
A Structured Search Engine for Deep Web Databases

Presented in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

Amal Aljohani

Approved by:

Major Professor:

Hasan Jamil, Ph.D.

Committee Members:

Clinton Je↵ery, Ph.D.

Xiaogang Ma ,Ph.D.

Jia Song, Ph.D.

Department Administrator:

Terence Soule, Ph.D.

May 2022

ii

Abstract

Throughout the years, researchers have striven to improve the quality of infor-

mation retrieval from the web; especially for ordinary users who need the proper

access to the desired information. Users mostly interact with the web through search

engines and they tend to expect precisely what they asked for. As web databases

(Deep Web) hold enormous amounts of high quality information that users need to

access and leverage, we shed some light on the importance of searching the deep web

rather than just querying it. Searching is more flexible than querying based on fixed

variables. Searching the deep web can enhance information accessibility especially if

it simulates user behaviour. Research interest is growing in the area of maximizing

the usefulness of web search via utilizing the largest portion of the web (Deep Web).

Search engines such as Google can only find indexed information that is present in the

Shallow Web. In contrast, peeking into Deep Web databases is not possible for search

engines such as Google. Search engines are not able to simulate SQL-like queries

of database contents in a traditional or other intuitive human-like manner. In this

work, we present a system called DeepQ to search the database contents behind the

firewalls inside the deep web and show that these contents can be accessed using

a structured query language treating them as a deep relational web. We leverage a

recent proposed declarative deep web query language called DQL, and we present

the contours of its implementation in the DeepQ system. We also believe that this

work has the potential to demonstrate the Universal Relations model, as the user will

be able to interact with databases that are hidden behind firewalls, and also search

conveniently for information.

iii

Acknowledgements

It is amazing to look back and realize how things have changed over the past few

years, how others have influenced me. This Ph.D. dissertation would not be possible

without the generous guidance, help, and support from many brilliant people. First

and foremost, I want to thank Allah, for the completion of this dissertation. I would

like to express my sincere gratitude to my advisor Dr. Hasan Jamil for his guidance,

support, and patience. I would not have made it this far if he had not believed in me.

He was supportive and kind. He let me be creative, kept me on track, and taught me

that imagination is the key of innovation. I am forever thankful to him.

I would also like to thank my committee members, Dr. Clinton Jeffery, Dr. Xiao-

gang (Marshall) Ma, and Dr. Jia Song for their valuable insights on my dissertation

work and for their time and support. I would like to thank all my instructors for

their dedication in providing me with valuable education. I would like to thank the

department chair Dr. Terry Soule and all staff in the department of Computer Science

for their help during my study. Also, I would like to thank the president of U of I Mr.

Scott Green for his calming letters during the pandemic.

Moreover, I am thankful for the government of Saudi Arabia, the Saudi Arabian

Cultural Mission and Majmaah University for funding my scholarship. I would

like to thank my friends: Rawan Almakinah, Amani Alfulaiti, Emtenan Khoj, Yara

Alshmrani, Umar Siddiqui, Ali Alelaiwi, Saif Alharthi for their support and patience.

Also, I would like to thank my friends in U of I who supported me in this journey:

Joel Oduro-Afriyie, Amruta Kale, Zeinab Ghafari, Nuzhat Yamin, Azadeh Nikoukar.

Last, but certainly not least, I would like to thank my mom, dad, brothers and

sisters for their understanding, support, encouragement, patience, and love which

helped me make this dissertation a reality.

iv

Dedication

This work is dedicated to praising Allah and to the people I lost during my Ph.D.:

my grandma who passed a way few months ago, and my cousin Fatima. May God

bless their souls. It is also dedicated to my father, Nasser Aljohani, my mother Aisha

Aljohani, my other grandma, my sisters Ekhlas, Elham, Ahlam and my brothers,

Omar and Anas. Finally, it is dedicated to myself that managed to work on Ph.D

while living with (mostly fighting) Multiple Sclerosis.

v

Table of Contents

Abstract . ii

Acknowledgements . iii

Dedication . iv

Table of Contents . v

L ist of Tables . vi

L ist of F igures . vii

1 Introduction . 1
1.1 Between Shallow Web and Deep Web . 2
1.2 Motivation and Objectives . 4
1.3 Hypotheses . 4
1.4 Work Contribution . 5
1.5 Research Problem . 5
1.6 Author’s Related Publication . 9
1.7 Dissertation Organization . 11

2 Background and Related Work 12
2.1 Web Database Querying and Web Searching 12
2.2 Why do we need to search the Deep Web? 13
2.3 Why is it difficult to search the Deep Web? 15
2.4 Toward Searching and Accessing the Deep Web 15

3 DeepQ System . 28
3.1 Leveraging the DQL features . 28
3.2 DeepQ Architecture . 30
3.3 System Overview . 33

4 Implementation and Experimental Results 39
4.1 Syntax Checker . 39
4.2 Single Domain web databases(Simple Query)- An Example 39
4.3 Multiple Domains web databases(Complex Query)- An Example 41
4.4 Performance and Evaluation Criteria . 44

5 Conclusion and Future D irection 47
5.1 Conclusion . 47
5.2 Future Direction . 48

B ibliography. 50

vi

List of Tables

Table 2 .1 A Comparison between Physical and Virtual Integration Systems . . 16
Table 2 .2 Some Systems Strengths and Limitations. 24
Table 2 .3 Comparison of System Capabilities, Identification (Source Identification),

Classification, Integration, UUQI(Unified User Query Interface), SM
(Schema Matching), FF (Form Filling), Results Wrapping, Reusability.

25

Table 3 .1 Input/Output Attributes for each form. 35

Table 4 .1 DeepQ Evaluation (UUQI: Unified User Query Interface) 46

vii

List of Figures

F igure 1 .1 A User Interaction With the Deep Web. 3
F igure 1 .2 Google response to query Q1.. 6
F igure 1 .3 Expansion of the top link for Q1 showing a partial list of available

Honda Civics. 6
F igure 1 .4 Manual query results of Q1 at autotrader.com. 7
F igure 1 .5 Google response to query Q2.. 8
F igure 1 .6 Expansion of a link for Q2 showing a partial list of available

Honda Civics . 8
F igure 1 .7 One of the results that meet Q2 (From cars domain) 9
F igure 1 .8 Results from the Elevation Map 9
F igure 1 .9 The manual process to get useful results for Q2. 10

F igure 2 .1 Databases and Search Engines 14
F igure 2 .2 Some Selected Previous Work Throughout the years. 26
F igure 2 .3 An overview toward deep web searching. 27

F igure 3 .1 DeepQ system . 28
F igure 3 .2 DeepQ architecture. 30
F igure 3 .3 autotrader.com landing page pre-filter – pick-and-filter querying. . 32
F igure 3 .4 carvana.com landing page filter – direct querying. 32
F igure 3 .5 DeepQ System Overview for a single domain (Simple Query). . . 34
F igure 3 .6 Form 4 after submitting as an example 35
F igure 3 .7 Form 2 after submitting as an example 35
F igure 3 .8 Graphical Interface (restricted) 38
F igure 3 .9 Text Interface . 38

F igure 4 .1 The logic in the Syntax Checker. 40
F igure 4 .2 Results for Q3 . 41
F igure 4 .3 A small modification in Q3 41
F igure 4 .4 Results for Q4 . 42
F igure 4 .5 DeepQ System Overview for the multiple domain querying. . . . 42
F igure 4 .6 Linking two different deep web sites that have different domains . 43
F igure 4 .7 Results from one of the Elevation Databases 44
F igure 4 .8 Results for Q5 . 45
F igure 4 .9 a complex Query such as Q4 45
F igure 4 .10 DeepQ performance measures. 46

1

chapter 1

Introduction

Today, the World Wide Web (also referred to as the web) is the leading infrastructure

for information presenting and publishing and it has become the most important

platform for e-commerce and business transactions. The number of web pages is

growing exponentially, and this massive growth has caused the web to evolve into

a data-rich repository (Kabisch, 2011). The web holds millions of searchable data

sources, and a large portion of them are hidden behind firewalls and can only be

accessed through Query Interfaces (or Web Forms). These query interfaces are the

main means to retrieve web database contents; they also provide a glance into the

underlying database structure. Users are allowed to submit queries through a query

interface to the web database and obtain results as dynamically generated responses

from those databases.

The Web contains structured, semi structured, and unstructured content. The

structured content that resides in the web databases are called the Deep Web or Hidden

Web (Dragut, 2012); thus, the deep web contains structured data that exists in dynamic

generated web pages (Calì and Straccia, 2017). It is also important to note that

obtaining the content of web databases requires that users pose structured queries

through Web forms. Web databases are usually domain specific, and it is impossible

for one web database to carry all information about that specific domain. Thus, users

usually search in different web databases, even if they are trying to get one result

from a specific domain. It is not difficult to notice the underlying limitations of

marrying shallow web searching to deep web querying (Aljohani, 2021a). We believe

that ordinary users should be able to pose simple declarative queries that can obtain

useful, accurate, and relevant results whether the domain is specific or not. Also,

users should be able to search the deep web not just query it.

2

1 .1 between shallow web and deep web

Web sites can be classified based on the content of their pages to structured and

unstructured pages. The unstructured pages contain static HTML pages and the

structured pages contain the web database driven contents. It is useful to mention that

some predefined design templates are usually used to create the structured pages that

are generated from the content of web databases (Kabisch, 2011). The term Shallow

Web (also known as Surface Web) refers to the web pages that are indexed by some

search engines such as Google. In fact, the unstructured portion of the web is mainly

the one that is indexed by search engines. In contrasts, the term Deep Web (also known

as Hidden Web) has been used in the past by many authors to refer to non-indexed web

pages. There is also the Dark Web that should not be confused with the Deep Web as it

refers to some web pages that use encryption software such as Tor to hide the location

and IP addresses (McCoy et al., 2008). Web contents can be categorized into two types:

static, and dynamic based on their impact on crawlers. If some or all content of a

web page is generated at run time, it defined as a dynamic web page. More than

80% of web content is dynamically generated (Raghavan and Garcia-Molina, 2000). In

contrast, the web contents that exist on the server and are transmitted after receiving

a client request are defined as static web pages. The web in general is dynamically

growing, and the size of the indexable web is huge and rapidly increasing. However,

the size of the hidden web is much larger (Lawrence and Giles, 1998), and in 2012 this

size reached several trillions of web pages (Hernández et al., 2018).

