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Abstract 

Multiple sclerosis (MS) is a disorder that strikes the central nervous system of the human body. Due to 

the complexity of this disorder, healthcare sectors increasingly need shared clinical decision-making 

tools that provide practitioners with insightful knowledge and information about MS. These tools ought 

to be comprehensible by both technical and non-technical healthcare audiences. Decision support 

systems (DSSs) enhance decision-making by resolving real-world problems through timely practical 

decisions. DSSs are promising in medicine. That is why several studies reveal the increasing importance 

of DSSs in most medical domains. DSSs are hypothetically promising tools in the MS domain as they 

could provide decision-makers with needed information and critical decisions. However, the utilization 

of DSSs in MS practices remains an open challenge due to the disease's rarity and data scarcity. In 

general, three issues are needed to be addressed and examined in detail in MS research from the data 

and computer science perspective: (1) how to predict the type of MS in affected patients? (2) how to 

determine the most suitable disease-modifying therapy (DMT), specifically the DMT’s administration 

route, according to an MS patient needs? (3) how to increase the MS's public awareness by presenting 

a visually reliable source of information? Model-driven DSS is proposed to address these research gaps 

and enrich the MS field with modern decision-making technology.   

 

The proposed design utilizes machine learning (ML) algorithms to expedite proper solutions for the 

first two concerns. Therefore, this dissertation investigates several supervised ML models in predicting 

the type of MS in affected persons and assesses the models’ effectiveness using a real-world MS dataset. 

A framework for training and comparing the results of various traditional and ensemble algorithms to 

predict MS episodes is presented. Clinical baseline data from a database of questionnaires was obtained, 

and then several traditional models and ensemble classifiers were trained against this dataset. To 

address the first research gap, random forest (RF), decision trees (DT), bagging, and gradient boosting 
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classifiers showed consistently promising accuracy, sensitivity, and specificity results. However, 

hyperparameter tuning did not yield considerable increases in any evaluation metrics.  

 

With the availability of various DMTs for controlling MS, an accurate selection of the best DMT 

regimen is critical for improving the quality of life of MS patients. However, selecting the best route 

of administration suitable for an MS patient depends on the evaluation risks versus the efficacy of a 

specific DMT. Thus, one of the studies presented in this dissertation demonstrates a framework for a 

model-based system that utilizes ML algorithms for predicting the best route of administration for 

delivering DMTs to MS patients. The best-performing models were the gradient boosting and RF. This 

study serves as a proof-of-concept for the ML application in decision-making regarding MS DMT 

prescriptions.  

 

Broadly, MS is a preference-sensitive condition. Thus, the shared decision-making regarding the 

diagnosis and treatment of MS is vital yet complicated. Physicians should have broad domain 

knowledge about MS, and patients should also know the disorder’s key concepts. A knowledge graph 

of MS is a viable way to support communication and shared decision-making between physicians and 

patients. The MS Knowledge Graph (MSKG) using ontology engineering methods and semantic 

technologies to facilitate and address the third research gap is structured and reviewed in this 

dissertation. MSKG provides necessary medical terminologies related to MS and organizes them in a 

logically-coherent framework. Target beneficiaries of MSKG would be patients diagnosed recently or 

at high risk of developing MS, their first-degree relatives, and anyone interested in obtaining more 

knowledge about MS.  

 

In short, the dissertation's objective is to design a DSS prototype that emulates an MS expert to 

accurately identify the type of MS and make appropriate DMT recommendations. The presented DSS 

uses knowledge representation via ontology engineering and ML to enhance decision-making. Future 
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work should focus on using DSS based on ML and deep learning to understand MS occurrence patterns, 

etiology, effects on quality of life, and correlations with other disorders. Access to MS data should be 

readily available, and knowledge graph applications in the MS domain can be improved through 

knowledge-based reasoning methods. DSS technologies can be pragmatic in the MS domain and 

research, and further research is necessary to fully realize their potential benefits. 

   



v 

  

Acknowledgments 

I would like to express my deepest appreciation to all members of Taif University, especially my 

colleagues and officials at the College of Computers and Information Technology. I acknowledge the 

executives at the Office of Vice President for Graduate Studies and Scientific Research for their 

support. The presented dissertation was supported by Taif University, which granted me a full 

scholarship to pursue graduate degrees. I would also like to express my sincere gratitude to the faculty, 

staff, and officials at the University of Idaho who have been a vital part of my academic journey, 

especially those affiliated with the Department of Computer Science. I would like to sincerely thank 

Sean Sullivan, Larry Stauffer, Ph.D., P.E., John Crepeau, Ph.D., P.E., Michele Mattoon, Jennifer 

Neelon, Jeremy Tamsen, and members of the Office of Information Technology for their effort in 

assisting the entire Vandal family. 

I acknowledge Hollie Schmidt and David Gwynne of the Accelerated Cure Project for Multiple 

Sclerosis for their valuable involvement while obtaining the study materials. I sincerely thank Jamil 

Chaudri, Ph.D., and John Biros, Ph.D. of Marshall University, for imparting their knowledge and 

expertise at the beginning of my academic pursuits. My sincerest appreciation to Sarita Said-Said, M.D. 

of Palouse Neurology and Lucas McCarthy, M.D. of Virginia Mason Hospital for their endless support 

and valuable contribution. 

My genuine acknowledgment to my colleagues, IDEA lab past and present fellows, and friends; thank 

you for the camaraderie, discussions, and debates and for making the learning experience more 

enjoyable and memorable. I sincerely thank Husam Samkari, Ph.D., Waled Alshhrani, D.D.S, Ayman 

Almajnoony, Ph.D., Mazen Alyobi, Ph.D., Amruta Kale, Ph.D., and Bassim Alshedokhy M.S. for 

encouraging and motivating me during the critical stage of my journey.  

To Terry Wahls, M.D. and Deborah McGuinness Ph.D., thank you for inspiring and motivating me to 

“defying all the odds” and to be “very open about my” MS “journey”. 



vi 

  

To my mentor and role model Dr. Xiaogang (Marshall) Ma, I would not have made it this far without 

your collective supervision, support, guidance, motivation, and encouragement. Your dedication has 

played a significant role in shaping me into the person I am today. Your wisdom and expertise have 

been instrumental in sharpening my knowledge and improving my research skills. I am also grateful 

for your commitment to fostering a supportive and stimulating academic environment. I feel fortunate 

to have had the opportunity to work with you. Finally, thank you, Dr. Ma for your unwavering belief 

in my abilities, which has given me the confidence and motivation to pursue my academic and 

professional goals. 



vii 

  

Dedication 

All praise is to Allah. The one and only Almighty God, thank you for bestowing your blessings upon 

my family and me. 

My beloved country the Kingdom of Saudi Arabia, thank you for this opportunity that made me 

achieve my goals and made my dreams come true. 

My dear family members and in-laws, many thanks to each and every one of you, especially my 

mother-in-law Nadia Rais, Aunt Amani Hadhrawi, Aunt Maryam Hadhrawi, and Grandmother Salha 

Alwasem for believing in me. 

My deceased grandfather General Fared Hadhrawi, I wish you were here now. You will always be 

remembered and missed. This work is dedicated in memory of you. 

To Yara, Raneem, and Anan, the successes you achieved in your lives have been boosting my 

confidence to do more and to work harder. You are the source of my strength and pride. 

My father Brigadier General Mohammed Alshamrani, you worked day and night to provide for us, 

and you pushed us very hard to pursue higher education. You gave up your dreams to make ours. I 

will always look up to you humbly. 

Behind every great man is a great woman, and that is you, my lovely wife Ohood. You stood up by 

my side since day one. Every day that goes by with you is a blessing.  

My mother Mrs. Norah Hadhrawi, you dropped out of school and devoted your life to us. I vowed to 

earn as many degrees as possible for you. Mom, this is a starting point, and I will never stop. 

Seba and Wafi, I was truly gifted with you. You gave me hope in the worst circumstances that befell 

me. I love you my kids to the moon and back. 



 

 
 

viii 

Table of Contents 

Abstract ................................................................................................................................................... ii 

Acknowledgments ................................................................................................................................... v 

Dedication ............................................................................................................................................. vii 

List of Tables .......................................................................................................................................... xi 

List of Figures ....................................................................................................................................... xii 

List of Abbreviations ............................................................................................................................xiii 

Statement of Contribution .................................................................................................................... xvi 

Chapter 1 Introduction ............................................................................................................................ 1 

Background..................................................................................................................................... 1 

Research Motivation and Problem Statement ................................................................................ 3 

Study Objectives ............................................................................................................................. 6 

Scientific Contribution ................................................................................................................... 7 

Organization of the Dissertation ..................................................................................................... 8 

Chapter 2 Literature Review ................................................................................................................. 10 

Introduction .................................................................................................................................. 10 

Literature Search Methodology .................................................................................................... 13 

Literature Analysis and Results .................................................................................................... 14 

Discussion..................................................................................................................................... 30 

Chapter 3 Examination of Supervised Machine Learning Classifiers and Ensemble Learning for 

Predicting the Type of Multiple Sclerosis ............................................................................................. 35 

Introduction .................................................................................................................................. 35 



 

 
 

ix 

Related Work ................................................................................................................................ 37 

Materials and Methodology .......................................................................................................... 39 

Results .......................................................................................................................................... 45 

Discussion..................................................................................................................................... 51 

Chapter 4 The Application of Predictive Machine Learning Models to Support Shared Decision 

Making in Selecting the Best DMT Route of Administration .............................................................. 56 

Introduction .................................................................................................................................. 56 

Related Work ................................................................................................................................ 59 

Methodology................................................................................................................................. 62 

Results .......................................................................................................................................... 67 

Discussion..................................................................................................................................... 72 

Chapter 5 Using Knowledge Graph to Improve Informed Multiple Sclerosis Diagnosis and Treatment 

Decisions ............................................................................................................................................... 75 

Introduction .................................................................................................................................. 75 

Related Work ................................................................................................................................ 77 

Methodology................................................................................................................................. 79 

Result ............................................................................................................................................ 81 

Discussion..................................................................................................................................... 84 

Chapter 6 Conclusion, Limitations, and Future Recommendations...................................................... 88 

Addressing Research Questions 1,2, and 5 .................................................................................. 88 

Addressing Research Questions 2,4, and 5 .................................................................................. 90 

Addressing Research Question 6 .................................................................................................. 91 

Limitations .................................................................................................................................... 91 

Future Recommendations ............................................................................................................. 93 

References ............................................................................................................................................. 95 



 

 
 

x 

List of Publications, Awards, and Grants ............................................................................................ 107 

Publications ................................................................................................................................ 107 

Presentations ............................................................................................................................... 107 

Awards ........................................................................................................................................ 107 

Grants ......................................................................................................................................... 108 

Appendix A: List of Important Features and their Descriptions (Chapter 3)...................................... 109 

Appendix B: Order of Important Features (Chapter 3) ....................................................................... 111 

Appendix C: List of Important Features and their Descriptions (Chapter 4) ...................................... 112 

Appendix D: Order of Important Features (Chapter 4) ....................................................................... 113 

Appendix E: MSKG Class Hierarchy Using OWLViz (Chapter 5) ................................................... 115 

Appendix F: IRB Approval Letter ...................................................................................................... 116 

 

  



 

 
 

xi 

List of Tables 

Table 2.1: Summary of the analyzed MS DSSs articles ....................................................................... 15 

Table 3.1: Prediction outcomes using traditional models. .................................................................... 47 

Table 3.2: Prediction outcomes using ensemble models....................................................................... 48 

Table 4.1: Prediction results for traditional methods. ........................................................................... 69 

Table 4.2: Prediction results for ensemble methods. ............................................................................ 70 

  

file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132280922
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132280923
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132280924
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132280925
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132280926


 

 
 

xii 

List of Figures 

Figure 2.1: Sources and steps in the literature selection process .......................................................... 14 

Figure 3.1: SelectFromModel algorithm ............................................................................................... 41 

Figure 3.2: Multiclass Confusion Matrix .............................................................................................. 43 

Figure 3.3: Framework design for predicting MS type ......................................................................... 44 

Figure 3.4: Performance evaluation for MS types prediction models................................................... 49 

Figure 3.5: Confusion matrices for MS types top classifiers ................................................................ 50 

Figure 4.1: RFE algorithm .................................................................................................................... 63 

Figure 4.2: Framework design for predicting DMT’s route of administration ..................................... 65 

Figure 4.3: Overall highest results of traditional models for predicting route of administration ......... 71 

Figure 4.4: Overall highest results of ensemble models for predicting route of administration ........... 71 

Figure 4.5: Confusion matrices for route of administration best prediction models............................. 72 

Figure 5.1: Methodology design for constructing MSKG .................................................................... 80 

Figure 5.2: Key characteristics of MS ................................................................................................... 82 

Figure 5.3: MS confirmation procedures .............................................................................................. 82 

Figure 5.5: Class individuals of MS DMTs .......................................................................................... 83 

Figure 5.4: MS treatment alternatives and plans ................................................................................... 83 

Figure 5.6: MS symptoms and potential causes .................................................................................... 83 

  

file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132814476
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132814477
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132814478
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132814479
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132814480
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132814481
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132814482
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132814483
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132814484
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132814485
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132814486
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132814487
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132814488
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132814489
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132814490
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132814491
file://///Users/alsh5467/Desktop/Rayan_Alshamrani_Dissertation_Document_Spring23.docx%23_Toc132814492


 

 
 

xiii 

List of Abbreviations 

ACP ...................................................................................................... Accelerated Cure Project for MS 

AI  ........................................................................................................................... Artificial Intelligence 

AMS3 ............................................................................................. Alemtuzumab in MS Safety Systems 

ANN ............................................................................................................... Artificial Neural Networks 

AUC ................................................................................................................... Area Under ROC Curve 

CAD ............................................................................................................ Computer-Assisted Decision 

CDSS ...................................................................................................Clinical Decision Support System 

CID ...........................................................................................................Chronic Inflammatory Disease 

CIS .............................................................................................................. Clinically Isolated Syndrome 

CV .................................................................................................................................. Cross Validation 

DE ......................................................................................................................... Differential Evolution 

DF ................................................................................................................................ Deformation Field 

DMA ............................................................................................................... Disease-Modifying Agent 

DMT ............................................................................................................. Disease-Modifying Therapy 

DSS .................................................................................................................. Decision Support System 

DT ...................................................................................................................................... Decision Tree 

DTI .................................................................................................................. Diffusion Tensor Imaging 

DWT ............................................................................................................ Discrete Wavelet Transform 

EA ...................................................................................................................... Evolutionary Algorithm 

EDSS .................................................................................................... Expanded Disability Status Scale 

EMR ............................................................................................................... Electronic Medical records 

FN ...................................................................................................................................... False Negative 

FP ........................................................................................................................................False Positive 

HAT ................................................................................................ Home Automated Tele-management 



 

 
 

xiv 

IRB ............................................................................................................. Human Research Protections 

KNN ......................................................................................................................... K-Nearest-Neighbor 

LASSO .................................................... Least Absolute Shrinkage and Selection Operator Regression 

LDA ............................................................................................................Linear Discriminant Analysis 

LOOCV ..................................................................................................................... Leave-One-Out CV 

LR .............................................................................................................................. Logistic Regression 

LS-SVM ..................................................................................... Least-Squares Support Vector Machine 

MHO .................................................................................................................. Mental Health Ontology 

ML ............................................................................................................................... Machine Learning 

MLR ........................................................................................................... Multiple Logistic Regression 

MRI ........................................................................................................... Magnetic Resonance Imaging 

MS ................................................................................................................................ Multiple Sclerosis 

MSKG ................................................................................................................... MS Knowledge Graph 

NB ......................................................................................................................................... naive Bayes 

ND .......................................................................................................... Neurological Disease Ontology 

NSWM .......................................................................................................... Non-Specific White Matter 

OWL2 ............................................................................................................... Web Ontology Language 

PCA .......................................................................................................... Principal Component Analysis 

PMS ................................................................................................................................. Progressive MS 

PPMS..................................................................................................................Primary Progressive MS 

PRMS ............................................................................................................. Progressive Relapsing MS 

RF ..................................................................................................................................... Random Forest 

RFE .......................................................................................................... Recursive Feature Elimination 

RIS ...................................................................................................... Radiologically Isolated Syndrome 

ROBOKOP ....................Reasoning Over Biomedical Objects linked in Knowledge Oriented Pathways 

RRMS ................................................................................................................ Relapsing Remitting MS 



 

 
 

xv 

rsfMRI ....................................................................................................... Resting-State Functional MRI 

SCD ............................................................................................................................ Sickle Cell Disease 

SGD ..............................................................................................................Stochastic Gradient Descent 

SLCMSR .............................................................. Sylvia Lawry Centre for Multiple Sclerosis Research 

SMSreg ................................................................................................................... Swedish MS Registry 

SPIN ..................................................................................................................... SPecific Tests Rule IN 

SPMS..............................................................................................................Secondary Progressive MS 

SVM .................................................................................................................. Support Vector Machine 

SVM-rbf ................................................................................ SVM with a Radial Basis Function Kernel 

SWE ............................................................................................................. Stationary Wavelet Entropy 

TN ...................................................................................................................................... True Negative 

TP ........................................................................................................................................ True Positive 

Turtle ............................................................................................................ Terse RDF Triple Language 

XGBoost ........................................................................................................ Extreme Gradient Boosting 

 

  



 

 
 

xvi 

Statement of Contribution 

Chapter 2: I, myself, conceptualized the research idea and design. I developed the methodology. 

Myself, Ashrf Althbiti, and Dr. Xiaogang Ma verified the structure of the study and the research 

outputs. I conducted the research and investigation process with a help from Yara Alshamrani. I wrote 

and revised the first draft. Myself, Fatimah Alkomah, and Dr. Xiaogang Ma reviewed and edited the 

manuscript. Dr. Xiaogang Ma supervised the study. 

 

Chapter 3: I, myself, conceptualized the research idea and design. I developed the methodology. 

Myself, Amruta Kale, and Dr. Xiaogang Ma verified the structure of the experiment and the research 

outputs. I conducted the research and investigation process, then provisioned the study materials with 

Dr. Sarita Said-Said. I wrote and revised the first draft. Myself and Dr. Xiaogang Ma reviewed and 

edited the manuscript. Dr. Xiaogang Ma supervised the study. 

 

Chapter 4: I, myself, conceptualized the research idea and design. I developed the methodology. 

Myself, Mazen Alyobi, Ayman Almajnoony, and Dr. Xiaogang Ma verified the structure of the 

experiment and the research outputs. I conducted the research and investigation process, then 

provisioned the study materials with Sarita Said-Said. I wrote and revised the first draft. Myself and 

Dr. Xiaogang Ma reviewed and edited the manuscript. Dr. Xiaogang Ma supervised the study. 

 

Chapter 5: Myself and Dr. Xiaogang Ma conceptualized the research idea and design. I developed the 

methodology. Myself, Ashrf Althbiti, Dr. Xiaogang Ma, and Dr. Sarita Said-Said verified the structure 

of the experiment and the research outputs. I conducted the research and investigation process, then 

provisioned the study materials. I wrote and revised the first draft. Dr. Xiaogang Ma and Dr. Sarita 

Said-Said reviewed and edited the manuscript. I visualized the methodology and the result. Dr. 

Xiaogang Ma supervised the study. 



  

 
 

1 

Chapter 1 Introduction 

Background 

Multiple sclerosis (MS) is a chronic, neurological, and the most common inflammatory demyelinating 

disorder that stimulates the immune system to attack the central nervous system of the human body 

(Sospedra and Martin, 2005; Lassmann, Brück and Lucchinetti, 2007; Chiaravalloti and DeLuca, 2008; 

Milo and Kahana, 2010). Several genetic and environmental factors like vitamin D deficiency, Epstein-

Barr virus, ambient ultraviolet radiation, obesity, and smoking are the potential confirmed or yet to be 

confirmed causes that trigger MS and its progression (Trapp et al., 1998; Ascherio and Munger, 2016; 

Reich, Lucchinetti and Calabresi, 2018; deAndrés-Galiana et al., 2019). However, the exact causes of 

MS are still unknown. MS patients may experience several symptoms independently or concurrently 

during the course of the disease such as sensory, visual, motor, cognitive, and cerebellar disorders (Miri 

Ashtiani et al., 2018). Although, these symptoms and their impacts vary among MS patients (Pinto, 

2018). MS affects several millions of people around the globe, especially young adults (Ho, Ghosh and 

Unnikrishnan, 2013). Generally, men are less likely to develop MS than women (Kragt et al., 2009). 

MS is manifested as one of the following progressions: clinically isolated syndrome (CIS), relapsing 

remitting (RRMS), progressive MS (PMS) that refers to the combination of secondary progressive MS 

(SPMS) and primary progressive MS (PPMS), progressive relapsing MS (PRMS), and radiologically 

isolated syndrome (RIS) (Okuda et al., 2009; Granberg et al., 2013; Lublin et al., 2014; Mahad, Trapp 

and Lassmann, 2015; D’Amico et al., 2016; Efendi, 2016; deAndrés-Galiana et al., 2019).  

 

The MS diagnostic procedure requires neurological examinations such as magnetic resonance imaging 

(MRI), lumbar punctures, and blood tests to confirm MS cases (Ghasemi, 2017). In addition, 

neurologists prescribe existing MS therapies in order to control the symptoms and the progression of 

the disease, as it turns out that this disorder cannot be cured or prevented (Karaca et al., 2017). Thus, 

neither the treatment nor the diagnosis of MS is easy. This is because MS shares several clinical features 



  

 
 

2 

with other diseases, and there is no consensus approach to diagnose MS (Ho, Ghosh and Unnikrishnan, 

2013). In fact, the decision-making in treating and diagnosing MS is critical and relies heavily on the 

neurologist's experience and judgment. Therefore, the quality of decisions for that matter remains 

doubtful due to the presence of uncertainties associated with MS. Notably, MS is a preference-sensitive 

condition, meaning that both the physician and the patient participate in the decision-making process, 

i.e., shared decision-making (Colligan, Metzler and Tiryaki, 2017). Hence, this would impose a great 

responsibility upon the contributors in the decision-making process as they must have complete 

knowledge about the current state of the condition and the potential risks and benefits of all possible 

options in order to achieve the optimal decision. Comprehensively, it would be beneficial to have easy-

to-use automated solutions that propose several optimal alternatives to make the shared decision-

making easier for all participants in this process.   

