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Abstract 

Outlier detection is getting significant attention in the research field of big data. Detecting the outlier is 

important in various applications such as communication, finance, fraud detection, and network 

intrusion detection. Because of their unique characteristics, such as large volume and high velocity, data 

streams pose a challenge to traditional outlier detection methods. Local Outlier Factor (LOF) is one of 

the most appropriate techniques for determining outliers in the density-based method. However, it faces 

some challenges when dealing with the data stream. One issue is that LOF requires the entire dataset as 

well as the distance value to be stored in the computer memory. Another issue arises when a change 

occurs in the dataset, which necessitates a significant recalculation from the beginning. To address these 

issues,  this dissertation proposes a new method for detecting local outliers in data streams called the 

Grid Partition-based Local Outlier Factor (GP-LOF). We improve the GP-LOF algorithm even further 

by adding another technique known as the Local Outlier Factor by Reachability Distance (LOFR). The 

improved algorithm is thus called the Grid-Partition-based Local Outlier Factor by Reachability 

Distance (GP-LOFR). We tested both GP-LOF and GP-LOFR with several benchmark datasets. They 

outperformed the Density Summarization Incremental Local Outlier Factor (DILOF) algorithm, which 

is the most representative algorithm in existing studies of data stream processing. We also worked with 

real-world datasets of concrete mixture. In that work, a new algorithm called the Isolation Forest based 

on a sliding window for the Local Outlier Factor (IFS-LOF) was developed. The IFS-LOF outperformed 

both LOF and LOF-Sliding Window (LOF-SW) in accuracy of the results. In summary, the three new 

algorithms GP-LOF, GP-LOFR, and IFS-LOF are the major contributions of this PhD research. All 

proposed algorithms work without any previous knowledge of data distributions and are capable to 

execute with limited computer memory. This PhD research makes a solid contribution to the field of 

local outlier detection in big data streams. In the near future, we will extend the developed algorithms 

by applying Evolution Computation (EC) methods to further improve the accuracy and reduce the 

execution time. Moreover, we will apply these algorithms to more real-world datasets.  
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Chapter 1: Introduction 

"Data Streaming."In: Schintler L., McNeely C. (eds) Encyclopedia of Big Data. Springer, Cham.DOI: 

https://doi.org/10.1007/978-3-319-32001-4_324-1.  

Alsini, R., Alghushairy, O. Almakrab, A., Soule, T. and Ma, X., 2021. Local Outlier Detection 

Techniques in Real-World Streaming Data Processing: A Literature Review ( Under Review) 

 

1.1 Outlier Detection 

Outlier detection is a process by which outliers are distinguished from the rest of a dataset. Outliers 

arise during a procedure or as a result of a measuring error [1]. Outliers may occur because of human 

mistakes, technological or machine failures, noise, device change, dishonest behavior, etc. [2]. It is 

necessary to evaluate the data, which may include valuable information regarding different areas, 

including the identification of network intrusion detection, industries, healthcare, transportation, and 

many others. In machine learning and data mining, outlier detection methods have been commonly used 

to gather information to assist in decision-making in various domains by understanding the data's 

behavior to detect the outlier for cleaning the data [3,4].  

 

 

 

 

 

 

 

 

 

Outliers occur in two forms: as a global outlier or as a local outlier [5]. If a global outlier, a data point 

that is far from the rest of the dataset is considered an outlier. If a local outlier, the outlier is based on the 

 

 

P3 

P2 

C1 
P1 

Figure 1.1 The categories of outlier in the two-dimensional space, where p2 and p3 are global 

outliers (green) and p1 are a local outlier (red). 
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distance between the points according to the k-Nearest-Neighbors (kNN) algorithm [6]. Figure 1.1 

represents the difference between the global outlier and local outlier in a dataset.  The local outlier factor 

(LOF) measures the amount of the density of data points and their nearby neighbors to assess local scores.  

1.2 The Data Stream 

Data has become an essential component of not only research but also of our daily lives. In the digital 

world, people are able to use various types of technology to collect and transmit big data, which has the 

features of overwhelming volume, velocity, variety, value, and veracity. More importantly, big data 

represents a vast amount of information and knowledge. The Internet of Things (IoT) is interconnected 

with big data. IoT applications use a data stream as a primary way for data transmission and to make a 

data stream a unique type of big data. A data stream is a sequence of data blocks that are transmitted. The 

real-time feature of the data stream requires corresponding technologies for efficient data processing. 

Streaming the data is built upon resources that are commonly used for communication, web activity, E-

commerce, and social media. How the data is processed determines how information can be extracted 

from the data stream. Analyzing the data stream through queries ensures and improves the efficiency of 

data by the aspect of data science. Many techniques can be used in data stream processing, among which 

data mining is the most common approach used for detecting data latency, pattern frequency, and 

anomalous values, as well as for classification and clustering, and outlier detection. The computer science 

community has created many open-source libraries for data streams and has built various best practices 

to facilitate the applications of the data stream in different disciplines. 

1.3 The Data Science Aspect of a Data Stream 

In recent years, data has become the “crude oil” that drives technological and economic development. 

There is an extremely high demand, and almost everyone uses data. We need to refine crude oil before 

using it; it is the same with data. We can benefit from data only when data processing, mining, analysis, 

and extraction provide useful results. Using the data stream in data science involves understanding the 

data life cycle. Usually, it begins with collecting the data from its sources. Today, data stream collection 
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can be seen on search engines, in social media, on IoT devices, and in marketing. For instance, Google 

Trends generates a massive amount of data by searching certain topics on the web. Afterwards, it can 

provide results based on what a user is looking for within a specific range of time. The benefit of 

processing the data stream is getting the right information immediately. However, processing needs 

methods and models. Two standard models are batch processing and stream processing. 

Batch processing can handle a large amount of data by first collecting the data over time and then doing 

processing it. For example, the operating system on a computer can optimize the sequencing of jobs to 

make efficient use of the system. Micro-batch is a modified model of batch processing. It groups data and 

tasks into small batches. Completing the processing of a batch in this model is based on how the next 

batch is received. Stream processing is a model used for processing the data without waiting for the next 

data to arrive. The benefit of stream processing is that the system can receive the data more quickly. For 

example, an online banking application runs stream processing when a customer buys a product. The 

bank transaction is then verified and executed without fail. Stream processing can handle a huge amount 

of data without suffering any issues related to data latency. A sensor network that generates massive data 

can be organized easily under this method.  

Data mining, as a part of data science, is used to discover knowledge in data. Data stream mining 

usually involves methods, such as machine learning, to extract and predict new information. A few widely 

used methods are clustering, classification, and stream mining on the sensor network. Clustering is a 

process of gathering similar data into a group. Clustering deals with unsupervised learning. This means 

the system does not need to have a label in order to discover a hidden pattern in data. K-means is the most 

common method used for clustering. Clustering can be used for fraud detection; for example, it is able to 

find anomalous records on a credit card, after which the cardholder can be informed. Classification is a 

process of identifying the category of a piece of new data. Based on a set of training data, the system can 

set up several categories and then determine into which category a piece of new data belongs. 

Classification is one of the supervised learning methods in which the system learns and determines how 
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to make the right decision. For example, buying and selling holds on the stock market can be done using 

this method in order to make the right decisions based on the given data. 

1.4 The Data Stream Management System (DSMS) 

Regardless of what precedes the data stream and how it is stored, data management is required in the 

data life cycle. Managing the data stream can be done using queries as a primary method, such as the 

structured query language (SQL). SQL is a common language used for managing the database. The data 

stream management system (DSMS) uses an extended version of SQL, known as the continuous query 

language (CQL). The reason for the use of CQL is to ensure any continuous data over time can be used 

on the system. The operations of CQL can be categorized into three groups: relation-to-relation, stream-

to-relation, and relation-to stream [7]. Relation-to-relation is usually done with a SQL query. For instance, 

the relation between two queries can be expressed by using either equal, above, greater, or less symbols. 

Stream-to-relation is accomplished using the sliding window method. The sliding window method is 

based on having a window that has historical points when the data is streamed. Specifically, when there 

are two window sizes, the second window will not begin until the difference between the windows is 

removed. Relation-to-stream usually involves the tree method to deal with the continuous query. Detailed 

operations include insertion, deletion, and relation. 

1.5 Stream Reasoning 

Stream reasoning is about processing the data stream to get a conclusion or decision on continuous 

information. Stream reasoning handles the continuous information by defining factors on the velocity, 

volume, and variety of big data. For example, a production company might use several sensors to estimate 

and predict the types and amounts of raw materials needed for each day. Another example is the detection 

of fake news on social media. Each social media platform has various users across the world. Streaming 

reasoning can be used to analyze the features in the language patterns in message spreading. The semantic 

web community has proposed several tools that can be used in stream reasoning. The semantic web 

community introduced (RDF) for the modeling and encoding of data schemas and ontologies on the 
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fundamental level. The linked open data is an example of how the database can be linked in the semantic 

web. (SPARQL) is a query language developed by W3C. SPARQL queries use the triplet pattern of RDF 

to represent patterns in the data and graphs. Recently, the RDF Stream Processing (RSP) working group 

recently proposed an extension of both RDF and the SPARQL query to support stream reasoning. For 

instance, the continuous SPARQL (C-SPARQL) is an example of the SPARQL language for expanding 

the use of continuous queries. 

1.6 The Practical Approach 

In real-world practice, the application of a data stream is tied to big data. The current approach to data 

stream usage can be grouped into these categories: scaling data infrastructure, the mining heterogeneous 

information network, graph mining, discovery, and recommender system [8]. Scaling data infrastructure 

is about analyzing the data from social media, such as Twitter, that carry various types of data, such as 

video, image, text, or even a hashtag trend. The data is generated based on how the users communicate 

on a certain topic, which leads to various analytics for understanding human behavior and emotions based 

on the communication between users. Snapchat is now another popular social media application that 

generates and analyzes live data streams based on the location and the event that occurred. 

The mining heterogeneous information network is about discovering the connections between multiple 

components, such as people, organizations, activities, communication, and system infrastructure. The 

information network here also includes the relations that can be seen on social networks, sensor networks, 

graphs, and the web. Graphs are being used to represent nodes and their relations, and graph mining is an 

efficient method for discovering knowledge in big data. For example, Twitter can represent graph 

information by visualizing each data type and its relations. Many other kinds of graph information can 

be obtained from the web. For example, Google has constructed knowledge graphs for various objects 

and relations. The recommender system is another approach for analyzing a data stream in big data. 

Through collaborative filtering (CF), the queries in a DSMS system can be improved by adding a new 

statement, such as rating. It can extend the functionality of DSMS for finding optimization, query sharing, 
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fragmentation, and distribution. Another strategy is using the content-based model; several platforms, 

like Amazon, eBay, YouTube, and Netflix, already use this in their systems. 

1.7 Significance and Contribution 

Data is essential during the big data era because it allows many domains to profit by extracting 

knowledge and information. This information is used to make the right decisions involving various 

factors, such as prediction, pattern, profiles, and outliers. Outlier detection is a crucial step in data mining 

and machine learning. If outliers are not uncovered, the knowledge will be unreliable, and many 

problems, such as incorrect decisions or predictions, will occur. How to measure outliers is a significant 

problem in the analysis of big data. Data streams represent big data by their unique characteristics, i.e., 

large volume and sequential structure. The traditional local outlier detection algorithm has a gap in terms 

of processing the data stream. The local outlier factor (LOF) is a well-known method used in anomaly 

detection to detect the outlier. The main challenge of the LOF is that it needs the whole dataset to be 

stored in memory. Another issue is how the dataset is handled; if anything changes, it must be recalculated 

from the beginning.  

This PhD research proposes three novel local outlier detection algorithms and demonstrates their 

effectiveness in a number of experiments. The first approach, called a grid partition-based local outlier 

factor (GP-LOF), has been applied in a data stream and addresses the limitation of the LOF. The second 

approach is to improve the GP-LOF algorithm by introducing a new method of calculation for the local 

outlier factor and is known as the local outlier factor by reachability distance (LOFR); it proposes a new 

technique called grid partition-based local outlier factors by the reachability distance (GP-LOFR). The 

GP-LOFR algorithm showed some improvement in the precision of outlier detection in several real-world 

datasets. Both GP-LOF and GP-LOFR have initiated some new ideas for the future extension of the LOF 

algorithm in big data stream processing. Another technique, called the isolation forest-based on the 

sliding window for local outlier factor (IFS-LOF), has achieved impressive results with real-world 

datasets for a concrete mixture. When dealing with large amounts of data in memory, the new IFS-LOF 
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algorithm can overcome the challenges of both the isolation forest and the LOF algorithm. This 

dissertation main contribution is the introduction of these GP-LOF, GP-LOFR, and IFS-LOF algorithms.   

1.8 Research Questions 

Six research questions were addressed in the dissertation. These questions aim to improve the LOF 

efficiency in processing the data stream and solve the LOF algorithm issue. The six questions are as 

follows: 

1. How does the GP-LOF algorithm apply the LOF in processing the data stream? 

2. How does the GP-LOF algorithm solve the memory consumption issue? 

3. How does the GP-LOF algorithm deal with incoming data points?  

4. Does the GP-LOF algorithm perform better than the DILOF algorithm for the accuracy of outlier 

detection? 

5. Does the GP-LOF algorithm perform better than the DILOF algorithm in execution time? 

6. How can the new approach for outlier detection be evaluated regarding the concrete mixture 

problem? 

1.9 The Organization of the Dissertation 

Researchers interested in local outlier detection will significantly benefit from this dissertation because 

it includes two new approaches for processing the LOF in data streams. Additionally, it includes another 

approach for solving the LOF by combining it with the Isolation Forest (IF) method. There are six 

remaining chapters. Chapter 2 presents the literature review of the local outlier detecting techniques and 

discusses the research challenge for the LOF algorithm in processing the data stream. Chapter 3 discusses 

the background of the outlier detection approach and the dataset used in the experiment. The Grid 

Partition-based Local Outlier Factor (GP-LOF) algorithm is presented in Chapter 4. The Grid Partition-

based Local Outlier Factor by Reachability Distance (GP-LOFR) algorithm is proposed in Chapter 5 as 

an improved version of the GP-LOF algorithm. In the sixth chapter, a new method for improving outlier 
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detection in industrial applications is presented. In particular, it can be used to evaluate concrete mixture. 

Chapter 7 discusses the conclusions and future studies for the data stream processing. 
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Chapter 2: Local Outlier Detection Techniques in Real-World Streaming 

Data Processing: A Literature Review 

Alsini, R., Alghushairy, O. Almakrab, A., Soule, T. and Ma, X., 2021. Local Outlier Detection 

Techniques in Real-World Streaming Data Processing: A Literature Review ( Under Review) 

 

2.1 Introduction 

Outlier detection, often referred to as anomaly detection, detects a rare event, irregular patterns, or 

objects that differ considerably from the normal dataset. Outlier detection is also called novelty detection, 

fraud detection, and rare event detection. Several studies have defined the outlier as a record that is 

incompatible with the dataset [9-15]. Outliers arise from various causes, and understanding these causes 

helps determine what steps to take when outliers are detected [16]. Therefore, outlier detection may 

provide important information and have consequences for various fields, such as finance, industry, health, 

transport, and network intrusion detection, to name a few. Although numerous algorithms have been 

developed to recognize outliers, they have been more widely used in static environments, and their 

implementation is difficult in dynamic environments such as streaming data. Large amounts of data are 

generated in our daily lives, and many are recorded as data streams [17]. The data stream is known as 

real-time data and can be described as a sequence of inputs to be processed. Extracting information from 

the data stream is a significant challenge that needs to be addressed. A common approach is data mining, 

which overcomes the limitation of processing the data stream and stores it in the computer memory [18]. 

A data mining process includes two key parts: data preprocessing and data mining. Data preprocessing 

aims to ensure the data are consistent during the data-cleaning phase from the outlier data. If outlier data 

is not detected in the data-cleaning phase, the output will be neither reliable nor accurate in various 

practical applications or when detecting the outlier dataset. The data mining approach includes 

understanding and exploiting the data's behavior by applying several machine learning methods to extract 

information [5]. Recently, many research studies have been published on outlier detection in data mining. 

A number of outlier detection reviews have been conducted, and while that number is rising, a new 

approach of outlier detection algorithms needs to be introduced and discussed. Therefore, we aim to 
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provide a recent overview of the local outlier algorithms and other methods for applying the local outlier 

factor (LOF) algorithm. This research is distinct from other research because we focus on local outlier 

algorithms from state-of-the-art research on stream environments. We also discuss the issues and 

challenges facing the LOF algorithm and different local outlier algorithms when identifying the outlier 

in the data stream. In addition, our literature review includes a new technique for determining a LOF 

score in a data stream. By summarizing the local outlier detection in both static and stream environments, 

our literature review will significantly benefit researchers and academics in the field of local outlier 

detection. 