1.1.1 The Deep Web

The focus in this work is on the traditional definition of the term “Deep Web” that was

proposed in 2001 by Bergman (Bergman, 2001). Deep web refers to the dynamically

generated pages that come in response to submitting a query via web forms. It

contains a tremendous amount of useful and high-quality information that can only

be obtained after submitting a query via web form. In fact, the dynamic query-based

data access is provided through query interfaces that provide access to lots of online

databases. In other words, the dynamically generated pages that have the structured

3

data come as responses to a specific query. Deep web content can neither be seen nor

retrieved by traditional search engines; it is estimated that about ninety-five percent

of deep web sources are accessible publicly for free behind their respective firewalls

(Bergman, 2001).

Query Processing
Database

HTML Page

Sends

User

eCommerce Website

Submits a query

Web Form
(Firewall)

HTTP Request

Receives Results Response
Gets

F igure 1 .1 : A User Interaction With the Deep Web.

1.1.2 Deep Web Concepts

There are some important concepts of the deep web such as: Deep Web Source, Query

Interface, Result Interface, and Query Interface Elements. These concepts are key

elements in making the deep web accessible for users.

Definitions —

• Deep Web Source: A deep web source is a web site that generates its content

depending on a database and it can not be indexed by search engines. The deep

web source has one or many fill-out forms or query interfaces that users can fill

in order to obtain results through a result interface. These two interfaces play an

important role in revealing the database schema and they referred to as interface

schema.

• Query Interface Elements A query interface has visible elements (as HTML fields)

that represent a specific domain such as car vendors.

4

Figure 1.1 shows the interaction between the user and the deep web. Users submit

queries to a web form (form interface) that serve as an entry point to the web database.

This form returns results as a response to the submitted query. Web forms are also

called searchable forms; the non-searchable forms are the ones that only accept input

from the user without searching the database behind it or returning results such as

signing up forms (El-Gamil et al., 2011).

1 .2 motivation and objectives

This work focuses on proving that DQL is feasible and that it facilitates a program-

matic access to the Deep Web. It is able to facilitate result integration from multiple

sources to obtain results that are relevant to a user. Our objectives are:

• To propose an implementation of the DQL query language (Jamil and Jagadish,

2015) for structured querying of deep web databases, and to demonstrate that

the DeepQ system holds promise for eCommerce applications.

• To show that the UR view can be beneficial for simplifying the view of the deep

web for users (Jamil, 2021).

Our goal is to make the deep web data accessible, searchable, and useful. The main

objective is to show that the proposed structured query model is feasible, and that

it has the potential to facilitate deep web access, enable leveraging of deep web data,

and provide only the desired and useful results for the user (Jamil and Jagadish, 2015).

In fact, DeepQ is built based on DQL, thus it has the potential for providing a reusable

framework in a way that the research community can use to advance the field jointly.

1 .3 hypotheses

• An abstract view of the deep web as a schemaless universal relation is feasible

and it enables the design of an SQL-like declarative query language called DQL.

• A translational semantics of DQL can be used as an implementation strategy to

build a graphical user interface called DeepQ.

5

• A restricted subset of DQL has a faithful and intended mapping into DeepQ.

1 .4 work contribution

Our contribution can be summarized as follows:

1. Presenting DeepQ as an implementation of DQL for structured querying of

database contents behind firewalls.

2. Implementing simple and complex query handling.

3. Demonstrating the UR model within the context of the deep web.

1 .5 research problem

Search engines such as Google do not allow users to peek into the databases behind

web forms. These engines can only access information that resides in the Shallow

Web.

Consider for example that Athena is searching online for a car. She submits the

following query to Google:

Q1: Red Honda Civic ex 2015 less than $5,000 Moscow Idaho

This query returns astonishing an 67,800 results, but none of them precisely re-

sponded to the query as shown in Figure1.2. Google’s response was either com-

pletely wrong and did not meet query conditions, or partially met some of the query

conditions. After clicking on the topmost recommended link as shown in Figure 1.3

, we can see that none of the cars fully satisfy the query conditions. Most responses

ignored the location condition, and the other responses are actually commercial leads

for businesses. These leads might be generated using text to approximate query

translation APIs to find a possible match in a database that is close enough (Bianchi

et al., 2021) and not truly responsive to the user’s intended query. User intents are

very difficult to model properly (Elhabbak et al., 2020). In fact, search engines are

unable to query deep web databases because they are unable to simulate a search of

6

F igure 1 .2 : Google response to query Q1.

database contents like a human can do. Accessing deep web sources can only be done

through search interfaces that hide those contents.

F igure 1 .3 : Expansion of the top link for Q1 showing a partial list of available
Honda Civics.

Google’s topmost recommendation as shown in Figure 1.2 was a car vendor called

autotrader.com. The banner reads “Used Honda Civic for Sale Under $5,000" and

purports to have about 539 rows (cars) of information. After clicking on that link, it

shows the list of cars in Figure 1.3. As shown in that figure, none of the cars satisfy

the query conditions. If the user manually uses the search interface and the filter

functions to look for a car that has the closest specification, she will end up with a list

7

of results as shown in Figure 1.4, which is actually close to what she would like to

see.

F igure 1 .4 : Manual query results of Q1 at autotrader.com.

Queries are not always simple and union compatible, some queries are complex

and need further construction of universal relation from deep web interfaces. Con-

sider for example that Anne is searching online for a car; she is a 35 year old who

has severe Asthma condition since she was a child. Because of her condition and the

potential of environmental factors that might trigger an attack, she puts her condition

at the top front of her mind whenever she plans to go anywhere. Living with asthma

has taught her to consider environmental elements such as elevations, climate, and

pollution. She always tries to avoid locations with high altitude since it is one of the

environmental triggers that impact people living with Asthma (Seys et al., 2013). Anne

is trying to find a car that she can buy at proper location in Colorado 1 considering

her condition, so she submits the following query to Google:

Q2: Find Red Honda Civic 2015 or newer model less than $20,000 in cities

at elevation lower than 4000 feet

This query returns an astonishing 342,000 results, but as shown in Figure 1.5,

results are not accurate since they do not respect the elevation condition and it was
1Even though Colorado is a state with many high-elevation locations, there are some cities with

lower elevation

8

F igure 1 .5 : Google response to query Q2.

F igure 1 .6 : Expansion of a link for Q2 showing a partial list of available Honda
Civics

completely ignored (Shallow Web Searching). After clicking on Google’s top recom-

mended vendors (autotrader.com2), she still cannot find the car that meets the price

and color, or year conditions (in Figure 1.6).

At this point, the user is left with one choice which is to fill the car vendor search

interface manually in order to find the desired car (Deep Web Querying). Keep in mind

that after all of this work, she has not even begun to process the second critical part of

the query: (the elevation) condition. She finally finds a red Honda Civic in Colorado

Spring as shown in Figure 1.7. Now Anne needs to dig the elevation information
2https://autotrader.com/

9

F igure 1 .7 : One of the results that meet Q2 (From cars domain)

F igure 1 .8 : Results from the Elevation Map

elsewhere and if the elevation condition is not satisfied, then she will query other

deep web sites for more cars in different locations. Anne found another deep web

site that has an elevation database (such as Elevation Finder 3), see Figure 1.8 and she

continues querying and searching. This process is exhausting and time consuming if

it is done manually as shown in Figure 1.9.

1 .6 author ’s related publication

1. Amal Aljohani. 2021. DeepQ: A System to Peek Inside the eCommerce Deep

Web. In The 20th International Conference on Information Knowledge Engineer-

ing (Las Vegas, NV).
3https://www.freemaptools.com/elevation-finder.htm

10

searching

Car Vendor 1
Anne

Step1

Searching on the
Shallow Web

Deep Web Sites

Database

HTTP
Request

Sends
HTML
Page

Query
Processing

Web Form
(Firewall)

Response
Gets

Query
Processing

Sends

Web Form
(Firewall)

HTML
Page

Database

HTTP
Request

Response
Gets

Sends

Web Form
(Firewall)

HTML
Page

HTTP
Request

Query
Processing Database

Response
Gets

Quering

Results

Quering

Results

Step 2

Step 3

Quering

Results

Step 4

Anne

Anne

Anne

Car Vendor 2

Elevations Site

Domain1

Domain2

Anne

Step5 Manual linking for
results from
Doman1 and

Domain2

searching

Searching

Anne

Step 6

Manual Searching

F igure 1 .9 : The manual process to get useful results for Q2.

11

2. Amal Aljohani. 2021. Personalized Question Answering On the Web using an

Ontology. In The 7th International Conference on Health Informatics Medical

Systems (Las Vegas, NV).

3. Amal Aljohani. A Smart User Interface for Structured Deep Web Search (Sub-

mitted).

1 .7 dissertation organization

The reminder of this dissertation is organized as follows: Chapter 2 discusses the

research background; Chapter 3 presents the DeepQ system; Chapter 4 presents the

implementation and experimental results. Chapter 5 includes the conclusion and

suggestions for future work.

12

chapter 2

Background and Related Work

2 .1 web database querying and web searching

Database technology has made such remarkable advancement in the past decades that

we can now process complex queries on huge data sets. Retrieving information from

databases requires knowledge of the database schema in order to be able to form

structured queries. The beauty of database querying is that it restricts the results

to deliver the exact desired information. In the past, the capability of querying the

web (the hidden web) using database techniques was studied. But the focus was

limited on the logical level such as data models development and query languages

(Florescu et al., 1998). Also, the problem of keyword search in traditional relational

databases has been studied heavily in the literature (Agrawal et al., 2002),(Hristidis

and Papakonstantinou, 2002); this problem gets more complicated in the context

of web databases. Instead of databases, search engines have played a big role in

connecting users with the web as it allows them to issue simple keyword-based

queries to get the desired result. The current mode of searching for an information

on the web is by posing unstructured queries, where users pose a keyword query and

get a list of URLs as a result. Obtaining information via unstructured queries is not

a straightforward process, as users usually need to modify the query and review

many results before reaching the desired one. Consider the number of results that

would be listed to a user who is searching for a specific piece of information. An

unthinkable number of results could be provided which are not necessarily relevant

to the issued query. Search engines such as Google fail to fully satisfy the information

needs of users (Khelghati, 2016),(Aljohani, 2021a). Users are allowed to issue queries

and modify them according to their desires; so they tend to issue several queries until

they are satisfied with the results (Jagadish et al., 2007). The The previous examples

in section 1.5 show the difference between web database querying and shallow web

searching. When users submit the keyword queries, they start with searching the

13

shallow web, and when they find the search form in the deep web site, they query the

database behind that interface. After that they search again among the results. The

difference between searching and querying can be summarized as follows:

• Querying: users know where to look but they do not know the data.

• Searching: users know what they want but they do not know where to look.

Researchers have striven to improve the quality of information retrieval from the web;

especially for ordinary users who need the proper access to the desired information.

2 .2 why do we need to search the deep web?

