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Abstract

The expansion of deployed traffic monitoring systems and information transmission is a crucial step

towards increasing the efficiency, reliability and safety of vehicular transportation. Under the current

context in terrestrial transportation, the implementation of real-time traffic analysis mechanisms can

provide more insight into the network, leading to better informed decisions on how to direct traffic and

plan roadways. In the future, as we move towards the integration of fully autonomous vehicles to a

transportation network with human drivers, the extraction and processing of real-time data will become

even more crucial to ensure a safe transition. In this work we present a real-time data analysis system

for in-flight vehicle detection as an option for the expansion of traffic monitoring. The presented solution

is able to perform typical post-flight processing in real time, with minimal computational and power

requirements, which allows its implementation on light-weight Unmanned Aircraft Systems (UASs). It

utilizes adaptive segmentation and 3D convolutions that take advantage of the structure of the LiDAR

point cloud, to identify vehicles and their respective positions within 3D point cloud segments that may

include background clutter. All the necessary positioning information required to run the algorithm are

introduced along with a detailed description for the computational steps extracting the desired features

from the raw data. We provide the timing constraints for the system and evaluate its performance while

considering different optimization variables and computation capabilities. The airborne LIDAR based

system and algorithm is able to achieve a detection ratio superior to 85% when considering individual

sources. With the tuning of optimization variables and utilization of data fusion, the system can reach a

100% rate of vehicle detection while maintaining low false detection ratios.
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Chapter 1: Introduction

In recent years, multiple efforts have been started to evaluate the resilience of critical infrastructure

and mitigate possible system disturbances. In the context of transportation, different studies of resilience

converge on a definition that considers the ability to maintain functionality under disruptions, and time

and resources required to restore performance level after disruption [3]. Within this broad picture,

events such as those related to changes in weather conditions, natural disasters, transportation network

congestion, and availability, and transportation infrastructure integration with other systems create op-

portunities for different disruptions to arise. These potential disturbances require real-time surveillance

mechanisms to detect these events and allow a transportation network to return to its expected state.

As a limitation to this requirement, the continuous growth of urban settings and its accompanying

infrastructure development have created complex transportation networks that can surpass the monitoring

capabilities of Departments of Transportation (DOT). Most of the current methods that collect data on

road and traffic conditions are centralized, require expensive infrastructure, and present surveillance

limitations, many of which demand continuous active human involvement [4]. This limits their usability

to well developed, busy areas with higher flux of vehicles, and established infrastructures. This level of

complexity and current monitoring capacity delays the response to disruptions such as traffic accidents

and allow traffic patterns that may interfere with the flux of vehicles to go undetected.

As the level of automation in transportation and integration between different intelligent systems

continue to increase, the probability of disturbances to occur will likely increase as well. In this context,

one of the most prominent disturbances is the deployment of autonomous vehicles to current transporta-

tion networks. Even though the interaction between human drivers and autonomous vehicles is still

being examined and tested, the transition period from when fully autonomous vehicles are introduced

to regular roads until they become common will require redundant mechanisms to ensure and maintain

safety and reliability. Real-time traffic monitoring provides an extra means to ensure intelligent vehicles

have enough information to navigate roads without creating dangerous situations for humans or existing

infrastructure. In order to meet the monitoring requirements of this not so far autonomous future, traffic

control centers will need mobile, easy to deploy monitoring solutions.

As a solution for the mobility constraints presented by standard traffic monitoring systems, UAS units

provide a level of flexibility that makes them suitable for different applications, from disaster response

to the delivery of packages [5]. Due to the versatility of UAS units, different research efforts have been

conducted to further expand their relevance to different activities, which creates an opportunity for this

industry.
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In alignment with the expansion of the UAS industry, the growing interest in Autonomous Vehicles

(AVs) and other computer vision applications that demand real-time responses, Light Detection and

Ranging (LiDAR) based systems have become one of the main components in the collection of spatially

dense and accurate 3D information [6]. As LiDAR technology continues to improve, it is also becoming

more popular and adaptable to different tasks, particularly in transportation-related applications [7], [8].

Recently, the National Cooperative Highway Research Program (NCHRP) Project 15-44 has developed

guidelines for the application of mobile 3D LiDAR technology to the operations of state DOT. The

project web page states that “Mobile LiDAR is one of several new 3D technologies that offer the promise

of transforming the way in which transportation agencies plan, design, construct and maintain their

highway networks” [7]. The project report identifies emergency response, clearances, traffic congestion,

and parking utilization as potential mobility-based traffic operation applications that can be monitored

and enhanced using LiDAR technology. The multifaceted benefits of adapting such mobile distributed

solution includes safety, cost-effectiveness, and ease of use [9].

Although mobile LiDAR technology has been considered for different tasks to improve transportation

networks [10], it also poses serious challenges when applied in the context of real time processing under

very strict energy/hardware constraints. The richness and level of detail provided by LiDAR data rely

on the number of coordinate points stored, which can exceed tens of millions of data points depending on

the areas scanned. Different LiDAR models can capture more than 100,000 data points per second [2].

Due to this large data generation rate, the transmission of all information captured over a wireless

channel would encounter energy and bandwidth limitations, which are very strict in economic, light-

weight UAS platforms in order to maximize battery life (i.e., flight time). These bandwidth and energy

limitations have led many researchers to perform post-flight data processing, sacrificing the real-time

response to the information gathered, which could be crucial to the specific application such as an

emergency response.

Considering the needs of real-time traffic applications, and limitations posed by small light-weight

UAS, we propose an adaptive light-weight object-detection system that can utilize an on-board processor

to analyze data during the scanning flight. This requires data collection, processing and transmission

to be carefully designed to fit within the very limited timing, weight and power constraints of mounting

such a system on an UAS. The successful implementation of an on-board object detection solution for

unmanned mobile LiDAR systems will make it possible to cover wide transportation network segments,

facilitate real time decisions to improve system-wide efficiency, monitor and extract information about

different modes of transportation, collect data on parking occupancy and utilization, and improve overall

efficiency and reliability of transportation systems.
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(a) Obstacle to real-time vehicle identification
(b) Proposed solution for an airborne LIDAR based
traffic monitoring system

Figure 1.1: Limitations and opportunities in real-time traffic monitoring with airborne LIDAR [1]
c© 2019 IEEE

1.1 LIDAR Technology

Light Detection and Ranging (LIDAR) is a remote sensing technology that utilizes light to obtain

precise 3D information about the environment scanned. In a similar manner to how RADAR and SONAR

devices use radio and sound waves to detect objects, LIDAR scanners emit beams of light and detect

the reflection of these beams to calculate the distance to the surface of interest. Based on the time of

flight (TOF) of the beam, the scanner can detect the distance to the reflecting surface according to the

following equation:

Distance =
(Time of Flight) · (Speed of Light)

2
(1.1)

In its earliest form, the utilization of light detection occurred in technical contexts away from the

general public. Such contexts included meteorological measurements of clouds and pollution [11] and

military applications. Recent developments and growing interest in the computer vision field, including

robotics, autonomous vehicles, and remote surveying, have popularized this light-based technology. Due

to its 3D information capabilities, LiDAR technology, in collaboration with other positioning devices, can

provide detailed spatial information from aerial and terrestrial perspectives. Because of this characteristic,

LIDAR scanners have allowed the compilation of data that makes it possible to pursue an essential

component of computer vision: object/feature identification.

This possibility of identifying objects through computer vision mechanisms improves the spatial anal-

ysis in diverse applications. Developments in this field have improved area mapping, obstacle detection

capabilities, and tracking of objects.