The rest of this chapter consists of seven sections: Section 2.2 addresses the literature review 

methodology, selection, and analysis. Section 2.3 presents the algorithms for the local outlier detection 

in both the static and stream environment. Analysis and discussion are provided in Section 2.4. 

Advantages and disadvantages of existing methods are provided in Section 2.5, as well as for the research 

challenge in Section 2.6. Section 2.7 outlines the conclusions regarding the local outlier detection process. 

2.2 Literature Review Methodology, Selection, and Analysis 

Our aim with the literature review is primarily to address the recent progress of the local outlier 

algorithm in both the traditional approach to outlier detection and in the stream environment. Our 

literature review covers the period from May 2000 to November 2020. We comprehensively scanned 

electronic databases and papers published in English. The sources for the search included Web of Science, 

IEEE Explorer, Science Direct, ACM, MDPI, Springer, Taylor and Francis, Wiley, and Google Scholar; 

these were selected due to their full coverage of quality papers. The keywords used for the search included 

“local outlier detection, local outlier detection in the stream environment, local outlier factor in the data 

stream, outlier detection methods, and data stream mining.” The requirements for inclusion in this review 

were articles that dealt with the following: (1) unsupervised approaches for local outlier detection 

algorithms; (2) new local outliers, depending on a density method, in the static environment; (3) any new 

LOF algorithm to identify local outliers in the stream environment; and (4) techniques to identify local 
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outliers in the stream environment. We excluded articles that did not fit the above criteria and any studies 

that did not provide the complete text, as shown in (Figure 2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After removing duplicates, a total of 701 research papers were reviewed during the initial search based 

on the title and abstract of the papers. The research papers’ contents were then classified into either the 

static or stream environment. Following this, the complete texts of the articles were used to process the 

final selection. This resulted in 58 papers in total, as illustrated in Figure 2.1. The common popular local 

Figure 2.1 The literature search methodology in our work. 
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outliers are discussed in the static environment section; the other local outlier detection papers are briefly 

mentioned. The recent publications on the LOF algorithm in data streams are discussed in depth in the 

stream environment section; the remaining research papers on local outliers in the stream environment 

are briefly considered. Figure 2.2 presents the most local outlier detection methods perform in the static 

and stream environment.  

 

Figure 2.2 An overview of local outlier detection methods performed at the static and stream environment. 
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2.3 Algorithms for Local Outlier Detection 

2.3.1 Outlier Detection in a Static Environment 

This section provides a deeper insight into the most well-known algorithms used in local outlier 

detection and provides some knowledge of the LOF method, which will describe the 34 research papers 

from the literature search performed in the static environment. Tables 2.1 and 2.2 lists the most well-

known techniques in the local outlier detection process, as described in [19]. The two strategies for local 

outlier detection are as follows. Data mining and machine learning are very significant components in 

outlier detection in static environments. Several algorithms have been developed for local outlier 

detection using unsupervised models. The research on local outlier detection has significantly grown over 

time and is now approached from various perspectives.  

 

Table 2.1 Overview of popular local outlier detection algorithms. NN, nearest neighbors approach; LOF, local 

outlier factor; COF, connectivity-based outlier factor; LOCI, local correlation integral; aLOCI, approximate local 

correlation integral; INFO, influenced Outlierness. 
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[20], 
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Table 2.2 Overview of the popular local outlier detection algorithms in clustering-based methods. CBLOF, 

cluster-based local outlier factor; LDCOF, local density cluster-based outlier factor; CMGOS, clustering-based 

multivariate gaussian outlier score. 

 

 

2.3.1.1. Popular Local Outlier Detection Algorithms 

• Local Outlier Factor (LOF) 

The LOF is a well-established algorithm used for detecting a local outlier in a density-based model. 

The principle of the LOF is to process data points through a comparison with their nearby neighbors. 
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Every data point is calculated to decide if the data points are normal or outliers by degree, such as an 

outlier factor. The interpretation of the LOF has been explained in [20, 28, 29] and functions as follows. 

• Definition 1: The k distance of data point pt.  

The space between two data points pt, o, can be determined using the Euclidean distance in n-

dimensional space as shown in Equation (1): 

𝑑(𝑝𝑡, 𝑜) = √∑(𝑝𝑡𝑖 − 𝑂𝑖)2

𝑛

𝑖=1

 (1) 

Since k is a positive integer and point pt is given in dataset D, the k distance (pt) is defined according 

to the distance between the point pt and the furthest distance o (o ∈ D) as in the following cases:  

❖ With at least k data point o'∈D \ {pt} it manages that d(pt ,o’) ≤ d (pt ,o). 

❖ With at most k-1 data point o’∈D \{pt} it manages that that d (pt ,o’) < d(pt ,o). 

• Definition 2: k-nearest neighbors of pt.  

Any data point pt is described here by the k-nearest nearest neighbors (kNN), which can be described 

as any data point q whose distance does not exceed the k distance (pt), as defined in: 

𝑁k-distance(𝑝𝑡) (𝑝𝑡 ) = { 𝑞 ∈ 𝐷\{𝑝𝑡}|𝑑𝑖𝑠𝑡(𝑝𝑡 , 𝑞) ≤ k-distance(𝑝𝑡) (2) 

• Definition 3: Reachability distance (Reach-dist (pt)) with respect to o. 

If k is a positive integer, the reachability distance of point pt with any point o is described by: 

          Reach-dist𝑘(𝑝𝑡, 𝑜) = 𝑚𝑎𝑥{ k-dist(𝑜), 𝑑𝑖𝑠𝑡(𝑝𝑡, 𝑜)} (3) 

 

According to definition three and Figure 2.3, the distance is determined on the basis of the k distance 

(o) in two directions. If the distance is far from the k distance (o), it processes as a reachable distance. 

Otherwise, if the distance is shorter than the k distance (o), it performs as a k distance (o). 
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• Definition 4: Local reachability density of lrd (pt).  

Density-based clustering algorithms define density using two parameters: 1) MinPts for the minimum 

number of data points and 2) volume. The authors of [2] used reach-distMinPts(pt,o) for o∈ NMinPts(pt) 

as a volume measure. The local reachable density (lrd) is the reverse of the reachable density of pt. The 

following Equation describes the local reachability density as: 

• 𝐿𝑟𝑑𝑀𝑖𝑛−𝑝𝑜𝑖𝑛𝑡𝑠(𝑝𝑡) = 1/ (
∑ Reach-dist𝑀𝑖𝑛𝑝𝑜𝑖𝑛𝑡(𝑝𝑡,𝑜)𝑜∈𝑁𝑀𝑖𝑛𝑝𝑜𝑖𝑛𝑡(𝑝𝑡)

|𝑀𝑖𝑛𝑝𝑜𝑖𝑛𝑡𝑠(𝑃𝑡)|
) (4) 

• Definition 5: LOF of pt.  

To calculate the LOF of (pt), each definition must be followed to obtain the LOF score, as shown in 

Equation (5). 

𝐿𝑂𝐹𝑀𝑖𝑛−𝑝𝑜𝑖𝑛𝑡(𝑃𝑡) =
∑

𝐿𝑟𝑑𝑀𝑖𝑛𝑝𝑜𝑖𝑛𝑡(𝑜)

𝐿𝑟𝑑𝑀𝑖𝑛𝑝𝑜𝑖𝑛𝑡(𝑝𝑡)𝑝∈𝑃𝑀𝑖𝑛𝑝𝑜𝑖𝑛𝑡(𝑝𝑡)

|𝑃𝑀𝑖𝑛𝑝𝑜𝑖𝑛𝑡(𝑝𝑡)|
          (5) 

pt3 

pt1 
pt4 

pt2 

o 

pt5 

pt6 

Figure 2.3 Multiple data points for measuring the reachability distance pt to o, if k is equal 

to 6. 
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The LOF generates the score according to the proportion of the local reachability density and the 

Minpts of pt. To assess whether the pt is normal or an outlier, the threshold score θ is used. The LOF 

algorithm is valuable because it effectively finds local outliers. The LOF's downside is the sensitivity of 

the execution time and the minimum points value. 

• Connectivity-based Outlier Factor (COF) 

The COF method involves a principle similar to that of the LOF technique. It works differently in 

estimating the kNN required to compute the distance between the neighbors and data points. The LOF 

method computes the kNN using the Euclidean distance, as the data points are assumed to be distributed 

in spherical form. The COF method is calculated based on a linear correlation approach known as chain 

distance [21]. In particular, it works by adding the closest data points to the neighbor’s set until it reaches 

a size of the kNN that is a minimum of all the remaining data points. The COF method follows the same 

definitions as the LOF to find the outlier score. The COF approach's strength is based on its ability to 

discriminate between low density and isolation [14]. Execution time is the downside of this strategy; the 

COF takes longer than the LOF. 

• Local Correlation Integral (LOCI) 

Choosing the k value is a primary decision for predicting the previous methods' efficiency. However, 

one of the challenges is related to the estimation of the k value based on the dataset. The local correlation 

integral (LOCI) solves the problem by choosing the k value using a maximization approach [22]. The 

key principle is to pick the k with the highest value from each data point. The LOCI uses the r 

neighborhood with the use of a radius r to obtain the top score. The radius r expands over time. The 

LOCI uses a local outlier probability (LoOP)-like half-Gaussian distribution but with a particular 

method; the neighbors’ number of points is used instead of the distances. It also makes two different 

estimates of the local density: first, instead of the local density ratio, it compares the sizes of two 

different neighborhoods; and, second, an α parameter manages the ratios of the various neighborhoods. 

The LOCI’s advantage is in obtaining the maximum value. However, for large datasets, the LOCI 
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method is very slow, since the r radius must be expanded from one stage to the next, which is a drawback 

for detecting an outlier.  

• Approximate Local Correlation Integral (aLOCI) 

The approximate local correlation integral (aLOCI) was introduced to increase the LOCI speed when 

processing two neighbors. The aLOCI contains quadtrees and some constraints for parameter α [22]. 

For the counting estimation in the aLOCI method, performance is considered good if there is a data 

point in the middle of a cell in a quadtree. Otherwise, if the data point is near the border, performance 

is considered weak. Therefore, several quadtrees are built with the expectation of producing a good 

approximate tree for every data point. Additionally, the depth of the tree (L) should be defined to produce 

a good approximate tree. The aLOCI's power is its potential to speed up the efficiency of a quadtree. 

The number of tree processes is a weakness of the aLOCI method. 

• Influenced Outlierness (INFLO) 

The influenced outlierness (INFLO) plays a role when the data points are in a cluster with different 

densities and are related to each other [23]. The INFLO is more efficient than the LOF for handling a 

cluster's data points by adding a Reverse Nearest-Neighbor (RNN). Additionally, with the kNN for 

storing the points and their neighbors, the INFLO method computes the outlier score by combining both 

neighbors’ sets to obtain the local density. The INFLO method uses the same computation method as 

the LOF for the local reachability distance. The benefits of using the INFLO algorithm are that the 

outliers scores can be measured in greater depth if the dataset contains clusters of various densities that 

are close together. In other adjacent density distributions, it can also find outliers. The drawback of this 

approach is that it has a long processing time.  

• Local Outlier Probability (LoOP) 

The local outlier probability (LoOP) follows another technique of the density-based method to 

estimate the local density. It uses a static approach to determine outlier probability, whereas the LOF 
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method uses the outlier score to estimate local density [24]. Therefore, LoOP uses a Gaussian 

distribution to compute the distance to evaluate the neighbors. Usually, because distances are often on 

the positive scale, the LoOP uses a half-Gaussian range to obtain the local density. The proportion of 

each point is compared to its neighbors to get the outlier score. A normalization and a Gaussian-error 

feature are used to transform it into outlier probability. The benefit of the LoOP concerning outlier 

probability is that it provides a new outlier identification strategy. The LoOP's limitations are that it is 

time consuming, and it can result in incorrect steps due to the probability measurement size. 

• Cluster-Based Local Outlier Factor (CBLOF) 

The CBLOF’s core principle is based on using clustering to assess the clustered areas in the dataset 

and then measuring each cluster's intensity [25]. The CBLOF works as follows: first, the k- means is 

used to cluster the data points; then based on the result, the CBLOF classifies the corresponding clusters 

as either large or small clusters; lastly, an anomaly score is achieved, which depends on the distance 

from the center of each data point’s cluster that is based on being multiplied by the data points belonging 

to its cluster. The CBLOF measures the cluster densities using a cluster approach. The downside to this 

approach is the sensitivity of the k value. 

• Local Density Cluster-Based Outlier Factor (LDCOF) 

As previously mentioned for CBLOF, it is controversial to estimate local density using only the 

number of cluster members and to neglect the density of the cluster. LDCOF focuses on this issue by 

estimating the cluster densities, given that the cluster members are spherically distributed [26]. The 

LDCOF uses a similar method of determining the k mean by dividing the data points into small or large 

clusters. Then, the average distance of all members of the cluster is calculated for each cluster to the 

centroid. Lastly, the LDCOF values are determined by dividing the size of the instance by the average 

distance from their cluster center. Cluster density can be determined by the LDCOF method and for the 

spherical distribution. The disadvantage is the sensitivity of the k value. 
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• Clustering-Based Multivariate Gaussian Outlier Score (CMGOS) 

In CMGOS, a multivariate Gaussian model is calculated for local density when Mahalanobis distance 

is used as a basis for estimating the outlier [27]. The first step is applying the k-means to divide the 

clusters into small or large clusters. Next, the covariance matrix is robustly determined for each cluster. 

Finally, the GMGOS score is determined in the chi-squared distribution, separated by a specific 

confidence interval between an instance's Mahalanobis distance and the closest cluster’s center. The 

essence of the interval in the Mahalanobis distance implies that outlier scores are increasing [30]. A 

large score for outliers is observed. Robustness is essential for the estimation of the covariance matrix 

because outliers are known to significantly affect the change. In general, three specific methods of 

computation are suggested to address the issue: reduction, regularization, and the minimum covariance 

determinant (MCD). The CMGOS method's strength is using both the k mean and x mean on the 

multivariate Gaussian scale to measure the outlier score. This algorithm's shortcomings are that more k 

values are needed, and it is not appropriate for large datasets. 

2.3.1.2. Different Local Outlier Detection Techniques in the Static Environment 

Chiu at el. [31] proposed three enhancements for the LOF algorithm: LOF', LOF", and grid-LOF. The 

advantage of the LOF' is that it can deal with a large dataset by eliminating both rd and lrd for the outlier 

score. The drawback of this method is that the Minpts can be incorrectly adjusted based on the 

measurement outcome. More than LOF and LOF', the LOF" approach identifies the Minpts for 

neighbors. The grid-LOF introduces the concept of dividing the points into several spaces known as 

grids. The strength of grid-LOF is that it prunes the non-outliers; the drawback of the grid-LOF method 

is that it is slower due to the challenge of selecting its parameters. Jiang et al. [32] introduced a new 

method based on the nearest-neighbors called the generalized local outlier factor (GLOF). The 

advantage of the GLOF is that it processes without a threshold for the outlier in the dataset. The GLOF 

algorithm relies on the k value for performing the measurement. Goldstein [33] introduced the FastLOF 

outlier detection algorithm for unsupervised anomaly detection in datasets. Based on the study results, 
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the FastLOF algorithm was shown to be an expectation-maximization algorithm that computes 

anomalies in an incremental manner about 80% faster than the standard or traditional LOF methods. 

Cao et al. [34] introduced a new approach for detecting the outlier quickly through the specification of 

uncertain data points. The proposed method, Density-based Local Outlier detection on Uncertain data 

(UDLO), focuses on computing the density of the data points rather than using all the k neighbors to 

search for the outlier, as defined in the LOF approach. The algorithm's power is provided by 

concentrating on the Euclidean distance rather than measuring all the k neighbors. According to Guan 

et al. [35], the similarity-based local outlier factor (SLOF) algorithm is an example of density-based 

outlier detection. The SLOF algorithm is more accurate and versatile in handling big data and datasets 

than the LOF algorithm. However, the SLOF algorithm is ineffective when the dimensions of the 

datasets are low, and the data points are dense. Liu et al. [36] proposed an outlier detection method based 

on local minima density (LMDOF). The advantage of the LMDOF method is that it can detect outliers 

more accurately than the traditional LOF algorithms. Su et al. [37] implemented an efficient method for 

detecting the local outlier in dispersed data, called E2DLOS. Instead of using the LOF as a method of 

estimation, they added a modern definition of the local outlier, called the local deviation coefficient 

(LDC), which is used to identify completely all the closest neighbors of the data points. This algorithm 

has the benefit of enhancing the measurements for computational efficiency. Vazquez et al. [38] 

suggested a novel algorithm for detecting outliers that focuses on low density, known as sparse data 

observers (SDO). SDO can reduce the time and formulation of the calculation. Ning et al. [39] indicated 

a reasonable outlier approach for calculating the density of the object; it is called the relative density-

based outlier factor (RDOF) detection method. This method measures the density of data point 

neighbors. This strategy's value is that it can cope with low-density pattern issues. 

