01 | 0.6114 |     |     |  |
| 280.55 | 0.5710 | 288.77    | 0.5842   |     | 295.50   | 0.5949  |      | 300.20 | 0.6152 |     |     |  |
| 280.76 | 0.5740 | 288.92    | 0.5867   |     | 295.71   | 0.5990  |      |        |        |     |     |  |
| 280.91 | 0.5709 | 289.34    | 0.5882   |     | 295.81   | 0.5935  |      |        |        |     |     |  |
| 281.17 | 0.5715 | 289.65    | 0.5917   |     | 295.90   | 0.5947  |      |        |        |     |     |  |
| 281.34 | 0.5691 | 289.80    | 0.5891   |     | 296.00   | 0.5983  |      |        |        |     |     |  |
| 281.55 | 0.5737 | 289.97    | 0.5879   |     | 296.08   | 0.5948  |      |        |        |     |     |  |
| 281.93 | 0.5731 | 290.11    | 0.5915   |     | 296.20   | 0.5982  |      |        |        |     |     |  |
| 282.12 | 0.5772 | 290.28    | 0.5896   |     | 296.30   | 0.5958  |      |        |        |     |     |  |

|        | Thermal | Conducti | vity Val | ues | for Eth | ylene G | lyc | ol in W, | /m.K   | (Run-1) |        |
|--------|---------|----------|----------|-----|---------|---------|-----|----------|--------|---------|--------|
| Т (К)  | k       | Т (К)    | k        |     | Т (К)   | k       |     | Т (К)    | k      | Т (К)   | k      |
| 293.18 | 0.2447  | 322.17   | 0.2507   |     | 308.77  | 0.2500  |     | 302.43   | 0.2493 | 297.91  | 0.2492 |
| 293.23 | 0.2462  | 321.53   | 0.2509   |     | 308.56  | 0.2499  |     | 302.33   | 0.2493 | 297.86  | 0.2475 |
| 293.26 | 0.2479  | 321.22   | 0.2520   |     | 308.39  | 0.2471  |     | 302.07   | 0.2502 | 297.65  | 0.2490 |
| 293.35 | 0.2465  | 320.92   | 0.2517   |     | 308.18  | 0.2512  |     | 301.97   | 0.2494 | 297.58  | 0.2489 |
| 293.41 | 0.2457  | 320.31   | 0.2527   |     | 308.01  | 0.2490  |     | 301.87   | 0.2500 | 297.51  | 0.2465 |
| 293.65 | 0.2468  | 319.99   | 0.2534   |     | 307.82  | 0.2514  |     | 301.65   | 0.2484 | 297.44  | 0.2480 |
| 293.80 | 0.2467  | 319.38   | 0.2500   |     | 307.66  | 0.2486  |     | 301.51   | 0.2492 | 297.41  | 0.2488 |
| 337.66 | 0.2533  | 319.09   | 0.2488   |     | 307.48  | 0.2521  |     | 301.26   | 0.2471 | 297.36  | 0.2513 |
| 337.16 | 0.2529  | 318.77   | 0.2494   |     | 307.33  | 0.2506  |     | 301.13   | 0.2492 | 297.30  | 0.2507 |
| 336.63 | 0.2533  | 318.20   | 0.2524   |     | 307.13  | 0.2471  |     | 301.01   | 0.2480 | 297.27  | 0.2499 |
| 336.12 | 0.2532  | 317.92   | 0.2487   |     | 306.95  | 0.2506  |     | 300.95   | 0.2497 | 297.16  | 0.2495 |
| 335.65 | 0.2550  | 317.68   | 0.2535   |     | 306.81  | 0.2495  |     | 300.83   | 0.2486 | 297.08  | 0.2469 |
| 335.16 | 0.2519  | 317.39   | 0.2508   |     | 306.63  | 0.2500  |     | 300.74   | 0.2473 | 297.01  | 0.2493 |
| 334.71 | 0.2577  | 317.13   | 0.2523   |     | 306.46  | 0.2515  |     | 300.64   | 0.2505 | 296.97  | 0.2485 |
| 334.23 | 0.2577  | 316.85   | 0.2492   |     | 306.27  | 0.2516  |     | 300.52   | 0.2467 | 296.87  | 0.2477 |
| 332.42 | 0.2556  | 316.59   | 0.2519   |     | 306.12  | 0.2507  |     | 300.43   | 0.2478 | 296.82  | 0.2501 |
| 331.96 | 0.2567  | 316.31   | 0.2497   |     | 305.97  | 0.2484  |     | 300.40   | 0.2507 | 296.80  | 0.2483 |
| 331.52 | 0.2549  | 316.08   | 0.2488   |     | 305.82  | 0.2489  |     | 300.25   | 0.2487 | 296.72  | 0.2494 |
| 331.11 | 0.2537  | 315.54   | 0.2498   |     | 305.67  | 0.2486  |     | 300.12   | 0.2481 | 296.67  | 0.2480 |
| 330.69 | 0.2537  | 314.78   | 0.2504   |     | 305.38  | 0.2481  |     | 300.02   | 0.2497 | 296.60  | 0.2474 |
| 330.29 | 0.2516  | 314.52   | 0.2506   |     | 305.22  | 0.2477  |     | 299.94   | 0.2482 | 296.47  | 0.2503 |
| 329.86 | 0.2509  | 314.28   | 0.2511   |     | 305.09  | 0.2480  |     | 299.82   | 0.2499 | 296.40  | 0.2483 |
| 329.46 | 0.2557  | 314.03   | 0.2480   |     | 304.93  | 0.2484  |     | 299.73   | 0.2499 | 296.38  | 0.2483 |
| 329.04 | 0.2515  | 313.81   | 0.2497   |     | 304.77  | 0.2512  |     | 299.67   | 0.2488 | 296.36  | 0.2476 |
| 328.66 | 0.2540  | 313.57   | 0.2528   |     | 304.64  | 0.2502  |     | 299.57   | 0.2496 | 296.27  | 0.2490 |
| 328.24 | 0.2518  | 313.11   | 0.2478   |     | 304.49  | 0.2472  |     | 299.48   | 0.2504 | 296.16  | 0.2492 |
| 327.86 | 0.2518  | 312.89   | 0.2501   |     | 304.34  | 0.2481  |     | 299.28   | 0.2482 | 296.12  | 0.2498 |
| 327.50 | 0.2522  | 312.45   | 0.2497   |     | 304.22  | 0.2507  |     | 299.19   | 0.2484 | 296.07  | 0.2481 |
| 327.11 | 0.2509  | 312.24   | 0.2503   |     | 304.04  | 0.2495  |     | 299.06   | 0.2484 | 296.01  | 0.2487 |
| 326.34 | 0.2552  | 311.99   | 0.2505   |     | 303.90  | 0.2513  |     | 298.97   | 0.2489 | 295.91  | 0.2495 |
| 325.96 | 0.2502  | 311.76   | 0.2489   |     | 303.75  | 0.2501  |     | 298.89   | 0.2480 | 295.88  | 0.2502 |
| 325.26 | 0.2508  | 311.54   | 0.2483   |     | 303.46  | 0.2513  |     | 298.78   | 0.2487 | 260.82  | 0.2485 |
| 324.90 | 0.2526  | 311.31   | 0.2498   |     | 303.34  | 0.2490  |     | 298.73   | 0.2469 | 260.97  | 0.2418 |
| 324.56 | 0.2547  | 311.11   | 0.2513   |     | 303.21  | 0.2481  |     | 298.61   | 0.2501 | 261.15  | 0.2412 |
| 324.22 | 0.2528  | 310.74   | 0.2494   |     | 303.08  | 0.2494  |     | 298.50   | 0.2476 | 261.23  | 0.2418 |
| 323.90 | 0.2546  | 310.56   | 0.2495   |     | 302.93  | 0.2490  |     | 298.32   | 0.2493 | 261.38  | 0.2425 |
| 323.54 | 0.2491  | 310.32   | 0.2518   |     | 302.81  | 0.2496  |     | 298.09   | 0.2494 | 261.73  | 0.2405 |
| 322.85 | 0.2512  | 309.32   | 0.2533   |     | 302.69  | 0.2511  |     | 298.00   | 0.2490 | 261.92  | 0.2423 |
| 322.53 | 0.2524  | 309.12   | 0.2498   |     | 302.56  | 0.2523  |     | 297.98   | 0.2492 | 262.14  | 0.2418 |

Appendix B: Tabulated Thermal Conductivity Results for Ethylene Glycol

|        | Therma | l Co | onductiv | vity Val | ues | for Eth | ylene G | lyc | ol in W | /m.K   | (Run-1) |        |
|--------|--------|------|----------|----------|-----|---------|---------|-----|---------|--------|---------|--------|
| Т(К)   | k      |      | T (K)    | k        |     | Т(К)    | k       |     | Т(К)    | k      | Т (К)   | k      |
| 262.36 | 0.2410 |      | 274.16   | 0.2420   |     | 282.74  | 0.2453  |     | 289.29  | 0.2454 | 294.79  | 0.2480 |
| 262.59 | 0.2402 |      | 274.35   | 0.2433   |     | 283.01  | 0.2455  |     | 289.43  | 0.2438 | 294.87  | 0.2475 |
| 262.85 | 0.2402 |      | 274.72   | 0.2450   |     | 283.13  | 0.2464  |     | 289.51  | 0.2460 | 294.93  | 0.2479 |
| 263.35 | 0.2433 |      | 274.92   | 0.2425   |     | 283.29  | 0.2451  |     | 289.62  | 0.2458 | 295.01  | 0.2464 |
| 263.57 | 0.2412 |      | 275.13   | 0.2441   |     | 283.55  | 0.2448  |     | 289.72  | 0.2472 | 295.14  | 0.2464 |
| 263.84 | 0.2413 |      | 275.28   | 0.2437   |     | 283.71  | 0.2453  |     | 289.96  | 0.2466 | 295.23  | 0.2474 |
| 264.09 | 0.2417 |      | 275.47   | 0.2435   |     | 284.00  | 0.2448  |     | 290.05  | 0.2447 | 295.27  | 0.2473 |
| 264.34 | 0.2407 |      | 275.88   | 0.2437   |     | 284.14  | 0.2446  |     | 290.16  | 0.2457 | 295.34  | 0.2486 |
| 264.61 | 0.2395 |      | 276.05   | 0.2455   |     | 284.29  | 0.2461  |     | 290.26  | 0.2448 | 295.43  | 0.2475 |
| 264.87 | 0.2399 |      | 276.22   | 0.2433   |     | 284.54  | 0.2451  |     | 290.42  | 0.2462 | 295.59  | 0.2487 |
| 265.16 | 0.2396 |      | 276.41   | 0.2433   |     | 284.68  | 0.2451  |     | 290.52  | 0.2451 | 295.78  | 0.2482 |
| 265.41 | 0.2401 |      | 276.61   | 0.2452   |     | 284.82  | 0.2460  |     | 290.61  | 0.2451 |         |        |
| 266.12 | 0.2417 |      | 276.76   | 0.2437   |     | 284.99  | 0.2459  |     | 290.80  | 0.2444 |         |        |
| 266.40 | 0.2416 |      | 276.97   | 0.2430   |     | 285.26  | 0.2441  |     | 290.93  | 0.2458 |         |        |
| 266.88 | 0.2413 |      | 277.87   | 0.2427   |     | 285.38  | 0.2452  |     | 291.22  | 0.2462 |         |        |
| 267.15 | 0.2406 |      | 278.05   | 0.2437   |     | 285.66  | 0.2461  |     | 291.42  | 0.2457 |         |        |
| 267.40 | 0.2421 |      | 278.24   | 0.2442   |     | 285.91  | 0.2436  |     | 291.56  | 0.2474 |         |        |
| 267.60 | 0.2442 |      | 278.38   | 0.2436   |     | 286.03  | 0.2451  |     | 291.65  | 0.2462 |         |        |
| 267.87 | 0.2398 |      | 278.54   | 0.2443   |     | 286.14  | 0.2448  |     | 291.75  | 0.2463 |         |        |
| 268.10 | 0.2413 |      | 278.88   | 0.2460   |     | 286.30  | 0.2455  |     | 292.15  | 0.2460 |         |        |
| 268.33 | 0.2425 |      | 279.07   | 0.2455   |     | 286.43  | 0.2461  |     | 292.23  | 0.2452 |         |        |
| 268.58 | 0.2426 |      | 279.22   | 0.2450   |     | 286.56  | 0.2456  |     | 292.34  | 0.2461 |         |        |
| 268.82 | 0.2425 |      | 279.41   | 0.2454   |     | 286.94  | 0.2445  |     | 292.43  | 0.2459 |         |        |
| 269.31 | 0.2418 |      | 279.57   | 0.2436   |     | 287.08  | 0.2460  |     | 292.62  | 0.2463 |         |        |
| 269.54 | 0.2424 |      | 279.75   | 0.2443   |     | 287.20  | 0.2458  |     | 292.91  | 0.2467 |         |        |
| 269.74 | 0.2414 |      | 279.91   | 0.2457   |     | 287.32  | 0.2463  |     | 293.15  | 0.2463 |         |        |
| 270.22 | 0.2413 |      | 280.24   | 0.2438   |     | 287.43  | 0.2447  |     | 293.26  | 0.2450 |         |        |
| 270.44 | 0.2415 |      | 280.39   | 0.2441   |     | 287.58  | 0.2456  |     | 293.36  | 0.2476 |         |        |
| 270.88 | 0.2411 |      | 280.54   | 0.2448   |     | 287.79  | 0.2461  |     | 293.43  | 0.2469 |         |        |
| 271.10 | 0.2418 |      | 280.71   | 0.2454   |     | 288.09  | 0.2457  |     | 293.50  | 0.2456 |         |        |
| 271.32 | 0.2443 |      | 280.90   | 0.2462   |     | 288.20  | 0.2452  |     | 293.61  | 0.2465 |         |        |
| 271.76 | 0.2420 |      | 281.05   | 0.2450   |     | 288.33  | 0.2455  |     | 293.76  | 0.2462 |         |        |
| 271.97 | 0.2431 |      | 281.17   | 0.2459   |     | 288.46  | 0.2461  |     | 293.89  | 0.2465 |         |        |
| 272.18 | 0.2420 |      | 281.48   | 0.2453   |     | 288.55  | 0.2462  |     | 294.02  | 0.2480 |         |        |
| 272.38 | 0.2427 |      | 281.65   | 0.2457   |     | 288.67  | 0.2444  |     | 294.26  | 0.2461 |         |        |
| 272.80 | 0.2438 |      | 281.82   | 0.2457   |     | 288.80  | 0.2440  |     | 294.35  | 0.2465 |         |        |
| 273.40 | 0.2433 |      | 282.08   | 0.2444   |     | 288.92  | 0.2446  |     | 294.45  | 0.2463 |         |        |
| 273.58 | 0.2427 |      | 282.23   | 0.2443   |     | 289.01  | 0.2463  |     | 294.58  | 0.2471 |         |        |
| 273.80 | 0.2425 |      | 282.57   | 0.2455   |     | 289.13  | 0.2456  |     | 294.66  | 0.2476 |         |        |

