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Abstract

Cooperative Intelligent Transportation Systems (cITSs) represent one of the Internet of

Things (IoT) applications whose purpose is to improve road safety and traffic efficiency.

Within this system, vehicles can communicate with one another by establishing a Vehicular

Ad-Hoc Network (VANET) along the particular road section of interest. Although such

connectivity facilitates the exchange of information related to road safety and traffic

efficiency, at the same time connectivity puts vehicles at risk of compromise. An attacker

could exploit one or more vehicles weaknesses, and use them to share false information

causing congestion and/or life-threatening accidents. Several studies have tried to address

this issue. Generally, those studies assume that the network topology and/or attack

behavior is stationary. This is certainly not realistic, as the cITS is dynamic in nature, and

the attackers may have the ability and resources to change their behaviour continuously.

Therefore, these assumptions are not suitable and lead to low detection accuracy and high

false alarms. To this end, this study proposes a misbehaviour detection model that can

cope with the dynamicity of both cITS topology and attack behaviour. The model starts

by addressing the issue of missing data using a local-global Fuzzy clustering estimation

method. Then, a Proportional Conditional Redundancy Coefficient (PCRC) is used to

calculate the values of redundancy and relevancy coefficients in the goal function of the

feature selection. This helps to better estimate the discriminative features during the
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model training. The selected features were used to train an online deep learning-based

model. The model uses a Bi-variate Moving Average (BiMAV) to observe the polymorphic

patterns in the attack’s behaviour and re-adjust the security parameters accordingly was

trained. In comparison to reported studies, the results show that the proposed method

achieved improvement compared to the existing techniques we demonstrated in i) Phase 1

an improvement of ranging between 0.8% - 47% across the metrics (Accuracy, F-measure,

False Positive Rates, and Detection Rate), ii) Phase 2 an improvement of ranging between

2.0% - 3.1% across the metric (ACC), iii) Phase 3 an improvement of ranging between

2.4% - 42% across the metrics (ACC, F1, FPR, and DR) in a highly dynamic and

potentially contested environment. There are many threats where this approach has much

better chances of delivering the needed results and we believe is more resilient (e.g., False

Data Injection). The proposed model is expected to overcome the limitations of related

solutions by detecting attacks that change their behaviour continuously.
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Chapter 1

Introduction

In the era of Internet of Things (IoT), many technologies and devices are integrated into a

common smart infrastructure whose components could work cooperatively to achieve the

different tasks in daily life and business. Among the IoT application is the Cooperative

Intelligent Transportation Systems (cITSs) whose purpose is to improve road safety and

traffic efficiency [1]. Within a specific road section, vehicles could create Vehicular Ad-Hoc

networks (also called VANETs), which the vehicles can use to communicate with each

other and exchange different types of data regarding the traffic situation and safety

information. However, such connectivity poses many threats to the cITSs nodes, which

could come from inside or outside the network.

1.1 Cooperative Intelligent Transportation Systems

The Cooperative Intelligent Transportation Systems (cITS) is one of IoT applications

whose purpose is to improve road safety and traffic efficiency [1]. In cITS, the vehicles

within a specific range become connected to one network, through which the data and

information are exchanged between those vehicles. This has increased the performance,

effectiveness and process efficiency and maximized the productivity of these systems. The

cITSs are designed to support the autonomous vehicles and improve road safety and
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traffic efficiency [1]. To achieve such a goal, several hardware and software components

work collaboratively to observe, collect and analyze related data exchanged between the

different components of cITS.

Three main components constitute cITS, namely Vehicles, Backend systems and

Roadside units (RSUs). The vehicles are equipped with a set of sensors that collect

traffic-related data from the surrounding environment, such as velocity, acceleration,

GPS, and density. The collected data carry information about road conditions and traffic

situations in the vicinity of the vehicle. Backend systems are used to store and analyze the

traffic data and send notifications/alerts to vehicles and/or road service providers. RSU

is a backbone that connects vehicles on the road section with the backend systems [1].

The purpose of RSUs is to connect the vehicles with some backend systems like traffic

control. These components work cooperatively and exchange different types of information.

The context information includes, but is not limited to, lane change warnings, accident

reporting, and cooperative adaptive cruise control. As such information is relevant to

all vehicles in the same vicinity, point-to-point communication is not an efficient way

to exchange this information among neighboring vehicles. Therefore, cITS utilizes the

broadcasting approach to share the context data among different nodes [1].

The cITS system is composed of two communication schemes, namely vehicle-to-vehicle

(V2V) and vehicle-to-infrastructure (V2I) communication. These schemes are proposed

to follow the IEEE 802.11p band, which sets the rules and standards for MAC and PHY

layers for short-range communication between vehicles. In this communication band,

networks operate at 5.9 GHz with a communication range between 100 and 500 meters.

Such communication setup relies on the scenario and environment in the vicinity. IEEE

802.11p has been adopted world-wide and used as a basis for cITS’s applications. A family
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of standards for cITS, referred to as ITS-G5, which provides communication primitives, is

defined by the European telecommunications standardization organization (ETSI). On

top of these standards, safety and entertainment applications are being developed. In

the U.S., similar protocols are used in the IEEE 1609 family of standards, in conjunction

with the Society of Automotive Engineers (SAE).

Unlike the routing in conventional networks such as the Internet, multicast and

broadcast are the networking approaches used in cITS [2, 3]. These approaches are

suitable for several applications like lane-change warnings, cooperative adaptive cruise

control (CACC) and city-scale traffic flow optimization. CACC is an application that has

gained significant attention in recent years and is essentially an extension of adaptive cruise

control (ACC), which reduces the safety distance between vehicles. In CACC, vehicles

periodically exchange position information to form a very tight formation that would

normally be susceptible to collisions. This is a form of partially autonomous driving that

goes beyond the potential benefits from sensor-equipped vehicles. The data exchanged

between the network participants, vehicles and infrastructure alike, are similar in that

they are relevant to all receivers. Therefore, addressing packets to specific vehicles does

not make sense; instead, addressing refers to the local neighbourhood (1-hop broadcast),

specific regions (geocast) and infrastructure. This style of addressing allows the network

to exploit the simple fact that wireless networks are a broadcast medium by nature.

The cITS utilizes one of two standards as an information-sharing mechanism, namely

the European standard [4] and the American standard [4] . The cITS context information

in the European standard consists of two messages, the Cooperative Awareness Message

(CAM) and the Decentralized Environmental Notification Message (DENM). While CAMs

are sent periodically, DENMs are event-driven and are only sent when an event has
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occurred. The CAM consists of information about the vehicles like position, size, speed

and steering wheel angle. In contrast, DENM contains information about a certain event

like lane changing and sudden braking. On the other hand, cITS context information in

the American standard combines CAM and DENM into Basic Safety Message (BSM).

BSM will be used when discussing the combination of CAM and DENM messages. The

first part of BSM, as well as CAM in the European standard, carries information about

position, heading, speed, acceleration, steering wheel angle, vehicle role, vehicle size and

status of vehicle light [1]. Unlike the first part of BSM that is included in all BSM messages,

the second part of BSM (which corresponds to DENM in the European standard) is

included only when an event happens.

However, the connectivity provided in cITSs comes at the cost of several threats. These

threats could be categorized into threats against system and threats against data [5].

While the former tries to disable or disrupt the function of one or more components

in the vehicle’s navigation system such as On-Board Unit, the latter tries to corrupt,

falsify, and/or manipulate the mobility data exchanged between the neighboring vehicles.

These threats could come in the form of malware attacks or human-crafted and organized

attacks.

1.1.1 The cyber threats against cITS

Many of the attacks that target smart vehicles come from adversaries who use sophisticated

strategies to carry out sustainable attacks like malware and botnets [2, 3]. Such attacks

could originate from outside or inside of the network. While attacks from outside can be

easily detected and thwarted at the perimeters of the network, insider attacks come from

inside of the network and are usually carried out by legitimate, yet compromised vehicles.

Based on the attacker location, threats against cITS could be categorized as intrusion
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attacks and misbehaving attacks.

Intrusion attacks are mainly launched by intruders from outside of the network such

as in replay attack, jamming attack, Sybil attack, and false data injection attacks. In

jamming attack, the attacker sends a burst of messages to a specific vehicle, causing

a disruption in the communication between the targeted vehicle and other vehicles in

the network. Replay attacks intercept the messages exchanged between the vehicles and

later re-transmit them for the purpose of impersonation and/or stealing the identity. In

Sybil attack, the attacker uses multiple identities in order to deceive other vehicles by

reporting a fake road congestion. False data injection is another type of attack, in which

the attacker sends false information about the current traffic situation on the road for the

purpose of disrupting the traffic or triggering a congestion.

Misbehavior attacks, on the other hand, are launched from the inside of the network

by hijacking a legitimate vehicle and using it to manipulate and share false information

among the neighboring vehicles. These threats include data manipulation, falsification,

and corruption [6]. That is, BSM of the compromised vehicle can be manipulated by

attackers to include false information and share it with the neighboring vehicles [7].

Such false information might trigger severe reactions like sudden braking, lane changing,

and speed-limit exceeding, which could lead to life-threatening situations. Therefore,

protecting BSM messages against the misbehaving attacks is crucial to ensure cITS

security and road safety. The misbehavior detection in cITS ecosystems is categorized

into node-centric detection and data-centric detection [1].

1.1.2 Existing Solutions

Several studies have been devoted to counteracting attacks in cITS. These solutions are

categorized into intrusion detection and misbehavior detection. The intrusion detection
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solutions focus on protecting the network against the attacks launched from the outside of

the network. IDSs look for patterns related to known attacks like Sybil, Malware, and Dos

attacks and raise an alert when matching is found. They can also compare the incoming

patterns with the patterns of normal applications and raise an alert when the matching is

not found. Unlike IDSs, the purpose of misbehavior detection systems (MDSs) in cITS is

to detect attacks launched from inside the network. The problem with insider attacks

is that the attacker uses legitimate yet compromised nodes to launch a chain of attacks

against the network, which makes it less suspicious to traditional intrusion detection

solutions [8]. Even though several solutions have been proposed to mitigate these attacks,

some underlying assumptions like stationary context for designing these solutions are not

suitable given the highly dynamic and ephemeral nature of cITS. Building data-driven

detection models on such stationary assumption renders these solutions unaware of the

change in the driving situation as well as network topology in the road section. Therefore,

these solutions become out of date quickly. The MDSs are categorized into node-centric

and data-centric.

The node-centric MDSs determine the maliciousness of a vehicle based on its behavior

on the road section. Such behavior is also used to determine the degree of trustworthiness

of legitimate vehicles. The behavior of a node in the cITS could be perceived by observing

the number of messages sent by the vehicle and the validity of the format of these messages.

A reputation value is calculated to determine the trustworthiness of each node in the

cITS. Such calculation could use the voting to identify whether a vehicle is misbehaving.

However, relying on the behavioral aspect of the nodes for building security measures

is sub-optimal given the non-stationary nature of the cITS environment, wherein the

nodes change their behavior according to the topological changes in the network. In
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addition, the voting approach used to determine the trustworthiness of a node relies on

an underlying premise that the majority of nodes are honest, and the attackers target

only a limited number of vehicles in the cITS. Such assumption does not hold with the

advanced strategies and techniques employed by the attackers like malware and botnets,

which could compromise most of the nodes and consequently create a majority dishonest.

Furthermore, the reputation mechanism used by node-centric solutions is susceptible to

sudden misbehaving or faulty vehicles [1].

The data-centric misbehavior detection observes the data and messages exchanged

between the participating vehicles and performs several checks to find out whether they

are falsified, manipulated, and/or tampered with. Particularly, the data pertaining to

safety and traffic efficiency exchanged among the neighboring vehicles within the cITS are

vetted against several criteria like consistency and plausibility to determine whether they

are trustworthy. These data are contained within a type of message called Basic Safety

Messages (BSMs). These messages carry two types of information, namely Cooperative

Awareness Messages (CAMs) and the Decentralized Environmental Notification Messages

(DENMs). The BSMs contain the contextual information including, but not limited

to position, heading, speed, acceleration, steering wheel angle, vehicle role, vehicle size

and status of vehicle’s light [1]. Although exchanging the BSM data facilitates the

communication between the neighboring smart vehicles, they could be manipulated

and/or falsified either by attackers or compromised nodes, which pose serious threats

to road safety or causes congestion on the road section. To avoid such situations, the

data-centric MDSs are used to vet the BSM messages to determine whether they are

consistent with the general context along the road section. The vetting also helps to

identify the plausibility of the data contained within these BSM messages and whether
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they are in-line with the data coming from other sources (nodes) in the cITS system.

As pointed out previously, both node-centric and data-centric approaches employed

by MDSs for the cITS systems try to assess the trustworthiness of the nodes and data

they share with each other. These approaches rely on historical data to evaluate the new

instances and/or data. However, both approaches are not suitable for highly dynamic

environments like cITSs wherein the nodes join and leave the network very quickly, causing

a rapid change in the network topology that makes it difficult to capture holistic patterns

that cover all behavioral aspects. Thus, relying on static security solutions with rigid

thresholds is not suitable as they could become outdated and, consequently, increase the

rate of false alarms and decrease the detection accuracy. Although some solutions have

been proposed to overcome this issue by building adaptive IDSs that could cope with the

dynamicity of the cITS systems, they lack sufficient data that represent the new situation

immediately after the change in the topology is detected. Consequently, these newly

formed models suffer from low accuracy and high false alarms.

1.2 Problem Statement

Several data-centric misbehavior detection models utilize mobility data like Basic Safety

Messages (BSM) exchanged within cITS to classify vehicles as benign or malicious

[2, 3, 9–11]. These data are vetted using several metrics like plausibility and consistency

checks to evaluate the trustworthiness of the participating vehicles, which facilitates

identification of the misbehaving vehicles in cITS network. The plausibility and consistency

checks rely on multiple thresholds that separate the normal from abnormal events.

However, these solutions overlook the non-stationary nature of the cITS systems, which

invalidates the underlying knowledgebase of these models very quickly.

Although [3] addressed this issue by incorporating an adaptation mechanism to the
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detection model to adjust the security thresholds dynamically in real-time, they assume

that the data related to the new driving situation are sufficient. However, this assumption

does not hold as the amount of data collected at early stages after cITS’s topology

change might not be sufficient to accurately determine and build the new thresholds of

the security profiles. Concretely, such early data are notoriously sparse because they

contain lots of missing (null) as well as immature values, which have a negative impact

on the ability of detection model to extract features from the data. Such data sparsity

and immaturity obstruct the ability of detection models to estimate features significance

accurately. Consequently, existing solutions are unable to select between significant

features extracted accurately. Furthermore, the adaptation mechanism proposed by the

existing misbehavior detection solutions is limited to the dynamic nature of the cITS

systems and overlooks the dynamicity of the attacks. Consequently, it becomes difficult

for such solutions to identify polymorphic attacks that use sophisticated approaches to

change the behavior at each round to deceive the existing measures. To this end, the

present study will address these issues by proposing a detection model that can detect

evasive and polymorphic attacks which increase the detection performance.

1.3 Research Aim

The aim of this research is to propose and develop an online context-ware misbehavior

detection model able to detect the sophisticated and evasive attacks accurately using

deep learning along with features significance estimation and selection techniques. The

proposed model will overcome data insufficiency during the initial stages of the online

model’s operation.
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1.4 Questions and Objectives

The following are the research questions that will be addressed:

1. How can statistical and clustering techniques be used to compensate the mobility

data insufficiency and accurately estimate the missing and yet unobserved values

during the early stages of model’s formation?

2. How can deep learning be used to accurately calculate the significance of features

extracted from the incomplete mobility data during the early stages of model’s

formation?

3. How can an adaptive approach be utilized to cope with the dynamicity and

polymorphic nature of attacks?

To address these questions, the objectives of this dissertation are as follows:

1. To propose a local-global clustering-based estimation technique to improve the

accuracy of missing values’ imputation in the mobility data collected at the early

stages of model’s formation.

2. To propose an enhanced feature selection technique by incorporating a Proportional

Conditional Redundancy Coefficient (PCRC) into the goal function of the joint

mutual information feature selection to improve redundancy co-efficient value

calculation, which consequently improves the feature significance estimation.

3. To propose a deep learning-based Intrusion detection model by integrating the

techniques proposed in (1) and (2) into a deep belief network structure.
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1.5 Research Motivation

Vehicles in cITS are vulnerable to many forms of cyberattacks that compromise the data

exchanged between the vehicles, causing many operational disruptions like road congestion

and accidents [3]. Existing IDS solutions try to protect the cITS systems by introspecting

the patterns of the behavioral signatures of the cyberattacks, based on which new attacks

are identified. Several MDSs focus on the data and messages exchanged between the

neighboring vehicles in cITS [2,3,12]. These solutions determine the trustworthiness of

the newly received packets using consistency and plausibility criterion. By assessing the

trustworthiness of the data shared between cITS nodes, these solutions determine whether

a vehicle is malicious. To make such decision, these solutions compare the behavior and/or

data of the node in question with those of other nodes in its vicinity. If the node deviates

from the other nodes, it is considered anomalous. if it dose not deviate, it is considered

benign otherwise.

Among the challenges pertaining to attack detection in the cITS systems is the

evasion behavior that attackers employ to deceive the detection solutions. In particular,

the attackers always change their behavior to avoid detection. In the context of data

falsification, attackers try to randomize the range of values used to replace the original

data. To make it even more challenging, they try to use values that overlap with the

normal profile so the data would look original. These kind of attacks can be referred to

as polymorphism. Such polymorphic attacks are more challenging as they generate new

sets of values every time the system is targeted with false data injection. This makes the

predefined thresholding-based detection difficult.

To detect the novel, polymorphic attacks in the cITSs, the anomaly detection approach

has been employed by several solutions [13–15]. The assumption is that, by profiling
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the normal behavior and defining the boundary of such profile, it is easy to identify the

abnormal behavior that falls outside these boundaries. Such an abnormal behavior is

most probably coming from attackers [15]. To define the normal profile, existing solutions

introspect from the data the patterns that represent the normal behavior. Based on the

source of the data, these patterns are categorized into context-based, content-based and

entity-based. However, the existing anomaly detection solutions for cITSs consider the

normal behavior of legitimate nodes as stationary [2] and overlook the possibility that

legitimate nodes could behave maliciously. Such an assumption does not hold as a node

could be compromised, and the nature of a node will change from benign to malicious as

well. Consequently, these solutions are susceptible to the concept drift, which invalidates

security thresholds and settings currently applied by the existing models.

The security thresholds could also be invalidated due to the change in attacker’s

behavior [16]. Existing solutions rely on the premise that the attackers always follow

identical or similar attack strategies when invading the cITS systems. Therefore, these

solutions build the security measures suitable for countering predefined situations. However,

these solutions are not aware of the obfuscation techniques and strategies that sophisticated

attackers and malicious software use to deceive the detection [17]. Therefore, these

solutions become attack specific and are unable to identify the polymorphic attacks. That

is, by employing polymorphic malware and obfuscation techniques, the attackers have the

ability to continuously change their strategies and behavior [18]. Consequently, if security

measures are not aware of the dynamic nature of the attack behavior and strategies, they

will become outdated very quickly and unable to cope with the new attack strategies.