Ren et al. [40] presented the relative density factor (RDF) algorithm, which uses a vertical data model 

for finding outliers (P-trees). The advantage of the RDF when the size of the data is expanded is that it 

demonstrates better scalability; however, it needs more time for computation. Fan et al. [41] introduced 

a new approach for defining the cluster called the resolution-based outlier factor (ROF), which has close 
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r-neighbors that can find the outlier based on metrics, such as a score. The advantage of the ROF is 

achieved by using a growing window for the outlier score. The ROF approach has drawbacks because 

it cannot rank or distinguish the outliers, cannot accommodate various density clusters, and needs more 

storage space. Du et al. [42] proposed a novel local outlier detection (NLOD) algorithm. The advantage 

of using the NLOD algorithm is its high-performance values, which are indicated by greater Area under 

the ROC Curve (AUC) values compared to LOF algorithms. However, the disadvantage of the algorithm 

is that its execution time is slower. The authors of [43] proposed fast outlier detection based on a local 

density score (FLDS), which is able to identify points in a dataset for effective outlier detection. The 

advantage of the FLDS is that it is applicable in local outlier detection. Su et al. [44] proposed rough 

clustering based on multi-level queries (RCMLQ) to address both separation and dispersion between 

objects and their neighbors. The advantage of the RCMLQ algorithm is that it reduces the amount of 

data required by the LOF and LDC to be quantified to detect outliers in scattered datasets. However, the 

problem with the RCMLQ is that it can fail to truly reflect the associated abnormalities in data 

irrespective of the shortcomings. Babaei et al. [45] developed a pruning-based outlier detection 

algorithm (PLOF) that is computationally cheaper, more reliable, and more effective than the existing 

LOF models, which are computationally expensive. The drawback of the PLOF algorithm is the need to 

cluster data in advance before pruning the outliers. Yang et al. [46] analyzed anomaly detection using 

the self-organization feature map (SOFM) clustering algorithm. The advantage of using the SOFM 

algorithm is that its functionalities can be improved using other algorithms that vary the number of 

neurons, such as the canopy algorithm. It provides better performance compared with LOF and NELOF; 

however, the disadvantage of the SOFM is that it requires further neuron improvement to function better.  

Gao et al. [47] analyzed the robust kernel-based local outlier detection (RKOF) algorithm. The 

advantage of the RKOF algorithm is that it addresses most of LOF's challenges. However, the RKOF 

model's disadvantage is that it may fail to detect other outliers even though it is fast and efficient. Miao 

et al. [48] proposed the kernel density-based local outlier factor (KLOF) algorithm, which they describe 

as anomalous cell detection with a kernel density-based local outlier factor. After analyzing the KLOF 
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algorithm, they concluded that it addresses major challenges affecting density-based outlier detection 

algorithms by capturing the exact relative degree of isolation. It has values greater than one, which 

makes it easier to detect whether an incoming object is an outlier to avoid false alarms. Du et al. [49] 

discussed robust local outlier detection (RLOD). The advantage is that the algorithm does not make any 

assumptions concerning the probability distribution of the real data under analysis. The disadvantages 

of the algorithm are that it does not support distributed computing and it cannot be deployed when 

dealing with abnormal load detection. Tang et al. [50] suggested a method of finding outliers using the 

local Kernel Density Estimation (KDE) algorithm. The relative density-based outlier score (RDOS) was 

implemented to evaluate the local outer score for data points. The RDOS method uses KDE to measure 

the local outliers by applying an extension to the nearest neighbors from the data point to measure the 

local density. The advantage of the local KDE is that it can provide density estimation at the data point 

location, whereas the RDOS can identify the local outliers in the local KDE. Wang and Deng [51] 

examined the variable local outlier factor (VLOF). The main advantage of the VLOF algorithm is that 

it more easily reflects the local variable information. Furthermore, it is easier to compare its performance 

efficiency than the traditional LOF models. However, the model's disadvantage is that it takes time to 

detect a fault in systems through big data analysis. Zhao et al. [52] provided a new local algorithm called 

locally selective combination in parallel outlier ensembles (LSCP). The power of this algorithm is that 

the local outliers can be quantified. Wang and Zhu [53] proposed a local structure outlier factor (LSOF) 

algorithm. The advantage of the proposed LSOF algorithm is that it has an incredible ability to estimate, 

measure, and define the novel nearest-neighbors tree (NNT), allowing it to estimate the existing 

neighborhood instantaneously. The LSOF algorithm has shorter time complexity. However, the main 

drawback of the LOSF algorithm is that it requires more memory to achieve maximum speed.  

2.3.2 Outlier Detection in the Stream Environment  

So far, the bulk of research on local outlier detection has focused on static environments rather than 

stream environments, so the stream environment has been studied less than the static environment. As a 

consequence of recent interest in creating conventional local outlier detection algorithms that operate in 
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the stream setting, the development of new algorithms in terms of the LOF algorithm has increased. This 

section discusses several LOF methods that led to the estimation of the LOF score and reviews other 

local outlier detection algorithms in the stream environment, describing the 24 research papers 

performed in the stream environment. Table 2.3 provides the essential information for LOF methods in 

the data stream that met the criteria for our review.  

2.3.2.1 Popular LOF Algorithms in Data Stream Processing 

• Incremental Local Outlier Factor (ILOF)  

To overcome the vulnerability of the LOF in processing the data stream, Pokrajac et al. [54] introduced 

the incremental local outlier factor (ILOF). The key principle of the ILOF procedure is to provide an 

efficient method for detecting the outlier in a stream environment. ILOF is based on a density-based 

outlier detection method that works by updating and preserving the k-distances, lrd, and the LOF values 

when a new data point (np) is added, or an old data point is deleted. To measure the outlier score, ILOF 

uses the same elements as the LOF algorithm; those elements are the k-distance, the reachability 

distance (rd), and the lrd. The ILOF insertion process involves two stages: first, rd, lrd, and the LOF 

score are measured according to the np value; and second, the k-distance, rd, lrd, and LOF score for 

existing data points are updated. Despite the strength of the ILOF algorithm in the data stream, the main 

issue is the memory consumption for storing the old data points. As a consequence, significant amounts 

of memory and time are required for every np.  

• Memory-efficient Incremental Local Outlier Factor (MILOF) 

Memory-efficient incremental local outlier factor (MILOF) is an unsupervised outlier approach used 

to determine the local outlier in the data stream [55]. The MILOF is capable of reducing the time 

complexity as well as the memory constraint, and it is suitable for a variety of applications. It also 

resolves the memory limitation in both the LOF and the ILOF stream environments. The MILOF method 

processes the data points in three phases: summarization, merging, and revised insertion. As the number 

of points exceeds the memory limit, the summarization phase is undertaken. The first half of the data 
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points are summarized, whereas the later points remain unchanged to give the new streaming data points 

higher resolution. The k-means algorithm is used to calculate the LOF score for clustering the first half 

of the data points. The merging phase is conducted after the second half of the data points from the 

summarization stage are obtained. Based on incoming data points, a new cluster is formed. A new cluster 

is subsequently paired with an established cluster to create a single set of clusters. The revised insertion 

phase in the MILOF algorithm is determined based on both the recent data points and the cluster points, 

which uses a similar ILOF algorithm concept. First, it computes the LOF for the new incoming data 

points. Next, if  necessary, it updates the k-distance, rd, lrd, and the LOF values for the established data 

points 

• Density Summarization Incremental Local Outlier Factor (DILOF)  

In data stream processing, DILOF was built to overcome the weaknesses of the ILOF by having two 

stages: detection and summarization [56]. The detection process is used for updating previous data 

points as new incoming data points arrive by applying both the ILOF method and a skipping scheme. 

The ILOF method works for detecting the outlier, whereas the skipping scheme is used to detect any 

sequence in a number of points. The summarization stage is used for an optimized result based on the 

nonparametric density summarization (NDS). NDS involves using a decision variable that relies on the 

gradient descent method to summarize the data points. In general, the DILOF performs well, compared 

with MILOF and ILOF, in processing the data stream in terms of accuracy and time complexity. 

However, the problem with the DILOF is that the gradient descent may be trapped in the local minima.  
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Table 2.3 Summary of LOF algorithms in data stream processing. ILOF, incremental local outlier factor; 

MILOF, memory-efficient incremental local outlier factor; DILOF, density summarization incremental local 

outlier factor. 

Ref, 

Year 
Authors Method 

Types of 

window 

techniques 

Characteristic Method Comments 
Real-World 

Dataset 

[54], 

2007 

 

Pokrajac et 

al. 

 

ILOF 
Landmark 

window 

Whenever a new 

data point is 

inserted, it stays 

up to date 

 

 

Introduces the 

concept of 

local outlier 

factor in data 

stream 

 

 

[55], 

2016 
Salehi et al. MILOF Sliding window 

Data 

summarization 

by k-means 

 

Cluster 

 

Overcomes the 

limitation 

faced by the 

ILOF 

algorithm for 

keeping the 

density of the 

data and for 

the time 

complexity 

 

Vowel, 

 Pendigit,  

Letter,   

Motion 

Trajector 

 

[56], 

2018 
Na et al. DILOF Sliding window 

Data 

summarized by 

the gradient 

descent methods 

 

Optimization 

 

Issues of 

keeping the 

data point 

density in 

MILOF are 

addressed 

Gradient 

descent 

methods 

 may be 

trapped in 

local minima 

 

Vowel,  

Pendigit  

KDD SMTP, 

KDD HTTP 

 

 

2.3.2.2 Different Local Outlier Detection Techniques in the Stream Environment 

Gao et al. [57] constructed a model for automatically changing the n-IncLOF threshold to boost outlier 

identification. The LOF adjustment of the n threshold relies on the standard deviation of the LOF in the 

sliding window. This model's strength dramatically improves the detection rate and the false alarm 

detection rate. The connectivity-based cumulative outlier factor (CCOF) was developed by Pokraiac et 

al. [58] and is as effective as the connectivity-based outlier factor (COF) algorithm. Karimian et al. [59] 

proposed improving the incremental LOF with a more suitable algorithm for dynamic data streams. The 
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I-IncLOF algorithm uses a flexible window that allows the update and detection of outliers. Wang et al. 

[60] proposed incremental multiple instance outlier detection (inc I-MLOF) as a suitable algorithm for 

the multiple instances (MI) background.  Kalliantzis et al. [61] used a distributed and density-based 

outlier identification strategy. The method deals with the data stream’s multidimensionally. The study 

illustrates how the estimated calculation technique for the local correlation integral (LOCI) can be used 

to enhance anomaly detection scalability and reliability when large amounts of data are involved. Liu et 

al. [62] proposed an algorithm referred to as the Lazy update method of UKOF (LUKOF). The outcome 

of this approach showed that the LUKOF algorithm can detect outliers for data streams more quickly. 

However, this proposed method does not enable the update on the new dataset. Yang et al. [63] 

introduced the detection algorithm to extract local outlier factor (ELOF). This algorithm was split into 

three phases: anomaly classification, anomaly detection, and data extraction. The ELOF model works 

more effectively in regard to the aspects of time and accuracy; however, the ELOF model is considered 

to perform poorly when it deals with different parameters in a large dataset.  

Ren et al. [64] addressed the memory properties of data streams. They implemented a modern method, 

called heterogeneous data streams outlier detection (HDSOD), to address the problems of processing 

heterogeneous data streams. The strategy's strength is using a partition-cluster method for the data 

stream, partitioned and placed in a cluster reference. The outlier value is measured and displayed 

according to the number and extent of the cluster reference representation. The evolving micro-cluster 

(EMC) is a new process that is adopted in processing the data stream, as provided in [65]. To determine 

progression on the concept drift term, the method dynamically learns the changes in the micro-clusters. 

This approach's benefit is that it enables evolution to be separated from noise distribution using the 

concept drift. According to Gao et al. [66], the incremental local outlier factor (ILOF) is an effective 

outlier detection method that assigns outlier scores to different data points according to their degree of 

abnormality. The authors analyzed the ILOF algorithm and tried to address its deficiencies by proposing 

a cube-based ILOF (CB-ILOF) algorithm. Based on Gao et al. [66], the time complexity of the CB-
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ILOF algorithm, which depends on the runtime memory, performs better than ILOF. However, the 

disadvantage of the algorithm is that it requires more memory space to perform better. 

Chen et al. [67] developed a model called a neuromorphic anomaly detection (AnRAD). The AnRAD 

model is based on deduced probabilistic inferences. The model aims to improve memory and 

measurement accuracy while detecting abnormalities. This model's power is that it overcomes memory 

consumption problems by growing the incremental learning pace and enhancing the efficiency and 

consistency in detecting anomalies. Ishimtsev et al. [68] developed a technique using the model-free 

anomaly detection method for a time series model that provides a probabilistic outcome for 

abnormalities. The technique’s advantage is that by using simple approaches like the lazy drifting 

conformal detector (LDCD), it achieves a result close to advanced anomaly detection methods. The 

drawback of the model is that more LDCD methods are necessary to maintain appropriate validity. Yang 

et al. [69] provided a quick method to identify the local outliers in data stream. The value of this approach 

is that it focuses on reducing the local outlier factor estimates by applying the Z-score pruning method 

to overcome the constraints, such as time consumption. However, the method relies on a model of 

prediction. Qin et al. [70] suggested a new outlier strategy to fix the limitations associated with current 

approaches given contemporary high-speed data streams. The algorithm uses KDE to find and enhance 

outliers in the streaming environment. 

Munir et al. [71] unveiled a new form of detection for anomalies based on deep learning. The 

procedure, called DeepAnT, applies to data from a time series. The advantages of the method are that 

abnormalities can be observed in real-life situations, as in stream environments; however, the low quality 

of the datasets may weaken the influence of the process. Siffer et al. [72] suggested a strategy to identify 

outliers based on the extreme value theory (EVT) in streaming time series. They provided a robust 

method for detecting the univariate and unimodal models. This method's benefit is that there is no 

requirement for a manually set threshold or distribution assumptions. However, the gap in the 

multivariate case weakens this strategy. Cai et al. [73] identified a pattern-based, multi-phased approach 

for recognizing outliers, which is referred to as the Weighted Maximal Frequent Pattern-based outlier 
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(WMFP). The benefit of this approach is that it can distinguish outliers more easily, in particular in a 

weighted data stream. The acceleration of the detection phase of outliers liberates the recurrent patterns 

that are better than the frequency patterns. Manzoor et al. [74] proposed xStream, a density-based 

collaborative anomaly sensor for settings with extreme attributes, such as evolving data points and 

feature space. The algorithm is efficient and reliable for evolving streams. The strength of the xStream 

model is that the anomaly can be more easily observed, even with massive noise. In a high-dimensional 

and non-stationary data stream, Zhang et al. [75] used fault detection techniques. The method of 

separating subspace faults from high-dimensional datasets focused on angles. Alghushairy et al. [76] 

introduced a new approach for local outlier detection by using the genetic algorithm to optimize local 

minima. The goal of the GILOF algorithm is to solve the limitation of DILOF in optimizing local 

minima. As with the DILOF method, the GILOF function operates in two phases: the detection and 

summarization phases [56]. The detection process is identical to the DILOF process. The GILOF 

algorithm improves the DILOF method in the summarization phase. The genetic density summarization 

(GDS) applies a genetic algorithm (GA) to summarize the data points, which leads to the search for the 

best local minima [76]. According to Huan et al. [77], the time-aware density-based incremental local 

outlier detection (TADILOF) approach aims to resolve of the variance in data that change after a while, 

and which has not been addressed in other types of algorithms. The proposed algorithm was divided into 

two stages: summarization and detection. The TADILOF applies only a minimal level of memory 

compared to the DILOF, although it can be stated that these two models do not use a large volume of 

memory and are appropriate for a data stream setting. In terms of execution time, TADILOF achieves 

the same performance as the DILOF algorithm. 

2.4 Analysis and Discussion  

Outlier detection is a meaningful research subject for many domains. A variety of reviews, studies, 

surveys, and books have addressed outlier detection methods in several fields and applications. Patcha 

et al. [78] provided an exhaustive analysis of recent and current systems for anomaly detection in 

intrusion detection systems and the tools used to identify outliers. Agrawal et al. [79] explored different 
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anomaly detection approaches in data mining to further grasp current techniques that support researchers 

regarding intrusion detection. Ahmed et al. [80] addressed finding outliers in the financial domain. 

Markou et al. [81,82] presented an outlier detection method using a statistical approach and neural 

network. Hodge et al. [83] presented various outlier detection algorithms and techniques as unsupervised 

approaches. Goldstein et al. [30] looked at different unsupervised outlier detection methods, whereas 

Domingues et al. [84] addressed several outlier detection techniques applicable for detecting outliers. 