|        | Thermal | l Conducti | vity Val | ues | for Eth | ylene G | lyc | ol in W | /m.K   | (Run-2) |        |
|--------|---------|------------|----------|-----|---------|---------|-----|---------|--------|---------|--------|
| Т (К)  | k       | Т (К)      | k        |     | Т (К)   | k       |     | Т (К)   | k      | Т (К)   | k      |
| 350.50 | 0.2486  | 321.23     | 0.2488   |     | 309.73  | 0.2477  |     | 301.99  | 0.2494 | 264.48  | 0.2417 |
| 349.33 | 0.2491  | 320.93     | 0.2487   |     | 309.50  | 0.2519  |     | 301.88  | 0.2499 | 264.76  | 0.2405 |
| 348.25 | 0.2493  | 320.62     | 0.2505   |     | 309.32  | 0.2487  |     | 301.58  | 0.2500 | 264.99  | 0.2419 |
| 347.17 | 0.2492  | 320.32     | 0.2546   |     | 309.16  | 0.2501  |     | 301.46  | 0.2497 | 265.28  | 0.2417 |
| 346.16 | 0.2488  | 320.06     | 0.2486   |     | 309.01  | 0.2483  |     | 301.40  | 0.2491 | 266.03  | 0.2408 |
| 345.17 | 0.2528  | 319.82     | 0.2482   |     | 308.80  | 0.2499  |     | 301.28  | 0.2476 | 266.31  | 0.2407 |
| 344.23 | 0.2503  | 319.56     | 0.2509   |     | 308.52  | 0.2478  |     | 301.15  | 0.2479 | 266.57  | 0.2415 |
| 343.32 | 0.2485  | 319.30     | 0.2478   |     | 308.38  | 0.2507  |     | 300.76  | 0.2480 | 266.82  | 0.2406 |
| 342.44 | 0.2491  | 319.01     | 0.2511   |     | 308.19  | 0.2507  |     | 300.63  | 0.2496 | 267.07  | 0.2401 |
| 341.65 | 0.2520  | 318.77     | 0.2477   |     | 308.01  | 0.2494  |     | 300.45  | 0.2485 | 267.30  | 0.2410 |
| 340.89 | 0.2535  | 317.71     | 0.2524   |     | 307.92  | 0.2493  |     | 300.36  | 0.2494 | 267.54  | 0.2410 |
| 340.12 | 0.2523  | 317.46     | 0.2476   |     | 307.81  | 0.2490  |     | 300.28  | 0.2491 | 267.77  | 0.2419 |
| 339.37 | 0.2506  | 317.21     | 0.2497   |     | 307.62  | 0.2489  |     | 299.95  | 0.2485 | 268.01  | 0.2427 |
| 338.69 | 0.2528  | 316.94     | 0.2523   |     | 307.26  | 0.2509  |     | 299.85  | 0.2484 | 268.29  | 0.2422 |
| 338.01 | 0.2539  | 316.64     | 0.2489   |     | 306.93  | 0.2494  |     | 299.75  | 0.2492 | 268.52  | 0.2413 |
| 337.34 | 0.2521  | 316.39     | 0.2520   |     | 306.76  | 0.2500  |     | 299.67  | 0.2477 | 268.76  | 0.2414 |
| 336.07 | 0.2552  | 315.99     | 0.2490   |     | 306.53  | 0.2487  |     | 299.57  | 0.2487 | 269.26  | 0.2423 |
| 335.47 | 0.2515  | 315.75     | 0.2499   |     | 306.21  | 0.2492  |     | 299.48  | 0.2504 | 270.15  | 0.2414 |
| 334.92 | 0.2540  | 315.51     | 0.2498   |     | 305.97  | 0.2499  |     | 299.41  | 0.2480 | 270.44  | 0.2416 |
| 334.36 | 0.2504  | 315.33     | 0.2502   |     | 305.78  | 0.2487  |     | 299.32  | 0.2482 | 270.63  | 0.2438 |
| 333.82 | 0.2519  | 315.11     | 0.2507   |     | 305.59  | 0.2497  |     | 299.27  | 0.2501 | 270.84  | 0.2421 |
| 333.30 | 0.2561  | 314.88     | 0.2516   |     | 305.48  | 0.2488  |     | 299.16  | 0.2501 | 271.46  | 0.2436 |
| 330.41 | 0.2501  | 314.10     | 0.2507   |     | 305.29  | 0.2489  |     | 298.95  | 0.2497 | 271.67  | 0.2417 |
| 329.98 | 0.2495  | 313.94     | 0.2488   |     | 305.09  | 0.2497  |     | 298.84  | 0.2506 | 271.91  | 0.2435 |
| 329.59 | 0.2521  | 313.77     | 0.2511   |     | 304.91  | 0.2510  |     | 298.73  | 0.2488 | 272.12  | 0.2423 |
| 329.16 | 0.2537  | 313.27     | 0.2495   |     | 304.78  | 0.2482  |     | 298.64  | 0.2497 | 272.33  | 0.2427 |
| 327.93 | 0.2525  | 313.09     | 0.2514   |     | 304.35  | 0.2500  |     | 298.56  | 0.2479 | 272.52  | 0.2419 |
| 327.15 | 0.2491  | 312.90     | 0.2494   |     | 304.07  | 0.2495  |     | 261.50  | 0.2424 | 272.72  | 0.2429 |
| 325.37 | 0.2496  | 312.66     | 0.2502   |     | 303.94  | 0.2516  |     | 261.67  | 0.2426 | 272.96  | 0.2434 |
| 325.02 | 0.2530  | 312.48     | 0.2493   |     | 303.81  | 0.2503  |     | 261.77  | 0.2425 | 273.15  | 0.2432 |
| 324.68 | 0.2484  | 312.20     | 0.2498   |     | 303.58  | 0.2492  |     | 261.98  | 0.2411 | 273.35  | 0.2436 |
| 324.32 | 0.2500  | 311.79     | 0.2489   |     | 303.44  | 0.2499  |     | 262.15  | 0.2412 | 273.54  | 0.2436 |
| 324.01 | 0.2483  | 311.62     | 0.2504   |     | 303.35  | 0.2481  |     | 262.35  | 0.2422 | 273.74  | 0.2441 |
| 323.71 | 0.2502  | 311.24     | 0.2496   |     | 303.04  | 0.2480  |     | 262.59  | 0.2430 | 273.94  | 0.2447 |
| 323.41 | 0.2502  | 311.05     | 0.2513   |     | 302.82  | 0.2472  |     | 263.00  | 0.2406 | 274.15  | 0.2443 |
| 323.05 | 0.2483  | 310.66     | 0.2484   |     | 302.69  | 0.2488  |     | 263.25  | 0.2399 | 274.33  | 0.2427 |
| 322.74 | 0.2528  | 310.47     | 0.2491   |     | 302.52  | 0.2498  |     | 263.52  | 0.2404 | 274.51  | 0.2438 |
| 322.12 | 0.2523  | 310.13     | 0.2496   |     | 302.37  | 0.2482  |     | 263.80  | 0.2401 | 274.69  | 0.2438 |
| 321.81 | 0.2484  | 309.94     | 0.2471   |     | 302.26  | 0.2498  |     | 264.24  | 0.2401 | 274.89  | 0.2418 |

|        | Therma | l Co | onducti | vity Val | ues | for Eth | ylene G | lyc | ol in W | /m.K   | (Run-2) |        |
|--------|--------|------|---------|----------|-----|---------|---------|-----|---------|--------|---------|--------|
| T (K)  | k      |      | T (K)   | k        |     | Т (К)   | k       |     | T (K)   | k      | T (K)   | k      |
| 275.06 | 0.2440 |      | 284.18  | 0.2438   |     | 290.92  | 0.2456  |     | 295.67  | 0.2472 | 299.70  | 0.2487 |
| 275.27 | 0.2434 |      | 284.31  | 0.2442   |     | 291.04  | 0.2446  |     | 295.74  | 0.2484 | 299.86  | 0.2496 |
| 275.46 | 0.2422 |      | 284.43  | 0.2454   |     | 291.29  | 0.2457  |     | 295.87  | 0.2482 | 299.91  | 0.2500 |
| 276.02 | 0.2448 |      | 284.57  | 0.2452   |     | 291.38  | 0.2463  |     | 295.96  | 0.2489 | 300.01  | 0.2487 |
| 276.19 | 0.2448 |      | 284.68  | 0.2447   |     | 291.50  | 0.2451  |     | 296.04  | 0.2471 | 300.03  | 0.2505 |
| 276.59 | 0.2441 |      | 284.83  | 0.2456   |     | 291.71  | 0.2458  |     | 296.11  | 0.2492 | 300.39  | 0.2488 |
| 276.76 | 0.2434 |      | 285.15  | 0.2444   |     | 291.82  | 0.2451  |     | 296.19  | 0.2498 | 300.46  | 0.2499 |
| 277.11 | 0.2437 |      | 285.28  | 0.2459   |     | 291.95  | 0.2461  |     | 296.28  | 0.2504 | 300.91  | 0.2500 |
| 277.28 | 0.2427 |      | 285.38  | 0.2460   |     | 292.06  | 0.2471  |     | 296.42  | 0.2473 | 301.15  | 0.2491 |
| 277.41 | 0.2450 |      | 285.52  | 0.2455   |     | 292.19  | 0.2454  |     | 296.48  | 0.2493 | 301.42  | 0.2499 |
| 277.60 | 0.2427 |      | 285.66  | 0.2463   |     | 292.38  | 0.2466  |     | 296.60  | 0.2481 | 301.50  | 0.2488 |
| 278.13 | 0.2447 |      | 285.79  | 0.2462   |     | 292.45  | 0.2476  |     | 296.75  | 0.2497 | 301.55  | 0.2493 |
| 278.46 | 0.2446 |      | 286.06  | 0.2455   |     | 292.53  | 0.2463  |     | 296.87  | 0.2492 | 301.67  | 0.2496 |
| 278.65 | 0.2435 |      | 286.19  | 0.2452   |     | 292.71  | 0.2476  |     | 296.94  | 0.2468 | 301.90  | 0.2489 |
| 278.82 | 0.2431 |      | 286.46  | 0.2465   |     | 292.82  | 0.2455  |     | 297.13  | 0.2485 | 302.13  | 0.2500 |
| 279.19 | 0.2435 |      | 286.97  | 0.2463   |     | 293.13  | 0.2472  |     | 297.22  | 0.2494 | 302.26  | 0.2506 |
| 279.31 | 0.2444 |      | 287.11  | 0.2441   |     | 293.19  | 0.2483  |     | 297.28  | 0.2490 | 302.35  | 0.2491 |
| 279.48 | 0.2431 |      | 287.21  | 0.2449   |     | 293.39  | 0.2464  |     | 297.35  | 0.2486 | 302.92  | 0.2505 |
| 279.64 | 0.2450 |      | 287.35  | 0.2447   |     | 293.62  | 0.2470  |     | 297.52  | 0.2475 | 303.07  | 0.2494 |
| 279.82 | 0.2438 |      | 287.57  | 0.2456   |     | 293.71  | 0.2474  |     | 297.61  | 0.2465 |         |        |
| 280.30 | 0.2445 |      | 287.67  | 0.2453   |     | 293.78  | 0.2460  |     | 297.69  | 0.2492 |         |        |
| 280.46 | 0.2439 |      | 287.79  | 0.2453   |     | 293.90  | 0.2473  |     | 297.77  | 0.2480 |         |        |
| 280.60 | 0.2436 |      | 287.92  | 0.2450   |     | 294.00  | 0.2475  |     | 297.82  | 0.2467 |         |        |
| 280.77 | 0.2453 |      | 288.05  | 0.2459   |     | 294.17  | 0.2479  |     | 297.85  | 0.2490 |         |        |
| 281.06 | 0.2443 |      | 288.39  | 0.2451   |     | 294.35  | 0.2488  |     | 297.96  | 0.2497 |         |        |
| 281.20 | 0.2448 |      | 288.53  | 0.2466   |     | 294.43  | 0.2483  |     | 298.02  | 0.2503 |         |        |
| 281.53 | 0.2447 |      | 288.61  | 0.2467   |     | 294.49  | 0.2466  |     | 298.22  | 0.2483 |         |        |
| 281.67 | 0.2445 |      | 288.76  | 0.2449   |     | 294.55  | 0.2482  |     | 298.31  | 0.2487 |         |        |
| 281.84 | 0.2443 |      | 289.19  | 0.2463   |     | 294.62  | 0.2488  |     | 298.38  | 0.2508 |         |        |
| 282.00 | 0.2437 |      | 289.44  | 0.2459   |     | 294.73  | 0.2465  |     | 298.46  | 0.2503 |         |        |
| 282.14 | 0.2442 |      | 289.69  | 0.2454   |     | 294.79  | 0.2475  |     | 298.54  | 0.2487 |         |        |
| 282.42 | 0.2464 |      | 289.75  | 0.2452   |     | 294.87  | 0.2486  |     | 298.61  | 0.2504 |         |        |
| 282.77 | 0.2440 |      | 289.84  | 0.2458   |     | 294.96  | 0.2485  |     | 298.91  | 0.2488 |         |        |
| 282.89 | 0.2460 |      | 290.13  | 0.2454   |     | 295.06  | 0.2476  |     | 298.99  | 0.2483 |         |        |
| 283.15 | 0.2451 |      | 290.24  | 0.2456   |     | 295.14  | 0.2487  |     | 299.04  | 0.2499 |         |        |
| 283.48 | 0.2445 |      | 290.43  | 0.2457   |     | 295.28  | 0.2474  |     | 299.04  | 0.2495 |         |        |
| 283.58 | 0.2445 |      | 290.62  | 0.2460   |     | 295.36  | 0.2478  |     | 299.07  | 0.2499 |         |        |
| 283.89 | 0.2458 |      | 290.75  | 0.2453   |     | 295.45  | 0.2484  |     | 299.34  | 0.2495 |         |        |
| 284.02 | 0.2441 |      | 290.83  | 0.2465   |     | 295.59  | 0.2469  |     | 299.47  | 0.2480 |         |        |