In [12], researches have used airborne LIDAR data collected in multiple years to map a region and
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study the biomass of this area. The comparison of the data obtained from LIDAR with other reliable

sources showed that LIDAR could improve estimation and reduce uncertainty. The spatial detail provided

by LIDAR has also contributed to forestry studies involving the height estimation of trees and the

monitoring of change in their structure [13], [14].

In the scope of terrestrial transportation systems, research involving LIDAR data has covered the

extraction of vehicle trajectories and road features, classification of objects in real-time, and evaluation

of vehicle surroundings. In such studies, the identification of the road level is an essential step for the

final goal. The method proposed in [15] utilizes a roadside unit LIDAR to identify vehicles by comparing

the cluster of points against a database. Based on this classification, a vehicle trajectory can be tracked

by following the movement of point cluster centroids frame by frame.

The study conducted in [16] mounted a LIDAR scanner on a vehicle and collected data during mul-

tiple driving sequences. With the use of machine learning techniques, the researches performed the

classification of objects into vehicle and non-vehicle categories to enable autonomous convoy following.

Subsequently, a similar study highlighted the importance of 3D LIDAR point cloud segmentation and

presented a methodology to identify obstacles to a vehicle’s path [17]. While focusing on computational

speed and complexity, the study aimed to cluster points above the ground level into meaningful sets.

Despite the availability of studies involving LIDAR point clouds in transportation settings, some

applications in which this technology could improve safety and help in the planning process of roads still

warrants more research. The review of studies on road feature extraction with LIDAR in [18] highlights

some of the areas in which most studies have been conducted, including road surface identification, traffic

sign extraction, and detection of lane markings. However, this review also mentions that the current

research needs to further analyze its performance in more broad and diverse road segments. Moreover,

it mentions that road slope studies and safety highway assessment, areas in which LIDAR can provide

unique insight, have been the subject of limited research.

1.2 UAS: Unmanned Aerial Systems

Similarly to the initial applications of LIDAR, the use of UAS units or Unmanned Aerial Systems

can be connected to military applications. The high adaptability of UAS units to diverse tasks has

led organizations and researches to focus on the development of applications for such systems in urban

settings. While infrastructure and transportation have saturated urban environments, UAS units bypass

obstacles with minimal dependency on terrestrial transportation networks. As this field continues to

grow, the topics in this area span from urban navigation to integration of communication networks.

One of the main concerns regarding the implementation of light-weight UAS units is related to the
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position tracking during a flight. In urban contexts, where physical barriers might degrade Global Nav-

igation Satellite System (GNSS) signals, the utilization of multiple sensors to accurately measure the

UAS’s position becomes a necessity. In [19] and [20] the authors utilize GNSS, Inertial Navigation

System (INS), and vision-based positioning sources to track the UAS. While the first paper relied on

statistical approaches to evaluate the signals and determine the switching between sources, the second

paper describes a boolean solution based on the availability of signals. Considering the scenarios in which

GNSS signals may be unreliable or unavailable, [21] proposes an Ad Hoc localization system based on

a network of aerial and grounded nodes. The position tracking would happen through the emission of

UWB signals to determine the distance between nodes and UAS.

Another study on UAS takes into account the power limitation imposed on flight duration. The au-

thors in [22] address the power constraint by prototyping a wireless charging station to enable continuous

operation without human interference. This solution that considers the inaccurate landing of a UAS

unit and delivers 65% power of a comparable corded charge. In the field of intelligent transportation,

[23] describes the implementation of UAS in vehicular networks. This paper presents an expression to

determine the delay of data packets between vehicles and drones, which then determine the required

spatial distribution of UAS units.

1.3 Related Work and Developments

Previous works have recorded the successful implementation of airborne LIDAR in object recognition

methods. While similar to the system proposed in this work, preceding methodologies disregarded the

real-time aspect of their analysis, utilized more complex computation techniques, or employed extra

equipment.

The research presented in [24] with aerial LIDAR, utilized a scanner that allows the capture of data

from distinct angles within short periods. In one of its experiments, the system collected data from a

road intersection. By comparing the movement of vehicles between these sequential frames, this study

was able to compute the displacement of such vehicles and their respective speeds. Despite the presented

results, the study does not mention whether the data is analyzed in real-time.

The detection methodology in [25] describes the fusion of optical and LIDAR data to classify objects.

The detection methodology segments the digital surface model generated and classifies the objects into

building or high vegetation classes.

Another study combined airborne LIDAR and hyperspectral data to identify vehicles in shadow areas

[26], which can be common in urban environments. The solution presented in the paper, including a

machine learning approach, highlights the importance of muti-source data fusion in improving vehicle
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detection.

1.4 Contributions from This Work

In light of previous research, this project proposes an airborne LIDAR system for real-time vehicle

identification in traffic. The selected approach takes advantage of LIDAR 3D data collection capabilities

to rapidly reconstruct the scanned environment for data analysis, allowing for real-time operation. We

have developed an end-to-end C++ algorithm that communicates with spatial data collection hardware to

process the raw data and output the required results. The following chapters describe this proposed air-

borne LIDAR-based system, evaluate its performance under different optimization variables, and present

options for multi-source data fusion and performance improvement of the system, particularly in terms

of detection accuracy. The proposed 3D convolution-based solution would serve as an additional source

of information for traffic control. As automation processes progress in transportation applications, this

airborne LIDAR-based solution could connect to other infrastructure and autonomous vehicles, providing

more robustness and accuracy to spatial recognition in transportation environments.
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Chapter 2: Proposed Airborne LiDAR System

The proposed system for the real-time airborne traffic monitoring is composed of a UAS, a LiDAR

scanner, a Global Positioning System (GPS) receiver, an INS, and an onboard computer. The algorithm

development process involved the collection of data with the sensing devices without the real-time analysis

of the data. The data was downloaded offline and evaluated in a setting emulating the real-time charac-

teristics of the system. The following sections describe the equipment utilized for the data collection and

the steps for the proposed algorithm for vehicle detection.

2.1 Hardware Description

LIDAR PUCK LITE VLP-16

The Velydone Puck is a commercial 3D LIDAR scanner that emits beams of light with a 360 ◦horizontal

field of view and a 30 ◦vertical field of view. This LIDAR version is a compact device with a 100m range

that can collect up to 300,000 points per second. The versatility of this version allows it to be used in

mapping, robotics, and industrial applications. During the collection of data, the VLP-16 emits light

beams in defined time intervals. Therefore, the time of emission for each beam can be estimated based

on the timing of an initial emission.

Figure 2.1: Velodyne VLP-16 PUCK LIDAR

Garmin GPS

During the collection of data, a GPS module sends timing information to the LIDAR through NMEA

$GPRMC messages every second. The time stamping of the data is an essential step in the reconstruction
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of the 3D information in a point cloud.

OXTS xNAV GNSS/INS

In addition to the time stamping of the data, a GNSS and INS capable unit records the position and

rotations of the drone at a rate of 100Hz. Since the 3D point cloud from LIDAR data is a reconstruction

from the distance to the scanner, the instantaneous location of the drone is a constantly moving reference

point. Moreover, during the flight, the drone will experience rotations due to acceleration and general

trajectory corrections. The INS unit keeps track of these rotations and ensures that the reconstruction

considers that some of the collected points are not directly below the drone.

Figure 2.2: Sequential operation of proposed algorithm

2.2 System Operation

The proposed system, based on the collection and real-time processing of data, consists of two time-

dependent blocks: a) Scanning, and b) Data Analysis. Given that the data collection by the LiDAR

scanner and positioning system can be operated alongside other computations within the proposed on-

board computer, the data analysis block is designed to run in parallel with the scanning block. Therefore,

it is essential to select a scanning block time that allows the data processing algorithm to perform the

computations before the next scanning block starts, as shown in figure 2.2. While the LiDAR and posi-

tioning systems scan the data for a given block, the onboard computer is processing the data from the

previous block and needs to finish its computations before the end of the current scanning block. This

way, we can ensure that the rate of data accumulation does not exceed the capability of the system to

process the information. The algorithm steps for the proposed system will be explained sequentially in

the following subsections.
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Figure 2.3: Coordinate decomposition based on TOF distance R and firing angles ω and α [2].