Wang et al. [14] addressed the recent progress and challenges faced in outlier detection methods. Chen 

et al. [2] discussed the most widely used outlier detection approaches in big data streams. Tellis et al. 

[86] presented various methods for detecting outliers in multiple data stream applications. Alghushairy 

et al. [19] described recent local outlier detection algorithms applicable to processing a data stream. 

Additionally, papers on outlier detection are available in [13,87-89].  

2.4.1 Motivation and Limitation  

These research papers presented a variety of techniques for detecting outliers and applied them in a 

variety of domains.  Patcha et al. [78] present some of the existing solutions for anomaly detection in 

network intrusion detection systems. This research aimed to demonstrate how different anomaly 

detection approaches can be utilized to identify unusual traffic in networks resulting from attacks. The 

limitation of this research paper is that it focuses on the current anomaly detection techniques, as 

including false alarms and the inability of the system to scale to different environments. False alarms 

occur when the system detects genuine traffic as being unusual. The result of this is that legitimate traffic 

could be stopped, resulting in poor data transmissions. Therefore, improving the accuracy of the outlier 

detection techniques is needed. Ahmed et al. [79] mentioned that their article's rationale was to survey 

anomaly detection techniques from the financial perspective and discuss issues relating to datasets. 

According to the article, only a few publicly available real-world datasets assess anomaly detection 

systems in the financial sector. The main reason for this is financial data is sensitive, and most 

organizations are not willing to release it due to privacy reasons and competition. Agrawal et al. [80] 
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offered a fundamental review of data mining techniques for detecting anomalies. The limitations of this 

study are related to current anomaly detection methods. One of the issues was insufficient precision 

when processing a large dataset. Markou et al. [81] presented a statistical method that could be used to 

detect outliers. The limitation of this approach is that it cannot deal with large datasets; this could be 

due to an inability to adequately minimize parameters, insufficient independence and generalization, 

poor adaptability, or high computational complexity. Also, Markou et al. [82] reviewed neural network-

based approaches for detecting the outlier. The motivation of the researchers was to present a 

comparative analysis of neural network-based systems because such a study was missing in the available 

literature at the time. Only a few studies had compared different models using the same dataset, which 

meant that it was difficult to establish the appropriateness of different algorithms on different types of 

data. The authors also wanted to provide foundational comparative work to support future analyses and 

assessments. Some of the neural network-based approaches that they explored had limited effectiveness 

and efficiency in local outlier detection. Hodge et al. [83] provided a broad survey of current techniques 

for detecting outliers; the idea was to acquaint the audience with a feel for the assortment and diversity 

of the methods available. The authors also aimed to highlight considerations when choosing an 

algorithm to suit the data and objectives at hand and to meet the requirements of scalability, incremental 

capabilities, and accuracy. Goldstein et al. [30] provided an in-depth evaluation of unsupervised 

anomaly detection algorithms using different datasets. According to the authors, existing studies did not 

evaluate the algorithms using different datasets, which limited decision-making on applying the 

algorithms for diverse uses. The study highlighted some of the weaknesses associated with current 

approaches to local outlier detection. Domingues et al. [84] utilized publicly available datasets and new 

industrial datasets to conduct experiments to determine the scalability, robustness, and memory 

consumption of different outlier detection algorithms. Therefore, rather than developing outlier 

detection algorithms, the objective was to evaluate and compare their performances. The findings of 

such a study could help organizations and other researchers when choosing the best algorithm. The 

approaches examined had limitations in terms of achieving optimal precision, robustness, and memory 
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usage. The ability to detect anomalies precisely is a key aspect of effective detection systems. In terms 

of time complexity, the algorithm should perform computations efficiently and identify outliers more 

quickly. The research papers [14,19,85] focused on the issues and challenges affecting approaches 

developed and deployed in detecting outliers in big data streams. For example, density-based methods’ 

effectiveness depends on the careful configuration of several factors and the experience of time 

complexities. 

 Various techniques for detecting outliers are presented in these research papers. However, when a 

new method in the unsupervised approach, specifically the local outlier detection method, is proposed, 

these research papers limitations become an impediment when dealing with large amounts of data. As a 

result, we provide an overview of local outlier algorithms as well as alternative methods for 

implementing the local outlier factor (LOF) algorithm in the most common big data approach. Outlier 

detection is typically implemented in these approaches in three ways.  

• The Supervised Outlier Detection Approach  

This approach aims to predict the classified dataset anomalies. Data collection in the supervised 

approach requires preparing the data for training and testing the module to indicate the normal and 

abnormal classes. Therefore, some data may be defined as outliers, while other data may be taken as 

normal. The classification methodology is associated with the supervised outliers for predicting the 

anomalies [90]. A problem in classification is the data distribution inequality when training the dataset: 

outliers are much less frequent than normal points. This issue has already been discussed in the machine 

learning and data mining research papers [91-93]. For example, decision trees like the C4.5 [94] method 

suffer from an imbalance in data, which can be resolved using techniques, such as support vector 

machines (SVMs) or a machine learning method like an Artificial Neural Network (ANN)[95]. 
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•  The Semi-Supervised Outlier Detection Approach 

This approach aims to identify anomalies based on the information gained from the data that form part 

of the labeled data [96-98]. The semi-supervised learning approach is more efficient than supervised 

learning because it uses unlabeled data that do not require the knowledge of the distribution of the data 

points or the historical data points. Therefore, it works by using a model learned from the training dataset 

to recognize the test result's abnormalities. Examples include network intrusion detection[99]. The most 

common machine learning method is the one-class support vector machine, which supports vector data 

to detect anomalies [100].  

• Unsupervised Outlier Detection Approach 

Unsupervised outlier detection relates to the use of unlabeled data to identify an unusual occurrence 

or object distinct from usual behavior. It is more flexible than the previous approaches in finding the 

outlier based only on the dataset structure. The key goal is to find the outlier according to the dataset's 

score. The most common methods in unsupervised applications focus on the densities or distance of data 

points to estimate the normal and outlier data. There are several techniques for unsupervised outlier 

detection that were addressed and discussed in [30,101,102]. This review focuses on the detection of 

local outliers in the unsupervised method. 

2.5 Advantages and Disadvantages of Existing Methods 

2.5.1 Nearest-Neighbor-based Outlier Detection Methods   

The nearest-neighbor-based outlier detection has been explored in multiple outlier detection 

approaches [6,79]. The nearest-neighbor approach relies on a distance measurement between the data 

point and its nearest neighbor. The nearest-neighbor method utilizes the degree of closeness between 

the data point and its nearest neighbor to determine its distance from it. Different distances are used 

based on the attribute type [103]. Euclidean distance is a common choice of an attribute that has 

continuous characteristics, such as a data stream. There are two types of nearest-neighbor outlier 
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detection strategies [104]. The first, the distance between a data point and its closest neighbor, is used 

to measure the k-distance for the outlier score. The second, the relative density approach, calculates the 

outlier score to evaluate the data point. The strength of this approach is that it can process without prior 

assumption regarding the underlying data distribution. It is also suitable for various forms of data since 

it can handle different kinds of data points. The weakness of this approach is that it takes a long time to 

compute. 

2.5.2 Cluster-based Outlier Detection Methods   

The cluster-based outlier detection method relies on the data mining method that divides data points 

into different clusters with similar data points. In several clustering approaches, the primary assumption 

is that typical data is also related to broad and compact clusters, whereas outliers are separated or 

clustered in another class [105,106].  Two approaches to cluster-based techniques are widely used for 

getting the outlier score [107]. The first is the distance from the cluster core. The standard data points 

are near the cluster centers, while the outlier is far from them. The second approach implies that the 

cluster of usual data points is dense and wide, while the cluster of outliers is scattered and small. The 

benefit of the latter approach is that it can be applied in unsupervised mode. It is easy to change with the 

incremental model. Therefore, it can be modified to other complicated data types, such as the data 

stream, which can be processed and can manage data. It also has a fast test step because the number of 

clusters for comparison is small. The drawbacks of this method are as follows:  

• The performance of cluster-based methods relies heavily on the clustering algorithms in processing 

the data points; 

• Most techniques for the identification of outliers are cluster by-products and thus not ideally used 

to identify outliers; 

• Several algorithms for clustering force each instance to be allocated to a cluster. Abnormalities 

may result in a large cluster being allocated, and techniques that function under the presumption 

that anomalies are not included in either cluster could then regarded as normal data points;  
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• Some clustering algorithms demand that a cluster be allocated to each case. Therefore, outliers may 

be connected to a wide cluster with methods that are often isolated from the outliers as a standard 

case;  

• Some clustered approaches only operate where outliers are not a significant component in clusters; 

and,  

• Measuring the clustering algorithm is challenging to compute.  

2.6 Research Challenge and Objective 

Big data is a significant aspect of our everyday lives. A large amount of data represents a lot of 

information to be analyzed. The disciplines most involved in the extraction of knowledge from large 

datasets are data science and machine learning. With the increasing need to extract and interpret data 

streams, traditional outlier detection algorithms cannot efficiently handle the data. The local outlier 

factor (LOF) is a prominent algorithm used for finding local anomalies that distinguishes between the 

outlier case and the normal case. The method by which outliers are identified is a significant issue in big 

data processing via a data stream.  

The LOF's key problem is that all the datasets and distance values in the machine need to be retained 

in storage memory [10]. Another issue concerns the processing of the data stream. The algorithm needs 

to reprocess the measurement from the beginning of any change in the dataset. The ILOF algorithm is 

the updated LOF variant that was introduced as the first step in the stream environments procedure. 

However, to calculate the LOF score for each data point at different times, all data points in the machine 

memory must always be kept in the ILOF algorithm. Thus, ILOF requires considerable amounts of time 

and memory. Therefore, a new approach for processing the LOF vulnerabilities in the data stream needs 

to be developed. Accordingly, each new method can achieve the key objective of calculating the LOF 

score by considering the following circumstances (as set out in [19]): (1) a portion of the dataset is stored 

in computer memory; (2) no previous knowledge regarding the distribution of data as outliers is 

detected; (3) the algorithm does not have any knowledge regarding future data points when it detects an 
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outlier using the current dataset; and (4) the algorithm should check for an incoming data point to 

determine if it is either normal or an outlier. As discussed in Chapter 1, this research aims to establish 

GP-LOF for data streams as a new local outlier algorithm. The principal objective of this research is 

performed under the following circumstances as described above. The six detailed research questions 

mentioned in Section 1.5 are guided by these four conditions, which in turn directed the development of 

the algorithm and the experiment. 

2.7 Conclusion 

This literature review aims to provide a recent approach to the local outlier detection methods in big 

data. Local outlier detection techniques discussed in this literature can be applied to detect outliers in 

two different contexts. Nonetheless, these approaches have benefits and drawbacks. For example, in the 

k-nearest-neighbor approach, the majority of these local outlier detection techniques use an 

unsupervised model and process with no prior assumptions about the underlying data distribution. 

However, this takes a long time to compute. The cluster-based approaches can be modified to handle 

more complex data types, like data streams. However, the processing time is highly dependent on the 

clustering method used, which may necessitate a longer processing time. 

Due to the infinite and dynamic nature of data streams, the primary concern is determining how to 

apply the local outlier when dealing with data streams. Some techniques for detecting local outliers store 

all historical data in memory or in a secondary storage location. When dealing with new data points, 

some algorithms outperform the ILOF algorithm. This appears to be a challenge in the case of several 

of these novel approaches. One issue is how to manage memory consumption while summarizing 

previous data points and processing new data points. This could have an effect on these algorithms’ 

performance. It will be interesting to conduct a research to address these issues to improve the efficiency 

of detecting local outliers. Outlier detection aims to find the outlier among the data points. This chapter 

summarizes recent advances in the detection of local outliers in both static and stream environments. It 

focuses on the issues surrounding local outlier detection in the stream environments and considers how 

the LOF algorithm can be improved to be better suited to detecting local outliers in data streams. We 
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hope that this literature review is helpful to readers who want an overview of local outlier algorithms 

and alternative methods for implementing the local outlier factor (LOF) algorithm in the most common 

big data approach.  
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Chapter 3: Benchmark Datasets Used in This Research  

"A Grid Partition-based Local Outlier Factor for Data Stream Processing" Forthcoming in Proceedings 

of the 4th International Conference on Applied Cognitive Computing, 2020. Springer 

Alsini, R., Almakrab, A., Ibrahim, A. and Ma, X., 2021. Improving the outlier detection method in 

concrete mix design by combining the isolation forest and local outlier factor. Construction and 

Building Materials, 270, p.121396. 

3.1 Introduction 

The volume of data has grown significantly, both for research and in the context of daily life. People 

can use different types of technology in the digital world to capture and distribute big data, which has 

the characteristics of volume, velocity, variety, value, and veracity [108,109]. The volume factor refers 

to the vast amount of data that has been collected and analyzed. The velocity factor refers to the rate at 

which data is produced and transmitted between various systems and devices. The variety factor 

employs a broad range of data types that can be used to obtain the necessary information or output. It 

includes data forms such as structured, unstructured, and semi-structured data [110]. The value factor 

has advantages when it comes to extracting information from big data. Finally, the veracity factor 

considers the accuracy, trust, security, and reliability of the data.  More specifically, big data represents 

a huge amount of undiscovered information and expertise. A data stream is a common form of big data 

that embodies the five Vs. Because of the essence of the data stream across all five significant data 

components, data stream processing employs a variety of methods to analyze the data points in the data 

stream environment. The real-time feature of the data stream requires corresponding technologies for 

efficient data processing. How the data is processed determines how information can be extracted from 

the data stream.  

3.2 Data Stream Processing 

Processing the data stream is a crucial subject in the field of information flow processing (IFP)[111]. 

The goal of data stream processing is to understand the data action and to acquire the right information 

to make better decisions. It is important to analyze the data stream in the workflow and then store it. 

Many places produce the data stream, such as a stock exchange, monitors, log operation, social media, 
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etc. Processing the data stream is thus helpful and significant. Two types of strategies may be used for 

processing the data stream as [112]: 

I. Apply the query processing.  

II. Apply the data stream mining.  

Various articles presented a promising performance in both areas, which also highlights the relevance 

of data stream analysis in the Big Data era. Managing the data stream can be done using queries as a 

primary method, such as the Structured Query Language (SQL). SQL is a common language use for 

managing the database. The data stream management system (DSMS) uses an extended version of SQL 

known as the Continuous Query Language (CQL).  The reason behind CQL is to ensure any continuous 

data over time can be used on the system[7]. The other approach is processed under data mining as part 

of data science to discover knowledge in data. Data stream mining usually involves data mining or 

machine learning to extract and predict new information. The most used methods are clustering, 

classification, and data stream mining on the outlier detection. 

3.3 Outlier Detection in the Data Stream Mining Approach 

Outlier detection is a significant research issue in machine learning and data mining for detecting a 

rare object in real applications, such as in the fields of finance, industry, health, and materials science. 

The core concept of outlier detection is to identify abnormal data that is different from the majority of 

the data.  Outliers can be divided into two categories: global outliers and local outliers. In [113], the 

authors explain how to locate a global outlier by using a sliding window technique. For local outliers, 

the distance between points is usually computed according to the local neighborhood, known as the k-

Nearest Neighbors (KNN) algorithm. Many approaches of outlier detection in the data stream have been 

categorized, such as distance-based outlier method, density-based outlier method, clustering-based 

outlier method, and ensemble-based outlier method [13,14,29,114]. 

The distance-based outlier method is evaluated depending on the distance between the data points. 

Authors in [6] introduced the distance-based method to calculate the distance between points and their 
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nearest neighbors. Those with a far distance from the neighbors are counted as an outlier [3]. k-Nearest 

Neighbors (kNN) is the most common method used to evaluate the outliers based on their local 

neighbors. In the data stream, sliding windows have several methods applied in the distance-based 

model. In [115] and [116], the authors utilized a sliding window technique to uncover the global outliers 

regarding the current window. In [117], the authors enhanced the algorithm in [3] by introducing a 

continuous algorithm that has two versions to reduce the time complexity and memory consumption. 

The first version handles multiple values of k neighbors. The second version involves reducing the 

number of distances by using the micro-cluster for computation.  

The density-based outlier method is based on measuring the densities to their local neighbors. Those 

densities that are far from their closest neighbors are considered an outlier. The local density measures 

the density-based method. LOF is an example of the density-based model that uses (kNN) to detect the 

data points using the local reachability density. LOF has a high detection accuracy and has several 

proposed methods in improvement, some of which are discussed in [21] and [31]. The author in [118] 

used the LOF to distribute data points into several grids. Since LOF works in a static environment, an 

incremental local outlier factor, i.e., ILOF, is presented using the LOF in the data stream. All the 

previous extensions in the LOF required the entire data points to be calculated to get the LOF score, 

which is not necessary for the ILOF technique since it can handle new incoming data points.  