|        | Thermal | l Conducti | vity Val | ues | for Eth | ylene G | lyc | ol in W | /m.K   | (Run-3) |        |
|--------|---------|------------|----------|-----|---------|---------|-----|---------|--------|---------|--------|
| Т (К)  | k       | Т (К)      | k        |     | Т (К)   | k       |     | Т (К)   | k      | Т (К)   | k      |
| 293.31 | 0.2444  | 325.66     | 0.2505   |     | 309.77  | 0.2508  |     | 302.95  | 0.2502 | 297.70  | 0.2477 |
| 293.28 | 0.2487  | 324.73     | 0.2547   |     | 309.43  | 0.2492  |     | 302.83  | 0.2491 | 297.54  | 0.2489 |
| 293.27 | 0.2476  | 324.42     | 0.2546   |     | 308.81  | 0.2506  |     | 302.73  | 0.2509 | 297.44  | 0.2498 |
| 293.28 | 0.2470  | 324.12     | 0.2500   |     | 308.35  | 0.2509  |     | 302.62  | 0.2506 | 297.36  | 0.2504 |
| 293.29 | 0.2464  | 323.81     | 0.2543   |     | 307.90  | 0.2475  |     | 302.47  | 0.2493 | 297.26  | 0.2484 |
| 293.29 | 0.2470  | 322.55     | 0.2535   |     | 307.72  | 0.2486  |     | 302.37  | 0.2480 | 297.21  | 0.2480 |
| 293.29 | 0.2482  | 321.87     | 0.2515   |     | 307.53  | 0.2489  |     | 302.23  | 0.2479 | 297.15  | 0.2501 |
| 293.29 | 0.2475  | 321.38     | 0.2495   |     | 307.22  | 0.2504  |     | 302.10  | 0.2474 | 297.07  | 0.2479 |
| 293.29 | 0.2462  | 321.09     | 0.2509   |     | 307.07  | 0.2512  |     | 301.99  | 0.2508 | 297.02  | 0.2497 |
| 293.27 | 0.2479  | 320.19     | 0.2512   |     | 306.78  | 0.2476  |     | 301.87  | 0.2502 | 296.91  | 0.2497 |
| 293.26 | 0.2474  | 319.88     | 0.2516   |     | 306.61  | 0.2505  |     | 301.36  | 0.2485 | 296.85  | 0.2492 |
| 293.23 | 0.2479  | 319.33     | 0.2501   |     | 306.48  | 0.2500  |     | 301.30  | 0.2479 | 296.79  | 0.2481 |
| 293.22 | 0.2484  | 318.81     | 0.2503   |     | 305.99  | 0.2478  |     | 301.20  | 0.2502 | 296.67  | 0.2500 |
| 293.23 | 0.2469  | 318.60     | 0.2508   |     | 309.46  | 0.2488  |     | 301.07  | 0.2486 | 296.58  | 0.2471 |
| 293.24 | 0.2487  | 318.28     | 0.2508   |     | 309.12  | 0.2506  |     | 300.93  | 0.2503 | 296.46  | 0.2497 |
| 293.24 | 0.2479  | 317.98     | 0.2519   |     | 308.94  | 0.2509  |     | 300.69  | 0.2493 | 296.26  | 0.2495 |
| 293.25 | 0.2462  | 317.78     | 0.2497   |     | 308.76  | 0.2493  |     | 300.54  | 0.2502 | 296.13  | 0.2487 |
| 293.24 | 0.2468  | 317.52     | 0.2511   |     | 308.56  | 0.2500  |     | 300.25  | 0.2485 | 296.02  | 0.2482 |
| 293.24 | 0.2470  | 317.29     | 0.2525   |     | 308.17  | 0.2489  |     | 300.12  | 0.2500 | 260.59  | 0.2415 |
| 293.24 | 0.2487  | 316.83     | 0.2527   |     | 307.81  | 0.2485  |     | 300.04  | 0.2474 | 260.68  | 0.2410 |
| 293.23 | 0.2486  | 316.56     | 0.2490   |     | 307.64  | 0.2468  |     | 299.95  | 0.2509 | 260.82  | 0.2430 |
| 338.10 | 0.2525  | 316.30     | 0.2487   |     | 307.46  | 0.2501  |     | 299.73  | 0.2501 | 261.08  | 0.2415 |
| 336.23 | 0.2536  | 316.03     | 0.2509   |     | 307.15  | 0.2517  |     | 299.60  | 0.2501 | 261.25  | 0.2418 |
| 335.32 | 0.2556  | 315.83     | 0.2497   |     | 306.96  | 0.2513  |     | 299.30  | 0.2508 | 261.45  | 0.2405 |
| 334.86 | 0.2541  | 315.63     | 0.2497   |     | 306.09  | 0.2510  |     | 299.21  | 0.2494 | 261.62  | 0.2415 |
| 334.40 | 0.2551  | 314.71     | 0.2518   |     | 305.95  | 0.2492  |     | 299.09  | 0.2493 | 262.06  | 0.2415 |
| 333.54 | 0.2518  | 314.04     | 0.2487   |     | 305.75  | 0.2498  |     | 298.94  | 0.2503 | 262.28  | 0.2404 |
| 332.30 | 0.2522  | 313.86     | 0.2516   |     | 305.42  | 0.2512  |     | 298.72  | 0.2485 | 262.50  | 0.2413 |
| 331.89 | 0.2545  | 313.63     | 0.2484   |     | 305.30  | 0.2496  |     | 298.64  | 0.2497 | 262.76  | 0.2425 |
| 331.50 | 0.2541  | 313.15     | 0.2478   |     | 304.97  | 0.2504  |     | 298.51  | 0.2503 | 262.98  | 0.2419 |
| 331.10 | 0.2552  | 312.70     | 0.2505   |     | 304.83  | 0.2499  |     | 298.44  | 0.2469 | 263.22  | 0.2415 |
| 330.69 | 0.2520  | 312.49     | 0.2485   |     | 304.24  | 0.2503  |     | 298.39  | 0.2468 | 263.45  | 0.2405 |
| 329.21 | 0.2550  | 312.30     | 0.2492   |     | 304.05  | 0.2495  |     | 298.34  | 0.2500 | 263.73  | 0.2402 |
| 328.82 | 0.2520  | 312.03     | 0.2500   |     | 303.92  | 0.2512  |     | 298.26  | 0.2498 | 263.96  | 0.2402 |
| 328.46 | 0.2523  | 311.89     | 0.2507   |     | 303.80  | 0.2487  |     | 298.07  | 0.2483 | 264.19  | 0.2402 |
| 328.13 | 0.2533  | 311.67     | 0.2509   |     | 303.66  | 0.2512  |     | 298.00  | 0.2490 | 264.44  | 0.2409 |
| 327.44 | 0.2532  | 311.12     | 0.2499   |     | 303.38  | 0.2511  |     | 297.93  | 0.2504 | 264.68  | 0.2430 |
| 327.09 | 0.2503  | 310.33     | 0.2492   |     | 303.24  | 0.2497  |     | 297.86  | 0.2497 | 264.92  | 0.2400 |
| 326.36 | 0.2531  | 310.15     | 0.2496   |     | 303.09  | 0.2483  |     | 297.80  | 0.2480 | 265.22  | 0.2412 |

|        | Therma | l Co | onducti | vity Val | ues | for Eth | ylene G | lyc | ol in W | /m.K   | ( | Run-3) |        |
|--------|--------|------|---------|----------|-----|---------|---------|-----|---------|--------|---|--------|--------|
| Т (К)  | k      |      | Т (К)   | k        |     | Т (К)   | k       |     | Т (К)   | k      |   | Т (К)  | k      |
| 265.50 | 0.2423 |      | 275.37  | 0.2436   |     | 283.67  | 0.2464  |     | 289.47  | 0.2458 |   | 294.60 | 0.2470 |
| 265.75 | 0.2416 |      | 275.54  | 0.2439   |     | 283.83  | 0.2433  |     | 289.58  | 0.2461 |   | 294.76 | 0.2466 |
| 265.99 | 0.2423 |      | 275.71  | 0.2425   |     | 283.95  | 0.2449  |     | 289.68  | 0.2460 |   | 294.83 | 0.2478 |
| 266.22 | 0.2415 |      | 275.93  | 0.2428   |     | 284.09  | 0.2461  |     | 289.88  | 0.2459 |   | 294.89 | 0.2470 |
| 266.45 | 0.2426 |      | 276.08  | 0.2452   |     | 284.25  | 0.2445  |     | 289.99  | 0.2456 |   | 294.99 | 0.2484 |
| 266.69 | 0.2423 |      | 276.26  | 0.2425   |     | 284.38  | 0.2453  |     | 290.12  | 0.2450 |   | 295.04 | 0.2479 |
| 266.95 | 0.2412 |      | 276.45  | 0.2428   |     | 284.52  | 0.2456  |     | 290.23  | 0.2459 |   | 295.14 | 0.2467 |
| 267.17 | 0.2402 |      | 276.64  | 0.2427   |     | 284.93  | 0.2446  |     | 290.32  | 0.2450 |   | 295.29 | 0.2480 |
| 267.39 | 0.2412 |      | 277.03  | 0.2429   |     | 285.07  | 0.2458  |     | 290.65  | 0.2447 |   | 295.42 | 0.2488 |
| 267.62 | 0.2402 |      | 277.16  | 0.2430   |     | 285.20  | 0.2444  |     | 290.75  | 0.2451 |   | 295.49 | 0.2492 |
| 267.88 | 0.2412 |      | 277.37  | 0.2453   |     | 285.33  | 0.2451  |     | 291.00  | 0.2460 |   | 295.56 | 0.2475 |
| 268.12 | 0.2412 |      | 277.68  | 0.2445   |     | 285.48  | 0.2464  |     | 291.09  | 0.2460 |   | 295.62 | 0.2491 |
| 268.38 | 0.2415 |      | 277.88  | 0.2427   |     | 285.74  | 0.2452  |     | 291.21  | 0.2468 |   | 295.76 | 0.2477 |
| 268.59 | 0.2429 |      | 278.01  | 0.2451   |     | 285.88  | 0.2444  |     | 291.30  | 0.2456 |   | 295.94 | 0.2485 |
| 269.02 | 0.2423 |      | 278.17  | 0.2453   |     | 286.00  | 0.2459  |     | 291.40  | 0.2469 |   | 296.08 | 0.2472 |
| 269.27 | 0.2423 |      | 278.36  | 0.2446   |     | 286.14  | 0.2452  |     | 291.51  | 0.2452 |   | 296.12 | 0.2481 |
| 269.49 | 0.2410 |      | 278.51  | 0.2443   |     | 286.28  | 0.2450  |     | 291.79  | 0.2457 |   | 296.22 | 0.2480 |
| 269.71 | 0.2421 |      | 278.68  | 0.2434   |     | 286.52  | 0.2457  |     | 292.00  | 0.2458 |   | 296.44 | 0.2466 |
| 270.42 | 0.2423 |      | 279.03  | 0.2442   |     | 286.76  | 0.2450  |     | 292.10  | 0.2472 |   | 296.54 | 0.2493 |
| 270.60 | 0.2433 |      | 279.22  | 0.2451   |     | 286.87  | 0.2459  |     | 292.26  | 0.2474 |   | 296.63 | 0.2475 |
| 270.82 | 0.2434 |      | 279.56  | 0.2436   |     | 287.02  | 0.2460  |     | 292.51  | 0.2452 |   | 296.71 | 0.2479 |
| 271.03 | 0.2423 |      | 279.78  | 0.2444   |     | 287.14  | 0.2461  |     | 292.70  | 0.2473 |   | 296.78 | 0.2475 |
| 271.26 | 0.2429 |      | 280.24  | 0.2442   |     | 287.27  | 0.2450  |     | 292.81  | 0.2475 |   | 296.84 | 0.2497 |
| 271.86 | 0.2424 |      | 280.57  | 0.2446   |     | 287.41  | 0.2444  |     | 293.03  | 0.2453 |   | 296.92 | 0.2488 |
| 272.05 | 0.2441 |      | 280.83  | 0.2453   |     | 287.55  | 0.2461  |     | 293.11  | 0.2462 |   | 296.99 | 0.2489 |
| 272.26 | 0.2441 |      | 281.18  | 0.2442   |     | 287.66  | 0.2457  |     | 293.20  | 0.2468 |   | 297.05 | 0.2475 |
| 272.66 | 0.2439 |      | 281.33  | 0.2441   |     | 287.77  | 0.2448  |     | 293.35  | 0.2461 |   | 297.15 | 0.2480 |
| 272.90 | 0.2444 |      | 281.51  | 0.2442   |     | 287.89  | 0.2461  |     | 293.59  | 0.2469 |   | 297.22 | 0.2473 |
| 273.08 | 0.2443 |      | 281.64  | 0.2443   |     | 288.02  | 0.2449  |     | 293.65  | 0.2459 |   | 297.30 | 0.2494 |
| 273.29 | 0.2437 |      | 281.78  | 0.2449   |     | 288.16  | 0.2455  |     | 293.76  | 0.2471 |   | 297.36 | 0.2501 |
| 273.47 | 0.2438 |      | 281.94  | 0.2441   |     | 288.28  | 0.2458  |     | 293.84  | 0.2474 |   | 297.42 | 0.2470 |
| 273.68 | 0.2411 |      | 282.09  | 0.2445   |     | 288.40  | 0.2468  |     | 293.89  | 0.2468 |   | 297.50 | 0.2490 |
| 273.87 | 0.2431 |      | 282.36  | 0.2441   |     | 288.50  | 0.2456  |     | 293.96  | 0.2459 |   | 297.58 | 0.2482 |
| 274.11 | 0.2423 |      | 282.50  | 0.2453   |     | 288.63  | 0.2459  |     | 294.08  | 0.2468 |   | 297.64 | 0.2490 |
| 274.28 | 0.2430 |      | 282.66  | 0.2449   |     | 288.74  | 0.2449  |     | 294.17  | 0.2466 |   | 297.73 | 0.2479 |
| 274.67 | 0.2439 |      | 282.81  | 0.2440   |     | 288.87  | 0.2458  |     | 294.26  | 0.2477 |   | 297.81 | 0.2491 |
| 274.82 | 0.2435 |      | 282.97  | 0.2453   |     | 288.99  | 0.2448  |     | 294.36  | 0.2473 |   | 297.87 | 0.2502 |
| 275.02 | 0.2436 |      | 283.12  | 0.2458   |     | 289.13  | 0.2458  |     | 294.45  | 0.2469 |   | 298.09 | 0.2503 |
| 275.20 | 0.2447 |      | 283.26  | 0.2462   |     | 289.27  | 0.2456  |     | 294.53  | 0.2482 |   | 298.43 | 0.2500 |

|        | Therma | l Co | onducti | vity Val | ues | for Eth | ylene G | lyc | ol in W | /m.K |   | (Run-3) |  |
|--------|--------|------|---------|----------|-----|---------|---------|-----|---------|------|---|---------|--|
| Т (К)  | k      |      |         |          |     |         |         |     |         |      |   |         |  |
| 298.69 | 0.2492 |      |         |          |     |         |         |     |         |      |   |         |  |
| 298.74 | 0.2501 |      |         |          |     |         |         |     |         |      |   |         |  |
| 298.90 | 0.2491 |      |         |          |     |         |         |     |         |      |   |         |  |
| 298.97 | 0.2502 |      |         |          |     |         |         |     |         |      |   |         |  |
| 299.40 | 0.2493 |      |         |          |     |         |         |     |         |      |   |         |  |
| 299.93 | 0.2509 |      |         |          |     |         |         |     |         |      |   |         |  |
| 300.56 | 0.2505 |      |         |          |     |         |         |     |         |      |   |         |  |
| 300.69 | 0.2483 |      |         |          |     |         |         |     |         |      |   |         |  |
| 300.96 | 0.2498 |      |         |          |     |         |         |     |         |      |   |         |  |
| 301.36 | 0.2497 |      |         |          |     |         |         |     |         |      |   |         |  |
| 301.40 | 0.2500 |      |         |          |     |         |         |     |         |      |   |         |  |
| 301.98 | 0.2494 |      |         |          |     |         |         |     |         |      |   |         |  |
| 302.46 | 0.2507 |      |         |          |     |         |         |     |         |      |   |         |  |
| 302.83 | 0.2500 |      |         |          |     |         |         |     |         |      |   |         |  |
| 303.51 | 0.2509 |      |         |          |     |         |         |     |         |      |   |         |  |
| 303.76 | 0.2501 |      |         |          |     |         |         |     |         |      |   |         |  |
| 303.77 | 0.2500 |      |         |          |     |         |         |     |         |      |   |         |  |
|        |        |      |         |          |     |         |         |     |         |      |   |         |  |
|        |        |      |         |          |     |         |         |     |         |      |   |         |  |
|        |        | _    |         |          |     |         |         |     |         |      |   |         |  |
|        |        |      |         |          |     |         |         |     |         |      |   |         |  |
|        |        |      |         |          |     |         |         |     |         |      |   |         |  |
|        |        | _    |         |          |     |         |         |     |         |      |   |         |  |
|        |        | _    |         |          |     |         |         |     |         |      | _ |         |  |
|        |        | _    |         |          |     |         |         |     |         |      | _ |         |  |
|        |        | _    |         |          |     |         |         |     |         |      |   |         |  |
|        |        | _    |         |          |     |         |         |     |         |      | _ |         |  |
|        |        | _    |         |          |     |         |         |     |         |      | _ |         |  |
|        |        | _    |         |          |     |         |         |     |         |      | _ |         |  |
|        |        | _    |         |          |     |         |         |     |         |      | _ |         |  |
|        |        | _    |         |          |     |         |         |     |         |      |   |         |  |
|        |        | _    |         |          |     |         |         |     |         |      |   |         |  |
|        |        | _    |         |          |     |         |         |     |         |      |   |         |  |
|        |        | _    |         |          |     |         |         |     |         |      |   |         |  |
|        |        | _    |         |          |     |         |         |     |         |      |   |         |  |
|        |        | _    |         |          |     |         |         |     |         |      |   |         |  |
|        |        | _    |         |          |     |         |         |     |         |      |   |         |  |
|        |        | _    |         |          |     |         |         |     |         |      |   |         |  |