In light of the abovementioned limitations, it is imperative to build more accurate and

adaptive IDS solutions that can cope with the dynamic nature of both cITS environment
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and attack strategies. In addition, any proposed solution needs to identify the attacks

that try to create a majority of compromised nodes by employing malware and botnets

to carry out massive attacks. As such, any proposed solution should be robust enough to

identify the false data shared among the vehicles in cITS, even in a situation when most

of the nodes are compromised.

1.6 Research Contribution

The problem that this study will address is the inaccuracy of existing IDSs when identifying

the attacks launched internally against cITS nodes, which is based on the unrealistic

assumption that the cITS network is stationary. Although some studies employed adaptive

mechanisms that can cope with the changes in the situation, the data collected immediately

after the topology changes is limited and might lack sufficient patterns that serve as

evidence for the misbehaving attacks. The early data contain many missing and immature

values, which worsen when data dimensionality is high. Imputing the missing values

based on immature early data is challenging. Such data insufficiency also adversely affects

the ability of detection model to estimate features’ significance accurately. Furthermore,

these solutions are built based on the premise that the attack is stationary, which does

not hold as attackers can change their behaviour to deceive the IDS.

To this end, this research addresses the aforementioned issues by providing an accurate

IDS solution for cITS systems. The aim of the proposed solution is to estimate the

missing values using a local-global estimation method. This method will utilize the

known data in the local attribute (univariate) as well as the corresponding data of other

attributes (multivariate), especially those in high correlation with that attribute. Contrary

to existing imputation techniques that calculate the missing value based on the values in

the same attribute, the proposed solution will also involve the values of other attributes
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in the calculation. As the significance of the respective values from the correlated

attributes varies, the correlated values will be weighted based on the degree of correlation.

The expectation is, by having strongly correlated attributes, the distribution of values

in one attribute will follow the distribution of the value in the counterpart attribute,

which facilitates the calculation of the missing values. Additionally, the proposed model

integrates a PCRC for features significance estimation. The role of deep learning is to

determine the optimal values of redundancy and relevancy coefficients in the goal function

of the feature selection technique. These coefficients conflict most of the time and need to

be chosen prudently. By involving the deep learning in redundancy-relevancy coefficients

calculation, the intrinsic characteristics of the data can be perceived more clearly, which

compensates for the data insufficiency at the early stages of the formation of online

adaptive models. Table 1.1 summarizes the problem situation and solution concept.

Table 1.1: Summarizes the problem situation and solution concept.

Problem Description Research Contribution
Data collected immediately after the
topology changes is limited and might
lack sufficient patterns with many missing
and immature values, which makes it
challenging to accurately impute those
missing values.

A local-global Fuzzy clustering estimation
method is used to estimate the missing
data in the local feature.

Insufficient data negatively affects the
ability of detection model to estimate
features significance accurately.

A Proportional Conditional Redundancy
Coefficient (PCRC) is used to calculate
the values of redundancy and relevancy
coefficients in the goal function of the
feature selection.

Existing IDS solutions for cITS assume
that the attack behaviour is static
(stationary), which renders these solutions
outdated quickly.

A deep learning approach that uses
a Bi-variate moving average (BiMAV)
to observe the polymorphic patterns in
the attack’s behaviour and re-adjust the
security parameters accordingly.
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1.8 Dissertation organization

In this chapter, the problem formalization was discussed, including the research questions

and objectives. The rest of this dissertation is organized as follows. Chapter 2 explores

the literature related to the IDS for cITS ecosystems. A comprehensive and thorough

investigation and analysis of the state-of-the-art solutions are provided. It also summarizes

the current research issues and directions. Then, the research methodology along with

the research framework, plan, dataset, and evaluation metrics are detailed in Chapter 3.

In Chapter 4, the design and development of the fuzzy c-means method for missing data
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estimation was discussed. Chapter 5 presents the design and implementation of the PCRC

method for an improved joint mutual information features selection technique. In Chapter

6, the design and implementation of the adaptive IDS model using the Bi-variate Moving

Average methods is elaborated. This dissertation concludes with a summarization and

analysis of the research findings, contributions, and implications and provides suggestions

for the future work in Chapter 7.
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Chapter 2

Background and Related works

Cooperative Intelligent Transportation System (cITS) is one of IoT applications whose

purpose is to enhance drive safety and efficiency. cITS has several components including

vehicles, roadside units and backend systems. Like many IoT applications and systems,

cITSs are susceptible to a wide range of intruding or misbehaving attacks that could

be launched by attackers from inside or outside of the network. When connected to

one network, vehicles in cITS become vulnerable to many threats that compromise the

confidentiality, integrity, and availability of the data that they exchange [3]. Attackers

could compromise such nodes and exploit and manipulate the information they share

with other nodes, causing severe complications such as traffic congestions and accidents.

Once a vehicle is compromised, it can also be used to launch several types of attacks

against other vehicles and/or components of cITS. Such attacks impede the momentum

of the integration of cITS technology with existing infrastructure.

To safeguard cITS, the security solutions need to detect the attacks first. As such, it

is imperative that detection solutions notify the defense system about the presence of

attack. To detect intrusion and misbehavior attacks against cITS, several solutions have

been proposed, most of which are data-driven and rely on different types of data collected

during the normal operations and/or attacks to build the detection models. Using such
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data, several statistical, machine learning and artificial intelligence techniques have been

utilized to model the normal and attack profiles and calculate the detection thresholds

and parameters. In the following subsections, the studies related to intrusion detection as

well as misbehavior detection in cITSs are discussed.

2.1 Existing Intrusion Detection Solutions in cITS

As pointed out previously, IDS focus on preventing the attacks launched by attackers

from outside of the participating vehicles. These solutions try to identify specific types

of attacks such as jamming, replay, and sybil attacks. They are normally applied either

globally at the main location in the cITS system like RSUs or locally on the vehicle’s level.

Like IDSs that work on traditional networks, intrusion detection system on cITSs can

work cooperatively such that vehicles can share the knowledge about new and emerging

threats among each other.

M. Aloqaily et al. [19] proposed a cloud-based IDS for smart vehicles that guarantees

user’s Quality of Service (QoS) and Quality of Experience (QoE). The vehicles are grouped

into different clusters, and the vehicles in each cluster are connected to a cluster head whose

purpose is to communicate with Trusted Third-Party entities, which act as mediators

between service requesters and providers. The proposed IDS has three phases, traffic

analysis, data reduction, and classification. In the traffic analysis phase, the collected data

are analyzed to identify the behavioral patterns and features. Irrelevant and insignificant

features are then removed during the data reduction phase to reduce data dimensionality

and prevent overfitting. The model is then built by training a deep learning classifier

using the selected features. Deep Belief Networks is employed for data reduction and the

Decision Tree for the classification. Dividing vehicles in a road section into clusters each

with a cluster head increases the network homogeneity, which facilitates the identification
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of anomalous events and entities. However, dividing smart vehicles into clusters and

appointing a cluster head for each cluster is challenging given the ephemeral nature of

cITS networks. That is, cITS networks are highly dynamic, which renders the clustering

approach ineffective as the rate of joining and leaving a particular cluster is very high.

Moreover, the cluster head, as with any other vehicle in the cluster, has a short lifetime

within the cluster, which makes it unreliable as a mediator between the cluster’s vehicles

and service providers.

To cope with the highly dynamic nature of cITS, a Trust-aware Collaborative Learning

Automata-based IDS was proposed by [20]. The model integrates a Collaborative Trust

Index (CTI) into a classification algorithm in order to cover as many types of attacks that

target smart cITSs as possible. The CTI is a trustworthiness evaluation that each vehicle

receives from the environment (the other vehicles in the surrounding area). The proposed

approach is adaptive, which means that a novel collaborative Learning Automata (LA)

makes decisions based on several parameters like density, mobility, and direction of motion

that reflect the current state of the environment. The CTI is then determined for each

process in the automaton. The automaton of each vehicle observes the activities carried

out by other vehicles in its vicinity. However, the study assumes the completeness of

information shared among neighboring vehicles. This does not hold for cITS systems as

the vehicles communicate in a highly dynamic and harsh environment, which makes the

communication between neighboring vehicles intermittent. Such sporadic communication

causes a loss of context information. As such, the model could produce suboptimal

accuracy when classifying the events as either legitimate or attacks.

To overcome the network instability and rapid topology change, [21] proposed a secured

clustering algorithm that takes into account the vehicle’s mobility during cluster formation.
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Therefore, the clusters become more stable and each cluster head will be selected based

on the vehicle’s trust-level, which can easily be determined in such a stable environment.

By employing the clustering approach, communication overhead is decreased because the

broadcasting is reduced, which in turn decreases the data loss. The proposed model was

tested on several attack types like selective forwarding, black hole, resource exhaustion,

and Sybil attacks. Two levels of detection constitute the proposed solution: the Local IDS

and Global IDS. Local IDS works on local nodes (vehicles) and monitors the neighboring

vehicles. Global IDS, on the other hand, works on cluster head level and monitors the

trustworthiness of cluster members. The decision is then taken globally at RSU level

based on the Trust Level of each vehicle. However, the proposed model was built based on

the assumption that the communication between vehicles within a certain cluster as well

as across the clusters is stable, which might not be the case in the harsh environments

similar to cITS networks. The highly dynamic and intermittent connectivity of vehicular

networks was investigated by [22]. A game theory-based multi-layered IDS was proposed

to detect attacks targeting vehicular networks. The solution relies on a set of pre-defined

roles along with neural networks for classifying the traffic into either benign or malicious.

The relationship between IDS and attacker was formulated as a non-cooperative game

based on Nash Equilibrium. To guarantee that attack detection will work accurately on

higher densities and to improve the robustness of the IDS even with a small fraction of

data, a distributed clustering approach is adopted to group the vehicles in the network

into different stable clusters. However, the clustering approach is not suitable for the

ephemeral nature of vehicular networks as the lifetime of these clusters is very short. Such

a clustering approach is also unsuitable for neural networks-based classification as these

classifiers become outdated very quickly.
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A Privacy-Preserving Machine Learning-based Collaborative IDS for cITSs was

proposed by [23]. The model utilizes the knowledge-based database (i.e. the attacks

pattern database) of each vehicle to improve the accuracy of the IDSs in the other vehicles.

Moreover, the model in each vehicle employs the labelled data of other nodes to boost its

own training data. To preserve data privacy, the model utilizes the dynamic differential

privacy to capture the privacy notation in the collaborative IDS and use it to build the

dual variable perturbation, which protects the privacy of the training data by perturbing

the dual variable. However, the reliance on the labels acquired from the other nodes

renders the entire IDS vulnerable to falsified labelling as the malicious vehicles might

manipulate these labels, which adversely affects the validity of the knowledge-base of

the other vehicles. In addition, sharing the entire knowledge-base among the vehicles in

the network adds a massive overhead given the highly dynamic and ephemeral-nature of

cITS networks. Such overhead might as well lead to loss of useful traffic data. Table 2.1

summarizes the existing IDS solutions for cITSs.
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Table 2.1: Existing IDS studies for cITS.

Paper Research problem Solution Limitation(s)

[19]

Maintaining the
integrity and
authenticity of data
exchanged between
vehicles is not suitable
for cITS as they are
resource demanding,
hence not suitable for
QoS and QoE.

• A Cloud-based IDS,
which communicates with
several cluster heads.
• Cluster heads are
connected to a group.

•Dividing vehicles into
clusters is not suitable
for highly dynamic and
ephemeral networks
like cITS.
•The cluster head
in cITS has a short
living time within
the cluster, which
makes it unreliable as a
mediator between the
cluster’s vehicles and
service provider.

[20]

Most of the existing
solutions are
attack-specific and
focus on limited types
of attacks.

Integrates a Collaborative
Trust Index (CTI) into a
classification algorithm in
order to cover many types
of attacks.

Assumes the
availability of all
information about the
neighboring vehicles
which is not suitable in
cITS because of:
•The intermittent
communication
•Insufficient
information gathered
due to the ephemeral
nature of cITS.

[21]

Existing IDS solutions
overlook network
instability and high
dynamicity of the
smart vehicular
networks.

•A secured clustering
algorithm that considers
vehicle’s mobility.
•Two levels, local IDS
(LIDS) and global IDS
(GIDS) for cluster
stability.

•It assumes a stable
communication
between within cluster
and between clusters.
•Not suitable for
dynamic and harsh
environments like cITS.

[22]

Lack of tradeoff
between gathering
sufficient information
and preventing the
overburdening of IDS’s
logging component
with a high volume
of unnecessary IDS
traffic.

A multi-layered game
theory-based neural
network IDS with a
distributed clustering:
•Groups vehicles into
different stable clusters,
to improve the robustness
of the IDS.

The clustering is
not suitable because
cluster’s lifetime is very
short and becomes
outdated quickly.

Continued on next page
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Table 2.1 – continued from previous page
Paper Research problem Solution Limitation(s)

[23]

Due to
privacy-preserving
concern, existing IDS
solutions ignore the
sharing of detection
knowledge among
neighboring vehicles.

Share the
knowledge-based of
each vehicle with other
vehicles while preserving
the privacy of each
vehicle.

•Labels received from
other vehicles could be
falsified.
•Additional overhead.

2.2 Misbehaviour Detection Solutions in cITS

Unlike IDS, the misbehavior detection focuses on identifying the threats originating

from the participation vehicles inside cITS. These threats come from several sources like

hijacked, rogue, and/or faulty nodes. While hijacked and rogue vehicles disrupt cITSs

operations intentionally, faulty nodes cause such disruption unintentionally. In addition,

the faulty nodes might as well be the result of other types of threats like intrusion attacks.

Misbehavior detection is further categorized into data-centric detection and node-centric

detection [1]. The data-centric misbehavior detection observes the data and messages

exchanged between the participating nodes and performs several checks to identify the false

information and suspicious contents. The node-centric misbehavior detection monitors a

vehicle within the cITS based on several aspects like the number of messages it sends in a

certain time period and correctness of the message’s format. The following subsections

elaborate more about data-centric and node-centric misbehavior detection in cITS.

2.2.1 Data-Centric Misbehaviour Detection Solutions

As pointed out previously, data-centric misbehavior detection focuses on the data and

messages exchanged among the neighboring vehicles in cITS. By utilizing the correlated

packets from different sources, the newly received packet is vetted against several criteria

like consistency and plausibility to determine its trustworthiness. Using the consistency
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check, for instance, the average of the previous speed readings recorded for a vehicle can

be used to judge the newly reported speed value. Readings from the same vehicle and from

the neighboring vehicles are used to determine the consistency of the new information.

One of the main characteristics of consistency-based detection is its limited reliance on

domain knowledge, which makes it easy to design and implement [1]. Plausibility, on the

other hand, employs a predefined model to verify whether the received message is in line

with the underlying model. Vehicle’s speed, for instance, could be verified against the law

of physics, which makes it impossible for a vehicle to travel at a speed of 1000 km/hour,

which exceeds the upper limit of the known speed for a moving object. Several models

have been proposed for data-centric misbehavior detection in smart vehicles. In the study

conducted by [9], a framework for the certificate revocation process within Vehicular

Ad-Hoc Networks (VANETs) was proposed. The framework relies on the trustworthiness

evaluation of the participating vehicles to identify and exclude the misbehaving vehicles

from the network. Such trustworthiness is updated according to several trust metric

values calculated based on the data received within BSM packets. However, the trust

metric relies on the assessment of the neighboring vehicles that are assumed honest. This

might not be necessarily true as a misbehaving vehicle can send false reports about its

neighboring vehicles to reduce its trustworthiness level. In such a case, the trust metrics of

an honest vehicle can be decreased, which allows the attackers to manipulate the context

of the traffic situation within that vicinity.

As traffic density has an influence on several events and behavioral aspects of the

vehicles, it can be used as a security indicator to assess the plausibility and consistency of

the traffic information sent/received by the nodes within the cITS. As such, it is important

to secure the traffic density computation. To address this problem, a study conducted
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by [10] measured the local traffic density of vehicles in cITS using two independent

sensors. The traffic density information is used as a security parameter to address the

illusion attacks challenge when an attacker employs a ghost (hijacked) vehicle to send

false information (event messages) using valid credentials and showing valid location

information. These measurements are then combined to evaluate a certain traffic situation

and detect misbehaving vehicles. The study calculated local traffic density as a ratio

between the number of neighboring vehicles and the total distance between these vehicles.

However, the study assumes that at least one of the two independent sensors remains

intact and the attacker has no access to it, which does not hold for sophisticated attacks

that can infiltrate and manipulate all sensors.

To detect position falsification attacks, [11] proposed a machine learning-based model

that observes BSM and determines whether they contain false data or not. Two classifiers,

Logistic Regression and Support Vector Machines, were used to build the model. The

Vehicular Reference Misbehavior Dataset is used to train the LR and SVM classifiers.

After training the model offline, online testing was carried out by submitting the new

messages into the model to decide whether they are falsified or not. However, the highly

dynamic nature of the network topology in cITS and frequent vehicle disconnection may

render it impractical to train a machine learning model.

CA-DC-MDS proposed by [2] is a multi-faceted context-aware misbehavior detection

scheme for smart vehicles. The scheme utilizes the spatio-temporal correlation of the

consistency between the cooperative awareness messages to protect these messages against

internal attacks. Dynamic thresholds are used as context references that reflect the

non-stationary nature of such networks. These spatial and temporal contextual thresholds

were calculated using both Particle and Kalman filters, respectively. However, the
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study assumes that the majority of the nodes (vehicles) are benign, which might not be

realistic as attackers can exploit the compromised nodes to attack other nodes in a way

similar to botnets. In their study, [3] proposed the Hybrid and Multifaceted Context-aware

Misbehavior Detection model to address the limitation of existing context-aware misbehavior

detection, which assumes stationary noise and ideal communication. This does not hold in

the highly dynamic and harsh environments like cITS. The proposed model replaced the

static plausibility and consistency thresholds with dynamic context references adaptable

to the changes in the network topology. These context references are built online using

several statistical techniques such as Kalman filter, Hampel filter, and Box and Whisker.

However, the model was built on the premise that the majority of vehicles are honest.

This does not hold in the case of botnet attacks, which exploit the compromised vehicles

to create a chain of rogue nodes, resulting in a majority of compromised vehicles in the

neighborhood.