2.2.1 High- Quality Information

The deep web carries huge amounts of hidden information that would be very benefi-

cial if accessed and leveraged properly. Traditionally, users are restricted to accessing

the content that is provided by search engines from the shallow web. The probability

of finding the desired information in the deep web is much higher considering its

size and richness (Bergman, 2001). Even though hidden information represents a

large proportion of the web, finding and accessing such data through search engines

is often impossible (Aljohani, 2021a). Usually, deep web crawlers reach web pages

and process them via information extractors that provide structure to the information

in order to facilitate its integration in an automated manner (Hernández et al., 2018).

There are many useful databases on the web, but users find it difficult to find the right

sources and query them. It is not very useful to query only one deep web site at a time;

it is more efficient to integrate data from multiple sources (Jou, 2016a). Researchers are

cognizant of the fact that it is difficult to query the deep web and integrate it because

of access limitations (Calì and Straccia, 2017). Many research projects aim to empower

users with the ability to access databases on the web effectively by proposing new

approaches and building systems that can make the deep web more accessible and

usable (He et al., 2005a).

14

Querying
Search Engines

less precision

less recall

Shallow Web
Databases

per fect precision

per fect recall

Deep
Web

Search

Searching

F igure 2 .1 : Databases and Search Engines

2.2.2 Better User Experience

Users encounter frustrating experiences frequently while searching for information

on the web. This frustration might be caused by the staggering number of results that

might or might not be related to the submitted queries. Even if the results are related

to the submitted query, they might need further filtration and examination that would

lead to time lost. Researches indicate that user frustration is a real problem and that

frustration has an impact not only on the users themselves, but also on how they

interact with other people during the day. In fact, one study shows that searching

the web is the most frustrating experience for users who participated in that study

(Ceaparu et al., 2004). There are important factors that can affect the quality of the

users’ experience when they search for information on the web. User satisfaction is a

very important factor and a key measure for search effectiveness. It is interesting to

note that users’ expectations are not the same when it comes to dealing with databases

and search engines (Jagadish et al., 2007) as shown in Figure 2.1. It has been argued

that search engines cannot be built on top of databases, and despite the fact that search

engines work properly for the web, they fall short of addressing usability problems

that plague database systems (Jagadish et al., 2007). Making the deep web searchable

and accessible is desirable for providing more accurate and related results to user

queries. This would increase satisfaction, leading to a better search experience.

15

2 .3 why is it difficult to search the deep web?

In general, web search will only continue to grow (Aljohani, 2021b). Not only is deep

web data not indexed by search engines, but also their URLs are not defined. Besides,

large portions of the hidden web were not explored due to the difficulties associated

with finding and accessing hidden web data. The large scale of the dynamically

generated content is one of the problems that make deep web crawling a challenge.

Also, search interface restrictions make accessing the underlying databases difficult

(Raghavan and Garcia-Molina, 2000). In fact, accessing hidden web data requires not

only finding the right web forms as sources, but also filling those forms properly

(Vieira et al., 2008), processing the queries, and integrating all data. Moreover, the

tasks of query translation (across different deep web sources), data retrieval, and

integration should be done on-the-fly to achieve large-scale data integration. Searching

the deep web is considered challenging especially when it comes to coping with the

large scale since deep web integration is dynamic, and it is not configured statically

for such integration (He et al., 2005a). It has been known that accessing the deep

web is demanding as it poses many technical challenges. Additionally, it requires

combining multiple techniques from different areas of computer science (Calì, 2017).

There exists a gap between the theoretical understanding of the problem of querying

the deep web and the practical approaches to it (Calì and Ugarte, 2017). Even the

simplest query on the deep web requires the execution of recursive query plans.

2 .4 toward searching and accessing the deep web

The deep web is the biggest source of structured data on the web. However, accessing

its contents has historically been a challenge (Madhavan et al., 2009). The rapid in-

crease in the number of data sources and the availability of suitable infrastructure are

some of the reasons behind the attention on integrating data from multiple resources.

But most important is the hidden data that can only be accessed through web forms

because they occupy a larger portion of the web and because of the high data quality

that makes it attractive for integrating and accessing. Even though researchers are

aware of the difficulties involved with accessing the deep web, they are still working

16

Table 2 .1 : A Comparison between Physical and Virtual Integration Systems

Physical Integration Virtual Integration
Data Replication No Data Replication

Follows a global schema
in a central repository

Enables a uniform view of data sources

High integration cost Reduces integration cost (Rivero et al., 2011)
Queries are executed against

a copy of the data sources
Queries are executed against the original data source (Kabisch, 2011)

on searching or "Googling" the deep web (Calì et al., 2017)(Calì et al., 2015). There

are many attempts toward accessing the deep web, but the query processing attempt

is the one that was carefully investigated lately. Different perspectives have been

tackled such as: data sources integration, query planning and its optimization, and

data crawling (Hernández et al., 2018). Certain systems and techniques such as

(He et al., 2005a) and (Kabisch et al., 2010) and (Liu et al., 2010) have attempted to

dynamically access and leverage deep web content that is relevant and permissible in

the context of a query (Jou, 2016a), but these attempts were focusing on specific parts

such as interface integration and they do not provide a reusable framework for the

research community to contribute in order to improve the field. This approach does

not require prior indexing or harvesting of deep web content. It has been noted in

the literature that the work on deep web integration is focused on multiple separated

aspects such as schema matching (Bhattacharjee and Jamil, 2009). Some approaches

were limited to discovering, organizing, and analyzing web forms to provide a form

exploration feature (Barbosa et al., 2010), automatic form filling approaches (Toda

et al., 2010) and other research focused on building fully integrated systems that start

from HTML pages (Vieira et al., 2008). The motion of accessing the deep web is

not limited to accessing the web databases directly, but it also focuses on sending

multiple requests, receiving multiple responses (possibly integrating them) , and

finally making a decision (filtration) based on user queries. In general, there are two

types of integration systems as shown in Table 2.1.

Also, there are two data integration approaches: the virtual integration that follows

the data integration paradigm for accessing the deep web where a mediator is con-

structed for a specific domain (Madhavan et al., 2009). This approach allows users to

17

pose their queries over a mediated schema that is exposed as a search interface (web

from). Virtual integration was considered unsuitable for search engines especially

with the domain classification challenges. Domains could not be clearly defined on the

web ten years ago (Madhavan et al., 2009), but with the advent of ontologies, it is now

possible to address this challenge (Huan et al., 2020). On the contrary, the surfacing

approach (also known as crawling (Álvarez et al., 2007), (Madhavan et al., 2008)) works

by pre-computing selected sources to index the results at the end (the keyword search

is possible here). The majority of recent research on querying the content of the

structured web has a focus on leveraging either the exposed tables in an indexable

document form, or using traditional query methods after exposing the content (Jamil

and Jagadish, 2015). In addition, some deep web query approaches focus on exposing

the page content first, then querying it using standard techniques. Many approaches

have been used for querying deep web content by exposing the tables based on their

predicted use and then querying the exposed content (He et al., 2004). Also, modeling

deep web sources as relational tables enables deep web querying and accessing while

respecting access limitations. Besides that, there are other data integration types

that are determined based on the domain such as horizontal integration that aims

to integrate multiple web databases from a single domain, and vertical integration

that uses multiple sources from multiple domains. Different systems and approaches

address different issues related to searching the deep web from multiple perspectives.

Obviously, it is hard to ignore the increasing number of data sources that are available

over the web. But over the years, the need for integrating these data sources has

been growing. Some systems focus on interface integration and matching (web source

integration); other systems focus on data level integration (data integration). We will

discuss source integration in section 2.4.1, data integration in section 2.4.2, and finally

we will present the concept of the UR model in 2.4.3 to highlight its role in deep web

integration.

2.4.1 Deep Web Sources Integration

The integration of query interfaces received much attention in the past (Dragut et al.,

2009), (Su et al., 2014), (Wu et al., 2003). Initially, researchers attempted to model

18

all interfaces with flat schemas while considering 1:1 field mappings over interfaces.

This kind of work required arduous parameter tuning. Previous approaches such as

(Wu et al., 2004) focused on overcoming earlier limitations of interface matching. The

improvements included better interface matching accuracy across different domains.

Yet, intervention of users was not avoidable.

Integrating Deep Web sources is most commonly handled by performing the domain-

wise integration that is useful but challenging. For instance, the Visual Query Inter-

face Integration System VisQI (Kabisch et al., 2010) was proposed as an integration sys-

tem that extracts query interfaces from web pages, transforms them into a hierarchical

representation, clusters them to different domains, and matches fields from different

interfaces within their shared domain. The system was built in a modular way and

it only addresses web integration developers. It can help developers to support

their deep web integration systems and evaluate extraction and matching algorithms.

The architecture of VisQI consists of different components that perform schema tree

extraction, classify application domains, and match semantically equivalent nodes

from different interfaces into clusters. Two different modes can be used in the system:

the extraction mode and the mapping and classification mode. In general, the quality

of the extracted data structures outperforms other methods such as (He et al., 2003)

and (Zhang et al., 2004). Recently, other techniques were borrowed from the area of

distributed information retrieval to be used within a framework for integration of

deep web sources such as (Calì and Straccia, 2017). This method adapts the Global As

View (GAV) (Lenzerini, 2002) approach in order to integrate the deep web resources.

The proposed framework aimed to compute queries against a mediated schema that

represented the structure of the web sources to perform integration of deep web

sources. In this proposed framework, queries are posed on a mediator that performs

some tasks such as query rewriting, resource selection, and ranking of results. This

approach was supposed to return partial answers to the submitted query. However, it

was never implemented.

Likewise other approaches, such as The Prudent Schema Matching Approach for

web forms (PruSM) (Nguyen et al., 2010), focused on automating schema matching for

web forms. This automated schema matcher can work effectively with a large, hetero-

19

geneous collection of forms focusing on the frequency of attributes. The availability

of the information about web form interfaces is crucial for form filling and schema

matching. Also, researchers have attempted to access the deep web and perform query

interface integration based on incremental schema matching and merging, such as is

proposed with DWQII (Jou, 2016b). The problem with this approach is that it gathers

all results in one file without further filtering based on the needs of the user.

A very recent approach (Huan et al., 2020) was also presented to handle query

interface schema extraction for the sake of enabling an effective access to the hidden

web contents based on domain ontology. Even though many research projects ad-

dressed the schema extraction problem, this one is relatively new in the sense that it

uses the internal code for the extraction within an ontology. This system and some

others such as (He et al., 2005b) are limited to the interface level.

2.4.2 Deep Web Data Integration

There is great potential in integrating and re-purposing the enormous amount of

structured data available on the Web. For instance, OCTOPUS (Cafarella et al., 2009)

is a system that enables users to obtain new datasets gathered from those available

on the Web. The idea is to automate manual tasks (e.g. data searching, extracting,

and cleaning) using specific operators. The data that is manipulated by OCTOPUS is

extracted from HTML tables and lists. There are three main integration operators that

OCTOPUS performs:

• The Search Operator takes user keywords and a set of relations and returns a

cluster of tables that are related to the user0s keyword query string.