|        | Ther   | mal Condu | uctivity | Va | lues for | Glycero | ol ir | n W/m.H | Κ (    | [Ru | n-1)   |        |
|--------|--------|-----------|----------|----|----------|---------|-------|---------|--------|-----|--------|--------|
| Т (К)  | k      | Т (К)     | k        |    | Т (К)    | k       |       | T (K)   | k      |     | Т (К)  | k      |
| 294.19 | 0.2755 | 304.28    | 0.2769   |    | 310.77   | 0.2770  |       | 316.09  | 0.2778 |     | 319.57 | 0.2790 |
| 294.14 | 0.2760 | 304.54    | 0.2764   |    | 310.81   | 0.2765  |       | 316.19  | 0.2773 |     | 319.54 | 0.2787 |
| 294.23 | 0.2752 | 304.82    | 0.2748   |    | 310.86   | 0.2767  |       | 316.29  | 0.2778 |     | 319.64 | 0.2770 |
| 294.29 | 0.2753 | 305.36    | 0.2764   |    | 310.91   | 0.2786  |       | 316.39  | 0.2782 |     | 319.74 | 0.2779 |
| 294.60 | 0.2767 | 305.68    | 0.2741   |    | 311.03   | 0.2786  |       | 316.46  | 0.2785 |     | 319.67 | 0.2787 |
| 294.78 | 0.2755 | 305.90    | 0.2768   |    | 311.11   | 0.2763  |       | 316.61  | 0.2754 |     | 319.62 | 0.2771 |
| 294.98 | 0.2753 | 306.18    | 0.2742   |    | 311.30   | 0.2769  |       | 316.73  | 0.2786 |     | 319.63 | 0.2789 |
| 295.25 | 0.2765 | 306.44    | 0.2765   |    | 311.47   | 0.2772  |       | 316.78  | 0.2764 |     | 319.62 | 0.2790 |
| 295.50 | 0.2731 | 306.66    | 0.2744   |    | 311.62   | 0.2792  |       | 316.83  | 0.2775 |     | 319.66 | 0.2774 |
| 295.76 | 0.2737 | 306.84    | 0.2749   |    | 311.78   | 0.2779  |       | 316.96  | 0.2777 |     | 319.61 | 0.2776 |
| 295.98 | 0.2765 | 307.01    | 0.2751   |    | 311.88   | 0.2763  |       | 317.07  | 0.2781 |     | 319.63 | 0.2787 |
| 296.23 | 0.2762 | 307.29    | 0.2748   |    | 312.01   | 0.2769  |       | 317.17  | 0.2782 |     | 319.60 | 0.2781 |
| 296.47 | 0.2728 | 307.50    | 0.2761   |    | 312.10   | 0.2773  |       | 317.30  | 0.2772 |     | 319.71 | 0.2776 |
| 296.66 | 0.2757 | 307.70    | 0.2761   |    | 312.30   | 0.2772  |       | 317.32  | 0.2770 |     | 319.71 | 0.2780 |
| 296.90 | 0.2762 | 307.84    | 0.2778   |    | 312.75   | 0.2765  |       | 317.48  | 0.2770 |     | 319.75 | 0.2783 |
| 297.10 | 0.2755 | 307.97    | 0.2763   |    | 312.89   | 0.2771  |       | 317.69  | 0.2782 |     | 319.73 | 0.2794 |
| 297.35 | 0.2763 | 308.15    | 0.2778   |    | 312.96   | 0.2765  |       | 317.77  | 0.2795 |     | 319.79 | 0.2781 |
| 297.57 | 0.2733 | 308.27    | 0.2768   |    | 313.05   | 0.2786  |       | 318.01  | 0.2782 |     | 319.76 | 0.2782 |
| 297.74 | 0.2758 | 308.39    | 0.2777   |    | 313.56   | 0.2768  |       | 318.12  | 0.2771 |     | 319.74 | 0.2781 |
| 297.95 | 0.2765 | 308.47    | 0.2782   |    | 313.69   | 0.2778  |       | 318.23  | 0.2771 |     | 319.79 | 0.2795 |
| 298.20 | 0.2750 | 308.66    | 0.2746   |    | 313.78   | 0.2763  |       | 318.34  | 0.2772 |     | 319.77 | 0.2794 |
| 298.44 | 0.2742 | 308.72    | 0.2765   |    | 313.98   | 0.2764  |       | 318.44  | 0.2778 |     | 319.85 | 0.2789 |
| 298.68 | 0.2757 | 308.73    | 0.2771   |    | 314.15   | 0.2778  |       | 318.57  | 0.2779 |     | 319.83 | 0.2788 |
| 298.87 | 0.2746 | 308.84    | 0.2769   |    | 314.30   | 0.2770  |       | 318.67  | 0.2788 |     | 319.88 | 0.2789 |
| 299.43 | 0.2760 | 308.88    | 0.2779   |    | 314.36   | 0.2769  |       | 318.77  | 0.2776 |     | 319.91 | 0.2786 |
| 299.65 | 0.2762 | 308.96    | 0.2788   |    | 314.59   | 0.2773  |       | 318.85  | 0.2761 |     | 319.87 | 0.2780 |
| 299.90 | 0.2750 | 309.06    | 0.2770   |    | 314.69   | 0.2778  |       | 318.93  | 0.2794 |     | 319.89 | 0.2781 |
| 300.16 | 0.2755 | 309.20    | 0.2786   |    | 314.69   | 0.2768  |       | 318.92  | 0.2785 |     | 319.85 | 0.2793 |
| 300.38 | 0.2739 | 309.30    | 0.2769   |    | 314.90   | 0.2789  |       | 319.06  | 0.2772 |     | 319.88 | 0.2773 |
| 300.64 | 0.2752 | 309.57    | 0.2772   |    | 314.94   | 0.2764  |       | 319.18  | 0.2775 |     | 320.04 | 0.2772 |
| 300.97 | 0.2752 | 309.70    | 0.2767   |    | 315.04   | 0.2779  |       | 319.22  | 0.2773 |     | 320.25 | 0.2774 |
| 301.29 | 0.2749 | 309.83    | 0.2768   |    | 315.12   | 0.2771  |       | 319.24  | 0.2782 |     | 320.48 | 0.2790 |
| 301.84 | 0.2742 | 310.04    | 0.2769   |    | 315.24   | 0.2760  |       | 319.26  | 0.2791 |     | 320.58 | 0.2778 |
| 302.05 | 0.2744 | 310.11    | 0.2766   |    | 315.29   | 0.2783  |       | 319.33  | 0.2757 |     | 320.67 | 0.2793 |
| 302.31 | 0.2743 | 310.23    | 0.2773   |    | 315.37   | 0.2761  |       | 319.36  | 0.2773 |     | 320.78 | 0.2785 |
| 302.64 | 0.2735 | 310.34    | 0.2778   |    | 315.41   | 0.2780  |       | 319.41  | 0.2769 |     | 320.79 | 0.2767 |
| 302.93 | 0.2746 | 310.44    | 0.2767   |    | 315.72   | 0.2763  |       | 319.45  | 0.2780 |     | 320.97 | 0.2772 |
| 303.43 | 0.2728 | 310.53    | 0.2764   |    | 315.75   | 0.2763  |       | 319.44  | 0.2770 |     | 321.06 | 0.2789 |
| 303.93 | 0.2770 | 310.64    | 0.2757   |    | 315.99   | 0.2763  |       | 319.44  | 0.2790 |     | 321.12 | 0.2788 |

Appendix C: Tabulated Thermal Conductivity Results for Glycerol

|        | The    | rm | al Cond | uctivity | Va | lues for | Glycero | ol iı | n W/m.l | К (    | Ru | n-1)   |        |
|--------|--------|----|---------|----------|----|----------|---------|-------|---------|--------|----|--------|--------|
| T (K)  | k      |    | Т (К)   | k        |    | Т (К)    | k       |       | Т (К)   | k      |    | Т (К)  | k      |
| 321.17 | 0.2773 |    | 322.27  | 0.2770   |    | 330.52   | 0.2792  |       | 335.58  | 0.2786 |    | 344.39 | 0.2811 |
| 321.28 | 0.2778 |    | 322.63  | 0.2784   |    | 330.58   | 0.2801  |       | 335.73  | 0.2796 |    | 344.60 | 0.2817 |
| 321.39 | 0.2776 |    | 322.93  | 0.2780   |    | 330.63   | 0.2779  |       | 335.89  | 0.2781 |    | 344.68 | 0.2816 |
| 321.54 | 0.2770 |    | 323.21  | 0.2784   |    | 330.66   | 0.2796  |       | 336.07  | 0.2781 |    | 344.91 | 0.2792 |
| 321.81 | 0.2776 |    | 323.78  | 0.2773   |    | 330.74   | 0.2782  |       | 336.22  | 0.2797 |    | 345.15 | 0.2808 |
| 321.97 | 0.2797 |    | 324.03  | 0.2792   |    | 330.80   | 0.2801  |       | 337.04  | 0.2803 |    | 345.38 | 0.2819 |
| 322.08 | 0.2792 |    | 324.73  | 0.2795   |    | 330.85   | 0.2784  |       | 337.17  | 0.2825 |    | 345.27 | 0.2783 |
| 322.17 | 0.2795 |    | 324.97  | 0.2782   |    | 330.88   | 0.2804  |       | 337.40  | 0.2806 |    | 345.72 | 0.2811 |
| 322.60 | 0.2778 |    | 325.23  | 0.2780   |    | 330.91   | 0.2812  |       | 337.73  | 0.2791 |    | 345.65 | 0.2815 |
| 323.11 | 0.2764 |    | 325.58  | 0.2793   |    | 330.92   | 0.2792  |       | 337.95  | 0.2802 |    | 345.78 | 0.2792 |
| 323.68 | 0.2768 |    | 325.84  | 0.2791   |    | 331.03   | 0.2826  |       | 338.05  | 0.2806 |    | 345.80 | 0.2789 |
| 324.21 | 0.2774 |    | 325.96  | 0.2784   |    | 331.13   | 0.2799  |       | 338.13  | 0.2796 |    | 345.91 | 0.2829 |
| 324.44 | 0.2792 |    | 326.09  | 0.2804   |    | 331.22   | 0.2803  |       | 338.22  | 0.2790 |    | 346.44 | 0.2815 |
| 324.61 | 0.2785 |    | 326.20  | 0.2797   |    | 331.35   | 0.2815  |       | 338.34  | 0.2786 |    | 346.72 | 0.2823 |
| 324.86 | 0.2781 |    | 326.56  | 0.2791   |    | 331.54   | 0.2810  |       | 338.65  | 0.2784 |    | 347.23 | 0.2794 |
| 325.09 | 0.2773 |    | 326.72  | 0.2795   |    | 331.92   | 0.2810  |       | 338.90  | 0.2807 |    | 347.36 | 0.2801 |
| 325.29 | 0.2787 |    | 326.85  | 0.2795   |    | 331.98   | 0.2792  |       | 339.03  | 0.2785 |    | 347.58 | 0.2789 |
| 325.51 | 0.2787 |    | 326.97  | 0.2807   |    | 332.14   | 0.2787  |       | 339.18  | 0.2791 |    | 347.69 | 0.2822 |
| 325.70 | 0.2779 |    | 327.11  | 0.2789   |    | 332.31   | 0.2801  |       | 340.16  | 0.2788 |    | 347.72 | 0.2805 |
| 326.17 | 0.2780 |    | 327.37  | 0.2800   |    | 332.44   | 0.2776  |       | 340.73  | 0.2781 |    | 347.95 | 0.2789 |
| 326.32 | 0.2786 |    | 327.50  | 0.2785   |    | 332.56   | 0.2778  |       | 340.92  | 0.2797 |    | 348.00 | 0.2827 |
| 326.45 | 0.2786 |    | 327.83  | 0.2791   |    | 332.72   | 0.2779  |       | 341.01  | 0.2797 |    | 348.22 | 0.2806 |
| 326.61 | 0.2783 |    | 328.40  | 0.2797   |    | 332.84   | 0.2807  |       | 341.29  | 0.2800 |    | 348.38 | 0.2794 |
| 326.79 | 0.2786 |    | 328.70  | 0.2804   |    | 333.02   | 0.2803  |       | 341.64  | 0.2789 |    | 348.63 | 0.2807 |
| 326.87 | 0.2780 |    | 328.73  | 0.2776   |    | 333.12   | 0.2815  |       | 341.69  | 0.2784 |    | 349.09 | 0.2794 |
| 327.06 | 0.2789 |    | 329.05  | 0.2785   |    | 333.23   | 0.2799  |       | 341.80  | 0.2800 |    |        |        |
| 327.27 | 0.2801 |    | 329.07  | 0.2803   |    | 333.37   | 0.2784  |       | 342.04  | 0.2823 |    |        |        |
| 327.40 | 0.2782 |    | 329.19  | 0.2786   |    | 333.51   | 0.2799  |       | 342.24  | 0.2781 |    |        |        |
| 327.56 | 0.2778 |    | 329.27  | 0.2811   |    | 333.71   | 0.2783  |       | 342.33  | 0.2800 |    |        |        |
| 327.64 | 0.2785 |    | 329.45  | 0.2785   |    | 333.79   | 0.2780  |       | 342.39  | 0.2805 |    |        |        |
| 327.82 | 0.2784 |    | 329.48  | 0.2788   |    | 333.94   | 0.2812  |       | 342.60  | 0.2788 |    |        |        |
| 327.91 | 0.2783 |    | 329.78  | 0.2802   |    | 333.99   | 0.2793  |       | 342.73  | 0.2812 |    |        |        |
| 328.35 | 0.2808 |    | 329.92  | 0.2798   |    | 334.18   | 0.2788  |       | 343.02  | 0.2817 |    |        |        |
| 328.64 | 0.2793 |    | 330.01  | 0.2800   |    | 334.28   | 0.2787  |       | 343.10  | 0.2788 |    |        |        |
| 328.81 | 0.2782 |    | 330.14  | 0.2802   |    | 334.43   | 0.2786  |       | 343.60  | 0.2813 |    |        |        |
| 328.66 | 0.2790 |    | 330.17  | 0.2801   |    | 334.62   | 0.2800  |       | 343.69  | 0.2780 |    |        |        |
| 320.61 | 0.2767 |    | 330.31  | 0.2794   |    | 334.81   | 0.2782  |       | 343.67  | 0.2826 |    |        |        |
| 321.09 | 0.2759 |    | 330.39  | 0.2794   |    | 335.02   | 0.2801  |       | 343.90  | 0.2783 |    |        |        |
| 321.44 | 0.2759 |    | 330.47  | 0.2781   |    | 335.35   | 0.2789  |       | 343.97  | 0.2793 |    |        |        |