In another study, [3] proposed an ensemble-based misbehavior detection model that

replaces the static thresholds of the context of driving situations used by the extant

research into dynamic thresholds that are determined online. As such, the proposed

model is able to cope with the dynamic nature of the network. Kalman and Hampel

filters were used to spontaneously adjust these thresholds. The model was trained using

the data from the statistical classifiers, context parameters, consistency, plausibility, and

behavioral features. However, like the authors of the previous studies I discussed, [3]

assume the majority are honest, which does not hold for the case of massive attacks that

used the botnet strategy to launch a chain of attacks. Table 3 summarizes the studies

pertaining to MDS in cITSs.
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2.2.2 Node-Centric Misbehaviour Detection Solutions

Node-centric misbehavior detection assesses the vehicle based on its behavior and

trustworthiness. For the behavioral aspect, the number of messages sent by the vehicle

and the validity of the format of these messages are observed. The trustworthiness, on

the other hand, relies on a vehicle’s reputation and the voting to determine whether the

vehicle is misbehaving. Voting assumes the majority are honest. In the study carried

out by [24], trustworthiness was employed to evaluate the vehicle and determine whether

it was misbehaving. Such evaluation was carried out in the fog layer of cITS based on

both intrinsic and extrinsic factors. Intrinsic factors rely on the information collected

about the vehicle in question like the number of accidents, engine statistics, mileage, and

velocity. Extrinsic factors rely on the information about the environment in the vicinity

of the vehicle like a road map, trajectory, and proximity to other vehicles. Principal

Component Analysis is utilized to analyze these factors and calculate the trustworthiness

of the vehicle. However, relying on the intrinsic factors might not be suitable in the case

of advanced attacks that manipulate the vehicle’s own data. Those advanced attacks can

also manipulate the context surrounding the vehicle by creating a collaborative illusion

attack that falsifies driving situation information exchanged between the neighboring

vehicles. The study conducted by [25] proposed a solution that incorporates the data trust

model and vehicle trust model to discover the falsified data and evaluate the vehicle’s

trustworthiness. Support Vector Machines (SVM) and Dempster Shafer Theory (DST)

are the main components of the model. SVM is used to evaluate the message contents,

vehicle’s attributes, and credibility based on its data propagation behavior. DST is then

used to combine different multiple trust assessments about a certain vehicle; based on

this, the final trust value is calculated. However, the model is built based on the premise
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that the mobility information messages and vehicle’s attributes are stationary. Such an

assumption is not suitable for ephemeral environments like cITSs, in which the network is

highly dynamic and the communication between vehicles is not necessarily reliable, which,

in turn, invalidates the model within a short period.

Fuzzy Misbehavior Detection System was proposed by [5]to identify selective forwarding

attackers who behave normally and only drop the messages coming from the neighboring

vehicles. It employs fuzzy clustering to categorize normal and attacker nodes into different

clusters. To build these clusters, Fuzzy C-Means clustering algorithm was utilized.

Membership to either cluster is determined by a threshold which was empirically defined.

However, relying on a static threshold to identify the membership degree is not suitable

for cITS due to the dynamic nature of vehicles. The selective flow sampling and entropy

method was used by [26] to detect the misbehaving vehicles in real-time. The purpose

of the selective sampling was to extract the maximum amount of information from a

small set of packets of a particular flow. This is helpful for real-time detection where

the collected data are limited. The entropy was then used to calculate the change in the

data collected previously. The study observed that with a small fraction of flows, a lot of

information could be perceived and used for accurate misbehavior detection. However,

entropy calculation might not be accurate in light of the number of flows available at the

real-time deployment, which adversely affects the accuracy of the proposed model.

The major drawback of node-centric misbehavior detection is the reliance on the

behavioral aspects of the nodes (vehicles) and the disregard for the semantical aspect of

the data sent and/or received by these nodes. Moreover, the premise of majority honest

that node-centric uses to calculate the trustworthiness of the nodes is not always true

as some advanced attacks like those launched by botnets start by creating a majority
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in favor of the compromised vehicles. In addition, evaluating such trustworthiness is

challenging due to the ephemeral nature of the cITS, particularly at the initialization

stage. Furthermore, the reputation mechanism used by node-centric misbehavior detection

solutions is susceptible to sudden misbehaving or faulty vehicles [1].

Table 2.2: Existing research in MDS for cITS.

Paper Research problem Solution Limitation(s)

[27]

Maintaining only the
trustworthy vehicles
and removing the
misbehaving ones is
challenging.

• A Certificate revocation
framework is proposed
based on trustworthiness
evaluation using trust
metric values calculated
on the data received
within BSM packets.

• Revocation of the
certificate from honest
vehicles.
•Creating majority
of malicious nodes
that can be used to
manipulate the context
of traffic situation.

[10]

Using the environment
information around
host vehicle to validate
the plausibility of the
information sent by a
particular vehicle is
ineffective when the
misbehaving vehicle
provides valid location
information.

•Two (independent)
sensors were used to
observe the environment
surrounding the vehicle.
If one sensor is attacked,
the information of the
other sensor stays intact.

• Assumes that at
least one of the two
independent sensors
remains intact.
•Attacker could hijack
both sensors.

[11]

Guaranteeing the
trustworthiness of the
data in the presence
of dishonest and
misbehaving vehicles
that share false
information is hard.

•Machine learning was
used to identify falsified
BSMs.

•The dynamic network
topology in cITS
and intermittent
communication makes
it challenging to keep
an up-to-date model.

[28]

Existing solutions
assume that the
context of driving
situation is stationary,
which contradicts the
dynamic nature of
cITSs.

•Dynamic thresholds
were used as context
references. Such a
context reference can
cope with non-stationary
nature of the networks.

•The study assumes
that the majority of
the nodes (vehicles) are
benign,
•Compromised nodes
can be used to
compromise other
nodes and create a
majority dishonest.

Continued on next page
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Table 2.2 – continued from previous page
Paper Research problem Solution Limitation(s)

[3]

Existing context-aware
misbehavior detection
solutions assume
stationary noise and
ideal communication,
which does not hold in
the highly dynamic and
harsh environments.

•Dynamic plausibility
and consistency
thresholds were built
online to be adaptable
to the changes in the
network topology.

•Assumes majority
honest, which does
not hold in the case
of botnet attacks
that exploit the
compromised vehicles
to a majority of the
compromised vehicles.

[6]

Existing research uses
static thresholds for
the context of driving
situations.

•Multi-faceted dynamic
context thresholds were
proposed to adapt with
the change in the driving
situation.

•Assumes the majority
are honest, which
does not hold in case
of massive attacks
that used the botnet
strategy to launch a
chain of attacks.

[25]

Existing
reputation-based
misbehavior detection
solutions assume
that vehicles with
high reputation are
always trustworthy,
which might not be
accurate once they get
compromised.

•Data trust model and
vehicle trust model were
incorporated to discover
the falsified data and
evaluate the vehicle’s
trustworthiness.

•Not suitable for highly
dynamic network.
•The communication
between vehicles is
unreliable.

[5]

Detecting misbehaving
vehicles that behave
normally and only
carry out less
suspicious actions
like dropping some
packets is challenging.

•Clustering approach was
used to categorize nodes
to normal malicious.
•Selective forwarding
attackers who behave
normally are identified.

•Relies on a static
threshold to identify
the membership degree,
which is not suitable
for cITS due to the
dynamic nature of
nodes (vehicles).

[26]

Existing solutions
overlook the fact that
the data acquired
about driving situation
at real-time are not
sufficient, which
degrades the detection
rate and increases the
false alarms.

•A selective flow sampling
was integrated with the
entropy to extract the
maximum amount of
information from a
small set of packets of
a particular flow and
calculate the change
in the data collected
previously.

•Entropy calculation
might not be accurate
due to limited number
of flows available at the
real-time deployment.
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2.3 Comparing the IDS versus MDS cITSs Approaches

Table 2.1 summarizes some of the existing solutions using Intrusion Detection systems,

while Table 2.2 compares multiple Misbehavior Detection solutions in cITSs. It can be

seen that most of these solutions assume that the data shared between the vehicles are

reliable. However, attackers could compromise such vehicles and exploit and manipulate

the information they share with other nodes. The aforementioned studies try to find

discriminative patterns to distinguish the attack traffic from the normal one. Although

such an approach is effective in detecting resource exhaustion and spoofing attacks, it is

unable to detect the misbehaving nodes that share false information with the nodes in its

vicinity. This kind of misbehavior could be exploited by advanced attackers to manipulate

the security thresholds and profiles. In addition, most of the studies assume that neither

attack nor normal behaviors change, which does not hold as the IoT environment is

dynamic. Therefore, such solutions suffer from concept drift, which invalidates the built

defined profiles. Moreover, these solutions do not consider the obfuscation techniques and

strategies that sophisticated attackers and malicious software use to deceive the detection.

Based on the literature reviewed above, most of the existing IDSs and MDSs proposed

for smart vehicles overlook the dynamic nature of the networks that these vehicles rely

on to communicate with each other as well as the RSUs. These studies assume that the

network is stationary, which is not realistic as the vehicles are always on the move and the

lifetime of the connection is limited. Building security solutions on such assumption has

a negative impact on the underlying thresholds and knowledge base that those models

rely on for detection. Similarly, existing security solutions assume that the context of the

driving situation is stationary, which is not true for cITSs as the context is stochastic due

to the dynamic nature of such networks.
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Communication reliability is another assumption that existing security solutions count

on when building the detection models. However, the ephemeral nature of the smart

vehicles and the harsh environment in which they operate makes it challenging to collect

noise-free and complete attack patterns. Therefore, the collected data might not be

representative enough for building accurate detection solutions. Likewise, acquiring

sufficient information from within the network in real-time is challenging as the attackers

escalate the attacks gradually to divert attention and avoid the suspicion. In such a case,

the complete attack trace might not be available until the attack comes to the end. To

the best of our knowledge, no study has considered this attack attribute, which renders

these solutions vulnerable to this type of attack.

Given the limitations of IDSs and MDSs in cITSs, there is still a need for robust

and accurate security solutions that take into account the fundamental characteristics of

smart vehicular networks like the context dynamicity, communication unreliability, and

data unavailability. In addition, proposed solutions need to deal with the sophisticated

and massive attacks that try to create majority dishonest nodes and manipulate the

driving context in the network. Similarly, such a solution needs to be aware of the

false information that the compromised and rogue vehicles could share with neighboring

vehicles. This could be achieved by employing a robust situational assessment that takes

into consideration the change of credibility and reputation of the vehicles based on the

observed behavior and pattern within a certain context. In the next two chapters, we built

a detection model that takes into consideration the evasive nature of the sophisticated

attacks. We also addressed the challenge of data insufficiency and evasive attacks that the

attackers carry out on vehicles in the road section and deceive the detection mechanisms.
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2.4 Conclusion

In this chapter, the existing literature related to intrusion detection solutions for IoT was

reviewed. The review was done with a brief history on general overviews of attacks and

security threats imposed against IoT. Then, it delved into data exchanged by on-road

vehicles, especially those pertaining to traffic safety and efficiency. After that, the research

into IDS for IoT was detailed. Related techniques for the online detection techniques

were elaborated with the focus on the limitations of existing techniques. Those issues and

limitations are addressed in chapters 4, 5, and 6. In the next chapter, the methodology

that have been followed by this study is detailed.
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Chapter 3

Methodology

As discussed above, the problem that this study has addressed is the inability of existing

IDSs to identify the attacks launched internally against cITS nodes. Due to some

unrealistic assumptions about the reliability of the nodes within the cITS ecosystem

and the trustworthiness of the data shared by these nodes. Attackers can compromise a

legitimate node and manipulate the data shared with the other nodes. Such manipulation

can corrupt the normal behavior of all nodes in the vicinity. Consequently, the assumption

that the data shared between these nodes are reliable does not hold in that case, which

degrades the detection performance. Some studies have tried to address this problem by

introspecting the context of driving situation and building Intrusion Detection Systems

(IDSs) based on the contextual data collected at real-time. These solutions adapt to the

changes in the situation such that, when the topology changes, the model triggers the

re-training process to accommodate the new data and re-adjust the security parameters.

However, data collected immediately after the topology changes are limited and might

lack sufficient patterns that serve as evidence for the misbehaving attacks. The early data

contain many missing and immature values, which worsens when data dimensionality is

high. Imputing the missing values based on immature early data is challenging. Such data

insufficiency also adversely affects the ability of a detection model to estimate features
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significance accurately. Furthermore, these solutions are built based on the premise that

the attack is stationary, which does not hold as attackers can change their behavior to

deceive the IDS.

To achieve the objectives of this research, three phases are involved in the design and

implementation of the model: Pre-processing and Feature extraction, Feature Selection,

and model training/testing. The first phase corresponds to objective (1), in which the

data undergo several preprocessing steps including the standardization and normalization.

During the pre-processing, the imputation of missing values is carried out. The outcome

of this phase is contextual data without missing values. The second phase corresponds

to objective (2), in which feature selection process is conducted to select the important

features set relevant to the data exchanged between the cITS nodes. The outcome of this

phase is the features selection technique. The third phase corresponds to objective (3), in

which a deep learning-based intrusion detection model is built by training Deep Belief

Network algorithm with the features set extracted at phase two. The outcome of this

phase is the IDS model for cITS systems. Figure 3.1 shows the general architecture of the

proposed model. It consists of three main components: data preprocessing and features

extraction, feature selection, and model training/testing.

3.1 Phase 1: Data Pre-processing and Feature
Extraction

Figure 3.2 represents phase 1 of the architecture of Multivariate Fuzzy Clustering-based

Data Imputation (MFC-DI) technique. This phase relates to the first objective of this

study and has three main components. Those components consist of data acquisition,

standardization, normalization, and imputation. In cITS ecosystem, data is collected from

the environment using a set of sensors that collect data from the neighboring vehicles and
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Figure 3.1: The general architecture of the proposed model.
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store them either locally and/or in a central location. The MFC-DI is built based on the

data collected. The raw data in the dataset consist of several components like contextual

data, attack information data, and environmental-related data. The dataset is used as an

impute for the imputation technique in order to estimate the missing values.

The purpose of data normalization is to put all values in the range between 0 and 1.

This allows the MFC-DI to treat the attributes fairly and does not favor the attributes with

higher ranges, like an acceleration ranging from 0 to 200 over other important attributes,

or like an acceleration ranging from 0 to 15.84. After normalization, data standardization

is carried out to transfer data so that means of zero and a standard deviation of 1 are

achieved. This facilitates the modeling by creating a normal distribution for the data,

which makes it easy for the algorithms to better understand the data. Furthermore, the

purpose of the missing data imputation technique is to approximate the missing values

acquired in the early phases of the new model’s formation. Such estimation is carried

out based on the values of the same attribute (univariate) as well as the values of other

attributes (multivariate), especially those correlating strongly with that attribute. Unlike

existing imputation methods which calculate the missing value based on the values of the

same attribute, the proposed technique includes the values from the correlated attributes.

A local-global fuzzy clustering technique calculates the missing values based on the data

in the same attribute as well as the data from the correlated attributes.

To achieve MFC-DI, the correlation between attributes is determined by using Pearson

correlation. Then, local-global clustering-based estimation is used to calculate the missing

values. As the degree of correlation between an attribute and each one of the other

attributes in the dataset can vary, a weight is given to its correlated attributes. This

weight determines how much this correlated attribute contributes to the estimation of the
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Figure 3.2: Data Pre-processing and Feature Extraction architecture.

missing value. By determining the correlation in the data distribution of two attributes,

the missing value in one attribute is estimated based on the data distribution of the

correlated attribute. This help to make an accurate calculation of the missing value using

the immature values. In this context, strongly correlated attributes have more influence

when calculating the missing value. That is, data distribution in the attribute in question

follows the distribution of the value of its strongly correlated counterpart. As such, the

data distribution of the counterpart attribute determines the data distribution of the

attribute with missing values. After that, the features extraction is conducted to extract

the semantical features based on the contextual data. The purpose of semantical data is to

perceive the intrinsic characteristics of misbehaving nodes and overcome the polymorphic

behavior of the attackers. The extraction of the semantics are introspected from the

contextual information in the data. The outcome from the feature extraction step in this

phase is the semantic features that represent the context during the MDS lifetime. In

Chapter 4, you can find more information and a description of the Multivariate Fuzzy

Clustering-based Data Imputation (MFC-DI) technique.
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3.2 Phase 2: Feature Selection

During this phase, a feature selection is conducted to control the number of features

extracted in the previous phase and avoid high data dimensionality while preserving the

discriminative features. A Proportional Conditional Redundancy Coefficient (PCRC)

is proposed to select the informative features from the dataset. PCRC is used in

the Enhanced Joint Mutual Information Feature Selection (EJMI) for better feature

significance estimation (see Figure 3.3). The goal function of EJMI consists of redundancy

term and relevancy term. These terms play an important role in feature significance

estimation as they control the trade-off between feature relevancy and redundancy. As

such, it is imperative to calculate their values accurately. To do so, the PCRC is used to

calculate optimal values of the redundancy coefficient in the goal function of the EJMI.

By utilizing the PCRC for redundancy coefficient calculation, the EJMI becomes able

to estimate the feature significance more accurately. This is because the PCRC has the

ability to perceive the patterns from the early data more clearly and overcome the data

insufficiency at the early stages of online adaptive models formation. In Chapter 5, you

can find more information and a description of the Enhanced Joint Mutual Information

Feature Selection (EJMI) technique.

Figure 3.3: Feature Selection architecture.
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3.3 Phase 3: Model Training/Testing

The third phase is related to the third objective of this study and involves two tasks:

model training and model testing. While the former is carried out offline, the latter

takes place online. That is, during model training, the features extracted and selected

during the previous phase are used to train the Adaptive Deep Belief Network-Based

Intrusion detection model(ADBN-IDS). The ADBN-IDS has been built using the Deep

Belief Network (DBN) algorithm. These features are fed to the input layer of the deep

neural network. A bi-variate moving average (BiMAV) method was developed and used

in the (ADBN-IDS) to detect the (potential) diversion, in practice, from the existing

threshold used by the detection model. Unlike existing methods that rely only on the

values estimated at the output layer, the proposed technique uses the Bi-variate moving

average method to correlate the change of output layer with averaged input variables.

Such an approach provides precise change detection by avoiding the instantaneous changes

that will eventually compromise the stability of the detection model. The proposed

method prevents the unnecessary re-adjustment of security thresholds at the output layer

of the DBN classifier thanks to the bi-variate-based moving average used to monitor and

detect the change in the classification accuracy estimation. Figure 3.4 demonstrates how

the ADBN-IDS model works. As mentioned before the model had been built using the

Deep Belief Network (DBN) algorithm. After training the DBN model, it will be ready

for prediction. the accuracy of the prediction is then examined by comparing the value of

the BiMAV method (w) with the threshold (t). If the prediction exceeds the threshold,

the model needs to be retrained. However, if the prediction is below the threshold, the

current model is kept.

The ADBN-IDS is built using a training dataset that includes the semantic features
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from phase 2. This enables the model to detect evasive attacks that change their behavior.

Given the ability to detect evasive attacks, the ADBN-IDS is able to detect the novel

(zero-day) attacks. Once tested, the ADBN-IDS can be used in a real-world deployment.

