

A Grid Partition-based Local Outlier Factor for Big Data Stream

Processing

A Dissertation

Presented in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

Raed A. Alsini

Major Professor: Xiaogang Ma, Ph.D.

Committee Members: Terence Soule, Ph.D.; Frederick Sheldon, Ph.D.; Ahmed Ibrahim, Ph.D.

Department Administrator: Terence Soule, Ph.D.

May 2021

ii

Authorization to Submit Dissertation

This dissertation of Raed A. Alsini, submitted for the degree of Doctor of Philosophy with a Major in

Computer Science and titled "A Grid Partition-based Local Outlier Factor for Big Data Stream

Processing," has been reviewed in final form. Permission, as indicated by the signatures and dates below,

is now granted to submit final copies to the College of Graduate Studies for approval.

Major Professor: _____________________________________ Date: ___________

 Xiaogang Ma, Ph.D.

Committee Members: _____________________________________ Date: ___________

 Terence Soule, Ph.D.

_____________________________________ Date: ___________

Frederick Sheldon, Ph.D.

_____________________________________ Date: ___________

Ahmed Ibrahim, Ph.D.

Department

Administrator: _____________________________________ Date: ___________

 Terence Soule, Ph.D.

iii

Abstract

Outlier detection is getting significant attention in the research field of big data. Detecting the outlier is

important in various applications such as communication, finance, fraud detection, and network

intrusion detection. Because of their unique characteristics, such as large volume and high velocity, data

streams pose a challenge to traditional outlier detection methods. Local Outlier Factor (LOF) is one of

the most appropriate techniques for determining outliers in the density-based method. However, it faces

some challenges when dealing with the data stream. One issue is that LOF requires the entire dataset as

well as the distance value to be stored in the computer memory. Another issue arises when a change

occurs in the dataset, which necessitates a significant recalculation from the beginning. To address these

issues, this dissertation proposes a new method for detecting local outliers in data streams called the

Grid Partition-based Local Outlier Factor (GP-LOF). We improve the GP-LOF algorithm even further

by adding another technique known as the Local Outlier Factor by Reachability Distance (LOFR). The

improved algorithm is thus called the Grid-Partition-based Local Outlier Factor by Reachability

Distance (GP-LOFR). We tested both GP-LOF and GP-LOFR with several benchmark datasets. They

outperformed the Density Summarization Incremental Local Outlier Factor (DILOF) algorithm, which

is the most representative algorithm in existing studies of data stream processing. We also worked with

real-world datasets of concrete mixture. In that work, a new algorithm called the Isolation Forest based

on a sliding window for the Local Outlier Factor (IFS-LOF) was developed. The IFS-LOF outperformed

both LOF and LOF-Sliding Window (LOF-SW) in accuracy of the results. In summary, the three new

algorithms GP-LOF, GP-LOFR, and IFS-LOF are the major contributions of this PhD research. All

proposed algorithms work without any previous knowledge of data distributions and are capable to

execute with limited computer memory. This PhD research makes a solid contribution to the field of

local outlier detection in big data streams. In the near future, we will extend the developed algorithms

by applying Evolution Computation (EC) methods to further improve the accuracy and reduce the

execution time. Moreover, we will apply these algorithms to more real-world datasets.

iv

Acknowledgements

All praise be to God, who has granted me the knowledge and ability to complete this dissertation. This

mission could not have been accomplished without God's blessings.

I want to thank my major professor Prof. Marshall (Xiaogang) Ma. It has been a great experience to be

a doctoral student under your guidance. I want to express my appreciation for all you have done to assist

with my writing skills development, advance my knowledge, encourage me, and help me accomplish my

goals. This dissertation will not be completed without your valuable assistance and ongoing

encouragement. Also, I am grateful to Professor Terrance (Terry) Soule for his assistance and guidance.

You have played an enormous part in the successful completion of this dissertation.

Moreover, I would like to thank two other committee members for their support and encouraging

feedback on my dissertation: Prof. Fredrick Sheldon and Prof. Ahmed Ibrahim.

My heartfelt gratitude goes to the Department of Computer Science at the University of Idaho. It has

been a wonderful place with such a pleasant working atmosphere. Also, this achievement would not have

been possible without the constant help and support of all IDEA lab members at the University of Idaho.

I am grateful for the support from my sponsors, King Abdulaziz University and Saudi Arabian Cultural

Mission (SACM), and the Kingdom of Saudi Arabia government to allow me pursue a doctoral degree.

Also, I would like to thank the University of Idaho for offering me this opportunity to study at this

university.

v

Dedication

I dedicate this Ph.D. dissertation to my parents, my wife, my daughter, my brothers, my sister, and the

people who've supported me along with this scholarly study.

vi

Table of Contents

Authorization to Submit Dissertation ... ii

Abstract .. iii

Acknowledgements ... iv

Dedication ... v

Table of Contents... vi

List of Tables .. xii

List of Figures .. xiii

Chapter 1: Introduction ... 1

1.1 Outlier Detection .. 1

1.2 The Data Stream ... 2

1.3 The Data Science Aspect of a Data Stream.. 2

1.4 The Data Stream Management System (DSMS) .. 4

1.5 Stream Reasoning .. 4

1.6 The Practical Approach .. 5

1.7 Significance and Contribution .. 6

1.8 Research Questions .. 7

1.9 The Organization of the Dissertation ... 7

Chapter 2: Local Outlier Detection Techniques in Real-World Streaming Data Processing: A

Literature Review…………………………………………………………………………………….9

2.1 Introduction .. 9

2.2 Literature Review Methodology, Selection, and Analysis ... 10

2.3 Algorithms for Local Outlier Detection ... 13

2.3.1 Outlier Detection in a Static Environment .. 13

2.3.2 Outlier Detection in the Stream Environment ... 23

2.4 Analysis and Discussion .. 29

2.4.1 Motivation and Limitation ... 30

2.5 Advantages and Disadvantages of Existing Methods .. 33

2.5.1 Nearest-Neighbor-based Outlier Detection Methods .. 33

2.5.2 Cluster-based Outlier Detection Methods ... 34

2.6 Research Challenge and Objective ... 35

2.7 Conclusions .. 36

Chapter 3: Benchmark Datasets Used in This Research... 38

vii

3.1 Introduction .. 38

3.2 Data Stream Processing.. 38

3.3 Outlier Detection in the Data Stream Mining Approach .. 39

3.4 Benchmark Datasets ... 41

3.4.1 UCI Vowel Dataset .. 41

3.4.2 UCI Pendigit Dataset .. 42

3.4.3 UCI Shuttle Dataset ... 42

3.4.4 KDD Cup99 SMTP Dataset ... 42

3.4.5 UCI Concrete Dataset ... 42

3.5 Conclusion.. 43

Chapter 4: A Grid Partition-based Local Outlier Factor for Data Stream Processing 44

4.1 Introduction .. 44

4.2 Methodology and Methods .. 45

4.2.1 Grid Partition-based Local Outlier Factor (GP-LOF) Algorithms 45

4.3 Experiment Procedures .. 48

4.3.1 Datasets Used in Experiments ... 48

4.3.2 Experiment Discussion .. 50

4.3.2.1 Accuracy of the Outlier Detection: ... 50

4.3.2.2 Execution Time ... 53

4.4 Conclusion ... 57

Chapter 5: A Grid Partition-based Local Outlier Factor by Reachability Distance for Data Stream

Processing…………………………………………………………………………………………...58

5.1 Introduction .. 58

5.2 Methodology and Methods .. 59

5.2.1 The Local Outlier Factor by Reachability Distance (LOFR) .. 59

5.2.2 The Grid Partition-based Local Outlier Factor by Reachability Distance (GP-LOFR) ... 60

5.3 Experiment Discussion and Results ... 61

5.3.1 Experiment Results .. 62

5.3.1.1 The Accuracy of the Outlier Detection ... 62

5.3.1.2 Execution Time ... 65

5.4 Conclusion ... 68

Chapter 6: Improving the Outlier Detection Method in Concrete Mix Design by Combining the

Isolation Forest and Local Outlier Factor………………………………………………….....……..69

viii

6.1 Introduction .. 69

6.2 Related Work ... 70

6.3 Context and methodology .. 70

6.3.1 Concrete Material Components and Dataset .. 70

6.4 Components and workflow of the method ... 72

6.4.1 The Isolation Forest (IF) ... 72

6.4.2 Local Outlier Factor (LOF) .. 73

6.4.3 The Isolation Forest based on Sliding window For the Local Outlier Factor (IFS-LOF) 74

6.5 Experimental Results and Discussion .. 75

6.5.1 Experiment Settings ... 76

6.5.2 Experiment Discussion .. 76

6.5.2.1 The Accuracy of Outlier Detection ... 76

6.5.2.2 Sliding Window Strategy for Improving the Outlier Detection 82

6.5.2.3 Execution Time ... 82

6.5.2.4 Benefit of Using the Outlier Detection in the Concrete Mix Design 83

6.6 Conclusion ... 84

Chapter 7: Conclusion and Future Research Direction .. 85

7.1 Introduction .. 85

7.2 Summary of main research goals and accomplishments .. 85

7.3 Conclusion and Future Direction ... 88

7.4 Achievement and Award .. 89

7.4.1 List of Publications: .. 89

References ... 94

Appendix A - Other Experiment tests between the GP-LOF, GP-LOFR, DILOF, IFS-LOF 106

ix

List of Tables

Table 2.1 Overview of popular local outlier detection algorithms. NN, nearest neighbors approach;

LOF, local outlier factor; COF, connectivity-based outlier factor; LOCI, local correlation integral;

aLOCI, approximate local correlation integral; INFO, influenced Outlierness 13

Table 2.2 Overview of the popular local outlier detection algorithms in clustering-based methods.

CBLOF, cluster-based local outlier factor; LDCOF, local density cluster-based outlier factor;

CMGOS, clustering-based multivariate gaussian outlier score. ... 14

Table 2.3 Summary of LOF algorithms in data stream processing. ILOF, incremental local outlier

factor; MILOF, memory-efficient incremental local outlier factor; DILOF, density summarization

incremental local outlier factor. .. 26

Table 4.1 Real-World Dataset .. 49

Table 4..2 Accuracy result for the UCI vowel dataset and KDD Cup99 SMTP dataset between GP-

LOF And DILOF algorithms .. 53

Table 4.3 Accuracy result for the UCI Pendigit dataset and The UCI Shuttle dataset between GP-

LOF And DILOF algorithms .. 53

Table 4.4 Execution time for the UCI Vowel dataset and KDD Cup99 SMTP dataset between GP-

LOF DILOF algorithms .. 56

Table 4.5 Execution time for the UCI Shuttle dataset and UCI Pendigit dataset between GP-LOF

And DILOF algorithms ... 56

Table 6.1 Ranges of the Concrete Components .. 71

Table 6.2 The Isolation Forest (IF) Algorithm ... 73

Table 6.3 The Isolation Forest-based on the Sliding window for Local Outlier Factor (IFS-LOF

Algorithm) .. 74

Table 6.4 The Accuracy rate of the LOF, LOF-SW and IFS-LOF for different windows sizes 77

Table 6.5 The Execution times of the LOF, LOF-SW and IFS-LOF for different windows size…... 83

Table 7.1 The path to the answers to the research questions………………………………………… 87

x

List of Figures

Figure 1.1 The categories of outlier in the two-dimensional space, where p2 and p3 are global outliers

(green) and p1 are a local outlier (red). .. 1

Figure 2.1 The literature search methodology in our work………………………………………….. 11

Figure 2.2 An overview of local outlier detection methods performed at the static and stream

enviroment…………………………………………………………………………………………… 12

Figure 2.3 Multiple data points for measuring the reachability distance pt to o, if k is equal to 6….. 13

Figure 4.1 Framework of the GP-LOF algorithm in the data stream………………………………... 46

Figure 4.2 GP-LOF shows consistently higher accuracy in all the window sizes compared to the

DILOF algorithm in the UCI Vowel Real-World dataset ... 51

Figure 4.3 GP-LOF shows consistently higher accuracy in all the window sizes compared to the

DILOF algorithm in the KDD Cup99 SMTP Real-World dataset ... 51

Figure 4.4 GP-LOF shows consistently higher accuracy in all the window sizes compared to the

DILOF algorithm in the UCI Pendigit Real-World dataset .. 52

Figure 4.5 GP-LOF shows consistently higher accuracy in all the window sizes compared to the

DILOF algorithm in the UCI Shuttle Real-World dataset .. 52

Figure 4.6 GP-LOF execution time in the UCI Vowel Real-world dataset for all window sizes is

better performance than DILOF algorithm. .. 54

Figure 4.7 GP-LOF execution time in the KDD Cup99 SMTP Real-world dataset for all window

 sizes is better performance than the DILOF algorithm. ... 55

Figure 4.8 GP_LOF execution time in the UCI Shuttle Real-world dataset for all window sizes is

 better performance than the GP-LOF algorithm. ... 55

Figure 4.9 GP-LOF execution time in the UCI Pendigit Real-world dataset for all window sizes is

better performance than the DILOF algorithm. .. 56

Figure 5.1 The LOFR flow diagram in obtaining the outlier score………………………………….. 60

Figure 5.2 Comparison of accuracy result of outlier detection between the GP-LOFR and GP-LOF

in UCI Vowel dataset………………………………………………………………………………… 63

Figure 5.3 Comparison of accuracy result of outlier detection between the GP-LOFR and GP-LOF

in KDD Cup99 SMTP dataset. ... 64

Figure 5.4 Comparison of accuracy result of outlier detection between the GP-LOFR and GP-LOF

in the UCI Shuttle dataset……………………………………………………………………………..64

Figure 5.5 Comparison of accuracy result of outlier detection between the GP-LOFR and GP-LOF

in the UCI Pendigit dataset ... 65

Figure 5.6 Comparison of Execution time between the GP-LOFR and GP-LOF in the UCI Vowel

xi

dataset. .. 66

Figure 5.7 Comparison of Execution time between the GP-LOFR and GP-LOF in the KDD Cup99

SMTP dataset .. 66

Figure 5.8 Comparison of Execution time between the GP-LOFR and GP-LOF in the UCI Shuttle

dataset ... 67

Figure 5.9 Comparison of Execution time between the GP-LOFR and GP-LOF in the UCI Pendigit

dataset ... 67

Figure 6.1 Illustration of the subsampling size in the isolation forest for processing data points 72

Figure 6.2 The key definitions of LOF algorithm... 73

Figure 6.3 The structure of the IFS-LOF algorithm ... 75

Figure 6.4 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Cement

component... 78

Figure 6.5 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Blast Furnace

Slag component .. 78

Figure 6.6 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Fly Ash

component... 79

Figure 6.7 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the

Superplasticizer component .. 79

Figure 6.8 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Coarse

Aggregate component ... 80

Figure 6.9 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Fine

aggregate component .. 80

Figure 6.10 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Age

component... 81

Figure 6.11 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Water

component... 81

Figure 7.1 The map of the disesertation chapters ... 88

1

Chapter 1: Introduction

"Data Streaming."In: Schintler L., McNeely C. (eds) Encyclopedia of Big Data. Springer, Cham.DOI:

https://doi.org/10.1007/978-3-319-32001-4_324-1.

Alsini, R., Alghushairy, O. Almakrab, A., Soule, T. and Ma, X., 2021. Local Outlier Detection

Techniques in Real-World Streaming Data Processing: A Literature Review (Under Review)

1.1 Outlier Detection

Outlier detection is a process by which outliers are distinguished from the rest of a dataset. Outliers

arise during a procedure or as a result of a measuring error [1]. Outliers may occur because of human

mistakes, technological or machine failures, noise, device change, dishonest behavior, etc. [2]. It is

necessary to evaluate the data, which may include valuable information regarding different areas,

including the identification of network intrusion detection, industries, healthcare, transportation, and

many others. In machine learning and data mining, outlier detection methods have been commonly used

to gather information to assist in decision-making in various domains by understanding the data's

behavior to detect the outlier for cleaning the data [3,4].

Outliers occur in two forms: as a global outlier or as a local outlier [5]. If a global outlier, a data point

that is far from the rest of the dataset is considered an outlier. If a local outlier, the outlier is based on the

P3

P2

C1
P1

Figure 1.1 The categories of outlier in the two-dimensional space, where p2 and p3 are global

outliers (green) and p1 are a local outlier (red).

2

distance between the points according to the k-Nearest-Neighbors (kNN) algorithm [6]. Figure 1.1

represents the difference between the global outlier and local outlier in a dataset. The local outlier factor

(LOF) measures the amount of the density of data points and their nearby neighbors to assess local scores.

1.2 The Data Stream

Data has become an essential component of not only research but also of our daily lives. In the digital

world, people are able to use various types of technology to collect and transmit big data, which has the

features of overwhelming volume, velocity, variety, value, and veracity. More importantly, big data

represents a vast amount of information and knowledge. The Internet of Things (IoT) is interconnected

with big data. IoT applications use a data stream as a primary way for data transmission and to make a

data stream a unique type of big data. A data stream is a sequence of data blocks that are transmitted. The

real-time feature of the data stream requires corresponding technologies for efficient data processing.

Streaming the data is built upon resources that are commonly used for communication, web activity, E-

commerce, and social media. How the data is processed determines how information can be extracted

from the data stream. Analyzing the data stream through queries ensures and improves the efficiency of

data by the aspect of data science. Many techniques can be used in data stream processing, among which

data mining is the most common approach used for detecting data latency, pattern frequency, and

anomalous values, as well as for classification and clustering, and outlier detection. The computer science

community has created many open-source libraries for data streams and has built various best practices

to facilitate the applications of the data stream in different disciplines.

1.3 The Data Science Aspect of a Data Stream

In recent years, data has become the “crude oil” that drives technological and economic development.

There is an extremely high demand, and almost everyone uses data. We need to refine crude oil before

using it; it is the same with data. We can benefit from data only when data processing, mining, analysis,

and extraction provide useful results. Using the data stream in data science involves understanding the

data life cycle. Usually, it begins with collecting the data from its sources. Today, data stream collection

3

can be seen on search engines, in social media, on IoT devices, and in marketing. For instance, Google

Trends generates a massive amount of data by searching certain topics on the web. Afterwards, it can

provide results based on what a user is looking for within a specific range of time. The benefit of

processing the data stream is getting the right information immediately. However, processing needs

methods and models. Two standard models are batch processing and stream processing.

Batch processing can handle a large amount of data by first collecting the data over time and then doing

processing it. For example, the operating system on a computer can optimize the sequencing of jobs to

make efficient use of the system. Micro-batch is a modified model of batch processing. It groups data and

tasks into small batches. Completing the processing of a batch in this model is based on how the next

batch is received. Stream processing is a model used for processing the data without waiting for the next

data to arrive. The benefit of stream processing is that the system can receive the data more quickly. For

example, an online banking application runs stream processing when a customer buys a product. The

bank transaction is then verified and executed without fail. Stream processing can handle a huge amount

of data without suffering any issues related to data latency. A sensor network that generates massive data

can be organized easily under this method.

Data mining, as a part of data science, is used to discover knowledge in data. Data stream mining

usually involves methods, such as machine learning, to extract and predict new information. A few widely

used methods are clustering, classification, and stream mining on the sensor network. Clustering is a

process of gathering similar data into a group. Clustering deals with unsupervised learning. This means

the system does not need to have a label in order to discover a hidden pattern in data. K-means is the most

common method used for clustering. Clustering can be used for fraud detection; for example, it is able to

find anomalous records on a credit card, after which the cardholder can be informed. Classification is a

process of identifying the category of a piece of new data. Based on a set of training data, the system can

set up several categories and then determine into which category a piece of new data belongs.

Classification is one of the supervised learning methods in which the system learns and determines how

4

to make the right decision. For example, buying and selling holds on the stock market can be done using

this method in order to make the right decisions based on the given data.

1.4 The Data Stream Management System (DSMS)

Regardless of what precedes the data stream and how it is stored, data management is required in the

data life cycle. Managing the data stream can be done using queries as a primary method, such as the

structured query language (SQL). SQL is a common language used for managing the database. The data

stream management system (DSMS) uses an extended version of SQL, known as the continuous query

language (CQL). The reason for the use of CQL is to ensure any continuous data over time can be used

on the system. The operations of CQL can be categorized into three groups: relation-to-relation, stream-

to-relation, and relation-to stream [7]. Relation-to-relation is usually done with a SQL query. For instance,

the relation between two queries can be expressed by using either equal, above, greater, or less symbols.

Stream-to-relation is accomplished using the sliding window method. The sliding window method is

based on having a window that has historical points when the data is streamed. Specifically, when there

are two window sizes, the second window will not begin until the difference between the windows is

removed. Relation-to-stream usually involves the tree method to deal with the continuous query. Detailed

operations include insertion, deletion, and relation.

1.5 Stream Reasoning

Stream reasoning is about processing the data stream to get a conclusion or decision on continuous

information. Stream reasoning handles the continuous information by defining factors on the velocity,

volume, and variety of big data. For example, a production company might use several sensors to estimate

and predict the types and amounts of raw materials needed for each day. Another example is the detection

of fake news on social media. Each social media platform has various users across the world. Streaming

reasoning can be used to analyze the features in the language patterns in message spreading. The semantic

web community has proposed several tools that can be used in stream reasoning. The semantic web

community introduced (RDF) for the modeling and encoding of data schemas and ontologies on the

5

fundamental level. The linked open data is an example of how the database can be linked in the semantic

web. (SPARQL) is a query language developed by W3C. SPARQL queries use the triplet pattern of RDF

to represent patterns in the data and graphs. Recently, the RDF Stream Processing (RSP) working group

recently proposed an extension of both RDF and the SPARQL query to support stream reasoning. For

instance, the continuous SPARQL (C-SPARQL) is an example of the SPARQL language for expanding

the use of continuous queries.

1.6 The Practical Approach

In real-world practice, the application of a data stream is tied to big data. The current approach to data

stream usage can be grouped into these categories: scaling data infrastructure, the mining heterogeneous

information network, graph mining, discovery, and recommender system [8]. Scaling data infrastructure

is about analyzing the data from social media, such as Twitter, that carry various types of data, such as

video, image, text, or even a hashtag trend. The data is generated based on how the users communicate

on a certain topic, which leads to various analytics for understanding human behavior and emotions based

on the communication between users. Snapchat is now another popular social media application that

generates and analyzes live data streams based on the location and the event that occurred.