|        | Ther   | rmal Cond | uctivity | Va | lues for | Glycero | ol ir | n W/m.I | К (    | Ru | n-2)   |        |
|--------|--------|-----------|----------|----|----------|---------|-------|---------|--------|----|--------|--------|
| T (K)  | k      | Т (К)     | k        |    | Т (К)    | k       |       | Т (К)   | k      |    | Т (К)  | k      |
| 292.10 | 0.2764 | 301.10    | 0.2757   |    | 309.73   | 0.2769  |       | 315.13  | 0.2766 |    | 323.55 | 0.2786 |
| 292.11 | 0.2753 | 301.22    | 0.2745   |    | 309.83   | 0.2765  |       | 315.22  | 0.2786 |    | 323.90 | 0.2766 |
| 292.19 | 0.2774 | 301.34    | 0.2768   |    | 309.95   | 0.2767  |       | 315.40  | 0.2781 |    | 324.12 | 0.2780 |
| 292.36 | 0.2762 | 301.48    | 0.2761   |    | 310.06   | 0.2769  |       | 315.42  | 0.2762 |    | 324.47 | 0.2787 |
| 292.48 | 0.2763 | 301.62    | 0.2768   |    | 310.12   | 0.2751  |       | 315.53  | 0.2780 |    | 324.76 | 0.2772 |
| 292.90 | 0.2750 | 301.78    | 0.2761   |    | 310.39   | 0.2774  |       | 315.64  | 0.2759 |    | 325.18 | 0.2776 |
| 293.12 | 0.2753 | 302.08    | 0.2770   |    | 310.45   | 0.2762  |       | 315.87  | 0.2770 |    | 325.58 | 0.2766 |
| 293.37 | 0.2747 | 302.20    | 0.2761   |    | 310.63   | 0.2773  |       | 315.98  | 0.2775 |    | 326.85 | 0.2777 |
| 293.64 | 0.2748 | 302.43    | 0.2755   |    | 310.78   | 0.2763  |       | 316.14  | 0.2780 |    | 327.52 | 0.2780 |
| 293.83 | 0.2763 | 302.62    | 0.2757   |    | 310.97   | 0.2772  |       | 316.35  | 0.2758 |    | 327.78 | 0.2781 |
| 294.17 | 0.2769 | 302.75    | 0.2753   |    | 311.27   | 0.2764  |       | 316.52  | 0.2769 |    | 327.98 | 0.2801 |
| 294.32 | 0.2757 | 302.94    | 0.2739   |    | 311.57   | 0.2778  |       | 316.93  | 0.2765 |    | 328.28 | 0.2775 |
| 294.45 | 0.2751 | 303.14    | 0.2770   |    | 311.94   | 0.2767  |       | 317.02  | 0.2774 |    | 328.45 | 0.2789 |
| 294.58 | 0.2763 | 303.41    | 0.2757   |    | 312.16   | 0.2769  |       | 317.54  | 0.2754 |    | 328.63 | 0.2786 |
| 294.68 | 0.2770 | 303.77    | 0.2757   |    | 312.30   | 0.2751  |       | 317.81  | 0.2757 |    | 328.78 | 0.2791 |
| 294.80 | 0.2763 | 303.92    | 0.2771   |    | 312.53   | 0.2755  |       | 318.05  | 0.2779 |    | 328.96 | 0.2783 |
| 294.92 | 0.2780 | 304.42    | 0.2777   |    | 312.94   | 0.2793  |       | 318.48  | 0.2762 |    | 329.11 | 0.2798 |
| 295.48 | 0.2780 | 305.01    | 0.2756   |    | 313.19   | 0.2789  |       | 318.70  | 0.2786 |    | 329.18 | 0.2784 |
| 295.81 | 0.2766 | 305.20    | 0.2740   |    | 313.41   | 0.2787  |       | 319.09  | 0.2773 |    | 329.26 | 0.2781 |
| 295.98 | 0.2777 | 305.64    | 0.2749   |    | 313.49   | 0.2773  |       | 319.21  | 0.2768 |    | 329.40 | 0.2801 |
| 296.13 | 0.2752 | 306.08    | 0.2752   |    | 313.58   | 0.2762  |       | 319.47  | 0.2774 |    | 329.42 | 0.2791 |
| 296.30 | 0.2751 | 306.36    | 0.2749   |    | 313.62   | 0.2777  |       | 319.60  | 0.2786 |    | 329.77 | 0.2807 |
| 296.55 | 0.2743 | 306.63    | 0.2765   |    | 313.73   | 0.2785  |       | 319.81  | 0.2771 |    | 329.98 | 0.2809 |
| 296.81 | 0.2764 | 306.79    | 0.2764   |    | 313.90   | 0.2766  |       | 319.91  | 0.2783 |    | 330.05 | 0.2784 |
| 297.04 | 0.2766 | 306.94    | 0.2766   |    | 313.99   | 0.2779  |       | 320.11  | 0.2794 |    | 330.14 | 0.2793 |
| 297.28 | 0.2765 | 307.20    | 0.2775   |    | 314.06   | 0.2775  |       | 320.29  | 0.2792 |    | 330.13 | 0.2789 |
| 297.71 | 0.2751 | 307.35    | 0.2760   |    | 314.14   | 0.2769  |       | 320.24  | 0.2785 |    | 330.26 | 0.2795 |
| 297.88 | 0.2775 | 307.53    | 0.2771   |    | 314.24   | 0.2770  |       | 320.39  | 0.2795 |    | 330.30 | 0.2803 |
| 298.09 | 0.2740 | 307.80    | 0.2765   |    | 314.40   | 0.2774  |       | 320.49  | 0.2782 |    | 330.32 | 0.2782 |
| 298.29 | 0.2750 | 308.01    | 0.2767   |    | 314.51   | 0.2777  |       | 320.57  | 0.2779 |    | 330.39 | 0.2797 |
| 298.72 | 0.2777 | 308.14    | 0.2778   |    | 314.56   | 0.2771  |       | 320.67  | 0.2790 |    | 330.41 | 0.2790 |
| 298.94 | 0.2748 | 308.32    | 0.2780   |    | 314.65   | 0.2796  |       | 321.00  | 0.2785 |    | 330.49 | 0.2801 |
| 299.16 | 0.2749 | 308.63    | 0.2769   |    | 314.71   | 0.2785  |       | 321.31  | 0.2775 |    | 330.54 | 0.2805 |
| 299.38 | 0.2773 | 308.77    | 0.2772   |    | 314.79   | 0.2777  |       | 321.61  | 0.2765 |    | 330.55 | 0.2786 |
| 299.56 | 0.2749 | 308.98    | 0.2774   |    | 314.89   | 0.2768  |       | 321.93  | 0.2778 |    | 330.59 | 0.2790 |
| 300.01 | 0.2752 | 309.11    | 0.2755   |    | 314.91   | 0.2784  |       | 322.35  | 0.2761 |    | 331.45 | 0.2801 |
| 300.29 | 0.2770 | 309.23    | 0.2764   |    | 315.01   | 0.2773  |       | 322.59  | 0.2771 |    | 331.61 | 0.2790 |
| 300.69 | 0.2760 | 309.43    | 0.2762   |    | 315.07   | 0.2770  |       | 323.00  | 0.2762 |    | 331.76 | 0.2791 |
| 300.88 | 0.2767 | 309.57    | 0.2763   |    | 315.11   | 0.2789  |       | 323.30  | 0.2763 |    | 331.96 | 0.2798 |

|        | The    | rm | al Condi | uctivity | Va | lues for | Glycero | ol iı | n W/m.l | К (    | Ru | n-3)   |        |
|--------|--------|----|----------|----------|----|----------|---------|-------|---------|--------|----|--------|--------|
| T (K)  | k      |    | T (K)    | k        |    | Т (К)    | k       |       | Т (К)   | k      |    | Т (К)  | k      |
| 292.88 | 0.2727 |    | 313.19   | 0.2786   |    | 324.22   | 0.2785  |       | 334.03  | 0.2781 |    | 341.91 | 0.2819 |
| 293.25 | 0.2755 |    | 313.41   | 0.2778   |    | 324.42   | 0.2820  |       | 334.15  | 0.2804 |    | 341.99 | 0.2809 |
| 293.47 | 0.2741 |    | 313.66   | 0.2795   |    | 324.72   | 0.2804  |       | 334.30  | 0.2791 |    | 342.03 | 0.2835 |
| 294.47 | 0.2739 |    | 313.92   | 0.2771   |    | 325.25   | 0.2811  |       | 334.39  | 0.2821 |    | 342.13 | 0.2804 |
| 294.85 | 0.2741 |    | 314.16   | 0.2790   |    | 325.67   | 0.2814  |       | 334.54  | 0.2802 |    | 342.24 | 0.2807 |
| 295.18 | 0.2740 |    | 314.42   | 0.2768   |    | 325.97   | 0.2808  |       | 334.90  | 0.2796 |    | 342.36 | 0.2833 |
| 295.56 | 0.2757 |    | 314.67   | 0.2782   |    | 326.21   | 0.2783  |       | 335.09  | 0.2798 |    | 342.35 | 0.2812 |
| 296.00 | 0.2732 |    | 314.93   | 0.2790   |    | 326.48   | 0.2807  |       | 335.32  | 0.2778 |    | 342.41 | 0.2804 |
| 296.49 | 0.2766 |    | 315.45   | 0.2792   |    | 326.68   | 0.2810  |       | 335.55  | 0.2805 |    | 342.44 | 0.2823 |
| 296.89 | 0.2744 |    | 315.68   | 0.2792   |    | 326.92   | 0.2811  |       | 335.74  | 0.2799 |    | 342.44 | 0.2803 |
| 297.29 | 0.2723 |    | 315.90   | 0.2775   |    | 327.15   | 0.2785  |       | 336.01  | 0.2808 |    | 342.66 | 0.2824 |
| 297.79 | 0.2757 |    | 316.17   | 0.2782   |    | 327.61   | 0.2824  |       | 336.08  | 0.2813 |    | 342.70 | 0.2802 |
| 298.29 | 0.2719 |    | 316.41   | 0.2790   |    | 327.82   | 0.2782  |       | 336.32  | 0.2829 |    | 342.69 | 0.2808 |
| 298.69 | 0.2736 |    | 316.59   | 0.2783   |    | 328.22   | 0.2778  |       | 336.51  | 0.2796 |    | 342.89 | 0.2818 |
| 299.13 | 0.2722 |    | 316.81   | 0.2799   |    | 329.05   | 0.2797  |       | 336.84  | 0.2800 |    | 342.87 | 0.2815 |
| 299.45 | 0.2754 |    | 317.23   | 0.2796   |    | 329.21   | 0.2785  |       | 337.18  | 0.2813 |    | 342.91 | 0.2835 |
| 300.84 | 0.2736 |    | 317.40   | 0.2795   |    | 329.55   | 0.2815  |       | 337.44  | 0.2782 |    | 342.97 | 0.2774 |
| 302.57 | 0.2760 |    | 317.61   | 0.2804   |    | 329.73   | 0.2796  |       | 337.77  | 0.2827 |    | 343.19 | 0.2802 |
| 302.99 | 0.2732 |    | 318.01   | 0.2788   |    | 329.90   | 0.2810  |       | 338.12  | 0.2833 |    | 343.23 | 0.2826 |
| 303.46 | 0.2750 |    | 318.21   | 0.2794   |    | 330.09   | 0.2798  |       | 338.52  | 0.2811 |    | 343.24 | 0.2817 |
| 304.65 | 0.2764 |    | 318.62   | 0.2795   |    | 330.25   | 0.2807  |       | 338.56  | 0.2780 |    | 343.27 | 0.2815 |
| 305.02 | 0.2742 |    | 318.81   | 0.2776   |    | 330.38   | 0.2788  |       | 338.77  | 0.2813 |    | 343.25 | 0.2830 |
| 305.36 | 0.2764 |    | 319.21   | 0.2800   |    | 330.57   | 0.2827  |       | 338.94  | 0.2829 |    | 343.21 | 0.2784 |
| 305.76 | 0.2747 |    | 319.38   | 0.2792   |    | 330.71   | 0.2796  |       | 339.05  | 0.2830 |    | 343.34 | 0.2808 |
| 306.15 | 0.2748 |    | 319.59   | 0.2778   |    | 330.84   | 0.2800  |       | 339.18  | 0.2814 |    | 343.40 | 0.2837 |
| 306.88 | 0.2742 |    | 319.72   | 0.2806   |    | 331.04   | 0.2791  |       | 339.44  | 0.2801 |    | 343.36 | 0.2839 |
| 307.13 | 0.2766 |    | 319.92   | 0.2788   |    | 331.33   | 0.2795  |       | 339.64  | 0.2817 |    | 343.57 | 0.2790 |
| 307.51 | 0.2757 |    | 320.15   | 0.2799   |    | 331.49   | 0.2778  |       | 339.94  | 0.2814 |    | 343.63 | 0.2825 |
| 307.89 | 0.2766 |    | 320.31   | 0.2808   |    | 331.61   | 0.2790  |       | 340.07  | 0.2778 |    | 343.73 | 0.2809 |
| 308.19 | 0.2766 |    | 320.90   | 0.2802   |    | 331.83   | 0.2781  |       | 340.26  | 0.2823 |    | 343.74 | 0.2798 |
| 308.54 | 0.2773 |    | 321.09   | 0.2810   |    | 332.00   | 0.2827  |       | 340.51  | 0.2808 |    | 343.75 | 0.2819 |
| 308.89 | 0.2769 |    | 321.27   | 0.2798   |    | 332.14   | 0.2802  |       | 340.62  | 0.2796 |    | 344.00 | 0.2806 |
| 310.24 | 0.2767 |    | 321.46   | 0.2800   |    | 332.29   | 0.2792  |       | 340.83  | 0.2817 |    | 344.00 | 0.2835 |
| 310.85 | 0.2761 |    | 321.91   | 0.2793   |    | 332.46   | 0.2812  |       | 340.98  | 0.2831 |    | 344.20 | 0.2795 |
| 311.41 | 0.2774 |    | 322.18   | 0.2801   |    | 332.60   | 0.2802  |       | 341.04  | 0.2812 |    | 344.23 | 0.2819 |
| 311.73 | 0.2779 |    | 322.45   | 0.2796   |    | 332.85   | 0.2782  |       | 341.22  | 0.2791 |    | 344.45 | 0.2806 |
| 312.04 | 0.2760 |    | 322.61   | 0.2793   |    | 333.13   | 0.2791  |       | 341.50  | 0.2784 |    | 344.63 | 0.2828 |
| 312.36 | 0.2766 |    | 323.14   | 0.2820   |    | 333.50   | 0.2787  |       | 341.58  | 0.2822 |    | 344.72 | 0.2829 |
| 312.87 | 0.2768 |    | 323.71   | 0.2791   |    | 333.83   | 0.2823  |       | 341.65  | 0.2814 |    | 344.95 | 0.2820 |

|        | The    | rm | al Cond | uctivity | Va | lues for | Glycero | ol ir | n W/m.l | К ( | Ru | n-3)  |   |
|--------|--------|----|---------|----------|----|----------|---------|-------|---------|-----|----|-------|---|
| Т (К)  | k      |    | Т (К)   | k        |    | Т (К)    | k       |       | Т (К)   | k   |    | T (K) | k |
| 345.13 | 0.2779 |    |         |          |    |          |         |       |         |     |    |       |   |
| 345.18 | 0.2793 |    |         |          |    |          |         |       |         |     |    |       |   |
| 345.36 | 0.2783 |    |         |          |    |          |         |       |         |     |    |       |   |
| 345.70 | 0.2768 |    |         |          |    |          |         |       |         |     |    |       |   |
| 345.87 | 0.2795 |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          | _  |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          | -  |          |         |       |         |     | -  |       |   |
|        |        |    |         |          | -  |          |         |       |         |     |    |       |   |
|        |        |    |         |          | -  |          |         |       |         |     |    |       |   |
|        |        |    |         |          | -  |          |         |       |         |     |    |       |   |
|        |        |    |         |          | -  |          |         |       |         |     | -  |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     | -  |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |
|        |        |    |         |          |    |          |         |       |         |     |    |       |   |