The clustering-based outlier method is an unsupervised method that processes data points by dividing 

the data into groups based on their distribution [17]. The method aims to cluster a data point and then to 

detect the outlier [119-121]. Some algorithms used the small cluster by representing a small number of 

points as an outlier, while other methods used the threshold to find the outlier. Several methods used the 

cluster in the detection of the outlier, such as partition cluster model, density cluster model, and grid-

based cluster model [79]. The authors in [122] proposed using the cluster in a high data dimension data 

stream. k-means is used in the data stream to split the data into several segments to process. Authors in 

[123] generated histograms for the clusters in the streamed data, which they used later for data mining 

and in detecting outliers. In [124], the authors proposed an algorithm that works on outlier detection on 
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a data stream that can determine if any point is an outlier within any time. The accuracy of detection 

depends on the availability of time. In [125], the author used the data stream arriving time to learn and 

determine the normal behavior of the current period.  

The Ensemble-based outlier detection is a new strategy for detecting outliers by combining the one 

set of results with the results of another outlier method to present and create a robust outlier detection 

method. In [126], the authors proposed combining the Ensemble-based outlier detection with the 

density-based outlier detection to solve both IF and LOF limitations. The developed method focused on 

clipping data points to detect the outlier according to a set of candidate outliers. Several authors have 

introduced extended versions of the IF to deal with several types of outliers. In [127], the authors 

improved the IF by using a new algorithm called Function isolation Forest (FIF) to identify outliers. In 

[128], the authors used the sliding window concept for data stream in the IF method. 

3.4 Benchmark Datasets 

The label information's specifics are not processed in an unsupervised outlier approach due to the need 

to be measured and contrasted for practical purposes. When designing and developing a new outlier 

detection algorithm, it is common practice to validate the results with available public datasets against 

better known unsupervised outlier detection algorithms such as the LOF algorithm. In the UCI machine 

learning repositories, there are many classification data sets fully accessible in [129]. Furthermore, some 

outlier detection datasets are included in [130]. The following datasets are real-world datasets containing 

outlier data points. These benchmark datasets have been used to test existing algorithms by using the 

proposed modern algorithm such as GP-LOF, GP-LOFR, and IFS-LOF algorithms. 

3.4.1 UCI Vowel Dataset 

The Vowel dataset is considered to be a multivariate time series and a classification dataset that 

categorizes speakers. In one case, two Japanese vocals were spoken by nine speakers. One speaker 

makes up a time series between 7 to 29 lengths, with twelve characteristics of each point of a time series. 

In the training dataset, every structure is seen as a single point for outlier detection, while in the UCI 
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learning repository, the frame talk is seen as a single point. Classes six, seven and eight are commonly 

referred to as UCI Vowel Data set as Inliers. This data set consists of 12 dimensions, including 1,456 

data points, which constitute 3.4% of the outlier. 

3.4.2 UCI Pendigit Dataset 

The pendigit dataset originates fromthe UCI machine learning repository, as given in[129,130]. This 

data set is multiclass of 16 dimensions and ten classes. It consists of 25 samples that are generated from 

44 authors. Thirty samples of the author are used for the training process, while the remaining 14 are 

used for the testing process. The initial training set consists of 7,494 points, and the test set includes 

3,498 points. 

3.4.3 UCI Shuttle Dataset 

The UCI shuttle dataset consists of multiple classifications that have nine dimensions provided from 

the UCI machine learning repository at [129,130].  This dataset combines the output from both the 

training and testing process. Classes two, three, five, six, and seven are grouped to form the outliers. 

This dataset contains 49097 data points which constitute 7% of the outlier. 

3.4.4 KDD Cup99 SMTP Dataset 

The KDD CUP 1999 dataset, which is a UCI machine learning repository, uses its SMTP service[129]. 

The original dataset (KDDCUP99) has 4,898,431 data points, 3,925,651 data points (80.1 percent) being 

considered as an assault. 976,157 data points, including 3,377 attacks (0.35%), are forged for a smaller 

dataset. This smaller dataset is used for the generation of the SMTP KDDCUP99 data set. The data 

collection KDDCUP99 SMTP consists of three dimensions and contains 0.03% outliers and 95,156 data 

points. 

3.4.5 UCI Concrete Dataset 

The concrete data collection was obtained from the University of California Irvine (UCI) machine-

learning repository that was released in [129]. The data collection included the results of the compressive 

strength of 1030 concrete mixtures. Compressive strength is considered one of the extremely important 
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parameters used by the engineering community in structural concrete design, including structures, 

bridges, etc.  

3.5 Conclusion   

This chapter addressed the background of processing the data stream and outlier detection approaches. 

A new unsupervised local outlier algorithm is validated by benchmarking dataset that is a real-world 

dataset. After that, the results will be compared to the common local outlier algorithm in the data stream 

process. The datasets used in this dissertation are also discussed in depth. 



44 

 

Chapter 4: A Grid Partition-based Local Outlier Factor for Data Stream 

Processing 

"A Grid Partition-based Local Outlier Factor for Data Stream Processing" Forthcoming in Proceedings 

of the 4th International Conference on Applied Cognitive Computing, 2020. Springer 

 

4.1 Introduction 

The demand for data is increasing in the big data era. Massive data is generated through various 

sources such as smart homes, sensors, mobile applications, communication, and finance, which all lead 

to an increase in data processing. One of the challenges in big data processing is how to measure outliers 

in streaming data. Data streams change every second, and the size is potentially infinite because it keeps 

increasing constantly. As a result, it is difficult to store the entire data sets in the memory and process 

them with older algorithms [1]. The density-based method is a well-known method used to find the 

outlier in the multi-density data. Local Outlier Factor (LOF) is currently the most utilized density-based 

method. It handles the data without assuming any underlying distribution. Moreover, it is capable of 

finding the data set in the data with heterogeneous densities [55,131,132]. However, LOF faces some 

limitations in data stream processing. First, it works only on static data that does not change over time, 

and only scans the data at one time to process the whole data set. Also, for any change in the data points 

that occurred by adding or deleting data points, LOF needs to be recalculated on the whole data set. 

Because of the limitations of LOF, it can’t be used in data streams as the size of data streams are 

potentially infinite, and the data are changing over time. 

To further improve outlier detection and performance accuracy in the data stream, we propose a new 

technique called Grid Partition-based Local Outlier Factor (GP-LOF). The proposed method has the 

following characteristics. First, GP-LOF works with limited memory. Therefore, a sliding window is 

used to summarize the points. Second, a grid method splits the data points for the processing phases. 

Third, it detects outliers using LOF. In this research paper, GP-LOF is evaluated through a series of 

experiments with real-world datasets. Based on the experimental result, the GP-LOF algorithm has 

shown better accuracy and execution time than the DILOF algorithm [56]. The rest of this research paper 
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is organized as follows: Section 2 describes the methodology of the GP-LOF algorithm. Section 3 

explains the experimental results. The conclusion is presented in Section 4. 

4.2 Methodology and Methods 

4.2.1 Grid Partition-based Local Outlier Factor (GP-LOF) Algorithms 

In this section, we will explain the Grid Partition-based Local outlier Factor (GP-LOF) algorithm. The 

main objective of the GP-LOF is to find the outlier by the following characteristics: there is no prior 

knowledge of the data distribution; a part of the dataset is stored in the memory; the LOF algorithm is 

applied to detect the outlier. GP-LOF includes three phases to identify the outlier: Preprocessing phase, 

Processing phase, and Detection phase, as shown in (Figure 4.1). Algorithm 1 explains how the GP-

LOF method operates as follows. The GP-LOF algorithm begins by collecting the data points in Pre-

Processing Window (PPW) with specific window size ws. Then, once the size in the PPW is complete 

(line 3-6), the first half of the data points in PPW is selected and then sent to the Processing Window 

(PW). The grid technique is applied in the PW to divide data points in the grid index i. After the data 

points are partitioned into the grid, GP-LOF calculates the LOF and gets the result depending on a 

predefined threshold θ. The GP-LOF ensures any points that exceed the θ are removed from the PW 

(lines 7-17). Each phase in the GP-LOF is described as follows: 
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Figure 4.1 Framework of the GP-LOF algorithm in the data stream. 
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1 Pre-Processing Phase:  

In this phase, a PPW is used to collect and store the data points that arrive in the stream. Then, once 

the ws of the PPW is filled with data points, the GP-LOF selects the first 50% of data points from PPW 

to be processed in the PW.  

2 Processing Phase:  

The processing phase begins once the data point in the PPW is moved to the PW. Next, PW divides 

the data points into a grid, which is a number of regions. Then, GP-LOF computes the LOF score for 

Algorithm 1: GP-LOF 

Input:  LOF threshold  θ 

             Infinite data streams points P={p1, p2, ..., pt , 

...}, 

             Preprocessing Window size  PWS 

             processing Window PW 

             Number of grids ng 

             Grid G 
              Thresholds of LOF scores ʘ, 

1 Init PWS → {} // is representing the 

preprocessing window size 

2 Init PW → {} // is representing processing window 

3   For each pt  ∈ P do 

4        If PWS (pt) < PW (pt) 

5               Add pt  to PWS (pt) 

6               continue. 

7         else 

8  Add first 50% PWS (pt) to the PW 

9              For PW do 

10                   GP-LOF (pt)← G(ng,pt,θ)     

11             For every GP-LOF (pt) do  

12                          If the LOFk (pt)> ʘ  then 

12                                pt   is outlier 

13                           End 

14             End 

15        Empty the PW 

16        Remove the first 50% data points from 

PWS 

17       End  

18   End 
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each grid index i. After that, the LOF scores for each i are used to find the LOF score for all data points 

belonging to the grid. Then, the LOF results will forward to the detection phase. To compute the outlier 

score of data points, the PW ensures the following steps: 

▪ Divide the dataset’s dimensions equally into the grid.  

▪ Allocate each data point p into a grid index i.  

▪ In every grid index i, compute the LOF score for all data points using the LOF algorithm [20]. 

3 Detection Phase: 

Once the LOF result is received in the detection phase, the GP-LOF method will scan all data points 

and select the data points that are greater than the threshold to be outliers. Then, it empties the PW and 

removes the first 50% of data points in the PPW except inlier data points as in Algorithm 1. Then, when 

any new data point is arriving in a stream, the preprocessing phase starts again to collect them. 

4.3 Experiment Procedures 

4.3.1 Datasets Used in Experiments 

This section provides the experimental results of the GP-LOF algorithm. The GP-LOF results are 

compared with DILOF results in various datasets. The GP-LOF algorithm is implemented in Java by a 

machine that runs in intel® core (MT) i7- 4940MX CPU, 16GB RAM, 1 TB SSD hard disk, and 

Windows 10 (64-bit) operating system. The same machine implements the DILOF algorithm in C++, 

and the source code is available in [56]. For the DILOF setting and hyperparameter, the reader can refer 

to [56]. Both methods are measured under two metrics in the accuracy of detecting the outlier and 

execution time. In particular, the area under the ROC curve (AUC) is used in the first category as 

described in [130,131]. The efficiency of the AUC is evaluated by applying the True Positive Rate (TPR) 

and a False Positive Rate (FPR) with a scale of the threshold t = { 0.1, 1.0, 1.1, 1.15, 1.2, 1.3, 1.4, 1.6, 

2.0, 3.0}. The evaluation of both TPR and FPR rate is tested according to each threshold value to obtain 

accuracy. Both GP-LOF and DILOF methods are tested with different window sizes ws through a real-

world data set, as in (Table 4.1). All these real-world datasets can be obtained from the Machine 
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Learning database repository at UCI in [129]. The UCI Vowel dataset can be obtained from [133]. The 

UCI shuttle dataset is provided in [129]. Both the UCI Vowel dataset and the UCI shuttle have been 

modified to be suitable for data stream format like in [133]. In the KDD cup 99 SMTP, we did the same 

configuration as [134] to be an outlier. SMTP is a subset from KDD Cup 99 dataset developed to test 

intrusion detection in the network. In the SMTP service, it is possible to show some changes in 

distribution within the streaming series [135].  

 

Table 4.1 Real-World Dataset 

 

 

 

 

 

For the experimental setup, we set k to be 19 for the UCI vowel dataset. The UCI Pendigit dataset has 

k set to 18. The UCI shuttle has a k of 29. We set k to 8 in the KDD CUP99 SMTP. Both GP-LOF and 

DILOF have the same setup of the window size ws for their validation by having two categories of ws. 

In the DILOF, we setup the ws in the summarization phase ws={100,120,140,160,180,200} for both the 

UCI Pendigit dataset and UCI Shuttle Dataset. The remaining datasets, including the UCI vowel dataset 

and the KDD CUP99 SMTP dataset, both datasets are tested by ws={100, 200, 300, 400, 500}. For the 

UCI Pendigit dataset and UCI shuttle dataset, both methods are evaluated by 

ws={100,120,140,160,180,200}. For the GP-LOF method, we did the same configuration on the ws in 

the Preprocessing Windows PPW. 

 

Datasets Number of data 

points 

Dimension Class 

UCI Vowel dataset 1456 12 11 

UCI Pendigit dataset 3,498 16 10 

UCI Shuttle dataset 58000 9 10 

KDD Cup99 Smtp 

dataset 

95,156 3 unknown 
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4.3.2 Experiment Discussion 

4.3.2.1 Accuracy of the Outlier Detection: 

The accuracy of outlier detection is tested under the AUC through a series of experiments with 

different window sizes. Figures 4.2 to 4.5 and Tables 4.2 and 4.3 represent the accuracy between the 

GP-LOF and DILOF for the UCI Vowel dataset, UCI Shuttle dataset, UCI Pendigit dataset, and KDD99 

SMTP Dataset. In the UCI vowel dataset, DILOF has high accuracy in the size of the window ws=100 

at 72.02% and in ws=200 at 89.038% compared to the GP-LOF algorithm, which takes 43.00% and 

45.49%. However, when the size of the window is increasing, GP-LOF has better accuracy. For 

example, when the size of the window reaches ws= {300} or {500}, the GP-LOF outlier accuracy is 

better than DILOF. Both algorithms have a similar accuracy rate when the size of the window reaches 

ws= {400}. We noticed the GP-LOF algorithm performs better accuracy in all window sizes for the UCI 

shuttle dataset than the DILOF algorithm. The highest accuracy rate for the GP-LOF algorithm reaches 

the accuracy rate at 84.86% at ws={200}, while the DILOF algorithm reaches the highest accuracy rate 

as ws={160} at 71.03 %.  For the UCI Pendigit dataset, the GP-LOF algorithm has a lower accuracy 

rate of 49.12% at ws={100}. When the window size increases, all accuracy rate of the GP-LOF 

algorithm has a higher accuracy rate than the DILOF algorithm. The highest accuracy rate achieves 

61.41% compared to the DILOF algorithm at 52.56% at ws={200}. In the KDD99 SMTP dataset, there 

is a variance detection accuracy between GP-LOF and DILOF. For example, when the windows size 

ws> 300, there is a significant difference between GP-LOF and DILOF algorithms. The GP-LOF rate 

keeps increasing, while the DILOF rate has a lower accuracy when the size of the window keeps 

increasing. 
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Figure 4.2 GP-LOF shows consistently higher accuracy in all the window sizes compared to the DILOF 

algorithm in the UCI Vowel Real-World dataset. 

 

 

Figure 4.3 GP-LOF shows consistently higher accuracy in all the window sizes compared to the DILOF 

algorithm in the KDD Cup99 SMTP Real-World dataset. 
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Figure 4.4 GP-LOF shows consistently higher accuracy in all the window sizes compared to the DILOF 

algorithm in the UCI Pendigit Real-World dataset. 