 

A decision support system (DSS) is a computer-based system devoted to people concerned with 

decision-making to enable them to solve real-world problems via worthy decisions (Eom and Kim, 

2006). DSSs are largely accepted in modern commercial businesses and have accomplished significant 

success (Kawamoto et al., 2005). DSSs in the medical realm are very promising, especially for 

enhancing decision-making. Recent studies have demonstrated the increasing importance of DSSs in 

medicine, i.e., clinical decision support systems (CDSS), to help intended decision-makers to nominate 

the right decision among several alternatives as often as possible (Pota, Esposito and Pietro, 2012). 

Healthcare organizations increasingly need DSSs that are understandable by non-technical audiences 

such as healthcare providers. DSSs aid clinical decision-making by giving practitioners insight and 

information about their patients to generate suitable assessments or recommendations (Power, 2002). 

In the MS domain, DSSs are just as important as their use in other healthcare areas. DSSs technologies 

are potentially favorable tools in the MS domain. For instance, DSSs could provide decision-makers 

with useful information (e.g., alerts, warnings, or predictions) about MS cases (Fraccaro et al., 2015). 

The benefits of using DSSs in the MS domain include: enabling access to neurologists, enhancing 
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clinical documentation and prescription processes, escalating diagnosis accuracy, minimizing time loss 

and healthcare expense, enhancing diagnostic predictions, maximizing the quality of patients’ lives and 

care provided, and improving the quality of decisions (Rothman, Leonard and Vigoda, 2012; Arani et 

al., 2018). With that said, applying DSSs in the MS realm would be phenomenal, especially for 

enhancing the shared decision-making process. 

 

However, with all these benefits, the utilization of DSSs in the MS field is not encouraging. To the best 

of the contributor’s knowledge, the investigation of the DSSs in the MS domain is still insufficient for 

two reasons. First, the number of published articles on the presented topic is minimal. Hence, there is 

no clear intention or motivation to pursue this research domain path. Second, the number of existing 

systems used in the MS’s daily clinical practices is exiguous. Indeed, the acceptance of DSSs within 

the MS domain remains inadequate. From the computer and data science perspectives, this condition is 

not getting the proper attention compared to other incurable diseases due to its uncommonness and data 

scarcity. Therefore, a model-driven DSS is presented to address this concern and enrich the MS domain 

with the most appropriate yet modern technologies. Generally speaking, a model-driven DSS is a type 

of DSS that uses complex and quantitative models that provide a simplified and straightforward 

knowledge representation to decision-makers (Power and Sharda, 2007). Two characteristics 

distinguish Model-driven DSSs: (1) a model in a model-driven DSS is made accessible to experts with 

no technical background, and (2) DSSs of this type are reusable in equivalent decision situations (Power 

and Sharda, 2007). Undoubtedly, the development of DSSs using different methodologies for 

improving the decision-making process in the MS’s clinical practice experience, with a special focus 

on applying model-driven approaches used to construct model-driven DSSs, should be considered in 

this type of research. 

 

Research Motivation and Problem Statement  

MS is thought to be caused by environmental factors affecting people who are genetically susceptible 
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(Pinto, 2018). This disease is not easily detected due to its similarity to other diseases, in addition to 

the fact that the pattern of symptoms is ambiguous and that the duration of their appearance is not fixed 

and indeterminate.  Furthermore, MS specialists usually detect MS activities by comparing initial 

diagnosis and follow-ups reports. Nevertheless, these procedures require intensive knowledge and 

experience, given the inconclusiveness of this medical condition due to the lack of consensus diagnostic 

procedures. To aid MS specialists, early diagnosis and/or sooner prediction of the type of MS would 

gain momentum in the MS domain. This is because the prognosis of several MS manifestations and 

their severe progression could take time (Ma, 2018). Therefore, determining the progression level in 

MS patients is decisive in undertaking the necessary and immediate medical interventions. 

 

MS manifestation varies among patients. Therefore, different patients require tailored treatment plans 

as each plan is associated with a patient’s conditions and symptoms. The variety of MS disease-

modifying therapies (DMTs) offers a range of potential benefits such as disease course modification, 

attacks number and severity reduction, relapses prevention, disability accrual, and symptoms control, 

to name a few (Ma, 2018; Eskyte et al., 2019). On the other hand, these different DMTs may also 

tolerate life-threatening risks. Therefore, when choosing the appropriate treatment solution, decision-

making has become more complex and challenging for physicians and patients as they decide what 

tradeoffs, consequences, and long-term benefits they are willing and ready to make (Rahn et al., 2015, 

2018; Eskyte et al., 2019). Unfortunately, MS patients rely mostly on information that they find online 

to self-educate themselves about the available DMT options (Langhorne, Thomas and Kolaczkowski, 

2013). Thereby, using a reliable decision-making tool would assist both parties of the shared decision-

making process, a clinician and a patient, to select the most suitable treatment regimen, explicitly 

selecting the best routes of administration for the prescribed DMTs.   

 

Comprehensive information about MS, together with the availability and accessibility of credible 

resources and services, are scarce globally for MS patients and those who are eager to know more about 
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this condition (Browne et al., 2014). MS patients increasingly need reliable information about this 

disorder, its symptoms, and ways to control and manage it, to name a few (Meca-Lallana et al., 2017). 

Thus, providing MS patients, especially newly diagnosed individuals as well as people close to them 

who are interested in knowing more about MS, with an accessible and easy-to-use source of information 

would reinforce patient empowerment in informed decisions associated with MS. Hence, visualizing 

MS’s fundamental information in the form of a knowledge graph using ontology engineering would be 

a genuine endeavor. This would promote having an available open-access source of information and 

elevate public awareness about MS. 

 

Researchers nowadays are applying several technologies, as standalone approaches or as the basis of 

several DSSs, to support decision-making in the MS medical routine. However, the use of DSSs in the 

MS field is limited due to the condition's rarity, even though decision-making is a critical task in MS 

practices. Ultimately, the existing MS DSSs in use or even the proposed ones in research are 

implemented for several specific purposes inconsistent with the research motivation of this dissertation. 

Primarily, most of these DSSs detect and classify the MS lesions by recognizing them when analyzing 

the affected patients' MRIs. Likewise, several DSSs are utilized to distinguish individuals with MS by 

examining cerebrospinal fluid and blood findings. Other DSSs are developed for predicting the MS’s 

short- and long-term prognosis, disability rate, and treatment effects. In addition, several DSSs are used 

for decision-making associated with organizing MS patients’ important care routines.   

 

Arguably, there are several reasons why DSSs simulating MS specialists may not exist. For instance, 

to develop such a DSS, sufficient data must be available to train the system. In the case of MS, there 

may need to be more data available to build an accurate DSS that impersonates a specialist (Alshamrani 

et al., 2020). Moreover, MS is a complex and unpredictable disease with a wide range of symptoms 

and treatment options (Goldenberg, 2012; Pérez del Palomar et al., 2019; Saccà et al., 2019). Thus, it 

may be challenging to develop a DSS that can accurately reflect the expertise of a specialist in this 
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field. In addition, MS specialists use a combination of their training, experience, and intuition to make 

clinical decisions (Alshamrani et al., 2020). Replicating such proficiency in a DSS, which typically 

relies on rules and algorithms, is complex. Also, there may be concerns about the liability and trust 

associated with using a DSS in clinical decision-making, especially in a complex and unpredictable 

disease like MS. That being said, there are DSSs that provide guidance for specific aspects of MS care, 

which can be useful tools for healthcare providers. However, these systems are not designed to replace 

the expertise of a specialist and are typically used in conjunction with clinical judgment. Particularly, 

no DSSs support decisions about determining MS type, prescribing suitable DMTs, and providing 

inclusive information about MS. 

 

Study Objectives  

To address the aforementioned challenges, this Ph.D. dissertation aims to apply supervised machine 

learning (ML) and knowledge graph to design a DSS suitable for enhancing the MS’s periodical 

decision-making. The designed model-driven DSS is mainly comprehensible for (1) indicating the type 

of MS in affected patients, (2) assisting the MS’s shared decision-makers in deciding the best treatment 

solution for individuals affected by MS, and (3) representing comprehensive information about MS in 

an easy visualized manner. 

 

Research Questions 

This work answers the following research questions: 

1) How to practically discover the MS’s stage in patients diagnosed with MS?  

2) Would it be possible to assist an MS patient and a provider in deciding on the best MS DMT 

among alternatives? 

3) How to discover and observe the risk factors associated and mostly correlated with MS types? 

4) What features that are mostly correlated when determining the most suitable treatment plan? 

5) How would the ML algorithms be used, and which performs better in the above matters? 
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6) Could ontology engineering be used to form a suitable data source and knowledge 

representation used by those who need brief and initial information about MS? 

 

Hypotheses  

To address the research questions mentioned above, the following hypotheses are considered to 

facilitate the investigation process of this study: 

1) Supervised ML models are prime for predicting the progression level that affects persons with 

MS, in addition to predicting the best DMT route of administration for MS patients. (research 

questions 1-5) 

2) One and only one supervised ML model among all can outperform the rest. (research questions 

1-5) 

3) Knowledge representation using ontology engineering would increase the MS’s public 

awareness due to its ability to visualize the fundamental and essential facts about MS. (research 

question 6) 

Based on the empirical experiments conducted in this dissertation, proofing and confirming the 

feasibility of the abovementioned claims would be emphasized to promote decisions associated with 

MS.   

 

Scientific Contribution  

The potential scientific contribution of the dissertation focuses on the following topics: 

• The essentiality of predicting the MS type after confirming the diagnosis.  

• Supporting the decisions made by MS patients and specialists regarding formalizing treatment 

solutions. 

• Finding and then applying several supervised ML algorithms to be used in the MS research 

domain. 
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• Reinforcing the MS’s public awareness by employing ontology engineering as a knowledge 

representation technique to form a knowledge graph associated with MS.  

Overall, this study and the prospective experiments provide a route map for the MS’s shared decision-

makers regarding developing a DSS prototype that would be used to secure the dissertation’s aims. 

 

Organization of the Dissertation 

The dissertation consists of six chapters, four of which (Chapter 2 – Chapter 5) contain primary 

contributions toward addressing the research questions mentioned above. The following paragraphs 

briefly outline these chapters and highlight their objectives. 

 

Chapter 2: Literature Review. This chapter reviews the state-of-the-art DSSs in MS research, specially 

model-driven DSSs. This chapter observes the utilization of knowledge representation, ontology 

engineering, and ML approaches in DSSs proposed in MS research to simplify the complex process for 

decision-makers. This chapter comprehensively summarizes recent studies highlighting the importance 

of DSSs in the MS realm and addresses the future work of applying DSS technologies in the MS field. 

 

Chapter 3: Examination of Supervised Machine Learning Classifiers and Ensemble Learning for 

Predicting the Type of Multiple Sclerosis. This chapter investigates several supervised ML models in 

predicting the type of MS in affected patients and assesses the models’ effectiveness using a real-world 

MS dataset. A framework for training and comparing the results of various traditional and ensemble 

algorithms to predict MS types is presented in this chapter. 

 

Chapter 4: The Application of Predictive Machine Learning Models to Support Shared Decision-

Making in Selecting the Best DMT Route of Administration. This chapter proposed a design for a 

model-based system that utilizes ML algorithms to predict, using a real-world MS dataset, the best 
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route of administration for delivering DMTs to MS patients. The proposed framework in this chapter 

trains and compares the results of various traditional and ensemble models. 

Chapter 5: Using Knowledge Graph to Improve Informed Multiple Sclerosis Diagnosis and Treatment 

Decisions. This chapter represents a blueprint of an MS knowledge graph structured using ontology 

engineering methods and semantic technologies. In this chapter, the proposed knowledge graph 

provides necessary medical terminologies related to MS and organizes them in a logically-coherent 

framework. Target beneficiaries of the proposed knowledge graph would be patients diagnosed recently 

or at high risk of developing MS, their first-degree relatives, and anyone interested in obtaining more 

knowledge about MS. 

 

Chapter 6: Conclusion, Limitations, and Future Recommendations. This chapter briefly revisits the 

above chapters, demonstrates the overall significance and novelty of the findings, underlines the 

limitations, and provides recommendations for future research. 
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Chapter 2 Literature Review 

This chapter is retrieved from: 

Alshamrani, R., Althbiti, A., Alshamrani, Y., Alkomah, F., & Ma, X. (2020). Model-Driven 

Decision Making in Multiple Sclerosis Research: Existing Works and Latest Trends. Patterns, 

1(8), 100121. https://doi.org/10.1016/j.patter.2020.100121 

Introduction 

Multiple sclerosis (MS) is a chronic, neurological, and the most common inflammatory disorder that 

stimulates the immune system to attack the central nervous system of the human body (Kasper et al., 

2012; Arani et al., 2018; Mowry et al., 2018). Genetic and environmental factors such as vitamin D 

deficiency, Epstein-Barr virus, ambient ultraviolet radiation, obesity, and smoking are the potential 

confirmed or yet to be confirmed causes of MS and its progression (Trapp et al., 1998; Leray et al., 

2016; Reich, Lucchinetti and Calabresi, 2018; deAndrés-Galiana et al., 2019; Dobson and Giovannoni, 

2019; McGinley, Goldschmidt and Rae-Grant, 2021). However, the exact causes of MS are still 

unknown. MS patients may experience several symptoms independently or concurrently during the 

course of the disease such as sensory, visual, motor, cognitive, and cerebellar disorders (Miri Ashtiani 

et al., 2018). MS affects several millions of people around the globe, especially young adults (Ho, 

Ghosh and Unnikrishnan, 2013). In general, men are less likely to develop MS compared to women 

(Kragt et al., 2009). Four medical terms represent MS in terms of the progression level: relapsing-

remitting MS (RRMS), secondary-progressive MS (SPMS), primary-progressive MS (PPMS), and 

progressive-relapsing MS (PRMS) (deAndrés-Galiana et al., 2019).  

 

The MS diagnostic procedure requires neurological examinations such as magnetic resonance imaging 

(MRI), lumbar punctures, and blood tests to confirm MS cases (Ghasemi, 2017). In addition, 

neurologists prescribe existing therapies in order to control the symptoms and the progression of MS 

as it turns out that this disorder cannot be cured or prevented (Karaca et al., 2017). Thus, neither the 

treatment nor the diagnosis of MS is easy. This is because MS shares several clinical features with other 

https://doi.org/10.1016/j.patter.2020.100121
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diseases and has no consensus approach in MS diagnosis (Ho, Ghosh and Unnikrishnan, 2013). In fact, 

the decision-making in both treatment and diagnosis of MS is critical and relies heavily on the 

experience and the judgment of the neurologist. Therefore, the quality of decisions for that matter 

remains doubtful due to the presence of uncertainties associated with MS. Moreover, MS is a 

preference-sensitive condition, so both the physician and the patient participate in the decision-making 

process, i.e., shared decision-making (Colligan, Metzler and Tiryaki, 2017). Hence, this would impose 

a great responsibility upon the contributors in the decision-making process as they must have full 

knowledge about the current state of the condition and the potential risks and benefits of all possible 

options in order to achieve the optimal decision. Comprehensively, it would be beneficial to have easy-

to-use automated solutions that could propose several optimal alternatives to make the shared decision-

making easier for all participants in this process.   

  

Decision support systems (DSSs) are computer-based systems devoted to people who are concerned 

with decision-making so they could solve real-world problems via worthy decisions (Eom and Kim, 

2006). DSSs are largely accepted in modern commercial businesses and have been accomplishing 

significant successes (Kawamoto et al., 2005). DSSs in the medical realm are very promising especially 

for enhancing the decision-making process. Recent studies demonstrate the increasing importance of 

DSSs in medicine, i.e., clinical decision support systems (CDSS), for helping intended decision-makers 

to nominate the right decision among several alternatives as often as possible (Pota, Esposito and Pietro, 

2012). DSSs’ technologies are potentially favorable tools in the MS domain. For instance, DSSs could 

provide decision-makers with useful information (e.g., alerts, warnings, or predictions) about MS cases 

(Fraccaro et al., 2015). The benefits of using DSSs in MS domain include: enabling access to 

neurologists, enhancing clinical documentation and prescription processes, escalating diagnosis 

accuracy, minimizing time loss and healthcare expense, enhancing diagnostic predictions, maximizing 

the quality of patients’ lives and care provided, and improving the quality of decisions (Rothman, 

Leonard and Vigoda, 2012; Arani et al., 2018). However, with all these benefits, the utilization of DSSs 
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in the MS field is not encouraging. To the best of our knowledge, aside from this review, the 

investigation of the DSSs in the MS domain is still insufficient because there is no published review on 

the presented topic.  

  

The goal of this chapter is to analyze the state-of-the-art DSSs in MS research. This work aims to 

answer the following questions: (1) What DSSs are currently used in the MS domain? (2) What are 

their key fundamental methodologies? (3) What are they used for? and (4) What are the current most 

promising technologies associated with decision-making in the MS domain? Answering these questions 

would (1) demonstrate the importance of adopting DSSs in MS research and (2) show the extent of 

technologies, mostly correlated with DSSs, adopted for decision-making purposes in the scope of MS. 

 

A model-driven DSS is a type of DSS that uses complex and quantitative models that provide a 

simplified and straightforward knowledge representation to decision-makers (Power and Sharda, 2007). 

Model-driven DSSs are distinguished by two characteristics: (1) a model in a model-driven DSS is 

made accessible to experts with no technical background, and (2) DSSs of this type are reusable in 

equivalent decision situations (Power and Sharda, 2007). Definitely, both the data science community 

and the MS community need to have a clear overview of the current state of the automated tools used 

to support decision-making in the MS domain.  

 

This review is directed to data scientists, especially those who are interested in complex modeling 

approaches within the health informatics field. This review demonstrates the current DSS technologies 

within the domain of MS research, so data scientists can glance over the recent trends and the potential 

future research paths in order to enrich this research field with new automated decision-making 

technologies. Surely, MS community members and MS specialists will find useful information about 

the most recent technologies that could help them in their daily clinical practices. 
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The remainder of this chapter is organized as follows: Section 2 explains the methodology conducted 

to acquire the needed resources. Section 3 describes the results in accordance with the analysis 

methodology. Section 4 discusses remarkable findings and trends. 

 

Literature Search Methodology 

All relevant articles used to carry out this literature review were collected from six database sources: 

Google Scholar, DBLP Computer Science Bibliography, Web of Science, PubMed, ACM Digital 

Library, and IEEE Xplore Digital Library. The searching strategy utilized Multiple Sclerosis, Decision 

Support, Ontology, Semantic Web, Machine Learning, and Knowledge Graph as the search phrases, 

where the first phrase (i.e., MS) is combined with each of the latter ones (i.e., technical terms) with the 

logical operator “AND” to form a searching keyword. Each keyword was used to retrieve articles that 

observe current trends of MS research with the help of the technical term noted in the keyword. This is 

done in order to determine if there are correlations in MS research between the retrieved articles and 

the use of DSSs or the decision-making process in the MS domain. Articles published in English 

between 2007 and 2019 were collected during September and December 2019 and were screened out. 

Narrowing the number of the selected articles took two steps. First, the abstract (along with the title) of 

each article was analyzed to compose a subset of articles corresponding to the searching keywords. 

Afterward, the full text of each article in the composed subset was resolved to report the most interesting 

articles that cope with the inclusion and exclusion criteria applied to the searching strategy of this 

literature review.   

  

Articles reviewed in this work comply with two inclusion criteria. The first criterion ensures that the 

machine-driven model applied in an article has a detailed description of its functionality. The second 

criterion justifies that the whole purpose of an article being analyzed is for diagnosing, treating, 

classifying, or predicting MS specifically. Research papers that have pure medical knowledge about 
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MS and others that employ solid mathematical theories with no automated models or running computer 

systems are therefore excluded. Likewise, papers that are dedicated to general neurology, except the 

ones that have MS as an example or as a case study, are excluded as well. The acquired data from each 

article consists of the author, the main intention of the paper, dataset information, system in use (if 

applicable), applied model and algorithms (i.e., research methodology), outcomes and remarks, and 

evaluation approaches and results (if reported). Figure 2.1 briefly illustrates the literature selection 

process. 

 

Literature Analysis and Results  

Using the searching strategy presented earlier, a total number of 154 articles were retrieved from several 
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Figure 2.1: Sources and steps in the literature selection process 
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electronic databases (see Figure 2.1). After scanning through the articles’ abstracts, the list was 

narrowed down from 154 to 95 articles. After the full-text analysis phase, 25 among the 95 articles  

were selected based on the inclusion and the exclusion criteria. The overall objective of each of the 

selected research papers was determined for categorizing them into subgroups. It should be noted that  

one article could belong to more than one category, but it was categorized under the subgroup that was 

the most appropriate given the goal of that article. The following subsections outline the main relevant 

methods and provide examples of how technologies related to DSSs and decision-making processes are 

implemented for the MS domain.  

 

The Role of DSSs in MS Quest  

Healthcare organizations are increasingly in need of DSSs, namely Clinical DSSs (CDSSs), that are 

Author(s) Year Objective Methodology basis System in use 

Classification Diagnosis Prediction Treatment 

Esposito and 

De Pietro 

2011 ✓    Knowledge-based  

De Falco et al. 2016 ✓    DE  

Siddiqui et al. 2015 ✓    DWT, PCA, and LS-

SVM 

 

Esposito et al. 2011 ✓    Knowledge-based  

Linder et al. 2009  ✓   MLR and ANN CAD tool 

Pourakbari et 

al. 

2014  ✓   Image processing  

Dogan and 

Duru 

2011  ✓   SVM and k-means  

Almasi and 

Moradkhani 

2015  ✓   Case-based 

reasoning and rule-

based reasoning 

 

Veloso 2013   ✓  Agent-based 

simulation model 

 

SLCMSR et 

al. 

2007   ✓  OLAP tool uses 

matching algorithm 

Individual 

Risk Profile 

project 

Finkelstein et 

al. 