• The Context Operator takes one relation and modifies it by adding a data column

to the obtained table derived from the source web pages corresponding to the

relation.

• The Extend Operator provides more relevant data columns to the existing table by

performing a join.

The limitation with this system is that it only deals with the shallow web tables.

20

Moreover, several strategies have been proposed for retrieving hidden web data

automatically. For instance, Siphon++ is a Hidden web crawler for retrieving data that

are hidden in the deep web behind keyword-based form interfaces. Some approaches

use a fixed strategy for query generation, but the strategy in Siphon++ adapts query

generation and selection by detecting features of the index underlying the search

interface (Vieira et al., 2008). The adaptation to the features of the underlying search

interface indexes improves the crawler coverage. The proposed architecture consists

of two main components: the adaptive component that discovers and selects index

features using probe queries that are sent against the search interface, and the heuris-

tic component that generates queries to retrieve the hidden content. The heuristic

component has two phases: a sampling phase that aims to assemble a representative

sample of the database, and a crawling phase that crawls the database using the most

common word in the document of the sample. A sample of the indexes is built

at the beginning, before the crawling starts, unlike other crawlers that build the

sample within the process. The quality of the sample might affect the performance

of Siphon++, and that kind of dependency can be considered as a weakness. Other

attempts focused on attribute matching for data integration by applying data mining-

based techniques (Liu et al., 2010). The work not only targeted the input-input or

output-output attribute matching, but also input-output matching.

It is important to mention federated integration systems such as MetaQuerier

(He et al., 2005a) that were proposed for deep web integration (follows the virtual

integration approach). MetaQuerier was the first fully integrated system concerned

with streamlining and automating web interfaces, and allows on-the-fly translation

between unseen sources. It provides a mediated schema that facilitate abstracting the

web database forms. Although it is a good integration system, it has some limitations

such as not providing a reusable general framework for the community to advance

the field. Also the study was limited to one domain and it does not perform searching.

Besides that, the interface integration causes some lagging and the output schema is

not considered. The system consists of a sequence of three subsystems as follows:

• An Interface Extractor takes HTML pages containing web forms as an input and

provides extracted attribute information as an output.

21

• A Schema Matcher handles the web interface attributes and its semantic corre-

spondences.

• An Interface Unifier generates the unified interface and the mapping that links

it with the internal interfaces.

In addition, Pay As You Go (PAYGO) (Madhavan et al., 2007) is another system with a

framework that has a similar architecture to MetaQuerier. Researchers are motivated

to work on virtual integration for the deep web, since it has been realized that the

actual value of the deep web comes from integrating its data.

Overall, it is not appropriate for the deep web to follow the traditional access

techniques; thus, there is a need to develop a useful and effective technique for

accessing the deep web. Some research projects have explored a direction that aims

to access the deep web upon user querying by redirecting the user to the appropriate

database to be searched through its search interface. For example, MetaQuerier

followed this direction (He et al., 2007). There has been a lot of attention on data

integration; different systems were constructed to tackle different aspects of deep web

data integration. In 2001, a task specific hidden web crawler called the Hidden Web

Exposer(HiWE) (Raghavan and Garcia-Molina, 2001) was built to address the problem

of extracting data from the deep web. The framework was domain specific; and as a

crawler it retrieves all content with no consideration of user requirement specification

or the relevance of results. Although it automates deep crawling to a great extent, it

still requires substantial human intervention. A recent survey addresses the perfor-

mance measures related the deep web crawling and emphasises the need to create

effective crawlers that can be useful in a real world context (Hernández et al., 2018).

Although deep web data sources have been usually modeled as relational, some recent

work aims to export deep web data as Linked data sets (Calì et al., 2018).

In this section, we outlined most important proposed or developed systems in

this area so far and we highlighted its strengths and limitations. We have noticed

that the majority of existing projects focus on the interface level and do not preform

a complete access for users. After analysing the previous and current systems, we

22

become cognizant of the fact that searching the deep web was not addressed from the

prospective of searching the results of queried web databases.

2.4.3 The Universal Relations (UR) Model for the Deep Web Search

The Universal Relations (UR) Model that was proposed by Ullman aims to allow

the user to see the database as a simple view that is more easily queried (Ullman,

1982). The simplicity of the view comes from its representation as a single semantic

view for the entire database (Jamil, 2021). In the UR concept, a relational database

was viewed from a different perspective. This concept was supported by many

proposed formal foundations such as (Atzeni and Chan, 1989). Previously however,

supporting the UR model was a burden to system developers. Querying the relational

database while considering the UR model was a complex task. Also, using the

UR model required theoretical and system support. The above challenges made it

unattractive to support the UR model. Nevertheless, it happens that the UR model

offers some attractive properties that can be leveraged in the design of a structured

query language for searching the Deep Web (Jamil, 2021). The UR as a user view is

similar to a natural language interface to databases, and researchers have developed

several implementations for UR interfaces over the years (Levene, 1992).

As web databases contain large amounts of structured information from different

domains, the need for developing automated techniques to access the deep web be-

comes increasingly important. Web database access and integration requires combin-

ing and leveraging multiple techniques and approaches form different domains. As

stated above , building such systems requires accurate and scalable schema matchers,

form filling capability, and data extraction software (Wrappers). Most importantly,

one of the recently proposed models (Jamil and Jagadish, 2015) for the Deep Relational

Web is a structured query model that can be used to query the deep web as a virtual

database. This model also proposes a Deep Query Language (DQL). DQL is a

simple SQL-like language that facilitates searching the deep web as a virtual database.

We have highlighted the differences between some related work on integrating and

accessing the deep web. Table 2.2 shows some of those systems, their approaches,

strengths, and limitations. As shown in the table, the problem had been tackled from

23

different perspectives and levels that are implemented as subsystems since a complete

query-answering task is not completely achieved.

Table 2.3 compares the capabilities of those systems. Some systems perform

form identification or selection, some systems perform classification at the interface

level or domain level. Other systems apply interface integration, where others apply

schema integration. We notice that most of these systems do not provide a reusable

framework, are limited to one domain, require some user intervention, do not provide

a unified user query interface, and if they provide one it is restricted to the access

limitations of the underlying interface forms or only for developers. Also, the majority

of these systems do not provide final integrated results to the user through a unified

interface and they do not allow searching. Furthermore, the focus is directed either to

interface level integration, or to presenting incomplete deep web integration systems.

24

Ta
bl

e
2.

2:
So

m
e

Sy
st

em
s

St
re

ng
th

s
an

d
Li

m
ita

tio
ns

.

S
y

s
te

m
A

p
p

r
o

a
c
h

S
tr

e
n

g
th

s
L

im
it

a
ti

o
n

s

M
et

aQ
ue

ri
er

(H
e

et
al

.,
20

05
a)

Fo
rm

m
od

el
in

g
an

d
Q

ue
ry

tr
an

sl
at

io
n

-O
n-

th
e-

fly
Q

ue
ry

in
g

-F
or

m
m

od
el

in
g

an
d

qu
er

y
tr

an
sl

at
io

n
-D

yn
am

ic
Fa

sh
io

n
-I

n
th

e
co

nt
ex

to
ft

he
qu

er
y

-U
ni

fie
s

w
eb

in
te

rf
ac

es
au

to
m

at
ic

al
ly

-N
o

ta
sk

s
id

en
tifi

ca
tio

n
-N

o
ca

pa
bi

lit
y

of
in

te
gr

at
in

g
be

tt
er

sc
he

m
a

m
at

ch
er

s
-U

se
rs

in
te

rv
en

tio
n

(f
or

m
se

le
ct

io
n)

-N
o

un
ifi

ed
re

su
lt

fo
r

us
er

s
qu

ir
es

-T
he

fr
am

ew
or

k
is

no
tr

eu
sa

bl
e

an
d

ge
ne

ra
l

-N
o

fin
al

re
su

lt
fil

te
ri

ng

V
is

Q
I

(K
ab

is
ch

et
al

.,2
01

0)
H

id
de

n
da

ta
be

hi
nd

K
ey

w
or

d-
ba

se
d

in
te

rf
ac

e
-A

da
pt

io
n

to
th

e
in

de
xe

s
of

th
e

fe
at

ur
es

un
de

rl
yi

ng
th

e
w

eb
in

te
rf

ac
e

-T
he

co
ve

ra
ge

is
th

e
m

os
ti

m
po

rt
an

tf
ac

to
r

-Q
ua

lit
y

of
th

e
sa

m
pl

e
de

pe
nd

en
cy

-H
ar

ve
st

in
g-

ba
se

d
sy

st
em

O
C

TO
PU

S
(C

af
ar

el
la

et
al

.,
20

09
)

D
at

a
in

te
gr

at
io

n
fr

om
re

la
tio

na
lw

eb
(S

ha
llo

w
w

eb
)

-U
se

s
op

er
at

or
s

fo
r

se
ar

ch
in

g
an

d
in

te
gr

at
in

g
da

ta

-N
ot

fu
lly

au
to

m
at

ed
-U

se
rs

in
te

rv
en

tio
n

-R
ea

lt
im

e
us

er
in

te
ra

ct
io

n
is

no
ts

up
po

rt
ed

W
IS

E-
in

te
gr

at
or

(H
e

et
al

.,
20

03
)

A
ut

om
at

ic
in

te
gr

at
io

n
of

W
eb

In
te

rf
ac

es
of

Se
ar

ch
En

gi
ne

s

-A
ut

om
at

ic
al

ly
in

te
gr

at
es

th
e

in
te

rf
ac

es
of

e-
co

m
m

er
ce

se
ar

ch
en

gi
ne

s
-N

ot
on

ly
sc

he
m

a
in

te
gr

at
io

n,
bu

ta
ls

o
at

tr
ib

ut
es

va
lu

es
,f

or
m

at
,a

nd
la

yo
ut

in
te

gr
at

io
n

-I
nt

er
fa

ce
le

ve
li

nt
eg

ra
tio

n
-U

se
rs

ad
d

an
d

re
m

ov
es

in
te

rf
ac

es
-I

nt
eg

ra
te

d
in

te
rf

ac
es

ne
ed

s
to

be
m

ai
nt

ai
ne

d
pe

ri
od

ic
al

ly

W
IS

E-
iE

xt
ra

ct
or

(H
e

et
al

.,
20

05
b)