 

 

Figure 4.5 GP-LOF shows consistently higher accuracy in all the window sizes compared to the DILOF 

algorithm in the UCI Shuttle Real-World dataset. 
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Table 4.2 Accuracy result for the UCI vowel dataset and KDD Cup99 SMTP dataset between GP-LOF And 

DILOF algorithms 

 

 

 

 

 

 

Table 4.3 Accuracy result for the UCI Pendigit dataset and The UCI Shuttle dataset between GP-LOF And 

DILOF algorithms 

 

 

 

 

 

 

 

4.3.2.2 Execution Time  

Figures (4.6 to 4.9) and table 4.4 and table 4.5 represent the execution time for the UCI vowel, KDD 

Cup99 SMTP, UCI Pendigit, and UCI shuttle between GP-LOF and DILOF algorithms. We notice that 

the GP-LOF execution time is always much lower than the DILOF algorithm, even when the size is 

increasing. In the UCI Vowel Dataset, GP-LOF took almost 1.17 seconds, while the DILOF execution 

time took almost 4.32 seconds. This is because GP-LOF divides the points into several grids, which 

reduces the execution time. The same thing occurs for KDD99 SMTP, UCI Pendigit, and UCI Shuttle 

datasets. In KDD99 SMTP, GP-LOF execution time in the ws= 500 took almost 56.396 seconds, while 

Window Sizes UCI Vowel KDD Cup99 SMTP 

GP-LOF DILOF GP-LOF DILOF 

100 43.0016 72.037 96.79145 77.9116 

200 45.49206 89.0384 91.46393 85.0027 

300 93.8462 90.825 89.15365 84.484 

400 91.68576 91.463 90.50625 78.2639 

500 94.36069 92.9275 94.98262 79.3717 

Window 

Sizes 

UCI Pendigit UCI Shuttle  

GP-LOF DILOF GP-LOF DILOF 

100 49.129 51.834 80.9710 69.205 

120 52.97 48.458 79.9981 70.6869 

140 55.966 51.028 81.6585 69.0178 

160 58.258 50.73 82.7370 71.0363 

180 57.56 49.839 83.0175 70.964 

200 61.418 52.58 84.8658 69.7915 
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in the DILOF algorithm, it took almost 260.544. The DILOF executive time took 17.918 seconds for 

the UCI shuttle, which took more time than GP-LOF at 6.97 seconds. In the UCI Pendigit, GP-LOF 

performs higher in the execution time at 2.02 seconds than the DILOF algorithm at 1.35 seconds when 

the ws={100}. When the execution time for the ws is increased, we notice that the GP-LOF algorithm 

performs better execution time for the remaining ws={140,160,180,200}.  

 

 

 

Figure 4.6 GP-LOF execution time in the UCI Vowel Real-world data set for all window sizes is better 

performance than the DILOF algorithm. 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100 200 300 400 500

Ti
m

e 
(S

ec
o

n
d

)

UCI Vowel Dataset

UCI Vowel GP-LOF UCI Vowel DILOF



55 

 

 

 

Figure 4.7 GP-LOF execution time in the KDD Cup99 SMTP Real-world data set for all window sizes is better 

performance than the DILOF algorithm. 

 

 

Figure 4.8 GP-LOF execution time in the UCI Shuttle Real-world data set for all window sizes is better 

performance than the DILOF algorithm. 
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Figure 4.9 GP-LOF execution time in the UCI Pendigit Real-world data set for all window sizes is better 

performance than the DILOF algorithm. 

 

 

Table 4.4 Execution time for the UCI Vowel dataset and KDD Cup99 SMTP dataset between GP-LOF And 

DILOF algorithms 

Window  

sizes 

UCI Vowel KDD Cup99 SMTP 

GP-LOF DILOF GP-LOF DILOF 

100 0.91 0.737971 24.91 41.7741 

200 0.882 1.552 26.95 88.7286 

300 0.903 2.32008 39.296 131.205 

400 1.01 3.24402 44.879 186.835 

500 1.179 4.32603 56.396 260.544 

 

Table 4.5 Execution time for the UCI Shuttle dataset and UCI Pendigit dataset between GP-LOF And DILOF 

algorithms 

Window 

sizes 

UCI Shuttle UCI Pendigit 

GP-LOF DILOF GP-LOF DILOF 

100 16.225 69.205 2.029 1.3555 

120 16.356 70.6869 2.043 1.6896 

140 16.293 69.0178 1.831 2.681 

160 16.65 71.0363 1.817 3.5207 

180 19.194 70.964 1.922 4.6571 

200 17.918 69.7915 1.916 5.5192 
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4.4 Conclusion 

This research paper aims to solve the problem of detecting the outlier in the data stream. LOF is one 

of the algorithms that detect outliers in static data, but it has limitations when dealing with data streams. 

First, it consumes a lot of memory as the whole data set needs to be stored in the memory, which isn’t 

applicable in the data stream as the data size is infinite. Next, it needs to process the whole data set since 

any change in the data requires that the LOF be recalculated from the beginning, which isn’t applicable 

in the data stream as the data is changing. We propose a novel algorithm called Grid partition local 

outlier factor (GP-LOF), which overcomes the two limitations of the LOF in the data stream. Our 

experimental evaluations demonstrate that GP-LOF has better accuracy detection and execution time 

with several real-world datasets than the state-of-the-art DILOF algorithm.  
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Chapter 5: A Grid Partition-Based Local Outlier Factor by Reachability 

Distance for Data Stream Processing 

"Grid Partition-Based Local Outlier Factor by Reachability Distance for Data Stream Processing" 

Forthcoming in the 7th International Conference on Computational Science and Computational 

Intelligence 2020, IEEE. 

5.1 Introduction  

There has been significant interest in using data mining and machine learning to enhance outlier 

detection in big data sets. At present, outlier detection techniques have been used effectively in a number 

of fields [14]. For example, in network intrusion detection, it is used to identify distinct data points from 

any other data points [136,137]. These irregular data points reflect uncommon behavior and are 

considered outliers and potential threats. The density-based method has a remarkable ability to detect 

outliers in various densities. The Local Outlier Factor (LOF) is a popular technique that can process a 

dataset without any previous knowledge of the data distribution [20]. Furthermore, the LOF can process 

datasets with heterogeneous densities [78,136,137].  However, the LOF algorithm design has a weakness 

in the analysis of streaming data. The LOF executes in a static environment. Memory becomes a limiting 

factor because LOF must keep and process the whole dataset, which grows significantly with new data 

points [18]. The LOF is also constrained because any update of the data set requires recalculation on the 

whole data set. One of the main features of data streams is that the range of the data is infinite [17]. To 

overcome this challenge, the Incremental local outlier factor (ILOF) applies the LOF algorithm to data 

streams [77].  Nonetheless, it takes all data points to identify outliers. Several algorithms have been 

proposed to overcome the ILOF limitations, as in [56,76,138]. The GP-LOF algorithm overcomes LOF’s 

issues by summarizing the data points using the grid method to split the data points and find the outliers 

using the LOF algorithm [139].In this chapter, we aim to improve the efficiency of the GP-LOF 

algorithm for the accuracy rate by using another measurement in the LOF; the new algorithm is called 

Grid Partition-based Local Outlier Factor by Reachability distance (GP-LOFR).  The new measure of 

the LOF outlier score is based on the reachability distance (LOFR), as opposed to the LOF, which uses 

the local reachability distance.  
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The GP-LOFR algorithm has the following features: first, it works in limited memory by using a 

sliding window of data; second, the data points are split using the grid method in the processing phase; 

and lastly, the detection phase uses the new calculation method of LOFR for detecting outliers. The 

proposed algorithm was used in a series of experiments with multiple real-world datasets. The GP-LOFR 

algorithm appears more efficient and has slightly better accuracy than the GP-LOF algorithm. This 

research paper is arranged as follows: Section 2 describes the Local Outlier Factor by the Reachability 

distance (LOFR) and GP-LOFR methodology. The discussion results are presented in Section 3. Finally, 

the conclusion is presented in Section 4. 

5.2 Methodology and Methods  

5.2.1 The Local Outlier Factor by Reachability Distance (LOFR) 

This section describes another calculation method of the LOF, called Local outlier Factor by 

reachability distance (LOFR). For the outlier score, LOFR works as the LOF algorithm. The only 

variation between the LOFR and LOF is the local reachability distance for processing the data points pt 

considering their neighbors [44]. The LOFR does not use the LRD. It uses the Reachability Distance 

(Reach-Dist) to obtain the LOF score, as shown in Equation 6: 

• Definition 6: LOFR of point pt 

 

𝐿𝑂𝐹𝑅𝑘(𝑃𝑡) = ∑
𝑅𝑒𝑎𝑐ℎ−𝐷𝑖𝑠𝑡(𝑝𝑡)

(
𝑅𝑒𝑎𝑐ℎ−𝐷𝑖𝑠𝑡(𝑜)

𝑘
)

𝑂∈𝑛𝑘(𝑝𝑡)        (6) 

 

The LOFR uses the LOF definitions except for the LRD. Instead, it produces a new score of the LOFR, 

which is illustrated in (Figure 5.1). The LOFR value is taken from the Reach-Dist of the data points (pt) 

and divided by the average of the Reach-Dist of its neighbors. For more details, the reader can refer to 

[136,138]. 
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5.2.2 The Grid Partition-based Local Outlier Factor by Reachability Distance (GP-LOFR) 

This section describes how the GP-LOFR algorithm searches for outliers. There are four main features 

of GP-LOFR. First, there is no prior knowledge of the data distribution when detecting outliers. Second, 

only a portion of the dataset is stored in memory. Third, the LOFR algorithm is applied within GP-

LOFR to detect outliers. Fourth, GP-LOFR does not have any knowledge regarding future data points 

when it detects an outlier using the current data set. Like the GP-LOF algorithm, GP-LOFR has three 

phases: the pre-processing phase, the processing phase, and the detection phase. In the pre-processing 

phase, a sliding window is used to collect data points from the data stream. The processing phase use 

the new calculation method of LOFR for determining the outlier score in each grid. In the detection 

phase, a threshold θ is used to detect outliers. 

 

Begin 

Calculate the k-distance of pt by equation 1 

Measure the k-nearest neighbor of point pt by equation 2 

Using the reachability distance (Reach-Dist) of point pt by using equation 3 

Calculate the LOFR of point pt by using equation 6 

Result 

Figure 5.1 The LOFR Flow Diagram in obtaining the outlier score. 
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Algorithm 1 describes the process of the GP-LOFR and entails the following steps: 1) the size of a 

window (ws) represents the amount of the data points from the Pre-Processing Window (PPW), and the 

PPW collects and stores the data points; 2) a Processing Window (PW)  selects the first 50% of the data 

points to be processed from the PPW (lines 3-6); 3) the data points are split into an index of the grid, 

and the GP-LOFR calculates each grid to obtain the LOFR score, based on a threshold θ; 4) the GP-

LOFR algorithm checks any point beyond the threshold is excluded from the PW (line 7-17); and, 5) 

when new data points are inserted, the same steps are repeated to calculate the LOFR score. 

5.3 Experiment Discussion and Results 

In this section, the experimental results of the proposed algorithm (GP-LOFR) are presented. The 

performance of GP-LOFR was compared to the performance of GP-LOF on four benchmark datasets. 

The evaluation process for GP-LOFR and GP-LOF were calculated by two metrics: the accuracy of 

Algorithm 1: GP-LOFR Algorithm  

Input: The LOFR threshold θ 

            Unlimited data streams points P= {p1, p2, ..., pt}   

             Pre-Processing Window PPW 

            Processing Window PW 

            Number of grids Ng 

            Grid G 

1 Init PPW → {} // is representing the Pre-Processing 

Window 

2 Init PW → {} // is representing Processing Window 

3   For each pt ∈ P do 

4        If PPW (pt) < PW (pt) 

5          Add pt to PPW (pt) 

6          continue. 

7        else 

8          Add 50% PPW (pt) to the PW 

9          For PW do 

10           GP-LOFR (pt)← G(Ng,pt)     

11      For every GP-LOFR (pt) do  

12                 If the LOFRk (pt)> θ then 

12                      pt    is an outlier 

13                 End 

14       End 

15  Empty the PW 

16  Remove the first 50% data points from PPW  

              except for normal data points       

17       End  

18   End 
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outlier detection and execution time. In particular, the Area Under the ROC Curve (AUC) is used for 

the first metric to obtain the accuracy rate [129,130]. All methods were implemented on Java and 

processed in a machine that operates in intel® core (MT) i7-4940MX CPU, 16GB RAM, 1 TB SSD 

hard disk, and Windows 10 (64-bit) operating system. Both GP-LOF and GP-LOFR approaches are 

evaluated with various windows sizes (ws) in a real-world data set, as seen in (Table 4.1). The 

experimental of both the GP-LOFR and GP-LOF algorithms in the KNN were determined for each of 

the datasets as follows:  For UCI Vowel dataset, k = 19; for the remainder, the UCI Shuttle, K =29, 

KDD99 SMPT k=8, For the Pendigit dataset, it set the k=18. For the size of the windows (ws) used for 

all the dataset validation, the GP-LOFR and GP-LOF were determined by the Pre-Processing Windows 

PPW that has two categories of measuring the WS as described in chapter 4. 

5.3.1 Experiment Results 

5.3.1.1 The Accuracy of the Outlier Detection  

The AUC was used to evaluate algorithms to obtain the outlier accuracy via multiple tests with a range 

of ws. Figure (5.2 to 5.5) presents the AUC results for the GP-LOFR and GP-LOF algorithms on the 

UCI Vowel Dataset, the KDD Cup99 SMTP Dataset, the UCI Shuttle Dataset, and the UCI Pendigit 

Dataset. In the UCI Vowel Dataset, the GP-LOFR had a better accuracy result in the ws= [100] (49.07%) 

compared to the GP-LOF at (43.0%). The highest accuracy result was obtained for ws = [500]; the GP-

LOFR reached an accuracy rate of (95.37%) while the GP-LOF accuracy rate was (94.36%). GP-LOF 

only had higher accuracy for ws= [400], where it reached (91.68%) when compared to the GPLOFR at 

(89.0%). For the KDD Cup99 SMTP, the GP-LOF performance was better than the GP-LOFR for most 

window sizes. However, there was a difference based on the ws. For example, in the ws = [100], both 

GP-LOFR and GP-LOF accuracy results are close to each other. When the ws was increased to 300, the 

GP-LOFR accuracy performance was better than the GP-LOF, reaching (91.14%). The remaining 

window sizes were better for GP-LOFR algorithm. In the UCI Shuttle Dataset, GP-LOFR shows a better 

result than the GP-LOF for most of the ws. For example, the GP-LOFR has a better accuracy result at 
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81.02 % compared to the GP-LOF algorithm when it reaches ws=[100]. For the ws=[180], we notice 

both GP-LOFR and GP-LOF results are close to each other, with the advantage in the GP-LOFR when 

it reaches ws=[200]. For the UCI Pendigit, we notice the different output between the GP-LOFR and 

GP-LOF algorithm at the beginning of the ws. However, when the ws is getting larger, both GP-LOFR 

and GP-LOF are close to each other in the accuracy result.  

 

 

 

Figure 5.2 Comparison of accuracy result of outlier detection between the GP-LOFR and GP-LOF in UCI Vowel 

dataset. 
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Figure 5.3 Comparison of accuracy result of outlier detection between the GP-LOFR and GP-LOF in KDD 

Cup99 SMTP dataset. 

 

 

Figure 5.4 Comparison of accuracy result of outlier detection between the GP-LOFR and GP-LOF in the UCI 

Shuttle dataset. 
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Figure 5.5 Comparison of accuracy result of outlier detection between the GP-LOFR and GP-LOF in the UCI 

Pendigit dataset. 

5.3.1.2 Execution Time  

The execution time results for all algorithms are presented for all the datasets, as illustrated in Figures 

5.6 to 5.9.  The time of execution was measured in seconds for the experiments. Both the GP-LOFR and 

the GP-LOF are close to each other in most of the ws. In the UCI Shuttle Dataset, GP-LOFR took 18.47 

to 42.55 seconds, while the GP-LOF took 18.05 to 37.29 seconds. The GP-LOFR took from 0.86 to 1.21 

seconds for the UCI Vowel Dataset, and the GP-LOF function took from 0.93 to 1.24 seconds. The GP-

LOFR in the KDD Cup99 SMTP took 26.79 to 60.09 seconds, compared to the GP-LOF function, which 

took 27.18 to 57.82 seconds. For the UCI Pendigit, the GP-LOFR took from 57.56 to 68.94 seconds, 

while the GP-LOF took from 49.12 to 61.418 seconds.  
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Figure 5.6 Comparison of Execution time between the GP-LOFR and GP-LOF in the UCI Vowel dataset. 

 

 

 

Figure 5.7 Comparison of Execution time between the GP-LOFR and GP-LOF in the KDD Cup99 SMTP 

dataset. 
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Figure 5.8 Comparison of Execution time between the GP-LOFR and GP-LOF in the UCI Shuttle dataset. 

 

 

 

 

Figure 5.9  Comparison of Execution time between the GP-LOFR and GP-LOF in the UCI Pendigit dataset. 

 

0

5

10

15

20

25

120 140 160 180 200

Ti
m

e 
(S

ec
o

n
d

)

UCI Shuttle Dataset

GP-LOF GP-LOFR

0

0.5

1

1.5

2

2.5

100 120 140 160 180 200

Ti
m

e(
se

co
n

d
)

UCI Pendigit Dataset

GP-LOF GP-LOFR



68 

 

5.4 Conclusion  

The main objective of this research paper is to further improve the accuracy of outlier detection on the 

GP-LOF algorithm when applied to data streams. GP-LOFR addresses the limitation of the LOF 

algorithm for processing data streams. Like GP-LOF, GP-LOFR works with limited memory by using 

a sliding window for summarizing the points. Also, it follows the same phrases used in GP-LOF for 

identifying outliers. GP-LOFR showed slight improvements in accuracy over GP-LOF on several real-

world benchmark datasets. This improvement was achieved by using the Reachability Distance (Reach-

Dist) to obtain the LOFR score. 
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Chapter 6: Improving the Outlier Detection Method in Concrete Mix 

Design by Combining the Isolation Forest and Local Outlier Factor 

 

Alsini, R., Almakrab, A., Ibrahim, A. and Ma, X., 2021. Improving the outlier detection method in 

concrete mix design by combining the isolation forest and local outlier factor. Construction and 

Building Materials, 270, p.121396. 