2011    ✓  HAT DSS 

Veloso 2014    ✓ Agent-based 

simulation model 

 

Hillert and 

Stawiarz 

2015    ✓  SMSreg 

Reddel et al. 2019    ✓  AMS3 CDSS 

Table 2.1: Summary of the analyzed MS DSSs articles 
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understandable by non-technical audiences such as healthcare providers. CDSSs aid clinical decision-

making by providing practitioners with insight knowledge and information about their patients for 

generating suitable assessments or recommendations (Power, 2002). In the MS domain, the use of 

DSSs, or CDSSs, is just as important as their use in other healthcare areas. Indeed, the existing DSSs 

technologies tied with MS, as explained next and summarized in Table 2.1, are for the sake of 

classifying, diagnosing, predicting, or treating MS. 

 

Classification tasks have motivated a number of experts to implement DSSs particularly to be used in 

the MS domain. Esposito and De Pietro (Esposito and De Pietro, 2011) developed an ontology-based 

fuzzy DSS to assist neurologists in classifying MS lesions, i.e., white matter lesion. They performed 

their study on a dataset that contained brain MRIs of 120 patients between 20 and 63 years with 

clinically definite MS. The methodology of this DSS relied on a knowledge-based mechanism that 

integrated ontologies (to elucidate the structure of the knowledge semantically and to formulate clear 

outputs) and fuzzy logic (to comprehend the dataset’s uncertainty and fuzziness) as knowledge 

representation techniques in order to embed an expert’s high-level medical knowledge into the DSS. 

The DSS combined the obtained knowledge, in terms of fuzzy rules and ontologies, with Fuzzy 

Inference Ruled by Else-Action, i.e., the FIRE method. As a matter of fact, this methodology comprised 

three stages: knowledge elicitation, knowledge representation, and knowledge reasoning respectively. 

Thereby, this DSS was able to classify white matter lesions and to obtain measures of their volumes. 

The authors argued that their proposed DSS provided better outcomes for patients with large lesions 

compared to patients with small lesions. They supported their argument by evaluating the performance 

of this DSS using the area under ROC curve (AUC) and Similarity Measures. The result of the AUC 

was ranged between 0.82 - 0.87. Using different thresholds (0.25, 0.50, and 0.75), the similarity 

measures got the following results: 0.72 - 0.97 for the similarity index, 0.67 - 0.97 for the overlap 

fraction, and 0.01- 0.37 the extra fraction.   
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De Falco et al. (De Falco, Scafuri and Tarantino, 2016) proposed a DSS that utilized Differential 

Evolution (DE), an evolutionary algorithm (EA), for automating the classification of potential MS 

lesions. This work used brain MRIs of 120 confirmed cases of MS. The methodology of this DSS 

extracted explicit knowledge, a set of explicit IF-THEN rules (i.e., classification rules), from the data 

in use. Furthermore, the methodology proceeded by finding separately the best set of rules for each 

class. The best set of rules at the end of the evolution emerged, so the classification here was all about 

searching for the optimal specification among others. As a result, this study reported a set of rules 

obtained in the 12th run for fold 3 as the best set of rules for the MS cases. The authors of this research 

used accuracy (81.21% over the training set, 85.92% over the testing set, and 81.68% over the whole 

dataset), sensitivity (82.06% over the training set, 88.18% over the testing set, and 82.64% over the 

whole dataset), specificity (78.69% over the training set, 80.25% over the testing set, and 78.87 over 

the whole dataset), and AUC (79.00% over the training set, 80.72% over the testing set, and 79.19% 

over the whole dataset) as an evaluation strategy to back their effort.   

  

Siddiqui et al. (Siddiqui, Reza and Kanesan, 2015) established a design of an intelligent medical DSS 

for classifying brain MRIs as normal or abnormal. The primary motivation behind this design was to 

introduce a generalized DSS that can operate efficiently and effectively on various brain MRI datasets 

associated with neurological disorders. The researchers here ran their DSS against two datasets which 

consisted of T1-weighted and T2-weighted brain MRIs of 340 right-handed patients diagnosed with 

major brain disorders including brains affected by MS. In addition, the datasets also covered the 

patients’ demographics and clinical details. This DSS took the advantage of the discrete wavelet 

transform (DWT), the principal component analysis (PCA), and the least-squares support vector 

machine (LS-SVM) approaches to secure the goal of this study. The methodology of this work started 

with utilizing DWT in the feature extraction phase. Then, PCA performed feature reduction. The last 

step was to train the LS-SVM classifier by using the extracted reduced features. The authors claimed 

that their DSS classified the human brain as healthy or diseased with promising accuracy. Accordingly, 
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their experiment yielded better results and outperformed other classifiers regarding sensitivity (100%), 

specificity (100%), and accuracy (100%). Moreover, the result proved that the DSS has a notable 

generalization ability.   

  

Esposito et al. (Esposito, De Falco and De Pietro, 2011) implemented an evolutionary-fuzzy DSS to 

support neurologists by recognizing MS lesions in order to evaluate the health status of individuals 

affected by MS. They conducted their experiment on the same dataset presented in (Esposito and De 

Pietro, 2011; De Falco, Scafuri and Tarantino, 2016). Essentially, the methodology of this work 

composed knowledge representation, knowledge reasoning, and knowledge tuning respectively. 

Knowledge representation interpreted and encoded the required medical knowledge of experienced 

clinicians in terms of linguistic variables, linguistic values, and IF-THEN rules. Knowledge reasoning 

specified a fuzzy inference technique that fitted the structure of the knowledge used for medical 

inferences. Knowledge tuning adopted DE to tune the knowledge through membership functions 

optimization for each linguistic variable involved in the rules ultimately to achieve the highest correct 

classification rate. This system obtained the best outcomes exceeding several classification algorithms 

compared to it in the study’s literature. To aid this finding, the authors of this study evaluated and 

compared their DSS’s accuracy, sensitivity, and specificity with several classification techniques, 

namely machine learning (ML) algorithms. The study recorded the average results over the 10 folds 

(accuracy on the training set was 89.10%, accuracy on the testing set was 88.79%, sensitivity was 0.88, 

and specificity was 0.88) and the results for the best fold in terms of the highest percentage of accuracy 

on the testing set (accuracy on the training set was 88.71%, accuracy on the testing set was 92.93%, 

sensitivity was 0.96, and specificity was 0.84). Moreover, the study reported the 10-fold classification 

accuracy of the proposed system (88.79) and compared it with other classifiers.  

  

Easing the diagnostic procedure has encouraged several researchers to model DSSs. Linder et al. 

(Linder et al., 2009) discussed proof of principle study by demonstrating the use of a computer-assisted 
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decision (CAD) support that aimed to diagnose MS patients. The idea here revolved around the ability 

to distinguish between 73 MS patients, 22 patients of other chronic inflammatory diseases (CIDs) of 

the central nervous system, and 12 psychiatric patients (control group) in terms of cerebrospinal fluid 

and blood findings (i.e., standard laboratory findings). In other words, this CAD facilitated MS 

diagnosis by discovering any significant differences between MS patients and the other two groups of 

patients (MS vs. CID and MS vs. control group) based on the major parameters of the standard 

laboratory findings. To obtain the desired results, the authors here made the use of univariate and 

multivariate analyses using multiple logistic regression (MLR) and artificial neural networks (ANN). 

MLR categorized patients based on their characteristics while ANN performed feature selection on all 

parameters of the standard laboratory findings specified in the study. As a result, CAD was able to 

differentiate between MS patients and the control group. In comparison, CAD lacked the ability to 

deliver meaningful decision support when differentiating MS and CID patients since it did not disclose 

common parameters. Sensitivity, specificity, and accuracy assessed the performance of CAD as an 

eligible DSS. Noteworthy, the study evaluated the parameter sets MLR2 and MLR5 (MLRs with two 

and five parameters respectively) and the ANN. The ANN was able to perform with 84.9% sensitivity, 

54.5% specificity, and 77.9% accuracy when differentiating MS and CID patients. Similarly, The 

MLR2 and the MLR5 recorded respectively 94.5% sensitivity, 22.7% specificity, and 77.9% accuracy 

(for MS vs. CID). Furthermore, The ANN distinguished MS and CID patients with 95.9% sensitivity, 

66.7% specificity, and 91.8% accuracy. Likewise, The MLR2/MLR5 had 94.5%/95.9% sensitivity, 

75.0%/83.8% specificity, and 91.8%/94.1% accuracy (for MS vs. control group).   

  

Pourakbari et al. (Pourakbari et al., 2014) designed a DSS suitable for diagnosing MS as early as 

possible. The study investigated that the analysis of postural impairment, a type of quantitative 

movement disorders, was valid for detecting MS even in its early stages for the cause of managing the 

disease before its severity progression. This study recorded the movement signals of 14 MS patients in 

the early stages (able to walk without an assistive tool) with an age range of 21-53 years. Also, the 
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medical examination of this work documented the postural behaviors of 20 healthy subjects with an 

age range of 20-60 years in order to compare their results with MS patients. This DSS used image 

processing algorithms to calculate the postural oscillations rate as spatial signals. By obtaining proper 

features (via statistical analysis) from these signals, this method separated control subjects from 

patients. However, the authors of this work did not evaluate the performance of their DSS.   

  

Dogan and Duru (Dogan and Duru, 2019) created a DSS for physicians by using image processing, 

supervised, and unsupervised ML algorithms in order to detect lesions for diagnosing MS. Further, the 

study compared the functionality of two types of ML tasks (supervised and unsupervised) concerning 

the objective. The presented techniques analyzed a dataset, collected by (Loizou et al., 2011), 

containing brain MRIs of 38 MS and clinically isolated syndrome (CIS) patients with average age equal 

to 34.1. For the methodology, the linear support vector machine (SVM) was the supervised ML 

algorithm in use while k-means (with k = 4) acted as the unsupervised ML algorithm. The outcomes 

were acceptable and promising especially for SVM regarding the segmentation process. This is because 

k-means relied on objective assignment compared to SVM, which benefited from spatial coordinates 

of data. Calculating the result accuracy for both ML algorithms was the only evaluation mechanism 

presented in this work (70.24% for k-means and 91.04% for SVM).   

  

Almasi and Moradkhani (Almasi et al., no date) depicted a DSS prototype that aimed to minimize the 

time required to diagnose MS with the help of artificial intelligence (AI) appropriate techniques. In this 

work, the authors adopted two AI methods: case-based reasoning and rule-based reasoning. This work 

appeared to be limited as it lacked the experimental data and the design evaluation that support the 

researchers’ arguments. Predicting the course of MS has pulled the attention of several researchers. For 

instance, Tintore et al. (Tintore et al., 2015) presented a notable paper that addressed MS prediction by 

analyzing the most common demographic, clinical, radiological, and biological features that have a 

strong correlation with the prognosis of MS. This study used a multivariate approach in the experiment 
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and successfully stated that demographic characteristics, oligoclonal bands presence, and brain MRIs 

are considered as the impact prognostic factors, ordered from the lowest to highest impact factors 

respectively. However, this study did not use DSS technology.   

  

Several studies elaborate on the application of DSSs to predict optimally the probability of MS 

occurrence and progression. Veloso (Veloso, 2013) demonstrated the use of an agent-based simulation 

model that aimed to aid healthcare providers with a simulation tool. This tool was able to predict long 

term disability and treatment effects on individuals affected by MS. For testing the methodology, a 

model that populated 100 virtual agents simulating patients with RRMS was created. Despite that, the 

validation task of this tool used real data from a group of 50 patients diagnosed with RRMS that lasted 

for at least 10 years. The dataset used was selected from a total of 173 patients. The author concluded 

by claiming that this simulation model can be used in everyday clinical practice for monitoring the 

disability episodes as it might scale for an individual with RRMS over 30 years. Aside from this, the 

tool was able to perform the treatment effect assessment over the same timeframe. Because of the lack 

of real medical data for experimental use, evaluating the performance of the model was not presented.   

  

The Sylvia Lawry Centre for Multiple Sclerosis Research (SLCMSR) et al. (the Sylvia Lawry Centre 

for Multiple Sclerosis Research et al., 2007) presented the "Individual Risk Profile" project that aimed 

to accurately predict short, mid, and long-range prognosis of MS during the lifetime of an individual 

affected by any type of this disorder. This project consists of an OLAP-tool that uses a comprehensive 

database (contained data of 20,000 patients pooled from the academic and corporate sources), that is 

available to practitioners experienced in MS with an interest in clinical trials for decision-making 

purposes. To conduct this study, the researchers here derived only the data of 1059 patients from the 

comprehensive database. The OLAP tool applied a matching algorithm as a strategy to match the patient 

of interest with all similar patients retrieved from the database. By doing so, the tool was able to predict 

the course of MS during the life span of the patient of interest by determining the disease course of all 
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patients in the database that are similar to the patient of interest. The developers of this project argued 

that this work has potential advantages compared to purely model-based predictors. However, they also 

discussed that this tool needs improvements as it presented several limitations, so they did not use any 

evaluation metrics to assess the performance of this tool.  

  

To aid MS patients with treatment decisions, numerous pieces of research have manifested the use of 

DSSs for this essence. Finkelstein et al. (Finkelstein, Wood and Shan, 2011) discussed the blueprint of 

the Home Automated Tele-management (HAT) DSS for MS patients. This system took the benefits of 

the current technologies to provide MS patients with the most convenient therapy and exercise plans 

during the rehabilitation phase. Furthermore, The HAT system adopted Wagner’s model of chronic 

disease care (Wagner, Austin and Korff, 1996). The designers of this DSS stated that HAT was a 

successful pilot DSS with promising outcomes for MS patients. The system would enhance the quality 

of life and the awareness of MS patients by minimizing frequent doctor visits, allowing patients to self-

observe their health frequently, educating them on this condition, and guiding them through exercise 

routines needed during the rehabilitation procedures. To this end, this work observed a standalone 

system that was tested and evaluated based on end-user opinions. Therefore, the study lacked prior data 

acquisition, algorithm modeling, and performance evaluation.   

  

Veloso (Veloso, 2014) proposed a web-based computer prognostic simulation model that addressed the 

needs to start/modify treatment plans, the transformation likelihood of a patient with CIS to definite 

MS, the long-term prognosis of MS, and the level of disability associated with MS progression. This 

simulation model applied, reformulated, and extended the simulation model presented in (Veloso, 

2013) with the usage of distinct algorithms. This simulation model used two sets of data. At first, the 

author obtained a dataset from reference studies dealing with the natural history of MS for 

experimenting on the proposed model. The researcher then used a dataset of 50 patients, who had been 

living with RRMS for at least 10 years, for validating the simulation process and its result. The study 
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conductor proclaimed that this model answered the patients’ fundamental questions about their current 

state with MS at various evolutionary stages during the disease course. Lastly, this work had no 

evidence regarding the performance evaluation of the model.   

  

Hillert and Stawiarz (Hillert and Stawiarz, 2015) presented a review article that demonstrated The 

Swedish MS registry (SMSreg). SMSreg was developed as a web-based system to help all departments 

of neurology across Sweden. This system functioned as a decision support tool. Plus, it provided 

practitioners with patient information needed at clinical visits. SMSreg included data on 14,500 patients 

and recruited the data of 1000 new MS patients reaching coverage of almost 80% throughout the 

country. As a decision support tool, SMSreg was valuable as it summarized the information needed to 

make decisions concerning DMTs. In addition, this tool offered the ability to make decisions by 

comparing similar patients together. Nevertheless, there was not much to say about the framework of 

the methodology of this system nor about whether it got evaluated.   

  

Reddel et al. (Reddel et al., 2019) explained the idea of Alemtuzumab in MS Safety Systems (AMS3). 

AMS3 was developed as a CDSS to determine and organize the MS patients’ important care routines 

such as identifying risks associated with alemtuzumab therapy, scheduling periodic tests, sending 

reminders when needed, and analyzing test results, just to name a few. The study used a dataset that 

included a total of 10 patients with active RRMS receiving alemtuzumab treatment. The authors 

described the system’s overall architecture without describing in more detail the structure of the 

methodology, so this CDSS was evaluated based on its acceptance within the healthcare community. 

The designers of AMS3 argued that this CDSS accomplished the expected result.  

  

Ultimately, based on the above-mentioned literature analysis, the use of DSSs in the MS field is quite 

limited due to the rarity of this medical condition. However, decision-making is a critical task in MS 

practice. Researchers nowadays are applying several technologies, alone or together with DSSs, to 
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support the process of decision-making in the MS medical routine. To keep up with this matter, the 

scope of this review was expanded to cover a specific number of technologies associated with decision-

making in MS studies. As noticed, knowledge-based and ML approaches often form the basics of the 

DSSs’ methodologies analyzed before. Therefore, the next subsections outline the decision-making 

process in MS care using ontologies, the knowledge-based approach of interest, and ML algorithms.   

  

The Uses of Ontology in MS Research 

The semantic web is an extension of the current World Wide Web that gives the information well-

defined meaning, so the contents of the web become both machine-readable and human-readable 

(BERNERS-LEE, HENDLER and LASSILA, 2001). To make this possible, a key component of the 

semantic web, i.e., ontology, would offer a structured representation of the semantics that is relevant to 

one or several knowledge domains (Sánchez et al., 2015). An ontology is an explicit and formal 

specification of the shared conceptualization of a domain by means of classes, instances, properties, 

and semantic relationships (Ma et al., 2014).  

 

Capturing and personalizing knowledge (e.g., knowledge about chronic disorders) in formal, simple, 

powerful, and incremental ways and then applying appropriate reasoning processes to the personalized 

captured knowledge would be a remarkable finding in the biomedical domain research (Riaño et al., 

2012). Such an idea would be phenomenal in biomedicine as it reinforces sharing and reusing medical 

knowledge among health practitioners for decision-making purposes. This applies to MS as it is a 

chronic disorder. Existing publications about ontologies that serve the process of decision-making 

related to MS are recapped next.  

  

Hadzic et al. (Hadzic, Chen and Dillon, 2008) created a Mental Health Ontology (MHO) for deriving 

knowledge that aimed to prevent, diagnose, and treat and control mental disorders using data mining 

algorithms for exposing the patterns in mental health data. MHO consisted of subontologies 



  

 
 

25 

representing mental disorder types, factors causing a specific type, and treatments suitable for a certain 

type. According to the findings of this work, MS was a physical factor affecting mental health because 

it may result in mood disorders.  

  

Alfano et al. (Alfano et al., 2007) developed an ontology and a rule-based system that can automatically 

measure the load of the brain lesions (especially those that cannot be assessed visually) of MS patients. 

This was useful in terms of monitoring responses to treatments and studying the level of progression 

during the course of MS. This work utilized ontology as a knowledge representation model while the 

rule-based system acted as a reasoner to infer a new set of knowledge. To test the reasoning process, 

the proposed method used the MRI data of an MS patient. The authors stated that their approach showed 

greater sensibility as it recognized more lesions compared to an algorithmic procedure.  

  

Jensen et a. (Jensen et al., 2013) originated the Neurological Disease Ontology (ND) that aimed to 

formally structure common and accurate representation of a variety of neurological diseases with more 

specifics for MS and Alzheimer's disease for clinical applicability and research purposes. The ultimate 

goal of ND was to represent each disease along with its genesis (genetically or environmentally), 

etiology, symptoms, syndromes, progression levels, diagnostic criteria, treatments, and relationships 

with other neurological disorders as a means to maximizing the potential reasoning capability. Up to 

the date of this work, this ontology contained nearly 450 classes in addition to over 700 classes imported 

from external ontologies.   

  

Malhotra et al. (Malhotra et al., 2015) proposed the MS Ontology specified for clinical and translational 

research related to MS. The MS Ontology used a conceptual hierarchy to represent medical knowledge 

specific to MS, which were retrieved from scientific literature, database sources, and electronic medical 

records (EMR). Moreover, this ontology identified a huge amount of data that define the associations 

between risk factors, molecules, therapies, and several other diseases aiming to improve the societies’ 
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understanding of MS. The authors argued that MS Ontology could acquire a wide range of MS 

concepts. They supported their argument by claiming that MS Ontology obtained knowledge more 

accurately compared to PubMed advance searches.   

  

All of these ontologies formulate knowledge bases that represent MS’s domain knowledge. Several 

reasoning and inference engines can make good use of the experts’ knowledge captured in knowledge 

bases to automate the decision-making process, i.e., knowledge-based systems. This would enhance 

decisively the MS’s medical practice and possibly equalize or even outperform the medical justification 

of qualified MS specialists.   

  

The Utilization of Machine Learning in MS Studies  

ML is an AI major discipline that draws attention towards its ability to learn patterns from input data 

using an increasing variety of algorithms (supervised and unsupervised) dedicated to automating the 

observation process which overcomes real-world challenges (Wottschel et al., 2015). Supervised ML 

algorithms train models using determinated prior information (i.e., input data) representing class labels 

in order to automatically classify new objects or data not seen before (Mateos-Pérez et al., 2018). In 

contrast to supervised algorithms, unsupervised ML algorithms do not require prior information about 

the class labels as they train models to discover hidden structures and patterns (i.e., determine class 

labels) from unlabeled target variables (Lim, Tucker and Kumara, 2017) ML gains momentum in the 

medical realm for mining and analyzing large collections of medical data (Sweeney et al., 2014). In 

fact, healthcare organizations, as most public and private organizations, have begun to apply ML as a 

central phase for analyzing medical knowledge for decision-making purposes (Tuggener et al., 2019).  

 

Notably, MS experts have adopted ML techniques mainly to distinguish MS from other pathologies 

and to investigate crucial characteristics of MS during its course (Zurita et al., 2018). The vague patterns 

of MS (e.g., in terms of etiology, progression, clinical presentation, and response to drug therapies) 
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elevate ML algorithms as the optimal set of tools that automate the recognition of patterns and 

regularities in MS data. An overview of articles that describe the use of the ML algorithms that yield 

better decision-making regarding classification, diagnosis, and detection of MS are demonstrated next. 

In order to keep things simple, it should be noted that this overview is limited to articles of interest 

published during the last five years. 

  

The success of ML has given the opportunity to pioneer algorithms able to provide a better classification 

of MS. Zurita et al. (Zurita et al., 2018) developed SVM classifiers able to recognize brain areas 

(affected by MS) that may assist to better diagnose potential cases of RRMS. This experiment used a 

dataset containing diffusion tensor imaging (DTI) and resting-state functional MRI (rsfMRI) data of 

107 RRMS patients and 50 control subjects. Using 12 well-constructed rsfMRI and DTI based linear 

SVM learners, the authors here stated that these classifiers reliably discriminated (was able to avoid 

bias and overfitting) between RRMS patients and control subjects with accuracies up to 89%.  