During offline training, the ADBN-IDS uses the features of the DBN algorithm as derived

from phase 2.. During online testing, detection accuracy is evaluated using a test set

which the model has not seen before. When examining new instances, the same procedure

of pre-processing and feature extraction are followed during the testing phase. The model

then determines whether these instances are attacks. The outcome from this phase is the

intrusion detection model. In Chapter 6, you can find more information and a description

of the Adaptive Deep Belief Network-Based Intrusion detection model(ADBN-IDS). Table

3.1 summarizes the overall research approach including the research questions, objectives,

methods, and evaluation metrics.
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Figure 3.4: Model Training/Testing architecture.
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Table 3.1: Research Plan.

Research
Objectives

Methodology Questions
Addressed

Solution Pursued Performance
Measures

To propose
a local-global
clustering-based
estimation
technique to
improve the
accuracy of
missing values’
imputation in
the mobility
data collected
at the early
stages of
model’s
formation.

The Pearson
correlation
technique will
be employed
to identify
the correlated
attributes and
the degree of
the correlation.
Then, the
averaged fuzzy
c-means will
be used to
estimate the
missing values
based on values
in the local
attribute as
well as the
values on the
correlated
attributes.

How can statistical
and clustering
techniques be used
to compensate
the mobility
data insufficiency
and accurately
estimate the
missing and yet
unobserved values
during the early
stages of model’s
formation?

Missing data
will be imputed
locally (univariate)
based on the
values of the same
attribute (feature)
and globally
(multivariate)
based on the
values of the
correlated
attributes.

Accuracy
(ACC), F1,
False Positive
Rate (FPR),
and Detection
Rate (DR).

Continued on next page
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Table 3.1 – continued from previous page
Research
Objectives

Methodology Questions
Addressed

Solution Pursued Performance
Measures

To propose an
enhanced
feature
selection
technique by
incorporating
a Proportional
Conditional
Redundancy
Coefficient
(PCRC)
into the goal
function of the
joint mutual
information
feature
selection
to improve
redundancy
co-efficient
value
calculation,
which
consequently
improves
the feature
significance
estimation.

The PCRC
was used
to calculate
the values of
redundancy
coefficient for
the EJMI
feature
selection
technique.

How can deep
learning be used
to accurately
calculate the
significance
of features
extracted from
the incomplete
mobility data
during the early
stages of model’s
formation?

Use the PCRC
technique
to calculate
the values of
redundancy
coefficient in the
goal function
of the feature
selection.

Model’s
accuracy.

To propose
a deep
learning-based
Intrusion
detection model
by integrating
the techniques
proposed in
(1) and (2)
into a deep
belief network
structure.

A Bi-variate
Moving
Average
(BiMAV)
technique was
integrated to
the detection
model so that
the DBN model
can adapt with
the changes
in the cITS
system.

How can an
adaptive approach
be utilized to
cope with the
dynamicity and
polymorphic
nature of attacks?

A deep
semantic-aware
approach that
observes the
polymorphic
patterns in the
attack’s behavior
and re-adjust
the security
parameters
accordingly.

Accuracy
(ACC), F1,
False Positive
Rate (FPR),
and Detection
Rate (DR)
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3.4 The Dataset

The dataset used in this research is the Next Generation Simulation (NGSIM) Vehicle

Trajectories Dataset [29]. NGSIM is an open-source, publicly available dataset with a

collection of real-world vehicles’ trajectories collected by smart vehicles. The NGSIM

dataset contains detailed vehicle trajectory data on southbound US 101 and Lankershim

Boulevard in Los Angeles, CA, eastbound I-80 in Emeryville, CA, and Peachtree Street in

Atlanta, GA [26]. Data in NGSIM were collected through a network of synchronized digital

video cameras. NGVIDEO, a customized software application developed for the NGSIM

program, transcribed the vehicle trajectory data from the video. This vehicle trajectory

data provides the precise location of each vehicle within the study area every one-tenth

of a second, resulting in detailed lane positions and locations relative to other vehicles.

Moreover, NGSIM consists of many patterns representing different driving situations and

driver behavior [29]. In addition, NGSIM provides high-quality contextual data that

describe realistic real-world scenarios on different road sections [29, 30]. Particularly,

NGSIM was built by collecting data from vehicles moving on a500-meter-long road section

and on a seven-lane highway. For each vehicle, the data are collected (recorded) for 45

minutes using 16 sensors. Each record in the dataset contains a set of basic elements

regarding the vehicle like position, speed, time, direction and acceleration.

The dataset represents the ground truth information and each vehicle represents an

IoT node. In a real-world deployment, the dataset needs to be fed to each IoT node. That

is, each node should have a copy of the dataset to run its own applications and adjust

its communication or driving behaviour. As such, the collection of accurate and reliable

context information is crucial. The context information in the dataset combines two types

of messages: Cooperative Awareness Message (CAM) and Decentralized Environmental
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Notification Message (DENM) into Basic Safety Message (BSM). While CAMs are sent

periodically, DENMs are event-driven and are only sent when an event has occurred. The

CAM consists of information about the vehicles like position, size, speed and steering

wheel angle.

In contrast, DENM contains information about a certain event like lane changing

and sudden braking. BSM will be used when discussing the combination of CAM and

DENM messages. The first part of BSM, as well as CAM in the European standard,

carries information about position, heading, speed, acceleration, steering wheel angle,

vehicle role, vehicle size and status of vehicle light [1]. Unlike the first part of BSM that

is included in all BSM messages, the second part of BSM (which corresponds to DENM

in the European standard) is included only when an event happens.

3.5 Experimental Environment Setup

To implement the different components of the proposed model and evaluate its performance,

the development and experimental evaluation are conducted using several tools and

software including the Python, TensorFlow, Scikit Learn, SKFeature, and Numpy. These

tools and libraries are all included in the Anaconda development platform. Meanwhile, the

preparation of data samples, implementation of algorithms, and the analysis of the results

are carried out on a machine with Intel(R) Core (TM) i7-4790 CPU @ 3.60 GHZ and 16

GB RAM. This relatively low powered working environment underscores the efficiency of

the our model and approach.

3.6 Evaluation Metrics

To evaluate the performance of the proposed IDS for cITS, this study uses accuracy,

precision, and F-measure as they are common metrics widely used by the extant research.
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In addition, the approximation error of the proposed IDS model is measured by false

positive rates and false negative rates. These measures are well known and commonly

used in existing research reports as well. Equations 3.1, 3.2, 3.3, 3.4, and 3.5 are used to

calculate the detection accuracy, detection rate, precision, false positive rate, and the F

measure, respectively.

ACC =
TP + TN

TP + TN + FP + FN
(3.1)

DR =
TP

TP + FN
(3.2)

Precision =
TP

TP + FP
(3.3)

FPR =
FP

FP + TN
(3.4)

F1 =
2× Precision × Recall

Precision + Recall
(3.5)

where TP, TN, FP, FN denote the true positive, true negative, false positive, and false

negative respectively.

3.7 Summary

In this chapter, the methodology used to achieve the research objectives is described. We

start by revisiting the research problem and solution concept. The research plan that

relates the research objectives with the methodology and solution is elaborated. The

three phases of the proposed model development are discussed. Then, the dataset used

in this research is introduced. The experimental environment is described. The tools

and software used to carry out the implementation are also presented. The performance

metrics used to evaluate the accuracy of the proposed model and compare the results
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with other reported work. In the next three chapters, the design and implementation of

the objectives are fully described.
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Chapter 4

Deep Learning to Improve False Data
Injection Attack Detection in
Cooperative Intelligent
Transportation Systems

This chapter is close to exactly as was published in October 2021 at the (IEEE 12th

Annual Information Technology, Electronics and Mobile Communication Conference

(IEMCON)) [31]. This research addresses the first objective as described above, which is

“To propose an local-global clustering-based estimation technique to improve the accuracy

of missing values’ imputation in the mobility data collected at the early stages of the

model’s formation.” This technique can impute the missing values in an accurate manner

when number of adjacent missing data is high, and this paper answered the following

question:

Q.1 : How can statistical and clustering techniques be used to compensate the mobility

data insufficiency and accurately estimate the missing and yet unobserved values during

the early stages of the model’s formation?
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4.1 Abstract

This work proposes a local-global fuzzy-clustering feature extraction scheme for detecting

False Data Injection Attacks (FDIA). In this scheme, the data undergo several pre-processing

steps including missing values imputation based on the local and global fuzzy-clustering

correlation approach. There are four main components of the proposed method: i)

data acquisition, ii) standardization, iii) normalization, and iv) imputation (as described

in Chapter 3 especially Figure 3.2). To evaluate the performance of this scheme, the

NGSIM dataset (described below) was used. This dataset contains data acquired from

the environment using a set of sensors that collect data from the neighbouring vehicles.

The results show that the accuracy of models trained using said features extracted by the

proposed scheme was higher than those proposed by the related studies. This indicates

that the local-global fuzzy clustering data imputation approach proposed by this study

can estimate the missing values better than existing techniques based on an exhaustive

literature review.

4.2 Introduction

Vehicles in cITS are equipped with many sensors and actuators, by which data can be

collected and shared with other neighbouring vehicles. These sensors include, but are not

limited to, speedometers, acceleration, GPS, and Ultrasonic sensors. The data exchanged

between the vehicles are contextual, event based, and situational [32, 33]. These data can

be perceived from the contents of the messages exchanged between the drivers sharing

the road segment [34,35]. The vehicles exchange several types of data containing related

driving environment characteristics, vehicle profile, and road conditions [36]. This includes

speed, positions, acceleration, direction, driver status, and road status among many other
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safety-related information. Such data can be utilized by many applications, especially

those related to road safety, traffic efficiency, and fuel consumption [37]. Hence, the

performance of these applications relies heavily on the quality of the data collected and

exchanged among the nodes within the cITS [38–40]. However, data could be manipulated

and falsified by attackers whose intention is to deceive the neighbouring vehicles to make

wrong decisions like sudden brake or redirect all to a specific road section [3,41]. Such

attacks are carried out using malware that can evade security mechanisms and stay

undetected [42, 43]. Consequently, many events of concern could be triggered such as

accidents and congestion, which compromise road safety and traffic efficiency, and most

certainly adversely affect the adoption of intelligent transportation systems [37].

Some studies have tried to address this problem by assessing the context of various

driving situations and building Misbehaviour Detection Systems (MDSs) based on

contextual data collected at drive-time. These solutions adapt to the changes in the

situation such that, when the topology changes, the model triggers the re-training process

to accommodate the new data and re-adjust the various security parameters. However,

data collected immediately after the topology changes is limited and might lack sufficient

patterns that serve as evidence for the misbehaving attacks. Early data therefore cannot

be completely trusted because it likely contains too many missing and immature values,

which worsens when data dimensionality is high. Consuming missing records/values based

on immature early data is challenging. Such data insufficiency also adversely affects the

ability of a detection model to accurately estimate a feature’s significance.

The reliability, relevance, and trustworthiness of the data are the major quality

factors that dictate the efficacy and feasibility of the cITSs [44]. However, assuring

such data quality is challenging in an inherently highly dynamic and ephemeral cITS
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environment [42,45,46]. This certainly follows from the implicit assumption that these

studies make about the validity of the data collected at any point in the past. That is,

the data used for building the predictive models are collected offline for model training.

Therefore, the data is only relevant and valid for a short period of time before the

context likely will change. After the context (where the data have been collected) changes,

the predictive models become outdated. Despite some efforts to make these models

adaptive [6, 9, 44], they were confined by data insufficiency during the time that proceed

the context change [47].

Attack detection in the cITS ecosystem can be categorized into Entity-Centric detection

(ECD) and Data-Centric detection (DCD) [1,48–52]. The focus of ECD is on identifying the

vehicle(s) that behave suspiciously and/or broadcast falsified or manipulated data [53–57].

The ECD has been adopted for cITS, and a major part of it was replicated from legacy

networks like MANETs [54, 58]. However, the high mobility, real-time and dynamic

nature of the cITSs environment makes these solutions suboptimal [1]. ECD Solutions fall

under two categories, behavioural-based or trust-based detection [49,54,59–61]. Vehicles

using behavioural-based solutions are evaluated based on compliance with the rules and

protocols [1]. For example, a misbehaving vehicle could broadcast messages at a rate

higher than the normal range defined by the respective protocol [53,62]. Therefore, the

behavioural approach is unable to detect false data injection (FDI) attacks, especially those

that are well-crafted that adapt to the dynamic nature of the cITS environment [46,63].

Such kinds of misbehaviour and data manipulation is certainly difficult to distinguish

from the real data.

The DCD, on the other hand, relies on a set of estimation criteria that examine the

plausibility and consistency of the data exchanged between the neighbouring vehicles.
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The data plausibility is estimated based on the degree of conformation to a predefined

set of rules or model. These policies and/or models are derived from a set of well-known,

agreed-upon rules like the law of physics that govern the maximum speed of vehicles on

the ground to prevent exceeding a specific limit. Likewise, two physical objects cannot

occupy (or overlap) the same space at the same time. A single object cannot be in

multiple places at the same time [55,64–67]. Such kind of behaviour, if observed, is not

plausible and could indicate a suspicious activity or malfunctioning system. However,

relying on such plausibility rules does not help in case of sophisticated attacks that obey

these laws. Unfortunately, there are ways to bypass the plausibility-based countermeasure

easily. Similarly, techniques that examine the consistency of the messages shared by

neighbouring vehicles compare the received data with those that have been collected

locally by the vehicle’s sensors to check for corroboration. For instance, a vehicle sends

data regarding its proximity to the traffic light that does not conform with the distance

measured by the receiving vehicle. Therefore, this discrepancy is an indicator that the

data received is not consistent with the local observations. Additionally, such consistency

is prone to many types of errors and noise coming from the dynamic and stochastic

nature of cITS’s environment. As such, relying on consistency to identify the misbehaving

nodes is limited to the ideal, noise-free and stable operational environment which may

not be practical. Although some studies tried to incorporate adaptive modelling, such an

approach is confined by the data insufficiency at the early stages of new situations that

may not be tenable.

4.3 Proposed Methods

As discussed above, the problem that this study addresses is the inability of existing

MDSs to identify the FDI attacks launched internally against cITS nodes due to some
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unrealistic assumptions about the reliability of the nodes within the cITS ecosystem and

the trustworthiness of the data shared by these nodes. Attackers could compromise a

legitimate node and manipulate the data shared with the other nodes. Such manipulation

could corrupt the normal behaviour of all nodes in the vicinity. Consequently, the

assumption that the data shared between these nodes are reliable does not hold in that

case, which degrades the detection performance. Some studies tried to address this

problem by introspecting the context of driving situation and building MDSs based on

the contextual data collected at real-time. These solutions adapt to the changes in the

situation such that, when the topology changes, the model triggers the re-training process

to accommodate the new data and re-adjust the security parameters. However, data

collected immediately after the topology changes is limited and might lack sufficient

patterns that serve as evidence for the misbehaving attacks. The early data contain many

missing and immature values, which worsens when data dimensionality is high. Imputing

the missing values based on immature early data is challenging. Such data insufficiency

also adversely affects the ability of a detection model to estimate features significance

accurately. Furthermore, these solutions are built based on the premise that the attack is

stationary, which does not hold as attackers can change their behaviour to deceive the

MDS.

To achieve this, we have developed a feature extraction scheme in which the data

undergo several pre-processing steps, including standardization and normalization. After

pre-processing, the missing values imputation is carried out. The scheme generates

contextual data without missing values and is composed of four main components, data

acquisition, standardization, normalization, and imputation. Unlike existing studies

where the imputation takes place based on the data around the missing value(s) within
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the attribute only, the technique proposed in this study also includes the values in the

correlated attributes in such an estimation. Therefore, the proposed technique has the

ability to deal with cases where the number of adjacent missing data is high.

4.3.1 Data Pre-processing

In the cITS ecosystem, data are collected from the environment using a set of sensors

that capture data from the neighbouring vehicles and store them either locally and/or

in a central location. The model is built based on the collected data. The raw data in

the dataset consists of several components like contextual data, attack information data,

and environmentally-related data. The dataset will be used as input for the imputation

technique to estimate the missing values.

4.3.2 Data Normalization and Standardization

The data normalization, also called Min-Max scaling, is a scaling technique that puts

all values in the range between 0 and 1. This allows the model to treat the attributes

fairly and does not favour the attributes with higher ranges like speed (0 and 200) over

other important attributes like acceleration, whose range falls between 0 and 15.84. Data

normalization is conducted using the Min-Max formula as follows 4.1.

X̄ =
X −Xmin

Xmax −Xmin

(4.1)

whereXmax,Xmin denote the maximum and minimum values of the attribute, respectively.

On the one hand, if X = Xmin, the numerator becomes 0, and X̄ =0 the minimum. On

the other hand, if X = Xmax, the numerator will be equal to the denominator, and X̄ =1.

As such the value of the attributes are rescaled between 0 and 1.

After normalization, data standardization is carried out so that data points are centered

around the mean with a unit standard deviation. As a result, the mean of zero and
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the standard deviation of 1 are achieved. Data standardization is carried out using the

following formula equation 4.2.

X̄ =
X − µ

σ
(4.2)

Where µ and σ denote the mean and standard deviation of the attribute’s values.

Both data normalization and standardization make the modelling easier by overcoming

the challenge that early (i.e., immature) data brings when it does not follow the gaussian

distribution. Therefore, it becomes easy for the algorithms to better understand the

trends.

4.3.3 Missing values Imputation using Multivariate Fuzzy C -
Means

As data are captured at the early stages after the online model’s formation, these data

consist of many missing values, which generates sparse data with many unknown and/or

undefined values. Such missing data adversely affects the data quality and hence the

models which are built based on such incomplete data sets. Therefore, missing data

imputation is necessary. In this study, a Multivariate Fuzzy Clustering-based Data

Imputation (MFC-DI) technique is proposed. The MFC-DI approximates the missing

values in the data acquired during the early phases of our new model’s formation. Such

an estimation is carried out based on the values of the same attribute (i.e., univariate)

together with the values of other attributes (i.e., multivariate), especially those which

correlate strongly with that attribute. Unlike existing imputation methods which calculate

the missing values based on the values of the same attribute, the proposed technique also

includes the calculation values from the correlated attributes. Therefore, the MFC-DI

estimates the missing values based on the data of the same attribute as well as the data
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from the correlated attributes.

To achieve this, the correlation between attributes is first determined using bivariate

Pearson Correlation (BC) method. The strength of the correlation is measured by the

correlation coefficient, r, which is calculated using following equation 4.3.

rxy =
cov(x, y)√

var(x).
√
var(y)

(4.3)

where cov(x,y) denotes the sample covariance of x and y attributes; var(x),var(y)

denote sample variance of x and y, respectively. The expression cov(x,y) is calculated

according to following equation 4.4.

cov(x, y) =

∑n
1 (Xi − X̄)(Yi − Ȳ )

n− 1
(4.4)

where X̄ and Ȳ denote the mean for the attributes X and Y, respectively; n denotes

the number of elements in both attributes. Moreover, the variance var(x) and var(y) are

calculated according to following equation 4.5.

var(X) =

∑(
X − X̄

)2
n− 1

(4.5)

4.3.4 Multivariate fuzzy c-means for missing data estimation

After data normalization and standardization, the multivariate fuzzy c-means estimation

technique is used to approximate the missing data. As the degree of correlation between

an attribute containing missing data and each one of the other attributes in the dataset

can vary, a weight is given to its correlated attributes. This weight determines how much

this correlated attribute contributes to the estimation of the missing value. Particularly,

fuzzy c-means algorithm builds a set of clusters in which the likelihood that each data

point falls within the boundary of a particular cluster has been estimated. The correlation

co-efficient determined in the previous step is incorporated in the calculation of cluster
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membership of each data point. That is, the membership of a datapoint was estimated

based on the multiplication of the proximity of the datapoint from the cluster centroids

multiplied by the correlation co-efficient between the data point and the nearest data

points to the centroid.