6.1 Introduction  

Throughout the Big Data era, numerous sources have generated massive data. One of the challenges 

in big data processing is how to quantify outliers. This is clearly significant in the concrete industry, 

especially that concrete is considered the second largest usable material on the globe after water. Concrete 

is a heterogeneous material, and its fresh and mechanical properties depend on various parameters 

(percentages of ingredients). Generally, the properties of concrete directly influence the stability and 

reliability of any construction project; these properties include compressive, flexural, and tensile 

strengths, and elastic modulus [140]. The quality of data in the construction industry may be limited and 

compromised. For example, field data collection might include some missing values, wrong 

measurements, or outliers [141]. Due to the efficiency of outlier detection in various areas, many outlier 

detection techniques have been developed to detect the anomaly known as an outlier. 

The distance-based method is the most often used technique for outlier detection. Despite its 

accessibility, it results in poor accuracy when applied to multi-density data such as concrete mixtures 

input that have multiple variables. The density-based outlier method deals with multi-density data by the 

comparison of the density points with nearby local neighbors. The Local Outlier Factor (LOF) is the most 

practical procedure in the density-based approach [20]. The LOF handles dense data without assuming 

any underlying or predefined distribution. It also finds the dataset in heterogeneous densities [136,137]. 

However, the LOF faces some limitations. One limitation is that calculating the distance between points 

requires a large amount of memory, which affects execution time. In addition, the LOF is incapable of 

dealing with the sequence of outliers. Another technique for outlier detection, Isolation Forest (IF), solves 

the issues found in the LOF by isolating the outlier instead of processing the whole dataset. IF is an 
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unverified learning process for abnormality detection that depends on the principle of separating 

anomalies. Despite its accuracy, the IF method has a weakness when it comes to a local outlier. Cheng et 

al. [126] proposed pruning techniques by finding the outlier candidate set to calculate the outlier score. 

Thus far, this is the approach most successful in solving the limitations of both the IF and LOF methods. 

To further improve the accuracy of both the IF and LOF in detecting the outlier, this paper introduces 

a new method called the Isolation Forest based on Sliding Window for Local Outlier Factor (IFS-LOF) 

detection. The IFS-LOF merges both methods (IF and LOF) with a sliding window to increase the rate 

of accuracy and to detect input with different window sizes (ws). The IFS-LOF was evaluated through a 

series of experiments that were performed through concrete mixtures with various ingredients. Based on 

the experimental results, the proposed algorithm demonstrated considerable improvement in accuracy 

when compared to the state-of-the-art standalone LOF method. The remainder of this chapter is organized 

as follows: Section 2 provides a review of related methods; Section 3 describes the Concrete material 

components; Section 4 presents the methodology of the IFS-LOF method; Section 5 provides the 

experimental results; and Section 6 states the conclusions. 

6.2 Related Work 

Outlier detection is a significant research issue in machine learning and in data mining for detecting a 

rare object in real applications, such as in the fields of finance, industry, health, and materials science. 

When it comes to the construction industry, outlier detection has been rarely used in evaluating the quality 

of the measured or collected data. According to [141], only very few articles have discussed outlier 

detection methods used for measuring the source of the data.  

6.3 Context and methodology 

6.3.1 Concrete Material Components and Dataset 

Concrete is a primary component in the construction of various projects. Concrete ingredients have 

recently changed a lot by introducing multiple materials and admixtures that either added before or during 

mixing; most of these materials are waste by-products, and they are known as Supplementary 
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Cementitious Materials (SCMs). Fly ash, silica fume, and blast furnace slag are the most common types 

of SCMs used in the concrete industry. These waste by-products enhance short-term properties, such as 

compressive strength, tensile strength, and workability, and they significantly improve concrete durability 

over time [142–146]. Moreover, concrete is a multifarious material, and its properties are significantly 

affected by the individual properties of its constituents. In this paper, the concrete data collection was 

obtained from the University of California Irvine (UCI) machine-learning repository that was released in 

[147] and [129]. The data collection included the results of the compressive strength of 1030 concrete 

mixtures. Compressive strength is one of the important parameters used by the engineering community 

in structural concrete design that can be seen in structures, bridges, etc. Table 6.1 shows the range of 

ingredients that have been used in the 1030 concrete mixtures. Finding the outliers in each component 

could improve the quality and reliability of the data to be processed. Our task was to calculate the 

efficiency of the IFS-LOF method in the identification of the outliers in the UCI concrete data. The 

proposed algorithm generates better performance than state-of-the-art LOF algorithms. Finding the 

outliers in each component can improve the quality of the data to be processed. Our task was to calculate 

the efficiency of the IFS-LOF method in the identification of the outliers in the UCI Concrete Data 

Collection. The proposed algorithm generates better performance than state-of-the-art LOF algorithms. 

Table 6.1 Ranges of the Concrete Components 

Component  Minimum (kg/m3)  Maximum (kg/m3)  Average   

Cement 71 600 232.2 

Fly ash 0 175 46.4 

Blast furnace slag 0 359 79.2 

Water 120 228 186.4 

Superplasticizer 0 20.8 3.5 

Coarse aggregate 730 1322 943.5 

Fine aggregate 486 968 819.9 
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6.4 Components and workflow of the method 

6.4.1 The Isolation Forest (IF) 

The IF is an unsupervised method used in the Ensemble-based model to isolate the anomalies by 

measuring the isolation score for all data points. The IF has the same concept of using the tree model as 

the Random Forest algorithm. Then it processes the data point into recurrent random splits that are 

dependent on the selecting features [147]. The main advantage of the IF algorithm is how it processes the 

data. Instead of processing all the data points, it uses a decision tree to isolate the outliers, which reduces 

the execution or processing time and its memory requirement [84]. The IF technique operates by 

partitioning the model into several segments that are required for the subsampling size, as illustrated in 

Fig. 6.1. An anomaly score is used to create a path length for the tree to isolate the outlier, as shown in 

Algorithm 1. The IF calculation begins with a certain data point value. Then, according to the selected 

value, it sets a range between the maximum and the minimum to determine the outlier score for each data 

point in the tree. The score is calculated to set a path length to isolate the outlier. For more details, the 

reader should refer to [148]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Illustration of the subsampling size in the isolation forest for processing 

data points. 
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Table 6.2: The Isolation Forest (IF) Algorithm 

 

 

 

 

 

 

 

 

 

 

6.4.2 Local Outlier Factor (LOF) 

The LOF is an unsupervised approach in the density-based outlier detection to search the anomaly 

based on a score to determine if the data point is outlier or normal. LOF evaluates the data points 

according to a degree of measurement, i.e., the outlier factor regarding the density of the local neighbors. 

The definition of LOF is presented in figure 6.2.  

 

 

 

 

 

 

 

 

 

 

Algorithm 1: IForest (D, t, x) 

Input: D – Input data set for the data points t – number of 

tree   x– subsampling size s 

Output: a set of t iTree 

1   Init Forest 

2   set height limit l – ceiling 𝑙𝑜𝑔2𝑥 

3      For i = 1 to t do 

4       𝐷′ ← sample D, x 

5       Forest ← Forest ∪ iTree𝐷′, 0, l 

6     End for 

7    Return Forest 

Def 1: Calculate the k-distance of pt 

Def 2: Measure the k-nearest neighbor of pt  

Def 3: Reachability distance (Reach-Dist)  

Def 4: Calculate the LRD of pt  

Def 5: LOF Score by of pt  

Figure 6.2 The key definitions of LOF algorithm. 
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6.4.3 The Isolation Forest based on Sliding window For the Local Outlier Factor (IFS-LOF) 

This section describes the proposed IFS-LOF objective for finding the outlier. It proposes to increase 

the accuracy of detecting the outlier by using the sliding window for selecting the outlier candidates from 

the IF algorithm. The proposed IFS-LOF algorithm has two stages: the processing stage and detection 

stage, as shown in Figure 6.3 and Table 6.3 

 

Table 6.3:  The Isolation Forest-based on the Sliding window for Local Outlier Factor (IFS-LOF Algorithm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.3 illustrates how the IFS-LOF algorithm process works. In the processing phase (lines 1-2), 

the isolation forest will process the concrete mixture data set, determine the number of tree to build, and 

determine the sampling size. Then, the sliding window is used as a window size (ws) to store the data 

points from the IF algorithm. In the detection phase, the LOF threshold θ  is used to calculate the data 

input from the sliding windows to determine the outlier score. Any data points that exceed the threshold 

value are considered outliers (lines 3-5). 

Algorithm 2: IFS-LOF  

Input: D – Input data set for the data points t – number of tree S- 

sliding windows k-number of nearest neighbor x -outlier candidate 

datapoint   

Output: outlier score  

1   Init Forest 

2   x outlier candidate set → Call Algorithm 1 with D, t, w, S                                               

3           For j =1 to D do → Call LOF with k, x  

4              If the LOF for X-temp is >  θ  then 

                   X-Temp is outlier 

5              End 

6           End for 

7    End 



75 

 

 

Figure 6.3 The structure of the IFS-LOF Algorithm. 

 

6.5 Experimental Results and Discussion  

This section describes the experimental results after comparing the IFS-LOF, LOF-Sliding window 

(LOF-SW), and LOF with different window sizes (ws). The purpose of IFS-LOF is to answer the 

following questions: 

• Does IFS-LOF perform better than LOF and LOF-SW in the accuracy of outlier detection? 

• Does the Sliding window improve the accuracy of outlier detection? 
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• Does IFS-LOF perform faster than LOF and LOF-SW in execution time? 

6.5.1 Experiment Settings 

All algorithms (LOF, LOF-SW, and IFS-LOF) were implemented in Java and operated on a machine 

that runs on operating system of Windows 10 (64-bit) with Intel Core (MT) i7-4940MX CPU, 16 GB 

RAM, and 1 TB SSD hard disk. The accuracy of the outlier detection for IFS-LOF, LOF-SW, and LOF 

was calculated by using the ROC Curve (AUC) method, as set out in [131,132]. In particular, AUC was 

used for the first question to obtain the accuracy rate. The sliding window strategy was adopted in the 

second question in order to compare the performance between the IFS-LOF and LOF-SW methods for 

the accuracy of outlier detection. The parameter of the KNN was set at 8 for all algorithms, including 

LOF, LOF-SW, and IFS-LOF. The IFS-LOF had a selecting feature that was set at 0.25 for the IF 

algorithm. Different sizes of windows were used to evaluate the performance of each algorithm, as is 

presented in Table 6.4. The window size (ws) has different values for the comparison between the 

algorithms: ws={100.200.300,400}. 

6.5.2 Experiment Discussion 

6.5.2.1 The Accuracy of Outlier Detection 

The accuracy of outlier detection was assessed by applying AUC, as shown in Table 6.3 The IFS-

LOF, LOF-SW, and LOF algorithms processed each element in the UCI concrete data set. Figures (6.4 

to 6.11) illustrate the comparison of the accuracy rate with different window sizes (ws). Based on each 

element's result, we can illustrate the most suitable method to use for a greater accuracy rate. For the 

cement element, both IFS-LOF and LOF-SW had a higher accuracy rate for most window sizes compared 

to LOF. The reason is because of the size of the windows used to process the data in the memory. LOF 

performed better in the smaller sizes of the windows, while both LOF-SW and IFS-LOF had an advantage 

in the larger sizes of windows. The IFS-LOF method surpassed all other methods with an accuracy rate 

of 97.48% when it reached ws=400. Based on IFS-LOF’s performance, it had a better accuracy rate for 

the superplasticizer element for all ws.  The only weakness of IFS-LOF’s performance in the concrete 
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elements was seen in the Blast Furnace Slag, Coarse Aggregate, and Water. LOF performed better than 

IFS-LOF in larger sizes of windows. In addition, in the Coarse aggregate element, the gap of the accuracy 

was noticeable when ws reached w= 100. However, when the size of the windows increased, IFS-LOF 

performed better than LOF when it reached ws=200.  In the Coarse aggregate element, both IFS-LOF 

and LOF-SW performed low accuracy rates for the remaining ws. The IFS-LOF had a better accuracy 

rate than LOF, as illustrated in the blast furnace Slag element. The LOF-SW performance was better than 

LOF in the cement and Fine Aggregate elements when the ws reached ws={300.400}. 

 

Table 6.4 The Accuracy rate of the LOF, LOF-SW and IFS-LOF for different windows sizes 

 

W size / 

Component  

100 200 300 400 

LOF 

LOF-

SW 

IFS-

LOF LOF 

LOF-

SW 

IFS-

LOF LOF 

LOF-

SW 

IFS-

LOF LOF 

LOF-

SW 

IFS-

LOF 

Cement 90.89 89.01 90.44 96.68 92.10 95.40 94.49 95.38 92.66 94.67 96.55 97.48 

Blast Furnace 

Slag 

80.50 80.20 82.49 79.77 89.93 91.67 93.50 92.85 94.52 93.77 91.12 93.65 

Fly Ash 67.80 72.05 67.36 93.80 85.54 93.68 94.70 92.45 94.28 93.81 93.77 94.28 

Superplasticizer 77.39 78.01 90.91 84.41 80.69 93.13 88.57 86.21 88.97 82.94 89.56 89.20 

Coarse Aggregate 98.46 85.58 85.83 92.08188 91.14 93.20 97.65234 95.23 96.44 97.28 94.59 96.51 

Fine Aggregate 85.77 84.89 90.95 89.77501 87.21 90.40 93.09886 96.99 94.70 95.24 95.95 96.62 

Age 82.83 86.46 88.56 90.03 93.10 86.46 94.0972 90.47 94.18 90.04 88.15 94.73 

Water 85.13 62.63 90.53 96.23 92.78 94.69 91.35495 93.82 92.16 94.37 91.63 93.24 
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Figure 6.4 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Cement component. 

 

 

 

Figure 6.5 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Blast Furnace Slag 

component. 
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Figure 6.6 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Fly Ash component. 

 

 

 

Figure 6.7 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Superplasticizer 

component. 
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Figure 6.8 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Coarse Aggregate 

component. 

 

 

Figure 6.9  Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Fine aggregate 

component. 
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Figure 6.10 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Age component. 

 

 

 

Figure 6.11 Comparison of accuracy results between LOF, LOF-SW, and IFS-LOF in the Water component. 
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6.5.2.2 Sliding Window Strategy for Improving the Outlier Detection 

The sliding window strategy has improved the accuracy rate for most of the concrete components. 

Still, one of the drawbacks of the method is related to the size of the window used to process the data. 

For example, LOF-SW produced a lower accuracy rate, when the size of the window was increased. This 

is due to the amount of the data used in the sliding window, which has an impact on the results of the 

accuracy performance. To improve the accuracy rate in the sliding window technique, the IFS-LOF 

algorithm strengthens the accuracy output in the sliding window by using the IF algorithm. The IF 

algorithm enhances the sliding window by selecting the isolation data point instead of processing all of 

the data. IFS-LOF improves its usability in comparison with LOF-SW (Fig. 6.4 to 6.11). IFS-LOF 

presented most consistently higher accuracy in most of the ws compared to the other remaining 

algorithms. 

6.5.2.3 Execution Time 

Table 6.5 represents the execution time for the concrete data elements by comparing LOF, LOF-SW, 

and IFS-LOF. All algorithms were measured in seconds. In general, LOF was slightly better in execution 

time than either LOF-SW or IFS-LOF for most of the elements when it reached ws={100,200}. The 

Superplasticizer and coarse aggregate elements were executed faster than LOF-SW and IFS-LOF in all 

ws. For the remaining windows at ws= {300,400}, we noticed that both LOF-SW and IFS-LOF execution 

times were much lower than the LOF algorithm. The main reason was related to the sliding window 

technique. The LOF-SW algorithm was slightly better than the IFS-LOF in the execution time. However, 

it had a lower accuracy rate than LOF-SW. 
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Table 6.5 The Execution times of the LOF, LOF-SW and IFS-LOF for different windows size 

 

6.5.2.4 Benefit of Using the Outlier Detection in the Concrete Mix Design 

Outlier detection, which is part of data mining, aims to find a point or group of points in the dataset 

that deviates significantly in behavior from the rest of the data points. Different factors influence the 

recognition of an item as an outlier. One of the factors could be seen in the quality of the data. The main 

causes of the poor quality of data included defective data processing methods. The data is often generated 

from various heterogeneous sources; human or machine error may occur at data entry or processing. 