  

Lopez et al. (Lopez et al., 2018) utilized an unsupervised ML algorithm to cluster MS patients based 

on their genomic similarity and potentially discover valuable differences among these clusters. This 

algorithm clustered instances of a dataset that contained DNA samples from 191 MS patients. The 

methodology of this work employed an agglomerative hierarchical clustering algorithm with multiple 

linkage methods in order to identify underlying cluster structures with the help of the majority vote 

approach. In addition, the methodology employed a Silhouette index as an internal validity metric to 

select the appropriate number of clusters. The outcomes of this study revealed that the methodology 

presented here was able to identify patient clusters genetically without specifying the number of clusters 

in advance or indicating any prior input parameter. According to the authors, this methodology 

outperformed others found in the study’s literature regarding overfitting, as it had a significant Rand 

index greater than the benchmarked methods.  
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Ion-Mărgineanu et al. (Ion-Mărgineanu et al., 2017) built multiple binary classifiers to automatically 

differentiate between patients with different MS clinical forms. Namely, the researchers performed nine 

binary classification tasks for different combinations of MS types. This work used clinical data, lesion 

loads, and metabolic features of 87 MS patients and 18 individuals served as healthy control subjects. 

The idea of this work was to compare the outcomes of the linear discriminant analysis (LDA), SVM 

with a radial basis function kernel (SVM-rbf), and random forest (RF) models. The results of this work 

showed that SVM-rbf, trained on clinical data and lesion loads, was the best classifier for distinguishing 

CIS from RRMS (F1-score = 71) or RRMS plus SPMS (F1-score = 72). Nevertheless, LDA, trained 

with clinical data, performed better when discriminating RRMS from PPMS (F1-score = 85) or SPMS 

(F1-score = 84).   

  

Wang et al. (Wang et al., 2018) aimed for segmenting MS lesions and non-specific white matter 

(NSWM) lesions separately based on their shape and spatial location features by adopting a spherical 

harmonics descriptor using an ML pipeline. To perform the experiment, the authors obtained two 

datasets. The first dataset contained 234 MS lesions and 190 NSWM lesions. The second dataset 

included 160 MS lesions and 119 NSWM lesions labeled by location. The authors trained three different 

ML models: logistic regression (LR), SVM, and extreme gradient boosting (XGBoost). The authors 

continued by arguing that the proposed pipeline successfully classified MS and NSWM lesions with 

good accuracy (70.52% - 87.97% for the logistic regression, 70.29% - 74.89% for the SVM, and 85.58% 

- 90.43% for the XGBoost) and AUC (83.76% - 95.42% for the logistic regression, 70.49% - 87.01% 

for the SVM, and 93.45% - 96.43% for the XGBoost).   

  

Automating the process of differentiating stable from potentially evolving MS cases is a research topic 

highly in demand. Salem et al. (Salem et al., 2018) integrated intensity and deformation-based 

approaches for automatically detecting new T2-w lesions. The study used a dataset consisted of images 

from 60 different patients with the CIS or early relapsing MS with 36 of them with confirmed MS cases 
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due to the appearance of new T2-w lesions in their scans. This work used a deformation-subtraction 

based logistic regression model, i.e., a logistic regression algorithm that adopts the deformation field 

(DF) aspect, to detect new T2-w legions inside the white matter region. The authors declared that there 

was a significant difference in the model’s performance when including DF as it turned out that it 

improved the model’s accuracy. In fact, the combination of DF and logistic regression helped to boost 

the performance when detecting new T2-w lesions. To uphold this finding, the researchers compared 

their model with two state-of-the-art approaches and three variants of their model with fewer features. 

Their full model outperformed all the other models and had the best values for all the evaluation 

measures (sensitivity (74.30±28.70), specificity (11.86±18.40), and dice similarity coefficient 

(0.77±0.23 for detection and 0.56±0.23 for segmentation)) except when detecting very small lesions.  

  

Zhang et al. (Zhang et al., 2016) proposed a study that compared the performance of three ML 

algorithms with the intention to detect MS in the brain by using stationary wavelet entropy (SWE). The 

authors conducted their experiment on a dataset that included brain images of 38 MS patients and 

several healthy control subjects (the population of healthy control is not specified). The authors applied 

three ML algorithms: decision tree (DT), k-nearest-neighbor (KNN), and SVM. The experiment 

recorded KNN as the best performer in terms of specificity (99.32%), precision (99.09%), and accuracy 

(97.94%), while the SVM performed the best in sensitivity only (97.34%). In contrast, the evaluation 

results of DT were the worst in all of the four measures. Thus, KNN yielded the best classification 

performance among the three algorithms in this detection process.   

  

McGinnis et al. (McGinnis et al., 2017) proposed a technique for estimating walking speed using a 

wearable device. The researchers of this proposal used accelerometers worn in several body locations 

to characterize gait speeds. To compare their mobility capabilities, this work recruited 30 subjects 

diagnosed with MS and 7 healthy controls. The authors utilized SVM models to measure walking speed 

features indicated from the wearable accelerometer. Additionally, the authors analyzed the correlation 
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between speed estimation accuracy and device location combinations. They clarified that placing 

additional accelerometers in proximal locations would improve the accuracy of estimating the gait 

speed. The authors concluded their observation by claiming that there was a high correlation between 

the ground truth and estimated speeds during comfortable walking tests.  

  

To better understand patterns that may underlie cardinal factors of MS, several recent studies strive to 

infuse ML into MS research. In light of this fact, ML algorithms are adopted excessively to automatize 

MS’s practice. The abovementioned studies show how ML benefits MS research. It is important to 

mention that ML studies conducted for MS prediction (e.g., predicting MS progression), treatment, and 

diagnosis are beyond the scope of this review because they will form the baseline of future work.  

 

Discussion 

In the preceding sections, MS studies were reviewed and analyzed about their usage of DSSs, ontology, 

and ML. Each of these disciplines, along with their underlying technologies, has certain benefits and 

drawbacks yielding the applicability of automating MS diagnosis, detection, treatment prescription, 

classification, and prediction. By virtue of its nature as a preference-sensitive condition, MS specialists 

and patients participate more intensively in MS decisions, particularly regarding diagnosis and 

treatment. Generally speaking, the MS diagnostic procedure imposes all MS specialists to obey the 

guidance of McDonald Criteria (McDonald et al., 2001) in addition to performing the Expanded 

Disability Status Scale (EDSS) (Kurtzke, 1983) and clinical examinations (e.g., MRI and lumbar 

puncture) to confirm MS cases. MS specialists usually detect MS activities by comparing initial 

diagnosis reports with follow-ups reports. Nevertheless, these procedures require intensive knowledge 

and experience given the inconclusiveness in this medical condition due to the lack of consensus 

diagnostic procedures. Furthermore, the variety of MS drug therapies offer a range of potential benefits, 

but they may also tolerate life-threatening risks. In like manner, predicting and classifying MS during 
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and before the course of the disease are very challenging due to the ambiguity in terms of MS’s 

progression and occurrence pattern. To fulfill the need for automated systems that could help to 

overcome these gaps, several pieces of research, stated in the previous section, manifest the use of 

modern technologies, e.g., DSSs, for this essence with remarkable findings and high-performance 

metrics.   

  

Knowledge acquisition and representation of an expert is critical in developing reliable knowledge-

based DSSs used for MS clinical routines. For instance, studies in (Esposito and De Pietro, 2011; 

Esposito, De Falco and De Pietro, 2011) demonstrated the use of fuzzy logic to handle the uncertainty 

in MS. This, in turn, would accurize solid knowledge representation to perform more rational 

knowledge reasoning that is able to make valid inferences. Significantly, the work presented in 

(Esposito and De Pietro, 2011) integrated two knowledge representation approaches, namely ontology 

in addition to fuzzy logic. The importance of applying ontology here was to provide a shared 

understanding of the MS domain, i.e., semantic interoperability. This mixture led to knowledge 

elicitation, knowledge representation, and knowledge reasoning and inference with reduced 

uncertainty. Similarly, the methodology proposed in (Esposito, De Falco and De Pietro, 2011) 

combined fuzzy logic with DE to represent, reason, and tune knowledge. DE optimizes a complex 

problem by improving a candidate solution iteratively, so it finds the best set of rules that guarantees 

the best set of knowledge. This combination can obtain the most optimal result because it leverages MS 

uncertainty using the best set of knowledge and rules. It is worth to mention that the researchers in (De 

Falco, Scafuri and Tarantino, 2016) formulated a DSS using DE that obtained explicit knowledge 

through an optimal set of rules. In order to find this set of rules, each class has its own rules that are 

used to recognize the class’s instances. At the end of the DE evolution, the optimal set of rules, that is 

used for classifying instances to their corresponding classes, emerged to form the best classification 

specification. Similarly, the study conducted in (Esposito, De Falco and De Pietro, 2011) used the same 

DE mechanism demonstrated in (De Falco, Scafuri and Tarantino, 2016) in the knowledge tuning 
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phase. In fact, DE was applied to achieve the highest correct classification rate by tuning the knowledge 

via membership functions optimization for each linguistic variable involved in the rules. Remarkably, 

these pieces of research performed well in classifying MS lesions with significant evaluation metrics 

results.  

  

Two studies that used simulation models were demonstrated in this review. The study presented in 28 

(Veloso, 2013) used an agent-based simulation model that exhibited the disability and the treatment 

effects prediction. This model virtually populated 100 agents that simulated patients with RRMS. The 

beauty of this work is its ability to abbreviate 30 years of monitoring and observing the quality-of-life 

of RRMS patients. By the same token, the work presented in (Veloso, 2014) extended the previous 

methodology with a web presence and the utilization of distinct algorithms. This model’s functionality 

was extended as it considered other forms of MS (CIS and SPMS), suggested to start/modify treatment 

plans, and evaluated medical prognosis in the long-term. After all, using such simulation systems in 

MS clinical practices would allow clinicians to prompt potentially several rapid and appropriate 

medical interventions before any complications arise in the medical status of actual patients.  

  

Certainly, DSSs need to be implemented in such a way to highly simulate MS specialists. To 

optimistically reach this objective, the underlying structure of DSSs should be able to learn new patterns 

by observing subsets of data to produce reliable decisions without human intervention. This goal would 

be possible with the help of ML algorithms. The CAD tool presented in (Linder et al., 2009) used ANN 

and LR. This work showed promising results. The LR model was able to discriminate MS patients 

based on their features while the ANN selected features that are correlated mostly with the MS. 

Likewise, the study in (Dogan and Duru, 2019) compared SVM with k-means in the lesion detection 

task. This comparison was in favor of the SVM, although both algorithms performed the segmentation 

process acceptably with promising results. However, both studies need improvements in terms of 

applying the most suitable ML model by comparing the results of different ML algorithms. In a word, 
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it should be noted that each ML algorithm performs differently depending on the problem and the 

dataset in use, so comparing the performance of several ML algorithms should be sufficient when 

adopting ML as the ground solution.  

  

Commonly, the SVM algorithms have been used extensively in several studies presented in this review 

whether as a DSS basis or as standalone models. The studies demonstrated in (Siddiqui, Reza and 

Kanesan, 2015; Zhang et al., 2016; Ion-Mărgineanu et al., 2017; McGinnis et al., 2017; Wang et al., 

2018; Zurita et al., 2018; Dogan and Duru, 2019) relied entirely or partially on SVMs despite the fact 

that they are used for mutual or different objectives. For instance, the linear SVM was applied in the 

DSS of (Dogan and Duru, 2019) and in the experiment of (Zurita et al., 2018) for diagnosing MS. On 

the contrary, the study established in (Ion-Mărgineanu et al., 2017) used the SVM with rbf kernel to 

segregate patients with different MS clinical forms. Furthermore, the standard SVM model was used 

as a part of an ML pipeline structured in (Wang et al., 2018) and as an individual model in (Zhang et 

al., 2016) for detecting MS. Moreover, the study conducted in (Siddiqui, Reza and Kanesan, 2015) 

utilized the LS-SVM classifier to be able to classify brain MRIs as normal or abnormal. In addition, the 

study proposed in (McGinnis et al., 2017) used the SVM model to measure walking speed features in 

a wearable device, which is used to characterize gait speeds to compare MS patients’ mobilities.  

 

The comparison between all of the SVMs presented in this review seems imbalanced for two reasons. 

First, they are used for different objectives and with different datasets. Second, they are used partially 

as one of the essential tools of a DSS paradigm or entirely as an independent method. However, the 

performances of these SVMs can be slightly explored despite the above contradictions. To emphasize 

this, the LS-SVM was the best SVM among the others because it guarantees higher evaluation rates 

with minimum computation time and complexity even when it is running against huge datasets. The 

LS-SVM is an enhanced, a reformulated, and an upgraded version of the classical SVM. LS-SVM 

ensures more accuracy by using least-squares to modify and correct the classifier’s behavior in order 
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to minimize the errors i.e., cost function. As stated in (Siddiqui, Reza and Kanesan, 2015), the 

performance of the model used in the study with the LS-SVM classifier that used rbf kernel exceeded 

all other models especially those that applied standard SVM with different kernel values. Yet, exploring 

and comparing the performance of several sets of parameters within LS-SVM is something that needs 

to be considered in future works that adopt LS-SVM in order to have the most optimal model 

performance.  

  

It could be inferred from this review that the number of studies conducted to address the usage of DSSs 

in the MS field is quite limited. Indeed, the acceptance of DSSs within the MS domain remains limited. 

This condition is not getting proper attention compared to other incurable diseases, such as Alzheimer's 

disease due to its uncommonness and data scarcity. Nonetheless, the direction of the future work should 

incline toward applying DSS technologies, and potentially knowledge graph techniques, that are able 

to understand MS progression and occurrence patterns. Additional work should also adopt these 

machine-based approaches to emphasize MS etiology and MS’s long-terms effects on the quality-of-

life of the affected individuals. Moreover, the correlation between MS and other disorders (especially 

chronic neurological and autoimmune diseases) should be investigated. In spite of this, MS's intended 

researchers require an extensive amount of data, but access to them is very restricted. To overcome this 

issue, the FAIR principle for MS data (Peeters, 2018) should be considered in the near future. 

Considering these recommendations would enhance the MS’s clinical practice experience.   
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Chapter 3 Examination of Supervised Machine Learning Classifiers and 

Ensemble Learning for Predicting the Type of Multiple Sclerosis  

Introduction 

Multiple sclerosis (MS) is the most common inflammatory demyelinating autoimmune disorder that 

chronically affects the central nervous system (Sospedra and Martin, 2005; Lassmann, Brück and 

Lucchinetti, 2007; Chiaravalloti and DeLuca, 2008; Milo and Kahana, 2010). Globally, MS affects 

millions of middle-aged and young adults especially females, who are more likely to develop MS than 

males (World Health Organization and Multiple Sclerosis International Federation, 2008; Kragt et al., 

2009; Shanmuganathan et al., 2020). MS can cause multiple independent cognitive, motor, and 

neuropsychiatric symptoms (Chiaravalloti and DeLuca, 2008; Brownlee et al., 2017). The known 

reported symptoms of MS include abnormal sensations (paresthesia or tingling), gait impairment and 

spasticity, weakness, pelvic-organ dysfunctions (bladder, bowel, and sexual dysfunctions), vertigo, 

fatigue, anxiety, frequent falls, sleep disorder, heat/cold intolerance, visual impairment, pain, 

Lhermitte's sign, migraines, and depression, to name a few (Milo and Kahana, 2010). As a result, the 

quality of life regarding physical functioning, emotional health, and social life may be significantly 

affected or disrupted (Col et al., 2019; McGinley, Goldschmidt and Rae-Grant, 2021).  

 

MS is considered a complex disease because the precise causes of MS are still unknown. Although 

studies show that genetic and environmental factors such as vitamin D deficiency, Epstein-Barr virus, 

radiation, obesity, and smoking might potentially cause MS (Trapp et al., 1998; Leray et al., 2016; 

Reich, Lucchinetti and Calabresi, 2018; Dobson and Giovannoni, 2019; McGinley, Goldschmidt and 

Rae-Grant, 2021), vaccines, traumatic and stressful events, and allergies have not been classified as 

risk factors (Leray et al., 2016). MS patients usually get the disease in different episodes, ranging from 

mild to extremely aggressive forms: MS usually begins as a clinically isolated syndrome (CIS), 

progresses to relapsing remitting MS (RRMS), progresses to secondary progressive MS (SPMS), and 
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then advances to primary progressive MS (PPMS) or progressive relapsing MS (PRMS) progressions 

in some rare cases (Lublin et al., 2014; Mahad, Trapp and Lassmann, 2015; Efendi, 2016; deAndrés-

Galiana et al., 2019; Seccia et al., 2020). In addition, Okuda et al. (Okuda et al., 2009) defined a recent 

terminology describing patients without typical MS symptoms as a radiologically isolated syndrome 

(RIS). Another study suggested that the risk of disease development and progression is determined by 

factors related to immune function and activation (Mahad, Trapp and Lassmann, 2015). All things 

considered, it is believed that there is a lack of awareness and education about MS among healthcare 

practitioners, patients, and the general public (Rieckmann et al., 2013). As stated in (Confavreux and 

Vukusic, 2006), “There may be much to be learned on this topic from detailed scrutiny of the natural 

history of the disease.” 

 

Since there is no sufficient single clinical feature or diagnostic test to diagnose MS, diagnostic criteria 

have included a combination of clinical and paraclinical practices (McDonald et al., 2001). Typically, 

MS specialists detect MS activities by comparing initial diagnosis reports with follow-up reports, which 

requires extensive knowledge and experience (Alshamrani et al., 2020). Nevertheless, the severity and 

progression of MS over time in any affected patients cannot yet be determined since the course of MS 

has high variations and is unpredictable (Pérez del Palomar et al., 2019; Saccà et al., 2019). This 

unpredictability would cause MS patients and specialists to have frustration and anxiety while trying to 

come up with useful shared decisions (Yperman et al., 2020). Even for experienced MS specialists, 

establishing an accurate clinical course description for MS is difficult, but it is critical for decision-

making (Fiorini et al., 2015). Hence, MS course identification takes a long time for MS specialists and 

patients as they must endure stressful examinations to confirm MS cases and progression levels (Fiorini 

et al., 2015). Given the clinical heterogeneity of this disorder, it is critical to determine the progression 

level of MS in affected patients (Seccia et al., 2020). Therefore, predicting the type of MS would be 

extremely useful in making suitable decisions, such as tailoring therapy to a patient's specific needs 

(Seccia et al., 2020). However, it is difficult to predict the course of MS given demographic and baseline 
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clinical data, and there are currently no proven prediction techniques to determine the progression of 

MS (Zhao et al., 2017; Seccia et al., 2020). Moreover, predicting MS disease course is challenging as 

MS progression and occurrence patterns are ambiguous (Alshamrani et al., 2020).  

 

To fulfill the need to overcome the gaps highlighted above, an automated system that simulates MS 

specialists and learns new patterns by observing fitted data without human intervention is needed. This 

could be done with the utilization of machine learning (ML) algorithms. For mining and analyzing vast 

volumes of medical data, ML is gaining attention in the medical field (Sweeney et al., 2014). Healthcare 

organizations are starting to use ML as the primary method for assessing medical knowledge for 

decision-making (Tuggener et al., 2019). Due to the ambiguous nature of MS (including its etiology, 

progression, clinical manifestation, and response to treatment), ML algorithms are the best tools for 

automatically identifying patterns and regularities in MS data (Alshamrani et al., 2020). Therefore, the 

main aim of this chapter is to explore different supervised ML models in predicting the progression 

levels (MS types) in individuals affected by MS and comparing the performance of each model against 

a real-world MS dataset. A framework that compares the outcomes of different traditional and ensemble 

models to address the proposed research objective is presented.  

 

The remainder of this chapter is organized as follows: Section 2 briefly presents the related work of 

ML algorithms in the MS domain, specifically in predicting MS progression. Section 3 explains the 

proposed methodology. Section 4 describes the results. Section 5 discusses remarkable outcomes and 

trends. Finally, Section 6 concludes the study.  

 

Related Work 

In this section, the main focus is on previous work demonstrating the application of different supervised 

ML models in predicting the MS’s progression level. Note that the following emphases of research 
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papers that proposed different ML paradigms were excluded: image processing classifiers such as the 

ones used for determining MS lesions, ML models implemented for differentiating MS patients from 

healthy control, ML predictors that estimate the short- or long-term effects or disabilities caused by 

MS, the application of ML in research related to MS genetics, and the use of unsupervised ML 

algorithms in MS domain. According to the literature, several studies used ML techniques to classify 

MS patients based on MS type. For instance, Taschler et al. (Taschler et al., no date) worked on 

classifying MS types using support vector machine (SVM). The researchers used data containing 

information about quantitative features derived from magnetic resonance imaging (MRI) images in 

addition to demographic and clinical data. The proposed model achieved 56.0% accuracy on the entire 

dataset, while yielded 39.8% accuracy on the demographic and clinical data without MRI images. 

Likewise, Ion-Margineanu et al. (Ion-Mărgineanu et al., 2017) attempted to categorize MS patients 

according to the form of the disease based on MRI data, demographics and clinical data, and metabolic 

variables. This task was done by comparing linear discriminant analysis, SVM, and random forest (RF) 

classification results. For CIS vs. RRMS and CIS vs. RRMS + SPMS, respectively, the use of the SVM 

against clinical data and MRI information achieved 71.00-72.00% accuracy.  

 

Moreover, Karaca and Hayta (Karaca and Hayta, 2015) presented a framework to identify the type of 

MS (specifically RRMS, SPMS, and PPMS) by comparing MRI data and the Expanded Disability 

Status Scale (EDSS) score of MS patients. Artificial neural networks algorithm, fitted with MRI data 

only, was able to determine the type of MS with 98.90% accuracy. The same model was able to predict 

with 99.90% accuracy when trained with MRI and EDSS data. Furthermore, the work proposed by Ekşi̇ 

et al. (Ekşi̇ et al., 2020) outlined a methodology that discriminates between RRMS and SPMS, mainly 

through a binary classification. The central ML model utilized in this study was SVM, which was used 

to predict the MS type using magnetic resonance spectroscopy data. The outcomes of this study showed 

that RRMS and SPMS patients were differentiated with 83.33% accuracy. Aside from the above 

research, Fiorini et al. (Fiorini et al., 2015) demonstrated an ML pipeline for analyzing clinical 
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questionnaires to detect the progression of MS, particularly RRMS vs. other progressive and benign 

forms. The dataset contains information about patients’ mobility, fatigue, cognitive performance, 

emotional status, bladder continence, and quality of life. The authors explored the performance of 

several linear classifiers on the described binary classification problem. It was found that logistic 

regression (LR) outperformed the other classifiers on the entire feature set (77.28%). In comparison, 

ordinary least squares method was the best approach when a subset of the features was selected 

(78.32%) compared to regularized least squares, linear SVM, and k-nearest neighbor (KNN).   