In
te

rf
ac

e
Sc

he
m

a
Ex

tr
ac

tio
n

-I
nt

ro
du

ce
d

sc
he

m
a

m
od

el
fo

r
se

ar
ch

in
te

rf
ac

e
-P

re
se

nt
ed

a
to

ol
fo

r
au

to
m

at
ic

al
ly

ex
tr

ac
tin

g
an

d
de

ri
vi

ng
in

fo
rm

at
io

n
to

co
ns

tr
uc

tt
he

sc
he

m
a

-I
nt

er
fa

ce
le

ve
l

-S
in

gl
e

do
m

ai
n

-L
im

ite
d

to
ou

tp
ut

th
e

sc
he

m
a

of
se

ar
ch

in
te

rf
ac

es

D
W

Q
II

(D
ra

gu
te

ta
l.,

20
12

)
Q

ue
ry

In
te

rf
ac

e
In

te
gr

at
io

n
-I

nt
er

fa
ce

in
te

gr
at

io
n

is
im

pl
em

en
te

d
ba

se
d

on
in

cr
em

en
ta

ls
ch

em
a

m
at

ch
in

g
an

d
m

er
gi

ng
-I

th
an

dl
es

fo
rm

su
bm

is
si

on
fo

r
si

te
s

w
ith

co
ok

ie

-L
im

ite
d

to
on

e
do

m
ai

n
-L

im
ite

d
to

us
er

’s
pr

ef
er

en
ce

w
eb

si
te

s
-U

se
rs

re
vi

ew
is

ne
ed

ed
fo

r
co

nfi
rm

in
g

th
e

sc
he

m
a

m
at

ch
in

g
-N

o
pr

op
er

re
su

lts
ha

nd
in

g

-
(H

ua
n

et
al

.,
20

20
)

D
om

ai
n

O
nt

ol
og

y
ba

se
d

-I
nt

er
fa

ce
sc

he
m

a
ex

tr
ac

tio
n

ba
se

d
on

do
m

ai
n

on
to

lo
gy

-P
ro

po
se

d
a

ne
w

pr
es

en
ta

tio
n

fo
r

qu
er

y
in

te
rf

ac
e

at
tr

ib
ut

es
-C

om
bi

ni
ng

at
tr

ib
ut

es
se

m
an

tic
al

ly

-I
nt

er
fa

ce
le

ve
li

nt
eg

ra
tio

n
-D

os
e

no
to

bt
ai

n
ac

tu
al

re
su

lts

25

Ta
bl

e
2.

3:
C

om
pa

ri
so

n
of

Sy
st

em
C

ap
ab

ili
tie

s,
Id

en
tifi

ca
tio

n
(S

ou
rc

e
Id

en
tifi

ca
tio

n)
,

C
la

ss
ifi

ca
tio

n,
In

te
gr

at
io

n,
U

U
Q

I(
U

ni
fie

d
U

se
r

Q
ue

ry
In

te
rf

ac
e)

,S
M

(S
ch

em
a

M
at

ch
in

g)
,F

F
(F

or
m

Fi
lli

ng
),

R
es

ul
ts

W
ra

pp
in

g,
R

eu
sa

bi
lit

y.

Sy
st

em
Id

en
tifi

ca
tio

n
C

la
ss

ifi
ca

tio
n

In
te

gr
at

io
n

U
U

Q
I

SM
FF

W
ra

pp
in

g
R

eu
sa

bl
e

M
et

aQ
ue

ri
er

(H
e

et
al

.,
20

05
a)

D
D(C

lu
st

er
in

g)
D

D
D

-
-

X
D

ee
pP

ee
p

(B
ar

bo
sa

et
al

.,
20

10
)

D
D

X
X

D
X

X
-

V
is

Q
I(

K
ab

is
ch

et
al

.,
20

10
)

D
D

D(I
nt

er
fa

ce
Le

ve
l)

X
(D

ev
el

op
er

s
O

nl
y)

D
X

-
D

Si
ph

on
++

(V
ie

ir
a

et
al

.,
20

08
)

D
-(

Sa
m

pl
in

g
an

d
R

an
ki

ng
)

-
D

X
X

-
-

O
C

TO
PU

S
(C

af
ar

el
la

et
al

.,
20

09
)

D
D

D
D

X
X

X
X

W
IS

E-
in

te
gr

at
or

(H
e

et
al

.,
20

03
)

X
D

D(I
nt

er
fa

ce
Le

ve
l)

D(I
nt

er
fa

ce
In

te
gr

at
io

n)
D

X
X

X
W

IS
E-

iE
xt

ra
ct

or
(H

e
et

al
.,

20
05

b)
D(A

tt
ri

bu
te

-e
le

m
en

tL
ev

el
)

D(I
nt

er
fa

ce
Le

ve
l)

D
X

X
X

X
X

-(
Li

u
et

al
.,

20
10

)
D

D(C
lu

st
er

in
g)

D
X

D
X

X
X

D
W

Q
II

(D
ra

gu
t,

20
12

)
X

X
D(I

nt
er

fa
ce

in
te

gr
at

io
n)

D
D

D
X

D
-(

H
ua

n
et

al
.,

20
20

)
D

D
X

X
X

X
X

D

26

There have been notable attempts toward making the deep web usable and ac-

cessible. We recognize considerable achievements in many tracks toward deep web

data integration. It is also noticeable that there is no project to our knowledge that

contribute to all subcategories in a modular way except the DQL framework (Jamil

and Jagadish, 2015) that emphasis on the importance of making reusable framework

that the community can work on together. Figure 2.2 shows some systems that aim

to address the problem of leveraging deep web data. Two different approaches are

shown in the figure, both of them are actually moving toward making the deep

web usable. We have presented these approaches as two different directions that

complement each other.

2010
VisQI

(Kabisch et al.,2010)

DWQII
(Dragut et al., 2012) OCTOPUS

(Cafarella et al., 2009)

Siphon++
(Vieira et al., 2008)

MetaQuer ier
(He et al., 2005a)

UR Model
(Jamil, 2021).

2016

DQL
(Jamil and Jagadish,

2015)
2015

2009

2005

2005

2021

Unnamed
(Huan et al., 2020)

2020

Wise-integrator
(He et al., 2003)2003

System \ Data levelInter face level

F igure 2 .2 : Some Selected Previous Work Throughout the years

Although there are many other approaches, we consider them as sub-elements in

the vision for searching the deep web. The two main levels that can be imagined

as a car. The interface level which can be seen as the body and the actual system or

data level can be seen as an engine. Both directions can collaborate with each other

alighted by the concept of the UR Model to make deep web searchable in a human-

like manner. For instance, while some projects focused on the Form crawling, other

projects perform deeper tasks such as schema matching and forms extraction. Obtain-

ing useful results require diving deeper to perform data integration and searching on

the retrieved deep web data. An overview of the future direction for searching the

deep web from interface level to data level is shown in Figure 2.3. It is important

27

to mention that this overview is meant to show the big picture and the tasks are not

limited to the ones shown in the figure. Some high profile deep web applications

such as Metaquerier already exist, but those are very inflexible and do not improve

the user experience of querying and searching deep web. They do allow querying,

but they do not allow searching.

Deeper

Interface Level

Form Extraction / Schema
Matching

Complete System
(Data Integraion Level)

Deeper

Searching

Deeper

F igure 2 .3 : An overview toward deep web searching.

28

chapter 3

DeepQ System

This chapter describes our work and the implementation flow of our system DeepQ

that is utilized to search the database contents behind the firewall inside the Deep

Web. The building blocks of DeepQ is shown in Figure 3.1. The DeepQ leverages a

declarative query language DQL and simplifies the deep web for users through lever-

aging the concept of the universal relational model. We will begin with describing

how we leveraged the DQL features in section 3.1, then the DeepQ Architecture in

section 3.2.

3 .1 leveraging the dql features

The model consists of four steps that can be implemented and developed indepen-

dently. The four steps are listed below:

1. Site Selection

2. Schema Mapping and Form Filling

3. Table Extraction

4. Output Processing

UR Model
DeepQ

DQL

F igure 3 .1 : DeepQ system

29

The second and third steps are implemented as operators: a Transform Operator and a

Combine Operator respectively. The DQL syntax is simple as it is a SQL-like language

that was proposed within a structured query model to query the relational web. DQL

has only two clauses: list and where. The list clause is followed by all attributes that

users need to obtain in the result separated by a comma, and the where clause is

followed by the conditions that should be satisfied by the system, using the needed

relational operators such as (= > <). DQL includes a sentence that stands in parallel

to SQL0s select from where that is used to extract tables from deep web databases. The

general structure of the extract statement is as follows:

extract Attribute List

using matcher µ filler f wrapper w

from j

where q

submit r

Although the model allows operations over unstructured and semi structured data,

it is completely relational. The ultimate goal is to have a uniform view of data as

relations. In the above statement, the Attribute List returns a table, and the input

argument to the extract statement are the rows of values in the table r. These values

are sent as parameters to the optional list of functions µ (a schema matcher for schema

heterogeneity resolution), f (a form filling function for deep web form filling), and w

(a wrapper for table structure identification and selection), to extract information at

the URL at j. The filler function is not needed if the URL is a shallow web site (i.e., a

document). Finally, q is the query condition.

It is important to mention that an ontology can be built and associated with the

system. This can enable writing general queries without restricting users to specific

keywords (Roitman and Gal, 2006). Also a good schema matcher can be beneficial for

this task.

30

3 .2 deepq architecture

The functionality of the extract statement is leveraged to implement a graphical inter-

face in order to facilitate search as DeepQ system interface. The user can provide a

query that has two parts: a list of attributes that they want to obtain as a response

for their query, and a set of Boolean conditions that must be satisfied. The detailed

DeepQ architecture is illustrated in Figure 3.2.

F igure 3 .2 : DeepQ architecture.

For example, a user might want to have a list of Honda Civic EX vehicles which

does not have more than 120,000 miles on it, the exterior color is red, it is priced below

$5,000, and the dealer is located in Moscow, Idaho. He wants to know the dealer name

and address, car’s VIN number, exact price and the dealer’s contact phone. She will

formulate her DeepQ query as follows in the user interface:

List: DealerName, DealerAddress, VIN, Price, DealerContactPhone

Conditions: miles  120000 and make = Honda and model = Civic and trim =

EX and color = red and price  5000 and zipcode = 83843

Once the query in the above form is submitted, the Query Rewriting unit of DeepQ

then consults the Deep Web Index it maintains to find websites that can answer the

query such as autotrader.com and cargurus.com and reformulate the queries as the

following extract statements (similarly for cargurus.com). We adopt a syntax along

the following line from a data integration language called BioFlow (Jamil and El-Hajj-

Diab, 2008):

extract DealerName, DealerAddress, VIN, Price, DealerContactPhone

using matcher filler wrapper

31

where miles  120000 and make = Honda and model = Civic and

trim = EX and color = red and price  5000 and zipcode = 83843

from autotrader.com

Once the query in the above form is submitted, the Query Rewriting unit of DeepQ

then consults the Deep Web Index it maintains to find websites such as autotrader.com

and cargurus.com and reformulate the queries as the following statement.

extract DealerName, DealerAddress, VIN, Price, DealerContactPhone

using matcher, filler,wrapper

where miles  120000 and make = Honda and model = Civic and

trim = EX and color = red and price  5000 and zipcode = 83843

from autotrader.com

These extract queries are then annotated and reformulated extensively to simulate the

web site interaction to be able to interrogate the deep web site.