Concretely, the proposed multi-variate fuzzy c-means imputation is designed based

on the step-wise approach as follows. First, the number of clusters, n, is set, and the

fuzziness index, m, is chosen between 1.25 and 2. This range of values have been chosen

experimentally as they achieved the highest clustering precision. Then, the initialization

matrix, U, is chosen as follows equation 4.6.

U =

[
1 0 1 1 0
0 1 0 0 1

]
(4.6)

After that the cluster centroids were calculated according to the following equation

4.7.

Vij =
(
∑n

1 (γ
m
ik ∗ xk))∑n
1 γ

m
ik

(4.7)

where Vij denotes the jth cluster centroid, γm
ik denotes the membership of jth data

point to the kth centroid, and n denotes the number of data points. As pointed out above,

the γm
ik is calculated by multiplying the proximity of the data point from the centroid by

the correlation value between the data point and the centroid, as shown in the following

equation 4.8.

γm
ik =

rik∑c
j=1 (

dik
dji

)
2

m−1

(4.8)

where rik is the correlation co-efficient between i and j, c denotes the number of

centroids, and dij denotes the Euclidean distance between two data points i and k, which
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is calculated by dik in the following equation 4.9.

dik = ||xi − vk||2 (4.9)

The fuzzy c-means algorithm tries to minimize the objective function, J, as follows

4.10.

J = min(
n∑

i=1

c∑
k=1

(γm
ik)dik) (4.10)

The data point containing missing values is then compared with those that have

similar averaged proximity from all centroids, and the missing value is imputed by the

average of the corresponding values of those data points in the same attribute.

4.4 Results and Discussion

The results obtained from the proposed MFC-DI technique are presented here. The

experiments were conducted using the NGSIM and the detailed vehicle trajectory data

was collected from different locations using a network of surveillance cameras. The vehicle

trajectory data were transcribed from the video stream by NGVIDEO software. The

vehicle trajectory data provides the precise location of each vehicle within the study area

every one-tenth of a second, resulting in detailed lane positions and locations relative to

other vehicles 1. The dataset contains two types of messages, Cooperative Awareness

Message (CAM) and Decentralized Environmental Notification Message (DENM) into

Basic Safety Message (BSM). While CAMs are sent periodically, DENMs are event-driven,

which means they are only sent when an event has occurred. The CAM consists of

information about the vehicles like position, size, speed and steering wheel angle. In

contrast, DENM contains information about a certain event like lane changing and sudden

1The dataset was analysed and modeled in a workstation with 16 GB RAM, 2 TB hard disk, Windows
10 operating system. The software used for data analysis and modelling includes Python (Anaconda
distribution), Pandas, Numpy, Sci-kit Learn, Tensor Flow, Keras, and skfeatures. Additional Fuzzy
C-Means packages were individually installed using pip utility.
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Table 4.1: Performance comparison of the LR, SVM, and CNN using the data processed
by the MFC-DI.

#Metric / Classifier LR SVM CNN

ACC 0.882075 0.884713 0.906034

F1 0.984255 0.985806 0.987415

FPR 0.168177 0.17672 0.152147

DR 0.872513 .877789 0.896802

braking. BSM will be used when discussing the combination of CAM and DENM messages.

The first part of BSM, as well as CAM in the European standard, carries information

about position, heading, speed, acceleration, steering wheel angle, vehicle role, vehicle

size and status of vehicle light [1]. Unlike the first part of BSM that is included in all

BSM messages, the second part of BSM (which corresponds to DENM in the European

standard) is included only when an event happens, to carry information about such an

event.

To evaluate the performance of the proposed MFC-DI, the dataset after imputation

was used to train several machine learning models, namely the Support Vector Machine

(SVM), Logistic Regression (LR), and Convolutional Neural Network (CNN). The dataset

was split into training and testing using the k-fold cross validation method where k=10.

The training set was used to build the models, whereas the testing set was used to evaluate

the performance of these models. Several performance metrics were used to measure

model performance, namely accuracy (ACC), F1 measure, detection rate (DR), and False

Positive rate (FPR). Table 4.1 shows the results of the three machine learning models

trained with the data obtained from the proposed MFC-DI technique.

The results in Table 4.1 show that the performance that the CNN model achieved was
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higher than other techniques in terms of accuracy (ACC), F1 and Detection Rate (DR).

More specifically, the accuracies of CNN, SVM, and LR were 0.906034, 0.884713, and

0.882075, respectively. Likewise, the F1 values were 0.987415, 0.985806, and 0.984255

for CNN, SVM, and LR, respectively. Furthermore, the false positive rates (FPR)

generated from the CNN, SVM, and LR were 0.152147, 0.17672, and 0.168177, respectively.

Additionally, the detection rates (DR) were 0.896802, 0.877789, and 0.872513, respectively.

In Figures 4.1, 4.2, 4.3, and 4.4 below, the comparison shows the performance of the

proposed MFC-DI and the Pearson correlation-based missing data imputation [68]. The

comparison was conducted in terms of accuracy, F1, false positive rate, and detection rate.

Both MFC-DI and Pearson correlation-based imputation techniques were evaluated using

three machine learning algorithms, namely SVM, LR, and CNN. As the comparison shows,

the performance of the proposed MFC-DI outperforms the Pearson correlation-based

imputation technique in all metrics, i.e., ACC, F1, FPR, and DR, for all classification

models except the FPR of CNN where Pearson correlation was the lower. The comparison

also illustrates that, in both MFC-DI and Pearson-based imputation, the CNN scored the

highest performance values for the ACC, F1, and DR, while the performance of LR was

the lowest.
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Figure 4.1: Accuracy comparison between MFC-DI and Pearson-Based imputation for
the LR, SVM, and CNN.

Figure 4.2: F1 measure comparison between MFC-DI and Pearson-Based imputation for
the LR, SVM, and CNN.
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Figure 4.3: FPR comparison between MFC-DI and Pearson-Based imputation for the LR,
SVM, and CNN.

Figure 4.4: DR comparison between MFC-DI and Pearson-Based imputation for the LR,
SVM, and CNN.
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The results obtained from the proposed MFC-DI and the comparison with Pearson-based

missing data imputation notably confirms better performance for almost all metrics which

were evaluated except FPR for CNN. This is attributed to the multi-variate estimation used

by MFC-DI, which involves not only the data around the missing value, but also the data

with strong correlation and close clustering membership values similar to the data point

containing the missing value. This indicates that the inclusion of the correlation coefficient

in the calculation of membership value has improved the clusters’ centroid-datapoint

proximity estimation. This also helped with forming accurate and coherent clusters, which

in turn improved the imputation of the missing data with more accurate values. The

results indicate that the CNN model outperformed the other models from the literature.

This is attributed to the ability of the hidden layers of the CNN network to perceive

the hidden patterns in the data and to detect the weak relationships in the attributes.

This indicates that the deep learning algorithms with multiple layers is robust to some

inconsistencies that might exist in the data due to the potential for errors that might

occur during the missing data estimation. It is worth noting that the FPR generated by

MFC-DI was higher than the Pearson correlation when using CNN. The reason could

be the effect of data insufficiency on data-hungry algorithms like CNN. This issue will

be further investigated in our future study. From performance perspective, the MFC-DI

inherits the complexity of Fuzzy C-Means algorithm in terms of computational complexity.

This normally is expressed by O (NCT) expression, where N is number of instances, C is

number of clusters, and T is number of iterations. As indicated by this big o notation, the

time complexity is quite linear, which makes the proposed method practical for real-world

implementation.
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4.5 Conclusion

Herein a new model, the Multivariate Fuzzy Clustering-based Data Imputation (MFC-DI),

is proposed. Our MFC-DI is a technique that approximates the missing values in the data

acquired during the early phases of the new model’s formation when the misbehaviour

detection models in the cITS re-adjust to the environmental and contextual change. One

caveat for adopting the multivariate approach is the computational overhead, especially

for online models that adapt to the environmental and topological changes in the cITSs.

This issue will be addressed in our future publication.

The technique incorporates the Pearson correlation into the estimation of clusters

membership weights. The cluster membership was used to approximate the missing values

in data points based on the counterpart values in the other data points that share the

same proximity from the clusters. In such a way the missing data are determined by the

multi-variate attributes rather than univariate attributes used by conventional imputation

techniques. The results show that the proposed MFC-DI outperformed those that have

been obtained in the past using conventional Pearson correlation. We expect this will

help to improve the adaptive and online cITS models and increases the reliability of the

data exchanged between the vehicles on the road section.
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Chapter 5

Disrupting the Cooperative Nature
of Intelligent Transportation Systems

This chapter is exactly as published in June 2022 at the ( 2022 IEEE World AI IoT

Congress (AIIoT)) [69]. It addressed the first objective, which is “propose an enhanced

feature selection technique by incorporating a Proportional Conditional Redundancy

Coefficient (PCRC) into the goal function of the joint mutual information feature selection

to improve redundancy co-efficient value calculation, which consequently improves the

feature significance estimation.” This technique helps to select relevant and non-redundant

features during the early stages of model reconstruction, and this paper answered the

following question:

Q.2: How can relevant features be selected from the incomplete mobility data during

the early stages of model’s formation?

5.1 Abstract

The emergence of Cooperative Intelligent Transportation Systems (cITS) simplifies the

exchange of traffic situational information among vehicles within ”close” proximity, which

facilitates smooth traffic flow, reduces the congestion and saves energy. However, with

such advantages come challenges represented by attackers who would compromise the



67

vehicle system components, spoof false telemetry and/or control signals causing serious

problems such as congestion and/or accidents. There is need for security mechanism

that can identify and detect such misbehavior in cITSs more dependably. Several studies

have proposed Intrusion Detection Systems (IDS) for cITS depending on the contextual

data exchanged between neighboring nodes. Those solutions rely on classifiers trained

and readjusted online to reflect the dynamic nature of the cITS environment. These

models are usually trained with a set of features selected based on insufficient data. This

makes the feature significance estimation inaccurate due to data insufficiency collected

from the online systems immediately after the model was updated. In this paper we

address this issue by introducing a Proportional Conditional Redundancy Coefficient

(PCRC) technique. The technique is used in the Enhanced Joint Mutual Information

(EJMI) feature selection for better feature significance estimation. At each iteration, the

PCRC increases the redundancy of the candidate feature proportional to the number of

already-selected features while taking into consideration the class label. Such conditional

redundancy is estimated for the individual features, which gives the feature selection

technique the ability to perceive the attack characteristics regardless of the common

characteristics of the attack. Unlike existing works, the proposed technique increases the

weight of the redundancy term proportional to the size of the selected set. Consequently,

the likelihood that a feature is redundant, given the class label, increases when more

features are added to the selected set. By applying the proposed EJMI to select the

features from the Next Generation Simulation (NGSIM) dataset of cITS, more accurate

IDS has been trained as shown by the evaluation results. This helps to better protect the

nodes in cITS against the cyberattacks (e.g., falsified data).
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5.2 Introduction

By 2030, scientists anticipate that road accidents will be the major cause for deaths

and injury [31,53] within transportation systems. Vehicle accidents are also the primary

cause for traffic congestion, which negatively impact the economy [70] and consumption.

Billions of dollars are lost due to human error [71, 72]. Automation solutions introduced

by the cooperative Intelligent Transportation Systems (cITS) have been proposed by

researchers and industry to mitigate the problem. Such a solution can provide more

contextual information that drivers (algorithms) can use when making decisions, which

can improve road safety and traffic efficiency [73]. Given the cooperative nature of the

cITS, individual vehicles can detect traffic anomalies in a nearly real-time manner based

on the traffic information received from neighboring vehicles. These data exchanges

unfortunately present an obvious security concern represented by misbehaving nodes (i.e.

malicious or compromised vehicles) that share fake (dis-)information among participants

within the cITS ecosystem [74].

The cITS, nodes are equipped with many sensors and communication devices that help

collect and exchange information from the neighboring environment, including road and

traffic conditions [75,76]. The security is implemented in that the nodes analyze the data

coming from neighboring node, based on which traffic anomalies can be detected [77,78].

The cooperative nature of cITSs allows a wide range of applications including those used

for safety, and traffic efficiency [79]. The accuracy of these applications depends on the

reliability and thoroughness of the context information, which include position, velocity,

and directions [80] [81] [82] [83] [84]. Nevertheless, due to the dynamic environment

where cITSs operate, communication can be sometimes intermittent which leads to the

potential for data falsification by malicious parties. Such falsification potential increases
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the questionability of the trustworthiness of mobility information [85] [86] [87] [88]. This

is due to cyber-attacks that compromise cITS nodes by causing them to share false

information, which may lead to wrong decisions whose consequences could be disastrous

to the traffic on the road section [85].

Security is therefore of major concern within the cITS ecosystem. Attackers can exploit

the ”cooperative nature” of applications in this environment to share false information.

Wrong and/or inaccurate information can also be shared unintentionally, due to the

malfunction of sensors on the cITS nodes or other intermittent communication errors. J.

Grovert et al. [86] investigated various methods to create several attacks like position

forgery, also known as illusion attacks. They found that with malicious interventions,

legitimate traffic flow can be reduced by 80% while the legitimate packet delivery ratio

can be reduced by 33%. Similarly, a study conducted by [87] revealed that illusion

attacks degrade the routing efficiency of the cITS traffic. One explanation is that the

misbehaving nodes evade the legitimate system routes, causing the protocols to make

wrong decisions [1,88]. Securing cITS is challenging because vehicles work in a tumultuous

environment where attackers can instruct the compromised node to send false information

about road conditions. For instance, it is difficult to prevent attacks involving simulation

of false environmental constraints to fool vehicle sensors [1]. Consequently, detecting such

a misbehaving node is crucial for a secure cITS environment.

As misbehaving nodes pose significant threats to cITS [88, 89], various intrusion

detection approaches have been proposed. The intrusion detection methods can be

categorized into entity-centric and data-centric approaches [90–92]. The entity-centric

approaches differentiate between compromised and benign vehicles. In contrast, the

data-centric intrusion detection approaches try to identify false messages regardless, of
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the sending node. Both approaches can be combined such that a data-centric approach

is used for short-term, real-time applications and for privacy preserving purposes [91].

The entity-centric approach is then used for long-term detection when sufficient data has

been collected. The performance of such a hybrid approach depends on the quality of the

data as received from neighboring nodes as well as the classification accuracy [55, 93, 94].

However, the quality of the information acquired and shared between nodes cannot be

ensured in the dynamic and tumultuous cITS environment [2, 7]. Therefore, the intrusion

detection solutions need to be contextually aware of both data quality and trustworthiness

to avoid the high rate of false alarms or low detection rates. Despite some efforts to create

context-aware intrusion detection solutions as proposed in [3,6,33], these solutions rely on

classifiers where the relevancy of features representing the attack were not confirmed. The

machine learning-based techniques presented in [3, 6, 25, 95] were trained with features

selected regardless of the incompleteness of the underlying attack data. That is, the

previous models used data that was collected in a short time, which leads to low detection

accuracy. Therefore, this paper focuses on improving detection performance by developing

a more precise feature selection technique that can identify the attack’s latent behaviour

more accurately.

5.3 Related Work

The ongoing research in IDS for cITS relies on data extracted from the contents of the

messages exchanged between communicating vehicles as well as contextual metadata

that describes the operating environment. Such contextual data in many studies are

static, which does not conform with the dynamic nature of cITS. In such a dynamic

environment, the vehicle’s context changes continuously. Therefore, the predefined security

thresholds become obsolete more frequently, a major drawback that existing IDS solutions
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for cITSs suffer. Some studies proposed solutions for this problem, like the context-aware

data-centric misbehavior detection scheme (CA-DC-MDS) developed by [2]. This solution

overcomes some of drawbacks discussed here. The static thresholds have been replaced by

a dynamic threshold statistically calculated using a contextual model, which is constructed

and updated online. The sequential analysis of temporal and spatial correlation was

conducted using Kalman and Hampel filters to assess the consistency of mobility data

exchanged between neighboring vehicles. The Kalman Filter tracks mobility data from

the neighboring vehicles, while Hampel Filter assesses the consistency of this data. Based

on the proximity from the threshold, the message containing the data is classified as

either normal or suspicious. However, this scheme assumes the data collected at early

phases, after the model updated its profile, are sufficient for consistency assessment. This

is unrealistic, as the contextual data that describes the new situation is still immature.

Another study, [3] proposed a Hybrid and Multifaceted Context-aware Misbehavior

Detection model (HCA-MDS), which combines four components: data-collection, context-

representation, context- reference construction, and misbehavior detection. The model

relies on data-centric features representing the cITS environment context. The contextual-

based reference model was implemented using Kalman Filter and Hampel Filter as

unsupervised non-parametric statistical methods. The consistency analysis was carried

out using temporal and spatial correlation on mobility data. The purpose of such an

analysis is to re-adjust the upper and lower boundaries of the reference model, which

makes the model adaptive to the highly dynamic vehicular context. The maliciousness of

the vehicles is assessed locally based on the consistency, plausibility, and reliability values

of their mobility data. However, some drawbacks related to features are still not resolved,

which lead to low detection rate as reported by the authors. This is due to the high
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similarity, and sometime overlapping features of both normal and malicious behaviour,

especially at the early phases after the adaptation takes place where no sufficient data

the represent the new context has been collected yet. Therefore, there is a need for

more accurate feature selection technique that evaluate the relevancy of features with

insufficient patterns. Such a technique should be able to identify the difference between

the benign and malicious vehicles behavior in some operational conditions with substantial

uncertainty like maneuvering behaviour that looks like abnormal. Inability to distinguish

this increases the false alarms.

Lacking to an accurate feature selection mechanism was investigated by [6], where an

ensemble-based misbehavior detection system called (EHCA-MDS) was proposed. The

study focused on how to distinguish between normal traffic and malicious behaviour

patterns. They also studied the adaptability challenge when the context changes within

the cITS. However, insufficient context representation during the time frame that precedes

the formation of a new version of the model was not investigated, which is one of the

unresolved issues in current ephemeral systems. This issue makes the existing feature

selection technique unsuitable for this type of online system. Unfortunately, the lack of

enough patterns needed for accurate decisions hinders performance.