 

From a data science perspective, this research area is not yet enriched despite the previously proposed 

methodologies being solid contributions to the MS domain. To date, ML is still not fully utilized in 

clinical practices due to the limited confidence of MS specialists in predictive technologies and the 

insufficient collaboration between data and computer scientists and MS specialists (Obermeyer and 

Lee, 2017; Lynch and Liston, 2018; Wiens et al., 2019; Seccia et al., 2020). To overcome this limitation 

and to address this gap, the following demonstration of the proposed framework would potentially 

outperform the aforementioned related work. In short, the proposed work will broadly classify different 

MS types and benefit from using sufficient and more extensive real-world MS data. With this in mind, 

the presented framework leverages the functionality and performance of different traditional supervised 

classifiers and ensemble learners to develop a satisfactory ML ground solution. 

 

Materials and Methodology  

Data Description 

The dataset obtained for this study represents the iConquerMS™ initiative founded by the Accelerated 

Cure Project for MS (ACP), a nonprofit organization dedicated to developing and sharing resources 

needed for MS research. ACP started recruiting participants since the time around 2010. The data is a 

clinical baseline data collected from a questionnaire-based repository. This collection is driven by MS 
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patients who participated in this initiative by submitting questionaries that contain information related 

to their MS cases. The repository keeps documents that record participants’ unidentifiable 

demographics, medical history, MS history and symptoms, quality of life, wellness and dietary habits, 

overall physical activities and health self-scales, and current and past DMTs. The participation 

inclusion and exclusion criteria are found here https://www.iconquerms.org/swms-inclusion-

requirements. The number of participants in the raw dataset is 8329, and each participant’s clinical 

record contains up to 247 attributes. Note that this is the actual number of applied features after initially 

removing identifiable variables and attributes with higher degrees of freedom (many categorical values) 

to ensure that the dimensionality of the data is not increased.  

 

Ethics 

The legitimate use of the dataset is for research purposes and was authorized by the Office of Research 

Assurances of the University of Idaho through an approved Human Research Protections (IRB) 

application (Authorization 21-235, dated February 1st, 2022). Please refer to Appendix F for more 

information about the IRB. 

 

Data Preprocessing Phase 

Three important steps were taken into account to perform practical feature engineering. At first, features 

were assessed based on their importance in determining MS types in two rounds. Among all features 

presented in the dataset, the first round of feature filtering was done from a neurological perspective 

after consulting an MS specialist. The total number of features selected after the first round, in addition 

to the target variable, was 214. Then, an automated feature selection approach was used to narrow the 

number of features further. To perform the second round of feature selection accurately, we used a 

subset of the filtered dataset that includes records with no missing values. This was a key step to ensure 

the automated feature selection tool would work as expected. For this quest, selecting features was done 
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based on importance weights using SelectFromModel, a scikit-learn algorithm described in Figure 3.1, 

after training its base RF estimator against the completed subset.  

 

Since any real-world raw dataset is overwhelmed by records with missing values (Seccia et al., 2020), 

it was critical to handle incomplete records before using ML models by applying missing value 

imputation. Hence, missing value imputation was performed using a model-based imputation method 

to impute missing records after the dataset’s dimensionality got reduced based on the selected features. 

Model-based imputation techniques that use ML algorithms have been outperforming other statistical 

imputation techniques (Cevallos Valdiviezo and Van Aelst, 2015; Pan et al., 2015; Silva-Ramírez, 

Pino-Mejías and López-Coello, 2015; Conroy et al., 2016; Raja and Thangavel, 2020; Bertsimas, 

Pawlowski and Zhuo, no date). The imputation here was done using KNN imputer with hyperparameter 

tuning. By using this imputation technique, each instance’s missing values were imputed using the 

mean value from n_neighbors nearest neighbors. Lastly, note that the categorical independent and target 

variables were encoded using OrdinalEncoder and LabelEncoder, scikit-learn encoding preprocessors, 

respectively. These procedures were essential to make the model training/fitting and prediction faster 

with potentially better results and effective performance. Indeed, feature selection will eliminate several 

unrepresentative features, while missing values imputation will ensure that ML algorithms can 

effectively analyze the complete dataset (Liu et al., 2020). Most recent medical research in the MS 

domain use RF algorithm for feature selection and KNN algorithm for missing values imputation 

(Suganthi and Karunakaran, 2019; Liu et al., 2020; Cui, Hu and Liang, 2021; Sharma and Kaur, 2021; 

1. Train a base ML estimator on the entire dataset. 

2. Rank the importance of each feature based on the contribution to the performance of the model 

3. Select the top-ranked features based on a specified threshold 

4. Create a subset of dataset with only the selected features. 

5. Train a new ML model on the new dataset with only the selected features 

 
Figure 3.1: SelectFromModel algorithm 
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Awawdeh, Faris and Hiary, 2022; Christo et al., 2022; Faisal and Tutz, 2022; Kabir and Farrokhvar, 

2022; Nagarajan and Dhinesh Babu, 2022; Seba and Benifa, 2022), which is why these approaches 

were adopted in this analysis.  

 

It is worth mentioning that records of patients who did not specify their MS class were removed prior 

to feature selection and missing value imputation to avoid model biases when imputing missing values 

of the target feature. A total of 3442 patients have verified the current status of their MS in terms of the 

stage of their conditions. Thus, the classification models demonstrated next were trained with 3442 

instances (2147 RRMS, 675 SPMS, 392 PPMS, 128 CIS, 8 RIS, and 92 were not sure).   

 

Prediction Models and Evaluation 

The main objective of this proposed methodology is to investigate the best traditional or ensemble 

classifier that categorizes patients into RRMS, SPMS, PPMS, CIS, and RIS groups against the 

aforementioned historical data. We consider the following traditional ML approaches: RF, SVM, KNN, 

LR, decision tree (DT), naive Bayes (NB), perceptron, and stochastic gradient descent (SGD). 

Furthermore, we examined voting, bagging, gradient boosting, AdaBoost, stacking, and extreme 

gradient boosting (XGBoost) ensembles. The dataset was split into training and testing subsets using 

five different splitting techniques. Then, we compared the performance of the applied models using 

accuracy, sensitivity, and specificity. We used these evaluators to measure the predictions’ accuracy 

and value as these metrics are widely used in medical domains (Sharma and Kaur, 2021; Faisal and 

Tutz, 2022; Kabir and Farrokhvar, 2022; Nagarajan and Dhinesh Babu, 2022). These evaluation 

strategies are computed based on the results of indicators reported in the confusion matrix. Confusion 

matrix indicators report predictions and real occurrences as True Negative (TN), False Negative (FN), 

False Positive (FP), and True Positive (TP), respectively. Hence, accuracy denotes the ratio of correctly 

classified instances as follows: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +  𝐹𝑃 + 𝐹𝑁
 

On the other hand, sensitivity tests a model’s ability to determine the exact correct class for each 

instance. This is known as the TP rate, which is the ratio of all positive samples that were accurately 

predicted as positive by the classifier and calculated as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Besides, specificity gives the TN rate, representing the ratio of all negative samples accurately predicted 

as negative by the classifier. Specificity checks the model’s ability to not classify an observation to 

incorrect classes, and it is calculated as follows: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

In a multiclass classification problem, the confusion matrix is usually represented as an N x N matrix, 

where N is the number of classes. The diagonal of the matrix represents the number of correct 

predictions for each class, while the off-diagonal elements represent the misclassifications. Figure 3.2 

demonstrates the confusion matrix of the six classes presented in this study, where the demonstration 

Figure 3.2: Multiclass Confusion Matrix 

TN 

TN TN 

TN 

TP FN FN 

FP 

TP 
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focuses on RRMS as an example for more clarification. In such a case, the above metrics are calculated 

as follows: Accuracy is calculated by dividing correct predictions by total predictions, while sensitivity 

and specificity results are recorded through macro averaging calculation. Macro averaging is a 

technique used in data analysis and ML to evaluate the performance of a classification model. It 

involves calculating the average performance of the model across multiple classes or categories. To 

perform macro averaging, the performance metric for each class in the dataset is calculated first. Then, 

the average of these metrics is calculated across all the classes. This gives an overall measure of the 

model's performance across all the different classes. 

 

Figure 3.3: Framework design for predicting MS type 
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Comprehensively, the following demonstrates the research pipeline structured to discriminate MS 

patients based on the MS type. The analysis was performed using the open-source package scikit-learn 

on Python 3.7. First, the most important features were selected through SelectFromModel algorithm, 

where the base estimator was RF model with hyperparameter tuning trained against a subset of data 

with no missing values. Then, KNNImputer with hyperparameter tuning was used to impute the missing 

values of the selected features. Next, all traditional models mentioned above were trained, with default 

parameters’ settings, using the imputed dataset and then evaluated. The top classifiers were selected for 

further investigation. Afterward, the ensemble learning methods mentioned before were trained with 

the imputed dataset using default parameters. Note that voting, bagging, AdaBoost, and stacking 

ensembles invoked the top traditional models as their fit method estimators. Models’ training was done 

using three test:train rules (10:90, 20:80, and 30:70) and two cross validation (CV) methods (10-folds 

and leave-one-out CV “LOOCV”), respectively. All models were compared via the three evaluation 

metrics described above to determine the best classifier. At last, hyperparameter tuning was used to try 

to enhance the best model to get better evaluation metrics results. All things considered, 

RandomizedSearchCV, a scikit-learn method that searchers for hyperparameters, was used in steps that 

needed hyperparameter tuning. Figure 3.3 elucidates the overall architecture of our prediction 

framework. 

 

Results 

Feature Selection and Missing Value Imputation  

Feature selection using SelectFromModel was done using RF, DT, and ExtraTreesClassifier as the base 

estimators embedded in SelectFromModel function. SelectFromModel algorithm with RF model as the 

base estimator (using 10:90 rule) was used to perform feature selection, which enabled the study’s 

classifiers to perform better. As a result, the model weighted features based on their importance to the 

target feature. Out of the 214 features chosen based on the MS specialist’s opinion, 78 variables, 
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including the response variable, were selected as they scored the highest weights (Appendix A lists the 

most important features along with their brief description, and Appendix B includes the order of the 

features based on their importance). Here, RF estimator was implemented with hyperparameter tuning. 

RandomizedSearchCV specified the following parameters as the best set of settings: the number of 

trees in the forest is 100, the maximum depth of a tree is 100, the minimum number of samples required 

to split an internal node is 10, the minimum number of samples required at a leaf node is 2, the number 

of features to consider when looking for the best split is specified as ‘sqrt’, and bootstrap is false to 

indicate that the entire dataset is used to build each tree. Besides, KNNImputer used the following 

parameters to impute missing values of the newly selected features: 35 as the number of neighboring 

samples to use for imputation and ‘distance’ as the weight function used in prediction.  

 

Traditional Classification 

The outcomes resulting from various classifiers when applying different splitting approaches are 

summarized in Table 3.1. By observing the results, RF model outperformed all other models in terms 

of accuracy in all splitting scenarios (greater than 70%), where the maximum accuracy was 75.36%. 

As for sensitivity scores, DT was the best in three out of five tests, with the highest recorded sensitivity 

at 51.06%. Besides, DT also achieved the highest specificity in three out of five experiments at 91.64%. 

The highest scores were obtained when splitting the data to 10:90. Aside from the above results, it is 

worth noting that SVM and LR came after RF in accuracy results. Similarly, NB got decent sensitivity 

results in the two other tests where DT performed poorly. Nevertheless, SVM got low results when it 

comes to sensitivity, while NB got the lowest accuracy results among all models. On the contrary, LR 

and DT specificity results were sufficiently comparable to RF. Thus, RF, DT, and LR were the top three 

classifiers nominated for further investigation.
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Ensemble Learning  

Table 3.2 summarizes the results achieved by the ensemble learning models for all splitting scenarios. 

Bagging classifier, with RF as the base estimator, achieved a 75.94% accuracy rate. Also, AdaBoost 

classifier with DT as the base estimator scored the highest sensitivity at 47.35%. In addition, gradient 

boosting classifier scored the highest specificity at 91.51% when trained/tested with 30:70 rule. Again, 

all ensemble learning classifiers performed better when training/testing the data with 10:90 rule. All 

ensembles performed almost similarly regardless of the splitting techniques, as they obtained 

comparable results. Compared to the inclusive results of the traditional classifiers, ensembles classifiers 

achieved accuracy rates around 69% - 75%, sensitivity rates between 30% - 70%, and significant 

specificity rates estimated as 88% - 91%. All things considered, RF bagging is the best model in terms 
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Figure 3.4: Performance evaluation for MS types prediction models 
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of accuracy, while DT classifier is the top model when it comes to sensitivity and specificity. Therefore, 

these two models are investigated further to find better results. Figure 3.4 compares the overall results 

obtained after evaluating the models, and Figure 3.5 shows the confusion matrices of the top-performed 

models. Note that the number of observations varies between the confusion matrices illustrated in 

Figure 3.5 to reflect the splitting approach used in each model. 

 

Hyperparameter Tuning 

RF classifier was slightly improved after hyperparameter tuning with 75.94% accuracy, 38.15% 

sensitivity, and 90.26% specificity. Thus, it could be expected that the performance of bagging model 

could be improved after using RF with hyperparameter tuning as the base estimator of bagging model. 

Figure 3.5: Confusion matrices for MS types top classifiers 
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As for DT, hyperparameter tuning underperformed the model as it got lower accuracy (69.28%), 

sensitivity (28.87%), and specificity (88.98%). Then, the top bagging ensemble nominated for further 

analysis was then retrained using the recent hyperparameter-tuned RF as the base estimators. It was 

found that the accuracy and specificity of the bagging RF model were not changed, after applying RF 

with hyperparameter tuning, even though the sensitivity was slightly improved by 0.20%. Nevertheless, 

this was an insignificant improvement. On the contrary, DT with hyperparameter tuning failed to score 

better results or even maintain the existing outcomes in all metrics. Therefore, training the best-reported 

traditional models with hyperparameter tuning did not enhance the performance of the top models. 

 

Discussion 

In this chapter, we investigated several supervised ML algorithms to generate predictions on the type 

of MS against real-world data. Unlike (Karaca and Hayta, 2015; Ion-Mărgineanu et al., 2017; Ekşi̇ et 

al., 2020; Taschler et al., no date), who investigated ML predictions against MRI or any imaging-based 

data, our study focused on classifying patients based on questionnaire-based clinical data. This dataset 

keeps records of MS patients’ demographics, medical history, quality of life, wellness, physical 

activities, current and past DMTs, and self-evaluated health scales. These baseline records were fitted 

into different prediction models with different settings. To our knowledge, the only attempt to use such 

clinical data in MS domain research was made by (Fiorini et al., 2015), even though their dataset 

partially covers MS’s medical features.   

 

The analysis started by examining the prediction outcomes of the traditional models, with default 

parameters, based on different feature selection and missing value imputation settings. This was 

essential to understand the influence of feature selection and missing value imputation on the 

performance of the traditional models. Here, RF for feature selection and KNNImputer were set up 

with default parameters and hyperparameter tuning, respectively. It was found that the prediction 
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accuracy results of the traditional models were better when applying feature selection using RF with 

hyperparameters tuning. In addition, hyperparameter tuning facilitated KNNImputer in filling missing 

values to improve the reported accuracy of the traditional models. We first decided to perform feature 

selection to minimize the computational complexity (time and resources) when imputing missing values 

and training ML models due to the limitation in computer resources. 

 

Eventually, we observed the prediction results after training all classifiers using the entire set of 

features. As anticipated, all models performed worse when considering all features. Thus, this 

observation verified and confirmed the importance of feature selection before fitting ML models for 

prediction. Besides, missing value imputation using model-based imputation methods, such as 

KNNImputer, was critical because ML models will not work as expected with missing values. 

KNNImputer has preserved the data volume and variation while sustaining data neutrality. Moreover, 

the best sets of parameters in all hyperparameter tuning tasks were done using RandomizedSearchCV. 

This random search is based on hyperparameter distributions which frequently outperforms grid search 

as the latter does not scale well when there are many hyperparameters to tune. 

 

As inferred from the outcomes of the three evaluation metrics used in this study, not all traditional 

models have convergent performance. Several of them got shallow results, while only some performed 

decently. Actually, most traditional models have noticeable results disparity, especially when trained 

using different splitting techniques. To clarify with an example, several models performed better in one 

splitting strategy while did worse in another splitting setup. Also, several models were evaluated better 

in specific metrics while acquired low results in other metrics. For instance, SVM was one of the models 

that got decent accuracy, but its sensitivity and specificity could have been more encouraging. 

Furthermore, all results obtained after training KNN, NB, perceptron, and SGD were insufficient. Only 
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RF, DT, and LR showed constantly promising outcomes in different metrics using different splitting 

strategies. Consequently, they were selected for further investigation.   

 

After observing the results of the ensemble classifiers, LR had no apparent effects on the performance 

of these models compared to RF and DT. However, better accuracy and specificity were reported when 

optimizing several ensembles with RF as the base estimator. On the other hand, DT has increased the 

sensitivity when utilized as a base estimator in several ensemble methods. Voting and stacking 

ensemble methods scored reasonable accuracy, sensitivity, and specificity when combining both 

models, but their results did not surpass the best-reported results of the top ensemble methods. What 

caught our attention was the fact that the results of all ensemble methods were very convergent despite 

the applied evaluation metric or the splitting technique. In other words, no specific ensemble models 

that mostly or frequently outperformed others in most of the testing scenarios. Only the top models that 

provided the best evaluation metrics were considered for further improvement. Unfortunately, using 

hyperparameter tuning did not reveal any significant improvements. Still, these remarkable findings 

could prove that ensemble classifiers, in general as a group, perform better compared to the group of 

traditional classifiers in such research studies. 

 

This empirical study investigated the best prediction model(s) based on evaluating each model's 

accuracy, sensitivity, and specificity. Thus, the proposed methodology would be medically persuasive 

compared to the literature, as previous work only focused on evaluating models via accuracy. 

Furthermore, the accuracy results reported in our experiment are superior to the outcomes estimated by 

(Ion-Mărgineanu et al., 2017; Taschler et al., no date). Nevertheless, our models were within the 

accuracy results presented by (Fiorini et al., 2015; Karaca and Hayta, 2015; Ekşi̇ et al., 2020) for several 

reasons. First, the dataset obtained for the presented analysis did not contain information about MRI, 

which is vital in decisions related to MS from a medical perspective. Also, previous work performed 
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predictions mainly through a binary classification, which is different from this study's objective, where 

the main aim was to perform multinomial classification. Nonetheless, the proposed framework made 

good use of a clinical baseline dataset covering more medical aspects of MS. In addition, the number 

of subjects recorded in the dataset was sufficient to make the discovered results rational and feasible, 

unlike most related research lacking enough instances to train ML models efficiently.   

 

While the study showed satisfactory outcomes, several limitations must be outlined here to be addressed 

in future work. First, dataset characteristics such as variables and the number of observations are 

medically inadequate after removing records with missing target values. The scarce and restricted 

availability of more comprehensive MS data is the leading cause of this drawback. Second, the collected 

MS data has some degree of imbalances among MS stages (target labels), especially where RRMS was 

reported more frequently. Notably, the majority of samples identified people with RRMS. Hence, there 

is some imbalance in the classification problem. This problem made the classification work relatively 

composite. Future work should focus more on collecting data that represents MS types in a more 

balanced way, meaning that all types should have a sufficient number of observations. Likewise, future 

research could focus more on the primary MS types and ignore several non-progressive MS types. On 

the bright side, our results are potentially medically accepted because most models could be used as 

specific tests for ruling in patients with a specific type, i.e., SPecific tests rule IN (SPIN) (Power, Fell 

and Wright, 2013).  

 

With that said, further investigation is necessary to expedite the utilization of ML in MS's clinical 

routines and decision-making. Special attention should be paid to implementing automated tools that 

facilitate the decision-making process, especially for newly diagnosed patients. For example, studying 

decision support systems that could detect MS lesions and determine the MS type simultaneously based 

on MRI readings without human interventions is recommended. Future work should concentrate on 
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implementing decision-support technologies that can comprehend MS progression and occurrence 

patterns. Additional research should use these model-based techniques to emphasize the causes of MS 

and its long-term effects on the quality of life of affected patients. Examining the relationships between 

MS and other diseases, particularly autoimmune and chronic neurological conditions, is also important. 

Despite that, accessing data and attaining more information associated with MS should be accelerated. 

These suggestions should be considered to improve MS's clinical practice. 
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Chapter 4 The Application of Predictive Machine Learning Models to 

Support Shared Decision-Making in Selecting the Best DMT Route of 

Administration 

Introduction 

Multiple sclerosis (MS) is a progressive disorder that attacks the brain and spinal cord, i.e., the central 

nervous system (Sospedra and Martin, 2005; Chiaravalloti and DeLuca, 2008). This disorder is the 

most common inflammatory disorder of the central nervous system because it is categorized as an 

inflammatory demyelinating disease (Lassmann, Brück and Lucchinetti, 2007; Milo and Kahana, 

2010). MS causes various cognitive, motor, and neuropsychiatric symptoms that appear independently 

(Chiaravalloti and DeLuca, 2008; Brownlee et al., 2017). These symptoms may include paresthesias or 

numbness, weakness or incoordination, visual dysfunction, vertigo, fatigue, bladder dysfunction, bowel 

dysfunction, sexual dysfunction, depression, heat intolerance, pain, Lhermitte's phenomenon, frequent 

falls, sleep disorder, and anxiety, to name a few (Milo and Kahana, 2010). Thus, the quality of life 

related to physical functioning, emotional health, and social life could be affected or disturbed (Col et 

al., 2019; McGinley, Goldschmidt and Rae-Grant, 2021).  