Scanning:

The data collection is performed by a (VLP-16 Lite) LiDAR scanner in conjunction with a Garmin

GPS module, and an OXTS xNAV unit, an Inertial Navigation System (INS) equipped with GNSS

capabilities. During the flight of the UAS, the LiDAR scanner fires up to 600,000 light beams per second

and detects their reflection.

As the LiDAR scans the environment, the GPS module provides periodic time stamps for the data

collected. At the same time, the INS unit records the position of the UAS and the rotations along the

X, Y, and Z coordinate system. Since the successful reconstruction of the 3D environment depends on

aligning the position of the UAS with the measured distances by the LiDAR, the flight coordinates are

also time stamped.

Data Processing:

With the information collected during the scanning block, the data analysis algorithm combines all of

the available data to create a 3 dimensional representation of the environment, referenced to the UAS’s

position during the flight. This 3D space goes through a filtering step to select the data within the range

of interest and then it undergoes a convolutional step for the vehicle detection. These steps are further



10

Figure 2.4: Vehicle identifying algorithm block diagram

explained in the following sections.

2.3 Vehicle Identifying Algorithm

Read and Prepare Data

At the beginning of the data processing block, the on-board computer requests the LiDAR and UAS

positioning data for the most recent frame and performs the initial data preparation. The raw LiDAR

data is presented with the time of flight (TOF) distance, along with a vertical and horizontal firing angles

ω and α, respectively. In order to reconstruct the 3D distance from the LiDAR, the TOF distances are

decomposed in X, Y, and Z components based on the firing angles, as shown in figure 2.3. Since a time

stamp is not assigned to all data points, the periodicity of the beam firings is used to assign a time stamp

to the remaining points.

The positioning information comes with the time stamp for each measurement with (a) Latitude, (b)

Longitude, (c) Altitude, (d) Heading, (e) Pitch, and (f) Roll. The latitude and longitude values are then

converted to the Universal Transverse Mercator (UTM) coordinate system so they can be referenced to

a 3D system along with the altitude.

Correct Reference Coordinates

The initial preparation of the data yields two 3D datasets that represent the trajectory of the UAS

and the distance from the objects scanned to the LiDAR. Depending on how the LiDAR scanner and
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positioning system are mounted on the UAS, their reference X, Y, and Z coordinates might not be the

same. Therefore, the distance between the positioning equipment and LiDAR needs to be considered and

angular corrections need to be performed to align both coordinate reference. In the proposed system the

position of the UAV is used as a reference and the LiDAR data is transposed to that coordinate reference.

Interpolate Data

Given that the UAS’s positiong recording frequency by the INS unit is much lower than that of the

LiDAR scanner beam firing, the UAS position path and rotations need to be interpolated to provide an

appropriate origination coordinate for each beam firing. Before the data sets with the position of the

UAS and LiDAR measured distance can be combined, an UAS position needs to be assigned to each of

the light beams. Given that the INS unit tracks the position at 100Hz, a linear interpolation can be used

to calculate the UAS position between 2 measurements.

UAS1 \\ (data1, t1)
UAS2 \\ (data2, t2)
LiDARk \\ (lidar1, tlidar)

if t1 ≤ tlidar ≤ t2 then

datak = data1 + (data2 − data1) · tlidar − t1
t2 − t1

end
Algorithm 1: Linear Interpolation

Apply Geolocation

With all the LiDAR coordinates properly referenced to the UAS position’s, the two data sets can be

combined once axial rotations (heading, pitch, and roll) corrections are have been applied. During the

flight, changes in direction and speed cause the UAS to experience rotations as it corrects its course.

The equations below demonstrate how the final data set can be obtained from the UAS position, LiDAR

TOF distance measurements, and axial rotation corrections.

Rz(h) =


cos (h) − sin (h) 0

sin (h) cos (h) 0

0 0 1

 (2.1)
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Ry(p) =


cos (p) 0 sin (p)

0 1 0

− sin (p) 0 cos (p)

 (2.2)

Rx(r) =


1 0 0

0 cos (r) − sin (r)

0 sin (r) cos (r)

 (2.3)

R(h, p, r) = Rz(h)Ry(p)Rx(r) (2.4)


X

Y

Z


Final

= R(h, p, r)


X

Y

Z


LiDAR

+


X

Y

Z


UAS

(2.5)

Data Optimization

After the proper 3D referencing calculations, the final point cloud needs to be optimized for the

convolution calculations, the most computationally expensive step of the algorithm. First, repeated

points need to be removed from the data set. This step is necessary because the LiDAR scanner can

detect the same location of the area scanned during different parts of the flight, yielding the same X, Y,

and Z coordinates after the referencing calculations. Once the unique point cloud is obtained, the road

data set can is trimmed for the limits of the road segment of interest. Since the proposed system is meant

to work with scheduled flights, the road limits can be obtained from the scheduled flight trajectory. Next,

the point cloud needs to be filtered for the road level of interest, which can be based on the minimum

data Z coordinate on the frame. This the algorithm can concentrate in regions where vehicles are likely

to occupy. The last optimization in this step is to add an offset to the data so it can start at the origin

of the 3D cartesian coordinates and continue along the positive axes.

Convolution Computation

The final step of the vehicle identifying algorithm is to perform the convolution computation. Utilizing

a pre-selected vehicle model, the processed data captured by the system is convolved with this vehicle

model to find similarities with the scanned data. Based on a selected threshold for the result of the

convolution computation, the algorithm determines whether a vehicle is located in a given location. The
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convolution threshold is defined as the minimum number of individual point superpositions between the

vehicle model and the scanned environment point cloud for each convolution step for the algorithm to

classify an object as a vehicle. This way, a higher convolution threshold, in superpositions/step, requires

more details in the scanned point cloud to identify an object as a vehicle.

Sx,y,z \\Scanned Environment
Vx,y,z \\Vehicle Model
Qx,y,z \\Convolution Result

M = [0,max(xscan)−max(xmodel) + 1]
N = [0,max(yscan)−max(ymodel) + 1]
P = [0,max(zscan)−max(zmodel) + 1]

for m ∈M do
for n ∈ N do

for p ∈ P do

Q(m,n,p) =
∑
x∈V

∑
y∈V

∑
z∈V

S(x+m, y + n, z + p) · V (x, y, z)

if Q(m,n,p) ≥ threshold then
Record Position of Vehicle;

end

end

end

end
Algorithm 2: 3D Convolution

Since the calculations near an actual vehicle may yield multiple convolution results that surpass

the chosen threshold, due to partial superpositions between the actual vehicle and the model, smaller

convolution results near a higher value need to be disregarded. In other words, a scanned vehicle will have

partial matches with the selected model and these partial matches need to be filtered from the desired

“full” match between the point clouds. At the end of the data processing block, the algorithm outputs

the coordinates for the detected vehicles minus the offset it had generated while optimizing the data.

The performance of the algorithm described above can be tuned based on the scanned time for each

frame, the resolution step for the convolution computation, and the convolution result threshold.