| Г      | hermal | Со | nductiv | ity Valu | ies | for Pro | pylene ( | Glyo | col in W | /m.K   | (Run-1 | )      |
|--------|--------|----|---------|----------|-----|---------|----------|------|----------|--------|--------|--------|
| T (K)  | k      |    | Т (К)   | k        |     | Т (К)   | k        |      | Т (К)    | k      | T (K)  | k      |
| 238.88 | 0.1855 |    | 270.06  | 0.1875   |     | 287.35  | 0.1895   |      | 296.48   | 0.1899 | 293.73 | 0.1905 |
| 239.00 | 0.1848 |    | 270.91  | 0.1879   |     | 287.66  | 0.1895   |      | 296.64   | 0.1912 | 293.87 | 0.1888 |
| 239.19 | 0.1837 |    | 271.31  | 0.1887   |     | 287.84  | 0.1882   |      | 296.94   | 0.1904 | 294.09 | 0.1889 |
| 239.49 | 0.1840 |    | 271.72  | 0.1882   |     | 288.54  | 0.1896   |      | 297.21   | 0.1901 | 294.25 | 0.1891 |
| 239.78 | 0.1828 |    | 272.52  | 0.1882   |     | 288.79  | 0.1900   |      | 297.44   | 0.1919 | 294.39 | 0.1904 |
| 240.20 | 0.1820 |    | 272.91  | 0.1887   |     | 289.02  | 0.1882   |      | 297.60   | 0.1912 | 294.51 | 0.1906 |
| 240.75 | 0.1821 |    | 273.31  | 0.1874   |     | 289.71  | 0.1883   |      | 297.87   | 0.1913 | 294.64 | 0.1908 |
| 241.23 | 0.1821 |    | 274.11  | 0.1879   |     | 290.13  | 0.1892   |      | 298.02   | 0.1913 | 294.72 | 0.1902 |
| 241.72 | 0.1823 |    | 274.47  | 0.1871   |     | 288.09  | 0.1898   |      | 298.43   | 0.1911 | 294.79 | 0.1908 |
| 242.27 | 0.1820 |    | 274.81  | 0.1876   |     | 288.02  | 0.1899   |      | 298.55   | 0.1906 | 294.85 | 0.1909 |
| 250.92 | 0.1846 |    | 275.54  | 0.1884   |     | 288.07  | 0.1896   |      | 298.66   | 0.1914 | 294.86 | 0.1889 |
| 251.59 | 0.1835 |    | 275.93  | 0.1891   |     | 288.20  | 0.1900   |      | 298.78   | 0.1920 | 294.95 | 0.1906 |
| 252.82 | 0.1830 |    | 276.30  | 0.1880   |     | 288.28  | 0.1900   |      | 298.90   | 0.1916 | 294.99 | 0.1908 |
| 253.47 | 0.1847 |    | 277.68  | 0.1877   |     | 288.83  | 0.1893   |      | 299.17   | 0.1912 | 295.00 | 0.1910 |
| 254.15 | 0.1852 |    | 278.02  | 0.1893   |     | 289.19  | 0.1904   |      | 299.29   | 0.1907 | 295.07 | 0.1905 |
| 254.73 | 0.1850 |    | 278.37  | 0.1881   |     | 289.43  | 0.1900   |      | 299.39   | 0.1911 | 295.07 | 0.1911 |
| 255.35 | 0.1849 |    | 278.72  | 0.1899   |     | 289.66  | 0.1886   |      | 299.52   | 0.1911 | 295.03 | 0.1913 |
| 256.52 | 0.1853 |    | 279.03  | 0.1888   |     | 290.09  | 0.1901   |      | 299.63   | 0.1916 | 295.02 | 0.1908 |
| 257.09 | 0.1853 |    | 280.01  | 0.1883   |     | 290.29  | 0.1902   |      | 299.74   | 0.1923 | 294.96 | 0.1914 |
| 257.63 | 0.1857 |    | 280.31  | 0.1898   |     | 290.53  | 0.1897   |      | 300.00   | 0.1912 | 294.90 | 0.1913 |
| 258.19 | 0.1852 |    | 280.67  | 0.1887   |     | 290.72  | 0.1891   |      | 300.10   | 0.1912 | 294.88 | 0.1900 |
| 258.75 | 0.1851 |    | 280.91  | 0.1893   |     | 291.18  | 0.1899   |      | 300.22   | 0.1906 | 294.89 | 0.1907 |
| 259.27 | 0.1862 |    | 281.26  | 0.1881   |     | 291.99  | 0.1884   |      | 300.31   | 0.1915 | 294.85 | 0.1903 |
| 259.85 | 0.1856 |    | 281.89  | 0.1893   |     | 292.40  | 0.1887   |      | 300.41   | 0.1914 | 294.91 | 0.1905 |
| 260.37 | 0.1863 |    | 282.16  | 0.1898   |     | 292.93  | 0.1889   |      | 300.51   | 0.1917 | 294.97 | 0.1911 |
| 260.87 | 0.1862 |    | 282.77  | 0.1885   |     | 293.14  | 0.1893   |      | 300.95   | 0.1905 | 295.06 | 0.1910 |
| 261.42 | 0.1852 |    | 283.05  | 0.1883   |     | 293.28  | 0.1893   |      | 301.02   | 0.1907 | 295.10 | 0.1904 |
| 261.92 | 0.1863 |    | 283.34  | 0.1887   |     | 293.49  | 0.1899   |      | 301.10   | 0.1905 | 295.19 | 0.1901 |
| 262.44 | 0.1873 |    | 283.62  | 0.1892   |     | 294.01  | 0.1888   |      | 301.23   | 0.1919 | 295.21 | 0.1905 |
| 262.98 | 0.1852 |    | 283.92  | 0.1900   |     | 294.17  | 0.1901   |      | 301.42   | 0.1932 | 295.27 | 0.1905 |
| 263.51 | 0.1873 |    | 284.46  | 0.1897   |     | 294.33  | 0.1893   |      | 301.72   | 0.1921 | 295.50 | 0.1905 |
| 264.49 | 0.1875 |    | 285.01  | 0.1896   |     | 294.87  | 0.1898   |      | 302.05   | 0.1918 | 295.60 | 0.1903 |
| 265.02 | 0.1863 |    | 285.28  | 0.1890   |     | 295.02  | 0.1901   |      | 292.97   | 0.1905 | 295.66 | 0.1907 |
| 265.46 | 0.1877 |    | 285.56  | 0.1883   |     | 295.19  | 0.1890   |      | 292.90   | 0.1900 | 295.73 | 0.1905 |
| 265.95 | 0.1862 |    | 285.81  | 0.1885   |     | 295.34  | 0.1889   |      | 292.85   | 0.1892 | 295.80 | 0.1908 |
| 266.47 | 0.1879 |    | 286.04  | 0.1890   |     | 295.69  | 0.1908   |      | 292.89   | 0.1901 | 295.85 | 0.1907 |
| 267.35 | 0.1873 |    | 286.58  | 0.1892   |     | 295.88  | 0.1897   |      | 293.05   | 0.1907 | 295.89 | 0.1901 |
| 268.28 | 0.1877 |    | 286.86  | 0.1901   |     | 296.00  | 0.1902   |      | 293.16   | 0.1895 | 295.96 | 0.1907 |
| 269.62 | 0.1879 |    | 287.14  | 0.1887   |     | 296.32  | 0.1908   |      | 293.36   | 0.1905 | 296.08 | 0.1897 |

Appendix D: Tabulated Thermal Conductivity Results for Propylene Glycol

| Т      | Thermal | Cor | nductiv | ity Valu | ies | for Proj | pylene ( | Glyo | col in W | /m.K   | (Run-1 | )      |
|--------|---------|-----|---------|----------|-----|----------|----------|------|----------|--------|--------|--------|
| Т (К)  | k       |     | T (K)   | k        |     | Т (К)    | k        |      | T (K)    | k      | T (K)  | k      |
| 296.14 | 0.1906  |     | 300.18  | 0.1907   |     | 303.73   | 0.1912   |      | 309.13   | 0.1912 | 321.39 | 0.1926 |
| 296.21 | 0.1896  |     | 300.21  | 0.1901   |     | 303.74   | 0.1913   |      | 309.40   | 0.1920 | 321.69 | 0.1909 |
| 296.25 | 0.1901  |     | 300.33  | 0.1906   |     | 303.76   | 0.1900   |      | 309.56   | 0.1923 | 321.93 | 0.1913 |
| 296.30 | 0.1906  |     | 300.40  | 0.1909   |     | 303.71   | 0.1907   |      | 309.71   | 0.1937 | 322.16 | 0.1927 |
| 296.36 | 0.1903  |     | 300.43  | 0.1908   |     | 294.41   | 0.1907   |      | 309.80   | 0.1912 | 322.42 | 0.1908 |
| 296.46 | 0.1908  |     | 300.47  | 0.1913   |     | 294.89   | 0.1910   |      | 309.92   | 0.1927 | 322.94 | 0.1917 |
| 296.52 | 0.1908  |     | 300.66  | 0.1897   |     | 295.34   | 0.1903   |      | 310.15   | 0.1928 | 323.49 | 0.1911 |
| 296.60 | 0.1905  |     | 300.79  | 0.1894   |     | 295.84   | 0.1894   |      | 310.26   | 0.1922 | 323.69 | 0.1914 |
| 296.64 | 0.1908  |     | 300.93  | 0.1892   |     | 296.39   | 0.1899   |      | 310.41   | 0.1934 | 323.90 | 0.1908 |
| 296.69 | 0.1911  |     | 301.12  | 0.1906   |     | 296.95   | 0.1892   |      | 310.65   | 0.1936 | 324.40 | 0.1926 |
| 296.75 | 0.1913  |     | 301.28  | 0.1893   |     | 297.44   | 0.1907   |      | 310.76   | 0.1918 | 324.57 | 0.1916 |
| 296.79 | 0.1903  |     | 301.40  | 0.1895   |     | 298.98   | 0.1898   |      | 310.81   | 0.1933 | 324.75 | 0.1927 |
| 296.83 | 0.1908  |     | 301.62  | 0.1902   |     | 299.83   | 0.1890   |      | 311.33   | 0.1922 | 324.97 | 0.1932 |
| 297.01 | 0.1901  |     | 301.87  | 0.1897   |     | 300.25   | 0.1891   |      | 311.51   | 0.1933 | 325.41 | 0.1915 |
| 297.19 | 0.1898  |     | 301.96  | 0.1898   |     | 300.58   | 0.1894   |      | 311.85   | 0.1915 | 325.58 | 0.1946 |
| 297.45 | 0.1903  |     | 301.99  | 0.1897   |     | 300.95   | 0.1899   |      | 312.04   | 0.1933 | 325.77 | 0.1921 |
| 297.59 | 0.1912  |     | 302.06  | 0.1910   |     | 301.31   | 0.1895   |      | 312.52   | 0.1911 | 325.98 | 0.1947 |
| 297.98 | 0.1900  |     | 302.37  | 0.1892   |     | 301.65   | 0.1891   |      | 312.73   | 0.1917 | 326.16 | 0.1918 |
| 298.09 | 0.1909  |     | 301.72  | 0.1918   |     | 302.05   | 0.1898   |      | 312.92   | 0.1923 | 326.30 | 0.1915 |
| 298.32 | 0.1899  |     | 302.14  | 0.1907   |     | 302.44   | 0.1891   |      | 313.10   | 0.1927 | 326.48 | 0.1939 |
| 298.58 | 0.1897  |     | 302.42  | 0.1895   |     | 302.70   | 0.1882   |      | 313.33   | 0.1922 | 326.71 | 0.1926 |
| 298.64 | 0.1892  |     | 302.54  | 0.1914   |     | 303.05   | 0.1902   |      | 313.77   | 0.1911 | 326.91 | 0.1921 |
| 298.76 | 0.1899  |     | 302.67  | 0.1896   |     | 303.31   | 0.1904   |      | 314.06   | 0.1913 | 327.44 | 0.1907 |
| 298.95 | 0.1897  |     | 302.78  | 0.1900   |     | 303.76   | 0.1899   |      | 314.27   | 0.1936 | 327.68 | 0.1914 |
| 299.04 | 0.1902  |     | 302.91  | 0.1899   |     | 304.01   | 0.1890   |      | 314.45   | 0.1927 | 328.57 | 0.1919 |
| 299.12 | 0.1899  |     | 303.23  | 0.1898   |     | 304.21   | 0.1906   |      | 314.74   | 0.1925 | 329.40 | 0.1909 |
| 299.18 | 0.1901  |     | 303.32  | 0.1907   |     | 304.58   | 0.1900   |      | 315.23   | 0.1919 | 330.45 | 0.1922 |
| 299.30 | 0.1898  |     | 303.40  | 0.1895   |     | 304.78   | 0.1907   |      | 315.52   | 0.1916 | 330.87 | 0.1909 |
| 299.36 | 0.1906  |     | 303.46  | 0.1905   |     | 305.39   | 0.1893   |      | 315.79   | 0.1919 | 317.52 | 0.1906 |
| 299.48 | 0.1894  |     | 303.51  | 0.1906   |     | 305.68   | 0.1901   |      | 316.40   | 0.1905 | 319.78 | 0.1907 |
| 299.55 | 0.1895  |     | 303.59  | 0.1901   |     | 306.52   | 0.1906   |      | 316.80   | 0.1902 | 320.45 | 0.1912 |
| 299.63 | 0.1909  |     | 303.76  | 0.1910   |     | 306.79   | 0.1907   |      | 317.19   | 0.1896 | 321.12 | 0.1918 |
| 299.70 | 0.1890  |     | 303.80  | 0.1899   |     | 307.03   | 0.1907   |      | 318.00   | 0.1917 | 321.66 | 0.1910 |
| 299.76 | 0.1903  |     | 303.83  | 0.1905   |     | 307.57   | 0.1912   |      | 318.72   | 0.1919 | 322.28 | 0.1929 |
| 299.81 | 0.1905  |     | 303.82  | 0.1905   |     | 307.84   | 0.1907   |      | 319.10   | 0.1905 | 322.81 | 0.1919 |
| 299.89 | 0.1900  |     | 303.77  | 0.1915   |     | 308.04   | 0.1917   |      | 319.84   | 0.1922 | 323.35 | 0.1922 |
| 299.99 | 0.1913  |     | 303.80  | 0.1895   |     | 308.63   | 0.1906   |      | 320.12   | 0.1908 | 323.86 | 0.1916 |
| 300.01 | 0.1903  |     | 303.81  | 0.1912   |     | 308.77   | 0.1901   |      | 320.80   | 0.1904 | 324.89 | 0.1927 |
| 300.13 | 0.1899  |     | 303.78  | 0.1907   |     | 308.99   | 0.1910   |      | 321.07   | 0.1913 | 325.38 | 0.1933 |