For example, in the autotrader.com, the front-end only allows submission of ve-

hicle make, model name, and zip code. In the next step, it allows filters to weed

out unwanted responses. DeepQ therefore will break down the above query into the

following two queries:

extract *

using matcher filler wrapper

where make = Honda and model = Civic and zipcode = 83843

from autotrader.com

extract DealerName, DealerAddress, VIN, Price, DealerContactPhone

using matcher filler wrapper

where miles  120000 and trim = EX and color = red and price  5000

from autotrader.com

These statements are executed in tandem and the query variables are matched

with the site variables using a schema matcher. Finally, after extracting the data using

a wrapper, DeepQ stores them in the Response Triage to process later.

32

F igure 3 .3 : autotrader.com landing page pre-filter – pick-and-filter querying.

F igure 3 .4 : carvana.com landing page filter – direct querying.

The Query Processing unit processes these queries to collect all tentative responses

as candidates. Any further filters that could not be processed at the source, are then

applied at the DeepQ local database Response Triage using a simple SQL query, and

the final response returned to the users.

3.2.1 Pick-and- Filter Interface

The design of the deep web interfaces vary widely even though there are similarities.

Many of these data sources use a pre-filter in their landing page to steer the queries

to a more focused exploration, e.g., autotrader.com. In its landing page it only allows

to query based on make, model and zipcode, which then leads the users to second

page where a plethora of filter conditions can be set to find the vehicle of interest. We

term these types of deep web interfaces as Pick-and-Filter type interfaces. On the other

hand, sites such as carvana.com use the landing page itself for user query submission,

which we define as direct filtering-based exploration. Five major conditions are listed

for users to choose from – payment and price, make and model, body type, year and

mileage, and features as well as more filters, if needed. Figure 3.3 and Figure 3.4show

both types of landing pages while Figure 1.3 shows the secondary filtering page for

autotrader.com’s pick-and-filter type interface.

33

3.2.2 Event-Driven Resource Indexing

In the current edition of DeepQ, the databases Deep Web Index and Resource Capa-

bility Descriptions are semi-manually extracted, stored and maintained. However, the

next edition of DeepQ will have a module to extract such meta-data fully automati-

cally. Fortunately, many of the databases today use identical designs because many

of them are designed using services such as Shopify4 and Wix5, even though the

number of such sites are small. This will expedite the process of meta-data collection

because we are able to apply almost the same set of filter conditions across various

sites. One such obvious example is that Expedia.com and Orbitz.com have almost

identical interfaces even though they are not designed using the likes of Shopify or

Wix.

3 .3 system overview

The system we are implementing mimics the Structured Query Model for the Deep

Relational Web (He et al., 2005a). A simple diagram of the implemented system is

illustrated in Figure 3.5. It shows three main parts: a text user interface, a CGI

(Common Gateway Interface) with related Databases, and deep web forms. In order to

access the deep web effectively and obtain the useful information, users will interact

directly with a text interface. The text interface allows users to submit a query that is

written in DQL to obtain an output that is gathered not only from one form interface,

but also from all forms that can provide the desired results. The user text interface

runs a CGI script that provides a dynamic web page dependent upon the submitted

DQL query. The CGI script works as an intermediary between the text interface and

the other deep web forms.

3.3.1 Deep Web forms

Deep web forms (or search interfaces) are designed to facilitate human-computer

interactions; in order to access the deep web via DQL, this interaction needs to be
4https://www.shopify.com/
5https://www.wix.com/

34

Text Inter face

Form 1 Form 2

Final result

Model
Color
Price

Car ID
Make
Model
Price
Color

Seller_name
year

Input output

M yAutoCar

Make
Model
Color

Input output

M yAutoCar2

Form 3
Make
Model

Car iD
Make
Model
Price
Color

Seller_name

Input output

M yAutoCar3

Car iD
Make
Model
Price
Color

Seller_name

Query that has
List and
WHere output

CGI Script

Process

Data Store

Form 4 Form 2 Form 3

F igure 3 .5 : DeepQ System Overview for a single domain (Simple Query).

simulated automatically. Users are able to fill in fields in web forms with specific

parameters; usually each form is an interface for an online web database with unique

schema and does not necessarily belong to one specific domain. Search forms are

treated as black boxes in the DeepQ , but in order to understand the underlying web

databases and leverage their contents , search forms should be understood clearly.

Forms usually have selectable input requirements (access limitation), and expected

output. In traditional scenarios, if users tend to access one of these forms directly,

they would need to fill the form, send the query, and the result is automatically

generated after querying its related database. For example, in Figure 3.5 there are

three different forms that belong to a single domain (car sales) from three different

web sites. Form4 allows users to select model, color, and price to find a car that meets

the user0s selections and retrieve the available information from the database as the

following: Car Id, Make, Model, Color, Price, Seller Name, and Year (see Figure 3.6),

also another example is Form2 in Figure 3.7. In addition, the Table 3.1 shows the

input and output attributes for five forms.

It is important to mention that no dynamic scripts such as JavaScript were involved

with the building process of any of our forms. Web sites that use JavaScript have been

35

F igure 3 .6 : Form 4 after submitting as an example

F igure 3 .7 : Form 2 after submitting as an example

known to pose a challenge for web crawling. This is one of the unsolved issues when

dealing with web site crawling (Hernández et al., 2018).

Table 3 .1 : Input/Output Attributes for each form.

Fom Input Output
Form 2 Make, Model, Color ID, Make, Model, Color, Price, Seller Name
Form 3 Make, Model Car ID, Make, Model, Color, Price, Seller Name, Zipcode
Form 4 Model, Color, Price Car ID, Make, Model, Price, Seller Name, Year
Form 5 Zipcode Zipcode, State, City, Elevation
Form 6 Make, Model Car ID, Make, Model, Shade, Cost, Seller Name

36

3.3.2 The CGI Script and related databases

The creation of dynamic web contents is assisted by some mechanisms and tech-

nologies like server-side programs that are the most common/oldest method for

generating web pages on the fly. CGI is an example (Raghavan and Garcia-Molina,

2000).

The CGI script performs the following on submit:

• Get keys from user query by identifying attributes associated with the where

clause and the list clause.

• Recommending candidate forms based on both input-output attributes. Form

input is considered as access limitations that enforces internal constraints. The

system specifies relevant candidate forms that can be queried and premised to

obtain the desired output. This interface identification task can be implemented

by using a recommender system; the implemented algorithm mimics the recom-

mender system task as follows:

For example, if there is a form that accepts only make and model as inputs,

but the user query contains not only make and model. What if she asked

for also color or seller information that only can be found within the output?

Considering only form input is not efficient, the information desired might exist

in a specific form but will not be obtained if the system just considers form

access limitations (input). It is more efficient and useful to consider also output

information; see the example in section 4.3.

• Schema matching and form filling

• Get all response and write them to one table on-the-fly (SQLite is used)

• Evaluate user query against that table and output processing

Operators — We have implemented the two operators proposed in (Jamil and

Jagadish, 2015) as following:

37

• The transform operator is implemented as a function that takes three parameters:

a URL, q, and list attributes (output). The theta part(q) represents the Boolean

conditions in the ’where’ clause. And the list attribute are simply the attributes

that users asked for. This function returns a table depending on sites capabilities.

• The combine operator is responsible for output processing, it applies UNION

on simple queries and JOIN on Complex queries.

3.3.3 User Interface

We are experimenting with two dramatically different query interfaces even though

both rely on the principles of the DQL query language.

• The graphical user interface allows users to select the output field names and

the query conditions that corresponds to (list, conditions) in DeepQ and return

response. See Figure 3.8.

• The free text user interface shown in Figure 3.9, is a simple interface that has

a text box and submit button and it allows unrestricted queries. Sophisticated

users can write their queries directly in DQL without worrying about manual

picking and filtering, filling multiple forms, making separate decisions, and com-

paring between results. The simple free text user interface reduces user interven-

tion while accessing the deep web, which can improve scalability (Hernández

et al., 2018).

38

F igure 3 .8 : Graphical Interface (restricted)

F igure 3 .9 : Text Interface

39

chapter 4

Implementation and Experimental Results

We have implemented a desktop version of the system that is able to process queries

on deep web databases on the localhost as a proof of concept. The system was

implemented using Apache web server, PHP, and MySQL. The user interface page

runs a CGI script when a query is submitted. Our CGI script is implemented in

Python, and it interfaces with SQLite.

4 .1 syntax checker

The syntax checker function checks the following:

• If the query begins with "list"

• If there is more than one attribute in the (list clause) attributes, they should be

separated by a comma

• If the condition part (the where clause) begins with "where"

• If the (where clause) has pairs that are compared by (=,<,>,<=,>=)

• OR and limit are optional

• OR separates two blocks in a query, see Figure 4.1

4 .2 single domain web databases (simple query) - an
example

The deep web sites’ interfaces are mostly heterogeneous. Processing deep web queries

in a single domain is considered as a simple querying process (Jamil, 2021).

Assume that a user is searching for a black Jeep Cherokee and submits the follow-

ing query to the Text User Interface:

40

True list price, color
where make = Jeep and Model = Cherokee and

price < 40000

list price, color
where make = Jeep and Model = Wrangler and

price < 40000

limit 1

OR

True

False

False

p

P q p OR q

T T T

T F T

F T T

F F F

q

F igure 4 .1 : The logic in the Syntax Checker.

Q3: list price, color where make = Jeep and model = Cherokee and color

= Black

Results for S imple Queries — The result is shown in Figure 4.2; the output

show price and color in the result as the user requested. Figure 4.3 shows results for

the same query with a small modification (Color = Red) as the following:

Q3: list price, color where make = Jeep and model = Cherokee and color

= Red

The obtained results might have different schema. For example some forms pro-

vide shade and cost in the output, while others have price and color. Consider the

following query:

Q4: list shade, price where make = Jeep and model = Cherokee and price

< 30000

The result is shown in Figure 4.4.

41

F igure 4 .2 : Results for Q3

F igure 4 .3 : A small modification in Q3

4 .3 multiple domains web databases (complex query) -
an example

Our examples in section 1.5 show that queries can also be complex and they are

not always limited to a single domain. An overview of the process that deals with

querying the multiple domain web databases is shown in Figure 4.5.