The mining heterogeneous information network is about discovering the connections between multiple

components, such as people, organizations, activities, communication, and system infrastructure. The

information network here also includes the relations that can be seen on social networks, sensor networks,

graphs, and the web. Graphs are being used to represent nodes and their relations, and graph mining is an

efficient method for discovering knowledge in big data. For example, Twitter can represent graph

information by visualizing each data type and its relations. Many other kinds of graph information can

be obtained from the web. For example, Google has constructed knowledge graphs for various objects

and relations. The recommender system is another approach for analyzing a data stream in big data.

Through collaborative filtering (CF), the queries in a DSMS system can be improved by adding a new

statement, such as rating. It can extend the functionality of DSMS for finding optimization, query sharing,

6

fragmentation, and distribution. Another strategy is using the content-based model; several platforms,

like Amazon, eBay, YouTube, and Netflix, already use this in their systems.

1.7 Significance and Contribution

Data is essential during the big data era because it allows many domains to profit by extracting

knowledge and information. This information is used to make the right decisions involving various

factors, such as prediction, pattern, profiles, and outliers. Outlier detection is a crucial step in data mining

and machine learning. If outliers are not uncovered, the knowledge will be unreliable, and many

problems, such as incorrect decisions or predictions, will occur. How to measure outliers is a significant

problem in the analysis of big data. Data streams represent big data by their unique characteristics, i.e.,

large volume and sequential structure. The traditional local outlier detection algorithm has a gap in terms

of processing the data stream. The local outlier factor (LOF) is a well-known method used in anomaly

detection to detect the outlier. The main challenge of the LOF is that it needs the whole dataset to be

stored in memory. Another issue is how the dataset is handled; if anything changes, it must be recalculated

from the beginning.

This PhD research proposes three novel local outlier detection algorithms and demonstrates their

effectiveness in a number of experiments. The first approach, called a grid partition-based local outlier

factor (GP-LOF), has been applied in a data stream and addresses the limitation of the LOF. The second

approach is to improve the GP-LOF algorithm by introducing a new method of calculation for the local

outlier factor and is known as the local outlier factor by reachability distance (LOFR); it proposes a new

technique called grid partition-based local outlier factors by the reachability distance (GP-LOFR). The

GP-LOFR algorithm showed some improvement in the precision of outlier detection in several real-world

datasets. Both GP-LOF and GP-LOFR have initiated some new ideas for the future extension of the LOF

algorithm in big data stream processing. Another technique, called the isolation forest-based on the

sliding window for local outlier factor (IFS-LOF), has achieved impressive results with real-world

datasets for a concrete mixture. When dealing with large amounts of data in memory, the new IFS-LOF

7

algorithm can overcome the challenges of both the isolation forest and the LOF algorithm. This

dissertation main contribution is the introduction of these GP-LOF, GP-LOFR, and IFS-LOF algorithms.

1.8 Research Questions

Six research questions were addressed in the dissertation. These questions aim to improve the LOF

efficiency in processing the data stream and solve the LOF algorithm issue. The six questions are as

follows:

1. How does the GP-LOF algorithm apply the LOF in processing the data stream?

2. How does the GP-LOF algorithm solve the memory consumption issue?

3. How does the GP-LOF algorithm deal with incoming data points?

4. Does the GP-LOF algorithm perform better than the DILOF algorithm for the accuracy of outlier

detection?

5. Does the GP-LOF algorithm perform better than the DILOF algorithm in execution time?

6. How can the new approach for outlier detection be evaluated regarding the concrete mixture

problem?

1.9 The Organization of the Dissertation

Researchers interested in local outlier detection will significantly benefit from this dissertation because

it includes two new approaches for processing the LOF in data streams. Additionally, it includes another

approach for solving the LOF by combining it with the Isolation Forest (IF) method. There are six

remaining chapters. Chapter 2 presents the literature review of the local outlier detecting techniques and

discusses the research challenge for the LOF algorithm in processing the data stream. Chapter 3 discusses

the background of the outlier detection approach and the dataset used in the experiment. The Grid

Partition-based Local Outlier Factor (GP-LOF) algorithm is presented in Chapter 4. The Grid Partition-

based Local Outlier Factor by Reachability Distance (GP-LOFR) algorithm is proposed in Chapter 5 as

an improved version of the GP-LOF algorithm. In the sixth chapter, a new method for improving outlier

8

detection in industrial applications is presented. In particular, it can be used to evaluate concrete mixture.

Chapter 7 discusses the conclusions and future studies for the data stream processing.

9

Chapter 2: Local Outlier Detection Techniques in Real-World Streaming

Data Processing: A Literature Review

Alsini, R., Alghushairy, O. Almakrab, A., Soule, T. and Ma, X., 2021. Local Outlier Detection

Techniques in Real-World Streaming Data Processing: A Literature Review (Under Review)

2.1 Introduction

Outlier detection, often referred to as anomaly detection, detects a rare event, irregular patterns, or

objects that differ considerably from the normal dataset. Outlier detection is also called novelty detection,

fraud detection, and rare event detection. Several studies have defined the outlier as a record that is

incompatible with the dataset [9-15]. Outliers arise from various causes, and understanding these causes

helps determine what steps to take when outliers are detected [16]. Therefore, outlier detection may

provide important information and have consequences for various fields, such as finance, industry, health,

transport, and network intrusion detection, to name a few. Although numerous algorithms have been

developed to recognize outliers, they have been more widely used in static environments, and their

implementation is difficult in dynamic environments such as streaming data. Large amounts of data are

generated in our daily lives, and many are recorded as data streams [17]. The data stream is known as

real-time data and can be described as a sequence of inputs to be processed. Extracting information from

the data stream is a significant challenge that needs to be addressed. A common approach is data mining,

which overcomes the limitation of processing the data stream and stores it in the computer memory [18].

A data mining process includes two key parts: data preprocessing and data mining. Data preprocessing

aims to ensure the data are consistent during the data-cleaning phase from the outlier data. If outlier data

is not detected in the data-cleaning phase, the output will be neither reliable nor accurate in various

practical applications or when detecting the outlier dataset. The data mining approach includes

understanding and exploiting the data's behavior by applying several machine learning methods to extract

information [5]. Recently, many research studies have been published on outlier detection in data mining.

A number of outlier detection reviews have been conducted, and while that number is rising, a new

approach of outlier detection algorithms needs to be introduced and discussed. Therefore, we aim to

10

provide a recent overview of the local outlier algorithms and other methods for applying the local outlier

factor (LOF) algorithm. This research is distinct from other research because we focus on local outlier

algorithms from state-of-the-art research on stream environments. We also discuss the issues and

challenges facing the LOF algorithm and different local outlier algorithms when identifying the outlier

in the data stream. In addition, our literature review includes a new technique for determining a LOF

score in a data stream. By summarizing the local outlier detection in both static and stream environments,

our literature review will significantly benefit researchers and academics in the field of local outlier

detection.

The rest of this chapter consists of seven sections: Section 2.2 addresses the literature review

methodology, selection, and analysis. Section 2.3 presents the algorithms for the local outlier detection

in both the static and stream environment. Analysis and discussion are provided in Section 2.4.

Advantages and disadvantages of existing methods are provided in Section 2.5, as well as for the research

challenge in Section 2.6. Section 2.7 outlines the conclusions regarding the local outlier detection process.

2.2 Literature Review Methodology, Selection, and Analysis

Our aim with the literature review is primarily to address the recent progress of the local outlier

algorithm in both the traditional approach to outlier detection and in the stream environment. Our

literature review covers the period from May 2000 to November 2020. We comprehensively scanned

electronic databases and papers published in English. The sources for the search included Web of Science,

IEEE Explorer, Science Direct, ACM, MDPI, Springer, Taylor and Francis, Wiley, and Google Scholar;

these were selected due to their full coverage of quality papers. The keywords used for the search included

“local outlier detection, local outlier detection in the stream environment, local outlier factor in the data

stream, outlier detection methods, and data stream mining.” The requirements for inclusion in this review

were articles that dealt with the following: (1) unsupervised approaches for local outlier detection

algorithms; (2) new local outliers, depending on a density method, in the static environment; (3) any new

LOF algorithm to identify local outliers in the stream environment; and (4) techniques to identify local

11

outliers in the stream environment. We excluded articles that did not fit the above criteria and any studies

that did not provide the complete text, as shown in (Figure 2.1).

After removing duplicates, a total of 701 research papers were reviewed during the initial search based

on the title and abstract of the papers. The research papers’ contents were then classified into either the

static or stream environment. Following this, the complete texts of the articles were used to process the

final selection. This resulted in 58 papers in total, as illustrated in Figure 2.1. The common popular local

Figure 2.1 The literature search methodology in our work.

Exclude papers based

on title and abstract

Papers = 582

Exclude papers based

on complete text

Papers = 61

Web of

Science
Papers =

180

IEEE

Xplore

Papers =
160

Springer

Papers =

50

Wiley

Online

Papers =

25

Taylor and

Francis

Papers =
49

ACM

Papers =
55

MDPI

Papers =
21

Science

Direct

Papers =

41

Candidate papers based on a scan of the

title and abstract

 Papers = 701

 Number of candidate articles based on

scanning the complete text:

Papers =119

Paper classification

Static Environment

Papers = 34

Stream Environment

Papers = 24

Google

Scholar

Papers =
120

Number of papers

included in total = 58

12

outliers are discussed in the static environment section; the other local outlier detection papers are briefly

mentioned. The recent publications on the LOF algorithm in data streams are discussed in depth in the

stream environment section; the remaining research papers on local outliers in the stream environment

are briefly considered. Figure 2.2 presents the most local outlier detection methods perform in the static

and stream environment.

Figure 2.2 An overview of local outlier detection methods performed at the static and stream environment.

Local Outlier Detection

Algorithms

Nearest-Neighbor

based approach

Cluster-based

Approach

Statistical

Approach

Other

Approaches

LOF

COF

LOCI

aLOCI

INFLO

LoOP

LOF'

LOF"

Grid-LOF

GLOF

FastLOF

UDLO

SLOF

LMDOF

E2DLOS

SDO

RDOF

MILOF

HDSOD

EMC

CB-ILOF

CBLOF

LDCOF

CMGOS

RDF

ROF

NLOD

FLDS

RCMLQ

PLOF

SOFM

ILOF

CCOF

n-INCLOF

I-INCLOF

I-MLOF

LOCI

LUKOF

RKOF

KLOF

RLOD

RDOS

DILOF

DeepAnT

EVT

WMFP

xStream

ABSAD

GILOF

TADILOF

AnRAD

LDCD

Z-score

KDE

LSCP

LSOF

Static

Stream

Static

Stream

Static Stream Static Stream

13

2.3 Algorithms for Local Outlier Detection

2.3.1 Outlier Detection in a Static Environment

This section provides a deeper insight into the most well-known algorithms used in local outlier

detection and provides some knowledge of the LOF method, which will describe the 34 research papers

from the literature search performed in the static environment. Tables 2.1 and 2.2 lists the most well-

known techniques in the local outlier detection process, as described in [19]. The two strategies for local

outlier detection are as follows. Data mining and machine learning are very significant components in

outlier detection in static environments. Several algorithms have been developed for local outlier

detection using unsupervised models. The research on local outlier detection has significantly grown over

time and is now approached from various perspectives.

Table 2.1 Overview of popular local outlier detection algorithms. NN, nearest neighbors approach; LOF, local

outlier factor; COF, connectivity-based outlier factor; LOCI, local correlation integral; aLOCI, approximate local

correlation integral; INFO, influenced Outlierness.

Ref.,

year
Authors

Metho

d

Taxonom

y
Characteristic Comments

Real-World

Dataset

[20],

2000

Breunig et

al.
LOF

NN-

based

approach

Manage the spherical

data

The first approach to define and

clarify the concept of a local outlier
Hockey, Soccer

[21],

2002
Tang et al. COF

NN-

based

approach

Handle the path to

link neighbors

The linear distribution is solved by

applying the chain distance for

locating the local outlier

[22],

2003

Papadimit

riou et al.
LOCI

NN-

based

approach

Apply the half-

Gaussian distribution

for the distance

Identical to LoOP method,

 except for the instance quantity

being used rather than the distance;

it is not important for the parameters

NBA,

NY Women

[22],

2003

Papadimit

riou et al.
aLOCI

NN-

based

approach

The quad trees

approach is used to

speed up the count

process

Fast density estimate based on the

quantity of data points and depth;

overcomes the LOCI method in time

complexity

NBA,

NY Women

14

[23],

2006

Jin et al.

INFL

O

NN-

based

approach

Apply the reverse

NN for data points

Tackles the problem of data points

inside the cluster boundaries;

suitable for clusters of different

densities for data points

[24],

2009

Kriegel et

al.
LoOP

NN-

based

approach

Apply the half-

Gaussian distribution

for the distance

Considers probabilities and

statistical approach for the outlier

score

Wisconsin breast

cancer,

pen-based

recognition of

handwritten digits,

metabolic

Table 2.2 Overview of the popular local outlier detection algorithms in clustering-based methods. CBLOF,

cluster-based local outlier factor; LDCOF, local density cluster-based outlier factor; CMGOS, clustering-based

multivariate gaussian outlier score.

2.3.1.1. Popular Local Outlier Detection Algorithms

• Local Outlier Factor (LOF)

The LOF is a well-established algorithm used for detecting a local outlier in a density-based model.

The principle of the LOF is to process data points through a comparison with their nearby neighbors.

Ref,

years
Authors

Metho

d

Taxon

omy
Characteristic Comments

Real-World

Dataset

[25],

2003

He et al.

CBLOF

Cluster

A heuristic approach for

large and small clusters

Many parameters are involved in the

process;

local variety of clusters is noted;

efficiently finds the local outlier

Annealing

lymphograph

y

Wisconsin

breast cancer

[26],

2012

Amer et

al.

LDCO

F
Cluster

Assess the cluster density

using the spherical

distribution

Many parameters are involved in the

process; efficiently finds the local

outlier

Breast

cancer,

Pen-local

[27],

2016

Goldstei

n et al.

CMGO

S
Cluster

Apply Mahalanobis distance

for estimating the outlier

Divide the size of data points using

the k mean

15

Every data point is calculated to decide if the data points are normal or outliers by degree, such as an

outlier factor. The interpretation of the LOF has been explained in [20, 28, 29] and functions as follows.

• Definition 1: The k distance of data point pt.

The space between two data points pt, o, can be determined using the Euclidean distance in n-

dimensional space as shown in Equation (1):

𝑑(𝑝𝑡, 𝑜) = √∑(𝑝𝑡𝑖 − 𝑂𝑖)2

𝑛

𝑖=1

 (1)

Since k is a positive integer and point pt is given in dataset D, the k distance (pt) is defined according

to the distance between the point pt and the furthest distance o (o ∈ D) as in the following cases:

❖ With at least k data point o'∈D \ {pt} it manages that d(pt ,o’) ≤ d (pt ,o).

❖ With at most k-1 data point o’∈D \{pt} it manages that that d (pt ,o’) < d(pt ,o).

• Definition 2: k-nearest neighbors of pt.

Any data point pt is described here by the k-nearest nearest neighbors (kNN), which can be described

as any data point q whose distance does not exceed the k distance (pt), as defined in:

𝑁k-distance(𝑝𝑡) (𝑝𝑡) = { 𝑞 ∈ 𝐷\{𝑝𝑡}|𝑑𝑖𝑠𝑡(𝑝𝑡 , 𝑞) ≤ k-distance(𝑝𝑡) (2)

• Definition 3: Reachability distance (Reach-dist (pt)) with respect to o.

If k is a positive integer, the reachability distance of point pt with any point o is described by:

 Reach-dist𝑘(𝑝𝑡, 𝑜) = 𝑚𝑎𝑥{ k-dist(𝑜), 𝑑𝑖𝑠𝑡(𝑝𝑡, 𝑜)} (3)

According to definition three and Figure 2.3, the distance is determined on the basis of the k distance

(o) in two directions. If the distance is far from the k distance (o), it processes as a reachable distance.

Otherwise, if the distance is shorter than the k distance (o), it performs as a k distance (o).

16

• Definition 4: Local reachability density of lrd (pt).

Density-based clustering algorithms define density using two parameters: 1) MinPts for the minimum

number of data points and 2) volume. The authors of [2] used reach-distMinPts(pt,o) for o∈ NMinPts(pt)

as a volume measure. The local reachable density (lrd) is the reverse of the reachable density of pt. The

following Equation describes the local reachability density as:

• 𝐿𝑟𝑑𝑀𝑖𝑛−𝑝𝑜𝑖𝑛𝑡𝑠(𝑝𝑡) = 1/ (
∑ Reach-dist𝑀𝑖𝑛𝑝𝑜𝑖𝑛𝑡(𝑝𝑡,𝑜)𝑜∈𝑁𝑀𝑖𝑛𝑝𝑜𝑖𝑛𝑡(𝑝𝑡)

|𝑀𝑖𝑛𝑝𝑜𝑖𝑛𝑡𝑠(𝑃𝑡)|
) (4)

• Definition 5: LOF of pt.

To calculate the LOF of (pt), each definition must be followed to obtain the LOF score, as shown in

Equation (5).

𝐿𝑂𝐹𝑀𝑖𝑛−𝑝𝑜𝑖𝑛𝑡(𝑃𝑡) =
∑

𝐿𝑟𝑑𝑀𝑖𝑛𝑝𝑜𝑖𝑛𝑡(𝑜)

𝐿𝑟𝑑𝑀𝑖𝑛𝑝𝑜𝑖𝑛𝑡(𝑝𝑡)𝑝∈𝑃𝑀𝑖𝑛𝑝𝑜𝑖𝑛𝑡(𝑝𝑡)

|𝑃𝑀𝑖𝑛𝑝𝑜𝑖𝑛𝑡(𝑝𝑡)|
 (5)

pt3

pt1
pt4

pt2

o

pt5

pt6

Figure 2.3 Multiple data points for measuring the reachability distance pt to o, if k is equal

to 6.

17

The LOF generates the score according to the proportion of the local reachability density and the

Minpts of pt. To assess whether the pt is normal or an outlier, the threshold score θ is used. The LOF

algorithm is valuable because it effectively finds local outliers. The LOF's downside is the sensitivity of

the execution time and the minimum points value.

• Connectivity-based Outlier Factor (COF)

The COF method involves a principle similar to that of the LOF technique. It works differently in

estimating the kNN required to compute the distance between the neighbors and data points. The LOF

method computes the kNN using the Euclidean distance, as the data points are assumed to be distributed

in spherical form. The COF method is calculated based on a linear correlation approach known as chain

distance [21]. In particular, it works by adding the closest data points to the neighbor’s set until it reaches

a size of the kNN that is a minimum of all the remaining data points. The COF method follows the same

definitions as the LOF to find the outlier score. The COF approach's strength is based on its ability to

discriminate between low density and isolation [14]. Execution time is the downside of this strategy; the

COF takes longer than the LOF.

• Local Correlation Integral (LOCI)

Choosing the k value is a primary decision for predicting the previous methods' efficiency. However,

one of the challenges is related to the estimation of the k value based on the dataset. The local correlation

integral (LOCI) solves the problem by choosing the k value using a maximization approach [22]. The

key principle is to pick the k with the highest value from each data point. The LOCI uses the r

neighborhood with the use of a radius r to obtain the top score. The radius r expands over time. The

LOCI uses a local outlier probability (LoOP)-like half-Gaussian distribution but with a particular

method; the neighbors’ number of points is used instead of the distances. It also makes two different

estimates of the local density: first, instead of the local density ratio, it compares the sizes of two

different neighborhoods; and, second, an α parameter manages the ratios of the various neighborhoods.

The LOCI’s advantage is in obtaining the maximum value. However, for large datasets, the LOCI

18

method is very slow, since the r radius must be expanded from one stage to the next, which is a drawback

for detecting an outlier.

• Approximate Local Correlation Integral (aLOCI)

The approximate local correlation integral (aLOCI) was introduced to increase the LOCI speed when

processing two neighbors. The aLOCI contains quadtrees and some constraints for parameter α [22].

For the counting estimation in the aLOCI method, performance is considered good if there is a data

point in the middle of a cell in a quadtree. Otherwise, if the data point is near the border, performance

is considered weak. Therefore, several quadtrees are built with the expectation of producing a good

approximate tree for every data point. Additionally, the depth of the tree (L) should be defined to produce

a good approximate tree. The aLOCI's power is its potential to speed up the efficiency of a quadtree.

The number of tree processes is a weakness of the aLOCI method.

• Influenced Outlierness (INFLO)

The influenced outlierness (INFLO) plays a role when the data points are in a cluster with different

densities and are related to each other [23]. The INFLO is more efficient than the LOF for handling a

cluster's data points by adding a Reverse Nearest-Neighbor (RNN). Additionally, with the kNN for

storing the points and their neighbors, the INFLO method computes the outlier score by combining both

neighbors’ sets to obtain the local density. The INFLO method uses the same computation method as

the LOF for the local reachability distance. The benefits of using the INFLO algorithm are that the

outliers scores can be measured in greater depth if the dataset contains clusters of various densities that

are close together. In other adjacent density distributions, it can also find outliers. The drawback of this

approach is that it has a long processing time.

• Local Outlier Probability (LoOP)

The local outlier probability (LoOP) follows another technique of the density-based method to

estimate the local density. It uses a static approach to determine outlier probability, whereas the LOF

19

method uses the outlier score to estimate local density [24]. Therefore, LoOP uses a Gaussian

distribution to compute the distance to evaluate the neighbors. Usually, because distances are often on

the positive scale, the LoOP uses a half-Gaussian range to obtain the local density. The proportion of

each point is compared to its neighbors to get the outlier score. A normalization and a Gaussian-error

feature are used to transform it into outlier probability. The benefit of the LoOP concerning outlier

probability is that it provides a new outlier identification strategy. The LoOP's limitations are that it is

time consuming, and it can result in incorrect steps due to the probability measurement size.

• Cluster-Based Local Outlier Factor (CBLOF)

The CBLOF’s core principle is based on using clustering to assess the clustered areas in the dataset

and then measuring each cluster's intensity [25]. The CBLOF works as follows: first, the k- means is

used to cluster the data points; then based on the result, the CBLOF classifies the corresponding clusters

as either large or small clusters; lastly, an anomaly score is achieved, which depends on the distance

from the center of each data point’s cluster that is based on being multiplied by the data points belonging

to its cluster. The CBLOF measures the cluster densities using a cluster approach. The downside to this

approach is the sensitivity of the k value.