These issues may be found in practical applications. For example, the author in [149] illustrated the poor 

Execution Time / 

Component  

100 200 300 400 

LOF 

LOF-

SW 

IFS-

LOF LOF 

LOF-

SW 

IFS-

LOF LOF 

LOF-

SW 

IFS-

LOF LOF 

LOF-

SW 

IFS-

LOF 

Cement 1.55 1.62 1.58 4.34 4.83 5.19 9.25 8.93 10.09 16.24 16.17 18.98 

Blast Furnace Slag 8.05 8.02 8.24 7.97 8.99 9.16 9.35 9.28 9.45 9.37 9.11 9.36 

Fly Ash 1.58 1.74 1.78 6.76 8.33 7.47 22.21 19.32 15.84 48.81 50.75 53.48 

Superplasticizer 1.66 1.57 1.95 4.3 7.05 5.2 9.81 22.39 10.77 19.67 48.67 21.38 

Coarse Aggregate 1.71 1.55 1.7 5.57 5.15 6.04 10.81 11.04 12.07 20.24 21.68 23.45 

Fine Aggregate 1.7 1.44 2.08 4.4 4.45 5.62 9.72 9.15 10.72 17.39 17.1 20.03 

Age 1.65 1.7 2.17 4.4 4.79 5.33 9.46 9.34 11.37 16.35 16.08 19.37 

Water 2.38 1.8 2.19 8.88 9.28 8.14 31.77 18.29 23.2 40.36 37.95 50.91 
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quality of the data used because of the lack of reliability from the sensors used. Another benefit of outlier 

detection is that it can enhance the strength assessment of the construction process. The strength 

assessment is usually carried out at 7–28 days after the concrete has been poured. The quality assessment 

of concrete may include some unusual data. Using the IFS-LOF outlier detection method can improve 

the reliability of data processing during the concrete mixture design, which reduces the expenses and 

time. 

6.6 Conclusion 

In this article, the IFS-LOF algorithm was developed and compared with LOF and LOF-SW. A 1030 

concrete mixtures dataset was used in the study to investigate the accuracy rate of the IFS-LOF. The 

concrete mixtures included various material proportions of water, cement, fine aggregate, coarse 

aggregate, fly ash, slag and superplasticizers. In addition, the concrete age of all mixtures was included 

in the analysis. The benefits and drawbacks have been analyzed in the concrete dataset to enhance the 

strength and workability of concrete mixtures by searching the outlier through measuring the accuracy 

rate and execution time. The main objective of IFS-LOF is to enhance the accuracy rate in each ingredient 

of the concrete data and solve the limitation of LOF. The outcome of the IFS-LOF demonstrated an 

improvement in the accuracy rate other than state-of-the-art LOF algorithms. Moreover, the popular LOF 

algorithm needs broad memory to hold all the data before identifying the local outlier. 
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Chapter 7: Conclusion and Future Research Direction 

 

7.1 Introduction  

Outlier detection is a method used in data mining and machine learning that indicates a data point’s 

divergence from typical behavior in the dataset. Applied outlier detection research has evolved into a vast 

resource of algorithms used in network intrusion detection, fraud detection, and web analytics, to name 

just a few. Outliers can be categorized into two general types: global or local. This paper focuses on local 

outlier detection. The most popular methodology for local outlier detection is a density-based technique 

named the local outlier factor (LOF). There are numerous methods for detecting local outliers based on 

various algorithms; however, the majority of these methods were developed for a static environment and 

are not applicable for streaming data, which is the usual form of big data nowadays. Data streams pose a 

challenge for local outlier algorithms because they must cope with the high-speed stream and provide 

efficient analysis. The LOF is one of the most appropriate techniques used in the density-based method 

to determine the outlier. However, it faces some difficulties regarding data streams. First, LOF processes 

the data all at once, which is not suitable for data streams. Another issue occurs when a new data point 

arrives; significantly, all the data points need to be recalculated. Additionally, the LOF requires the whole 

dataset to be stored in memory. Therefore, it affects the execution time. This chapter summarizes the 

dissertation work and outlines interesting directions for future study. 

7.2 Summary of main research goals and accomplishments  

To solve the LOF constraint in data streams, new methods should be developed. As a consequence, 

each new method can achieve the key objective of calculating the LOF score by considering the following 

circumstances (as set out in [19]): (1) a portion of the dataset is stored in computer memory; (2) no 

previous knowledge regarding the distribution of data as outliers is detected; (3) the algorithm does not 

have any knowledge regarding future data points when it detects an outlier using the current dataset; and, 

(4) the algorithm should check an incoming data point to determine if it is either normal or an outlier pt. 
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We developed a new approach for finding local outliers to address the LOF’s problems in the stream 

environment. Our methodology has three phases: preprocessing, processing, and detection. The 

preprocessing phase selects the first half of the data points to be processed in the next step. The data 

points are then divided, based on the grid method. The LOF algorithm processes each grid to obtain the 

outlier score. The detection phase ensures that any data points that surpass the threshold are deleted. Our 

method is called the grid partition-based local outlier factor (GP-LOF). The main objective of the GP-

LOF is to find the outlier under the previously described conditions  

The reachability distance, also known as the local outlier factor by reachability distance, is another 

method for calculating an outlier score (LOFR). The LOFR concept measures the outlier score without 

relying on the local reachability distance. Except for the lrd step, the LOFR uses, the LOF concepts and 

it generates a new LOFR ranking. The LOFR is taken from the data point (pt) reachability distance and 

is separated by the average of the neighbor's reachability distance, as discussed in chapter 5.In an attempt 

to improve the efficiency of the GP-LOF algorithm, we added the LOFR algorithm to the GP-LOF 

method and named it a grid-partition-based local outlier factor by reachability distance (GP-LOFR). The 

latest GP-LOFR calculation technique is presented in [150]. We also developed a new approach for 

outlier detection in for the construction industry. The concrete community requires such a framework to 

produce an efficient way of constructing concrete mixtures efficiently. Evaluation of measurements of 

samples that could involve humans or computer errors could result in outliers. Six research questions 

were addressed in our work, as presented in table 7.1. This section will summarize the responses to the 

research questions listed in Chapter 1. The research questions are repeated below to assist the reader: 

 

 

 

 

 



87 

 

Questions Research Question Chapters Pages 

1 
How does the GP-LOF algorithm apply the LOF 

in processing the data stream? 
 

 4 & 5 57,71 

2 
How does the GP-LOF algorithm solve the 

memory consumption issue? 
 

2 & 4 47,57 

3 
How does the GP-LOF algorithm deal with the 

incoming data points? 
 

4 60 

4 

Does the GP-LOF algorithm perform better than 

the DILOF algorithm for the accuracy of outlier 

detection? 
 

4 & 5 62, 74 

5 
Does the GP-LOF algorithm perform better than 

the DILOF algorithm in execution time? 
 

4 & 5 65, 77 

6 
How does the new approach of the outlier 

detection method evaluate the concrete mixture? 
 

6 87 

 

In response to the first question, we solved the issue of the LOF by using the GP-LOF and GP-LOFR 

algorithms. For the second question, we summarized the dataset using a limited memory and the sliding 

window technique with a particular window size. We used two steps to resolve the third question; first, 

we took the first 50% of data points and keep the rest; second, we used the GP-LOF to obtain the outlier 

score from each grid. In addition, a threshold was used to determine if the data points were common or 

outliers. For the fourth and fifth questions, both the GP-LOF and the GP-LOFR showed an improved 

result for the accuracy of outlier detection for the majority of the dataset.  However, as compared to the 

GP-LOF algorithm, the GP-LOFR had some drawbacks dealing with the dataset in terms of execution 

time. Chapters 4 and 5 address the analysis of the results of both the GP-LOF and the GP-LOFR in detail. 

For the last question, we developed a new approach for outlier detection in concrete mixtures by 

proposing a new method, called Isolation Forest (IF), based on the sliding window for the local outlier 

factor, which overcame both methods’ limitations discussed in Chapter 6. The dissertation chapters are 

depicted in the diagram below (Figure 7.1).  
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Figure 7.1 The map of the dissertation chapters. 

 

7.3 Conclusion and Future Direction  

Many applications require methods of dealing with unexpected results and identifying unusual results 

in the big data era. One of the goals of an outlier detection method is to discover suspicious or strange 

patterns. For example, extracting information from the dataset may lead to wrong conclusions because 

the information is inaccurate. Recently, outlier detection has received a lot of attention due to the 

increased complexities of data streams.  This dissertation proposed a new way of identifying local 

outliners by developing two methods for data streams; they are called the Grid Partition-based Local 
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Outlier Factors (GP-LOF) and the Grid Partition-based Local Outlier Factors by the Reachability 

Distance (GP-LOFR). Both approaches perform well when compared with the DILOF algorithm.  

For potential future work, other conventional local outlier algorithms can now be developed to 

function in the data stream. The above techniques, such as the GP-LOF and the GP-LOFR algorithms, 

can be used to implement the conventional algorithms in a data stream. The recent use of a Genetic 

Algorithms (GA) has demonstrated a possible solution for dealing with the problem of the local outlier 

in a data stream. It can also be combined with other common methods for detecting local outliers, such 

as COF, LOCI, aLOCI, and LoOP. Other EC methods for processing the data stream can be developed. 

Another future path may be to pair the LOF algorithm with another robust method to improve local outlier 

performance, such as the Isolation Forest that is discussed in chapter 7. This dissertation dealt with LOF 

problems and challenges in the stream environments and presented new methods for increasing the 

efficiency of local outlier detection. 

7.4 Achievement and Award 

7.4.1 List of Publications: 

• As the main author  

1) Alsini, R. and Ma, X., 2019. Data Streaming. Encyclopedia of Big Data; Schintler, L., McNeely, 

C., Eds 

Research paper Title:  Data Streaming 

Types:  Book chapter.  

Explanation: present a general information about the Data stream. It is published online by Springer 

in the encyclopedia of big data.  

 

2) Alsini, R., Alghushairy, O., Ma, X. and Soule, T., 2020, July. A Grid Partition-based Local Outlier 

Factor for Data Stream Processing. In Proceedings of the 4th International Conference on Applied 

Cognitive Computing, Las Vegas, NV, USA. 

Research paper Title:  A Grid Partition-based Local Outlier Factor for Data Stream Processing 
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Types: Conference Paper  

Explanation: a new method is proposed to solve the LOF algorithm's issue in the data stream. It is 

accepted at the 4th International Conference on Applied Cognitive Computing by Springer.  

 

3) Alsini, R., Alghushairy, O., Ma, X. and Soule, T., 2020, December. A Grid Partition Based Local 

Outlier Factor by Reachability Distance for Data Stream Processing. In 2020 International 

Conference on Computational Science and Computational Intelligence (CSCI), IEEE., Las Vegas, 

NV, USA. 

Research paper Title:  A Grid Partition Based Local Outlier Factor by Reachability Distance for 

Data Stream Processing 

Types: Conference Paper  

Explanation: This research paper aims to improve the GP-LOF algorithm's accuracy in detecting 

the outlier in the data stream environment. It has been accepted at International Conference on 

Computational Science and Computational Intelligence (CSCI).  

 

4) Alsini, R., Almakrab, A., Ibrahim, A. and Ma, X., Improving the outlier detection method in 

concrete mix design by combining the isolation forest and local outlier factor. Construction and 

Building Materials, 270, p.121396. 

Research paper Title:  Improving the outlier detection method in concrete mix design by 

combining the isolation forest and local outlier factor. 

Types: Journal  

Explanation: This research paper aims to detect the outlier in the concrete mixture design. It 

introduces a new approach of combining the Isolation Forest (IF) and Local Outlier Factor (LOF) 

to solve both method issues. It is published online in the construction and building material journal 

under science direct.  
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5) Alsini, R., Alghushairy, O. Almakrab, A., Soule, T. and Ma, X., 2021. Local Outlier Detection 

Techniques in Real-World Streaming Data Processing: A Literature Review ( Under Review). 

Research paper Title: Local Outlier Detection Techniques in Real-World Streaming Data 

Processing: A Literature Review. 

Types: Journal  

Explanation: This research paper aims to overview the recent progress in the local outlier detection 

techniques. It also illustrates the most common application apply such as static and stream 

environment. Also, it addresses the issue of the current process of the local outlier detection in the 

stream environment.  

• As co-author  

6) Alghushairy, O., Alsini, R., Ma, X. and Soule, T., 2020, March. A Genetic-Based Incremental Local 

Outlier Factor Algorithm for Efficient Data Stream Processing. In Proceedings of the 2020 the 4th 

International Conference on Compute and Data Analysis (pp. 38-49). 

Research paper Title: A Genetic-Based Incremental Local Outlier Factor Algorithm for Efficient 

Data Stream Processing. 

Types: Conference Paper  

Explanation: This research paper aims to solve the local outlier detection in processing the data 

stream. It is publish at 4th international conference in compute and data analysis (ICCDA 2020), at 

the ACM.   

 

7) Alghushairy, O., Alsini, R., Ma, X. and Soule, T., 2020, July. Improving the Efficiency of Genetic 

based Incremental Local Outlier Factor Algorithm for Network Intrusion Detection. In Proceedings 

of the 4th International Conference on Applied Cognitive Computing, Las Vegas, NV, USA (pp. 

27-30). 

Research paper Title: Improving the Efficiency of Genetic based Incremental Local Outlier Factor 

Algorithm for Network Intrusion Detection. 
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Types: Conference Paper  

Explanation: This research paper aims to improve the GILOF algorithm by introducing a new 

calculation method called Local Outlier Factor by Reachability distance (LOFR). It is accepted at 

the 4th International Conference on Applied Cognitive Computing by Springer.  

 

8) Alghushairy, O., Alsini, R and Ma, X., 2020, December. An Efficient Local Outlier Factor for Data 

Stream Processing: A Case Study. In 2020 International Conference on Computational Science and 

Computational Intelligence (CSCI), IEEE. Las Vegas, NV, USA. 

Research paper Title: An Efficient Local Outlier Factor for Data Stream Processing: A Case Study. 

Types: Conference Paper  

Explanation: This research paper aims to address the LOF algorithm's issue in processing the data 

stream. It has been accepted at International Conference on Computational Science and 

Computational Intelligence (CSCI). 

 

9) Alghushairy, O., Alsini, R., Soule, T. and Ma, X., 2021. A Review of Local Outlier Factor 

Algorithms for Outlier Detection in Big Data Streams. Big Data and Cognitive Computing, 5(1), 

p.1. 

Research paper Title: A Review of Local Outlier Factor Algorithms for Outlier Detection in Big 

Data Streams 

Types: Journal 

Explanation: This research article provides a review of the local outlier factor in data stream 

processing. It is published online at the MDPI journal.  

• Awards: 

 

1 A grant from the department of computer science to participate the CSCI 2020. 
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Appendix A -  Other Experiment tests between the GP-LOF, GP-LOFR, 

DILOF, IFS-LOF 

 

• The tables and figure below show the performance results of the algorithms between the GP-

LOF, DILOF algorithms in the window size 1000.  
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Accuracy result between the GP-LOFR, GP-LOF, and DILOF

UCI Pendigit GP-LOFR UCI Pendigit GP-LOF UCI Pendigit DILOF

UCI Vowel GP-LOFR UCI Vowel GP-LOF UCI Vowel DILOF

KDD 99 SMTP GP-LOFR KDD 99 SMTP GP-LOF KDD 99 SMTP DILOF

Window 

size 

UCI Pendigit UCI VOWEL KDD 99 SMPT 

GP-LOF GP-LOFR DILOF GP-LOF GP-LOFR DILOF GP-LOF GP-LOFR DILOF 

1000 70.91 71.01 54.93 94.6384 95.54 88.19 94.01 77.43 75.82 

Window size 

UCI Vowel KDD99 SMPT UCI Pendigit 

GP-

LOF Dilof 

GP-

LOFR 

GP-

LOF Dilof 

GP-

LOFR GP-LOF Dilof 

GP-

LOFR 

1000 1.815 10.3391 1.925 130.11 1155.23 219.347 5.49373 4.645 5.575 
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• The tables and figure below show the performance results of the algorithms in the concrete 

dataset between the GP-LOF, DILOF and IFS-LOF algorithms in all window sizes.  
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• Accuracy result: 

 

window size DILOF GP-LOF GP-LOFR IFS-LOF 

100 39.8082 45.80337 45.6479 92.84 

200 37.3153 43.65678 48.62021 71.8625 

300 38.5663 47.06702 53.05968 51.33333 

400 42.2612 51.36927 51.51733 73.2 

500 47.1796 46.42113 50.24005 74.8296 

 

• Execution time: 

 

window 

size DILOF GP-LOF GP-LOFR IFS-LOF 

100 8.7898 0.9 2.215 0.172 

200 11.9397 0.787 1.837 0.512 

300 15.42 0.747 1.391 1.034 

400 20.1695 0.885 1.162 2.101 

500 45.1401 0.993 1.156 3.215 

  

 