Consider the following query:

Q2: Find Red Honda Civic 2015 or newer model less than $20,000 in cities

at elevation lower than 4000 feet

42

F igure 4 .4 : Results for Q4

F igure 4 .5 : DeepQ System Overview for the multiple domain querying.

This query can be successfully computed by linking retrieved information from differ-

ent deep web sites, see Figure 4.6. As you can see, Q2 has two different parts since its

requirements are not limited to one domain.

43

part1: Red Honda Civic 2015 or newer model less than $20,000 -> (Cars

Domain)

part2: cities at elevation lower than 4000 feet -> (Maps/Elevations Do-

main)

Linking between the two parts in this complex query requires leveraging the results

from the first part to retrieve results for the second part and then link them (Jamil,

2021). For example, the result shown in Figure 1.7 has some information about the car

itself and the location in which it exists (Colorado Springs, CO). The city information

can be used with another deep web site that has an elevation database, see Figure 4.7.

In general, the simplest description is; when a user sends a query, the system

performs the following:

1. Determine candidates forms by determining the mandatory input keys for each

form.

2. Check if other requirements in the query are available within the form’s output.

(Extras)

3. Send queries and receive results.

4. Filter results based on user query.

Results from the first
Deep Web Site

Make Model Color Year

Honda Civic Red 2016

price State City Zipcode

16910 CO ColoradoSprings 80906

City Elevations(feet)

ColoradoSprings 5774.3

Results from the second
Deep Web Site

Linking

F igure 4 .6 : Linking two different deep web sites that have different domains

44

F igure 4 .7 : Results from one of the Elevation Databases

Results for Complex Queries — Assume that a user submits the following

query to the Text User Interface.

Q5: list price, color, city, elevation where make = Jeep and model =

Cherokee and and zipcode = 99163 and elevation < 2500

This complex query is targeting two different domains with multiple deep web

sites in each domain. The result is shown in 4.8. The user asks for (price, color, city,

elevation) ; the first three attributes can be found in some or all forms that belong to

cars domain (based on sites capabilities). But the last attribute (elevation) belongs to

another domain. See Figure 4.9

4 .4 performance and evaluation criteria

Our goal is to empower users with the ability to search databases behind firewalls.

Generally, the performance of deep web searching systems can be captured in differ-

ent ways, and several factors can be taken into account. For instance, in web crawlers,

it is important to capture effectiveness and coverage (Vieira et al., 2008). Furthermore,

with form submission, none of the crawling metrics capture the challenge of dealing

with hidden web form submission (Raghavan and Garcia-Molina, 2000). Also, rele-

vance is usually one of the performance measures with web crawlers. One of the

goals of the implemented model is enabling users to obtain useful and to-the-point

45

F igure 4 .8 : Results for Q5

Simple Quer ies

Deep web site1

CGI Script Data Store

Sales Domain Location Domain
UNI_SALES UNI_LOCATION

D irect Inter face

Takes the query and shows the Final Result

DQL
Query Output

Deep web site2 Deep web site3 Deep web site N Deep web site1 Deep web site2 Deep web site3 Deep web site N

Simple Quer ies

Complex Quer ies

F igure 4 .9 : a complex Query such as Q4

results. The DeepQ system has the potential of capturing three important factors as

shown in Figure 4.10:

• Effectiveness and Usefulness: The user gets only the desired result(s).

• Usability: The system is easy to be used.

It has been known that the concept of the Universal Relation model can actually

solve the usability problem because it allows users to interact with databases with no

46

Table 4 .1 : DeepQ Evaluation (UUQI: Unified User Query Interface)

System Querying UUQI Integrated Result Searching Multiple Domains
MetaQuerier D D D X X

Siphon++ X D X X X
WISE-integrator X D X X X

DeepQ D D D D D
prior knowledge of its structure (Levene and Loizou, 1994). Also, the system accesses

multiple forms in a single or different domains (Accessibility), fills them and gets

results back, while respecting the form’s access limitations.

Usability Effect ivness

Usefulness

DeepQ

F igure 4 .10 : DeepQ performance measures.

4.4.1 DeepQ Evaluation

A qualitative evaluation for DeepQ compared with other systems is shown in Table

4.1. As shown, DeepQ allows to pose structured quires over a text user interface,

query deep web, obtain results through the user interface, search the queried results,

and able to perform complex quires not limited to single domain. Most web sites use

dynamic scripts such as JavaScript and Ajax for content generating (Hernández et al.,

2018). In this work, we are limited to the websites that are not using such dynamic

scripts.

47

chapter 5

Conclusion and Future Direction

5 .1 conclusion

As has been noted, accessing and leveraging the deep web is desirable and attractive.

We have experimented with the vision that we distilled from all the literature and

discussed in this dissertation, which is encapsulated in our system called DeepQ. We

envision a system that is able to search the database contents behind the firewalls

inside the deep web. The vision is not limited to enabling effective access to the deep

web; it is also concerned with obtaining useful results that meet a user’s queries on-

the-fly from multiple domains. This requires performing and integrating several tasks

such as schema matching, forms filling, result extraction, integration and searching.

We have experimented with some of these features in DeepQ using examples in the

automobile sales industry. Our experiments show that implementing these features is

feasible. These contents can be accessed using a structured query language when they

are treated as deep relational web. We have leveraged a recently proposed declarative

deep web query language called DQL, and we have presented the contours of its

implementation in the DeepQ system. We believe that this work has the potential

to demonstrate the Universal Relations model as the user will be able to interact

freely with databases that are hidden behind firewalls. DeepQ provides a single

database illusion of the underlying databases using a query engine and site specific

query reformulation. Users need to obtain the desired results in a useful and effec-

tive way without being overwhelmed with having to manually search multiple web

forms. Queries from same or different domains can be computed as discussed in our

example in section 1.5. Moving from searching the shallow web and perform deeper

searching in the deep web can enrich the user experience and increase the quality

of the obtained results, therefore enhances the quality of people’s lives. We have

presented an example from cars domain and elevation, other people might want to

find a house in safe location or least-polluted locations. The idea is that different web

48

databases can be queried and integrated this way. Making the deep web searchable

and accessible is desirable for providing more accurate and related results to user

queries. This would increase satisfaction which leads to better search experience.

Finally, the complexities and the involvement of a diverse set of component tools (e.g.,

wrappers, matchers, form fillers, etc.) also raises novel questions about efficiency and

optimization opportunities, some of which we plan to explore as our future research.

5 .2 future direction

Moving forward to the future direction requires the involvement of a diverse set of

component tools (e.g., wrappers, matchers, form fillers, etc.). There are multiple open

issues that need to be addressed and improved in deep web research as highlighted

in (Hernández et al., 2018). First, site indexing automation is an important issue that

we need to address in our future work. This can be implemented in two ways:

1. Design of a crawler to find those sites a head of time.

2. Implementation of individual query-based search. Every DeepQ query will first

be submitted in Google for possible identification of deep web sites that are

relevant as determined by Google’s powerful search engine. We will choose

the top K number of deep web sites to explore and possibly index. We use the

schema matcher to find out what fraction of our query variables match the front-

end and back-end filters, what variables are returned, and their types. We do

so by submitting a probe query using the conditions in the DeepQ query, not

necessarily to obtain a result, but just to explore the schema of the site. Once we

have explored all K sites, and possibly indexed, we move on to actually process

the query using the information we have. This is how we increase our reach

into the deep web database space on the internet. Obviously, there are several

choices on how we can do this because it has query processing implications. We

can decide to just log the sites for now, and process them for meta-data collection

during DeepQ idle times as opposed to at query processing time.

49

Also, we are not handling any transformation of values. A value is a value to

us. If someone is looking for a price in Pounds, heights in feet or meters, etc, we

cannot deal with that for now. This requires an additional engine to handle those

conversions. It is important to keep in mind that web databases are still databases

even if they are hidden behind firewalls. Keeping that in mind can affect the way we

address the related overhead regarding making the deep web usable and accessible.

Moving toward designing and implementing smarter user interfaces for a structured

deep web is one of our future goals. Besides that, we are planning to investigate

leveraging the relational web to be integrated with the deep web. This process

might be needed if a part of the query needs information that is not provided in

a deep web site but can be found in the relational web. Also, provenance information

is important for assessing integrity and data value and it has been recognized as

fundamental to trust in data (Buneman and Tan, 2007). Thus, as general databases

provide some support for provenance tracking (Buneman et al., 2006), this support

could also be provided to some extent to web databases after they have been accessed

and integrated. The question is how to make these systems or interfaces that aim to

access the deep web "provenance-aware", and to what extent this awareness should

be. It is understandable that with the hidden web, we are limited to capturing some

provenance related to the source of the integrated data such as URLs and the time

of integration. The captured provenance must respect the nature of the hidden web

databases.

50

Bibliography

Agrawal S., Chaudhuri S., and Das G. 2002. Dbxplorer: a system for keyword-based
search over relational databases. In Proceedings 18th International Conference on
Data Engineering, pages 5–16.

Aljohani A. 2021a. Deepq: A system to peek inside the ecommerce deep web. In The
20th International Conference on Information Knowledge Engineering.

Aljohani A. 2021b. Personalized question answering on the web using an ontology. In
The 7th International Conference on Health Informatics & Medical Systems.

Álvarez M., Raposo J., Pan A., Cacheda F., Bellas F., and Carneiro V. 2007. Crawling the
content hidden behind web forms. In International Conference on Computational
Science and Its Applications, pages 322–333, Springer.

Atzeni P. and Chan E.P. 1989. Efficient optimization of simple chase join expressions.
ACM Transactions on Database Systems (TODS) 14:212–230.

Barbosa L., Nguyen H., Nguyen T., Pinnamaneni R., and Freire J. 2010. Creating
and exploring web form repositories. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’10, page 1175–1178,
Association for Computing Machinery, New York, NY, USA.

Bergman M.K. 2001. White paper: The deep web: Surfacing hidden value. The journal
of electronic publishing : JEP. 7.

Bhattacharjee A. and Jamil H. 2009. Ontomatch: A monotonically improving schema
matching system for autonomous data integration. In 2009 IEEE International
Conference on Information Reuse Integration, pages 318–323.

Bianchi F., Tagliabue J., and Yu B. 2021. Query2prod2vec grounded word embeddings
for ecommerce. arXiv preprint arXiv:2104.02061 .

Buneman P., Chapman A., and Cheney J. 2006. Provenance management in curated
databases. In Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, pages 539–550.

Buneman P. and Tan W.C. 2007. Provenance in databases. In Proceedings of the 2007
ACM SIGMOD international conference on Management of data, pages 1171–1173.

Cafarella M.J., Halevy A., and Khoussainova N. 2009. Data integration for the
relational web. Proc. VLDB Endow. 2:1090–1101.