• Local Density Cluster-Based Outlier Factor (LDCOF)

As previously mentioned for CBLOF, it is controversial to estimate local density using only the

number of cluster members and to neglect the density of the cluster. LDCOF focuses on this issue by

estimating the cluster densities, given that the cluster members are spherically distributed [26]. The

LDCOF uses a similar method of determining the k mean by dividing the data points into small or large

clusters. Then, the average distance of all members of the cluster is calculated for each cluster to the

centroid. Lastly, the LDCOF values are determined by dividing the size of the instance by the average

distance from their cluster center. Cluster density can be determined by the LDCOF method and for the

spherical distribution. The disadvantage is the sensitivity of the k value.

20

• Clustering-Based Multivariate Gaussian Outlier Score (CMGOS)

In CMGOS, a multivariate Gaussian model is calculated for local density when Mahalanobis distance

is used as a basis for estimating the outlier [27]. The first step is applying the k-means to divide the

clusters into small or large clusters. Next, the covariance matrix is robustly determined for each cluster.

Finally, the GMGOS score is determined in the chi-squared distribution, separated by a specific

confidence interval between an instance's Mahalanobis distance and the closest cluster’s center. The

essence of the interval in the Mahalanobis distance implies that outlier scores are increasing [30]. A

large score for outliers is observed. Robustness is essential for the estimation of the covariance matrix

because outliers are known to significantly affect the change. In general, three specific methods of

computation are suggested to address the issue: reduction, regularization, and the minimum covariance

determinant (MCD). The CMGOS method's strength is using both the k mean and x mean on the

multivariate Gaussian scale to measure the outlier score. This algorithm's shortcomings are that more k

values are needed, and it is not appropriate for large datasets.

2.3.1.2. Different Local Outlier Detection Techniques in the Static Environment

Chiu at el. [31] proposed three enhancements for the LOF algorithm: LOF', LOF", and grid-LOF. The

advantage of the LOF' is that it can deal with a large dataset by eliminating both rd and lrd for the outlier

score. The drawback of this method is that the Minpts can be incorrectly adjusted based on the

measurement outcome. More than LOF and LOF', the LOF" approach identifies the Minpts for

neighbors. The grid-LOF introduces the concept of dividing the points into several spaces known as

grids. The strength of grid-LOF is that it prunes the non-outliers; the drawback of the grid-LOF method

is that it is slower due to the challenge of selecting its parameters. Jiang et al. [32] introduced a new

method based on the nearest-neighbors called the generalized local outlier factor (GLOF). The

advantage of the GLOF is that it processes without a threshold for the outlier in the dataset. The GLOF

algorithm relies on the k value for performing the measurement. Goldstein [33] introduced the FastLOF

outlier detection algorithm for unsupervised anomaly detection in datasets. Based on the study results,

21

the FastLOF algorithm was shown to be an expectation-maximization algorithm that computes

anomalies in an incremental manner about 80% faster than the standard or traditional LOF methods.

Cao et al. [34] introduced a new approach for detecting the outlier quickly through the specification of

uncertain data points. The proposed method, Density-based Local Outlier detection on Uncertain data

(UDLO), focuses on computing the density of the data points rather than using all the k neighbors to

search for the outlier, as defined in the LOF approach. The algorithm's power is provided by

concentrating on the Euclidean distance rather than measuring all the k neighbors. According to Guan

et al. [35], the similarity-based local outlier factor (SLOF) algorithm is an example of density-based

outlier detection. The SLOF algorithm is more accurate and versatile in handling big data and datasets

than the LOF algorithm. However, the SLOF algorithm is ineffective when the dimensions of the

datasets are low, and the data points are dense. Liu et al. [36] proposed an outlier detection method based

on local minima density (LMDOF). The advantage of the LMDOF method is that it can detect outliers

more accurately than the traditional LOF algorithms. Su et al. [37] implemented an efficient method for

detecting the local outlier in dispersed data, called E2DLOS. Instead of using the LOF as a method of

estimation, they added a modern definition of the local outlier, called the local deviation coefficient

(LDC), which is used to identify completely all the closest neighbors of the data points. This algorithm

has the benefit of enhancing the measurements for computational efficiency. Vazquez et al. [38]

suggested a novel algorithm for detecting outliers that focuses on low density, known as sparse data

observers (SDO). SDO can reduce the time and formulation of the calculation. Ning et al. [39] indicated

a reasonable outlier approach for calculating the density of the object; it is called the relative density-

based outlier factor (RDOF) detection method. This method measures the density of data point

neighbors. This strategy's value is that it can cope with low-density pattern issues.

Ren et al. [40] presented the relative density factor (RDF) algorithm, which uses a vertical data model

for finding outliers (P-trees). The advantage of the RDF when the size of the data is expanded is that it

demonstrates better scalability; however, it needs more time for computation. Fan et al. [41] introduced

a new approach for defining the cluster called the resolution-based outlier factor (ROF), which has close

22

r-neighbors that can find the outlier based on metrics, such as a score. The advantage of the ROF is

achieved by using a growing window for the outlier score. The ROF approach has drawbacks because

it cannot rank or distinguish the outliers, cannot accommodate various density clusters, and needs more

storage space. Du et al. [42] proposed a novel local outlier detection (NLOD) algorithm. The advantage

of using the NLOD algorithm is its high-performance values, which are indicated by greater Area under

the ROC Curve (AUC) values compared to LOF algorithms. However, the disadvantage of the algorithm

is that its execution time is slower. The authors of [43] proposed fast outlier detection based on a local

density score (FLDS), which is able to identify points in a dataset for effective outlier detection. The

advantage of the FLDS is that it is applicable in local outlier detection. Su et al. [44] proposed rough

clustering based on multi-level queries (RCMLQ) to address both separation and dispersion between

objects and their neighbors. The advantage of the RCMLQ algorithm is that it reduces the amount of

data required by the LOF and LDC to be quantified to detect outliers in scattered datasets. However, the

problem with the RCMLQ is that it can fail to truly reflect the associated abnormalities in data

irrespective of the shortcomings. Babaei et al. [45] developed a pruning-based outlier detection

algorithm (PLOF) that is computationally cheaper, more reliable, and more effective than the existing

LOF models, which are computationally expensive. The drawback of the PLOF algorithm is the need to

cluster data in advance before pruning the outliers. Yang et al. [46] analyzed anomaly detection using

the self-organization feature map (SOFM) clustering algorithm. The advantage of using the SOFM

algorithm is that its functionalities can be improved using other algorithms that vary the number of

neurons, such as the canopy algorithm. It provides better performance compared with LOF and NELOF;

however, the disadvantage of the SOFM is that it requires further neuron improvement to function better.

Gao et al. [47] analyzed the robust kernel-based local outlier detection (RKOF) algorithm. The

advantage of the RKOF algorithm is that it addresses most of LOF's challenges. However, the RKOF

model's disadvantage is that it may fail to detect other outliers even though it is fast and efficient. Miao

et al. [48] proposed the kernel density-based local outlier factor (KLOF) algorithm, which they describe

as anomalous cell detection with a kernel density-based local outlier factor. After analyzing the KLOF

23

algorithm, they concluded that it addresses major challenges affecting density-based outlier detection

algorithms by capturing the exact relative degree of isolation. It has values greater than one, which

makes it easier to detect whether an incoming object is an outlier to avoid false alarms. Du et al. [49]

discussed robust local outlier detection (RLOD). The advantage is that the algorithm does not make any

assumptions concerning the probability distribution of the real data under analysis. The disadvantages

of the algorithm are that it does not support distributed computing and it cannot be deployed when

dealing with abnormal load detection. Tang et al. [50] suggested a method of finding outliers using the

local Kernel Density Estimation (KDE) algorithm. The relative density-based outlier score (RDOS) was

implemented to evaluate the local outer score for data points. The RDOS method uses KDE to measure

the local outliers by applying an extension to the nearest neighbors from the data point to measure the

local density. The advantage of the local KDE is that it can provide density estimation at the data point

location, whereas the RDOS can identify the local outliers in the local KDE. Wang and Deng [51]

examined the variable local outlier factor (VLOF). The main advantage of the VLOF algorithm is that

it more easily reflects the local variable information. Furthermore, it is easier to compare its performance

efficiency than the traditional LOF models. However, the model's disadvantage is that it takes time to

detect a fault in systems through big data analysis. Zhao et al. [52] provided a new local algorithm called

locally selective combination in parallel outlier ensembles (LSCP). The power of this algorithm is that

the local outliers can be quantified. Wang and Zhu [53] proposed a local structure outlier factor (LSOF)

algorithm. The advantage of the proposed LSOF algorithm is that it has an incredible ability to estimate,

measure, and define the novel nearest-neighbors tree (NNT), allowing it to estimate the existing

neighborhood instantaneously. The LSOF algorithm has shorter time complexity. However, the main

drawback of the LOSF algorithm is that it requires more memory to achieve maximum speed.

2.3.2 Outlier Detection in the Stream Environment

So far, the bulk of research on local outlier detection has focused on static environments rather than

stream environments, so the stream environment has been studied less than the static environment. As a

consequence of recent interest in creating conventional local outlier detection algorithms that operate in

24

the stream setting, the development of new algorithms in terms of the LOF algorithm has increased. This

section discusses several LOF methods that led to the estimation of the LOF score and reviews other

local outlier detection algorithms in the stream environment, describing the 24 research papers

performed in the stream environment. Table 2.3 provides the essential information for LOF methods in

the data stream that met the criteria for our review.

2.3.2.1 Popular LOF Algorithms in Data Stream Processing

• Incremental Local Outlier Factor (ILOF)

To overcome the vulnerability of the LOF in processing the data stream, Pokrajac et al. [54] introduced

the incremental local outlier factor (ILOF). The key principle of the ILOF procedure is to provide an

efficient method for detecting the outlier in a stream environment. ILOF is based on a density-based

outlier detection method that works by updating and preserving the k-distances, lrd, and the LOF values

when a new data point (np) is added, or an old data point is deleted. To measure the outlier score, ILOF

uses the same elements as the LOF algorithm; those elements are the k-distance, the reachability

distance (rd), and the lrd. The ILOF insertion process involves two stages: first, rd, lrd, and the LOF

score are measured according to the np value; and second, the k-distance, rd, lrd, and LOF score for

existing data points are updated. Despite the strength of the ILOF algorithm in the data stream, the main

issue is the memory consumption for storing the old data points. As a consequence, significant amounts

of memory and time are required for every np.

• Memory-efficient Incremental Local Outlier Factor (MILOF)

Memory-efficient incremental local outlier factor (MILOF) is an unsupervised outlier approach used

to determine the local outlier in the data stream [55]. The MILOF is capable of reducing the time

complexity as well as the memory constraint, and it is suitable for a variety of applications. It also

resolves the memory limitation in both the LOF and the ILOF stream environments. The MILOF method

processes the data points in three phases: summarization, merging, and revised insertion. As the number

of points exceeds the memory limit, the summarization phase is undertaken. The first half of the data

25

points are summarized, whereas the later points remain unchanged to give the new streaming data points

higher resolution. The k-means algorithm is used to calculate the LOF score for clustering the first half

of the data points. The merging phase is conducted after the second half of the data points from the

summarization stage are obtained. Based on incoming data points, a new cluster is formed. A new cluster

is subsequently paired with an established cluster to create a single set of clusters. The revised insertion

phase in the MILOF algorithm is determined based on both the recent data points and the cluster points,

which uses a similar ILOF algorithm concept. First, it computes the LOF for the new incoming data

points. Next, if necessary, it updates the k-distance, rd, lrd, and the LOF values for the established data

points

• Density Summarization Incremental Local Outlier Factor (DILOF)

In data stream processing, DILOF was built to overcome the weaknesses of the ILOF by having two

stages: detection and summarization [56]. The detection process is used for updating previous data

points as new incoming data points arrive by applying both the ILOF method and a skipping scheme.

The ILOF method works for detecting the outlier, whereas the skipping scheme is used to detect any

sequence in a number of points. The summarization stage is used for an optimized result based on the

nonparametric density summarization (NDS). NDS involves using a decision variable that relies on the

gradient descent method to summarize the data points. In general, the DILOF performs well, compared

with MILOF and ILOF, in processing the data stream in terms of accuracy and time complexity.

However, the problem with the DILOF is that the gradient descent may be trapped in the local minima.

26

Table 2.3 Summary of LOF algorithms in data stream processing. ILOF, incremental local outlier factor;

MILOF, memory-efficient incremental local outlier factor; DILOF, density summarization incremental local

outlier factor.

Ref,

Year
Authors Method

Types of

window

techniques

Characteristic Method Comments
Real-World

Dataset

[54],

2007

Pokrajac et

al.

ILOF
Landmark

window

Whenever a new

data point is

inserted, it stays

up to date

Introduces the

concept of

local outlier

factor in data

stream

[55],

2016
Salehi et al. MILOF Sliding window

Data

summarization

by k-means

Cluster

Overcomes the

limitation

faced by the

ILOF

algorithm for

keeping the

density of the

data and for

the time

complexity

Vowel,

 Pendigit,

Letter,

Motion

Trajector

[56],

2018
Na et al. DILOF Sliding window

Data

summarized by

the gradient

descent methods

Optimization

Issues of

keeping the

data point

density in

MILOF are

addressed

Gradient

descent

methods

 may be

trapped in

local minima

Vowel,

Pendigit

KDD SMTP,

KDD HTTP

2.3.2.2 Different Local Outlier Detection Techniques in the Stream Environment

Gao et al. [57] constructed a model for automatically changing the n-IncLOF threshold to boost outlier

identification. The LOF adjustment of the n threshold relies on the standard deviation of the LOF in the

sliding window. This model's strength dramatically improves the detection rate and the false alarm

detection rate. The connectivity-based cumulative outlier factor (CCOF) was developed by Pokraiac et

al. [58] and is as effective as the connectivity-based outlier factor (COF) algorithm. Karimian et al. [59]

proposed improving the incremental LOF with a more suitable algorithm for dynamic data streams. The

27

I-IncLOF algorithm uses a flexible window that allows the update and detection of outliers. Wang et al.

[60] proposed incremental multiple instance outlier detection (inc I-MLOF) as a suitable algorithm for

the multiple instances (MI) background. Kalliantzis et al. [61] used a distributed and density-based

outlier identification strategy. The method deals with the data stream’s multidimensionally. The study

illustrates how the estimated calculation technique for the local correlation integral (LOCI) can be used

to enhance anomaly detection scalability and reliability when large amounts of data are involved. Liu et

al. [62] proposed an algorithm referred to as the Lazy update method of UKOF (LUKOF). The outcome

of this approach showed that the LUKOF algorithm can detect outliers for data streams more quickly.

However, this proposed method does not enable the update on the new dataset. Yang et al. [63]

introduced the detection algorithm to extract local outlier factor (ELOF). This algorithm was split into

three phases: anomaly classification, anomaly detection, and data extraction. The ELOF model works

more effectively in regard to the aspects of time and accuracy; however, the ELOF model is considered

to perform poorly when it deals with different parameters in a large dataset.

Ren et al. [64] addressed the memory properties of data streams. They implemented a modern method,

called heterogeneous data streams outlier detection (HDSOD), to address the problems of processing

heterogeneous data streams. The strategy's strength is using a partition-cluster method for the data

stream, partitioned and placed in a cluster reference. The outlier value is measured and displayed

according to the number and extent of the cluster reference representation. The evolving micro-cluster

(EMC) is a new process that is adopted in processing the data stream, as provided in [65]. To determine

progression on the concept drift term, the method dynamically learns the changes in the micro-clusters.

This approach's benefit is that it enables evolution to be separated from noise distribution using the

concept drift. According to Gao et al. [66], the incremental local outlier factor (ILOF) is an effective

outlier detection method that assigns outlier scores to different data points according to their degree of

abnormality. The authors analyzed the ILOF algorithm and tried to address its deficiencies by proposing

a cube-based ILOF (CB-ILOF) algorithm. Based on Gao et al. [66], the time complexity of the CB-

28

ILOF algorithm, which depends on the runtime memory, performs better than ILOF. However, the

disadvantage of the algorithm is that it requires more memory space to perform better.

Chen et al. [67] developed a model called a neuromorphic anomaly detection (AnRAD). The AnRAD

model is based on deduced probabilistic inferences. The model aims to improve memory and

measurement accuracy while detecting abnormalities. This model's power is that it overcomes memory

consumption problems by growing the incremental learning pace and enhancing the efficiency and

consistency in detecting anomalies. Ishimtsev et al. [68] developed a technique using the model-free

anomaly detection method for a time series model that provides a probabilistic outcome for

abnormalities. The technique’s advantage is that by using simple approaches like the lazy drifting

conformal detector (LDCD), it achieves a result close to advanced anomaly detection methods. The

drawback of the model is that more LDCD methods are necessary to maintain appropriate validity. Yang

et al. [69] provided a quick method to identify the local outliers in data stream. The value of this approach

is that it focuses on reducing the local outlier factor estimates by applying the Z-score pruning method

to overcome the constraints, such as time consumption. However, the method relies on a model of

prediction. Qin et al. [70] suggested a new outlier strategy to fix the limitations associated with current

approaches given contemporary high-speed data streams. The algorithm uses KDE to find and enhance

outliers in the streaming environment.

Munir et al. [71] unveiled a new form of detection for anomalies based on deep learning. The

procedure, called DeepAnT, applies to data from a time series. The advantages of the method are that

abnormalities can be observed in real-life situations, as in stream environments; however, the low quality

of the datasets may weaken the influence of the process. Siffer et al. [72] suggested a strategy to identify

outliers based on the extreme value theory (EVT) in streaming time series. They provided a robust

method for detecting the univariate and unimodal models. This method's benefit is that there is no

requirement for a manually set threshold or distribution assumptions. However, the gap in the

multivariate case weakens this strategy. Cai et al. [73] identified a pattern-based, multi-phased approach

for recognizing outliers, which is referred to as the Weighted Maximal Frequent Pattern-based outlier

29

(WMFP). The benefit of this approach is that it can distinguish outliers more easily, in particular in a

weighted data stream. The acceleration of the detection phase of outliers liberates the recurrent patterns

that are better than the frequency patterns. Manzoor et al. [74] proposed xStream, a density-based

collaborative anomaly sensor for settings with extreme attributes, such as evolving data points and

feature space. The algorithm is efficient and reliable for evolving streams. The strength of the xStream

model is that the anomaly can be more easily observed, even with massive noise. In a high-dimensional

and non-stationary data stream, Zhang et al. [75] used fault detection techniques. The method of

separating subspace faults from high-dimensional datasets focused on angles. Alghushairy et al. [76]

introduced a new approach for local outlier detection by using the genetic algorithm to optimize local

minima. The goal of the GILOF algorithm is to solve the limitation of DILOF in optimizing local

minima. As with the DILOF method, the GILOF function operates in two phases: the detection and

summarization phases [56]. The detection process is identical to the DILOF process. The GILOF

algorithm improves the DILOF method in the summarization phase. The genetic density summarization

(GDS) applies a genetic algorithm (GA) to summarize the data points, which leads to the search for the

best local minima [76]. According to Huan et al. [77], the time-aware density-based incremental local

outlier detection (TADILOF) approach aims to resolve of the variance in data that change after a while,

and which has not been addressed in other types of algorithms. The proposed algorithm was divided into

two stages: summarization and detection. The TADILOF applies only a minimal level of memory

compared to the DILOF, although it can be stated that these two models do not use a large volume of

memory and are appropriate for a data stream setting. In terms of execution time, TADILOF achieves

the same performance as the DILOF algorithm.

2.4 Analysis and Discussion

Outlier detection is a meaningful research subject for many domains. A variety of reviews, studies,

surveys, and books have addressed outlier detection methods in several fields and applications. Patcha

et al. [78] provided an exhaustive analysis of recent and current systems for anomaly detection in

intrusion detection systems and the tools used to identify outliers. Agrawal et al. [79] explored different

30

anomaly detection approaches in data mining to further grasp current techniques that support researchers

regarding intrusion detection. Ahmed et al. [80] addressed finding outliers in the financial domain.

Markou et al. [81,82] presented an outlier detection method using a statistical approach and neural

network. Hodge et al. [83] presented various outlier detection algorithms and techniques as unsupervised

approaches. Goldstein et al. [30] looked at different unsupervised outlier detection methods, whereas

Domingues et al. [84] addressed several outlier detection techniques applicable for detecting outliers.

Wang et al. [14] addressed the recent progress and challenges faced in outlier detection methods. Chen

et al. [2] discussed the most widely used outlier detection approaches in big data streams. Tellis et al.

[86] presented various methods for detecting outliers in multiple data stream applications. Alghushairy

et al. [19] described recent local outlier detection algorithms applicable to processing a data stream.

Additionally, papers on outlier detection are available in [13,87-89].

2.4.1 Motivation and Limitation

These research papers presented a variety of techniques for detecting outliers and applied them in a

variety of domains. Patcha et al. [78] present some of the existing solutions for anomaly detection in

network intrusion detection systems. This research aimed to demonstrate how different anomaly

detection approaches can be utilized to identify unusual traffic in networks resulting from attacks. The

limitation of this research paper is that it focuses on the current anomaly detection techniques, as

including false alarms and the inability of the system to scale to different environments. False alarms

occur when the system detects genuine traffic as being unusual. The result of this is that legitimate traffic

could be stopped, resulting in poor data transmissions. Therefore, improving the accuracy of the outlier

detection techniques is needed. Ahmed et al. [79] mentioned that their article's rationale was to survey

anomaly detection techniques from the financial perspective and discuss issues relating to datasets.