| ]      | Thermal | Со | nductiv | ity Valu | ies | for Proj | pylene ( | Glyo | col in W | /m.K   | (Run-1 | )      |
|--------|---------|----|---------|----------|-----|----------|----------|------|----------|--------|--------|--------|
| T (K)  | k       |    | Т (К)   | k        |     | Т (К)    | k        |      | Т (К)    | k      | Т (К)  | k      |
| 325.86 | 0.1909  |    | 336.88  | 0.1904   |     | 322.33   | 0.1934   |      | 309.44   | 0.1923 | 302.16 | 0.1931 |
| 326.80 | 0.1913  |    | 337.23  | 0.1934   |     | 322.03   | 0.1933   |      | 309.28   | 0.1926 | 302.03 | 0.1911 |
| 327.22 | 0.1917  |    | 337.36  | 0.1927   |     | 321.40   | 0.1938   |      | 309.08   | 0.1939 | 301.94 | 0.1928 |
| 327.64 | 0.1917  |    | 337.83  | 0.1926   |     | 320.83   | 0.1939   |      | 308.91   | 0.1939 | 301.73 | 0.1921 |
| 328.06 | 0.1941  |    | 338.32  | 0.1903   |     | 320.54   | 0.1921   |      | 308.72   | 0.1931 | 301.36 | 0.1931 |
| 329.15 | 0.1914  |    | 338.54  | 0.1911   |     | 319.86   | 0.1933   |      | 308.54   | 0.1930 | 301.23 | 0.1939 |
| 329.51 | 0.1914  |    | 338.86  | 0.1918   |     | 319.56   | 0.1911   |      | 308.35   | 0.1933 | 300.89 | 0.1932 |
| 329.84 | 0.1925  |    | 338.97  | 0.1920   |     | 319.00   | 0.1933   |      | 308.18   | 0.1944 | 300.80 | 0.1927 |
| 330.20 | 0.1953  |    | 337.91  | 0.1935   |     | 318.71   | 0.1922   |      | 307.99   | 0.1928 | 300.71 | 0.1931 |
| 331.17 | 0.1933  |    | 337.41  | 0.1923   |     | 318.41   | 0.1922   |      | 307.84   | 0.1918 |        |        |
| 331.42 | 0.1914  |    | 336.87  | 0.1933   |     | 318.14   | 0.1925   |      | 307.66   | 0.1921 |        |        |
| 331.74 | 0.1909  |    | 336.32  | 0.1962   |     | 317.85   | 0.1910   |      | 307.49   | 0.1917 |        |        |
| 332.60 | 0.1908  |    | 335.83  | 0.1945   |     | 317.55   | 0.1929   |      | 307.34   | 0.1932 |        |        |
| 333.19 | 0.1919  |    | 335.39  | 0.1920   |     | 317.23   | 0.1918   |      | 306.84   | 0.1918 |        |        |
| 333.83 | 0.1922  |    | 334.89  | 0.1943   |     | 316.93   | 0.1914   |      | 306.49   | 0.1942 |        |        |
| 334.28 | 0.1921  |    | 334.41  | 0.1944   |     | 316.68   | 0.1920   |      | 306.34   | 0.1932 |        |        |
| 334.44 | 0.1927  |    | 333.99  | 0.1923   |     | 316.41   | 0.1927   |      | 306.17   | 0.1920 |        |        |
| 334.62 | 0.1927  |    | 333.52  | 0.1935   |     | 316.17   | 0.1916   |      | 305.99   | 0.1936 |        |        |
| 334.92 | 0.1914  |    | 333.06  | 0.1954   |     | 315.94   | 0.1940   |      | 305.84   | 0.1912 |        |        |
| 335.26 | 0.1922  |    | 332.58  | 0.1928   |     | 315.68   | 0.1933   |      | 305.69   | 0.1939 |        |        |
| 335.72 | 0.1918  |    | 332.15  | 0.1956   |     | 314.93   | 0.1919   |      | 305.56   | 0.1932 |        |        |
| 336.41 | 0.1937  |    | 331.22  | 0.1930   |     | 314.71   | 0.1929   |      | 305.41   | 0.1921 |        |        |
| 337.23 | 0.1934  |    | 330.79  | 0.1949   |     | 314.44   | 0.1937   |      | 305.22   | 0.1928 |        |        |
| 337.36 | 0.1927  |    | 330.48  | 0.1916   |     | 314.14   | 0.1933   |      | 304.93   | 0.1931 |        |        |
| 337.83 | 0.1926  |    | 330.07  | 0.1934   |     | 313.42   | 0.1913   |      | 304.79   | 0.1913 |        |        |
| 338.86 | 0.1918  |    | 329.24  | 0.1935   |     | 313.02   | 0.1924   |      | 304.66   | 0.1933 |        |        |
| 338.97 | 0.1920  |    | 328.88  | 0.1941   |     | 312.81   | 0.1929   |      | 304.50   | 0.1917 |        |        |
| 333.65 | 0.1904  |    | 328.52  | 0.1916   |     | 312.54   | 0.1938   |      | 304.24   | 0.1937 |        |        |
| 333.83 | 0.1922  |    | 328.11  | 0.1928   |     | 312.33   | 0.1949   |      | 304.09   | 0.1937 |        |        |
| 334.12 | 0.1926  |    | 327.71  | 0.1937   |     | 312.08   | 0.1945   |      | 303.97   | 0.1930 |        |        |
| 334.28 | 0.1921  |    | 326.98  | 0.1959   |     | 311.88   | 0.1919   |      | 303.78   | 0.1929 |        |        |
| 334.44 | 0.1927  |    | 326.56  | 0.1919   |     | 311.43   | 0.1916   |      | 303.63   | 0.1924 |        |        |
| 334.62 | 0.1927  |    | 326.15  | 0.1927   |     | 311.02   | 0.1921   |      | 303.24   | 0.1930 |        |        |
| 334.92 | 0.1914  |    | 325.82  | 0.1926   |     | 310.81   | 0.1940   |      | 302.94   | 0.1942 |        |        |
| 335.26 | 0.1922  |    | 325.11  | 0.1913   |     | 310.65   | 0.1940   |      | 302.86   | 0.1921 |        |        |
| 335.72 | 0.1918  |    | 324.76  | 0.1909   |     | 310.43   | 0.1927   |      | 302.69   | 0.1943 |        |        |
| 336.22 | 0.1907  |    | 324.40  | 0.1924   |     | 310.05   | 0.1931   |      | 302.56   | 0.1929 |        |        |
| 336.41 | 0.1937  |    | 324.10  | 0.1951   |     | 309.84   | 0.1929   |      | 302.43   | 0.1928 |        |        |
| 336.66 | 0.1908  |    | 323.42  | 0.1933   |     | 309.61   | 0.1928   |      | 302.29   | 0.1936 |        |        |

| Т      | Thermal | Со | nductiv | ity Valu | ies | for Proj | pylene ( | Glyo | col in W | /m.K   | (Run-2 | )      |
|--------|---------|----|---------|----------|-----|----------|----------|------|----------|--------|--------|--------|
| Т (К)  | k       |    | Т (К)   | k        |     | Т (К)    | k        |      | T (K)    | k      | T (K)  | k      |
| 235.12 | 0.1834  |    | 262.16  | 0.1861   |     | 281.71   | 0.1897   |      | 294.26   | 0.1890 | 300.84 | 0.1922 |
| 235.34 | 0.1834  |    | 262.64  | 0.1865   |     | 282.31   | 0.1897   |      | 294.79   | 0.1897 | 301.15 | 0.1940 |
| 235.62 | 0.1817  |    | 263.14  | 0.1871   |     | 282.59   | 0.1892   |      | 294.90   | 0.1895 | 301.24 | 0.1921 |
| 235.91 | 0.1812  |    | 264.63  | 0.1868   |     | 282.87   | 0.1891   |      | 295.07   | 0.1906 | 301.33 | 0.1925 |
| 236.22 | 0.1826  |    | 265.13  | 0.1862   |     | 283.43   | 0.1888   |      | 295.25   | 0.1894 | 301.36 | 0.1916 |
| 236.66 | 0.1820  |    | 265.60  | 0.1874   |     | 283.72   | 0.1888   |      | 295.40   | 0.1901 | 301.48 | 0.1916 |
| 237.68 | 0.1821  |    | 266.08  | 0.1868   |     | 283.98   | 0.1889   |      | 295.52   | 0.1896 | 301.64 | 0.1923 |
| 238.20 | 0.1804  |    | 266.54  | 0.1879   |     | 284.23   | 0.1888   |      | 295.71   | 0.1908 | 301.84 | 0.1919 |
| 238.77 | 0.1806  |    | 267.49  | 0.1873   |     | 284.53   | 0.1889   |      | 295.87   | 0.1900 | 302.04 | 0.1921 |
| 239.37 | 0.1823  |    | 267.95  | 0.1878   |     | 285.06   | 0.1885   |      | 295.99   | 0.1908 | 302.11 | 0.1921 |
| 240.00 | 0.1811  |    | 268.37  | 0.1868   |     | 285.86   | 0.1889   |      | 296.15   | 0.1919 | 302.30 | 0.1920 |
| 240.64 | 0.1822  |    | 268.85  | 0.1877   |     | 286.09   | 0.1895   |      | 296.29   | 0.1911 | 302.51 | 0.1930 |
| 241.25 | 0.1818  |    | 269.28  | 0.1879   |     | 286.57   | 0.1893   |      | 296.40   | 0.1913 | 302.56 | 0.1935 |
| 242.00 | 0.1811  |    | 270.19  | 0.1884   |     | 286.80   | 0.1881   |      | 296.56   | 0.1909 | 302.60 | 0.1925 |
| 242.64 | 0.1819  |    | 270.56  | 0.1879   |     | 287.05   | 0.1892   |      | 296.67   | 0.1905 | 302.70 | 0.1939 |
| 243.33 | 0.1826  |    | 271.43  | 0.1887   |     | 287.30   | 0.1886   |      | 296.80   | 0.1907 | 302.76 | 0.1926 |
| 244.72 | 0.1812  |    | 271.80  | 0.1891   |     | 287.76   | 0.1895   |      | 296.99   | 0.1913 | 302.86 | 0.1920 |
| 245.39 | 0.1837  |    | 272.20  | 0.1883   |     | 288.00   | 0.1891   |      | 297.15   | 0.1911 | 303.29 | 0.1919 |
| 246.76 | 0.1819  |    | 272.55  | 0.1887   |     | 288.25   | 0.1898   |      | 297.28   | 0.1898 | 303.34 | 0.1939 |
| 248.12 | 0.1841  |    | 272.95  | 0.1880   |     | 288.49   | 0.1888   |      | 297.40   | 0.1913 | 303.41 | 0.1943 |
| 248.80 | 0.1819  |    | 273.30  | 0.1878   |     | 288.95   | 0.1884   |      | 297.49   | 0.1899 | 303.46 | 0.1940 |
| 249.47 | 0.1831  |    | 273.70  | 0.1877   |     | 289.12   | 0.1894   |      | 297.62   | 0.1906 | 303.50 | 0.1935 |
| 250.11 | 0.1827  |    | 274.05  | 0.1892   |     | 289.81   | 0.1892   |      | 298.26   | 0.1910 | 303.57 | 0.1916 |
| 250.74 | 0.1833  |    | 275.15  | 0.1873   |     | 290.03   | 0.1886   |      | 298.50   | 0.1915 | 303.68 | 0.1934 |
| 251.40 | 0.1835  |    | 275.49  | 0.1892   |     | 290.60   | 0.1892   |      | 298.60   | 0.1916 | 303.78 | 0.1935 |
| 252.02 | 0.1841  |    | 275.88  | 0.1886   |     | 291.00   | 0.1900   |      | 298.75   | 0.1912 | 303.89 | 0.1936 |
| 252.69 | 0.1831  |    | 276.57  | 0.1879   |     | 291.40   | 0.1888   |      | 298.84   | 0.1920 | 303.99 | 0.1930 |
| 253.29 | 0.1836  |    | 276.91  | 0.1894   |     | 291.77   | 0.1884   |      | 298.94   | 0.1904 | 304.11 | 0.1936 |
| 253.91 | 0.1839  |    | 277.59  | 0.1888   |     | 291.95   | 0.1886   |      | 299.08   | 0.1912 | 304.24 | 0.1936 |
| 254.52 | 0.1840  |    | 277.93  | 0.1894   |     | 292.13   | 0.1877   |      | 299.18   | 0.1915 | 304.23 | 0.1938 |
| 255.11 | 0.1842  |    | 278.25  | 0.1884   |     | 292.27   | 0.1893   |      | 299.30   | 0.1913 | 304.29 | 0.1939 |
| 256.81 | 0.1847  |    | 278.58  | 0.1888   |     | 292.47   | 0.1897   |      | 299.62   | 0.1921 | 304.37 | 0.1926 |
| 258.43 | 0.1859  |    | 278.90  | 0.1896   |     | 292.63   | 0.1882   |      | 299.82   | 0.1914 | 304.44 | 0.1938 |
| 259.01 | 0.1867  |    | 279.21  | 0.1898   |     | 292.79   | 0.1900   |      | 300.14   | 0.1909 | 340.21 | 0.1946 |
| 259.52 | 0.1853  |    | 279.59  | 0.1887   |     | 292.98   | 0.1898   |      | 300.26   | 0.1917 | 338.50 | 0.1943 |
| 260.05 | 0.1857  |    | 279.87  | 0.1902   |     | 293.47   | 0.1906   |      | 300.36   | 0.1904 | 336.29 | 0.1945 |
| 260.58 | 0.1864  |    | 280.16  | 0.1888   |     | 293.65   | 0.1893   |      | 300.58   | 0.1910 | 335.82 | 0.1946 |
| 261.07 | 0.1875  |    | 280.84  | 0.1887   |     | 293.81   | 0.1900   |      | 300.67   | 0.1931 | 333.37 | 0.1946 |
| 261.61 | 0.1852  |    | 281.09  | 0.1885   |     | 293.98   | 0.1891   |      | 300.79   | 0.1933 | 332.40 | 0.1965 |