2.4 Results

The tests revolved around selecting an appropriate resolution for the convolution step. Depending on

the resolution size, the computation cost can be lowered, increasing the algorithm’s speed. The objective

was to downsize the amount of data in the point cloud, while still maintaining enough information for
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(a) Single Vehicle Point Cloud (b) Multiple Vehicle Point Cloud

Figure 2.5: Post-Processed Point Cloud from the Airborne LiDAR Based System [1] c© 2019 IEEE

Table 2.1: Single Vehicle Convolution Timing

Length (m) 10 20
Resolution (m) 0.05 0.1 1 0.05 0.1 1

Convolution Timing (msec) 701.9 579.0 10.4 3253.9 2425.6 17.4

Length (m) 50 100
Resolution (m) 0.05 0.1 1 0.05 0.1 1

Convolution Timing (msec) 12314.4 9052.8 42.4 25731.9 18444.8 57.9

the algorithm. During the initial development of the algorithm, the post-processing point cloud for the

single vehicle was subdivided into frames of different lengths and evaluated for different convolution step

resolutions.

Considering that the VLP-16 LiDAR has an accuracy of ±0.03m, resolutions sizes of 0.05m, 0.1m, and

1m were Tested. While maintaining the 55m width, the length of the point cloud was edited to evaluate

the convolution computation with different amounts of data points. The algorithm was successful in

identifying the vehicle with all of the resolution sizes considered. Table 2.1 displays the time required to

identify the single-vehicle for the mentioned resolution steps.

The choice of resolution step is a trade-off between efficiency and accuracy. Even though the 1m

step allows the convolution calculation to run considerably faster, it also eliminates spatial data about

the vehicle. For example, a vehicle with a width of 2m would have a very limited amount of points to

represent that direction, when compared to smaller steps. While the larger convolution step of 1m had

an error of 1.05 m from the actual vehicle position, the 0.1m step had an error of 0.07 m. However, for

the proposed system and algorithm, this error can be ignored. Given that most scanned areas will have

moving vehicles, the fast detection of their presence is more important than their accurate instantaneous

position.

After the selection of an appropriate resolution step, the end-to-end system can be analyzed with the
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data set with multiple vehicles, providing a better understanding on the algorithm’s efficiency. The full

test analyses the effect of the convolution threshold (superpositions/step) and frame time duration on

the performance of the algorithm.

The data packets from the raw data set for the multiple vehicle scanned environment was segmented

into different time frame lengths from 1 second to the full duration of the UAS flight, 47 seconds. Tables

2.2, 2.3, 2.4, and 2.5 present the average algorithm computation time for the different frame times,

convolution thresholds, and RAM configuration considered. Under the current algorithm and systems

utilized, the time requirements for the frame times followed figure 2.2, maintaining the Data Processing

Block timing less that the Frame Time.

The four configurations of RAM for the system present a similar timing trend when considering

the convolution threshold in (superpositions/step). While the algorithm’s elapsed time for thresholds

of 150, 200, and 250 superpositions/step are very similar for each of the four test configurations, the

lower threshold of 100 superpositions/step presents a slightly higher time. This result is due to the fact

that a higher rate of partial object superpositions are exceeding the threshold, requiring more filtering

computations to be performed. This is also an indication that the algorithm might be failing to distinguish

vehicles from other objects, due to the lower threshold.

Contrary to what was expected, as the convolution threshold increases, the results show that the total

data processing time does not necessarily decrease indefinitely. With higher thresholds, the algorithm is

expected to have a lower rate of false detection, since only vehicles will have the required features to yield

a convolution result with the vehicle model that can exceed the selected threshold. The results indicate

that there is an optimal threshold value that differentiates vehicles from other objects.

In addition, the results suggest that the amount of RAM utilized in the system does not have a

significant effect compared to that of the processor utilized. The 2GB, 4GB, and 8GB RAM configurations

present very similar timing results for all tests thresholds and frame times, indicating that smaller on-

board computers with lower power consumption can be selected.

Tables 2.6, 2.7, 2.8, and 2.9 display the average time for each of the algorithm’s steps for different

frame time selection and convolution thresholds. The values in the table present the average trend for

the computation time of the algorithm and will have slight variations depending on the amount of data

points and quantity of vehicles in the frame. Generally, the reading of data from the hardware and the

convolution calculations are expected to consume most of the data processing time.

Seeing that the system is able to operate within the time constraints, the algorithm can be reviewed

for its accuracy in detecting vehicles and examined on how the convolution threshold and frame time

duration affect its performance. For this precision evaluation the Detection Ratio and False Detection
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Table 2.6: Average computation time for each algorithm step with a selected convolution threshold of
100 and 2GB of RAM.

1sec 2sec 5sec 10sec 15sec 20sec 30sec 40 sec 47sec

Read and Prepare
Data (sec)

0.060 0.121 0.308 0.672 0.969 1.381 2.118 2.733 3.163

Correct Reference
Coordinates (sec)

0.005 0.013 0.035 0.062 0.119 0.130 0.308 0.406 0.464

Interpolate
Data (sec)

0.007 0.014 0.037 0.080 0.157 0.193 0.603 0.658 0.703

Apply Geolocation
(sec)

0.027 0.054 0.134 0.267 0.403 0.535 0.771 1.077 1.316

Optimize Point
Cloud (sec)

0.052 0.104 0.261 0.544 0.781 1.077 1.709 2.438 2.452

Convolve Point
Cloud (sec)

0.393 0.423 0.521 1.007 1.325 1.657 1.719 6.228 7.682

Total Time
(sec)

0.544 0.729 1.296 2.632 3.754 4.974 7.228 13.540 15.780

Table 2.7: Average computation time for each algorithm step with a selected convolution threshold of
150 and 2GB of RAM.

1sec 2sec 5sec 10sec 15sec 20sec 30sec 40sec 47sec

Read and Prepare
Data (sec)

0.061 0.124 0.309 0.666 0.965 1.380 2.114 2.727 3.190

Correct Reference
Coordinates (sec)

0.005 0.013 0.035 0.063 0.118 0.128 0.309 0.405 0.465

Interpolate
Data (sec)

0.007 0.014 0.037 0.079 0.151 0.192 0.539 0.640 0.705

Apply Geolocation
(sec)

0.027 0.053 0.134 0.272 0.403 0.532 0.771 1.198 1.249

Optmize Point
Cloud (sec)

0.052 0.104 0.258 0.535 0.787 1.075 1.707 2.195 2.432

Convolve Point
Cloud (sec)

0.252 0.291 0.444 0.891 1.169 1.515 1.696 5.321 5.821

Total Time
(sec)

0.404 0.600 1.216 2.506 3.593 4.823 7.137 12.486 13.862
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Table 2.8: Average computation time for each algorithm step with a selected convolution threshold of
200 and 2GB of RAM.

1sec 2sec 5sec 10sec 15sec 20sec 30sec 40sec 47sec

Read and Prepare
Data (sec)

0.060 0.121 0.308 0.667 0.968 1.383 2.114 2.743 3.143

Correct Reference
Coordinates (sec)

0.005 0.013 0.035 0.063 0.118 0.129 0.307 0.405 0.463

Interpolate
Data (sec)

0.007 0.014 0.036 0.079 0.152 0.189 0.536 0.641 0.704

Apply Geolocation
(sec)

0.027 0.054 0.134 0.267 0.402 0.532 0.770 1.070 1.257

Optimize Point
Cloud (sec)

0.052 0.111 0.264 0.541 0.779 1.090 1.714 2.199 2.465

Convolve Point
Cloud (sec)

0.213 0.264 0.430 0.874 1.146 1.502 1.695 5.155 5.423

Total Time
(sec)

0.364 0.577 1.207 2.491 3.565 4.825 7.136 12.213 13.455

Table 2.9: Average computation time for each algorithm step with a selected convolution threshold of
250 and 2GB of RAM.