Calì A. 2017. Querying and searching the deep web. In Proceedings of the 7th
International Conference on Web Intelligence, Mining and Semantics, WIMS 2017,
Amantea, Italy, June 19-22, 2017 (R. Akerkar, A. Cuzzocrea, J. Cao, and M. Hacid,
eds.), page 3:1, ACM.

Calì A., Martinenghi D., and Torlone R. 2015. Keyword search in the deep web. In
CEUR Workshop Proceedings, 1378, CEUR.

51

Calì A., Martinenghi D., Torlone R., et al. 2017. Googling the deep web. In Proceedings
of the 25th Italian Symposium on Advanced Database Systems, Squillace Lido
(Catanzaro), Italy, June 25-29, 2017, vol. 2037 of CEUR Workshop Proceedings, page 49,
CEUR-WS.org.

Calì A., Noia T.D., Lynch T.W., and Ragone A. 2018. Processing SPARQL
queries on deep web sources. In Proceedings of the 26th Italian Symposium on
Advanced Database Systems, Castellaneta Marina (Taranto), Italy, June 24-27, 2018
(S. Bergamaschi, T.D. Noia, and A. Maurino, eds.), vol. 2161 of CEUR Workshop
Proceedings, CEUR-WS.org.

Calì A. and Straccia U. 2017. Integration of deep web sources: A distributed
information retrieval approach. In Proceedings of the 7th International Conference
on Web Intelligence, Mining and Semantics, pages 1–4.

Calì A. and Ugarte M. 2017. Accessing the deep web with keywords: A foundational
approach. In Semantic Keyword-based Search on Structured Data Sources, pages
177–183, Springer.

Ceaparu I., Lazar J., Bessiere K., Robinson J., and Shneiderman B. 2004. Determining
causes and severity of end-user frustration. International journal of human-
computer interaction 17:333–356.

Dragut E.C. 2012. Deep web query interface understanding and integration. Synthesis
Lectures on Data Management, Morgan Claypool, San Rafael, Calif. (1537 Fourth
Street, San Rafael, CA 94901 USA).

Dragut E.C., Kabisch T., Yu C., and Leser U. 2009. A hierarchical approach to model
web query interfaces for web source integration. Proc. VLDB Endow. 2:325–336.

El-Gamil B.R., Winiwarter W., Božić B., and Wahl H. 2011. Deep web integrated
systems: current achievements and open issues. In iiWAS’2011 - The 13th
International Conference on Information Integration and Web-based Applications
and Services, 5-7 December 2011, Ho Chi Minh City, Vietnam, pages 447–450, ACM.

Elhabbak H., Descamps B., Fischer E., and Athanasiadis S. 2020. Contextualisation of
ecommerce users. arXiv preprint arXiv:2011.01874 .

Florescu D., Levy A., and Mendelzon A. 1998. Database techniques for the world-wide
web: A survey. ACM SIGMOD Record 27:59–74.

He B., Patel M., Zhang Z., and Chang K.C.C. 2007. Accessing the deep web.
Communications of the ACM 50:94–101.

He B., Zhang Z., and Chang K.C.C. 2004. Knocking the door to the deep web:
Integrating web query interfaces. In Proceedings of the 2004 ACM SIGMOD
international conference on Management of Data, pages 913–914.

He B., Zhang Z., and Chang K.C.C. 2005a. Metaquerier: querying structured
web sources on-the-fly. In Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, pages 927–929.

52

He H., Meng W., Yu C., and Wu Z. 2003. Wise-integrator: An automatic integrator
of web search interfaces for e-commerce. In Proceedings 2003 VLDB Conference,
pages 357–368, Elsevier.

He H., Meng W., Yu C., and Wu Z. 2005b. Constructing interface schemas for
search interfaces of web databases. In International Conference on Web Information
Systems Engineering, pages 29–42, Springer.

Hernández I., Rivero C.R., and Ruiz D. 2018. engDeep web crawling: a survey. World
wide web (Bussum) 22:1577–1610.

Hristidis V. and Papakonstantinou Y. 2002. Discover: Keyword search in relational
databases. In VLDB’02: Proceedings of the 28th International Conference on Very
Large Databases, pages 670–681, Elsevier.

Huan A.Z., Panfei Y., and Zitong Y. 2020. Query interface schema extraction
for hidden web resources searching. In 2020 7th International Conference on
Information Science and Control Engineering (ICISCE), pages 1058–1062, IEEE.

Jagadish H.V., Chapman A., Elkiss A., Jayapandian M., Li Y., Nandi A., and Yu C.
2007. Making database systems usable. In Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’07, page 13–24,
Association for Computing Machinery, New York, NY, USA.

Jamil H. and El-Hajj-Diab B. 2008. Bioflow: A web-based declarative workflow
language for life sciences. In 2008 IEEE Congress on Services - Part I, pages 453–460.

Jamil H.M. 2021. Ur strikes back, again - for deep web search. Tech. rep., Department
of Computer Science, University of Idaho, Moscow, ID.

Jamil H.M. and Jagadish H.V. 2015. A structured query model for the deep relational
web. In Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management, pages 1679–1682.

Jou C. 2016a. Deep web query interface integration based on incremental
schema matching and merging. In Proceedings of the The 3rd Multidisciplinary
International Social Networks Conference on SocialInformatics 2016, Data Science
2016, pages 1–7.

Jou C. 2016b. Deep web query interface integration based on incremental
schema matching and merging. In Proceedings of the The 3rd Multidisciplinary
International Social Networks Conference on SocialInformatics 2016, Data Science
2016, MISNC, SI, DS 2016, Association for Computing Machinery, New York, NY,
USA.

Kabisch T. 2011. Extraction and integration of web query interfaces. ph.d. thesis .
Kabisch T., Dragut E.C., Yu C., and Leser U. 2010. Deep web integration with visqi.

Proceedings of the VLDB Endowment 3:1613–1616.
Khelghati M. 2016. Deep Web Content Monitoring. Ph.D. thesis, University of Twente,

Netherlands, sIKS dissertation series no. 2016-31.
Lawrence S. and Giles C.L. 1998. Searching the world wide web. Science 280:98–100.

53

Lenzerini M. 2002. Data integration: A theoretical perspective. In Proceedings of
the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS ’02, page 233–246, Association for Computing Machinery,
New York, NY, USA.

Levene M. 1992. The Nested Universal Relation Database Model. Lecture Notes in
Computer Science, Springer.

Levene M. and Loizou G. 1994. The nested universal relation data model. Journal of
Computer and System Sciences 49:683–717, 30th IEEE Conference on Foundations
of Computer Science.

Liu T., Wang F., and Agrawal G. 2010. Instance discovery and schema matching with
applications to biological deep web data integration. In International Conference on
Data Integration in the Life Sciences, pages 148–163, Springer.

Madhavan J., Afanasiev L., Antova L., and Halevy A. 2009. Harnessing the deep web:
Present and future. arXiv preprint arXiv:0909.1785 .

Madhavan J., Jeffery S.R., Cohen S., Dong X.L., Ko D., Yu C., and Halevy A. 2007.
Web-scale data integration: You can only afford to pay as you go. In CIDR.

Madhavan J., Ko D., Kot Ł., Ganapathy V., Rasmussen A., and Halevy A. 2008.
Google’s deep web crawl. Proceedings of the VLDB Endowment 1:1241–1252.

McCoy D., Bauer K., Grunwald D., Kohno T., and Sicker D. 2008. Shining light in dark
places: Understanding the tor network. In International symposium on privacy
enhancing technologies symposium, pages 63–76, Springer.

Nguyen T.H., Nguyen H., and Freire J. 2010. Prusm: a prudent schema matching
approach for web forms. In Proceedings of the 19th ACM international conference
on Information and knowledge management, pages 1385–1388.

Raghavan S. and Garcia-Molina H. 2000. Crawling the hidden web. Tech. rep.,
Stanford.

Raghavan S. and Garcia-Molina H. 2001. Crawling the hidden web. In Proceedings
of the 27th International Conference on Very Large Data Bases, VLDB ’01, page
129–138, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Rivero C.R., Frantz R.Z., Ruiz D., and Corchuelo R. 2011. On using high-level
structured queries for integrating deep-web information sources. integration 16:37.

Roitman H. and Gal A. 2006. Ontobuilder: Fully automatic extraction and
consolidation of ontologies from web sources using sequence semantics. pages 573–
576, Springer.

Seys S.F., Daenen M., Dilissen E., Van Thienen R., Bullens D.M., Hespel P., and Dupont
L.J. 2013. Effects of high altitude and cold air exposure on airway inflammation in
patients with asthma. Thorax 68:906–913.

54

Su W., Li Y., and Lochovsky F.H. 2014. Query interfaces understanding by statistical
parsing. In Proceedings of the 23rd International Conference on World Wide Web,
WWW ’14 Companion, page 1291–1294, Association for Computing Machinery,
New York, NY, USA.

Toda G.A., Cortez E., da Silva A.S., and de Moura E.S. 2010. A probabilistic approach
for automatically filling form-based web interfaces. Proceedings of the VLDB
Endowment 4:151–160.

Ullman J.D. 1982. The ur strikes back. In Proceedings of the 1st ACM SIGACT-
SIGMOD symposium on Principles of database systems, pages 10–22.

Vieira K., Barbosa L., Freire J., and Silva A. 2008. Siphon++ a hidden-webcrawler
for keyword-based interfaces. In Proceedings of the 17th ACM conference on
Information and knowledge management, pages 1361–1362.

Wu W., Yu C., Doan A., and Meng W. 2004. An interactive clustering-based approach
to integrating source query interfaces on the deep web. In Proceedings of the 2004
ACM SIGMOD international conference on Management of data, pages 95–106.

Wu Z., Raghavan V., Qian H., Rama K., Meng W., He H., and Yu C. 2003. Towards
automatic incorporation of search engines into a large-scale metasearch engine. In
Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003),
pages 658–661.

Zhang Z., He B., and Chang K.C.C. 2004. Understanding web query interfaces: Best-
effort parsing with hidden syntax. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, pages 107–118.

	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Between Shallow Web and Deep Web
	Motivation and Objectives
	Hypotheses
	Work Contribution
	Research Problem
	Author's Related Publication
	Dissertation Organization

	Background and Related Work
	Web Database Querying and Web Searching
	Why do we need to search the Deep Web?
	Why is it difficult to search the Deep Web?
	Toward Searching and Accessing the Deep Web

	DeepQ System
	Leveraging the DQL features
	DeepQ Architecture
	System Overview

	Implementation and Experimental Results
	Syntax Checker
	Single Domain web databases(Simple Query)- An Example
	Multiple Domains web databases(Complex Query)- An Example
	Performance and Evaluation Criteria

	Conclusion and Future Direction
	Conclusion
	Future Direction

	Bibliography