| ]      | Thermal | Conductiv | vity Valu | ies | for Proj | pylene ( | Gly | col in W | /m.K | (Run-2) | ) |  |
|--------|---------|-----------|-----------|-----|----------|----------|-----|----------|------|---------|---|--|
| Т (К)  | k       | Т (К)     | k         |     | Т (К)    | k        |     | Т (К)    | k    | Т (К)   | k |  |
| 331.96 | 0.1924  | 315.45    | 0.1923    |     | 303.64   | 0.1917   |     |          |      |         |   |  |
| 331.50 | 0.1935  | 315.21    | 0.1942    |     | 303.34   | 0.1924   |     |          |      |         |   |  |
| 331.06 | 0.1935  | 314.96    | 0.1924    |     | 303.03   | 0.1921   |     |          |      |         |   |  |
| 330.67 | 0.1931  | 314.72    | 0.1925    |     | 302.78   | 0.1922   |     |          |      |         |   |  |
| 330.23 | 0.1934  | 314.28    | 0.1915    |     | 302.59   | 0.1939   |     |          |      |         |   |  |
| 329.45 | 0.1938  | 314.01    | 0.1921    |     | 301.78   | 0.1918   |     |          |      |         |   |  |
| 328.57 | 0.1940  | 313.79    | 0.1918    |     | 301.51   | 0.1912   |     |          |      |         |   |  |
| 328.17 | 0.1928  | 313.54    | 0.1918    |     | 300.89   | 0.1917   |     |          |      |         |   |  |
| 327.81 | 0.1932  | 313.28    | 0.1927    |     | 300.57   | 0.1923   |     |          |      |         |   |  |
| 327.41 | 0.1923  | 313.07    | 0.1936    |     | 300.36   | 0.1916   |     |          |      |         |   |  |
| 327.02 | 0.1935  | 312.78    | 0.1928    |     | 300.17   | 0.1927   |     |          |      |         |   |  |
| 326.63 | 0.1948  | 312.56    | 0.1917    |     | 299.82   | 0.1925   |     |          |      |         |   |  |
| 326.23 | 0.1919  | 312.35    | 0.1914    |     | 299.55   | 0.1913   |     |          |      |         |   |  |
| 325.90 | 0.1941  | 312.11    | 0.1917    |     | 299.35   | 0.1919   |     |          |      |         |   |  |
| 325.53 | 0.1920  | 311.76    | 0.1919    |     | 299.18   | 0.1914   |     |          |      |         |   |  |
| 324.82 | 0.1917  | 311.57    | 0.1922    |     | 299.01   | 0.1927   |     |          |      |         |   |  |
| 324.45 | 0.1914  | 311.11    | 0.1940    |     | 298.84   | 0.1917   |     |          |      |         |   |  |
| 324.12 | 0.1949  | 310.70    | 0.1937    |     | 298.63   | 0.1924   |     |          |      |         |   |  |
| 323.76 | 0.1916  | 310.53    | 0.1942    |     | 298.52   | 0.1921   |     |          |      |         |   |  |
| 323.05 | 0.1952  | 310.35    | 0.1930    |     | 298.38   | 0.1929   |     |          |      |         |   |  |
| 322.71 | 0.1929  | 309.95    | 0.1914    |     | 298.14   | 0.1915   |     |          |      |         |   |  |
| 322.35 | 0.1937  | 309.72    | 0.1916    |     | 298.01   | 0.1921   |     |          |      |         |   |  |
| 322.01 | 0.1917  | 309.50    | 0.1918    |     | 297.70   | 0.1929   |     |          |      |         |   |  |
| 321.06 | 0.1920  | 309.38    | 0.1925    |     | 297.52   | 0.1921   |     |          |      |         |   |  |
| 320.44 | 0.1909  | 309.17    | 0.1944    |     | 297.37   | 0.1928   |     |          |      |         |   |  |
| 320.14 | 0.1934  | 308.63    | 0.1922    |     |          |          |     |          |      |         |   |  |
| 319.51 | 0.1913  | 308.30    | 0.1933    |     |          |          |     |          |      |         |   |  |
| 319.20 | 0.1934  | 307.93    | 0.1924    |     |          |          |     |          |      |         |   |  |
| 318.91 | 0.1914  | 307.59    | 0.1930    |     |          |          |     |          |      |         |   |  |
| 318.66 | 0.1926  | 307.30    | 0.1920    |     |          |          |     |          |      |         |   |  |
| 318.37 | 0.1936  | 306.89    | 0.1924    |     |          |          |     |          |      |         |   |  |
| 318.09 | 0.1921  | 306.51    | 0.1913    |     |          |          |     |          |      |         |   |  |
| 317.82 | 0.1915  | 306.23    | 0.1914    |     |          |          |     |          |      |         |   |  |
| 317.53 | 0.1916  | 305.93    | 0.1922    |     |          |          |     |          |      |         |   |  |
| 317.27 | 0.1918  | 305.59    | 0.1912    |     |          |          |     |          |      |         |   |  |
| 317.01 | 0.1936  | 305.30    | 0.1926    |     |          |          |     |          |      |         |   |  |
| 316.17 | 0.1934  | 305.02    | 0.1920    |     |          |          |     |          |      |         |   |  |
| 315.88 | 0.1920  | 304.72    | 0.1926    |     |          |          |     |          |      |         |   |  |
| 315.67 | 0.1927  | 304.15    | 0.1929    |     |          |          |     |          |      |         | _ |  |

| Т      | Thermal | Со | nductiv | ity Valu | ies | for Proj | pylene ( | Glyo | col in W | /m.K   | (Run-3 | )      |
|--------|---------|----|---------|----------|-----|----------|----------|------|----------|--------|--------|--------|
| Т (К)  | k       |    | Т (К)   | k        |     | Т (К)    | k        |      | T (K)    | k      | T (K)  | k      |
| 233.64 | 0.1809  |    | 264.89  | 0.1864   |     | 281.50   | 0.1894   |      | 293.62   | 0.1898 | 300.75 | 0.1913 |
| 234.02 | 0.1819  |    | 265.38  | 0.1869   |     | 281.82   | 0.1896   |      | 293.96   | 0.1895 | 300.86 | 0.1918 |
| 234.43 | 0.1812  |    | 265.86  | 0.1871   |     | 282.46   | 0.1895   |      | 294.12   | 0.1897 | 300.97 | 0.1906 |
| 235.44 | 0.1807  |    | 267.28  | 0.1872   |     | 282.72   | 0.1903   |      | 294.46   | 0.1889 | 301.06 | 0.1929 |
| 237.14 | 0.1810  |    | 267.75  | 0.1868   |     | 283.04   | 0.1896   |      | 294.66   | 0.1896 | 301.16 | 0.1926 |
| 237.78 | 0.1809  |    | 268.20  | 0.1878   |     | 283.30   | 0.1903   |      | 294.95   | 0.1892 | 301.30 | 0.1919 |
| 239.12 | 0.1807  |    | 268.65  | 0.1864   |     | 283.60   | 0.1893   |      | 295.14   | 0.1898 | 301.84 | 0.1919 |
| 241.91 | 0.1812  |    | 269.12  | 0.1884   |     | 283.87   | 0.1890   |      | 295.28   | 0.1903 | 301.97 | 0.1915 |
| 242.64 | 0.1820  |    | 269.58  | 0.1882   |     | 284.15   | 0.1900   |      | 295.44   | 0.1907 | 302.53 | 0.1923 |
| 244.06 | 0.1824  |    | 270.02  | 0.1879   |     | 284.42   | 0.1899   |      | 295.76   | 0.1894 | 302.98 | 0.1922 |
| 244.76 | 0.1825  |    | 270.46  | 0.1878   |     | 284.71   | 0.1886   |      | 296.09   | 0.1897 | 303.32 | 0.1926 |
| 245.47 | 0.1823  |    | 271.32  | 0.1867   |     | 284.98   | 0.1888   |      | 296.44   | 0.1912 | 358.47 | 0.1973 |
| 246.20 | 0.1828  |    | 271.71  | 0.1875   |     | 285.24   | 0.1901   |      | 296.56   | 0.1900 | 353.59 | 0.1953 |
| 246.85 | 0.1816  |    | 272.11  | 0.1879   |     | 285.56   | 0.1893   |      | 296.68   | 0.1909 | 348.81 | 0.1940 |
| 247.55 | 0.1832  |    | 272.92  | 0.1881   |     | 286.28   | 0.1890   |      | 296.82   | 0.1910 | 348.09 | 0.1944 |
| 248.26 | 0.1818  |    | 273.30  | 0.1886   |     | 286.57   | 0.1893   |      | 297.01   | 0.1911 | 347.42 | 0.1937 |
| 250.27 | 0.1827  |    | 273.63  | 0.1879   |     | 286.80   | 0.1886   |      | 297.16   | 0.1910 | 346.72 | 0.1941 |
| 250.89 | 0.1826  |    | 274.03  | 0.1883   |     | 287.06   | 0.1897   |      | 297.29   | 0.1916 | 345.42 | 0.1941 |
| 251.55 | 0.1830  |    | 274.43  | 0.1881   |     | 288.04   | 0.1895   |      | 297.41   | 0.1902 | 344.17 | 0.1962 |
| 252.86 | 0.1830  |    | 274.81  | 0.1882   |     | 288.28   | 0.1897   |      | 297.66   | 0.1905 | 343.54 | 0.1981 |
| 253.52 | 0.1841  |    | 275.17  | 0.1901   |     | 288.51   | 0.1896   |      | 297.81   | 0.1908 | 342.93 | 0.1942 |
| 254.75 | 0.1854  |    | 275.52  | 0.1887   |     | 288.99   | 0.1889   |      | 297.94   | 0.1913 | 341.21 | 0.1938 |
| 255.32 | 0.1844  |    | 275.88  | 0.1891   |     | 289.19   | 0.1887   |      | 298.07   | 0.1912 | 340.10 | 0.1941 |
| 255.95 | 0.1848  |    | 276.23  | 0.1885   |     | 289.50   | 0.1887   |      | 298.50   | 0.1904 | 339.57 | 0.1929 |
| 256.49 | 0.1851  |    | 276.63  | 0.1888   |     | 289.67   | 0.1882   |      | 298.58   | 0.1904 | 339.03 | 0.1937 |
| 257.06 | 0.1860  |    | 277.00  | 0.1890   |     | 289.86   | 0.1892   |      | 298.71   | 0.1911 | 338.52 | 0.1937 |
| 257.60 | 0.1851  |    | 277.29  | 0.1895   |     | 290.54   | 0.1888   |      | 298.86   | 0.1914 | 337.48 | 0.1931 |
| 258.14 | 0.1858  |    | 277.63  | 0.1894   |     | 290.78   | 0.1887   |      | 298.95   | 0.1925 | 336.97 | 0.1930 |
| 258.69 | 0.1849  |    | 278.00  | 0.1892   |     | 290.96   | 0.1892   |      | 299.09   | 0.1922 | 336.00 | 0.1954 |
| 259.22 | 0.1855  |    | 278.31  | 0.1887   |     | 291.17   | 0.1884   |      | 299.20   | 0.1921 | 335.53 | 0.1951 |
| 259.77 | 0.1856  |    | 278.64  | 0.1894   |     | 291.39   | 0.1892   |      | 299.43   | 0.1926 | 334.61 | 0.1932 |
| 260.35 | 0.1868  |    | 278.95  | 0.1890   |     | 291.61   | 0.1888   |      | 299.56   | 0.1912 | 333.25 | 0.1932 |
| 260.84 | 0.1855  |    | 279.30  | 0.1893   |     | 291.80   | 0.1901   |      | 299.67   | 0.1901 | 332.80 | 0.1947 |
| 261.38 | 0.1857  |    | 279.60  | 0.1891   |     | 292.01   | 0.1892   |      | 299.92   | 0.1898 | 332.34 | 0.1929 |
| 261.86 | 0.1865  |    | 279.95  | 0.1901   |     | 292.17   | 0.1902   |      | 300.01   | 0.1898 | 331.92 | 0.1945 |
| 262.93 | 0.1873  |    | 280.27  | 0.1897   |     | 292.35   | 0.1899   |      | 300.14   | 0.1912 | 331.52 | 0.1944 |
| 263.41 | 0.1854  |    | 280.57  | 0.1896   |     | 292.89   | 0.1891   |      | 300.25   | 0.1918 | 330.68 | 0.1938 |
| 263.89 | 0.1875  |    | 280.90  | 0.1901   |     | 293.07   | 0.1884   |      | 300.45   | 0.1903 | 330.23 | 0.1925 |
| 264.39 | 0.1875  |    | 281.20  | 0.1900   |     | 293.45   | 0.1886   |      | 300.68   | 0.1901 | 329.42 | 0.1937 |

| ]      | Thermal | Conductiv | rity Valu | les | for Proj | pylene ( | Gly | col in W | /m.K | (Run-3 | ) |  |
|--------|---------|-----------|-----------|-----|----------|----------|-----|----------|------|--------|---|--|
| Т (К)  | k       | Т (К)     | k         |     | Т (К)    | k        |     | Т (К)    | k    | Т (К)  | k |  |
| 329.03 | 0.1935  | 314.19    | 0.1919    |     | 303.20   | 0.1922   |     |          |      |        |   |  |
| 327.83 | 0.1950  | 313.44    | 0.1915    |     | 303.05   | 0.1922   |     |          |      |        |   |  |
| 327.47 | 0.1935  | 313.19    | 0.1917    |     | 302.92   | 0.1922   |     |          |      |        |   |  |
| 326.71 | 0.1946  | 312.96    | 0.1921    |     | 302.58   | 0.1924   |     |          |      |        |   |  |
| 326.34 | 0.1920  | 312.73    | 0.1930    |     | 302.42   | 0.1925   |     |          |      |        |   |  |
| 325.62 | 0.1916  | 312.46    | 0.1934    |     | 302.29   | 0.1918   |     |          |      |        |   |  |
| 325.26 | 0.1911  | 312.24    | 0.1923    |     | 302.08   | 0.1924   |     |          |      |        |   |  |
| 324.90 | 0.1957  | 312.00    | 0.1926    |     | 300.92   | 0.1925   |     |          |      |        |   |  |
| 324.55 | 0.1942  | 311.76    | 0.1943    |     | 300.79   | 0.1918   |     |          |      |        |   |  |
| 324.20 | 0.1917  | 311.13    | 0.1938    |     | 300.70   | 0.1926   |     |          |      |        |   |  |
| 323.84 | 0.1951  | 310.88    | 0.1926    |     | 300.51   | 0.1917   |     |          |      |        |   |  |
| 323.50 | 0.1934  | 310.08    | 0.1930    |     | 299.92   | 0.1926   |     |          |      |        |   |  |
| 323.20 | 0.1925  | 309.64    | 0.1934    |     | 299.67   | 0.1923   |     |          |      |        |   |  |
| 322.82 | 0.1922  | 309.45    | 0.1936    |     | 298.97   | 0.1919   |     |          |      |        |   |  |
| 322.44 | 0.1932  | 309.26    | 0.1921    |     | 298.69   | 0.1922   |     |          |      |        |   |  |
| 322.12 | 0.1940  | 309.03    | 0.1942    |     | 297.96   | 0.1925   |     |          |      |        |   |  |
| 321.84 | 0.1925  | 308.82    | 0.1934    |     | 297.95   | 0.1918   |     |          |      |        |   |  |
| 321.46 | 0.1928  | 308.40    | 0.1941    |     | 297.59   | 0.1924   |     |          |      |        |   |  |
| 321.20 | 0.1944  | 308.21    | 0.1932    |     | 296.98   | 0.1923   |     |          |      |        |   |  |
| 320.91 | 0.1928  | 308.03    | 0.1944    |     | 296.98   | 0.1920   |     |          |      |        |   |  |
| 320.55 | 0.1918  | 307.35    | 0.1929    |     | 296.92   | 0.1920   |     |          |      |        |   |  |
| 320.18 | 0.1926  | 306.96    | 0.1916    |     |          |          |     |          |      |        |   |  |
| 319.65 | 0.1917  | 306.88    | 0.1935    |     |          |          |     |          |      |        |   |  |
| 319.42 | 0.1910  | 306.71    | 0.1927    |     |          |          |     |          |      |        |   |  |
| 319.14 | 0.1925  | 306.06    | 0.1932    |     |          |          |     |          |      |        |   |  |
| 318.84 | 0.1912  | 305.96    | 0.1931    |     |          |          |     |          |      |        |   |  |
| 318.54 | 0.1922  | 305.78    | 0.1927    |     |          |          |     |          |      |        |   |  |
| 318.26 | 0.1933  | 305.54    | 0.1935    |     |          |          |     |          |      |        |   |  |
| 317.97 | 0.1911  | 305.43    | 0.1935    |     |          |          |     |          |      |        |   |  |
| 317.36 | 0.1922  | 305.28    | 0.1935    |     |          |          |     |          |      |        |   |  |
| 317.10 | 0.1910  | 305.09    | 0.1925    |     |          |          |     |          |      |        |   |  |
| 316.78 | 0.1912  | 304.58    | 0.1924    |     |          |          |     |          |      |        |   |  |
| 316.59 | 0.1942  | 304.38    | 0.1931    |     |          |          |     |          |      |        |   |  |
| 316.31 | 0.1931  | 304.32    | 0.1925    |     |          |          |     |          |      |        |   |  |
| 316.04 | 0.1919  | 304.17    | 0.1928    |     |          |          |     |          |      |        |   |  |
| 315.75 | 0.1914  | 304.08    | 0.1930    |     |          |          |     |          |      |        |   |  |
| 314.93 | 0.1924  | 303.92    | 0.1920    |     |          |          |     |          |      |        |   |  |
| 314.65 | 0.1918  | 303.69    | 0.1934    |     |          |          |     |          |      |        |   |  |
| 314.39 | 0.1925  | 303.31    | 0.1935    |     |          |          |     |          |      |        |   |  |