1sec 2sec 5sec 10sec 15sec 20sec 30sec 40sec 47sec

Read and Prepare
Data (sec)

0.060 0.121 0.308 0.667 0.965 1.393 2.139 2.732 3.158

Correct Reference
Coordinates (sec)

0.005 0.013 0.035 0.062 0.120 0.128 0.309 0.406 0.463

Interpolate
Data (sec)

0.007 0.014 0.036 0.079 0.152 0.191 0.542 0.648 0.705

Apply Geolocation
(sec)

0.027 0.053 0.134 0.267 0.402 0.533 0.782 1.072 1.261

Optimize Point
Cloud (sec)

0.053 0.104 0.261 0.550 0.787 1.071 1.711 2.216 2.438

Convolve Point
Cloud (sec)

0.206 0.258 0.427 0.872 1.142 1.500 1.696 5.111 5.355

Total Time
(sec)

0.358 0.563 1.201 2.497 3.568 4.817 7.179 12.185 13.380
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Ratio are utilized. These measures are defined as follows:

Detection Ratio =
# Correctly Detected Vehicles

# Actual Vehicles
· 100% (2.6)

False Detection Ratio =
# Falsely Detected Vehicles

# Total Detected Vehicles
· 100% (2.7)

The graphs in figure 2.6 display the Detection Ratio and False Detection Ratio for convolution thresh-

olds of 100, 150, 200, and 250. When considering the frame time, the algorithm has a better detection

ratio performance for shorter segments, such as 1 and 2 seconds. Conversely, as the convolution threshold

increases, the False Detection Ratio decreases.

This behavior is due to the number of times the road level is detected during the flight and the density

of points per scanned frame. The selection of smaller time frame intervals increases the frequency with

which the algorithm is executed, also adjusting the detection for the road level more often. In a road

segment with a slope, such as the data set analyzed, delaying the detection of the road level can eliminate

parts of a vehicle from the convolution computation. However, increasing the length for the time frames

also increases the number of points per area scanned. Since rotations during the flight of the UAS can

cause the LiDAR scanner to detect areas that are farther ahead or past its current trajectory, more data

points will exist around that location. With a higher density of points, which also means a higher level

of detail in the point cloud, the algorithm has a better likelihood to correctly identify vehicles.

The plot in figure 2.7 displays the normalized quantity of road level detection and normalized density

of points per frame, providing an intuition for the detection and false detection rates. During the full 47

second flight, the smaller frame times identified the road level with a higher frequency when compared

to longer segments. This prevented vehicles from being eliminated from the convolution step, yielding a

high detection ratio. Nonetheless, due to the lower density of points and consequent lower level of point

cloud detail, some of the objects in the frame were falsely identified as vehicles. On the other hand,

the longer frames had a high density of data points, providing enough features for the algorithm and

eliminating all false detection.

In order to maintain a high detection ratio for the algorithm, larger values for the convolution threshold

can increase the possibility that vehicles will be accurately identified. However, line-of-sight limitations

during the UAS flight can prevent vehicles to have their entire surface scanned. This is evident in the

point cloud with multiple vehicles. During the scanning period, some of the vehicles in that area are

covered by trees and do not have their entire surface represented in the 3D representation created by

the system. Therefore, lower thresholds need to be considered so that partially scanned vehicles can be
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(b) Convolution Threshold = 150 superpositions/step
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(c) Convolution Threshold = 200 superpositions/step
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(d) Convolution Threshold = 250 superpositions/step

Figure 2.6: Detection and false detection ratio for different convolution thresholds (superpositions/step)
and time frame segments (sec)

properly identified.

Under the constraints of the proposed algorithm, shorter time frames provide a superior overall per-

formance. However, the selection of threshold values will depend on the target application for the system.

For example, while the utilizing of the proposed system as an independent vehicle identifying method

for real time occupancy analysis of a road network, the lower convolution thresholds can provide an

adequate estimation of the actual state of the area of interest, with some overestimation. In the context

of autonomous vehicles, where multiple sensing mechanisms are employed, higher convolution thresholds

can provide a high detection and low false detection ratios that can be compared against data from other

sources, providing an extra layer of verification to ensure safety and reliability.
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Figure 2.7: Normalized Density of Points and Road Level Adjustments Frequency
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Chapter 3: Multi-Source Data Alignment

The implementation of the proposed airborne LIDAR-based system for vehicle detection will find its

application in transportation systems alongside multiple spatial detection mechanisms, many of which will

be LIDAR scanners. In this context, with the availability of spatial information from different sources,

warrants the research of whether or not there is a benefit in aligning multiple data from different sources.

In other words, there is a need to explore the multi-source data alignment for the potential detection

improvements and any extra computation costs this process might add to the system. With consideration

to the immediate applications of this data alignment to the system presented in the previous chapter,

the partial scanning of vehicles due to non-line-of-sight (NLOS) and consequent limited amount of 3D

information degraded the system’s performance. Under this circumstance, the data alignment provides a

potential solution to increasing the point cloud’s level of detail for an object, as shown in figures 3.1 and

3.2. This analysis of multi-source data alignment aims to determine whether the correct detection ratio

obtained by the proposed system can be improved. When it comes to the synchronization of airborne data

from UAS units, the flight schedule of these units is relevant when stitching 3D point clouds together.

Here we consider the LIDAR scanned environmental data from two perspectives and analyze the results

of merging this data. The following sections describe possible methods to perform this data alignment,

its benefits, and additional costs.

(a) Vehicle point cloud from source 1 (b) Vehicle point cloud from source 2

Figure 3.1: Partial vehicle point clouds obtained from individual LIDAR sources.

3.1 Data Alignment Methods

During the regular operation of the proposed system, the equipment mounted on the UAS collects

and processes the data so it can reduce the reported messages to relevant information only. As part of
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Figure 3.2: Aligned point cloud from multiple LIDAR sources.

the operation of the proposed airborne LIDAR detection system, the positioning hardware continuously

references the geographical location and altitude of the UAS during its flight. As a consequence of

this implementation, the point cloud generated by the algorithm also has the same position reference.

Therefore, if the different scanning systems detecting objects and generating 3D point clouds share this

same reference, combining the data from these sources does not add any extra computational cost. Due

to this characteristic, the focus of data alignment now shifts to the contents of the reported information.

Depending on the type of data reported, the alignment of 3D information from multiple LIDAR units can

address the detection ratio of vehicles and non-vehicles. Out of the possible options for data reporting,

we consider sending a) Vehicle Coordinates, and b) Selectively Extracted Point Clouds based on the

proposed algorithm’s results.

Reporting Vehicle Coordinates

The motivation for developing the light-weight algorithm for vehicle detection came from the high

rate of data collected by LIDAR scanners. The proposed airborne LIDAR system, for example, collects

more than 100,000 data points per second. Instead of transmitting the full amount of data collected, the

algorithm design allows for the reporting of the coordinates of objects detected and classified as vehicles.

Under this approach, after running the identification algorithm, the system reports the position of the

identified vehicles so that traffic control centers can make decisions based on that information. The
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Figure 3.3: Data alignment pipeline for offline computations

multiple perspectives of the same road segment then validates the identification of vehicles from different

sources. The comparison between the coordinates reported from each of the scanners will create a map

with vehicles identified from both scanners and the ones identified by one scanner only. The sole reporting

of vehicle coordinates significantly reduces the amount of information transmitted; however, it also limits

the detection accuracy to the results obtained with the computations of the on-board processor. In this

case, it is not possible to improve the ratios of correct and false detections. Since the motivation in

pursuing data combination processes involve the increment in detail and quantity of information, further

data analysis is required. Consequently, the test and experiments regarding data alignment will focus on

the second approach.