According to the article, only a few publicly available real-world datasets assess anomaly detection

systems in the financial sector. The main reason for this is financial data is sensitive, and most

organizations are not willing to release it due to privacy reasons and competition. Agrawal et al. [80]

31

offered a fundamental review of data mining techniques for detecting anomalies. The limitations of this

study are related to current anomaly detection methods. One of the issues was insufficient precision

when processing a large dataset. Markou et al. [81] presented a statistical method that could be used to

detect outliers. The limitation of this approach is that it cannot deal with large datasets; this could be

due to an inability to adequately minimize parameters, insufficient independence and generalization,

poor adaptability, or high computational complexity. Also, Markou et al. [82] reviewed neural network-

based approaches for detecting the outlier. The motivation of the researchers was to present a

comparative analysis of neural network-based systems because such a study was missing in the available

literature at the time. Only a few studies had compared different models using the same dataset, which

meant that it was difficult to establish the appropriateness of different algorithms on different types of

data. The authors also wanted to provide foundational comparative work to support future analyses and

assessments. Some of the neural network-based approaches that they explored had limited effectiveness

and efficiency in local outlier detection. Hodge et al. [83] provided a broad survey of current techniques

for detecting outliers; the idea was to acquaint the audience with a feel for the assortment and diversity

of the methods available. The authors also aimed to highlight considerations when choosing an

algorithm to suit the data and objectives at hand and to meet the requirements of scalability, incremental

capabilities, and accuracy. Goldstein et al. [30] provided an in-depth evaluation of unsupervised

anomaly detection algorithms using different datasets. According to the authors, existing studies did not

evaluate the algorithms using different datasets, which limited decision-making on applying the

algorithms for diverse uses. The study highlighted some of the weaknesses associated with current

approaches to local outlier detection. Domingues et al. [84] utilized publicly available datasets and new

industrial datasets to conduct experiments to determine the scalability, robustness, and memory

consumption of different outlier detection algorithms. Therefore, rather than developing outlier

detection algorithms, the objective was to evaluate and compare their performances. The findings of

such a study could help organizations and other researchers when choosing the best algorithm. The

approaches examined had limitations in terms of achieving optimal precision, robustness, and memory

32

usage. The ability to detect anomalies precisely is a key aspect of effective detection systems. In terms

of time complexity, the algorithm should perform computations efficiently and identify outliers more

quickly. The research papers [14,19,85] focused on the issues and challenges affecting approaches

developed and deployed in detecting outliers in big data streams. For example, density-based methods’

effectiveness depends on the careful configuration of several factors and the experience of time

complexities.

 Various techniques for detecting outliers are presented in these research papers. However, when a

new method in the unsupervised approach, specifically the local outlier detection method, is proposed,

these research papers limitations become an impediment when dealing with large amounts of data. As a

result, we provide an overview of local outlier algorithms as well as alternative methods for

implementing the local outlier factor (LOF) algorithm in the most common big data approach. Outlier

detection is typically implemented in these approaches in three ways.

• The Supervised Outlier Detection Approach

This approach aims to predict the classified dataset anomalies. Data collection in the supervised

approach requires preparing the data for training and testing the module to indicate the normal and

abnormal classes. Therefore, some data may be defined as outliers, while other data may be taken as

normal. The classification methodology is associated with the supervised outliers for predicting the

anomalies [90]. A problem in classification is the data distribution inequality when training the dataset:

outliers are much less frequent than normal points. This issue has already been discussed in the machine

learning and data mining research papers [91-93]. For example, decision trees like the C4.5 [94] method

suffer from an imbalance in data, which can be resolved using techniques, such as support vector

machines (SVMs) or a machine learning method like an Artificial Neural Network (ANN)[95].

33

• The Semi-Supervised Outlier Detection Approach

This approach aims to identify anomalies based on the information gained from the data that form part

of the labeled data [96-98]. The semi-supervised learning approach is more efficient than supervised

learning because it uses unlabeled data that do not require the knowledge of the distribution of the data

points or the historical data points. Therefore, it works by using a model learned from the training dataset

to recognize the test result's abnormalities. Examples include network intrusion detection[99]. The most

common machine learning method is the one-class support vector machine, which supports vector data

to detect anomalies [100].

• Unsupervised Outlier Detection Approach

Unsupervised outlier detection relates to the use of unlabeled data to identify an unusual occurrence

or object distinct from usual behavior. It is more flexible than the previous approaches in finding the

outlier based only on the dataset structure. The key goal is to find the outlier according to the dataset's

score. The most common methods in unsupervised applications focus on the densities or distance of data

points to estimate the normal and outlier data. There are several techniques for unsupervised outlier

detection that were addressed and discussed in [30,101,102]. This review focuses on the detection of

local outliers in the unsupervised method.

2.5 Advantages and Disadvantages of Existing Methods

2.5.1 Nearest-Neighbor-based Outlier Detection Methods

The nearest-neighbor-based outlier detection has been explored in multiple outlier detection

approaches [6,79]. The nearest-neighbor approach relies on a distance measurement between the data

point and its nearest neighbor. The nearest-neighbor method utilizes the degree of closeness between

the data point and its nearest neighbor to determine its distance from it. Different distances are used

based on the attribute type [103]. Euclidean distance is a common choice of an attribute that has

continuous characteristics, such as a data stream. There are two types of nearest-neighbor outlier

34

detection strategies [104]. The first, the distance between a data point and its closest neighbor, is used

to measure the k-distance for the outlier score. The second, the relative density approach, calculates the

outlier score to evaluate the data point. The strength of this approach is that it can process without prior

assumption regarding the underlying data distribution. It is also suitable for various forms of data since

it can handle different kinds of data points. The weakness of this approach is that it takes a long time to

compute.

2.5.2 Cluster-based Outlier Detection Methods

The cluster-based outlier detection method relies on the data mining method that divides data points

into different clusters with similar data points. In several clustering approaches, the primary assumption

is that typical data is also related to broad and compact clusters, whereas outliers are separated or

clustered in another class [105,106]. Two approaches to cluster-based techniques are widely used for

getting the outlier score [107]. The first is the distance from the cluster core. The standard data points

are near the cluster centers, while the outlier is far from them. The second approach implies that the

cluster of usual data points is dense and wide, while the cluster of outliers is scattered and small. The

benefit of the latter approach is that it can be applied in unsupervised mode. It is easy to change with the

incremental model. Therefore, it can be modified to other complicated data types, such as the data

stream, which can be processed and can manage data. It also has a fast test step because the number of

clusters for comparison is small. The drawbacks of this method are as follows:

• The performance of cluster-based methods relies heavily on the clustering algorithms in processing

the data points;

• Most techniques for the identification of outliers are cluster by-products and thus not ideally used

to identify outliers;

• Several algorithms for clustering force each instance to be allocated to a cluster. Abnormalities

may result in a large cluster being allocated, and techniques that function under the presumption

that anomalies are not included in either cluster could then regarded as normal data points;

35

• Some clustering algorithms demand that a cluster be allocated to each case. Therefore, outliers may

be connected to a wide cluster with methods that are often isolated from the outliers as a standard

case;

• Some clustered approaches only operate where outliers are not a significant component in clusters;

and,

• Measuring the clustering algorithm is challenging to compute.

2.6 Research Challenge and Objective

Big data is a significant aspect of our everyday lives. A large amount of data represents a lot of

information to be analyzed. The disciplines most involved in the extraction of knowledge from large

datasets are data science and machine learning. With the increasing need to extract and interpret data

streams, traditional outlier detection algorithms cannot efficiently handle the data. The local outlier

factor (LOF) is a prominent algorithm used for finding local anomalies that distinguishes between the

outlier case and the normal case. The method by which outliers are identified is a significant issue in big

data processing via a data stream.

The LOF's key problem is that all the datasets and distance values in the machine need to be retained

in storage memory [10]. Another issue concerns the processing of the data stream. The algorithm needs

to reprocess the measurement from the beginning of any change in the dataset. The ILOF algorithm is

the updated LOF variant that was introduced as the first step in the stream environments procedure.

However, to calculate the LOF score for each data point at different times, all data points in the machine

memory must always be kept in the ILOF algorithm. Thus, ILOF requires considerable amounts of time

and memory. Therefore, a new approach for processing the LOF vulnerabilities in the data stream needs

to be developed. Accordingly, each new method can achieve the key objective of calculating the LOF

score by considering the following circumstances (as set out in [19]): (1) a portion of the dataset is stored

in computer memory; (2) no previous knowledge regarding the distribution of data as outliers is

detected; (3) the algorithm does not have any knowledge regarding future data points when it detects an

36

outlier using the current dataset; and (4) the algorithm should check for an incoming data point to

determine if it is either normal or an outlier. As discussed in Chapter 1, this research aims to establish

GP-LOF for data streams as a new local outlier algorithm. The principal objective of this research is

performed under the following circumstances as described above. The six detailed research questions

mentioned in Section 1.5 are guided by these four conditions, which in turn directed the development of

the algorithm and the experiment.

2.7 Conclusion

This literature review aims to provide a recent approach to the local outlier detection methods in big

data. Local outlier detection techniques discussed in this literature can be applied to detect outliers in

two different contexts. Nonetheless, these approaches have benefits and drawbacks. For example, in the

k-nearest-neighbor approach, the majority of these local outlier detection techniques use an

unsupervised model and process with no prior assumptions about the underlying data distribution.

However, this takes a long time to compute. The cluster-based approaches can be modified to handle

more complex data types, like data streams. However, the processing time is highly dependent on the

clustering method used, which may necessitate a longer processing time.

Due to the infinite and dynamic nature of data streams, the primary concern is determining how to

apply the local outlier when dealing with data streams. Some techniques for detecting local outliers store

all historical data in memory or in a secondary storage location. When dealing with new data points,

some algorithms outperform the ILOF algorithm. This appears to be a challenge in the case of several

of these novel approaches. One issue is how to manage memory consumption while summarizing

previous data points and processing new data points. This could have an effect on these algorithms’

performance. It will be interesting to conduct a research to address these issues to improve the efficiency

of detecting local outliers. Outlier detection aims to find the outlier among the data points. This chapter

summarizes recent advances in the detection of local outliers in both static and stream environments. It

focuses on the issues surrounding local outlier detection in the stream environments and considers how

the LOF algorithm can be improved to be better suited to detecting local outliers in data streams. We

37

hope that this literature review is helpful to readers who want an overview of local outlier algorithms

and alternative methods for implementing the local outlier factor (LOF) algorithm in the most common

big data approach.

38

Chapter 3: Benchmark Datasets Used in This Research

"A Grid Partition-based Local Outlier Factor for Data Stream Processing" Forthcoming in Proceedings

of the 4th International Conference on Applied Cognitive Computing, 2020. Springer

Alsini, R., Almakrab, A., Ibrahim, A. and Ma, X., 2021. Improving the outlier detection method in

concrete mix design by combining the isolation forest and local outlier factor. Construction and

Building Materials, 270, p.121396.

3.1 Introduction

The volume of data has grown significantly, both for research and in the context of daily life. People

can use different types of technology in the digital world to capture and distribute big data, which has

the characteristics of volume, velocity, variety, value, and veracity [108,109]. The volume factor refers

to the vast amount of data that has been collected and analyzed. The velocity factor refers to the rate at

which data is produced and transmitted between various systems and devices. The variety factor

employs a broad range of data types that can be used to obtain the necessary information or output. It

includes data forms such as structured, unstructured, and semi-structured data [110]. The value factor

has advantages when it comes to extracting information from big data. Finally, the veracity factor

considers the accuracy, trust, security, and reliability of the data. More specifically, big data represents

a huge amount of undiscovered information and expertise. A data stream is a common form of big data

that embodies the five Vs. Because of the essence of the data stream across all five significant data

components, data stream processing employs a variety of methods to analyze the data points in the data

stream environment. The real-time feature of the data stream requires corresponding technologies for

efficient data processing. How the data is processed determines how information can be extracted from

the data stream.

3.2 Data Stream Processing

Processing the data stream is a crucial subject in the field of information flow processing (IFP)[111].

The goal of data stream processing is to understand the data action and to acquire the right information

to make better decisions. It is important to analyze the data stream in the workflow and then store it.

Many places produce the data stream, such as a stock exchange, monitors, log operation, social media,

39

etc. Processing the data stream is thus helpful and significant. Two types of strategies may be used for

processing the data stream as [112]:

I. Apply the query processing.

II. Apply the data stream mining.

Various articles presented a promising performance in both areas, which also highlights the relevance

of data stream analysis in the Big Data era. Managing the data stream can be done using queries as a

primary method, such as the Structured Query Language (SQL). SQL is a common language use for

managing the database. The data stream management system (DSMS) uses an extended version of SQL

known as the Continuous Query Language (CQL). The reason behind CQL is to ensure any continuous

data over time can be used on the system[7]. The other approach is processed under data mining as part

of data science to discover knowledge in data. Data stream mining usually involves data mining or

machine learning to extract and predict new information. The most used methods are clustering,

classification, and data stream mining on the outlier detection.

3.3 Outlier Detection in the Data Stream Mining Approach

Outlier detection is a significant research issue in machine learning and data mining for detecting a

rare object in real applications, such as in the fields of finance, industry, health, and materials science.

The core concept of outlier detection is to identify abnormal data that is different from the majority of

the data. Outliers can be divided into two categories: global outliers and local outliers. In [113], the

authors explain how to locate a global outlier by using a sliding window technique. For local outliers,

the distance between points is usually computed according to the local neighborhood, known as the k-

Nearest Neighbors (KNN) algorithm. Many approaches of outlier detection in the data stream have been

categorized, such as distance-based outlier method, density-based outlier method, clustering-based

outlier method, and ensemble-based outlier method [13,14,29,114].

The distance-based outlier method is evaluated depending on the distance between the data points.

Authors in [6] introduced the distance-based method to calculate the distance between points and their

40

nearest neighbors. Those with a far distance from the neighbors are counted as an outlier [3]. k-Nearest

Neighbors (kNN) is the most common method used to evaluate the outliers based on their local

neighbors. In the data stream, sliding windows have several methods applied in the distance-based

model. In [115] and [116], the authors utilized a sliding window technique to uncover the global outliers

regarding the current window. In [117], the authors enhanced the algorithm in [3] by introducing a

continuous algorithm that has two versions to reduce the time complexity and memory consumption.

The first version handles multiple values of k neighbors. The second version involves reducing the

number of distances by using the micro-cluster for computation.

The density-based outlier method is based on measuring the densities to their local neighbors. Those

densities that are far from their closest neighbors are considered an outlier. The local density measures

the density-based method. LOF is an example of the density-based model that uses (kNN) to detect the

data points using the local reachability density. LOF has a high detection accuracy and has several

proposed methods in improvement, some of which are discussed in [21] and [31]. The author in [118]

used the LOF to distribute data points into several grids. Since LOF works in a static environment, an

incremental local outlier factor, i.e., ILOF, is presented using the LOF in the data stream. All the

previous extensions in the LOF required the entire data points to be calculated to get the LOF score,

which is not necessary for the ILOF technique since it can handle new incoming data points.

The clustering-based outlier method is an unsupervised method that processes data points by dividing

the data into groups based on their distribution [17]. The method aims to cluster a data point and then to

detect the outlier [119-121]. Some algorithms used the small cluster by representing a small number of

points as an outlier, while other methods used the threshold to find the outlier. Several methods used the

cluster in the detection of the outlier, such as partition cluster model, density cluster model, and grid-

based cluster model [79]. The authors in [122] proposed using the cluster in a high data dimension data

stream. k-means is used in the data stream to split the data into several segments to process. Authors in

[123] generated histograms for the clusters in the streamed data, which they used later for data mining

and in detecting outliers. In [124], the authors proposed an algorithm that works on outlier detection on

41

a data stream that can determine if any point is an outlier within any time. The accuracy of detection

depends on the availability of time. In [125], the author used the data stream arriving time to learn and

determine the normal behavior of the current period.

The Ensemble-based outlier detection is a new strategy for detecting outliers by combining the one

set of results with the results of another outlier method to present and create a robust outlier detection

method. In [126], the authors proposed combining the Ensemble-based outlier detection with the

density-based outlier detection to solve both IF and LOF limitations. The developed method focused on

clipping data points to detect the outlier according to a set of candidate outliers. Several authors have

introduced extended versions of the IF to deal with several types of outliers. In [127], the authors

improved the IF by using a new algorithm called Function isolation Forest (FIF) to identify outliers. In

[128], the authors used the sliding window concept for data stream in the IF method.

3.4 Benchmark Datasets

The label information's specifics are not processed in an unsupervised outlier approach due to the need

to be measured and contrasted for practical purposes. When designing and developing a new outlier

detection algorithm, it is common practice to validate the results with available public datasets against

better known unsupervised outlier detection algorithms such as the LOF algorithm. In the UCI machine

learning repositories, there are many classification data sets fully accessible in [129]. Furthermore, some

outlier detection datasets are included in [130]. The following datasets are real-world datasets containing

outlier data points. These benchmark datasets have been used to test existing algorithms by using the

proposed modern algorithm such as GP-LOF, GP-LOFR, and IFS-LOF algorithms.

3.4.1 UCI Vowel Dataset

The Vowel dataset is considered to be a multivariate time series and a classification dataset that

categorizes speakers. In one case, two Japanese vocals were spoken by nine speakers. One speaker

makes up a time series between 7 to 29 lengths, with twelve characteristics of each point of a time series.

In the training dataset, every structure is seen as a single point for outlier detection, while in the UCI

42

learning repository, the frame talk is seen as a single point. Classes six, seven and eight are commonly

referred to as UCI Vowel Data set as Inliers. This data set consists of 12 dimensions, including 1,456

data points, which constitute 3.4% of the outlier.

3.4.2 UCI Pendigit Dataset

The pendigit dataset originates fromthe UCI machine learning repository, as given in[129,130]. This

data set is multiclass of 16 dimensions and ten classes. It consists of 25 samples that are generated from

44 authors. Thirty samples of the author are used for the training process, while the remaining 14 are

used for the testing process. The initial training set consists of 7,494 points, and the test set includes

3,498 points.

3.4.3 UCI Shuttle Dataset

The UCI shuttle dataset consists of multiple classifications that have nine dimensions provided from

the UCI machine learning repository at [129,130]. This dataset combines the output from both the

training and testing process. Classes two, three, five, six, and seven are grouped to form the outliers.

This dataset contains 49097 data points which constitute 7% of the outlier.

3.4.4 KDD Cup99 SMTP Dataset

The KDD CUP 1999 dataset, which is a UCI machine learning repository, uses its SMTP service[129].

The original dataset (KDDCUP99) has 4,898,431 data points, 3,925,651 data points (80.1 percent) being

considered as an assault. 976,157 data points, including 3,377 attacks (0.35%), are forged for a smaller

dataset. This smaller dataset is used for the generation of the SMTP KDDCUP99 data set. The data

collection KDDCUP99 SMTP consists of three dimensions and contains 0.03% outliers and 95,156 data

points.

3.4.5 UCI Concrete Dataset

The concrete data collection was obtained from the University of California Irvine (UCI) machine-

learning repository that was released in [129]. The data collection included the results of the compressive

strength of 1030 concrete mixtures. Compressive strength is considered one of the extremely important

43

parameters used by the engineering community in structural concrete design, including structures,

bridges, etc.

3.5 Conclusion

This chapter addressed the background of processing the data stream and outlier detection approaches.

A new unsupervised local outlier algorithm is validated by benchmarking dataset that is a real-world

dataset. After that, the results will be compared to the common local outlier algorithm in the data stream

process. The datasets used in this dissertation are also discussed in depth.

44

Chapter 4: A Grid Partition-based Local Outlier Factor for Data Stream

Processing

"A Grid Partition-based Local Outlier Factor for Data Stream Processing" Forthcoming in Proceedings

of the 4th International Conference on Applied Cognitive Computing, 2020. Springer

4.1 Introduction

The demand for data is increasing in the big data era. Massive data is generated through various

sources such as smart homes, sensors, mobile applications, communication, and finance, which all lead

to an increase in data processing. One of the challenges in big data processing is how to measure outliers

in streaming data. Data streams change every second, and the size is potentially infinite because it keeps

increasing constantly. As a result, it is difficult to store the entire data sets in the memory and process

them with older algorithms [1]. The density-based method is a well-known method used to find the

outlier in the multi-density data. Local Outlier Factor (LOF) is currently the most utilized density-based

method. It handles the data without assuming any underlying distribution. Moreover, it is capable of

finding the data set in the data with heterogeneous densities [55,131,132]. However, LOF faces some

limitations in data stream processing. First, it works only on static data that does not change over time,

and only scans the data at one time to process the whole data set. Also, for any change in the data points

that occurred by adding or deleting data points, LOF needs to be recalculated on the whole data set.

Because of the limitations of LOF, it can’t be used in data streams as the size of data streams are

potentially infinite, and the data are changing over time.

To further improve outlier detection and performance accuracy in the data stream, we propose a new

technique called Grid Partition-based Local Outlier Factor (GP-LOF). The proposed method has the

following characteristics. First, GP-LOF works with limited memory. Therefore, a sliding window is

used to summarize the points. Second, a grid method splits the data points for the processing phases.

Third, it detects outliers using LOF. In this research paper, GP-LOF is evaluated through a series of

experiments with real-world datasets. Based on the experimental result, the GP-LOF algorithm has

shown better accuracy and execution time than the DILOF algorithm [56]. The rest of this research paper

45

is organized as follows: Section 2 describes the methodology of the GP-LOF algorithm. Section 3

explains the experimental results. The conclusion is presented in Section 4.

4.2 Methodology and Methods

4.2.1 Grid Partition-based Local Outlier Factor (GP-LOF) Algorithms

In this section, we will explain the Grid Partition-based Local outlier Factor (GP-LOF) algorithm. The

main objective of the GP-LOF is to find the outlier by the following characteristics: there is no prior

knowledge of the data distribution; a part of the dataset is stored in the memory; the LOF algorithm is

applied to detect the outlier. GP-LOF includes three phases to identify the outlier: Preprocessing phase,

Processing phase, and Detection phase, as shown in (Figure 4.1). Algorithm 1 explains how the GP-

LOF method operates as follows. The GP-LOF algorithm begins by collecting the data points in Pre-

Processing Window (PPW) with specific window size ws. Then, once the size in the PPW is complete

(line 3-6), the first half of the data points in PPW is selected and then sent to the Processing Window

(PW). The grid technique is applied in the PW to divide data points in the grid index i. After the data

points are partitioned into the grid, GP-LOF calculates the LOF and gets the result depending on a

predefined threshold θ. The GP-LOF ensures any points that exceed the θ are removed from the PW

(lines 7-17). Each phase in the GP-LOF is described as follows:

46

Figure 4.1 Framework of the GP-LOF algorithm in the data stream.

47

1 Pre-Processing Phase:

In this phase, a PPW is used to collect and store the data points that arrive in the stream. Then, once

the ws of the PPW is filled with data points, the GP-LOF selects the first 50% of data points from PPW

to be processed in the PW.

2 Processing Phase:

The processing phase begins once the data point in the PPW is moved to the PW. Next, PW divides

the data points into a grid, which is a number of regions. Then, GP-LOF computes the LOF score for

Algorithm 1: GP-LOF

Input: LOF threshold θ

 Infinite data streams points P={p1, p2, ..., pt ,

...},

 Preprocessing Window size PWS

 processing Window PW

 Number of grids ng

 Grid G
 Thresholds of LOF scores ʘ,

1 Init PWS → {} // is representing the

preprocessing window size

2 Init PW → {} // is representing processing window

3 For each pt ∈ P do

4 If PWS (pt) < PW (pt)

5 Add pt to PWS (pt)

6 continue.