Existing mutual information-based feature selection techniques adjust the redundancy

coefficient inversely proportional to the size of the selected features set at each iteration

[96, 97]. Such approaches decrease the belief in redundancy term each time a new feature

is added into the selected set. Although this approach works well for data with full

(complete) information observations about the attacks, it produces a sub-optimal feature

set when dealing with data that lack enough observations [98,99]. Reliance on comparison

between the candidate feature and the common characteristics of all the already-selected



73

features in the selected set [97] is the weakness. Such common characteristics are difficult

to perceive from incomplete data.

To this end, this paper proposes a Proportional Conditional Redundancy Coefficient

(PCRC) technique by which, at each iteration; the redundancy of the candidate feature

increases proportional to the number of already-selected features given the class label.

Such conditional redundancy is estimated for the individual features, which gives the

feature selection technique the ability to perceive the attack characteristics regardless of

the common characteristics of the attack. Unlike existing works, the proposed technique

increases the weight of the redundancy term proportional to the size of the selected set.

Consequently, the likelihood that a feature is redundant, given the class label, increases

when more features are added to the selected set. The intuition is that by individually

comparing the candidate feature with ones already selected with respect to class label,

the likelihood that the candidate feature is redundant to one or more of those features

increases proportional to the size of selected set. The following sections elaborate on the

design and implementation details of the PCRC as well as incorporating such with a

mutual information feature selection technique.

5.4 Methodology

The mutual information (MI) is defined as the amount of information that two variables

share about each other [97]. This is calculated according to equation 5.1 as follows.

MI(X;Y ) =
∑
y∈Y

∑
x∈X

d(x, y) log
d(x, y)

d(x)d(y) (5.1)

where MI(X;Y ) is the mutual information between the vectors X and Y, d(x) and d(y)

are the marginal distribution of x and y variables; and d(x,y) is the joint distribution.

The equation 5.2 is the general representation that describes the calculation of the MI.
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J(Xk) = MI(Xk;Y )− β
∑
Xj∈S

MI(Xj;Xk)+

γ
∑
Xj∈S

MI(Xj;Xk|Y )
(5.2)

where MI (Xk;Y ) is the mutual information between the candidate feature Xk and the

class label Y;MI(Xj;Xk|Y ) represents the conditional mutual information between the

candidate feature Xk and the feature Xj in the selected set S given the class label Y; β and

γ are the redundancy and conditional redundancy coefficients, respectively. The values of

these coefficients range between 0 and 1. The equation 5.2 consists of two expressions,

relevancy term 5.3 and redundancy term 5.4. Furthermore, the redundancy term consists

of two sub-terms, namely the marginal redundancy represented by the expression 5.5 and

the conditional redundancy represented by the expression 5.6.

MI (Xk;Y ) (5.3)

β
∑
Xj∈S

MI (Xj;Xk) + γ
∑
Xj∈S

MI (Xj;Xk | Y ) (5.4)

β
∑
Xj∈S

MI (Xj;Xk) (5.5)

γ
∑
Xj∈S

MI (Xj;Xk | Y ) (5.6)

The mutual information makes trade-off between the relevancy and redundancy terms.

This is achieved by fine-tuning at least one coefficients, i.e. redundancy β ,or marginal
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redundancy γ. It turned out that the calculation of relevancy term always is same, which

relies on calculating the relevancy between the candidate feature Xk and the class label

Y. Therefore, the redundancy calculation is what makes difference in terms of features

accuracy.

As can be inferred from expression 5.2, the values of the coefficients β and γ are

essential for the relevancy-redundancy trade-off. The value of γ involves the class label

into this calculation. This makes it more influential for feature significance estimation

as the feature could be non-redundant with respect to one label and redundant with

respect to another label. Existing feature selection techniques do not consider this and

calculate the feature relevance regardless of the class label. Concretely, the small value of

γ decreases the effect the marginal redundancy and; consequently; increases the feature’s

significance. Therefore, the PCRC is incorporated into the JMI. The proposed EJMI

(Enhanced Joint Mutual Information) technique adopts the approach used in the mRMR

and JMI techniques and calculates the mutual information according to equation 5.2.

Unlike the traditional JMI that decreases the conditional redundancy weight inversely

proportional to the number of features in the selected set (see expression 5.7). The

proposed PCRC-based EJMI is proportional to the size of the selected set (see expression

5.8).

Concretely, PCRC calculates the redundancy weight using expression 5.9, where starts

with low values and increases when the size of the selected set (S) increases. The intuition

is that with more features added to the selected set, the likelihood a new feature for a

specific label is redundant increases as well. Therefore, the redundancy weight must be

increased. The proposed PCRC achieves this by putting the size of the selected set at the

numerator so that the increase of the size will correspondingly increase the value of the
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conditional redundancy coefficient, and consequently give more wight to the conditional

redundancy term of the EJMI. The value in the denominator is fixed throughout the

selection process and equals to the size of original set F.

γ =
1

|S| (5.7)

γ =
|S|
|F | (5.8)

where |S|and|F | represent the number of features in the selected and original set respectively.

Therefore, EJMI selects the informative features according to equation 5.9.

J (Xk) = MI (Xk;Y )− 1

|S|
∑
Xj∈S

MI (Xj;Xk)+

|S|
|F |

∑
Xj∈S

MI (Xj;Xk | Y )

(5.9)

The pseudo code of EJMI is shown in Figure 5.1. It calculates the significance of the

features based on the equation 5.9, which considers both the original features vector F

and S. EJMI selected the informative features according to equation 5.10 . As shown in

the pseudo-code , F = {f1, f2, f3, . . . fn−1, fn} represents a vector containing n number

of features; V is temporary set that accommodates the features whose MI values have

already been calculated; S = {s1, s2, . . . , st} represents the selected set with t number of

features. EJMI started by creating the empty sets V and S. Then it calculates the MI

value for each feature fi in F. After that, the MI values were used to rank the features.

Then, the features are stored in the set V in ranked manner. After that, the feature, vk,

in V with max(V,MI) was simultaneously removed from V and added into S. The next
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Figure 5.1: Pseudo code of our EJMI feature selection technique

Pseudo Code 1: EJMI Technique
Input: F = {f1, f2, . . . , fn} original features vector; C class label,number of features
required (t).
Output: S = {s1, s2, . . . , sρ} the selected set.
1: V ← ∅;S ← ∅
2: for each feature fi ∈ F :
3: vi = MI (fi;C)
4: V ← V ∪ vi
5: vk ← max(V,MI)
6: S ← vk;V ← V \{vk}
7: for ∀ (vj, sm) with vj ∈ V and sm ∈ S
8: compute MI (C; sm | vj)
9: sp = argmax

vj∈V

[∑
sm∈S EJMI (C; vj | sm)

]
:

10: V ← V \{sp}
11: S ← S ∪ {sp}
12: Repeat 8− 11 while length (S) ≤ τ

feature vp was chosen according to equation 5.10.

J (Xk) = MI (Xk;Y )− 1

|S|
vp = argmax

vj∈V
[MI (vj;C)−

1

|S|
∑
sj∈S

I (vk; sj) +
|S|
|F |

∑
Xj∈S

MI (Xj;Xk | Y )
(5.10)

At each iteration, the feature vj from V that produces the highest MI value given the

class label with respect to the already-selected features was added to the selected set.

When the number of features in the selected set reaches the threshold t, the selection

process is stopped.

5.5 Results and Discussion

In this section, the efficacy of the proposed PCRC technique for Joint Mutual Information

Feature Selection is evaluated. We begin by detailing the dataset and then the environment

with which the experiments have been conducted. The results obtained after applying

the proposed techniques are presented along with a comparison to related work.
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5.5.1 Dataset

In this section we describe the dataset used to evaluate the performance of PCRC. Herein,

we used the same evaluation procedures employed in [72,73]. This includes data collection

and preprocessing, noise injection, message loss and malicious nodes simulation. The

dataset used for this phase is the Next Generation Simulation (NGSIM) [74] (see Chapter

3 for a discussion of the phases). NGSIM contains around 5000 node trajectories. The

trajectories and vehicles were also simulated to capture the context data and share them

with neighboring vehicles. The simulation has been done in Python. The NGSIM [74],

was chosen as it is commonly used in similar studies to validate IDS models. The dataset

contains roughly 5000 vehicles with many traffic scenarios that describe driver behavior,

vehicle density, velocity, and traffic flows.

Noise was injected to simulate the harsh and tumultuous cITS environments. This

noise included static noise, dynamic noise, and dynamic correlated noise. The static white

noise comes in open sky environments where there is no signal deterrence like those in

rural areas or a desert where the vehicle has access to GPS. The dynamic noise occurs

in cloudy environments. Correlated noise occurs in downtown environments where tall

buildings and bridges prevent the signal from reaching neighboring vehicles [2, 3, 6]. On

the one hand, the static and dynamic white noise are normally distributed. Moreover, the

static noise has fixed variance while dynamic noise varies based on time. The correlated

noise is modeled based on the random walk approach [2, 3, 6, 99].

Communication loss is a substantial challenge due to the mobile nature of cITS

nodes [92, 100, 101]. The rate of such loss depends on several factors such as traffic

density, vehicle velocity, and road obstacles. As vehicles speed up and slow down, they

meander in and out of communication range. Such behaviour causes signal/data loss.
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Moreover, the intermittent connections increase inversely proportional to traffic density.

Thus, when traffic density increases, congestion happens while at the same time, highly

dynamic context transmissions in safety applications occurs every 100ms. These leads to

channel congestion and thus data loss. However, data reliability is the main issue that

adversely affects the accuracy of the IDSs [70]. One fix to this is the adoption of local

context prediction where each vehicle estimates its own context data regularly. Based

on a prediction error, the decision to send the current contextual data is executed. This

helps to reduce the congestion which in turns reduces data loss.

Given these constraints, malicious nodes that send false context data to negatively

impact road safety and traffic efficiency were simulated as suggested by [80, 81]. The

attacks include sudden or random position jumping, Sybil attack, inaccurate movement

patterns, and consistency attacks. The most challenging attack is the consistency attack

in which the attacker tries to generate consistent but fake vehicle trajectories to cause

traffic deception (i.e., an illusion) that degrade applications and network performance.

These attacks were implemented, based on works proposed by [3, 6, 33,80,81].

5.5.2 Experimental Results and Analysis

Tables 5.1, 5.2, and 5.3 show the accuracy of the features selected by EJMI (using the

proposed PCRC technique) and the comparison with those selected by existing techniques

(i.e., mRMR, MIFS and JIM). Several classifiers have been used to test the accuracy of

the selected features, namely the Deep Neural Network (DNN), Support Vector Machine

(SVM), and Logistic Regression (LR). The performance was evaluated in terms of accuracy,

which is calculated based of the well known equation 5.11.

accuracy = (tp+ tn)/(tp+ tn+ fp+ fn) (5.11)

where tp, tn, fp, fn are true positive, true negative, false positive and false negative,
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respectively [63]. The 1st column in each table lists the accuracy of the proposed EJMI,

while the 2nd, 3rd, and 4th columns list the accuracy of the related feature selection

technique, i.e. MIFS, mRMR, and JMI. The tables’ columns are used to list feature

sets with different sizes. The feature sizes range between 5 and 23 incremented by 3.

The results show that the proposed EJMI achieved higher accuracy when used to train

the three classifiers (ACC - 2.6% than DNN, 2.0% than SVM, 3.1% than LR ). This is

attributed to the ability of PCRC (incorporated to EJMI) to calculate the conditional

redundancy term more precisely when insufficient data are presented right after the

model adapts to the changing environment. This in turns improves the ability of EJMI

to estimate the accuracy of the features significance more precisely. By training the

classifiers with relevant features only, the detection model becomes more accurate and

the likelihood that it over fits due to highly dimensional data will be decreased. Such

dimensionality reduction also improves the efficiency of the detection model and makes it

suitable for online application.

During the experimental evaluation, several thresholds (5, 8, 11, 14, 17, 20, 23, and 25)

have been tested to pinpoint the suitable number of features that result in high detection

accuracy. The results show that accuracy increased when more features were added, until

the number of features reached 14. After that, the increase of the accuracy became less

gradual. This is applied to the three classifiers. The reason being, that the model needs

sufficient features to make correct decisions. But when the number of features exceeds

a certain limit, the model would suffer from high variance that makes it prone to over

fitting. The situation exacerbates when the coming observations lack the sufficient attack

patterns necessary for clear and accurate decisions. This would result in a model that

can only recognize the patterns that it has seen before, and if new patterns that have less
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similarity with the known ones is encountered, the likelihood that the model could miss

the true classification becomes high.

Table 5.1: Accuracy comparison between the proposed PCRC incorporated into the EJMI
for feature selection and the existing feature selection techniques using DNN

aaaaaaaaaaa
Features

Classifier

EJMI MIFS mRMR JMI

5 0.895 0.87 0.871 0.891

8 0.907 0.87 0.867 0.883

11 0.931 0.89 0.899 0.905

14 0.959 0.904 0.915 0.923

17 0.961 0.914 0.929 0.939

20 0.974 0.909 0.936 0.947

23 0.97 0.904 0.931 0.943

25 0.967 0.901 0.914 0.94

Figures 5.2, 5.3, and 5.4 show the comparison between the proposed EJMI and related

feature selection techniques. It can be observed that EJMI achieved high accuracy when

the features were used to train the DNN. The accuracy started from 0.895 when trained

by 5 features and increased to 0.974 when trained by 20 features. Note that when the

number of features increased to 23, the accuracy dropped. The same observation is true

with the SVM model whose accuracy dropped from 0.949 to 0.942 and LR whose accuracy

dropped from 0.952 to 0.951 when the number of features increased to 23. The reason

being that over fitting occurs when the number of features increase. This supports our

argument, pointed out above, in that the increase in the number of features increases the

data dimensionality, and consequently the model becomes prone to over fitting.
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Table 5.2: Accuracy comparison between the proposed PCRC incorporated into the EJMI
for feature selection and the existing feature selection techniques using SVM

aaaaaaaaaaa
Features

Classifier

EJMI MIFS mRMR JMI

5 0.879 0.852 0.856 0.871

8 0.889 0.854 0.852 0.87

11 0.913 0.872 0.884 0.882

14 0.941 0.885 0.9 0.91

17 0.943 0.895 0.914 0.927

20 0.949 0.882 0.919 0.934

23 0.942 0.88 0.915 0.93

25 0.938 0.88 0.911 0.926

Table 5.3: Accuracy comparison between the proposed PCRC incorporated into the EJMI
for feature selection and the existing feature selection techniques using LR

aaaaaaaaaaa
Features

Classifier

EJMI MIFS mRMR JMI

5 0.881 0.855 0.852 0.875

8 0.893 0.854 0.848 0.866

11 0.917 0.865 0.88 0.888

14 0.944 0.888 0.881 0.906

17 0.947 0.899 0.91 0.923

20 0.952 0.905 0.913 0.92

23 0.951 0.905 0.911 0.917

25 0.945 0.904 0.906 0.912
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Figure 5.2: Accuracy comparison between the proposed PCRC incorporated into the
EJMI for feature selection and the existing feature selection techniques using DNN.

Figure 5.3: Accuracy comparison between the proposed PCRC incorporated into the
EJMI for feature selection and the existing feature selection techniques using SVM.
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Figure 5.4: Accuracy comparison between the proposed PCRC incorporated into the
EJMI for feature selection and the existing feature selection techniques using LR.

5.6 Conclusion

In this chapter, a new Proportional Conditional Redundancy Coefficient (PCRC) technique

is proposed. PCRC estimates the value of the conditional redundancy coefficient that helps

the EJMI (Enhanced Joint Mutual Information) to more precisely determine each feature’s

significance. PCRC increases the weight of conditional redundancy terms proportional

to the size of the selected feature set. With such an approach, the PCRC addresses the

issue of insufficient data captured right after the model is updated in response to the

cITS environmental change. Such candid redundancy estimation compensates for the lack

of sufficient attack patterns. This mechanism increases the weight of the PCRC more

accurately as compared to existing feature selection techniques, and helps to select more

relevant features as demonstated in the prior sections.

The proposed technique was evaluated using the NGSIM dataset of cITS, from which
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the relevant features were selected. Those features were used to build the IDS using

several machine learning and deep learning classifiers. The results obtained show that the

conditional redundancy calculated by the proposed PCRC EJMI improved the accuracy

of features significance estimated by the EJMI feature selection techniques and reduces

redundant features. This, in turn helps in mitigating the model’s over fitting by reducing

the data dimensionality that adversely affects the generalizability of the detection model

and its ability to perceive the hidden patterns from malicious nodes lurking in cITS. By

adopting this solution for cITS, driving safety and traffic efficiency can be significantly

improved.



86

Chapter 6

Adaptive IDS for Cooperative
Intelligent Transportation Systems
Using Deep Belief Networks

This chapter is exactly as published in July 2022 at the (Algorithms) [102]. It addressed the

first objective, which is “propose an adaptive deep learning-based misbehavior detection

model by integrating the techniques proposed in phases 1 and 2 into a deep belief network

structure to increase the ability to detect polymorphic attacks and decrease the false

alarms.” This model (including all three phases) can adapt to the changes in the cITS

environment and cope with the dynamic nature of the attacks. This chapter answers the

following question:

Q.3: How can an adaptive approach be utilized to increase and cope with the

dynamicity and polymorphic nature of attacks?

6.1 Abstract

The adoption of cooperative intelligent transportation systems (cITSs) improves road

safety and traffic efficiency. Vehicles connected to cITS form vehicular ad hoc networks

(VANET) to exchange messages (as described above). Like other networks and systems,

cITSs are targeted by attackers intent on compromising and disrupting system integrity
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and availability. They can repeatedly spoof false information causing bottlenecks, traffic

jams and even road accidents. The existing security infrastructure assumes that the

network topology and/or attack behavior is static. However, the cITS is inherently

dynamic in nature. Moreover, attackers may have the ability and resources to change

their behavior continuously. Assuming a static IDS security model for VANETs is not

suitable and can lead to low detection accuracy and high false alarms we have developed

an adaptive security solution based on deep learning and contextual references that can

cope with the dynamic nature of the cITS topologies and increasingly common attack

behaviors. The outcome of this approach includes deep belief networks (DBN) used to

train the detection model. Binary cross entropy was used as a loss function to measure the

prediction error. Two activation functions were used, Relu and Softmax, for input–output

mapping. The Relu was used in the hidden layers, while the Sigmoid was used in the last

layer to map the real vector to an output between 0 and 1. The adaptation mechanism

was incorporated into the detection model using a moving average that monitors predicted

values within a time window. In this way, the model can readjust the classification

thresholds on-the-fly as appropriate. The proposed model was evaluated using the Next

Generation Simulation (NGSIM) dataset as before, which is commonly used in such related

works. The result is improved accuracy, demonstrating that the adaptation mechanism

used in this study was highly effective

6.2 Introduction

Cooperative intelligent transportation systems (cITSs) collect data from the end nodes

(i.e., endpoints). These data are stored locally and shared with the other nodes [40,72,103].