Reporting Extracted Point Clouds

In order to take advantage of 3D spatial LIDAR data from multiple sources, it is necessary to transmit

the information collected by the UAS units at a reduced level, when compared to the total amount of

data. As a way to merge the data from different sources, improve the detection of vehicles, and eliminate

false detections, the system can report selected point clouds based on the result of the algorithm. Instead

of strictly reporting the coordinates for a vehicle, the system would also report the trimmed point cloud

around that coordinate. When compared to the reporting of vehicle positions, this transmission of selected

subsections of the environment point cloud requires the transmission of a larger quantity of data. However,

transmitting the point cloud of a detected vehicle gives room for further data processing to occur. Under

this method of data reporting, instead of accepting the results from the on-board computer as the guiding

information for decision-making, it becomes an initial filtering of the data for a more thorough offline

data analysis. The recognition algorithm, based on the convolution of point clouds (scanned environment

and vehicle model), makes a decision based on the similarity between the 3D structures. The base for this

level of similarity comes from the selected convolution threshold. On the one hand, as discussed in the

previous chapter, a higher convolution threshold lowers the number of false detections but also excludes
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Figure 3.4: Percent match between scanned point clouds of actual vehicles and the vehicle model for
individual data sources and aligned data

some of the partially scanned vehicles from being identified. On the other hand, a lower convolution

threshold identifies more vehicles, even the partially scanned ones, but also yields false alarms. The

alignment of data from multiple LIDAR sources can be adapted to address false detections and lower

detection ratios depending on the approach selected to report the results from the data.

3.2 Results and Discussion

The data considered for this multi-source LIDAR data analysis comes from the dataset collected in

figure 2.5b, with the airborne LIDAR and positioning system. This dataset corresponds to an urban

environment containing multiple vehicles. In order to analyze the data from different LIDAR sources, we

consider static sections of the scanned area by the UAS’s LIDAR during different positions of the same

flight. Therefore, the data capture performed during different time instants of the flight is equivalent

to multiple sources scanning a dynamic environment. In chapter 2, the development of the algorithm

for vehicle identification considered different time-dependent scanning blocks to collect and allow for the

appropriate on-board data analysis. Under this segmentation of the data, each of the scanning blocks
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Figure 3.5: Percent match between scanned point clouds of non-vehicle objects (vegetation) and the
vehicle model for individual data sources and aligned data

corresponds to a LIDAR perspective. Since the 2-second scanning blocks achieved high detection ratios,

the evaluation considers these scanning blocks.

The implementation of multiple units of the proposed airborne system will follow the operation steps

described in chapter 2 until the identification and classification of objects as vehicles. Once the position of

vehicles is determined, the on-board computer segments the point cloud around that section and transmits

this subsection of the data collected. After all the data arrives in one place, further verification of the

results occurs through extra computations. Following the real-time convolution during the flight, a second

convolution is considered for the aligned data. Since the convolution computation identifies an object as

a vehicle based on the similarities with the pre-selected vehicle model, the extra amount of information

from multiple sources will improve the level of detail for an object’s point cloud. In order to quantify

how the data alignment affects this level of similarity considered in the convolution computation, the

investigation considers 12 samples extracted from the urban environment point cloud. The convolution

computation calculates the similarity with the vehicle model for the 12 samples, six vehicles and six

non-vehicles (vegetation in the environment). Figures 3.4 and 3.5 present the level of similarity for each



27

Single Source Multi−Source

P
er

ce
nt

ag
e 

(%
)

0
20

40
60

80
10

0 Detection Ratio

False Detection Ratio86.67

23.53

100

14.29
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of these samples for individual perspectives and the aligned perspectives.

The percentage matches between samples and the model indicate that vehicles have a higher match

in superpositions when compared to non-vehicles. On average, the samples of vehicle point clouds match

25.68% of the model selected for the convolution, while non-vehicles have an average match of 18.49%.

When considering the combined data from two LIDAR sources, the average match with the model increase

to 38.78% and 28.11% for vehicles and non-vehicles, respectively. As the number of LIDAR units scanning

the same object increase, the results indicate that the percentage match with the model will also increase

for all objects. However, the greater level of detail in a point cloud for an actual vehicle will make it

more likely to be identified as a vehicle, while the opposite is not valid for other objects.

This point cloud similarity gain with the vehicle model served as a guideline for the convolution

threshold selection. The initial convolution, performed in real-time with a lower threshold value, yields a

high detection ratio but also misidentifies objects as vehicles. Then, after the data transmission, the offline

convolution will narrow the results to actual vehicles by utilizing a higher threshold value. Considering

a first convolution with a threshold of 100 superpositions/step, shown in figure 2.6a, the identification
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Table 3.1: Uncompressed data size of extracted point clouds for data alignment and relative size to
entire dataset collected.

Point Cloud size (kB) Ratio to full dataset
Vehicle 1 19.6 0.00418%
Vehicle 2 23.2 0.00554%
Vehicle 3 23.9 0.00439%
Vehicle 4 14.5 0.00347%
Vehicle 5 13.3 0.00328%
Vehicle 6 22.3 0.00451%

algorithm achieves a high detection ratio of 100% but also presents a false detection ratio of 25%. Even

though the algorithm correctly identifies all of the vehicles present in the frame, it also classifies a

considerable amount of non-vehicle objects as vehicles. With a threshold of 150 superpositions/step for

the second convolution, we should expect a slight decrease in the correct and false detection ratios to

86.67% and 23.53%, respectively. The results of single convolution and two sequential convolutions with

data fusion are presented in 3.6.

Compared to the single source identification, the convolution calculation with 150 superpositions/step

threshold with combined data from two sources achieved a detection ratio of 100% and a false detection

ratio of 14.29%. This improvement in identification is an effect of the larger quantity of data available

for recognition due to the multi-source alignment. This improvement, however, comes at a slightly higher

cost in the transmission of data. Previously, when the transmitted data from the UAS corresponded

to the position of identified vehicles, the transfer of information was minimal, in the range of less than

100 bytes. With the reporting of extracted point clouds, the quantity of transmitted data increases.

Nonetheless, when compared to the full dataset to which this extracted point clouds belong, the percentage

of information is still reduced considerably. Table 3.1 presents the uncompressed file size for the extracted

point clouds for the six sample vehicles considered and the respective proportion to the datasets from

different perspectives to which they belong.

Because of the quantity of data transmitted, the efficacy of the alignment of LIDAR information

through extracted object point clouds will depend on the type of road environment scanned. In an area

with a high density of vehicles, multiple point cloud transmissions would happen, which not only would

consume more power but also require more bandwidth. This data alignment approach should then be

restricted to less congested zones, where data transfer would not occur frequently.
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Chapter 4: Conclusion and Future Work

This work proposed an airborne LIDAR-based system for real-time vehicle recognition. With consid-

eration to the entire system, this work covered the required hardware, the performance evaluation of the

proposed vehicle identification algorithm, and the possible methods for multi-source data fusion. The

characterization of the algorithm introduced the optimization variables that affect its detection accuracy,

with particular attention to the selection of a convolution threshold.

With the analysis of a single unit and consideration for optimization variables, the vehicle identification

algorithm provides a detection ratio of over 85% and low false detections. This work also considers the

multi-source data alignment of LIDAR units as a means to counterbalance the limitations from single-

source data collection, such as a NLOS scan and low density of points. This data alignment was able

to improve the detection of vehicles by over 15% and reduce false detections by approximately 40%.

However, this improvement with the data fusion also requires the transfer of a small fraction of the entire

data collected, which can limit its practicality in areas with a high density of vehicles. While the position

of an object can be represented with less than 100 bytes, a subsection of the data collected for data fusion

would require kbytes of information.