7 else

8 Add first 50% PWS (pt) to the PW

9 For PW do

10 GP-LOF (pt)← G(ng,pt,θ)

11 For every GP-LOF (pt) do

12 If the LOFk (pt)> ʘ then

12 pt is outlier

13 End

14 End

15 Empty the PW

16 Remove the first 50% data points from

PWS

17 End

18 End

48

each grid index i. After that, the LOF scores for each i are used to find the LOF score for all data points

belonging to the grid. Then, the LOF results will forward to the detection phase. To compute the outlier

score of data points, the PW ensures the following steps:

▪ Divide the dataset’s dimensions equally into the grid.

▪ Allocate each data point p into a grid index i.

▪ In every grid index i, compute the LOF score for all data points using the LOF algorithm [20].

3 Detection Phase:

Once the LOF result is received in the detection phase, the GP-LOF method will scan all data points

and select the data points that are greater than the threshold to be outliers. Then, it empties the PW and

removes the first 50% of data points in the PPW except inlier data points as in Algorithm 1. Then, when

any new data point is arriving in a stream, the preprocessing phase starts again to collect them.

4.3 Experiment Procedures

4.3.1 Datasets Used in Experiments

This section provides the experimental results of the GP-LOF algorithm. The GP-LOF results are

compared with DILOF results in various datasets. The GP-LOF algorithm is implemented in Java by a

machine that runs in intel® core (MT) i7- 4940MX CPU, 16GB RAM, 1 TB SSD hard disk, and

Windows 10 (64-bit) operating system. The same machine implements the DILOF algorithm in C++,

and the source code is available in [56]. For the DILOF setting and hyperparameter, the reader can refer

to [56]. Both methods are measured under two metrics in the accuracy of detecting the outlier and

execution time. In particular, the area under the ROC curve (AUC) is used in the first category as

described in [130,131]. The efficiency of the AUC is evaluated by applying the True Positive Rate (TPR)

and a False Positive Rate (FPR) with a scale of the threshold t = { 0.1, 1.0, 1.1, 1.15, 1.2, 1.3, 1.4, 1.6,

2.0, 3.0}. The evaluation of both TPR and FPR rate is tested according to each threshold value to obtain

accuracy. Both GP-LOF and DILOF methods are tested with different window sizes ws through a real-

world data set, as in (Table 4.1). All these real-world datasets can be obtained from the Machine

49

Learning database repository at UCI in [129]. The UCI Vowel dataset can be obtained from [133]. The

UCI shuttle dataset is provided in [129]. Both the UCI Vowel dataset and the UCI shuttle have been

modified to be suitable for data stream format like in [133]. In the KDD cup 99 SMTP, we did the same

configuration as [134] to be an outlier. SMTP is a subset from KDD Cup 99 dataset developed to test

intrusion detection in the network. In the SMTP service, it is possible to show some changes in

distribution within the streaming series [135].

Table 4.1 Real-World Dataset

For the experimental setup, we set k to be 19 for the UCI vowel dataset. The UCI Pendigit dataset has

k set to 18. The UCI shuttle has a k of 29. We set k to 8 in the KDD CUP99 SMTP. Both GP-LOF and

DILOF have the same setup of the window size ws for their validation by having two categories of ws.

In the DILOF, we setup the ws in the summarization phase ws={100,120,140,160,180,200} for both the

UCI Pendigit dataset and UCI Shuttle Dataset. The remaining datasets, including the UCI vowel dataset

and the KDD CUP99 SMTP dataset, both datasets are tested by ws={100, 200, 300, 400, 500}. For the

UCI Pendigit dataset and UCI shuttle dataset, both methods are evaluated by

ws={100,120,140,160,180,200}. For the GP-LOF method, we did the same configuration on the ws in

the Preprocessing Windows PPW.

Datasets Number of data

points

Dimension Class

UCI Vowel dataset 1456 12 11

UCI Pendigit dataset 3,498 16 10

UCI Shuttle dataset 58000 9 10

KDD Cup99 Smtp

dataset

95,156 3 unknown

50

4.3.2 Experiment Discussion

4.3.2.1 Accuracy of the Outlier Detection:

The accuracy of outlier detection is tested under the AUC through a series of experiments with

different window sizes. Figures 4.2 to 4.5 and Tables 4.2 and 4.3 represent the accuracy between the

GP-LOF and DILOF for the UCI Vowel dataset, UCI Shuttle dataset, UCI Pendigit dataset, and KDD99

SMTP Dataset. In the UCI vowel dataset, DILOF has high accuracy in the size of the window ws=100

at 72.02% and in ws=200 at 89.038% compared to the GP-LOF algorithm, which takes 43.00% and

45.49%. However, when the size of the window is increasing, GP-LOF has better accuracy. For

example, when the size of the window reaches ws= {300} or {500}, the GP-LOF outlier accuracy is

better than DILOF. Both algorithms have a similar accuracy rate when the size of the window reaches

ws= {400}. We noticed the GP-LOF algorithm performs better accuracy in all window sizes for the UCI

shuttle dataset than the DILOF algorithm. The highest accuracy rate for the GP-LOF algorithm reaches

the accuracy rate at 84.86% at ws={200}, while the DILOF algorithm reaches the highest accuracy rate

as ws={160} at 71.03 %. For the UCI Pendigit dataset, the GP-LOF algorithm has a lower accuracy

rate of 49.12% at ws={100}. When the window size increases, all accuracy rate of the GP-LOF

algorithm has a higher accuracy rate than the DILOF algorithm. The highest accuracy rate achieves

61.41% compared to the DILOF algorithm at 52.56% at ws={200}. In the KDD99 SMTP dataset, there

is a variance detection accuracy between GP-LOF and DILOF. For example, when the windows size

ws> 300, there is a significant difference between GP-LOF and DILOF algorithms. The GP-LOF rate

keeps increasing, while the DILOF rate has a lower accuracy when the size of the window keeps

increasing.

51

Figure 4.2 GP-LOF shows consistently higher accuracy in all the window sizes compared to the DILOF

algorithm in the UCI Vowel Real-World dataset.

Figure 4.3 GP-LOF shows consistently higher accuracy in all the window sizes compared to the DILOF

algorithm in the KDD Cup99 SMTP Real-World dataset.

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500

A
U

C
(%

)

UCI VOWEL Dataset

GP-LOF DILOF

0

20

40

60

80

100

120

100 200 300 400 500

A
U

C
(%

)

KDD CUP99 SMTP Dataset

KDD 99 SMTP GP-LOF KDD 99 SMTP DILOF

52

Figure 4.4 GP-LOF shows consistently higher accuracy in all the window sizes compared to the DILOF

algorithm in the UCI Pendigit Real-World dataset.

Figure 4.5 GP-LOF shows consistently higher accuracy in all the window sizes compared to the DILOF

algorithm in the UCI Shuttle Real-World dataset.

0

10

20

30

40

50

60

70

100 120 140 160 180 200

A
U

C
 (

%
)

UCI Pendigit Dataset

UCI Pendigit GP-LOF UCI Pendigit DILOF

77

78

79

80

81

82

83

84

85

86

100 120 140 160 180 200

A
U

C
 (

%
)

UCI Shuttle Dataset

UCI Shuttle GP-LOF UCI Shuttle GP-LOFR

53

Table 4.2 Accuracy result for the UCI vowel dataset and KDD Cup99 SMTP dataset between GP-LOF And

DILOF algorithms

Table 4.3 Accuracy result for the UCI Pendigit dataset and The UCI Shuttle dataset between GP-LOF And

DILOF algorithms

4.3.2.2 Execution Time

Figures (4.6 to 4.9) and table 4.4 and table 4.5 represent the execution time for the UCI vowel, KDD

Cup99 SMTP, UCI Pendigit, and UCI shuttle between GP-LOF and DILOF algorithms. We notice that

the GP-LOF execution time is always much lower than the DILOF algorithm, even when the size is

increasing. In the UCI Vowel Dataset, GP-LOF took almost 1.17 seconds, while the DILOF execution

time took almost 4.32 seconds. This is because GP-LOF divides the points into several grids, which

reduces the execution time. The same thing occurs for KDD99 SMTP, UCI Pendigit, and UCI Shuttle

datasets. In KDD99 SMTP, GP-LOF execution time in the ws= 500 took almost 56.396 seconds, while

Window Sizes UCI Vowel KDD Cup99 SMTP

GP-LOF DILOF GP-LOF DILOF

100 43.0016 72.037 96.79145 77.9116

200 45.49206 89.0384 91.46393 85.0027

300 93.8462 90.825 89.15365 84.484

400 91.68576 91.463 90.50625 78.2639

500 94.36069 92.9275 94.98262 79.3717

Window

Sizes

UCI Pendigit UCI Shuttle

GP-LOF DILOF GP-LOF DILOF

100 49.129 51.834 80.9710 69.205

120 52.97 48.458 79.9981 70.6869

140 55.966 51.028 81.6585 69.0178

160 58.258 50.73 82.7370 71.0363

180 57.56 49.839 83.0175 70.964

200 61.418 52.58 84.8658 69.7915

54

in the DILOF algorithm, it took almost 260.544. The DILOF executive time took 17.918 seconds for

the UCI shuttle, which took more time than GP-LOF at 6.97 seconds. In the UCI Pendigit, GP-LOF

performs higher in the execution time at 2.02 seconds than the DILOF algorithm at 1.35 seconds when

the ws={100}. When the execution time for the ws is increased, we notice that the GP-LOF algorithm

performs better execution time for the remaining ws={140,160,180,200}.

Figure 4.6 GP-LOF execution time in the UCI Vowel Real-world data set for all window sizes is better

performance than the DILOF algorithm.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100 200 300 400 500

Ti
m

e
(S

ec
o

n
d

)

UCI Vowel Dataset

UCI Vowel GP-LOF UCI Vowel DILOF

55

Figure 4.7 GP-LOF execution time in the KDD Cup99 SMTP Real-world data set for all window sizes is better

performance than the DILOF algorithm.

Figure 4.8 GP-LOF execution time in the UCI Shuttle Real-world data set for all window sizes is better

performance than the DILOF algorithm.

0

50

100

150

200

250

300

100 200 300 400 500

Ti
m

e
(S

ec
o

n
d

)

KDD Cup99 SMTP Dataset

KDD 99 SMTP GP-LOF KDD 99 SMTP DILOF

0

10

20

30

40

50

60

70

80

100 120 140 160 180 200

Ti
m

e
(S

ec
o

n
d

)

UCI Shuttle Dataset

UCI Shuttle GP-LOF UCI Shuttle DILOF

56

Figure 4.9 GP-LOF execution time in the UCI Pendigit Real-world data set for all window sizes is better

performance than the DILOF algorithm.

Table 4.4 Execution time for the UCI Vowel dataset and KDD Cup99 SMTP dataset between GP-LOF And

DILOF algorithms

Window

sizes

UCI Vowel KDD Cup99 SMTP

GP-LOF DILOF GP-LOF DILOF

100 0.91 0.737971 24.91 41.7741

200 0.882 1.552 26.95 88.7286

300 0.903 2.32008 39.296 131.205

400 1.01 3.24402 44.879 186.835

500 1.179 4.32603 56.396 260.544

Table 4.5 Execution time for the UCI Shuttle dataset and UCI Pendigit dataset between GP-LOF And DILOF

algorithms

Window

sizes

UCI Shuttle UCI Pendigit

GP-LOF DILOF GP-LOF DILOF

100 16.225 69.205 2.029 1.3555

120 16.356 70.6869 2.043 1.6896

140 16.293 69.0178 1.831 2.681

160 16.65 71.0363 1.817 3.5207

180 19.194 70.964 1.922 4.6571

200 17.918 69.7915 1.916 5.5192

0

1

2

3

4

5

6

100 120 140 160 180 200

Ti
m

e
(S

ec
o

n
d

)

UCI Pendigit Dataset

UCI Pendigit GP-LOF UCI Pendigit DILOF

57

4.4 Conclusion

This research paper aims to solve the problem of detecting the outlier in the data stream. LOF is one

of the algorithms that detect outliers in static data, but it has limitations when dealing with data streams.

First, it consumes a lot of memory as the whole data set needs to be stored in the memory, which isn’t

applicable in the data stream as the data size is infinite. Next, it needs to process the whole data set since

any change in the data requires that the LOF be recalculated from the beginning, which isn’t applicable

in the data stream as the data is changing. We propose a novel algorithm called Grid partition local

outlier factor (GP-LOF), which overcomes the two limitations of the LOF in the data stream. Our

experimental evaluations demonstrate that GP-LOF has better accuracy detection and execution time

with several real-world datasets than the state-of-the-art DILOF algorithm.

58

Chapter 5: A Grid Partition-Based Local Outlier Factor by Reachability

Distance for Data Stream Processing

"Grid Partition-Based Local Outlier Factor by Reachability Distance for Data Stream Processing"

Forthcoming in the 7th International Conference on Computational Science and Computational

Intelligence 2020, IEEE.

5.1 Introduction

There has been significant interest in using data mining and machine learning to enhance outlier

detection in big data sets. At present, outlier detection techniques have been used effectively in a number

of fields [14]. For example, in network intrusion detection, it is used to identify distinct data points from

any other data points [136,137]. These irregular data points reflect uncommon behavior and are

considered outliers and potential threats. The density-based method has a remarkable ability to detect

outliers in various densities. The Local Outlier Factor (LOF) is a popular technique that can process a

dataset without any previous knowledge of the data distribution [20]. Furthermore, the LOF can process

datasets with heterogeneous densities [78,136,137]. However, the LOF algorithm design has a weakness

in the analysis of streaming data. The LOF executes in a static environment. Memory becomes a limiting

factor because LOF must keep and process the whole dataset, which grows significantly with new data

points [18]. The LOF is also constrained because any update of the data set requires recalculation on the

whole data set. One of the main features of data streams is that the range of the data is infinite [17]. To

overcome this challenge, the Incremental local outlier factor (ILOF) applies the LOF algorithm to data

streams [77]. Nonetheless, it takes all data points to identify outliers. Several algorithms have been

proposed to overcome the ILOF limitations, as in [56,76,138]. The GP-LOF algorithm overcomes LOF’s

issues by summarizing the data points using the grid method to split the data points and find the outliers

using the LOF algorithm [139].In this chapter, we aim to improve the efficiency of the GP-LOF

algorithm for the accuracy rate by using another measurement in the LOF; the new algorithm is called

Grid Partition-based Local Outlier Factor by Reachability distance (GP-LOFR). The new measure of

the LOF outlier score is based on the reachability distance (LOFR), as opposed to the LOF, which uses

the local reachability distance.

59

The GP-LOFR algorithm has the following features: first, it works in limited memory by using a

sliding window of data; second, the data points are split using the grid method in the processing phase;

and lastly, the detection phase uses the new calculation method of LOFR for detecting outliers. The

proposed algorithm was used in a series of experiments with multiple real-world datasets. The GP-LOFR

algorithm appears more efficient and has slightly better accuracy than the GP-LOF algorithm. This

research paper is arranged as follows: Section 2 describes the Local Outlier Factor by the Reachability

distance (LOFR) and GP-LOFR methodology. The discussion results are presented in Section 3. Finally,

the conclusion is presented in Section 4.

5.2 Methodology and Methods

5.2.1 The Local Outlier Factor by Reachability Distance (LOFR)

This section describes another calculation method of the LOF, called Local outlier Factor by

reachability distance (LOFR). For the outlier score, LOFR works as the LOF algorithm. The only

variation between the LOFR and LOF is the local reachability distance for processing the data points pt

considering their neighbors [44]. The LOFR does not use the LRD. It uses the Reachability Distance

(Reach-Dist) to obtain the LOF score, as shown in Equation 6:

• Definition 6: LOFR of point pt

𝐿𝑂𝐹𝑅𝑘(𝑃𝑡) = ∑
𝑅𝑒𝑎𝑐ℎ−𝐷𝑖𝑠𝑡(𝑝𝑡)

(
𝑅𝑒𝑎𝑐ℎ−𝐷𝑖𝑠𝑡(𝑜)

𝑘
)

𝑂∈𝑛𝑘(𝑝𝑡) (6)

The LOFR uses the LOF definitions except for the LRD. Instead, it produces a new score of the LOFR,

which is illustrated in (Figure 5.1). The LOFR value is taken from the Reach-Dist of the data points (pt)

and divided by the average of the Reach-Dist of its neighbors. For more details, the reader can refer to

[136,138].

60

5.2.2 The Grid Partition-based Local Outlier Factor by Reachability Distance (GP-LOFR)

This section describes how the GP-LOFR algorithm searches for outliers. There are four main features

of GP-LOFR. First, there is no prior knowledge of the data distribution when detecting outliers. Second,

only a portion of the dataset is stored in memory. Third, the LOFR algorithm is applied within GP-

LOFR to detect outliers. Fourth, GP-LOFR does not have any knowledge regarding future data points

when it detects an outlier using the current data set. Like the GP-LOF algorithm, GP-LOFR has three

phases: the pre-processing phase, the processing phase, and the detection phase. In the pre-processing

phase, a sliding window is used to collect data points from the data stream. The processing phase use

the new calculation method of LOFR for determining the outlier score in each grid. In the detection

phase, a threshold θ is used to detect outliers.

Begin

Calculate the k-distance of pt by equation 1

Measure the k-nearest neighbor of point pt by equation 2

Using the reachability distance (Reach-Dist) of point pt by using equation 3

Calculate the LOFR of point pt by using equation 6

Result

Figure 5.1 The LOFR Flow Diagram in obtaining the outlier score.

61

Algorithm 1 describes the process of the GP-LOFR and entails the following steps: 1) the size of a

window (ws) represents the amount of the data points from the Pre-Processing Window (PPW), and the

PPW collects and stores the data points; 2) a Processing Window (PW) selects the first 50% of the data

points to be processed from the PPW (lines 3-6); 3) the data points are split into an index of the grid,

and the GP-LOFR calculates each grid to obtain the LOFR score, based on a threshold θ; 4) the GP-

LOFR algorithm checks any point beyond the threshold is excluded from the PW (line 7-17); and, 5)

when new data points are inserted, the same steps are repeated to calculate the LOFR score.

5.3 Experiment Discussion and Results

In this section, the experimental results of the proposed algorithm (GP-LOFR) are presented. The

performance of GP-LOFR was compared to the performance of GP-LOF on four benchmark datasets.

The evaluation process for GP-LOFR and GP-LOF were calculated by two metrics: the accuracy of

Algorithm 1: GP-LOFR Algorithm

Input: The LOFR threshold θ

 Unlimited data streams points P= {p1, p2, ..., pt}

 Pre-Processing Window PPW

 Processing Window PW

 Number of grids Ng

 Grid G

1 Init PPW → {} // is representing the Pre-Processing

Window

2 Init PW → {} // is representing Processing Window

3 For each pt ∈ P do

4 If PPW (pt) < PW (pt)

5 Add pt to PPW (pt)

6 continue.

7 else

8 Add 50% PPW (pt) to the PW

9 For PW do

10 GP-LOFR (pt)← G(Ng,pt)

11 For every GP-LOFR (pt) do

12 If the LOFRk (pt)> θ then

12 pt is an outlier

13 End

14 End

15 Empty the PW

16 Remove the first 50% data points from PPW

 except for normal data points

17 End

18 End

62

outlier detection and execution time. In particular, the Area Under the ROC Curve (AUC) is used for

the first metric to obtain the accuracy rate [129,130]. All methods were implemented on Java and

processed in a machine that operates in intel® core (MT) i7-4940MX CPU, 16GB RAM, 1 TB SSD

hard disk, and Windows 10 (64-bit) operating system. Both GP-LOF and GP-LOFR approaches are

evaluated with various windows sizes (ws) in a real-world data set, as seen in (Table 4.1). The

experimental of both the GP-LOFR and GP-LOF algorithms in the KNN were determined for each of

the datasets as follows: For UCI Vowel dataset, k = 19; for the remainder, the UCI Shuttle, K =29,

KDD99 SMPT k=8, For the Pendigit dataset, it set the k=18. For the size of the windows (ws) used for

all the dataset validation, the GP-LOFR and GP-LOF were determined by the Pre-Processing Windows

PPW that has two categories of measuring the WS as described in chapter 4.

5.3.1 Experiment Results

5.3.1.1 The Accuracy of the Outlier Detection

The AUC was used to evaluate algorithms to obtain the outlier accuracy via multiple tests with a range

of ws. Figure (5.2 to 5.5) presents the AUC results for the GP-LOFR and GP-LOF algorithms on the

UCI Vowel Dataset, the KDD Cup99 SMTP Dataset, the UCI Shuttle Dataset, and the UCI Pendigit

Dataset. In the UCI Vowel Dataset, the GP-LOFR had a better accuracy result in the ws= [100] (49.07%)

compared to the GP-LOF at (43.0%). The highest accuracy result was obtained for ws = [500]; the GP-

LOFR reached an accuracy rate of (95.37%) while the GP-LOF accuracy rate was (94.36%). GP-LOF

only had higher accuracy for ws= [400], where it reached (91.68%) when compared to the GPLOFR at

(89.0%). For the KDD Cup99 SMTP, the GP-LOF performance was better than the GP-LOFR for most

window sizes. However, there was a difference based on the ws. For example, in the ws = [100], both

GP-LOFR and GP-LOF accuracy results are close to each other. When the ws was increased to 300, the

GP-LOFR accuracy performance was better than the GP-LOF, reaching (91.14%). The remaining

window sizes were better for GP-LOFR algorithm. In the UCI Shuttle Dataset, GP-LOFR shows a better

result than the GP-LOF for most of the ws. For example, the GP-LOFR has a better accuracy result at

63

81.02 % compared to the GP-LOF algorithm when it reaches ws=[100]. For the ws=[180], we notice

both GP-LOFR and GP-LOF results are close to each other, with the advantage in the GP-LOFR when

it reaches ws=[200]. For the UCI Pendigit, we notice the different output between the GP-LOFR and

GP-LOF algorithm at the beginning of the ws. However, when the ws is getting larger, both GP-LOFR

and GP-LOF are close to each other in the accuracy result.

Figure 5.2 Comparison of accuracy result of outlier detection between the GP-LOFR and GP-LOF in UCI Vowel

dataset.

0

20

40

60

80

100

120

100 200 300 400 500

A
U

C
 (

%
)

UCI Vowel Dataset

UCI VOWEL GP-LOF UCI VOWEL GP-LOFR

64

Figure 5.3 Comparison of accuracy result of outlier detection between the GP-LOFR and GP-LOF in KDD

Cup99 SMTP dataset.