The cITS adopts one of the two information-sharing standards, the European standard [4]

and the American standard [4]. On the one hand, the European standard defines two
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types of messages, the Cooperative Awareness Message (CAM) and the Decentralized

Environmental Notification Message (DENM) [6]. The CAMs are sent periodically and

carry information about the vehicles such as their position, size, speed, and the angle of

the steering wheel. The DENM messages carry information about events which occur

on sections of road such as lane changes and (sudden) braking. On the other hand, the

American standard defines context information messages called basic safety messages

(BSMs), which carry different information such as position, heading, speed, acceleration,

steering angle, vehicle role, vehicle size and status of vehicle lights [1]. If an event happens,

then the BSM also carries those event-related information.

Notwithstanding, cITSs enable information sharing among neighboring nodes (i.e.,

vehicles). Unfortunately, this comes at the cost of needing to address several threats that

target data and system integrity [100, 101]. These threats could be imposed by either

human-crafted attacks or malware [101,104–106]. Threats which target cITS systems can

disable or disrupt the function of one or more components in the vehicle’s navigation

system [95].For example, threats can spoof the exchanged data to inject false mobility

information which is then exchanged among neighboring vehicles causing erroneous actions

and calamitous outcomes.

Threat actors use sophisticated strategies and employ malware to carry out various

attacks against cITSs [2,3]. These attacks could come from nodes inside or outside the

network. Outside attacks by threat actors that are not part of the network are easy to

detect, whereas inside attacks are usually carried out via legitimate but compromised

vehicles. Such inside attacks are more challenging to detect. Typical cITS targeted attacks

include jamming, replay, Sybil, and data falsification.

Jamming is carried out by overwhelming individual cITS nodes by an enormous
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amount of messages, which disrupt the connectivity with the cITS, a denial-of-service

attack type [107]. The consequences include message loss within the cITS, causing a

data insufficiency situation that adversely affects the accuracy of the intrusion detection

systems (IDS) trained on such data. Replay attacks occur if the attacker can impersonate

an original node enabling the interception of messages exchanged between the vehicles and

thereby injecting false data by re-sending them to a victim node [108]. Likewise, a Sybil

attack creates several identities and uses them to poison (fake) BSM messages that deceive

victim nodes; as such, a Sybil attack compromises network services when an attacker

subverts the service’s reputation system by creating a large number of pseudonymous

identities and then using them to gain a disproportionately large influence. Thus, false

data injection can be used to share and promote false information about the current traffic

situation on the road for the purpose of disrupting traffic flow and triggering congestion.

Data falsification is another type of attack that can be conducted to compromise BSM

messages exchanged between cITS nodes. The first step is to compromise a legitimate

node and employ it to share false data with neighboring vehicles. Since the compromised

node has been previously authenticated, a trust relationship was established with other

nodes in the cITS network. Attackers can utilize this fact to spread the false data using

the compromised node trust [6]. Attackers thus manipulate the BSM and inject false data

which is then share with neighboring nodes [7]. The false data may cause a vehicle to take

unexpected actions such as sudden braking, lane changing, and/or sudden acceleration.

Therefore, taking security measures to protect BSM messages is crucial [1].

6.3 Related Works

The current solutions proposed for protecting the cITSs can be categorized into node-centric

and data-centric IDSs. Some of these solutions tried to protect the system against threats
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coming from the outside caused by Sybil, malware, and DoS attacks. By comparing the

patterns from incoming traffic with the patterns of normal applications, those solutions can

detect suspicious threats and raise alarms. Moreover, other solutions focus on detecting

misbehaving nodes in cITSs. These solutions aim to protect the system against threats

carried out by legitimate yet compromised nodes, which is more challenging as those

nodes are trusted and thus less suspicious [8]. Nonetheless, most of these solutions assume

that the cITS is stationary. Such an assumption is not realistic as the ephemeral nature

of cITSs make it a very dynamic constantly changing topology. Developing data-driven

detection solutions on presumed stationary data prohibits handling the numerous and

rapid changes typical inside the cITS. These solutions quickly become outdated and

consequently, their accuracy decreases. Some studies have tried to rectify the issue by

adopting solutions with the dynamic nature of the operating environment in mind [100].

These solutions, again, are typically categorized into node-centric and data-centric.

The existing IDS proposal for cITS relies on the BSM messages exchanged between the

communicating vehicles as well as the contextual metadata that describes the operating

environment. Such data in many studies are static, which might not be suitable for dynamic

cITSs where the node’s operational environment changes continuously. Therefore, static

security thresholds become outdated more often. This represents a major issue for existing

IDS solutions. To address this issue, some studies have proposed solutions, such as

the context-aware data-centric misbehavior detection scheme (CA-DC-MDS) developed

by [2]. This solution overcomes the aforementioned drawbacks. Static thresholds are

replaced by a dynamic threshold statistically determined using a contextual model, which

is constructed and updated online. The sequential analysis of temporal and spatial

correlation is conducted using Kalman and Hampel filters to assess the consistency of
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mobility data exchanged between neighboring vehicles. The Kalman filter tracks mobility

data from the neighboring vehicles, while the Hampel filter assesses the consistency of

these data. Based on the proximity from the threshold, the message containing the data is

classified as either normal or suspicious. However, the scheme assumes that data collected

at the early phases after the model has updated its profile are sufficient for consistency

assessment. This is not realistic in most cases, as the contextual data that describe the

new situation are not yet ready for a variety of reasons as described below.

Node-centric IDSs determine whether a vehicle is malicious based on how it behaves

on the road section [109]. The trustworthiness of legitimate vehicles is also assessed based

on such behavior, which can be perceived by observing the number and validity of BSM

messages shared by the vehicle [110,111]. Reputation-based evaluation is usually adopted

for the trustworthiness estimation of each node in the cITS. The estimation is performed

by a voting strategy whose outcome relies on the majority concept. However, relying

on node behavior is sub-optimal because the cITS is non-stationary and since nodes

change their behavior as the topology change [112,113]. Moreover, relying on a voting

approach for the trustworthiness estimation is always biased towards the majority, which

in some cases, can be compromised when the attacker gains a majority foothold. A case

in point occurs when attackers use advanced and sophisticated attack strategies such as

malware and botnets to create a majority of rogue nodes enabling them to control the

trustworthiness estimation. Consequently, such reputation-based mechanisms used by

node-centric solutions cannot be trusted for the early identification of misbehaving or

faulty vehicles [1].

Another set of IDSs for cITS adopt the data-centric detection approach by inspecting

the BSM messages exchanged between the neighboring vehicles. These solutions perform
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several checks to determine whether the messages are falsified. BSM messages are checked

against several criteria such as consistency and plausibility to determine whether they

are trustworthy [1]. The consistency checks that BSM messages undergo in data-centric

solutions determine whether the data shared by the node are consistent with the general

context from the particular cITS. By vetting these BSMs, data-centric solutions can also

identify the plausibility of the shared data to help in determining validity (i.e., whether

they are in-line with those coming from other nodes in the cITS system).

The node-centric and data-centric approaches adopted in existing IDS solutions for

cITS rely on estimating the reputation of the nodes and trustworthiness of the data they

share with each other. However, both approaches have inherent weaknesses and may not

be suitable for tumultuous environments such as cITSs. In such dynamic systems, the

nodes join and leave the network frequently, which creates an unstable topology. This

makes it difficult to capture sufficient and consistent patterns that represent all behavioral

aspects of the nodes. Therefore, existing security solutions with rigid thresholds are not

suitable as they do not have the sufficient data needed for accurate decisions. Therefore,

these solutions suffer from a high rate of false alarms. Thus, data insufficiency makes it

difficult for adaptive mechanisms used by some solutions to accurately calculate the new

thresholds, which also have a negative effect on IDS accuracy.

The contribution of this chapter is two-fold:

• A bi-variate moving average (BiMAV) technique was used. Unlike existing methods

that only rely on the values estimated at the output layer, BiMAV correlates the

changes of the output layer with the averaged input variables. Such an approach

provides precise change detection by avoiding the instantaneous changes that could

compromise the stability of the detection model.
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• Our method was incorporated into the detection model, which helps to prevent

the unnecessary re-adjustment of security thresholds at the output layer of the

DBN classifier thanks to the BiMAV used to monitor and detect the change in the

classification accuracy estimation.

The rest of the chapter is organized as follows. Section 3 presents the methodology

in which we describe the proposed solution. The results are analyzed and discussed in

Section 4 along with a comparison with existing related work. Section 5 concludes the

chapter with a summary of the contribution and findings.

6.4 Methodology

Given the literature reviewed above (Chapter 2), we have concluded that the ephemeral

nature of cITSs is a major challenge that makes many existing solutions ineffective. To

overcome such a challenge, herein we propose an adaptive IDS for cITS. Our adaptive

approach has the ability to cope with the dynamical nature of the cITS operating

environment. The BiMAV method was developed to detect the (potential) diversion, in

practice, from the existing threshold used by the detection model. Unlike existing methods

that rely only on the values estimated at the output layer, BiMAV correlates the change

of output layer with the averaged input variables. Such an approach provides precise

change detection by avoiding the instantaneous changes that will eventually compromise

the stability of the detection model. In this way, the method prevents the unnecessary

re-adjustment of security thresholds at the output layer of the DBN classifier thanks to the

BiMAV used to monitor and detect the change in the classification accuracy estimation.

This is important for dynamic environments such as cITSs where sufficient data might

not be available. Based on the amount of change, adaptation can be triggered. In other

words, if the difference exceeds a certain limit (i.e., according to the standard deviation),
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retraining the model is triggered. Thus, model retraining will be performed based on the

new data. If the difference does not exceed the threshold, there is no need for retraining.

Thus, our solution here relies on the supervised learning approach. The deep belief

network (DBN), one of the famous deep learning algorithms, is used to train the IDS based

on data collected from the BSM messages. Before training, the data are pre-processed to

make them suitable for ingestion by the DBN. As part of the preparation, noisy data are

removed, and data normalization is carried out. During data normalization, the values of

all attributes are converted to a range from 0–1. This ensures that all attributes are in

the same scale and prevents those with higher ranges from having undue influence over

the model’s output decision.

The data are now ready for the mutual information feature selection (MIFS) process

that selects out discriminative features to reduce data dimensionality. This avoids the

overfitting problem that negatively affects the accuracy of the IDS [63, 114]. By selecting

the most relevant features, the model also generates fewer false alarms, which contributes

to higher precision. Furthermore, reducing data dimensionality helps decrease the model

complexity, which is more favorable for ephemeral environments such as cITSs. The

MIFS ranks the features based on the entropy, such that those with higher entropy

value correspond to a lower rank. Then, the MIFS selects the n-top ranking features (n

experimentally chosen to give higher accuracy). The selected features are then used as

input for the DBN algorithm.

During the model’s training phase, the DBN is trained using the data and features

selected by the MIFS. The DBN model is composed of several layers, namely input, output

and hidden. The number of input layer nodes is determined by the number of features

selected by the MIFS. These nodes receive data and process them into the hidden layers,
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after being scaled (i.e., multiply) by an input weight. In our methodology, the hidden part

of the DBN is constructed from three layers. The number of hidden layers is determined

based on an overfitting factor during the training phase. The number of nodes in the

hidden layer is thus determined based on the bias factor during the training phase. The

value of the bias factor was set to 0.25, multiplied by the standard deviation σ(W ) of

the previous window. Therefore, the number of nodes in the hidden layers were taken as

a percentage of the original number of layers. As we start with 18 nodes (because the

number of nodes in a hidden layer should be lower than the number nodes in input layer),

in the hidden layers, the data are processed based on the activation function used by the

hidden nodes. The Relu function is used as the activation function in all nodes in the

hidden layers of the DBN, except the layer that precedes the output, where the sigmoid

function was used. These activation functions are used to map the output of nodes into

values between 0 and 1, which are needed for prediction. The output layer receives the

data from the sigmoid functions in the last hidden layer and determines whether the

instance is malicious or normal based on a threshold σ, where values greater than σ are

considered as attacks.

6.4.1 Training and Testing

The DBN model was trained using the 10-fold cross-validation method, wherein data

are divided into two sets. During the training/testing process, the data were divided

into aforementioned two sets, i.e., training and testing. The training builds the model

while testing evaluates its accuracy. The size of the training set was 90% of the data and,

naturally, the testing set was 10% of the data. This process was repeated 10 times and

the accuracy of the model was recorded. At the end of the training/testing process, the

averaged accuracy was calculated, which determines the overall model accuracy.
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6.5 Model Adaptation using Bi-Variate Moving Average

Our proposed model, as described above, is aimed at improving detection within the

dynamic cITS environment. Therefore, here we describe an adaptation capability needed

to ensure that the model can better handle the constantly changing network topology. We

propose a bi-variate moving average (BiMAV) model adaptation method that observes the

model performance and adapts to the change in the operating environment. Our method

follows the progressive modeling used by works that rely on time series data [115]. The

method uses a two-dimensional window for change detection. That is, the window defines

two variables, the aggregated input values and the estimated output. Within this window,

the accuracy trend is monitored against a threshold calculated based on the standard

deviation from previous windows. Equation (6.1) implements the BiVAM method:

BiMAV =
∑i=n−1

i=0 Xi

n
×

∑j=l−1
j=0 Yj

l
(6.1)

where Xi and Yj are the input features and estimated output values, respectively. The

variable n represents the number of features while l represents the number of instances in

the window. The retraining is triggered if the value of BiMAV is higher than the standard

deviation of the previous windows, as expressed by Equation (6.2):

B i M A V =

{
if < σ(W )
if > σ(W ) then Retraining

then No retraining (6.2)

where σ(W ) represents the standard deviation of the previous windows. The decision

that Equation (2) makes is binary as it determines whether the re-training is needed or

not based on the threshold σ(W ).



97

6.6 The Dataset

The dataset used for this study was the Next Generation Simulation (NGSIM) Vehicle

Trajectories Dataset [101]. NGSIM is an open source publicly available dataset with a

collection of real-world vehicles’ trajectories collected by smart vehicles. It contains a

detailed vehicle trajectory data on southbound US 101 and Lankershim Boulevard in

Los Angeles, CA, eastbound I-80 in Emeryville, CA and Peachtree Street in Atlanta,

Georgia. Data in NGSIM were collected through a network of synchronized digital

video cameras. NGVIDEO, a customized software application developed for the NGSIM

program, transcribed the vehicle trajectory data from the video. This vehicle trajectory

data provides the precise location of each vehicle within the study area every one-tenth

of a second, resulting in detailed lane positions and locations relative to other vehicles.

Moreover, NGSIM consists of many patterns representing different driving situations

and driver behavior [101]. In addition, NGSIM provides high-quality contextual data

that describe realistic real-world scenarios on different road sections [109]. Particularly,

NGSIM was built by collecting data from vehicles moving on a road section 500 meters

long and seven-lanes of highway wide. For each vehicle, the data are collected (recorded)

for 45 min using 16 sensors. Each record in the dataset contains s set of basic elements

regarding the vehicle position, speed, time, direction, and acceleration. Although there

are similar datasets such as the Connected Vehicles Pilot (CVP), the NGSIM dataset was

chosen in here to be consistent when comparing with the related works as they also used

the NGSIM.

The dataset represents the ground truth information and each vehicle represents a

cITS node. In a real-world deployment, the dataset needs to be fed each cITS node. That

is, each node should have a copy of the dataset to run its own applications and adjust
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its communication or driving behavior. As such, the collection of accurate and reliable

context information is crucial. The context information in the dataset combines two types

of messages, cooperative awareness message (CAM) and decentralized environmental

notification messages (DENM) into a basic safety messages (BSM). While CAMs are sent

periodically, DENMs are event-driven that only get sent when an event has occurred.

The CAM consists of information about the vehicles such as the position, size, speed, and

steering angle.

In contrast, DENM contains information about a certain event such as lane changing

and sudden braking. BSM combines CAM and DENM messages. The first part of BSM,

as well as CAM in the European standard, carries information about position, heading,

speed, acceleration, steering angle, vehicle role, vehicle size, and the status of vehicle

lights [4, 33, 116]. Unlike the first part of BSM that is included in all BSM messages, the

second part of BSM (which corresponds to the DENM in the European standard) is only

included when an event happens, to carry information about such an event.

6.7 Experimental Environment Setup

To implement the different components of the proposed mode and evaluate its performance,

the development and experimental evaluation will be conducted using several tools and

software including Python, TensorFlow, Scikit Learn, SKFeature, and Numpy. These

tools and libraries are all included in the Anaconda development platform. Meanwhile, the

preparation of data samples, implementation of algorithms, and the analysis of the results

will be carried out on a machine with Intel(R) Core (TM) i7-4790 CPU @ 3.60 GHZ and

16 GB RAM.
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6.7.1 Evaluation Metrics

The evaluation metrics used here can be seen in Chapter 3 (Section 3.6).

6.8 Experimental Results

Table 6.1 shows the accuracy (Acc), detection rate (DR), false positive rate (FPR), and

F1 measure of the proposed Adaptive Deep Belief Network-Based IDS (ADBN-IDS).

In addition, Tables 6.2 and 6.3 show the results of the IDS built using conventional

machine learning classifiers, namely the support vector machines (SVMs), and the logistic

regression (LR). As pointed out previously in Chapter 5, the Acc, DR, FPR, and F1 were

calculated based on Equations 3.1, 3.2, 3.4, and 3.5. In the tables, the first column in

each table lists the accuracy of the proposed; while the second lists the detection rat; the

third column lists the false positive rate; and the fourth column lists the F1 measure of

the proposed and related models. The tables’ rows are used to list the feature sets with

different sizes. The feature sizes range between 5 and 25 incremented by 3. The results

show that the proposed ADBN-IDS achieved higher accuracy over the other two classifiers

(i.e., SVM and LR) [116, 117]. This is attributed to the ability of the BiMAV method

(incorporated into ADBN-IDS) to detect the degradation in the model’s performance and

trigger the training on the right time. This contributes to keeping the model up to date

and prevent the concept drift from affecting the accuracy of the model. Notwithstanding,

these experiments duplicate (repeat) the prior experiments carried out in the earlier

phases.

The results also show that the accuracy increased when more features were added,

until the number of features reached 20. After that, the model experienced a decrease

in the accuracy. This also can be observed from the other evaluation metrics, namely
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DR, FPR, and F1. The same trend was observed not only for the ADBN-IDS, but also

for SVM and LR. The reason is that the model needs sufficient features to make correct

decisions. However, when the number of features exceed a certain limit, the model would

suffer from high variance that makes it prone to overfitting. The situation exacerbates

when the coming observations lack the sufficient attack patterns necessary for clear and

accurate decisions. This would result in a model that can only recognize the patterns

that it has seen, and if new patterns that have less similarity with the known ones are

encountered, the likelihood that the model could miss the true classification becomes

high, just as described in the prior chapters.

Figures 6.1, 6.2, 6.3, and 6.4 show the comparison between the proposed ADBN-IDS

and the models built using the SVM and LR, in terms of accuracy, detection rate, false

positive rate, and F measure, respectively. The x axis represents the number of features

used for training, and the y axis represents the value of performance measure achieved.