The proposed solution for in-flight object detection not only addresses current transportation network

control needs but also has the potential to benefit new emerging applications. The goal of creating an

intelligent transportation system will continue to drive the efforts to automate transportation networks,

including the integration of fully autonomous vehicles to infrastructure and smart sensors. In this context,

the implementation of the airborne LIDAR-based vehicle recognition system will provide a real-time,

mobile, complementary source of spatial information for vehicles and traffic controllers. In this context

of an intelligent transportation system, the redundancy of spatial data will improve the decision making

of humans and machines alike to ensure safety, reliability, and resilience.

4.1 System Improvement

The identification algorithm, based on the convolution of point clouds, utilized a vehicle model re-

sultant from one of the scans obtained from the aerial system. Since this model corresponds to a single

scanned vehicle, its dimensions do not correctly characterize all possible cars. While all vehicles have

similar features, such as windshields and hoods, a sedan has different physical measurements from an

SUV. The compilation of multiple vehicle models with diverse characteristics and development of an

adapted model has the potential to improve the system’s identification capabilities.

Moreover, the performance evaluation of the airborne LIDAR scanner showed that the system meets



30

the timing requirement to maintain the data analysis block shorter than the scanning block by a large

margin. Therefore, the timing budget still can accommodate further on-board computations. Concerning

the combination of data from multiple LIDAR sources, this available timing budget can be utilized for

the compression of the information transmitted. This way, the limitations imposed by the transmission

of extracted point clouds for data alignment would be mitigated.

4.2 Future Research

While the focus of the work fell on the collection/processing of data and timing requirements, further

consideration of the capability of UAS units needs to precede the deployment of this airborne detection

system. Such analysis needs to consider the power consumption for an extended flight and the required

number of UAS units to reliably cover a road segment. This extended analysis needs to evaluate the

identification system under different weather conditions while maintaining a certain level of efficiency.

Also, the specifications for the communication between UAS units and base station should be clearly

defined to meet the requirements of range and power consumption determined for the system.

In the realm of LIDAR scanners, the cost per unit still represents a constraint for the adoption of

such systems. During the progress of this project, a more affordable version of a LIDAR scanner was

evaluated. The X4 LIDAR model by YDLIDAR 4.1 is a small scanner option that collects 2D data with

360◦ in the horizontal field of view. The X4 version has a range of 10m and a maximum sampling rate

of 5,000 points/sec. Since this LIDAR version only collects data in 2D, an adaptation is necessary to

generate the 3D point clouds.

Figure 4.1: X4 YDLIDAR model for 2D data capture
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(a) Mounted X4 YDLIDAR (b) X4 YDLIDAR test setup

Figure 4.2: Test setup for 3D point cloud generation with 2D scanner

This LIDAR scanner captures the horizontal plane around it, detecting the contour of objects that

cross that horizontal plane. This way, the scanner can be rotated so that the plane captured is now in the

vertical orientation. As the scanner captures the contour of objects by recording distances, it also keeps

track of the rotation angle corresponding to that measured distance. The 3D data representation comes

from the shifting of the multiple planes captured. From the angular information, every time the LIDAR

crosses a reference angle, the plane detected should shift a small distance in the direction perpendicular

to that plane, creating a stack of planes. As vehicles drive near the scanner and break the detection

plane, the stack of the vehicle’s multiple contours generates the 3D point cloud.

During the initial evaluation of this approach for generating 3D point clouds with 2D scanners, the

measurement results have been promising, despite the range limitations of the LIDAR unit considered.

The construction of the 3D spatial data presents a detailed representation of vehicles driving by the

scanner. Since a vehicle’s speed breaking the detection plane will affect the frequency of plane capture,

some of the 3D reconstructions appear distorted along the direction of propagation. Figures 4.2 and

4.3 present the test setup for this evaluation and a generated 3D point cloud. While the preliminary

results for the adaptation of less complex, more affordable LIDAR to transportation contexts indicate

an opportunity in this field, the collection and evaluation of data for this approach will continue to be

explored.
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Figure 4.3: 2D point cloud contours stacked to represent 3D spatial data
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Appendix A: Algorithm Processing Timing

Table A.1: Average computation time for each algorithm step with a selected convolution threshold of
100 and 4GB of RAM.

1sec 2sec 5sec 10sec 15sec 20sec 30sec 40 sec 47sec

Read and Prepare
Data (sec)

0.059 0.121 0.307 0.678 0.967 1.389 2.153 2.728 3.204

Correct Reference
Coordinates (sec)

0.005 0.013 0.035 0.063 0.118 0.129 0.309 0.407 0.501

Interpolate
Data (sec)

0.007 0.014 0.037 0.080 0.153 0.191 0.540 0.642 0.777

Apply Geolocation
(sec)

0.027 0.053 0.134 0.267 0.405 0.532 0.772 1.073 1.321

Optimize Point
Cloud (sec)

0.052 0.104 0.293 0.540 0.786 1.087 1.731 2.210 2.496

Convolve Point
Cloud (sec)

0.394 0.423 0.521 1.006 1.323 1.660 1.720 6.221 7.702

Total Time
(sec)

0.544 0.728 1.327 2.634 3.752 4.987 7.225 13.281 16.001
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Table A.2: Average computation time for each algorithm step with a selected convolution threshold of
150 and 4GB of RAM.

1sec 2sec 5sec 10sec 15sec 20sec 30sec 40sec 47sec

Read and Prepare
Data (sec)

0.059 0.121 0.309 0.668 0.970 1.378 2.108 2.709 3.139

Correct Reference
Coordinates (sec)

0.005 0.013 0.035 0.062 0.119 0.129 0.310 0.408 0.474

Interpolate
Data (sec)

0.007 0.014 0.038 0.079 0.153 0.191 0.540 0.652 0.706

Apply Geolocation
(sec)

0.027 0.053 0.135 0.272 0.402 0.533 0.786 1.074 1.250

Optmize Point
Cloud (sec)

0.052 0.107 0.259 0.544 0.771 1.113 1.718 2.231 2.417

Convolve Point
Cloud (sec)

0.252 0.291 0.444 0.890 1.169 1.515 1.701 5.324 5.814

Total Time
(sec)

0.402 0.600 1.221 2.516 3.584 4.859 7.163 12.398 13.800

Table A.3: Average computation time for each algorithm step with a selected convolution threshold of
200 and 4GB of RAM.

1sec 2sec 5sec 10sec 15sec 20sec 30sec 40sec 47sec

Read and Prepare
Data (sec)

0.059 0.119 0.308 0.663 0.959 1.373 2.109 2.710 3.144

Correct Reference
Coordinates (sec)

0.005 0.014 0.035 0.066 0.119 0.129 0.311 0.407 0.462

Interpolate
Data (sec)

0.007 0.014 0.037 0.087 0.153 0.191 0.539 0.636 0.696

Apply Geolocation
(sec)

0.027 0.060 0.134 0.297 0.402 0.542 0.774 1.073 1.249

Optimize Point
Cloud (sec)

0.052 0.104 0.263 0.540 0.783 1.143 1.699 2.188 2.430

Convolve Point
Cloud (sec)

0.213 0.265 0.430 0.875 1.147 1.503 1.691 5.154 5.423

Total Time
(sec)

0.363 0.577 1.207 2.528 3.563 4.880 7.123 12.168 13.404
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Table A.4: Average computation time for each algorithm step with a selected convolution threshold of
250 and 4GB of RAM.