Figure 5.4 Comparison of accuracy result of outlier detection between the GP-LOFR and GP-LOF in the UCI

Shuttle dataset.

84

86

88

90

92

94

96

98

100 200 300 400 500

A
U

C
(%

)

KDD Cup99 SMTP Dataset

KDD 99 SMTP GP-LOF KDD 99 SMTP GP-LOFR

77

78

79

80

81

82

83

84

85

86

100 120 140 160 180 200

A
U

C
(%

)

UCI Shuttle Dataset

UCI Shuttle GP-LOF UCI Shuttle GP-LOFR

65

Figure 5.5 Comparison of accuracy result of outlier detection between the GP-LOFR and GP-LOF in the UCI

Pendigit dataset.

5.3.1.2 Execution Time

The execution time results for all algorithms are presented for all the datasets, as illustrated in Figures

5.6 to 5.9. The time of execution was measured in seconds for the experiments. Both the GP-LOFR and

the GP-LOF are close to each other in most of the ws. In the UCI Shuttle Dataset, GP-LOFR took 18.47

to 42.55 seconds, while the GP-LOF took 18.05 to 37.29 seconds. The GP-LOFR took from 0.86 to 1.21

seconds for the UCI Vowel Dataset, and the GP-LOF function took from 0.93 to 1.24 seconds. The GP-

LOFR in the KDD Cup99 SMTP took 26.79 to 60.09 seconds, compared to the GP-LOF function, which

took 27.18 to 57.82 seconds. For the UCI Pendigit, the GP-LOFR took from 57.56 to 68.94 seconds,

while the GP-LOF took from 49.12 to 61.418 seconds.

0

10

20

30

40

50

60

70

80

100 120 140 160 180 200

A
U

C
 (

%
)

UCI Pendigit Dataset

UCI Pendigit GP-LOF UCI Pendigit GP-LOFR

66

Figure 5.6 Comparison of Execution time between the GP-LOFR and GP-LOF in the UCI Vowel dataset.

Figure 5.7 Comparison of Execution time between the GP-LOFR and GP-LOF in the KDD Cup99 SMTP

dataset.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

100 200 300 400 500

Ti
m

e(
se

co
n

d
)

UCI Vowel Dataset

GP-LOF GP-LOFR

0

10

20

30

40

50

60

70

100 200 300 400 500

Ti
m

e(
se

co
n

d
)

KDD Cup99 SMTP Dataset

GP-LOF GP-LOFR

67

Figure 5.8 Comparison of Execution time between the GP-LOFR and GP-LOF in the UCI Shuttle dataset.

Figure 5.9 Comparison of Execution time between the GP-LOFR and GP-LOF in the UCI Pendigit dataset.

0

5

10

15

20

25

120 140 160 180 200

Ti
m

e
(S

ec
o

n
d

)

UCI Shuttle Dataset

GP-LOF GP-LOFR

0

0.5

1

1.5

2

2.5

100 120 140 160 180 200

Ti
m

e(
se

co
n

d
)

UCI Pendigit Dataset

GP-LOF GP-LOFR

68

5.4 Conclusion

The main objective of this research paper is to further improve the accuracy of outlier detection on the

GP-LOF algorithm when applied to data streams. GP-LOFR addresses the limitation of the LOF

algorithm for processing data streams. Like GP-LOF, GP-LOFR works with limited memory by using

a sliding window for summarizing the points. Also, it follows the same phrases used in GP-LOF for

identifying outliers. GP-LOFR showed slight improvements in accuracy over GP-LOF on several real-

world benchmark datasets. This improvement was achieved by using the Reachability Distance (Reach-

Dist) to obtain the LOFR score.

69

Chapter 6: Improving the Outlier Detection Method in Concrete Mix

Design by Combining the Isolation Forest and Local Outlier Factor

Alsini, R., Almakrab, A., Ibrahim, A. and Ma, X., 2021. Improving the outlier detection method in

concrete mix design by combining the isolation forest and local outlier factor. Construction and

Building Materials, 270, p.121396.

6.1 Introduction

Throughout the Big Data era, numerous sources have generated massive data. One of the challenges

in big data processing is how to quantify outliers. This is clearly significant in the concrete industry,

especially that concrete is considered the second largest usable material on the globe after water. Concrete

is a heterogeneous material, and its fresh and mechanical properties depend on various parameters

(percentages of ingredients). Generally, the properties of concrete directly influence the stability and

reliability of any construction project; these properties include compressive, flexural, and tensile

strengths, and elastic modulus [140]. The quality of data in the construction industry may be limited and

compromised. For example, field data collection might include some missing values, wrong

measurements, or outliers [141]. Due to the efficiency of outlier detection in various areas, many outlier

detection techniques have been developed to detect the anomaly known as an outlier.

The distance-based method is the most often used technique for outlier detection. Despite its

accessibility, it results in poor accuracy when applied to multi-density data such as concrete mixtures

input that have multiple variables. The density-based outlier method deals with multi-density data by the

comparison of the density points with nearby local neighbors. The Local Outlier Factor (LOF) is the most

practical procedure in the density-based approach [20]. The LOF handles dense data without assuming

any underlying or predefined distribution. It also finds the dataset in heterogeneous densities [136,137].

However, the LOF faces some limitations. One limitation is that calculating the distance between points

requires a large amount of memory, which affects execution time. In addition, the LOF is incapable of

dealing with the sequence of outliers. Another technique for outlier detection, Isolation Forest (IF), solves

the issues found in the LOF by isolating the outlier instead of processing the whole dataset. IF is an

70

unverified learning process for abnormality detection that depends on the principle of separating

anomalies. Despite its accuracy, the IF method has a weakness when it comes to a local outlier. Cheng et

al. [126] proposed pruning techniques by finding the outlier candidate set to calculate the outlier score.

Thus far, this is the approach most successful in solving the limitations of both the IF and LOF methods.

To further improve the accuracy of both the IF and LOF in detecting the outlier, this paper introduces

a new method called the Isolation Forest based on Sliding Window for Local Outlier Factor (IFS-LOF)

detection. The IFS-LOF merges both methods (IF and LOF) with a sliding window to increase the rate

of accuracy and to detect input with different window sizes (ws). The IFS-LOF was evaluated through a

series of experiments that were performed through concrete mixtures with various ingredients. Based on

the experimental results, the proposed algorithm demonstrated considerable improvement in accuracy

when compared to the state-of-the-art standalone LOF method. The remainder of this chapter is organized

as follows: Section 2 provides a review of related methods; Section 3 describes the Concrete material

components; Section 4 presents the methodology of the IFS-LOF method; Section 5 provides the

experimental results; and Section 6 states the conclusions.

6.2 Related Work

Outlier detection is a significant research issue in machine learning and in data mining for detecting a

rare object in real applications, such as in the fields of finance, industry, health, and materials science.

When it comes to the construction industry, outlier detection has been rarely used in evaluating the quality

of the measured or collected data. According to [141], only very few articles have discussed outlier

detection methods used for measuring the source of the data.

6.3 Context and methodology

6.3.1 Concrete Material Components and Dataset

Concrete is a primary component in the construction of various projects. Concrete ingredients have

recently changed a lot by introducing multiple materials and admixtures that either added before or during

mixing; most of these materials are waste by-products, and they are known as Supplementary

71

Cementitious Materials (SCMs). Fly ash, silica fume, and blast furnace slag are the most common types

of SCMs used in the concrete industry. These waste by-products enhance short-term properties, such as

compressive strength, tensile strength, and workability, and they significantly improve concrete durability

over time [142–146]. Moreover, concrete is a multifarious material, and its properties are significantly

affected by the individual properties of its constituents. In this paper, the concrete data collection was

obtained from the University of California Irvine (UCI) machine-learning repository that was released in

[147] and [129]. The data collection included the results of the compressive strength of 1030 concrete

mixtures. Compressive strength is one of the important parameters used by the engineering community

in structural concrete design that can be seen in structures, bridges, etc. Table 6.1 shows the range of

ingredients that have been used in the 1030 concrete mixtures. Finding the outliers in each component

could improve the quality and reliability of the data to be processed. Our task was to calculate the

efficiency of the IFS-LOF method in the identification of the outliers in the UCI concrete data. The

proposed algorithm generates better performance than state-of-the-art LOF algorithms. Finding the

outliers in each component can improve the quality of the data to be processed. Our task was to calculate

the efficiency of the IFS-LOF method in the identification of the outliers in the UCI Concrete Data

Collection. The proposed algorithm generates better performance than state-of-the-art LOF algorithms.

Table 6.1 Ranges of the Concrete Components

Component Minimum (kg/m3) Maximum (kg/m3) Average

Cement 71 600 232.2

Fly ash 0 175 46.4

Blast furnace slag 0 359 79.2

Water 120 228 186.4

Superplasticizer 0 20.8 3.5

Coarse aggregate 730 1322 943.5

Fine aggregate 486 968 819.9

72

6.4 Components and workflow of the method

6.4.1 The Isolation Forest (IF)

The IF is an unsupervised method used in the Ensemble-based model to isolate the anomalies by

measuring the isolation score for all data points. The IF has the same concept of using the tree model as

the Random Forest algorithm. Then it processes the data point into recurrent random splits that are

dependent on the selecting features [147]. The main advantage of the IF algorithm is how it processes the

data. Instead of processing all the data points, it uses a decision tree to isolate the outliers, which reduces

the execution or processing time and its memory requirement [84]. The IF technique operates by

partitioning the model into several segments that are required for the subsampling size, as illustrated in

Fig. 6.1. An anomaly score is used to create a path length for the tree to isolate the outlier, as shown in

Algorithm 1. The IF calculation begins with a certain data point value. Then, according to the selected

value, it sets a range between the maximum and the minimum to determine the outlier score for each data

point in the tree. The score is calculated to set a path length to isolate the outlier. For more details, the

reader should refer to [148].

Figure 6.1 Illustration of the subsampling size in the isolation forest for processing

data points.

73

Table 6.2: The Isolation Forest (IF) Algorithm

6.4.2 Local Outlier Factor (LOF)

The LOF is an unsupervised approach in the density-based outlier detection to search the anomaly

based on a score to determine if the data point is outlier or normal. LOF evaluates the data points

according to a degree of measurement, i.e., the outlier factor regarding the density of the local neighbors.

The definition of LOF is presented in figure 6.2.

Algorithm 1: IForest (D, t, x)

Input: D – Input data set for the data points t – number of

tree x– subsampling size s

Output: a set of t iTree

1 Init Forest

2 set height limit l – ceiling 𝑙𝑜𝑔2𝑥

3 For i = 1 to t do

4 𝐷′ ← sample D, x

5 Forest ← Forest ∪ iTree𝐷′, 0, l

6 End for

7 Return Forest

Def 1: Calculate the k-distance of pt

Def 2: Measure the k-nearest neighbor of pt

Def 3: Reachability distance (Reach-Dist)

Def 4: Calculate the LRD of pt

Def 5: LOF Score by of pt

Figure 6.2 The key definitions of LOF algorithm.

74

6.4.3 The Isolation Forest based on Sliding window For the Local Outlier Factor (IFS-LOF)

This section describes the proposed IFS-LOF objective for finding the outlier. It proposes to increase

the accuracy of detecting the outlier by using the sliding window for selecting the outlier candidates from

the IF algorithm. The proposed IFS-LOF algorithm has two stages: the processing stage and detection

stage, as shown in Figure 6.3 and Table 6.3

Table 6.3: The Isolation Forest-based on the Sliding window for Local Outlier Factor (IFS-LOF Algorithm)

Table 6.3 illustrates how the IFS-LOF algorithm process works. In the processing phase (lines 1-2),

the isolation forest will process the concrete mixture data set, determine the number of tree to build, and

determine the sampling size. Then, the sliding window is used as a window size (ws) to store the data

points from the IF algorithm. In the detection phase, the LOF threshold θ is used to calculate the data

input from the sliding windows to determine the outlier score. Any data points that exceed the threshold

value are considered outliers (lines 3-5).

Algorithm 2: IFS-LOF

Input: D – Input data set for the data points t – number of tree S-

sliding windows k-number of nearest neighbor x -outlier candidate

datapoint

Output: outlier score

1 Init Forest

2 x outlier candidate set → Call Algorithm 1 with D, t, w, S

3 For j =1 to D do → Call LOF with k, x

4 If the LOF for X-temp is > θ then

 X-Temp is outlier

5 End

6 End for

7 End

75

Figure 6.3 The structure of the IFS-LOF Algorithm.

6.5 Experimental Results and Discussion

This section describes the experimental results after comparing the IFS-LOF, LOF-Sliding window

(LOF-SW), and LOF with different window sizes (ws). The purpose of IFS-LOF is to answer the

following questions:

• Does IFS-LOF perform better than LOF and LOF-SW in the accuracy of outlier detection?

• Does the Sliding window improve the accuracy of outlier detection?

76

• Does IFS-LOF perform faster than LOF and LOF-SW in execution time?

6.5.1 Experiment Settings

All algorithms (LOF, LOF-SW, and IFS-LOF) were implemented in Java and operated on a machine

that runs on operating system of Windows 10 (64-bit) with Intel Core (MT) i7-4940MX CPU, 16 GB

RAM, and 1 TB SSD hard disk. The accuracy of the outlier detection for IFS-LOF, LOF-SW, and LOF

was calculated by using the ROC Curve (AUC) method, as set out in [131,132]. In particular, AUC was

used for the first question to obtain the accuracy rate. The sliding window strategy was adopted in the

second question in order to compare the performance between the IFS-LOF and LOF-SW methods for

the accuracy of outlier detection. The parameter of the KNN was set at 8 for all algorithms, including

LOF, LOF-SW, and IFS-LOF. The IFS-LOF had a selecting feature that was set at 0.25 for the IF

algorithm. Different sizes of windows were used to evaluate the performance of each algorithm, as is

presented in Table 6.4. The window size (ws) has different values for the comparison between the

algorithms: ws={100.200.300,400}.

6.5.2 Experiment Discussion

6.5.2.1 The Accuracy of Outlier Detection

The accuracy of outlier detection was assessed by applying AUC, as shown in Table 6.3 The IFS-

LOF, LOF-SW, and LOF algorithms processed each element in the UCI concrete data set. Figures (6.4

to 6.11) illustrate the comparison of the accuracy rate with different window sizes (ws). Based on each

element's result, we can illustrate the most suitable method to use for a greater accuracy rate. For the

cement element, both IFS-LOF and LOF-SW had a higher accuracy rate for most window sizes compared

to LOF. The reason is because of the size of the windows used to process the data in the memory. LOF

performed better in the smaller sizes of the windows, while both LOF-SW and IFS-LOF had an advantage

in the larger sizes of windows. The IFS-LOF method surpassed all other methods with an accuracy rate

of 97.48% when it reached ws=400. Based on IFS-LOF’s performance, it had a better accuracy rate for

the superplasticizer element for all ws. The only weakness of IFS-LOF’s performance in the concrete

77

elements was seen in the Blast Furnace Slag, Coarse Aggregate, and Water. LOF performed better than

IFS-LOF in larger sizes of windows. In addition, in the Coarse aggregate element, the gap of the accuracy

was noticeable when ws reached w= 100. However, when the size of the windows increased, IFS-LOF

performed better than LOF when it reached ws=200. In the Coarse aggregate element, both IFS-LOF

and LOF-SW performed low accuracy rates for the remaining ws. The IFS-LOF had a better accuracy

rate than LOF, as illustrated in the blast furnace Slag element. The LOF-SW performance was better than

LOF in the cement and Fine Aggregate elements when the ws reached ws={300.400}.

Table 6.4 The Accuracy rate of the LOF, LOF-SW and IFS-LOF for different windows sizes

W size /

Component

100 200 300 400

LOF

LOF-

SW

IFS-

LOF LOF

LOF-

SW

IFS-

LOF LOF

LOF-

SW

IFS-

LOF LOF

LOF-

SW

IFS-

LOF

Cement 90.89 89.01 90.44 96.68 92.10 95.40 94.49 95.38 92.66 94.67 96.55 97.48

Blast Furnace

Slag

80.50 80.20 82.49 79.77 89.93 91.67 93.50 92.85 94.52 93.77 91.12 93.65

Fly Ash 67.80 72.05 67.36 93.80 85.54 93.68 94.70 92.45 94.28 93.81 93.77 94.28

Superplasticizer 77.39 78.01 90.91 84.41 80.69 93.13 88.57 86.21 88.97 82.94 89.56 89.20

Coarse Aggregate 98.46 85.58 85.83 92.08188 91.14 93.20 97.65234 95.23 96.44 97.28 94.59 96.51

Fine Aggregate 85.77 84.89 90.95 89.77501 87.21 90.40 93.09886 96.99 94.70 95.24 95.95 96.62

Age 82.83 86.46 88.56 90.03 93.10 86.46 94.0972 90.47 94.18 90.04 88.15 94.73

Water 85.13 62.63 90.53 96.23 92.78 94.69 91.35495 93.82 92.16 94.37 91.63 93.24

78

Figure 6.4 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Cement component.

Figure 6.5 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Blast Furnace Slag

component.

79

Figure 6.6 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Fly Ash component.

Figure 6.7 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Superplasticizer

component.

80

Figure 6.8 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Coarse Aggregate

component.

Figure 6.9 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Fine aggregate

component.

81

Figure 6.10 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Age component.

Figure 6.11 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Water component.

82

6.5.2.2 Sliding Window Strategy for Improving the Outlier Detection

The sliding window strategy has improved the accuracy rate for most of the concrete components.

Still, one of the drawbacks of the method is related to the size of the window used to process the data.

For example, LOF-SW produced a lower accuracy rate, when the size of the window was increased. This

is due to the amount of the data used in the sliding window, which has an impact on the results of the

accuracy performance. To improve the accuracy rate in the sliding window technique, the IFS-LOF

algorithm strengthens the accuracy output in the sliding window by using the IF algorithm. The IF

algorithm enhances the sliding window by selecting the isolation data point instead of processing all of

the data. IFS-LOF improves its usability in comparison with LOF-SW (Fig. 6.4 to 6.11). IFS-LOF

presented most consistently higher accuracy in most of the ws compared to the other remaining

algorithms.

6.5.2.3 Execution Time

Table 6.5 represents the execution time for the concrete data elements by comparing LOF, LOF-SW,

and IFS-LOF. All algorithms were measured in seconds. In general, LOF was slightly better in execution

time than either LOF-SW or IFS-LOF for most of the elements when it reached ws={100,200}. The

Superplasticizer and coarse aggregate elements were executed faster than LOF-SW and IFS-LOF in all

ws. For the remaining windows at ws= {300,400}, we noticed that both LOF-SW and IFS-LOF execution

times were much lower than the LOF algorithm. The main reason was related to the sliding window

technique. The LOF-SW algorithm was slightly better than the IFS-LOF in the execution time. However,

it had a lower accuracy rate than LOF-SW.

83

Table 6.5 The Execution times of the LOF, LOF-SW and IFS-LOF for different windows size

6.5.2.4 Benefit of Using the Outlier Detection in the Concrete Mix Design

Outlier detection, which is part of data mining, aims to find a point or group of points in the dataset

that deviates significantly in behavior from the rest of the data points. Different factors influence the

recognition of an item as an outlier. One of the factors could be seen in the quality of the data. The main

causes of the poor quality of data included defective data processing methods. The data is often generated

from various heterogeneous sources; human or machine error may occur at data entry or processing.

These issues may be found in practical applications. For example, the author in [149] illustrated the poor

Execution Time /

Component

100 200 300 400

LOF

LOF-

SW

IFS-

LOF LOF

LOF-

SW

IFS-

LOF LOF

LOF-

SW

IFS-

LOF LOF

LOF-

SW

IFS-

LOF

Cement 1.55 1.62 1.58 4.34 4.83 5.19 9.25 8.93 10.09 16.24 16.17 18.98

Blast Furnace Slag 8.05 8.02 8.24 7.97 8.99 9.16 9.35 9.28 9.45 9.37 9.11 9.36

Fly Ash 1.58 1.74 1.78 6.76 8.33 7.47 22.21 19.32 15.84 48.81 50.75 53.48

Superplasticizer 1.66 1.57 1.95 4.3 7.05 5.2 9.81 22.39 10.77 19.67 48.67 21.38

Coarse Aggregate 1.71 1.55 1.7 5.57 5.15 6.04 10.81 11.04 12.07 20.24 21.68 23.45

Fine Aggregate 1.7 1.44 2.08 4.4 4.45 5.62 9.72 9.15 10.72 17.39 17.1 20.03

Age 1.65 1.7 2.17 4.4 4.79 5.33 9.46 9.34 11.37 16.35 16.08 19.37

Water 2.38 1.8 2.19 8.88 9.28 8.14 31.77 18.29 23.2 40.36 37.95 50.91

84

quality of the data used because of the lack of reliability from the sensors used. Another benefit of outlier

detection is that it can enhance the strength assessment of the construction process. The strength

assessment is usually carried out at 7–28 days after the concrete has been poured. The quality assessment

of concrete may include some unusual data. Using the IFS-LOF outlier detection method can improve

the reliability of data processing during the concrete mixture design, which reduces the expenses and

time.

6.6 Conclusion

In this article, the IFS-LOF algorithm was developed and compared with LOF and LOF-SW. A 1030

concrete mixtures dataset was used in the study to investigate the accuracy rate of the IFS-LOF. The

concrete mixtures included various material proportions of water, cement, fine aggregate, coarse

aggregate, fly ash, slag and superplasticizers. In addition, the concrete age of all mixtures was included

in the analysis. The benefits and drawbacks have been analyzed in the concrete dataset to enhance the

strength and workability of concrete mixtures by searching the outlier through measuring the accuracy

rate and execution time. The main objective of IFS-LOF is to enhance the accuracy rate in each ingredient

of the concrete data and solve the limitation of LOF. The outcome of the IFS-LOF demonstrated an

improvement in the accuracy rate other than state-of-the-art LOF algorithms. Moreover, the popular LOF

algorithm needs broad memory to hold all the data before identifying the local outlier.