The comparison was conducted between the ADBN-IDS that employed the BiMAV for

adaptation and the conventional approach used in the existing studies [116, 117]. As

depicted in the figures, the proposed ADBN-IDS outperformed the related techniques in

terms of accuracy, detection rate, false positive rate, and the F measure. Note, it can also

be observed that the ADBN-IDS maintain a stable increment in the performance for the

four measures when the number of features increase until it reaches 20 features where the

performance shows a declining trend. This is attributed to the efficacy of the BiMAV

incorporated for the model adaptation and the reliance on the combination of output and

averaged inputs for proximity calculation from the threshold. Such an approach makes

the change detection mechanism robust, which avoids unnecessary re-training and only

triggers it if the change in the cITS topology or attack behavior is significant. Let us also
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Table 6.1: The experimental evaluation results for the proposed ADBN-IDS in terms of
accuracy, detection rate, false positive rate, and F measure.

Metric and Number of
Features

ACC DR FPR F1

5 0.92 0.924 0.132 0.927
8 0.929 0.926 0.128 0.931
11 0.946 0.937 0.113 0.947
14 0.968 0.965 0.084 0.969
17 0.97 0.968 0.076 0.973
20 0.974 0.972 0.071 0.978
23 0.973 0.97 0.072 0.975
25 0.969 0.971 0.077 0.972

Table 6.2: The experimental evaluation results for the proposed SVM-IDS in terms of
accuracy, detection rate, false positive rate, and F measure.

Metric and Number of
Features

ACC DR FPR F1

5 0.892 0.89 0.176 0.894
8 0.9 0.894 0.179 0.892
11 0.91 0.913 0.15 0.915
14 0.951 0.95 0.132 0.954
17 0.956 0.953 0.129 0.958
20 0.957 0.953 0.122 0.958
23 0.951 0.948 0.13 0.953
25 0.947 0.942 0.154 0.951

note that the frequency of adaptation varies based on the threshold. When the threshold

is set to a higher value, the rate of adaptation becomes less frequent. When the threshold

value is set to low, the adaptation frequency increases. Moreover, Figure 6.5 shows the

area under the curve of the proposed model given several thresholds as shown. The x

axis represents the false positive rate while the y axis represents the true positive rate. It

can be observed that the false positive rate decreases when the detection rate increases.
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Table 6.3: The experimental evaluation results for the proposed LR-IDS in terms of
accuracy, detection rate, false positive rate, and F measure.

Metric and Number of
Features

ACC DR FPR F1

5 0.898 0.894 0.162 0.9
8 0.904 0.902 0.157 0.907
11 0.919 0.917 0.144 0.918
14 0.943 0.94 0.14 0.946
17 0.958 0.952 0.131 0.96
20 0.954 0.951 0.137 0.956
23 0.95 0.948 0.139 0.952
25 0.945 0.943 0.142 0.948

Figure 6.1: Comparison of the proposed ADBN-IDS with SVM and LR in terms of
detection accuracy.
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Figure 6.2: Comparison of the proposed ADBN-IDS with SVM and LR in terms of
detection rate.

Figure 6.3: Comparison of the proposed ADBN-IDS with SVM and LR in terms of false
positive rate.
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Figure 6.4: Comparison of the proposed ADBN-IDS with SVM and LR in terms of F
measure.

Figure 6.5: Area under the curve comparison for several detection thresholds.
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6.9 Conclusions and Summary

In this chapter, our ADBN-IDS for cITS is described. ADBN-IDS is composed of three

components: pre-processing, feature selection, and training/testing. Thus, the model is

created from the deep belief network (DBN) classifier, and includes the bi-variate moving

average (BiMAV) method as our adaptation technique. This inclusion allows the model

to cope with the dynamic nature of the cITS environment and has never been tested

using the NGSIM dataset.

The classifier was trained using the NGSIM dataset and tested using 10-fold cross

validation. The performance of the model was evaluated using several metrics including

accuracy, detection rate, false positive rate, and the F1 measure. The evaluation of our

results demonstrate that the proposed ADBN-IDS achieved higher performance in terms

of accuracy, detection rate, false positive rate, and F1, which indicates the importance of

the BiMAV adaptation mechanism in achieving and maintaining a safer more resilient

cITS.

In summary, our new ABDN-IDS model, for the NGSIM dataset, showed on average,

an improvement of 2.35%, 2.47%, and 42% in terms of accuracy, detection and false

positive rate, respectively.
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Chapter 7

Summary, Conclusion and Future
Work

This dissertation focused on building an adaptive IDS that can detect the evasive

attacks against the cITSs. Throughout this research study, the achievement of the

three objectives mentioned in Chapter 1, Section 1.4 were carried out in phases. In

phase 1, the first objective was achieved through the development of a local-global fuzzy

clustering estimation method in which the missing values are imputed. Again, our

estimation which is implemented based on the surrounding values of the same, as well as,

correlated attributes. The results show that the proposed method achieves a significant

improvement as compared to existing techniques reported in the literature. There is one

exception, namely the FPR derived from the CNN model (i.e., -59%). As can be seen in

Table 7.1 which reports the percentage improvement for Phase I, our results compared

to existing techniques are all better with only that one exception. The estimation was

implemented based on the surrounding values of the same as well as correlated attributes.

The results show that the proposed method achieved improvement compared to the

existing techniques except for the FPR of CNN where the existing technique was the

lower (see Table 7.1).

The 2nd objective develops our Proportional Conditional Redundancy Coefficient
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Table 7.1: Phase 1 percentage improvement compared to the existing techniques (refer to
Section 4.4, Table 4.1)).

#Metric / Classifier LR SVM CNN

ACC 4.4% 3.8% 3.6%

F1 2.9% 2.2% 0.8%

FPR 47% 46% -59%

DR 7.40% 5.90% 5.40%

(PCRC) which also enhances the feature selection process because of the improved feature

significance estimation which takes place during the Phase 2. Consequently we achieved

the following percentage improvements, namely that Accuracy (ACC) was improved 2.6%

better than reported using Deep Neural Network (DNN), 2.0% better than using Support

Vector Machines (SVM) and the improvement was 3.1% using Logistic Regression (LR).

Finally, the third objective was achieved within Phase 3 by incorporating our Bi-variate

Moving Average (BiMAV) technique into the DBN-based detection model and adapting

to the changes on-the-fly within the cITS system. In summary, the results show generally

an overall improvement. Our method achieved improvements as compared to existing

techniques as follows: ACC provided a 2.4% improvement compared to SVM, Detection

Rate (DR) provided 2.5% improvement compared to SVM, False Positive Rate (FPR)

provided a 42% improvement compared to SVM, and the F1 improved 2.4% over that

provided by those published using SVM.

To recap, our model’s success was derived using several statistical and machine learning

algorithms. We began the research study journey by evaluating several strategies for

discovering the best methods of misbehavior detection in cITS environments. In the end,

we developed a i) technique for missing values imputation and feature extraction. Then,
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we developed an ii) improved redundancy coefficient estimation method for better feature

selection. This method improves the iii) process of identifying the relevant features that

are later used to train the adaptive deep learning-based model in Phase 3 (Chapter 6).

Ultimately, we evaluated and compared our results for those techniques and methods

using several common metrics (i.e., accuracy, false positive rate, and detection rate) used

in similar research.

7.1 Future Work

Below, the first section, 7.1.1, describes the need for traffic data diversity. The second

section, 7.1.2, is concerned with gaining real-world attack diversity. The third section,

7.1.3, identifies future work concerning the model’s computational efficiency.

7.1.1 Data diversity

In data-driven modelling, data is the cornerstone, which dictates the performance of the

trained model. At the core of successful training come the ability to introspect different

aspects and identify diverse patterns that help the model successfully generalize across a

large swath of behaviors. As the NGSIM dataset used in this research is taken from a

single area, the patterns that modelling techniques can explore are limited. This adversely

affect the applicability and suitability of our model for other areas or slightly different

environments. This is a major challenge that can be addressed by adopting ensemble

learning in a way that combines multiple different models into a one generic approach

that can be easily adapted to the specific environment on-the-fly as needed.This goal will

take a great deal of diversity in the data which may require additional dataset captures

that provide the ground truth for a wide range of different scenarios and behaviors.
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7.1.2 Attack Diversity

Attack diversity for cITS-related IDS models is another aspect that can be investigated.

In this research, we focused on the attacks that affect the data (e.g., false data injection).

However, there are several ways attacks could target the entities causing denial of service

(e.g., jamming). In addition, some attacks like ransomware could lock the services or

the data, which might lead to catastrophic system failures. These attacks should be

investigated in the context of cITS.

7.1.3 Multiple Sources

In Chapters 4, 5, and 6 we evaluated the performance of our approach from an accuracy

standpoint. We used several metrics like accuracy, detection rate, and false positive

rate. Although this is common in such studies, it is also recommended to evaluate the

efficiency of the proposed model using real-world constraints. Since some nodes in the

cITS environment are resource-constrained, i.e., small memory capacity or processing

power as well as structural communications interference. Running resource-hungry models

like deep learning, might degrade the response time and affect the efficiency of the entire

process and system.

Therefore, there is a need for lightweight solutions that will make use of such advanced

modelling while maintaining a lower computational footprint on the cITS systems of

the future. In this regard, reducing model complexity could significantly impact the

development of lightweight solutions and should be investigated as well.
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[10] J. Zacharias and S. Fröschle, “Misbehavior detection system in vanets using local

traffic density,” in 2018 IEEE Vehicular Networking Conference (VNC). IEEE,

2018, pp. 1–4.

[11] P. K. Singh, S. Gupta, R. Vashistha, S. K. Nandi, and S. Nandi, “Machine learning

based approach to detect position falsification attack in vanets,” in International

Conference on Security & Privacy. Springer, 2019, pp. 166–178.

[12] S. Rakhi and K. Shobha, “Performance analysis of an efficient data-centric

misbehavior detection technique for vehicular networks,” in International Conference



112

on Computer Networks and Communication Technologies. Springer, 2019, pp.

321–331.

[13] H. Tan, Z. Gui, and I. Chung, “A secure and efficient certificateless authentication

scheme with unsupervised anomaly detection in vanets,” IEEE Access, vol. 6, pp.

74 260–74 276, 2018.

[14] L. Nie, H. Wang, S. Gong, Z. Ning, M. S. Obaidat, and K.-F. Hsiao, “Anomaly

detection based on spatio-temporal and sparse features of network traffic in vanets,”

in 2019 IEEE global communications conference (GLOBECOM). IEEE, 2019, pp.

1–6.

[15] L. Nie, Y. Li, and X. Kong, “Spatio-temporal network traffic estimation and anomaly

detection based on convolutional neural network in vehicular ad-hoc networks,” IEEE

Access, vol. 6, pp. 40 168–40 176, 2018.

[16] B. A. S. Al-rimy, M. A. Maarof, and S. Z. M. Shaid, “Ransomware threat

success factors, taxonomy, and countermeasures: A survey and research directions,”

Computers & Security, vol. 74, pp. 144–166, 2018.

[17] A. Narayanan, M. Chandramohan, L. Chen, and Y. Liu, “Context-aware, adaptive,

and scalable android malware detection through online learning,” IEEE Transactions

on Emerging Topics in Computational Intelligence, vol. 1, no. 3, pp. 157–175, 2017.

[18] H. Darabian, A. Dehghantanha, S. Hashemi, S. Homayoun, and K.-K. R. Choo,

“An opcode-based technique for polymorphic internet of things malware detection,”

Concurrency and Computation: Practice and Experience, vol. 32, no. 6, p. e5173,

2020.



113

[19] M. Aloqaily, S. Otoum, I. Al Ridhawi, and Y. Jararweh, “An intrusion detection

system for connected vehicles in smart cities,” Ad Hoc Networks, vol. 90, p. 101842,

2019.

[20] N. Kumar and N. Chilamkurti, “Collaborative trust aware intelligent intrusion

detection in vanets,” Computers & Electrical Engineering, vol. 40, no. 6, pp.

1981–1996, 2014.

[21] H. Sedjelmaci and S. M. Senouci, “An accurate and efficient collaborative intrusion

detection framework to secure vehicular networks,” Computers & Electrical

Engineering, vol. 43, pp. 33–47, 2015.

[22] B. Subba, S. Biswas, and S. Karmakar, “A game theory based multi layered intrusion

detection framework for vanet,” Future Generation Computer Systems, vol. 82, pp.

12–28, 2018.

[23] T. Zhang and Q. Zhu, “Distributed privacy-preserving collaborative intrusion

detection systems for vanets,” IEEE Transactions on Signal and Information

Processing over Networks, vol. 4, no. 1, pp. 148–161, 2018.

[24] X. Zhang, C. Lyu, Z. Shi, D. Li, N. N. Xiong, and C.-H. Chi, “Reliable multiservice

delivery in fog-enabled vanets: Integrated misbehavior detection and tolerance,”

IEEE Access, vol. 7, pp. 95 762–95 778, 2019.

[25] C. Zhang, K. Chen, X. Zeng, and X. Xue, “Misbehavior detection based on support

vector machine and dempster-shafer theory of evidence in vanets,” IEEE Access,

vol. 6, pp. 59 860–59 870, 2018.



114

[26] K. Sharshembiev, S.-M. Yoo, E. Elmahdi, Y.-K. Kim, and G.-H. Jeong, “Fail-safe

mechanism using entropy based misbehavior classification and detection in vehicular

ad hoc networks,” in 2019 International Conference on Internet of Things (iThings)

and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,

Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).

IEEE, 2019, pp. 123–128.

[27] F. A. Aboaoja, A. Zainal, F. A. Ghaleb, and B. A. S. Al-rimy, “Toward an ensemble

behavioral-based early evasive malware detection framework,” in 2021 International

Conference on Data Science and Its Applications (ICoDSA). IEEE, 2021, pp.

181–186.

[28] F. A. Ghaleb, M. A. Maarof, A. Zainal, M. A. Rassam, F. Saeed, and M. Alsaedi,

“Context-aware data-centric misbehaviour detection scheme for vehicular ad

hoc networks using sequential analysis of the temporal and spatial correlation

of the consistency between the cooperative awareness messages,” Vehicular

Communications, vol. 20, p. 100186, 2019.

[29] X.-Y. Lu and A. Skabardonis, “Freeway traffic shockwave analysis: exploring the

ngsim trajectory data,” in 86th Annual Meeting of the Transportation Research

Board, Washington, DC. Citeseer, 2007.

[30] B. Coifman and L. Li, “A critical evaluation of the next generation simulation

(ngsim) vehicle trajectory dataset,” Transportation Research Part B: Methodological,

vol. 105, pp. 362–377, 2017.

[31] S. A. Almalki and F. T. Sheldon, “Deep learning to improve false data injection

attack detection in cooperative intelligent transportation systems,” in 2021 IEEE



115

12th Annual Information Technology, Electronics and Mobile Communication

Conference (IEMCON). IEEE, 2021, pp. 1016–1021.

[32] H. Bangui, M. Ge, and B. Buhnova, “A hybrid machine learning model for intrusion

detection in vanet,” Computing, pp. 1–29, 2021.

[33] F. A. Ghaleb, F. Saeed, M. Al-Sarem, B. Ali Saleh Al-rimy, W. Boulila, A. Eljialy,

K. Aloufi, and M. Alazab, “Misbehavior-aware on-demand collaborative intrusion

detection system using distributed ensemble learning for vanet,” Electronics, vol. 9,

no. 9, p. 1411, 2020.

[34] P. K. Singh, S. K. Nandi, and S. Nandi, “A tutorial survey on vehicular

communication state of the art, and future research directions,” Vehicular

Communications, vol. 18, p. 100164, 2019.

[35] S. Sumithra and R. Vadivel, “Ensemble miscellaneous classifiers based misbehavior

detection model for vehicular ad-hoc network security.”

[36] A. Talpur and M. Gurusamy, “Machine learning for security in vehicular networks:

A comprehensive survey,” arXiv preprint arXiv:2105.15035, 2021.

[37] M. Lee and T. Atkison, “Vanet applications: Past, present, and future,” Vehicular

Communications, vol. 28, p. 100310, 2021.

[38] R. S. Vitalkar, S. S. Thorat, and D. V. Rojatkar, “Intrusion detection for vehicular

ad hoc network based on deep belief network,” in Computer Networks and Inventive

Communication Technologies. Springer, 2022, pp. 853–865.



116

[39] S. So, P. Sharma, and J. Petit, “Integrating plausibility checks and machine learning

for misbehavior detection in vanet,” in 2018 17th IEEE International Conference

on Machine Learning and Applications (ICMLA). IEEE, 2018, pp. 564–571.

[40] S. A. Almalki and J. Song, “A review on data falsification-based attacks in

cooperative intelligent transportation systems,” International Journal of Computer

Science and Security (IJCSS), vol. 14, no. 2, p. 22, 2020.

[41] S. Kaffash, A. T. Nguyen, and J. Zhu, “Big data algorithms and applications in

intelligent transportation system: A review and bibliometric analysis,” International

Journal of Production Economics, vol. 231, p. 107868, 2021.

[42] Y. A. Ahmed, B. Koçer, S. Huda, B. A. S. Al-rimy, and M. M. Hassan, “A system

call refinement-based enhanced minimum redundancy maximum relevance method

for ransomware early detection,” Journal of Network and Computer Applications,

vol. 167, p. 102753, 2020.

[43] B. A. S. Al-Rimy, M. A. Maarof, M. Alazab, F. Alsolami, S. Z. M. Shaid, F. A.

Ghaleb, T. Al-Hadhrami, and A. M. Ali, “A pseudo feedback-based annotated tf-idf

technique for dynamic crypto-ransomware pre-encryption boundary delineation and

features extraction,” IEEE Access, vol. 8, pp. 140 586–140 598, 2020.

[44] A. Saidi, K. Benahmed, and N. Seddiki, “Secure cluster head election algorithm and

misbehavior detection approach based on trust management technique for clustered

wireless sensor networks,” Ad Hoc Networks, vol. 106, p. 102215, 2020.

[45] F. A. Ghaleb, B. A. S. Al-rimy, M. Kamat, M. Rohani, S. A. Razak

et al., “Fairness-oriented semi-chaotic genetic algorithm-based channel assignment



117

technique for nodes starvation problem in wireless mesh network,” arXiv preprint

arXiv:2006.09655, 2020.

[46] S. A. Kashinath, S. A. Mostafa, A. Mustapha, H. Mahdin, D. Lim, M. A. Mahmoud,

M. A. Mohammed, B. A. S. Al-Rimy, M. F. M. Fudzee, and T. J. Yang, “Review

of data fusion methods for real-time and multi-sensor traffic flow analysis,” IEEE

Access, 2021.

[47] L. Deng, X.-Y. Liu, H. Zheng, X. Feng, and Y. Chen, “Graph spectral regularized

tensor completion for traffic data imputation,” IEEE Transactions on Intelligent

Transportation Systems, 2021.

[48] R. van der Heijden, S. Dietzel, and F. Kargl, “Misbehavior detection in vehicular

ad-hoc networks,” 1st GI/ITG KuVS Fachgespräch Inter-Vehicle Communication.
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