 

The exact trigger of MS is doubtful, but several genetic and environmental factors such as vitamin D 

deficiency, Epstein-Barr virus infection, ambient ultraviolet radiation, obesity (especially in 

childhood), and tobacco smoking habits are the possible reasons (confirmed or yet to be confirmed) 

correlated with MS, which makes it a complex disease (Trapp et al., 1998; Leray et al., 2016; Reich, 

Lucchinetti and Calabresi, 2018; Dobson and Giovannoni, 2019; McGinley, Goldschmidt and Rae-

Grant, 2021). In contrast, several other nominated potentials such as vaccines, stress, traumatic events, 

and allergies have not been identified as risk factors (Leray et al., 2016). MS patients manifest one of 

the following forms: clinically isolated syndrome (CIS), relapsing remitting MS (RRMS), progressive 
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MS (PMS) that refers to the combination of secondary progressive MS (SPMS) and primary progressive 

MS (PPMS), progressive relapsing MS (PRMS), and radiologically isolated syndrome (RIS) (Granberg 

et al., 2013; Lublin et al., 2014; Mahad, Trapp and Lassmann, 2015; D’Amico et al., 2016; Efendi, 

2016; deAndrés-Galiana et al., 2019). Overall, it is believed that there is a lack of MS awareness and 

education among healthcare providers, patients, and the general public (Rieckmann et al., 2013). A 

thorough examination of the disease's natural history may reveal much about the subject (Confavreux 

and Vukusic, 2006). 

 

A variety of disease-modifying therapies (DMTs) for the different episodes of MS have become 

available, which have prompted changes in treatment procedures over the past few years (Winkelmann 

et al., 2016). An early and accurate diagnosis of MS is critical to start an effective treatment plan 

especially in RRMS cases, the initial disease course, in order to maintain the quality of life of MS 

patients (Rieckmann et al., 2013; Brownlee et al., 2017; Kobelt et al., 2017). MS disease management 

is found to be effective with the introduction and use of DMTs (Kobelt et al., 2017). Around 70% of 

MS cases are controlled and managed with different types of DMTs (Sormani et al., 2021). Existing 

MS DMTs reduce the relapses’ frequency and slow the likelihood of developing disabilities associated 

with the relapses by modulating or suppressing the patient’s immune system (Rieckmann et al., 2013). 

Controlling disease activity, stopping disease progression, and, ideally, inducing the reversal of 

neurological impairments are the main objectives of MS DMTs (Winkelmann et al., 2016). Through 

long-term inflammation control and the regulation of abnormal immunological responses, DMTs 

attenuate or mute disease activity, slow disease progression and relapse rates, and decrease disability 

probabilities (Winkelmann et al., 2016). Based on the presented facts, DMTs are essential to ensure 

stability and improvement in MS patients’ quality of life. 
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Current available DMTs vary in mode of action, risk profiles, monitoring needs, usefulness in 

preventing relapse and disease progression, and side effects (Arroyo et al., 2017; Visser et al., 2020). 

In addition, MS DMTs are delivered through three routes of administration: oral, injectable, and 

infusion (Bowen et al., 2020; Visser et al., 2020). Each DMT, available for prescription, offers a range 

of potential benefits but might tolerate life-threatening risks (Alshamrani et al., 2020). Utilizing the 

growing number of MS-treating medications demands an in-depth understanding of treatment-

associated risks, risk-reducing strategies, and procedures for monitoring and treating such adverse 

events (Winkelmann et al., 2016). Additionally, when selecting MS DMTs, as well as throughout and 

after therapy, individual stratification of treatment-related risks is required (Lee Mortensen and 

Rasmussen, 2017). Therefore, the decisions regarding selecting the best DMT rely heavily on 

evaluating the risk of further MS progression and considering the risk versus efficacy of a specific DMT 

(Wiendl et al., 2021). These tradeoffs that should be considered when choosing a specific MS DMT 

among a variety of options make this type of decision difficult as physicians and patients must decide 

what tradeoffs, consequences, and long-term benefits they are willing and ready to make.  

 

In fact, MS is a preference-sensitive condition that requires a shared decision-making process, meaning 

that both the physician and the patient should participate in the decision-making process (Colligan, 

Metzler and Tiryaki, 2017). Thus, MS physicians and patients would have a tremendous deal of 

responsibility since they would need to be fully knowledgeable about the current state of MS that they 

are dealing with, in addition to the potential risks and benefits of all possible alternatives to achieve the 

optimal decisions, especially decisions about selecting the best DMTs (Alshamrani et al., 2020). MS 

manifestation varies among patients as different patients require tailored treatment plans, as each plan 

is associated with a patient’s conditions and symptoms. Thereby, using a reliable decision-making tool 

would assist both parties of the shared decision-making process, a clinician and a patient, in selecting 

the most suitable treatment regimen.  
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To address the research gap identified, an automated system that expedites the shared decision-making 

process without human intervention is proposed by utilizing machine learning (ML) algorithms. ML is 

gaining popularity in the medical field for mining and analyzing massive amounts of medical data 

(Sweeney et al., 2014). Medical organizations have been using ML as the primary method for assessing 

medical knowledge for decision-making (Tuggener et al., 2019). Because of the ambiguity of MS 

(including its etiology, progression, clinical manifestations, and response to treatment), ML algorithms 

are being exploited in several pieces of research in the MS realm (Alshamrani et al., 2020). Therefore, 

the main goal of this work is to explore different supervised ML models in predicting the best route of 

administration for delivering DMTs to persons affected by MS and comparing the models’ performance 

against a real-world MS dataset. A framework that compares the outcomes of different traditional and 

ensemble classifiers to address the proposed research objective is presented. 

 

The remainder of this study is structured as follows: Section 2 briefly presents the related work of ML 

algorithms in determining the best DMTs. Section 3 explains the proposed methodology. Section 4 

describes the results. Section 5 discusses the results and trends. Finally, Section 6 concludes this study.  

 

Related Work 

This section provides an overview of past research endeavors that contributed to aid decisions regarding 

DMTs prescriptions. Past Proceedings focusing on predicting responses to or effects of DMTs are 

excluded, along with other studies highlighting the predictions of MS patients’ treatment adherence. 

Therefore, the following studies demonstrate the previous attempts to support DMTs selection 

decisions. Clark et al. (Clark et al., 2019) investigated the most suitable medication routes of 

administration among the three possible alternatives for MS patients receiving DMTs. The study was 

conducted using data about diagnosis, clinical measures, treatment patterns, and perceptions of patient 
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suitability for each DMT. The total number of participants was 1978 from 5EU 

(UK/Germany/France/Italy/Spain) and 756 from the US. The finding of this work suggested that the 

populations of patients with mild forms are suited for injectable therapies, unlike populations with 

worsening progressions that need infusions. In addition, oral medicines exhibit great appropriateness 

in all populations, indicating broad use. 

 

Talwar et al.(Talwar et al., 2021) classified groups of patients based on their prescribed disease-

modifying agents (DMAs) into injectable, oral, or infusion users. The analysis was done using data 

provided by TriNetX, the world’s largest living ecosystem of real-world data, from a federated 

electronic medical records (EMR) network that provides information about MS patients. The total 

population included in the study was 12,922 representing MS patients ≥ 60 years old, where 2,455 of 

these patients (18.99%) have active DMA prescriptions. Multivariable logistic regression (LR) model, 

based on Andersen Behavioral Model, was used to assess factors associated with prescribing DMAs. 

Overall, multivariable LR found that groups representing patients between 60–64 years and 65-69 years 

were more likely to receive DMA than patients 70 years and older, with 2.39 and 1.60 adjusted odds 

ratios, respectively.   

 

Li et al. (Li, Huang and Aparasu, 2022) presented a study of implementing and analyzing ML models 

for predicting DMA switching among MS patients. Mainly, the study focused on predicting whether an 

MS patient would receive a different DMA prescription than their previous prescription during the 

follow-up visit. The researchers trained LR, least absolute shrinkage and selection operator regression 

(LASSO), random forests (RF), and extreme gradient boosting (XGBoost) against TriNetX data to 

predict treatment switch. It was found that 16% of the 7,258 eligible MS patients with at least one DMA 

have changed their treatment within two years. Furthermore, RF model had the best performance with 

61% accuracy, 60% recall, and 72% F1 score, even though other models got comparable results. 
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Due to the limited number of research on the proposed topic, the scope of the literature analysis was 

expanded to include a study that tried to predict suitable DMTs for patients affected by another disease. 

Khalaf et al. (Khalaf et al., 2017) investigated the utilization of ML to indicate the effective dosage 

levels suitable for Sickle cell disease (SCD) patients. Various ML models were fitted with data from 

1168 SCD patients acquired from the Alder Hey Children's Hospital in Liverpool, UK. Each sample in 

the dataset keeps records of 13 SCD’s vital factors representing information associated with the disease 

course. The result reported in the study showed that multilayer perceptron trained using the Levenberg-

Marquardt algorithm, RF, and decision tree (DT) classifiers outperformed all other models with 100% 

accuracy, even though that the expectations of this work were in favor of artificial neural network 

algorithm. 

 

All things considered, these contributions provided prospective beneficial efforts toward implementing 

model-based decision support tools useful in decisions associated with determining appropriate DMT 

plans. However, this research domain is still inadequate. To the best of our knowledge, facilitating 

decisions regarding MS DMTs via automated approaches is considerably limited. To date, there has 

not been an actual intention to address the presented research gap as all related work demonstrated 

above are either preliminary conference proceedings or a corresponding study related to another 

disease. Therefore, the novelty of the proposed study is recognized as a genuine framework of a model-

based decision support tool practical for enhancing the shared decision-making associated with 

selecting the best MS DMTs suited for patients’ needs. Thus, the presented work is an encouraging first 

step toward ML applications in MS DMTs clinical specification. 
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Methodology  

Study Material 

In this study, the acquired data is a part of the iConquerMS™ initiative established by a non-profit 

organization called Accelerated Cure Project (ACP) for MS. Recruitment of participants for this 

initiative began around 2010, and the data was obtained through a questionnaire-based repository. This 

repository was populated by individuals diagnosed with MS who voluntarily submitted questionnaires 

detailing information pertaining to their medical history, MS symptoms, lifestyle habits, and DMTs. 

The inclusion and exclusion criteria for participation can be found at 

(https://www.iconquerms.org/swms-inclusion-requirements). The raw dataset consists of 8329 

participants, each with a clinical record including up to 247 attributes. It is important to note that the 

number of attributes was reduced by removing identifiable attributes and attributes with a high degree 

of freedom to minimize data dimensionality. 

 

Ethics 

The valid use of the dataset is dedicated to research and was authorized by the Office of Research 

Assurances of the University of Idaho through an approved Human Research Protections (IRB) 

application (Authorization 21-235, dated February 1st, 2022). Appendix F provides more information 

about the IRB. 

 

Preprocessing  

In order to perform practical feature engineering in this study, three key preprocessing steps were 

considered. Firstly, the features were evaluated for their significance in predicting MS DMTs’ 

administration routes through a two-round process. Out of all the features in the dataset, the first round 

of filtering was conducted from a neurological standpoint after consulting an MS expert. The number 

of features selected, along with the target variable, was 214. Subsequently, an automated feature 



 

 
 

63 

selection approach was utilized to further reduce the number of features. A subset of the filtered dataset 

containing records with no missing values was used to accurately perform the second round of feature 

selection. This was a critical step to ensure the optimal functioning of the automated feature selection 

tool. The feature selection was conducted using the recursive feature elimination (RFE) algorithm 

(explained in Figure 4.1) from sklearn.feature_selection module.  

 

Handling incomplete records in the raw dataset was crucial before using ML models, and thus missing 

value imputation was carried out. A model-based imputation method was employed to impute the 

missing records after the dimensionality of the dataset was reduced based on the selected features. 

Model-based imputation techniques that utilize ML algorithms have been shown to outperform 

traditional statistical imputation techniques (Cevallos Valdiviezo and Van Aelst, 2015; Pan et al., 2015; 

Silva-Ramírez, Pino-Mejías and López-Coello, 2015; Conroy et al., 2016; Raja and Thangavel, 2020; 

Bertsimas, Pawlowski and Zhuo, no date). This study utilized k-nearest neighbor (KNN) imputation 

for the imputation process. The missing values of each instance were imputed using the mean value of 

the n_neighbors nearest neighbors. Additionally, the categorical independent and target variables were 

encoded using the OrdinalEncoder and LabelEncoder preprocessors from the scikit-learn library. These 

1. Train the model using all features 

2. Calculate the feature importance or ranking 

3. For each subset Ti, i = 1, 2, 3,…, n do 

a. Keep the Ti most important features 

b. Train/test model against Ti features  

c. Recalculate model performance 

d. Recalculate the importance of ranking of each feature 

4. Determine the optimal number of features 

5. Use the classification model with the selected optimal set of features 

 
Figure 4.1: RFE algorithm 
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steps were crucial to improving the efficiency and performance of the model training and prediction. 

The combination of feature selection and missing values imputation is common in recent medical 

research in the MS domain and has been found to enhance the analysis of the complete dataset (Suganthi 

and Karunakaran, 2019; Liu et al., 2020; Cui, Hu and Liang, 2021; Sharma and Kaur, 2021; Awawdeh, 

Faris and Hiary, 2022; Christo et al., 2022; Faisal and Tutz, 2022; Kabir and Farrokhvar, 2022; 

Nagarajan and Dhinesh Babu, 2022; Seba and Benifa, 2022). Thus, this approach was adopted in this 

study. 

 

It is noteworthy that prior to feature selection and missing value imputation, records of patients who 

did not specify their current MS DMT were removed to avoid biases in the imputation of missing values 

for the target feature. A total of 2082 patients reported their current MS DMTs, and the classification 

models were trained with these instances (753 oral, 682 infusion, and 648 injectable). This research 

methodology aims to determine the best ML algorithm that can categorize MS DMTs into injectable, 

infusion, or oral based on historical data. Therefore, before constructing the predictive models, an extra 

feature with ternary outcomes was added to each sample i. This additional attribute refers to one of 

DMTs’ routes of administration mentioned above. In other words, this newly created label indicates 

whether an MS patient consumes their prescribed DMT as injectable, infusion, or oral. The outcomes 

were formally defined as follows: 

𝑦𝑖
𝑘 {

2, patient with injectable DMT 
1, patient with infusion DMT    
0, patient with oral DMT            

 

 

Classification 

This study considered traditional ML algorithms such as RF, SVM, KNN, LR, DT, naive Bayes (NB), 

perceptron, and stochastic gradient descent (SGD). Also, the performance of voting, bagging, gradient 

boosting, AdaBoost, stacking, and XGBoost ensembles was evaluated. The dataset was divided into training 
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and testing subsets using five different splitting techniques, and the performance of the models was 

compared based on accuracy, recall, F1 score, and precision. These evaluation metrics were calculated based 

on the results of the confusion matrix indicators (True Negative (TN), False Negative (FN), False Positive 

(FP), and True Positive (TP)). The ratio of correctly classified instances determined the accuracy of the 

predictions: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +  𝐹𝑃 + 𝐹𝑁
 

Recall measures the proportion of positive instances correctly identified by the classifier out of all 

positive instances in the data. It is also known as the sensitivity or the TP rate: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Figure 4.2: Framework design for predicting DMT’s route of administration 
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Besides, precision is the proportion of true positive predictions among all positive predictions made 

by the model. In other words, It indicates the proportion of positive predictions that are actually 

correct: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

F1 score is the harmonic mean of precision and recall. F1 score provides a balance between precision 

and recall, and a high F1 score indicates a model that has both high precision and high recall, meaning 

it has a good balance of not falsely classifying negative instances as positive and accurately detecting 

positive instances: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

In a multiclass classification problem, where multiple classes exist to be predicted, the confusion matrix 

is commonly represented as an N x N matrix, where N denotes the total number of classes. The diagonal 

elements of the matrix correspond to the number of accurate predictions for each class, while the off-

diagonal elements represent the misclassifications. Please refer to Figure 3.2 for a detailed 

demonstration. Accuracy is computed by dividing the total number of correct predictions by the total 

number of predictions, while other evaluation metrics are computed through macro averaging. Macro 

averaging is an established method in data analysis and ML to assess a classification model's 

performance by calculating the model's average performance metric across multiple categories or 

classes. To carry out macro averaging, the performance metric for each class in the dataset is computed 

individually. Next, the average of these metrics is determined across all the classes, thereby providing 

an overall evaluation of the model's performance across different classes. 

 

The following methodology was employed in the present study to identify the most suitable classifier 

for categorizing patients’ DMTs into injectable, infusion, and oral DMT groups based on historical 

data. Moreover, the analysis was conducted using the scikit-learn package in Python 3.7. RFE model 

was trained using the complete dataset to select the most important features. The missing values in 
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the selected features were imputed using KNNImputer. Subsequently, the traditional ML models (RF, 

SVM, KNN, LR, DT, NB, perceptron, and SGD) were trained using the imputed dataset and evaluated 

using default parameters. The top classifiers were then selected for further examination. The ensemble 

learning methods (voting, bagging, AdaBoost, and stacking) were trained using the imputed dataset and 

their default parameters, with the top traditional models serving as their base estimators. The 

performance of all models was compared to determine the best classifier. The steps outlined above were 

carried out using three test:train ratios (10:90, 20:80, and 30:70) and two cross validation (CV) methods 

(10-folds and 5-folds). Ultimately, the prediction results after training all classifiers on the entire feature 

set determined from a neurological perspective was observed. In addition, classification results were 

examined after training all models again but with only the subset of features selected by RFE algorithm. 

The overall architecture of the prediction framework is illustrated in Figure 4.2. 

 

Results 

Dimensionality Reduction 

Following the recommendations of a consulted MS specialist, 214 features were initially considered. 

Moreover, feature selection using RFE was done using RF, DT, and ExtraTreesClassifier as the base 

estimators embedded in RFE method. From the pool of 214 features, 106 features were found by RFE 

that used RF as the base estimator (using 30:70 rule). Note that the number of features specified above 

represents features that enabled the study’s classifiers to perform better. The prediction models trained 

with the chosen sets of features have obtained more convenient results, as demonstrated next. Appendix 

C lists the most important features and their description, while Appendix D lists features by order of 

their importance. To address the issue of incomplete data in the newly selected sets of features, 

KNNImputer was utilized with default parameters to complete the missing values. 
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Classification Results 

After applying various splitting strategies, the results obtained from the tested classifiers are outlined 

in Table 4.1 and Table 4.2. The results showed that the RF model outperformed all other traditional 

models in most metrics. In fact, RF model trained using 20:80 splits got the highest accuracy at 48.20%, 

recall at 48.77%, and F1 score at 47.64%. Furthermore, SGD scored the highest precision at 56 % 

(10:90 splits). Overall, the results of all evaluation metrics of all traditional classifiers using different 

splitting techniques ranged between 23% and 56%. However, the results of traditional classifiers 

showed a noticeable disparity in changing the splitting technique. The only models with comparable 

and consistent results over the different splits were RF, LR, and SVM. Thus, these three classifiers that 

achieved the topmost results when trained against 106 features were nominated for further investigation.  

 

Notably, the ensemble learning analysis results vary regardless of the trained model and the splitting 

approach. Remarkably, gradient boosting classifier, trained with 80% of the data, outperformed all 

other ensemble methods as it increased the accuracy to 49.88% and recall up to 50.22%. The highest 

precision rate was 50.90% when AdaBoost classifier (used RF as a base estimator) trained with 20:80 

splits. Again, gradient boosting classifier got an F1 score at 49.83% when fitted with 20:80 splits. 

Overall, ensemble classifiers slightly got improved compared to the traditional models, except in one 

precisian result. Therefore, the findings suggest that ensemble learning methods performed 

classification tasks well, but this study also proved that traditional models were as good as ensembles 

through the recorded results. Figure 4.3 and Figure 4.4 overview the overall comparison between the 

performance of all models. Figure 4.5 demonstrates the confusion matrices of RF (best traditional 

model) and gradient boosting (best ensemble classifier). Given the different splitting strategies utilized 

in each model, the confusion matrices shown in Figure 4.5 have different numbers of observations.
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Figure 4.3: Overall highest results of traditional models for predicting route of administration 

Figure 4.4: Overall highest results of ensemble models for predicting route of administration 
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Discussion  

The initial phase of the study involved evaluating the prediction accuracy, recall, precision, and F1 

score of traditional models with default parameters, under various configurations of feature selection 

in addition to model-based missing value imputation. This was an essential step for understanding the 

impact of feature selection and missing value imputation on the performance of the traditional models. 

Subsequently, the prediction results of all classifiers were analyzed after training these classifiers 

against the best subset of features. Accordingly, all models performed well when the selected subset 

was considered compared to the results observed after using the entire feature set. Additionally, missing 

value imputation using model-based methods, such as KNNImputer, was critical as ML models cannot 

produce accurate predictions with the existence of missing values. KNNImputer was found to preserve 

the data’s amount and variation while maintaining neutrality. 

 

Even though the proceedings presented by (Clark et al., 2019; Talwar et al., 2021) correspond to the 

objective of this study, they need more application of ML as the first focused mainly on descriptive 

statistics, and the latter utilized only one ML model. Comparing the performance of several ML 

methods should be sufficient when choosing ML as the primary solution because each algorithm 

Figure 4.5: Confusion matrices for route of administration best prediction models 
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performs variously depending on the problem and the dataset being used (Alshamrani et al., 2020). In 

contrast, the study provided by (Li, Huang and Aparasu, 2022) utilized a variety of ML models, but the 

objective did not correspond exclusively to the main aim of this analysis. In addition to these studies, a 

study that attempted to predict which DMTs would be most effective for individuals with another 

disease was explored. To our knowledge, the only work found was presented by (Khalaf et al., 2017), 

where the authors made the prediction task efficiently. However, the objective went in a different 

direction than the main aim presented in this chapter.  