85

Chapter 7: Conclusion and Future Research Direction

7.1 Introduction

Outlier detection is a method used in data mining and machine learning that indicates a data point’s

divergence from typical behavior in the dataset. Applied outlier detection research has evolved into a vast

resource of algorithms used in network intrusion detection, fraud detection, and web analytics, to name

just a few. Outliers can be categorized into two general types: global or local. This paper focuses on local

outlier detection. The most popular methodology for local outlier detection is a density-based technique

named the local outlier factor (LOF). There are numerous methods for detecting local outliers based on

various algorithms; however, the majority of these methods were developed for a static environment and

are not applicable for streaming data, which is the usual form of big data nowadays. Data streams pose a

challenge for local outlier algorithms because they must cope with the high-speed stream and provide

efficient analysis. The LOF is one of the most appropriate techniques used in the density-based method

to determine the outlier. However, it faces some difficulties regarding data streams. First, LOF processes

the data all at once, which is not suitable for data streams. Another issue occurs when a new data point

arrives; significantly, all the data points need to be recalculated. Additionally, the LOF requires the whole

dataset to be stored in memory. Therefore, it affects the execution time. This chapter summarizes the

dissertation work and outlines interesting directions for future study.

7.2 Summary of main research goals and accomplishments

To solve the LOF constraint in data streams, new methods should be developed. As a consequence,

each new method can achieve the key objective of calculating the LOF score by considering the following

circumstances (as set out in [19]): (1) a portion of the dataset is stored in computer memory; (2) no

previous knowledge regarding the distribution of data as outliers is detected; (3) the algorithm does not

have any knowledge regarding future data points when it detects an outlier using the current dataset; and,

(4) the algorithm should check an incoming data point to determine if it is either normal or an outlier pt.

86

We developed a new approach for finding local outliers to address the LOF’s problems in the stream

environment. Our methodology has three phases: preprocessing, processing, and detection. The

preprocessing phase selects the first half of the data points to be processed in the next step. The data

points are then divided, based on the grid method. The LOF algorithm processes each grid to obtain the

outlier score. The detection phase ensures that any data points that surpass the threshold are deleted. Our

method is called the grid partition-based local outlier factor (GP-LOF). The main objective of the GP-

LOF is to find the outlier under the previously described conditions

The reachability distance, also known as the local outlier factor by reachability distance, is another

method for calculating an outlier score (LOFR). The LOFR concept measures the outlier score without

relying on the local reachability distance. Except for the lrd step, the LOFR uses, the LOF concepts and

it generates a new LOFR ranking. The LOFR is taken from the data point (pt) reachability distance and

is separated by the average of the neighbor's reachability distance, as discussed in chapter 5.In an attempt

to improve the efficiency of the GP-LOF algorithm, we added the LOFR algorithm to the GP-LOF

method and named it a grid-partition-based local outlier factor by reachability distance (GP-LOFR). The

latest GP-LOFR calculation technique is presented in [150]. We also developed a new approach for

outlier detection in for the construction industry. The concrete community requires such a framework to

produce an efficient way of constructing concrete mixtures efficiently. Evaluation of measurements of

samples that could involve humans or computer errors could result in outliers. Six research questions

were addressed in our work, as presented in table 7.1. This section will summarize the responses to the

research questions listed in Chapter 1. The research questions are repeated below to assist the reader:

87

Questions Research Question Chapters Pages

1
How does the GP-LOF algorithm apply the LOF

in processing the data stream?

 4 & 5 57,71

2
How does the GP-LOF algorithm solve the

memory consumption issue?

2 & 4 47,57

3
How does the GP-LOF algorithm deal with the

incoming data points?

4 60

4

Does the GP-LOF algorithm perform better than

the DILOF algorithm for the accuracy of outlier

detection?

4 & 5 62, 74

5
Does the GP-LOF algorithm perform better than

the DILOF algorithm in execution time?

4 & 5 65, 77

6
How does the new approach of the outlier

detection method evaluate the concrete mixture?

6 87

In response to the first question, we solved the issue of the LOF by using the GP-LOF and GP-LOFR

algorithms. For the second question, we summarized the dataset using a limited memory and the sliding

window technique with a particular window size. We used two steps to resolve the third question; first,

we took the first 50% of data points and keep the rest; second, we used the GP-LOF to obtain the outlier

score from each grid. In addition, a threshold was used to determine if the data points were common or

outliers. For the fourth and fifth questions, both the GP-LOF and the GP-LOFR showed an improved

result for the accuracy of outlier detection for the majority of the dataset. However, as compared to the

GP-LOF algorithm, the GP-LOFR had some drawbacks dealing with the dataset in terms of execution

time. Chapters 4 and 5 address the analysis of the results of both the GP-LOF and the GP-LOFR in detail.

For the last question, we developed a new approach for outlier detection in concrete mixtures by

proposing a new method, called Isolation Forest (IF), based on the sliding window for the local outlier

factor, which overcame both methods’ limitations discussed in Chapter 6. The dissertation chapters are

depicted in the diagram below (Figure 7.1).

88

Figure 7.1 The map of the dissertation chapters.

7.3 Conclusion and Future Direction

Many applications require methods of dealing with unexpected results and identifying unusual results

in the big data era. One of the goals of an outlier detection method is to discover suspicious or strange

patterns. For example, extracting information from the dataset may lead to wrong conclusions because

the information is inaccurate. Recently, outlier detection has received a lot of attention due to the

increased complexities of data streams. This dissertation proposed a new way of identifying local

outliners by developing two methods for data streams; they are called the Grid Partition-based Local

Dissertation
Map

Chapter 1:

Introduction

Chapter 2:

Local Outlier
Detection

Techniques in Real-
World Streaming

Data Processing: A
Literature Review

Chapter 3:

Benchmark Datasets
Used in This

Research

Chapter 4:

A Grid Partition-
based Local Outlier

Factor for Data
Stream Processing

Chapter 5:

A Grid Partition-
Based Local Outlier

Factor by
Reachability

Distance for Data
Stream Processing

Chapter 6:

Improving the
Outlier Detection

Method in Concrete
Mix Design

Chapter 7:

Conclusion and
Future Research

Direction

89

Outlier Factors (GP-LOF) and the Grid Partition-based Local Outlier Factors by the Reachability

Distance (GP-LOFR). Both approaches perform well when compared with the DILOF algorithm.

For potential future work, other conventional local outlier algorithms can now be developed to

function in the data stream. The above techniques, such as the GP-LOF and the GP-LOFR algorithms,

can be used to implement the conventional algorithms in a data stream. The recent use of a Genetic

Algorithms (GA) has demonstrated a possible solution for dealing with the problem of the local outlier

in a data stream. It can also be combined with other common methods for detecting local outliers, such

as COF, LOCI, aLOCI, and LoOP. Other EC methods for processing the data stream can be developed.

Another future path may be to pair the LOF algorithm with another robust method to improve local outlier

performance, such as the Isolation Forest that is discussed in chapter 7. This dissertation dealt with LOF

problems and challenges in the stream environments and presented new methods for increasing the

efficiency of local outlier detection.

7.4 Achievement and Award

7.4.1 List of Publications:

• As the main author

1) Alsini, R. and Ma, X., 2019. Data Streaming. Encyclopedia of Big Data; Schintler, L., McNeely,

C., Eds

Research paper Title: Data Streaming

Types: Book chapter.

Explanation: present a general information about the Data stream. It is published online by Springer

in the encyclopedia of big data.

2) Alsini, R., Alghushairy, O., Ma, X. and Soule, T., 2020, July. A Grid Partition-based Local Outlier

Factor for Data Stream Processing. In Proceedings of the 4th International Conference on Applied

Cognitive Computing, Las Vegas, NV, USA.

Research paper Title: A Grid Partition-based Local Outlier Factor for Data Stream Processing

90

Types: Conference Paper

Explanation: a new method is proposed to solve the LOF algorithm's issue in the data stream. It is

accepted at the 4th International Conference on Applied Cognitive Computing by Springer.

3) Alsini, R., Alghushairy, O., Ma, X. and Soule, T., 2020, December. A Grid Partition Based Local

Outlier Factor by Reachability Distance for Data Stream Processing. In 2020 International

Conference on Computational Science and Computational Intelligence (CSCI), IEEE., Las Vegas,

NV, USA.

Research paper Title: A Grid Partition Based Local Outlier Factor by Reachability Distance for

Data Stream Processing

Types: Conference Paper

Explanation: This research paper aims to improve the GP-LOF algorithm's accuracy in detecting

the outlier in the data stream environment. It has been accepted at International Conference on

Computational Science and Computational Intelligence (CSCI).

4) Alsini, R., Almakrab, A., Ibrahim, A. and Ma, X., Improving the outlier detection method in

concrete mix design by combining the isolation forest and local outlier factor. Construction and

Building Materials, 270, p.121396.

Research paper Title: Improving the outlier detection method in concrete mix design by

combining the isolation forest and local outlier factor.

Types: Journal

Explanation: This research paper aims to detect the outlier in the concrete mixture design. It

introduces a new approach of combining the Isolation Forest (IF) and Local Outlier Factor (LOF)

to solve both method issues. It is published online in the construction and building material journal

under science direct.

91

5) Alsini, R., Alghushairy, O. Almakrab, A., Soule, T. and Ma, X., 2021. Local Outlier Detection

Techniques in Real-World Streaming Data Processing: A Literature Review (Under Review).

Research paper Title: Local Outlier Detection Techniques in Real-World Streaming Data

Processing: A Literature Review.

Types: Journal

Explanation: This research paper aims to overview the recent progress in the local outlier detection

techniques. It also illustrates the most common application apply such as static and stream

environment. Also, it addresses the issue of the current process of the local outlier detection in the

stream environment.

• As co-author

6) Alghushairy, O., Alsini, R., Ma, X. and Soule, T., 2020, March. A Genetic-Based Incremental Local

Outlier Factor Algorithm for Efficient Data Stream Processing. In Proceedings of the 2020 the 4th

International Conference on Compute and Data Analysis (pp. 38-49).

Research paper Title: A Genetic-Based Incremental Local Outlier Factor Algorithm for Efficient

Data Stream Processing.

Types: Conference Paper

Explanation: This research paper aims to solve the local outlier detection in processing the data

stream. It is publish at 4th international conference in compute and data analysis (ICCDA 2020), at

the ACM.

7) Alghushairy, O., Alsini, R., Ma, X. and Soule, T., 2020, July. Improving the Efficiency of Genetic

based Incremental Local Outlier Factor Algorithm for Network Intrusion Detection. In Proceedings

of the 4th International Conference on Applied Cognitive Computing, Las Vegas, NV, USA (pp.

27-30).

Research paper Title: Improving the Efficiency of Genetic based Incremental Local Outlier Factor

Algorithm for Network Intrusion Detection.

92

Types: Conference Paper

Explanation: This research paper aims to improve the GILOF algorithm by introducing a new

calculation method called Local Outlier Factor by Reachability distance (LOFR). It is accepted at

the 4th International Conference on Applied Cognitive Computing by Springer.

8) Alghushairy, O., Alsini, R and Ma, X., 2020, December. An Efficient Local Outlier Factor for Data

Stream Processing: A Case Study. In 2020 International Conference on Computational Science and

Computational Intelligence (CSCI), IEEE. Las Vegas, NV, USA.

Research paper Title: An Efficient Local Outlier Factor for Data Stream Processing: A Case Study.

Types: Conference Paper

Explanation: This research paper aims to address the LOF algorithm's issue in processing the data

stream. It has been accepted at International Conference on Computational Science and

Computational Intelligence (CSCI).

9) Alghushairy, O., Alsini, R., Soule, T. and Ma, X., 2021. A Review of Local Outlier Factor

Algorithms for Outlier Detection in Big Data Streams. Big Data and Cognitive Computing, 5(1),

p.1.

Research paper Title: A Review of Local Outlier Factor Algorithms for Outlier Detection in Big

Data Streams

Types: Journal

Explanation: This research article provides a review of the local outlier factor in data stream

processing. It is published online at the MDPI journal.

• Awards:

1 A grant from the department of computer science to participate the CSCI 2020.

93

2 A grant from the college of graduate studies (GPSA) for paper publication.

94

References

1. Sadik, S. and Gruenwald, L., 2014. Research issues in outlier detection for data streams. Acm

Sigkdd Explorations Newsletter, 15(1), pp.33-40.

2. Tellis, V.M. and D'Souza, D.J., 2018, March. Detecting Anomalies in Data Stream Using

Efficient Techniques: A Review. In 2018 International Conference on Control, Power,

Communication and Computing Technologies (ICCPCCT) (pp. 296-298). IEEE.

3. Thakkar, P., Vala, J. and Prajapati, V., 2016. Survey on outlier detection in data stream. Int. J.

Comput. Appl, 136, pp.13-16.

4. Souiden, I., Brahmi, Z. and Toumi, H., 2016, December. A survey on outlier detection in the

context of stream mining: review of existing approaches and recommendations. In International

Conference on Intelligent Systems Design and Applications (pp. 372-383). Springer, Cham.

5. Cios, K.J., Pedrycz, W. and Swiniarski, R.W., 2012. Data mining methods for knowledge

discovery (Vol. 458). Springer Science & Business Media.

6. Knorr, E.M. and Ng, R.T., 1998, August. Algorithms for mining distance-based outliers in large

datasets. In VLDB (Vol. 98, pp. 392-403).

7. Garofalakis, M., Gehrke, J. and Rastogi, R. eds., 2016. Data stream management: processing

high-speed data streams. Springer.

8. Fan, W. and Bifet, A., 2013. Mining big data: current status, and forecast to the future. ACM

SIGKDD explorations newsletter, 14(2), pp.1-5.

9. Hawkins, D.M., 1980. Identification of outliers (Vol. 11). London: Chapman and Hall.

10. Jiang, M. F.; Tseng, S. S.; Su, C. M. Two-phase clustering process for outliers detection. Pattern

Recognition Letters 2001, 22, 691–700.

11. Muthukrishnan, S., Shah, R. and Vitter, J.S., 2004, June. Mining deviants in time series data

streams. In Proceedings. 16th International Conference on Scientific and Statistical Database

Management, 2004. (pp. 41-50). IEEE.

12. Aggarwal, C.C. and Philip, S.Y., 2005. An effective and efficient algorithm for high-

dimensional outlier detection. The VLDB journal, 14(2), pp.211-221.

13. Chandola, V., Banerjee, A. and Kumar, V., 2009. Anomaly detection: A survey. ACM

computing surveys (CSUR), 41(3), pp.1-58.

14. Wang, H., Bah, M.J. and Hammad, M., 2019. Progress in outlier detection techniques: A survey.

IEEE Access, 7, pp.107964-108000.

95

15. Boukerche, A., Zheng, L. and Alfandi, O., 2020. Outlier Detection: Methods, Models, and

Classification. ACM Computing Surveys (CSUR), 53(3), pp.1-37.

16. Saxena, S. and Rajpoot, D.S., 2019. Density-Based Approach for Outlier Detection and

Removal. In Advances in Signal Processing and Communication (pp. 281-291). Springer,

Singapore.

17. Alsini, R. and Ma, X., 2019. Data Streaming. Journal: Encyclopedia of Big Data, pp.1-4.

18. Alghushairy, O. and Ma, X., 2019. Data Storage. Encyclopedia of Big Data; Schintler, L.,

McNeely, C., Eds.

19. Alghushairy, O., Alsini, R., Soule, T. and Ma, X., 2021. A Review of Local Outlier Factor

Algorithms for Outlier Detection in Big Data Streams. Big Data and Cognitive Computing, 5(1),

p.1.

20. Breunig, M.M., Kriegel, H.P., Ng, R.T. and Sander, J., 2000, May. LOF: identifying density-

based local outliers. In Proceedings of the 2000 ACM SIGMOD international conference on

Management of data (pp. 93-104).

21. Tang, J., Chen, Z., Fu, A.W.C. and Cheung, D.W., 2002, May. Enhancing effectiveness of

outlier detections for low density patterns. In Pacific-Asia Conference on Knowledge Discovery

and Data Mining (pp. 535-548). Springer, Berlin, Heidelberg.

22. Papadimitriou, S., Kitagawa, H., Gibbons, P.B. and Faloutsos, C., 2003, March. Loci: Fast

outlier detection using the local correlation integral. In Proceedings 19th international

conference on data engineering (Cat. No. 03CH37405) (pp. 315-326). IEEE.

23. Jin, W., Tung, A.K., Han, J. and Wang, W., 2006, April. Ranking outliers using symmetric

neighborhood relationship. In Pacific-Asia conference on knowledge discovery and data mining

(pp. 577-593). Springer, Berlin, Heidelberg.

24. Kriegel, H.P., Kröger, P., Schubert, E. and Zimek, A., 2009, November. LoOP: local outlier

probabilities. In Proceedings of the 18th ACM conference on Information and knowledge

management (pp. 1649-1652).

25. He, Z., Xu, X. and Deng, S., 2003. Discovering cluster-based local outliers. Pattern Recognition

Letters, 24(9-10), pp.1641-1650.

26. Amer, M. and Goldstein, M., 2012, August. Nearest-neighbor and clustering based anomaly

detection algorithms for rapidminer. In Proc. of the 3rd RapidMiner Community Meeting and

Conference (RCOMM 2012) (pp. 1-12).

27. Goldstein, M. Anomaly Detection in Large Datasets. Ph.D. thesis, University of Kaiserslautern,

Kaiserslautern, Germany, 2016.

96

28. Salehi, M. and Rashidi, L., 2018. A Survey on Anomaly detection in Evolving Data: [with

Application to Forest Fire Risk Prediction]. ACM SIGKDD Explorations Newsletter, 20(1),

pp.13-23.

29. Alsini, R., Almakrab, A., Ibrahim, A. and Ma, X., 2021. Improving the outlier detection method

in concrete mix design by combining the isolation forest and local outlier factor. Construction

and Building Materials, 270, p.121396.

30. Goldstein, M. and Uchida, S., 2016. A comparative evaluation of unsupervised anomaly

detection algorithms for multivariate data. PloS one, 11(4), p.e0152173.

31. Chiu, A.L.M. and Fu, A.W.C., 2003, July. Enhancements on local outlier detection. In Seventh

International Database Engineering and Applications Symposium, 2003. Proceedings. (pp.

298-307). IEEE.

32. Jiang, S.Y., Li, Q.H., Li, K.L., Wang, H. and Meng, Z.L., 2003, November. GLOF: a new

approach for mining local outlier. In Proceedings of the 2003 International Conference on

Machine Learning and Cybernetics (IEEE Cat. No. 03EX693) (Vol. 1, pp. 157-162). IEEE.

33. Goldstein, M., 2012, November. FastLOF: An expectation-maximization based local outlier

detection algorithm. In Proceedings of the 21st International Conference on Pattern

Recognition (ICPR2012) (pp. 2282-2285). IEEE.

34. Cao, K., Shi, L., Wang, G., Han, D. and Bai, M., 2014, June. Density-based local outlier

detection on uncertain data. In International Conference on Web-Age Information Management

(pp. 67-71). Springer, Cham.

35. Guan, H., Li, Q., Yan, Z. and Wei, W., 2015, September. SLOF: identify density-based local

outliers in big data. In 2015 12th Web Information System and Application Conference (WISA)

(pp. 61-66). IEEE.

36. Liu, J. and Wang, G., 2016, May. Outlier detection based on local minima density. In 2016

IEEE Information Technology, Networking, Electronic and Automation Control Conference

(pp. 718-723). IEEE.

37. Su, S., Xiao, L., Ruan, L., Gu, F., Li, S., Wang, Z. and Xu, R., 2018. An efficient density-based

local outlier detection approach for scattered data. IEEE Access, 7, pp.1006-1020.

38. Vázquez, F.I., Zseby, T. and Zimek, A., 2018, November. Outlier detection based on low

density models. In 2018 IEEE international conference on data mining workshops (ICDMW)

(pp. 970-979). IEEE.

39. Ning, J., Chen, L. and Chen, J., 2018, December. Relative density-based outlier detection

algorithm. In Proceedings of the 2018 2nd International Conference on Computer Science and

Artificial Intelligence (pp. 227-231).

40. Ren, D., Wang, B. and Perrizo, W., 2004, November. Rdf: A density-based outlier detection

method using vertical data representation. In Fourth IEEE International Conference on Data

Mining (ICDM'04) (pp. 503-506). IEEE.

97

41. Fan, H., Zaïane, O.R., Foss, A. and Wu, J., 2009. Resolution-based outlier factor: detecting the

top-n most outlying data points in engineering data. Knowledge and Information Systems, 19(1),

pp.31-51.

42. Du, H., Zhao, S., Zhang, D. and Wu, J., 2016, April. Novel clustering-based approach for local

outlier detection. In 2016 IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS) (pp. 802-811). IEEE.

43. Thang, V.V., Pantiukhin, D.V. and Nazarov, A.N., 2016, November. FLDS: fast outlier

detection based on local density score. In 2016 International Conference on Engineering and

Telecommunication (EnT) (pp. 137-141). IEEE.

44. Su, S., Xiao, L., Ruan, L., Gu, F., Li, S., Wang, Z. and Xu, R., 2018. An efficient density-based

local outlier detection approach for scattered data. IEEE Access, 7, pp.1006-1020.

45. Babaei, K., Chen, Z. and Maul, T., 2019. Detecting point outliers using prune-based outlier

factor (plof). arXiv preprint arXiv:1911.01654.

46. Yang, P., Wang, D., Wei, Z., Du, X. and Li, T., 2019. An outlier detection approach based on

improved self-organizing feature map clustering algorithm. IEEE Access, 7, pp.115914-115925.

47. Gao, J., Hu, W., Zhang, Z.M., Zhang, X. and Wu, O., 2011, May. RKOF: robust kernel-based

local outlier detection. In Pacific-Asia conference on knowledge discovery and data mining (pp.

270-283). Springer, Berlin, Heidelberg.

48. Miao, D., Qin, X. and Wang, W., 2015. Anomalous cell detection with kernel density-based

local outlier factor. China Communications, 12(9), pp.64-75.

49. Du, H., 2015, November. Robust local outlier detection. In 2015 IEEE International Conference

on Data Mining Workshop (ICDMW) (pp. 116-123). IEEE.

50. Tang, B. and He, H., 2017. A local density-based approach for outlier detection.

Neurocomputing, 241, pp.171-180.

51. Wang, L. and Deng, X., 2017, July. Multimode process fault detection method based on variable

local outlier factor. In 2017 9th International Conference on Modelling, Identification and

Control (ICMIC) (pp. 175-180). IEEE.

52. Zhao, Y., Nasrullah, Z., Hryniewicki, M.K. and Li, Z., 2019, May. LSCP: Locally selective

combination in parallel outlier ensembles. In Proceedings of the 2019 SIAM International

Conference on Data Mining (pp. 585-593). Society for Industrial and Applied Mathematics.

53. Wang, R.; Zhu, Q. LSOF: Novel Outlier Detection Approach Based on Local Structure. 2019

IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud

Computing, Sustainable Computing & Communications, Social Computing & Networking

(ISPA/BDCloud/SocialCom/SustainCom) 2019.

54. Pokrajac, D., Lazarevic, A. and Latecki, L.J., 2007, March. Incremental local outlier detection

for data streams. In 2007 IEEE symposium on computational intelligence and data mining (pp.

504-515). IEEE.

98

55. Salehi, M., Leckie, C., Bezdek, J.C., Vaithianathan, T. and Zhang, X., 2016. Fast memory

efficient local outlier detection in data streams. IEEE Transactions on Knowledge and Data

Engineering, 28(12), pp.3246-3260.

56. Na, G.S., Kim, D. and Yu, H., 2018, July. Dilof: Effective and memory efficient local outlier

detection in data streams. In Proceedings of the 24th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining (pp. 1993-2002).

57. Gao, K., Shao, F.J. and Sun, R.C., 2010, July. n-INCLOF: A dynamic local outlier detection

algorithm for data streams. In 2010 2nd International Conference on Signal Processing Systems

(Vol. 2, pp. V2-179). IEEE.

58. Pokrajac, D., Reljin, N., Pejcic, N. and Lazarevic, A., 2008, September. Incremental

connectivity-based outlier factor algorithm. In Visions of Computer Science-BCS International

Academic Conference (pp. 211-223).

59. Karimian, S.H., Kelarestaghi, M. and Hashemi, S., 2012, May. I-inclof: improved incremental

local outlier detection for data streams. In The 16th CSI International Symposium on Artificial

Intelligence and Signal Processing (AISP 2012) (pp. 023-028). IEEE.

60. Wang, Z., Zhao, Z., Weng, S. and Zhang, C., 2015. Incremental multiple instance outlier

detection. Neural Computing and Applications, 26(4), pp.957-968.

61. Kalliantzis, I., Papadopoulos, A., Gounaris, A. and Tsichlas, K., 2019. Efficient Distributed

Outlier Detection in Data Streams (Doctoral dissertation, Aristotle University of Thessaloniki;

54124 Thessaloniki; Greece).

62. Liu, F., Yu, Y., Song, P., Fan, Y. and Tong, X., 2020. Scalable KDE-based top-n local outlier

detection over large-scale data streams. Knowledge-Based Systems, 204, p.106186.

63. Yang, Y., Chen, L. and Fan, C., 2021. ELOF: fast and memory-efficient anomaly detection

algorithm in data streams. Soft Computing, 25(6), pp.4283-4294.

64. Ren, J., Wu, Q., Zhang, J. and Hu, C., 2009, August. Efficient outlier detection algorithm for

heterogeneous data streams. In 2009 Sixth International Conference on Fuzzy Systems and

Knowledge Discovery (Vol. 5, pp. 259-264). IEEE.

65. Din, S.U. and Shao, J., 2020. Exploiting evolving micro-clusters for data stream classification

with emerging class detection. Information Sciences, 507, pp.404-420.

66. Gao, J., Ji, W., Zhang, L., Li, A., Wang, Y. and Zhang, Z., 2020. Cube-based incremental outlier

detection for streaming computing. Information Sciences, 517, pp.361-376.

67. Chen, Q., Luley, R., Wu, Q., Bishop, M., Linderman, R.W. and Qiu, Q., 2017. AnRAD: A

neuromorphic anomaly detection framework for massive concurrent data streams. IEEE

transactions on neural networks and learning systems, 29(5), pp.1622-1636.

99

68. Ishimtsev, V., Bernstein, A., Burnaev, E. and Nazarov, I., 2017, May. Conformal $ k $-NN

Anomaly Detector for Univariate Data Streams. In Conformal and Probabilistic Prediction and

Applications (pp. 213-227). PMLR.

69. Yang, X., Zhou, W., Shu, N. and Zhang, H., 2019, February. A Fast and Efficient Local Outlier

Detection in Data Streams. In Proceedings of the 2019 International Conference on Image,

Video and Signal Processing (pp. 111-116).

70. Yao, H., Fu, X., Yang, Y. and Postolache, O., 2018. An incremental local outlier detection

method in the data stream. Applied Sciences, 8(8), p.1248.

71. Munir, M., Siddiqui, S.A., Dengel, A. and Ahmed, S., 2018. DeepAnT: A deep learning

approach for unsupervised anomaly detection in time series. IEEE Access, 7, pp.1991-2005.

72. Siffer, A., Fouque, P.A., Termier, A. and Largouet, C., 2017, August. Anomaly detection in

streams with extreme value theory. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (pp. 1067-1075).

73. Cai, S., Li, Q., Li, S., Yuan, G. and Sun, R., 2019. WMFP-Outlier: An efficient maximal

frequent-pattern-based outlier detection approach for weighted data streams. Information

Technology and Control, 48(4), pp.505-521.

74. Manzoor, E., Lamba, H. and Akoglu, L., 2018, July. xstream: Outlier detection in feature-

evolving data streams. In Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining (pp. 1963-1972).

75. Zhang, L., Lin, J. and Karim, R., 2016. Sliding window-based fault detection from high-

dimensional data streams. IEEE Transactions on Systems, Man, and Cybernetics: Systems,

47(2), pp.289-303.

76. Alghushairy, O., Alsini, R., Ma, X. and Soule, T., 2020, March. A Genetic-Based Incremental

Local Outlier Factor Algorithm for Efficient Data Stream Processing. In Proceedings of the

2020 the 4th International Conference on Compute and Data Analysis (pp. 38-49).

77. Huang, J.W., Zhong, M.X. and Jaysawal, B.P., 2020. TADILOF: Time Aware Density-Based

Incremental Local Outlier Detection in Data Streams. Sensors, 20(20), p.5829.

78. Patcha, A. and Park, J.M., 2007. An overview of anomaly detection techniques: Existing

solutions and latest technological trends. Computer networks, 51(12), pp.3448-3470.

79. Agrawal, S. and Agrawal, J., 2015. Survey on anomaly detection using data mining techniques.

Procedia Computer Science, 60, pp.708-713.

80. Ahmed, M., Mahmood, A.N. and Islam, M.R., 2016. A survey of anomaly detection techniques

in financial domain. Future Generation Computer Systems, 55, pp.278-288.

100

81. Markou, M. and Singh, S., 2003. Novelty detection: a review—part 1: statistical approaches.

Signal processing, 83(12), pp.2481-2497.

82. Markou, M. and Singh, S., 2003. Novelty detection: a review—part 2:: neural network based

approaches. Signal processing, 83(12), pp.2499-2521.

83. Hodge, V. and Austin, J., 2004. A survey of outlier detection methodologies. Artificial

intelligence review, 22(2), pp.85-126.

84. Domingues, R., Filippone, M., Michiardi, P. and Zouaoui, J., 2018. A comparative evaluation

of outlier detection algorithms: Experiments and analyses. Pattern Recognition, 74, pp.406-421.

85. Chen, L., Gao, S. and Cao, X., 2020. Research on real-time outlier detection over big data

streams. International Journal of Computers and Applications, 42(1), pp.93-101.

86. Chauhan, P. and Shukla, M., 2015, March. A review on outlier detection techniques on data

stream by using different approaches of K-Means algorithm. In 2015 International Conference

on Advances in Computer Engineering and Applications (pp. 580-585). IEEE.

87. Phua, C., Lee, V., Smith, K. and Gayler, R., 2010. A comprehensive survey of data mining-

based fraud detection research. arXiv preprint arXiv:1009.6119.

88. Pimentel, M.A., Clifton, D.A., Clifton, L. and Tarassenko, L., 2014. A review of novelty

detection. Signal Processing, 99, pp.215-249.

89. Park, C.H., 2019. Outlier and anomaly pattern detection on data streams. The Journal of

Supercomputing, 75(9), pp.6118-6128

90. Sen, P.C., Hajra, M. and Ghosh, M., 2020. Supervised classification algorithms in machine

learning: A survey and review. In Emerging technology in modelling and graphics (pp. 99-111).

Springer, Singapore.

91. Chawla, N.V., Japkowicz, N. and Kotcz, A., 2004. Special issue on learning from imbalanced

data sets. ACM SIGKDD explorations newsletter, 6(1), pp.1-6.

92. Singh, A., Thakur, N. and Sharma, A., 2016, March. A review of supervised machine learning

algorithms. In 2016 3rd International Conference on Computing for Sustainable Global

Development (INDIACom) (pp. 1310-1315). Ieee.

93. Lodhia, Z., Rasool, A. and Hajela, G., 2017. A survey on machine learning and outlier detection

techniques. IJCSNS, 17(5), p.271.

94. Quinlan, R., 1993. 4.5: Programs for machine learning morgan kaufmann publishers inc. San

Francisco, USA.

95. Mehrotra, K., Mohan, C.K. and Ranka, S., 1997. Elements of artificial neural networks. MIT

press.

96. Gao, J., Cheng, H. and Tan, P.N., 2006, April. Semi-supervised outlier detection. In

Proceedings of the 2006 ACM symposium on Applied computing (pp. 635-636).

101

97. Daneshpazhouh, A. and Sami, A., 2013, May. Semi-supervised outlier detection with only

positive and unlabeled data based on fuzzy clustering. In The 5th Conference on Information

and Knowledge Technology (pp. 344-348). IEEE.

98. Ruff, L., Vandermeulen, R.A., Görnitz, N., Binder, A., Müller, E., Müller, K.R. and Kloft, M.,

2019. Deep semi-supervised anomaly detection. arXiv preprint arXiv:1906.02694.

99. Fitriani, S., Mandala, S. and Murti, M.A., 2016, November. Review of semi-supervised method

for intrusion detection system. In 2016 Asia Pacific Conference on Multimedia and

Broadcasting (APMediaCast) (pp. 36-41). IEEE.

100. Heller, K., Svore, K., Keromytis, A.D. and Stolfo, S., 2003. One class support vector machines

for detecting anomalous windows registry accesses.

101. Zoppi, T., Ceccarelli, A. and Bondavalli, A., 2018, December. On algorithms selection for

unsupervised anomaly detection. In 2018 IEEE 23rd Pacific Rim International Symposium on

Dependable Computing (PRDC) (pp. 279-288). IEEE.

102. Ngai, E.W., Hu, Y., Wong, Y.H., Chen, Y. and Sun, X., 2011. The application of data mining

techniques in financial fraud detection: A classification framework and an academic review of

literature. Decision support systems, 50(3), pp.559-569.

103. Zhao, M. and Chen, J., 2020, June. A Review of Methods for Detecting Point Anomalies on

Numerical Dataset. In 2020 IEEE 4th Information Technology, Networking, Electronic and

Automation Control Conference (ITNEC) (Vol. 1, pp. 559-565). IEEE.

104. Safaei, M., Asadi, S., Driss, M., Boulila, W., Alsaeedi, A., Chizari, H., Abdullah, R. and Safaei,

M., 2020. A systematic literature review on outlier detection in wireless sensor networks.

Symmetry, 12(3), p.328.

105. Jain, A.K. and Dubes, R.C., 1988. Algorithms for clustering data. Prentice-Hall, Inc..

106. Boulila, W., Farah, I.R., Ettabaa, K.S., Solaiman, B. and Ghézala, H.B., 2011. A data mining

based approach to predict spatiotemporal changes in satellite images. International Journal of

Applied Earth Observation and Geoinformation, 13(3), pp.386-395.

107. Han, J.; Pei, J.; Kamber, M.Data Mining: Concepts and Techniques; Elsevier: Amsterdam, The

Netherlands, 2011.

108. Krempl, G., Žliobaite, I., Brzeziński, D., Hüllermeier, E., Last, M., Lemaire, V., Noack, T.,

Shaker, A., Sievi, S., Spiliopoulou, M. and Stefanowski, J., 2014. Open challenges for data

stream mining research. ACM SIGKDD explorations newsletter, 16(1), pp.1-10.

102

109. Ikonomovska, E., Loskovska, S. and Gjorgjevik, D., 2007, September. A survey of stream data

mining. In Proceedings of 8th National Conference with International participation, ETAI (pp.

19-21).

110. Younas, M., 2019. Research challenges of big data.

111. Cugola, G. and Margara, A., 2012. Processing flows of information: From data stream to

complex event processing. ACM Computing Surveys (CSUR), 44(3), pp.1-62.

112. Namiot, D., 2015. On big data stream processing. International Journal of Open Information

Technologies, 3(8).

113. O'Reilly, C., Gluhak, A., Imran, M.A. and Rajasegarar, S., 2014. Anomaly detection in wireless

sensor networks in a non-stationary environment. IEEE Communications Surveys & Tutorials,

16(3), pp.1413-1432.

114. Aggarwal, C.C., 2015. Outlier analysis. In Data mining (pp. 237-263). Springer, Cham.

115. Angiulli, F. and Fassetti, F., 2007, November. Detecting distance-based outliers in streams of

data. In Proceedings of the sixteenth ACM conference on Conference on information and

knowledge management (pp. 811-820).

116. Yang, D., Rundensteiner, E.A. and Ward, M.O., 2009, March. Neighbor-based pattern detection

for windows over streaming data. In Proceedings of the 12th international conference on

extending database technology: advances in database technology (pp. 529-540).

117. Kontaki, M., Gounaris, A., Papadopoulos, A.N., Tsichlas, K. and Manolopoulos, Y., 2011,

April. Continuous monitoring of distance-based outliers over data streams. In 2011 IEEE 27th

International Conference on Data Engineering (pp. 135-146). IEEE.

118. Bai, M., Wang, X., Xin, J. and Wang, G., 2016. An efficient algorithm for distributed density-

based outlier detection on big data. Neurocomputing, 181, pp.19-28.

119. Aggarwal, C.C., Philip, S.Y., Han, J. and Wang, J., 2003, January. A framework for clustering

evolving data streams. In Proceedings 2003 VLDB conference (pp. 81-92). Morgan Kaufmann.

120. Cao, F., Estert, M., Qian, W. and Zhou, A., 2006, April. Density-based clustering over an

evolving data stream with noise. In Proceedings of the 2006 SIAM international conference on

data mining (pp. 328-339). Society for industrial and applied mathematics.

121. Guha, S., Meyerson, A., Mishra, N., Motwani, R. and O'Callaghan, L., 2003. Clustering data

streams: Theory and practice. IEEE transactions on knowledge and data engineering, 15(3),

pp.515-528.

122. Aggarwal, C.C., Han, J., Wang, J. and Yu, P.S., 2004, August. A framework for projected

clustering of high dimensional data streams. In Proceedings of the Thirtieth international

conference on Very large data bases-Volume 30 (pp. 852-863).

103

123. Aggarwal, C.C., 2012. A segment-based framework for modeling and mining data streams.

Knowledge and information systems, 30(1), pp.1-29.

124. Assent, I., Kranen, P., Baldauf, C. and Seidl, T., 2012, April. Anyout: Anytime outlier detection

on streaming data. In International Conference on Database Systems for Advanced Applications

(pp. 228-242). Springer, Berlin, Heidelberg.

125. Salehi, M., Leckie, C.A., Moshtaghi, M. and Vaithianathan, T., 2014, May. A relevance

weighted ensemble model for anomaly detection in switching data streams. In Pacific-Asia

Conference on Knowledge Discovery and Data Mining (pp. 461-473). Springer, Cham.

126. Cheng, Z., Zou, C. and Dong, J., 2019, September. Outlier detection using isolation forest and

local outlier factor. In Proceedings of the conference on research in adaptive and convergent

systems (pp. 161-168).

127. Staerman, G., Mozharovskyi, P., Clémençon, S. and d’Alché-Buc, F., 2019, October. Functional

isolation forest. In Asian Conference on Machine Learning (pp. 332-347). PMLR.

128. Ding, Z. and Fei, M., 2013. An anomaly detection approach based on isolation forest algorithm

for streaming data using sliding window. IFAC Proceedings Volumes, 46(20), pp.12-17.

129. Dua, D. and Graff, C., 2019. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].

Irvine, CA: University of California, School of Information and Computer Science.

130. Shebuti Rayana (2016). ODDS Library [http://odds.cs.stonybrook.edu]. Stony Brook, NY:

Stony Brook University, Department of Computer Science.

131. Hanley, J.A. and McNeil, B.J., 1982. The meaning and use of the area under a receiver operating

characteristic (ROC) curve. Radiology, 143(1), pp.29-36.

132. Bradley, A.P., 1997. The use of the area under the ROC curve in the evaluation of machine

learning algorithms. Pattern recognition, 30(7), pp.1145-1159.
133. Aggarwal, C.C. and Sathe, S., 2015. Theoretical foundations and algorithms for outlier

ensembles. Acm sigkdd explorations newsletter, 17(1), pp.24-47.

134. Yamanishi, K., Takeuchi, J.I., Williams, G. and Milne, P., 2004. On-line unsupervised outlier

detection using finite mixtures with discounting learning algorithms. Data Mining and

Knowledge Discovery, 8(3), pp.275-300.

135. Tan, S.C., Ting, K.M. and Liu, T.F., 2011, June. Fast anomaly detection for streaming data. In

Twenty-Second International Joint Conference on Artificial Intelligence.

136. Yan, Y., Cao, L., Kulhman, C. and Rundensteiner, E., 2017, August. Distributed local outlier

detection in big data. In Proceedings of the 23rd ACM SIGKDD international conference on

knowledge discovery and data mining (pp. 1225-1234).

104

137. Yan, Y., Cao, L. and Rundensteiner, E.A., 2017, August. Scalable top-n local outlier detection.

In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and

data mining (pp. 1235-1244).

138. Alghushairy, O., Alsini, R., Ma, X. and Soule, T., 2020, July. Improving the Efficiency of

Genetic based Incremental Local Outlier Factor Algorithm for Network Intrusion Detection. In

Proceedings of the 4th International Conference on Applied Cognitive Computing, Las Vegas,

NV, USA (pp. 27-30).

139. Alsini, R., Alghushairy, O., Ma, X. and Soule, T., 2020, July. A Grid Partition-based Local

Outlier Factor for Data Stream Processing. In Proceedings of the 4th International Conference

on Applied Cognitive Computing, Las Vegas, NV, USA.

140. Zhang, M., Li, M., Shen, Y., Ren, Q. and Zhang, J., 2019. Multiple mechanical properties

prediction of hydraulic concrete in the form of combined damming by experimental data mining.

Construction and Building Materials, 207, pp.661-671.

141. Yan, H., Yang, N., Peng, Y. and Ren, Y., 2020. Data mining in the construction industry: Present

status, opportunities, and future trends. Automation in Construction, 119, p.103331.

142. Hassan, E.C. and Ibrahim, A., 2013. The performance of high-strength flowable concrete made

with binary, ternary, or quaternary binder in hot climate. Construction and Building Materials,

47, pp.245-253.

143. Mahmoud, E., Ibrahim, A., El-Chabib, H. and Patibandla, V.C., 2013. Self-consolidating

concrete incorporating high volume of fly ash, slag, and recycled asphalt pavement. International

Journal of Concrete Structures and Materials, 7(2), pp.155-163.

144. Ibrahim, A., Mahmoud, E., Khodair, Y. and Patibandla, V.C., 2014. Fresh, mechanical, and

durability characteristics of self-consolidating concrete incorporating recycled asphalt

pavements. Journal of materials in civil engineering, 26(4), pp.668-675.

145. Ibrahim, A., El-Chabib, H. and Eisa, A., 2013. Ultrastrength flowable concrete made with high

volumes of supplementary cementitious materials. Journal of materials in civil engineering,

25(12), pp.1830-1839.

146. Ibrahim A., and Mahmoud E., and Ali, T. (2013). Macroscopic Compressive Strength of High-

Strength Self-Consolidating Concrete with High Volume of Cementitious Materials Based on

Real Digital Image

147. Yeh, I.C., 1998. Modeling of strength of high-performance concrete using artificial neural

networks. Cement and Concrete research, 28(12), pp.1797-1808.

148. Liu, F.T., Ting, K.M. and Zhou, Z.H., 2008, December. Isolation forest. In 2008 eighth ieee

international conference on data mining (pp. 413-422). IEEE.

105

149. Yu, Z.J., Haghighat, F. and Fung, B.C., 2016. Advances and challenges in building engineering

and data mining applications for energy-efficient communities. Sustainable Cities and Society,

25, pp.33-38.

150. Alsini, R., Alghushairy, O., Ma, X. and Soule, T., 2020, December. A Grid Partition Based

Local Outlier Factor by Reachability Distance for Data Stream Processing. In 2020 International

Conference on Computational Science and Computational Intelligence (CSCI), IEEE., Las

Vegas, NV, USA.

106

Appendix A - Other Experiment tests between the GP-LOF, GP-LOFR,

DILOF, IFS-LOF

• The tables and figure below show the performance results of the algorithms between the GP-

LOF, DILOF algorithms in the window size 1000.

0

20

40

60

80

100

120

1000

Accuracy result between the GP-LOFR, GP-LOF, and DILOF

UCI Pendigit GP-LOFR UCI Pendigit GP-LOF UCI Pendigit DILOF

UCI Vowel GP-LOFR UCI Vowel GP-LOF UCI Vowel DILOF

KDD 99 SMTP GP-LOFR KDD 99 SMTP GP-LOF KDD 99 SMTP DILOF

Window

size

UCI Pendigit UCI VOWEL KDD 99 SMPT

GP-LOF GP-LOFR DILOF GP-LOF GP-LOFR DILOF GP-LOF GP-LOFR DILOF

1000 70.91 71.01 54.93 94.6384 95.54 88.19 94.01 77.43 75.82

Window size

UCI Vowel KDD99 SMPT UCI Pendigit

GP-

LOF Dilof

GP-

LOFR

GP-

LOF Dilof

GP-

LOFR GP-LOF Dilof

GP-

LOFR

1000 1.815 10.3391 1.925 130.11 1155.23 219.347 5.49373 4.645 5.575

107

• The tables and figure below show the performance results of the algorithms in the concrete

dataset between the GP-LOF, DILOF and IFS-LOF algorithms in all window sizes.

108

• Accuracy result:

window size DILOF GP-LOF GP-LOFR IFS-LOF

100 39.8082 45.80337 45.6479 92.84

200 37.3153 43.65678 48.62021 71.8625

300 38.5663 47.06702 53.05968 51.33333

400 42.2612 51.36927 51.51733 73.2

500 47.1796 46.42113 50.24005 74.8296

• Execution time:

window

size DILOF GP-LOF GP-LOFR IFS-LOF

100 8.7898 0.9 2.215 0.172

200 11.9397 0.787 1.837 0.512

300 15.42 0.747 1.391 1.034

400 20.1695 0.885 1.162 2.101

500 45.1401 0.993 1.156 3.215