 

The present study offers a novel contribution to the MS domain by making good use of different ML 

models to facilitate decisions associated with MS DMTs. Explicitly, the outcomes examined in the 

proposed study significantly promoted ML as the ground solution to automate the shared decision-

making process in the presented matter. Namely, the performance of the analyzed models in the 

presented work surpassed the findings of the proceedings presented in the literature, especially those 

related to the field of MS. Although the objective of (Li, Huang and Aparasu, 2022) was marginally 

different as the researchers tried to estimate the probability of DMTs being switched, the results of this 

analysis exceeded their findings. Besides, the results of (Clark et al., 2019; Talwar et al., 2021) were 

inconclusive compared to the findings demonstrated earlier as the above mentioned proceeding paper 

did not provide enough evidence of using the necessary model evaluation metrics that indicate the 

usefulness of the methodology. In this study, the highest reported accuracy rates were comparable 

across all models as they were around 37% - 49%, while the highest precision was noticeably disparate, 

with proportions around 39% - 56%. The highest recall ratio was around 36% - 50%, and the highest 

F1 scores were 35% - 49%. Ultimately, the prediction performance of all classifiers was assessed after 

training the models on the entire feature set. As hypothesized, the overall performance of all models 

was lower when all features were considered. This finding emphasizes the important role of feature 

selection in preparing ML models for prediction tasks. 
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Despite the satisfactory results, several limitations must be addressed in future research. Primarily, the 

dataset's characteristics, including the variables and the number of observations, need to be more 

medically sufficient due to the removal of records with missing target values. Furthermore, the leading 

cause of the limitation is the limited availability of more comprehensive MS data. For instance, it could 

be suggested from the results that additional features correlated with MS DMTs, other than the recorded 

features in the used dataset, should be considered when forming decisions related to MS DMTs. 

Comprehensively, it is trusted that the proposed framework and the achieved outcomes are deliberated 

as an actual first step in boosting ML applications in MS’s clinical decisions associated with DMTs. 

Hence, this is solid evidence that this contribution has superiority over the work presented in the 

literature.  

 

In light of this, further research is imperative to accelerate the integration of ML into the clinical 

routines and decision-making processes of MS. A particular focus should be placed on implementing 

automated tools that simplify decision-making, particularly for newly diagnosed patients. As an 

illustration, examining decision support techniques that can accurately determine the best DMTs for 

MS patients based on clinical baseline data without human involvement is suggested. Furthermore, 

future efforts should be directed toward implementing decision-support technologies to analyze MS 

progression and identify occurrence patterns. Moreover, further research utilizing model-based 

techniques is needed to highlight the underlying causes of MS and its impact on affected individuals' 

quality of life, specifically over the long-term. Nevertheless, it is essential to prioritize the acquisition 

of data and additional information regarding MS. These considerations should be considered to improve 

MS's clinical practices.  
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Chapter 5 Using Knowledge Graph to Improve Informed Multiple 

Sclerosis Diagnosis and Treatment Decisions 

Introduction 

Multiple sclerosis (MS) is a chronic and demyelinating inflammatory disorder that affects the central 

nervous system of the human body caused by various genetic and environmental factors (Trapp et al., 

1998; Sospedra and Martin, 2005; Ascherio and Munger, 2016; Reich, Lucchinetti and Calabresi, 2018; 

deAndrés-Galiana et al., 2019). Several environmental risk factors, including geographic latitude, 

vitamin D deficiency, exposure to tobacco, obesity, and infection with the Epstein-Barr Virus, are 

known to enable the progression of MS. However, the precise causes that trigger MS are still 

unidentified (Trapp et al., 1998). Persons with MS may encounter simultaneous yet independent 

symptoms during the lifetime of this non-life-threatening disease, such as sensory, visual, motor, 

cognitive, and cerebellar disorders (Miri Ashtiani et al., 2018). Moreover, these symptoms and their 

impacts vary between persons with MS as they are unpredictable (Goldenberg, 2012). In general, MS 

has four main categories that represent its progression level: relapsing remitting MS (RRMS), 

secondary progressive MS (SPMS), primary progressive MS (PPMS), and progressive relapsing MS 

(PRMS) (Goldenberg, 2012). All things considered, examining MS's natural history in great detail 

could reveal a lot about this disease. 

 

Magnetic resonance imaging (MRI), lumbar punctures, and blood tests are the major medical tests that 

help confirm MS cases, considering the 2017 revised McDonald criteria (Ghasemi, 2017; Thompson et 

al., 2018; McNicholas et al., 2019). After diagnosis, physicians prescribe disease-modifying therapies 

(DMTs) to control the potential progression and relapses of MS, in addition to treatments for managing 

its symptoms since this disorder cannot be prevented or cured (Montalban et al., 2018). MS has several 

commonalities with other disorders that share several clinical features, making decisions regarding the 

treatment and the diagnosis difficult, despite the available diagnosis criteria (Hauer, Perneczky and 
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Sellner, 2021). Thus, decision-making about MS diagnosis and treatment is highly critical and requires 

intensive experience and knowledge, even though the decisions’ quality may remain doubtful due to 

MS-related uncertainties (Alshamrani et al., 2020). MS is a preference-sensitive condition requiring 

full participation from MS specialists and patients in decision-making (Colligan, Metzler and Tiryaki, 

2017; Alshamrani et al., 2020). Having an accessible platform that can provide intuitive access to 

information will facilitate and ease the decision-making process for affected persons and physicians 

mediating the management of this disease (Colligan, Metzler and Tiryaki, 2017). Hence, decision-

makers should possess knowledge about the current state of the condition and the possible benefits and 

risks of all available therapeutic options to attain the best decisions.  

 

A knowledge graph accumulates and conveys domain knowledge through entities of interest and their 

relationships by representing real-world knowledge (Hogan et al., 2021). In ancient history, the 

knowledge graph concept was recognized as the core indication of diagrammatic knowledge 

representation (Gutierrez and Sequeda, 2021). Knowledge graph in the era of big data is considered as 

the integration of knowledge and data at a large scale with diversified formats (Gutierrez and Sequeda, 

2021). The consideration of known general biological mechanisms in patient-specific health data 

analytics has recently been acknowledged as a necessity (Gustafsson et al., 2014). Acquiring and 

specifying knowledge in formal, simple, powerful, and incremental ways and then applying applicable 

reasoning to that knowledge would be a significant outcome in health informatics (Riaño et al., 2012).  

 

Online resources provide extensive medical information and grant access to feasible explanations about 

diseases and symptoms to people with no medical background or knowledge. Though, the web as a 

source of information could potentially increase people's anxiety due to the unreliability of the 

information (White and Horvitz, 2009). Patients seeking information about their conditions need 

automated tools to support rational medical reasoning procedures (Rotmensch et al., 2017). However, 
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comprehensive information about MS and the availability of credible sources are globally scarce for 

persons with MS and anyone eager to know more about this condition (Browne et al., 2014). Persons 

with MS increasingly need reliable information about this disorder, including its symptoms and ways 

to control and manage the disease, to name a few (Meca-Lallana et al., 2017).  

 

Knowledge graphs, which naturally close the gap between basic science research and medical practice, 

can fill this demand as they link data from several biological and medical concept classes (Nicholson 

and Greene, 2020; Nelson et al., 2022). In fact, such an idea would be phenomenal in the MS domain 

as it reinforces sharing and reusing MS knowledge among the shared decision-makers for nominating 

practical decisions. Thus, the knowledge graph is feasible to support shared decision-making in MS 

diagnosis and treatment. Thus, this chapter aims to develop the MS knowledge graph (MSKG) and 

make it an accessible, reliable, easy-to-use source of information. The main intention is that MSKG 

would empower patients in informed decisions associated with MS diagnosis and treatment and 

strengthen the patient-physician relationship for a more efficient and satisfactory medical decision-

making experience. 

 

The remainder of this chapter is organized as follows: Section 2 presents the related work of knowledge 

graphs in health informatics. Section 3 explains the methodology of MSKG construction. Section 4 

describes the results. Section 5 discusses remarkable findings and trends. Finally, Section 6 concludes 

this study.  

 

Related Work 

Note that articles that demonstrate the application of knowledge graphs in MS research as a domain 

knowledge representation mechanism are included, in addition to articles that examine knowledge 

graphs as knowledge representation techniques in the medical domain that indirectly consider MS. On 
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the other hand, articles that investigate using graph-based techniques, graph theories, and knowledge 

graphs for non-MS purposes are excluded. 

 

By embedding individual patient data into a biomedical knowledge graph, Nelson et al. (Nelson et al., 

2022) presented a method for integrating domain knowledge into clinical diagnosis to feasibly enable 

the detection of MS up to five years prior to their confirmed diagnosis in the clinic. The researchers 

presented SPOKEsigs, a scheme to embed electronic health record data onto SPOKE knowledge graph 

(Sanders, Pearce and Baranzini, 2020) to obtain high-dimensional health status profiles. To determine 

who is at risk of MS, SPOKEsigs were calculated for hundreds of thousands of people, and a random 

forest (RF) classifier was trained. Fecho et al. (Fecho et al., 2021) implemented an open biomedical 

knowledge graph-based system known as ROBOKOP (Reasoning Over Biomedical Objects linked in 

Knowledge Oriented Pathways). This knowledge graph is a biomedical graph-based question-

answering system that enables users to find the relationships between the terms found in the provided 

questions by the users. ROBOKOP represents a wide range of biological entities and predicates. For 

instance, ROBOKOP addresses the association between carbon monoxide and multiple sclerosis as an 

example of the impact of workplace exposures on immune-mediated diseases. 

 

Rotmensch et al. (Rotmensch et al., 2017) constructed a health knowledge graph that associates 

diseases and symptoms directly from electronic medical records (EMR). Their work examined and 

observed the EMR data to plot a graph to link symptoms to the diseases that caused them. It is worth 

mentioning that MS frequently appeared in the EMR data of the emergency department. Desarkar et al. 

(Desarkar et al., 2013) discussed capturing the users’ prepositional knowledge, which denotes the 

representation of facts about diverse medical topics. This proposed framework was known as Med-

Tree, intended for decision-making purposes in several healthcare domains. The total number of 

medical topics was 21, and all were posted and discussed by patients on the PatientsLikeMe social 
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network. MS ranked sixth among the 21 topics based on the PatientsLikeMe website's intensity of 

interests and interactions. 

 

Several reasoning and inference agents and prediction techniques can make good use of the domain 

knowledge conceptualized in knowledge graphs to automate the decision-making process. This would 

augment medical decisions about MS and conceivably have automated medical justifications that could 

surpass qualified MS specialists. However, there is no clear intention in the literature to enrich the MS 

research domain with knowledge graphs. To our knowledge, the potential of the knowledge graph 

principle has yet to be heavily exploited in the research of MS based on the conducted analysis. Based 

on this understanding, MS needs proper attention like other chronic diseases, regardless of its 

uncommonness and data scarcity, especially from the computer and data science perspective. Hence, 

representing and visualizing MS’s fundamental information using a knowledge graph would be a novel 

endeavor to complement the existing research. This would promote the availability of an MS public 

knowledge base, improve the quality of MS diagnosis and treatment decisions, and raise public 

awareness about MS.   

 

Methodology 

It was observed that various pieces of knowledge were coded since the emergence of the first ontology 

engineering tools (Gutierrez and Sequeda, 2021). Ontology, as an aspect, has become gradually 

significant due to the widespread applications of knowledge graphs, machine learning (ML), natural 

language processing, and the massive volume of data generated on a daily basis (Kendall and 

McGuinness, 2019). An ontology is a formal specification of the shared conceptualization of a 

knowledge domain (Ma et al., 2014). Therefore, ontology engineering would be used to form a suitable 

knowledge graph for securing the objective of this study.  
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In this work, the MSKG is constructed with the aid of ontology engineering by means of Web Ontology 

Language (OWL2) and expressed in Terse RDF Triple Language (Turtle) using Protégé 5.5. The 

MSKG addresses the following major questions in the ontology engineering process: (1) what is MS? 

(2) which part of the human body does it affect? (3) what are the common and possible symptoms? (4) 

what are the potential causes? (5) what are the licensed DMTs to control it, and what are their side 

effects? (6) where should patients be treated and by whom? (7) what are the current and standard 

diagnostic procedures and strategies? and (8) what is the role of MS specialists in such a condition? 

Figure 5.1 demonstrates the methodology design. 

Figure 5.1: Methodology design for constructing MSKG 
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All key concepts and relationships presented in the MSKG were derived from the authors’ conceptual 

understanding based on subjective experience and knowledge. In other words, the inclusion of the terms 

specified in the MSKG was driven by the interest in representing MS domain knowledge from the 

perspective of its general overview and basic facts. This comprehension was gained from analyzing 

various MS knowledge sources such as informal discussions with neurologists and MS specialists, 

scientific articles, existing healthcare ontologies, and informative online web contents and materials 

(e.g., the National Multiple Sclerosis Society, MS International Federation, Above MS by Biogen, 

Multiple Sclerosis Association of America, Multiple Sclerosis Foundation, National Institute of 

Neurological Disorders and Stroke, and PatientsLikeMe).  

 

Result 

The MSKG is structured to explain MS and several common factors related to it for enhancing the MS 

shared decision-making experience. Furthermore, the sketched MSKG formed a starting point for those 

who want to gain fundamental knowledge about MS. Thus, newly diagnosed or at high-risk MS 

patients, their first-blood relatives, and individuals interested in knowing more about MS are the 

targeted potential audience of the presented knowledge graph. All expressions presented in MSKG are 

based on their importance to the inclusive understanding of MS and how they are significantly 

correlated with the conceptual overview of MS.  

 

The “MultipleSclerosis” concept was used as the basis for implementing the class hierarchy in MSKG. 

Accordingly, all other concepts were organized into preliminary and accumulated information. The 

preliminary information signifies the prime facts that are rationalized to specify the initial knowledge 

about MS. This, in turn, would determine additional concepts that enlarge the MSKG framework in 

order to tolerate a more comprehensive representation of the MS domain. On the other hand, the 
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accumulated information represents details that expand the MS knowledge base. This expansion has 

identified the major concepts in MSKG. Substantially, MSKG is a centralized network of terms where 

MS is the central concept, and all concepts are related to it directly or indirectly. 

 

 

 

 

Figure 5.2: Key characteristics of MS 

Figure 5.3: MS confirmation procedures 
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Figure 5.5: MS treatment alternatives and plans 

Figure 5.4: Class individuals of MS DMTs 

Figure 5.6: MS symptoms and potential causes 
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The MSKG consists of 63 classes, 20 object properties, and 123 instances. It should be noted that all 

object properties presented in MSKG are specified to indicate the concepts’ extent of linkage to MS. 

The MSKG classes disclose MS in addition to its common and uncommon symptoms, potential 

etiology, influence on the central nervous system, and classification under disease taxonomy. 

Moreover, these classes address the responsibilities of MS specialists and several other healthcare 

providers in MS practices, the assignment of diagnostic procedures (various medical tests and physical 

examinations) for confirming MS, the provision of care in neurologic care/MS and rehabilitation 

centers, and the certified medical procedures that improve MS patients' quality of life. Besides, these 

classes examine the role of DMTs in controlling MS, their types, and their possible side effects. It is 

worth mentioning that instances support several of these classes to exemplify the benefits of adopting 

such a knowledge graph in the MS research domain. Figures 5.2-5.6 conceptualize MSKG using 

OntoGraf. Note that the MSKG class hierarchy is sketched using OWLViz and can be found in 

Appendix E. 

 

Discussion  

The MS decision-making process demands the involvement of healthcare providers and patients 

because this condition is a preference-sensitive condition, as noted earlier in this chapter. Confirming 

MS cases is challenging due to the similarities shared with other diseases of the central nervous system, 

despite the availability of the updated McDonald criteria for MS diagnosis. Furthermore, 

pharmaceutical companies offer different MS DMTs with potential benefits and life-threatening risks. 

Thus, sufficient knowledge and experience are necessary for all participants when forming decisions 

associated with MS. Therefore, ontology engineering is critical for composing reliable knowledge to 

provide a shared understanding of the MS domain. 

 



 

 
 

85 

Web users and medical professionals agree that the contents presented online may increase the 

apprehensions of people with little or no knowledge about several medical fields. Thereby, research 

has been conducted to enrich people’s knowledge in various health domains. On the contrary, MS's key 

facts are not sufficiently presented in cyberspace. For instance, the research analyses explored by 

(Desarkar et al., 2013; Rotmensch et al., 2017) consider MS knowledge slightly and are not entirely 

dedicated to conceptually representing MS domain knowledge. The researchers of (Rotmensch et al., 

2017) concentrated on constructing a health knowledge graph to find the associations between major 

diseases and their common symptoms. On the other hand, the research investigation made by (Desarkar 

et al., 2013) complies with the objective of this chapter. However, the knowledge graph of that work 

highlights common information related to numerous medical topics, not just MS. From the ontology 

engineering perspective, ontology-based knowledge representation of the MS illustrated in (multiple 

sclerosis, no date; Multiple sclerosis ontology - Summary | NCBO BioPortal, no date) explains MS 

from a pure medical viewpoint, which implicitly requires in-depth medical background and is not 

intended for non-experts. Likewise, the MS Ontology proposed by (Malhotra et al., 2015) is hard to 

follow due to the presence of non-preliminary information, which may impede a comprehensive 

understanding of the domain. 

 

Nevertheless, recent studies have emphasized MS domain research using knowledge graphs for 

decision-making purposes. SPOKEsigs scheme presented in (Nelson et al., 2022) incorporates domain 

knowledge into clinical diagnosis to potentially detect MS up to five years before a verified diagnosis 

in the clinic to determine individuals at risk of developing MS, with the aid of the RF algorithm. 

Likewise, (Fecho et al., 2021) concentrated on finding rational relationships among entities provided 

in users’ questions to the question-answering ROBOKOP knowledge graph. This knowledge graph has 

successfully found a relationship between MS and the impact of workplace exposures, which would 

confirm one of the leading causes of MS. However, both studies did not specify the comprehensive 

domain knowledge associated with MS. Specifically, (Nelson et al., 2022) built a knowledge graph for 
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prediction purposes, while (Fecho et al., 2021) aimed to make a more generalized knowledge-based 

schema that focuses on linking entities more than providing inclusive knowledge. 

 

MS knowledge representation is needed to simplify decision-making in the domain using knowledge 

graph techniques (Alshamrani et al., 2020). Therefore, the novelty of the research presented in this 

chapter is manifested in the comprehensive justification of the shared conceptualization of the MS 

domain. The imperative knowledge about MS is emphasized in the MSKG. For this reason, MSKG is 

superior to the knowledge graphs analyzed above as it significantly covers the most convenient medical 

concepts related to MS. It should be noted that MSKG includes entities provided in Schema.org, mainly 

under MedicalEntity which is an entity related to healthcare and medical practices (Schema.org - 

Schema.org, no date). As stated in (Documentation - schema.org, no date), Schema.org entities related 

to healthcare are devoted to defining ontologies that describe medical knowledge, which is often 

challenging for people to find and navigate online. The scope of sub-entities of MedicalEntity is to 

serve individuals who target health and medical knowledge, as intended in MSKG. Hence, MSKG 

would be persuasive for those who rely on Schema.org for extracting health and medical-type concepts. 

In short, MSKG would be a valuable contribution to MS research as it supports MS knowledge for 

shared decision-making purposes. From a medical point of view, MSKG allows one to easily find the 

answers to questions related to MS. By following the guided steps, MSKG will connect individuals to 

reliable sources in one single platform with confidence and without spending extra time browsing the 

web. 

 

Due to the rarity of its cases, as indicated in Google Knowledge Panel when searching for it, MS needs 

to get proper research devotion compared to other chronic disorders, especially from the computer and 

data science perspective. Therefore, future work should utilize more knowledge base and knowledge 

representation approaches to understand MS progression, occurrence patterns, etiology, and long-term 
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effects on the quality of life of MS patients. Hypothetically, exploring the potential correlations between 

MS and other disorders that share commonalities should also be examined. Addressing these 

suggestions would augment the MS decision-making process. 
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Chapter 6 Conclusion, Limitations, and Future Recommendations  

MS is a chronic neurological disease that hits the human body's brain and spinal cord in the long-term. 

It is the most prevalent inflammatory demyelinating autoimmune condition. As its underlying causes 

are indeed undetermined, MS is regarded as a complicated disease. Therefore, the decision-making 

process regarding this phenomenon is critical and considered shared decision-making. Automated 

solutions proposing the best alternatives that could make shared decision-making easier are highly in 

demand in the MS field. DSS technologies in the MS realm are favorable, especially for enhancing 

shared decision-making. Recent studies demonstrate the increasing need for DSSs in the MS domain 

to aid decision-makers in nominating the right decision among several alternatives.   

  

To the best of the contributor’s knowledge, DSS is still not extensively exploited in MS's clinical 

settings due to the lack of collaboration between computer and data scientists and MS specialists, in 

addition to the MS specialists' low confidence level in model-based decision support technologies. 

Therefore, the overall objective of this dissertation is to design a DSS blueprint or prototype that 

emulates an MS expert to accurately identify the type of MS in affected patients and make appropriate 

DMT recommendations. This was done to improve MS diagnosis and treatment accuracy and 

efficiency. The ultimate goal is to provide a tool that can support the work of MS specialists, improve 

the accuracy of MS diagnosis, enhance the quality of care for patients with MS, and aid MS patients in 

forming decisions regarding their status. The proposed DSS uses domain knowledge representation and 

ML techniques to replicate MS experts, including their decision-making, reasoning, and judgment. 

 

Addressing Research Questions 1,2, and 5 

MS patients typically experience multiple MS episodes, ranging from mild to more aggressive. Because 

the course of MS has wide variances and is unpredictable, it is currently almost difficult to assess the 

severity and progression of MS over time in any affected patients. Given the clinical variability of this 
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condition, it is imperative to ascertain the MS progression level in affected patients. Predictions of MS 

development are beneficial in making the appropriate decisions, such as setting up therapies to the 

patient's needs. However, predicting the course of MS is challenging, and no tested prediction methods 

are currently available to anticipate how MS will progress. Furthermore, because MS progression and 

occurrence patterns are vague, it is complicated to forecast the disease's course. To address this concern, 

investigating several supervised ML models useful in predicting the type of MS in affected people and 

assessing the models' effectiveness using a real-world MS dataset addressed in this dissertation. To 

fulfill the research questions 1, 3, and 5 highlighted in Chapter 3, a framework that predicts MS types 

and contrasts the results of various traditional and ensemble classifiers was presented.  

  

Several traditional models were first trained after performing feature selection and missing value 

imputation to rationally maintain the dimensionality and retain the data's original volume. Then, the 

best models were considered for further investigation for formulating several ensemble classifiers. Note 

that all models were trained using different splitting strategies. The models with the highest results were 

then augmented using hyperparameter tuning to enhance the top models' accuracy, sensitivity, and 

specificity. RF and DT showed constantly promising results in the three utilized evaluation metrics. 

Specifically, RF provided the highest accuracy and specificity results, while DT got the best sensitivity 

result. As for ensemble methods, bagging classifier achieved the top accuracy rate, AdaBoost classifier 

scored the best sensitivity rate, and gradient boosting got the highest specificity proportions. Regardless 

of the evaluation metric and splitting strategy used, the outcomes of all ensemble approaches were 

remarkably convergent, unlike traditional models. Ultimately, using hyperparameter tuning did not 

yield any considerable increases in all metrics. Nevertheless, these findings may demonstrate that 

ensemble classifiers generally outperform traditional classifiers in this quest. 

  

The results are hypothetically accepted medically because the utilized models could be used as specific 

tests to rule in the presence of a certain MS type, supporting SPecific tests rule IN medical concept. 
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This part was designed as a proof-of-concept for the idea that ML algorithms may be used to predict 

MS progression. Patients' needs could be managed using this process as if they were in a genuine 

hospital setting. Debatably, the proposed methodology and the obtained results might be an 

encouraging step toward boosting ML applications in MS’s clinical diagnosis and prognosis. 

 

Addressing Research Questions 2,4, and 5 

MS DMTs have become available for controlling MS, with varying modes of administration, risks, 

benefits, and side effects. An accurate diagnosis of MS and selecting the best DMT regimen are critical 

for improving the quality of life of MS patients. The selection of the best DMT, and the route of 

administration, depends on evaluating the risk of further progression of MS and considering the risk 

versus efficacy of a specific DMT. Automating the shared decision-making process between physicians 

and patients is required to tailor treatment plans based on individual patient conditions and symptoms. 

  

Therefore, a framework for a model-based system that expedites the shared decision-making process 

using ML algorithms is demonstrated in this dissertation. To address research questions 2, 4, and 5, a 

framework that predicts the best route of administration suitable for MS patients who receive prescribed 

DMTs is presented in Chapter 4. The outcomes of this framework's underlying traditional and ensemble 

models were evaluated and compared against real-world MS datasets. The results of the study showed 

that the proposed methodology has the potential to accurately predict the best route of administration 

(oral, injectable, or infusion) for delivering DMTs to MS patients. The top-performing models were 

gradient boosting and RF.  

 

The outcomes provide evidence supporting the potential usefulness of ML algorithms in enhancing the 

shared decision-making process associated with selecting the best MS DMTs. This part demonstrated 

the feasibility of utilizing ML algorithms to predict the most appropriate routes of administration for 
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DMTs prescribed to MS patients. The results obtained from this proof-of-concept investigation are 

viewed as an optimistic initial step in applying ML techniques to enhance shared clinical decision-

making for DMT prescriptions in MS. 

 

Addressing Research Question 6 

As mentioned earlier, making critical decisions in this medical domain is vital. Again, MS diagnosis 

and treatment decisions are considered shared since MS is a preference-sensitive condition. 

Accordingly, the decision-makers should have the proper and comprehensive knowledge about MS. 

Improving MS decisions is feasible by enhancing the MS knowledge base and representation within 

this medical domain. This would be done by representing the necessary fundamental knowledge of MS 

through a knowledge graph. Representing MS domain knowledge would be extraordinarily beneficial, 

specifically for promoting rational MS decisions through distributing and reusing MS domain 

knowledge among the shared decision-makers. 

  

The knowledge graph notion is not thoroughly studied for representing MS domain knowledge. 

Therefore, an easy-to-use and reliable source of MS information called MSKG is introduced in Chapter 

5. MSKG targets newly diagnosed individuals with MS, their first-degree relatives, people at high risk 

of developing MS, and individuals interested in acquiring knowledge about MS. MSKG was 

constructed using ontology engineering approach to describe MS and several common factors related 

to it. Compared with existing knowledge graphs and ontologies associated with MS, MSKG is superior 

as it comprehensively shares the most convenient medical concepts related to MS. 

 

Limitations 

It is important to remember that developing a DSS to mimic an MS expert is a complex and time-

consuming process requiring medical knowledge, data science, and computer science expertise. 
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Working with a team of experts from these fields is recommended in such research. However, most of 

the work presented in this dissertation was singly orchestrated by the Ph.D. candidate despite all the 

valuable collaborations with coauthors, colleagues, and experts. Consequently, the presented work has 

several limitations. Mainly, the need for more sufficient computer resources was a major obstacle. Even 

though this dissertation's outcomes are fairly promising, the availability of more powerful computing 

resources would elevate data preprocessing and complex algorithm application, promoting better 

results acceptable in MS’s daily clinical routine and practices. 

  

Finding relevant yet sufficient MS data was the most challenging task. Several healthcare institutions 

and medical research centers have been contacted to acquire the necessary data. Only one institution 

agreed to collaborate by providing the data used in the studies described in Chapter 3 and Chapter 4. 

Although, obtaining the data took considerable time and financial resources. Additionally, DSS relies 

on high-quality data to generate accurate and reliable decisions. In the case of MS, the quality of data 

available to DSS may be limited. The quality of the data acquired from the iConquerMS™ initiative 

was problematic, reflected in the prediction outcomes as indicated by the utilized evaluation metrics. 

For instance, the initial objective proposed in Chapter 4 was to predict the best DMT that could be 

recommended to a patient. However, the preliminary prediction results were very trivial and 

unacceptable because historical data is incomplete as the number of records of patients who reported 

their current DMTs is insufficient. Most of the investigation was spent on cleansing and preprocessing 

the data.  

  

The number of existing works related to the objectives demonstrated in the previous chapters is minimal 

compared to other diseases such as Alzheimer's, various cancers, or diabetes, to name a few. 

Furthermore, funding and grant opportunities were insubstantial and restricted. All funding 

opportunities publicly announced by the College of Graduate Studies and the College of Engineering 

require US citizenship or are not allocated for health informatics and healthcare domain research. The 
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only grant acquired and approved for this dissertation was the Data Access Grant provided by IMCI. 

On top of that, much time and effort were devoted to self-education on the MS medical perspective to 

advance medically compelling and persuasive arguments.  

  

In general, it is difficult and challenging to perform such prediction tasks using ML to develop useful 

DSS that could fulfill the presented objective because almost no theory can guarantee a solution. 

Although it is possible to develop some intuition about which strategies work the best for what type of 

tasks, in the end, it requires lots of trial and error to see which strategies work in practice. That is why 

it is important to be able to evaluate many strategies. Many different strategies and models have been 

examined and evaluated in this work using different subsets of the input features, different model-based 

feature selection and missing value imputation techniques, and different ML models. This was an 

exhaustive and time-consuming effort. Despite all these limitations, these circumstances allowed 

presenting a novel and empirical work. 

 

Future Recommendations 

Future work should focus on applying DSS technologies to understand the MS’s occurrence patterns, 

emphasize MS etiology, highlight the MS’s long-term effects on the affected individuals' quality of 

life, and find the correlation between MS and other disorders. Implementing automated decision-

making systems, particularly for newly diagnosed MS patients, should be given priority in future 

studies. ML and deep learning technologies have the potential to be helpful in MS research and the MS 

domain. Further research is necessary to fully realize the potential benefits of ML and deep learning in 

clinical practices and decision-making for MS. Future work should also contribute toward expanding 

MSKG’s base knowledge to outline disorders that might be correlated with MS. Thus, MSKG would 

be improved by utilizing knowledge-based reasoning methods to recognize MS patterns in terms of 

progression, occurrence, etiology, and long- and short-term effects during the disease course. 
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Considering these recommendations would enrich the research of knowledge graph applications in the 

MS domain. Lastly and most importantly, scientists conducting research in the MS domain require 

extensive data, but access to them is restricted. Thus, MS data should be available and easily accessible. 

In conclusion, DSSs technologies have the potential to be pragmatic in the MS domain and research. 

Thus, considering these recommendations would enrich the MS field. 
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Appendix A: List of Important Features and their Descriptions (Chapter 3) 

Feature Description 

NQCOG75 My thinking was slow. 

SRPSAT33 I am satisfied with my ability to do things for fun outside my home. 

PDDSChoice Patient-Determined Disease Steps choice 

Global07 How would you rate your pain on average? 

Global09 In general, please rate how well you carry out your usual social activities and roles. 

Weaknesslegs1 Weakness in legs/feet 

NQSTG04 Because of my illness, I felt left out of things. 

Global06 
To what extent are you able to carry out your everyday physical activities such as walking, 

climbing stairs, carrying groceries, or moving a chair? 

Global05 
In general, how would you rate your satisfaction with your social activities and 

relationships 

Troublebowelmovements1 Trouble with bowel movements 

NQPRF08 I am able to socialize with my friends. 

Sensory11_NoPain Sensory symptoms (excluding pain) 

SCQ ulcer stomach Do you have ulcer or stomach disease? 

Blindness1 Blindness or blurry vision in one eye or both 

NQSLP07 I had trouble falling asleep. 

NQCOG64 I had to read something several times to understand it. 

Electricshockfeeling Electric shock-like feeling when bending neck 

Vertigo1 Vertigo 

Disturbedvision Disturbed vision e.g. double vision, objects moving, etc. 

Fatigue2 Fatigue 

NQSLP02 I had to force myself to get up in the morning. 

NQCOG80 I had trouble concentrating. 

IVIS_PrintedMaterial Read or access printed materials, such as books, magazines, newspapers, etc.? 

NQPRF09 I am able to do all of my regular activities with friends. 

Legstotalparalysis Total paralysis of legs 

Sensory11Pain Painful sensations 

NQSLP12 Pain woke me up. 

Depression Changes in mood or depression considered out of the ordinary 

NQSLP04 I was sleepy during the daytime. 

NQFTG07 I was too tired to leave the house. 

RestlessLeg Restless leg syndrome 

Global01 In general, would you say your health is… 

IVIS_LettersNotes Read or access personal letters or notes? 

NQCOG01 Writing notes to yourself, such as appointments or 'to do' lists? 

CognitiveDifficulties Cognitive difficulties, e.g. memory problems 

Burningsensationfeet Burning sensation in feet 

BLCS_LostControl Lost control of your bladder or had an accident? 

NQSLP03 I had trouble stopping my thoughts at bedtime. 

Paralysis1 
Paralysis of half or whole face (i.e. facial drooping with altered smile, difficulty closing an 

eye tightly or wrinkling forehead) 
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Feature Description 

MechanicalVentilation Need for mechanical ventilation 

BWCS_Lifestyle During the past 4 weeks, how much have bowel problems restricted your overall lifestyle? 

PFB26 Are you able to shampoo your hair? 

NQCOG10 Organizing what you want to say? 

Global04 
In general, how would you rate your mental health, including your mood and ability to 

think? 

BWCS_AlteredActivities Altered your activities because of bowel control problems? 

Armstotalparalysis Total paralysis of arms 

EDANX48 Many situations made me worry. 

Itching1 Itching, not due to other causes e.g. psoriasis, insect bites, etc. 

Weaknessarms Weakness in arms/hands 

Global02 In general, would you say your quality of life is… 

BLCS_Lifestyle During the past 4 weeks, how much have bladder problems restricted your overall lifestyle? 

NQSAT23 I am disappointed in my ability to socialize with my family. 

NQSTG17 I felt embarrassed because of my physical limitations. 

Global03 In general, how would you rate your physical health? 

PFA56 Are you able to get in and out of a car? 

DrugNameCurrent Name of the current DMT 

BLCS_AlteredActivities Altered your activities because of bladder problems? 

Stiffness1 Stiffness / spasms 

PFA45 Are you able to get out of bed into a chair? 

Difficultywalking1 Difficulty walking / dragging a foot 

NQSAT14 I am bothered by limitations in my regular activities with friends. 

PFA53 Are you able to run errands and shop? 

NQCOG22 Reading and following complex instructions (e.g., directions for a new medication)? 

PFA30 Are you able to step up and down curbs? 

Losscoordinationarm1 Loss of coordination in arms / hands 

Shaking1 Shaking or tremors 

SRPSAT07 I am satisfied with how much of my work I can do (include work at home). 

NQPPF20 My life had purpose. 

NQSAT03 I am bothered by my limitations in regular family activities. 

Difficultybalance Difficulty with balance 

NQFTG06 I was too tired to do my household chores. 

EDDEP48 I felt that my life was empty. 

PFA31 Are you able to get up off the floor lying on your back without help? 

EDANX46 I felt nervous. 

PFA23 Are you able to go for a walk of at least 15 minutes? 

PFC45 Are you able to get on and off the toilet? 

NQFTG15 I felt fatigued. 

 
  



 

 
 

111 

Appendix B: Order of Important Features (Chapter 3)  
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Appendix C: List of Important Features and their Descriptions (Chapter 4) 

Feature Description 

Sensory11Pain Painful sensations 

Sensory11_NoPain Sensory symptoms (excluding pain) 

Global02 In general, would you say your quality of life is… 

Global01 In general, would you say your health is… 

Global07 How would you rate your pain on average? 

Troublebowelmovements1 Trouble with bowel movements 

FacialTwitching Facial twitching 

Losscoordinationarm1 Loss of coordination in arms / hands 

Shaking1 Shaking or tremors 

UrinaryProblems Urinary problems, e.g. unusual urgency or hesitancy 

Disturbedvision Disturbed vision e.g. double vision, objects moving, etc. 

RestlessLeg Restless leg syndrome 

SexualDysfunction Sexual dysfunction, not caused by medication 

TrigeminalNeuralgia Sharp, painful feeling in face not due to trauma or injury (trigeminal neuralgia) 

NQPRF09 I am able to do all of my regular activities with friends. 

EDDEP36 I felt unhappy. 

EDANX55 I had difficulty calming down. 

EDANG42 I had trouble controlling my temper. 

EDANX53 I felt uneasy. 

EDDEP48 I felt that my life was empty. 

NQPRF03 I am able to do all of my regular family activities. 

NQPRF34 I can keep up with my work responsibilities (include work at home). 

NQPRF26 I am able to participate in leisure activities. 

NQCOG10 Organizing what you want to say? 

PDDSChoice Patient-Determined Disease Steps choice 

NQPRF08 I am able to socialize with my friends. 

EDANX48 Many situations made me worry. 

EDANX46 I felt nervous. 

EDANX54 I felt tense. 

NQPER06 I said or did things without thinking. 

EDANX41 My worries overwhelmed me. 

Global08 How would you rate your fatigue on average?.... 

Itching1 Itching, not due to other causes e.g. psoriasis, insect bites, etc. 

NQFTG14 I felt tired. 

Losscoordinationleg Loss of coordination in legs / feet 

NQSAT46 I am satisified with my ability to do household chores or tasks. 

NQSAT14 I am bothered by limitations in my regular activities with friends. 

NQSAT03 I am bothered by my limitations in regular family activities. 

NQPPF22 I felt cheerful. 

NQPPF20 My life had purpose. 

NQPPF17 My life had meaning. 

NQPPF16 I had a sense of balance in my life. 

NQPPF15 My life was satisfying. 

BWCS_Lifestyle During the past 4 weeks, how much have bowel problems restricted your overall lifestyle? 

BWCS_Constipated Been constipated? 

BWCS_AlmostLostControl Almost lost control of your bowels or had an accident? 

BLCS_Lifestyle 
During the past 4 weeks, how much have bladder problems restricted your overall 

lifestyle? 

BLCS_LostControl Lost control of your bladder or had an accident? 

BLCS_AlmostLostControl Almost lost control of your bladder or had an accident? 

NQCOG25 Managing your time to do most of your daily activities? 

PossibleStoppingReasons Reasons to stop a DMT 

WasOnAvonex Was patient using Avonex? 
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Feature Description 

PFA31 Are you able to get up off the floor lying on your back without help? 

PFA30 Are you able to step up and down curbs? 

PFA23 Are you able to go for a walk of at least 15 minutes? 

NQFTG15 I felt fatigued. 

NQSLP07 I had trouble falling asleep. 

NQSLP05 I had trouble sleeping because of bad dreams. 

Global06 
To what extent are you able to carry out your everyday physical activities such as walking, 

climbing stairs, carrying groceries, or moving a chair? 

Global10 
How often have you been bothered by emotional problems such as feeling anxious, depressed 

or irritable?.... 

Difficultyswallowing1 Difficulty with swallowing 

Blindness1 Blindness or blurry vision in one eye or both 

Global09 In general, please rate how well you carry out your usual social activities and roles. 

MShug "MS hug" (feeling of tightness in the torso) 

NQANX07 I felt nervous when my normal routine was disturbed. 

Difficultybalance Difficulty with balance 

NQFTG10 I was frustrated by being too tired to do the things I wanted to do. 

NQFTG06 I was too tired to do my household chores. 

NQFTG11 I felt that I had no energy. 

NQFTG13 I felt exhausted. 

NQFTG07 I was too tired to leave the house. 

NQFTG02 I had to limit my social activity because I was tired. 

NQPER19 I was in conflict with others. 

NQPER12 I was bothered by little things. 

NQPER11 I was irritable around other people. 

NQPER07 I got impatient with other people. 

Global05 In general, how would you rate your satisfaction with your social activities and relationships 

Difficultywalking1 Difficulty walking / dragging a foot 

Electricshockfeeling Electric shock-like feeling when bending neck 

Fatigue2 Fatigue 

NQCOG80 I had trouble concentrating. 

NQCOG77 I had to work really hard to pay attention or I would make a mistake. 

NQCOG75 My thinking was slow. 

NQCOG64 I had to read something several times to understand it. 

PFA43 Are you able to write with a pen or pencil? 

NQSTG04 Because of my illness, I felt left out of things. 

NQSLP18 I felt physically tense during the middle of the night or early morning hours. 

NQSLP12 Pain woke me up. 

NQSLP04 I was sleepy during the daytime. 

NQSLP03 I had trouble stopping my thoughts at bedtime. 

NQSLP02 I had to force myself to get up in the morning. 

SRPSAT33 I am satisfied with my ability to do things for fun outside my home. 

SRPSAT07 I am satisfied with how much of my work I can do (include work at home). 

SRPSAT05 I am satisfied with the amount of time I spend doing leisure activities. 

NQCOG24 
Planning for and keeping appointments that are not part of your weekly routine (e.g. a therapy 

or doctor's appointment, or a social gathering with friends and family)? 

CognitiveDifficulties Cognitive difficulties, e.g. memory problems 

Weaknesslegs1 Weakness in legs/feet 

Weaknessarms Weakness in arms/hands 

Burningsensationfeet Burning sensation in feet 

Stiffness1 Stiffness / spasms 

Global04 In general, how would you rate your mental health, including your mood and ability to think? 

Depression Changes in mood or depression considered out of the ordinary 

Vertigo1 Vertigo 

SpeechArticulation Speech articulation (speech sounds slurred or slowed or loses normal rhythm) 

Global03 In general, how would you rate your physical health? 

NQPPF07 Many areas of my life were interesting to me. 
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Appendix D: Order of Important Features (Chapter 4) 
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Appendix E: MSKG Class Hierarchy Using OWLViz (Chapter 5)  
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Phone: 208-885-6162

Fax: 208-885-6014
Email: irb@uidaho.edu

 

 

February 25, 2022

To: Xiaogang Ma

Cc:       Rayan Alshamrani

From: University of Idaho Institutional Review Board

 

Approval Date: February 25, 2022

 

Title: Enhancing The Shared Decision-Making Experience of Multiple Sclerosis Via Model-Driven 

Decision Support

 

Protocol: 21-235, Reference: 016237

 

Exempt under Category 2 at 45 CFR 46.104(d)(2).

 

On behalf of the Institutional Review Board at the University of Idaho, I am pleased to inform you that 

the protocol for this research project has been certified as exempt under the category listed above.

This certification is valid only for the study protocol as it was submitted. Studies certified as Exempt are 

not subject to continuing review and this certification does not expire. However, if changes are made to 

the study protocol, you must submit the changes through VERAS for review before implementing the 

changes. Amendments may include but are not limited to, changes in study population, study personnel, 

study instruments, consent documents, recruitment materials, sites of research, etc. 

 

As Principal Investigator, you are responsible for ensuring compliance with all applicable FERPA 

regulations, University of Idaho policies, state and federal regulations. Every effort should be made to 

ensure that the project is conducted in a manner consistent with the three fundamental principles 

identified in the Belmont Report: respect for persons; beneficence; and justice. The Principal Investigator 

is responsible for ensuring that all study personnel have completed the online human subjects training 

requirement. Please complete the Continuing Review and Closure Form in VERAS when the project is 

completed.

You are required to notify the IRB in a timely manner if any unanticipated or adverse events occur during 

the study, if you experience an increased risk to the participants, or if you have participants withdraw or 

register complaints about the study.  

 

 

IRB Exempt Category (Categories) for this submission: 

Category 4: Secondary research for which consent is not required: Secondary research uses of 

identifiable private information or identifiable biospecimens, if at least one of the following 

criteria is met: i. The identifiable private information or identifiable biospecimens are publicly 
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Phone: 208-885-6162
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Email: irb@uidaho.edu

 

available; ii. Information, which may include information about biospecimens, is recorded by the 

investigator in such a manner that the identity of the human subjects cannot readily be 

ascertained directly or through identifiers linked to the subjects, the investigator does not contact 

the subjects, and the investigator will not re-identify subjects; iii. The research involves only 

information collection and analysis involving the investigator's use of identifiable health 

information when that use is regulated under 45 CFR parts 160 and 164, subpart s A and E 

[HIPAA], for the purposes of "health care operations" or "research" as those terms are defined at 

45 CFR 164.501 or for "public heal th activities and purposes" as described under 45 CFR 

164.512(b); or iv. The  research is conducted by, or on behalf of, a Fede ral department or agency 

using government-generated or government-collected information obtained for nonresearch 

activities, if the research generates identifiable private information that is or will be maintained 

on information technology that is subject to and in compliance with section 208(b) of the E-

Government Act of 2002, 44 U.S.C. 3501 note, if all of the identifiable private information 

collected, used, or generated as part of the activity will be maintained in systems of records 

subject to the Privacy Act of 1974, 5 U.S.C. 552a, and, i f applicable, the information used in the 

research was collected subject to the Paperwork Reduction Act of 1995, 44 U.S.C. 3501 et seq. 
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