1sec 2sec 5sec 10sec 15sec 20sec 30sec 40sec 47sec

Read and Prepare
Data (sec)

0.059 0.120 0.308 0.663 0.965 1.372 2.106 2.707 3.156

Correct Reference
Coordinates (sec)

0.005 0.013 0.035 0.063 0.119 0.129 0.311 0.408 0.463

Interpolate
Data (sec)

0.007 0.014 0.037 0.080 0.152 0.191 0.537 0.636 0.697

Apply Geolocation
(sec)

0.027 0.053 0.136 0.267 0.402 0.540 0.771 1.087 1.250

Optimize Point
Cloud (sec)

0.052 0.104 0.265 0.552 0.802 1.108 1.702 2.285 2.417

Convolve Point
Cloud (sec)

0.206 0.259 0.428 0.872 1.142 1.501 1.693 5.111 5.327

Total Time
(sec)

0.356 0.563 1.209 2.497 3.582 4.841 7.120 12.234 13.310

Table A.5: Average computation time for each algorithm step with a selected convolution threshold of
100 and 8GB of RAM.

1sec 2sec 5sec 10sec 15sec 20sec 30sec 40 sec 47sec

Read and Prepare
Data (sec)

0.058 0.119 0.308 0.660 0.958 1.364 2.105 2.688 3.112

Correct Reference
Coordinates (sec)

0.005 0.013 0.035 0.061 0.116 0.124 0.297 0.391 0.449

Interpolate
Data (sec)

0.007 0.013 0.036 0.077 0.147 0.183 0.516 0.615 0.676

Apply Geolocation
(sec)

0.027 0.054 0.134 0.266 0.401 0.532 0.772 1.068 1.415

Optimize Point
Cloud (sec)

0.052 0.106 0.259 0.551 0.789 1.091 1.714 2.197 2.418

Convolve Point
Cloud (sec)

0.393 0.422 0.521 1.005 1.324 1.660 1.717 6.203 7.666

Total Time
(sec)

0.542 0.727 1.293 2.620 3.735 4.954 7.121 13.162 15.736
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Table A.6: Average computation time for each algorithm step with a selected convolution threshold of
150 and 8GB of RAM.

1sec 2sec 5sec 10sec 15sec 20sec 30sec 40sec 47sec

Read and Prepare
Data (sec)

0.059 0.121 0.304 0.659 0.951 1.367 2.113 2.684 3.099

Correct Reference
Coordinates (sec)

0.005 0.013 0.035 0.061 0.116 0.124 0.296 0.413 0.445

Interpolate
Data (sec)

0.007 0.013 0.036 0.077 0.147 0.183 0.514 0.612 0.673

Apply Geolocation
(sec)

0.027 0.053 0.150 0.272 0.401 0.566 0.771 1.073 1.248

Optmize Point
Cloud (sec)

0.052 0.104 0.264 0.536 0.789 1.079 1.715 2.282 2.410

Convolve Point
Cloud (sec)

0.252 0.291 0.443 0.890 1.169 1.514 1.697 5.321 5.811

Total Time
(sec)

0.402 0.595 1.231 2.495 3.572 4.834 7.106 12.384 13.685

Table A.7: Average computation time for each algorithm step with a selected convolution threshold of
200 and 8GB of RAM.

1sec 2sec 5sec 10sec 15sec 20sec 30sec 40sec 47sec

Read and Prepare
Data (sec)

0.059 0.120 0.305 0.660 0.961 1.367 2.085 2.756 3.105

Correct Reference
Coordinates (sec)

0.005 0.013 0.034 0.061 0.116 0.124 0.295 0.390 0.445

Interpolate
Data (sec)

0.007 0.014 0.035 0.077 0.147 0.183 0.513 0.612 0.671

Apply Geolocation
(sec)

0.027 0.054 0.134 0.272 0.404 0.531 0.781 1.070 1.278

Optimize Point
Cloud (sec)

0.053 0.106 0.259 0.538 0.793 1.068 1.810 2.196 2.431

Convolve Point
Cloud (sec)

0.213 0.264 0.430 0.874 1.145 1.500 1.695 5.151 5.415

Total Time
(sec)

0.363 0.570 1.197 2.482 3.566 4.773 7.179 12.175 13.345
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Table A.8: Average computation time for each algorithm step with a selected convolution threshold of
250 and 8GB of RAM.

1sec 2sec 5sec 10sec 15sec 20sec 30sec 40sec 47sec

Read and Prepare
Data (sec)

0.059 0.121 0.308 0.674 0.968 1.376 2.095 2.706 3.192

Correct Reference
Coordinates (sec)

0.005 0.013 0.035 0.061 0.116 0.124 0.301 0.391 0.444

Interpolate
Data (sec)

0.007 0.014 0.036 0.077 0.147 0.185 0.517 0.616 0.676

Apply Geolocation
(sec)

0.027 0.054 0.135 0.266 0.401 0.532 0.769 1.075 1.274

Optimize Point
Cloud (sec)

0.053 0.106 0.262 0.540 0.803 1.081 1.697 2.225 2.439

Convolve Point
Cloud (sec)

0.206 0.259 0.427 0.871 1.141 1.500 1.693 5.110 5.320

Total Time
(sec)

0.357 0.567 1.203 2.489 3.576 4.798 7.072 12.123 13.345

Table A.9: Average computation time for each algorithm step with a selected convolution threshold of
100 and 16GB of RAM.

1sec 2sec 5sec 10sec 15sec 20sec 30sec 40 sec 47sec

Read and Prepare
Data (sec)

0.031 0.063 0.159 0.353 0.493 0.740 1.066 1.367 1.607

Correct Reference
Coordinates (sec)

0.002 0.003 0.009 0.019 0.038 0.056 0.121 0.150 0.171

Interpolate
Data (sec)

0.004 0.007 0.018 0.040 0.072 0.109 0.237 0.301 0.329

Apply Geolocation
(sec)

0.011 0.022 0.056 0.112 0.168 0.223 0.320 0.455 0.526

Optimize Point
Cloud (sec)

0.034 0.068 0.171 0.366 0.510 0.711 1.128 1.474 1.624

Convolve Point
Cloud (sec)

0.290 0.303 0.367 0.656 0.848 0.992 1.031 4.023 5.052

Total Time
(sec)

0.372 0.466 0.780 1.546 2.129 2.830 3.903 7.770 9.309
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Table A.10: Average computation time for each algorithm step with a selected convolution threshold of
150 and 16GB of RAM.

1sec 2sec 5sec 10sec 15sec 20sec 30sec 40sec 47sec

Read and Prepare
Data (sec)

0.032 0.063 0.165 0.345 0.493 0.719 1.070 1.370 1.585

Correct Reference
Coordinates (sec)

0.002 0.003 0.009 0.020 0.039 0.056 0.123 0.153 0.167

Interpolate
Data (sec)

0.004 0.007 0.018 0.040 0.073 0.109 0.245 0.296 0.329

Apply Geolocation
(sec)

0.012 0.022 0.056 0.112 0.171 0.223 0.334 0.446 0.527

Optmize Point
Cloud (sec)

0.037 0.068 0.170 0.350 0.520 0.713 1.136 1.437 1.604

Convolve Point
Cloud (sec)

0.180 0.205 0.330 0.547 0.713 0.869 1.035 3.184 3.518

Total Time
(sec)

0.266 0.369 0.749 1.414 2.009 2.690 3.943 6.887 7.730

Table A.11: Average computation time for each algorithm step with a selected convolution threshold of
200 and 16GB of RAM.

1sec 2sec 5sec 10sec 15sec 20sec 30sec 40sec 47sec

Read and Prepare
Data (sec)

0.033 0.063 0.161 0.365 0.496 0.708 1.054 1.368 1.575

Correct Reference
Coordinates (sec)

0.002 0.004 0.010 0.021 0.039 0.050 0.120 0.152 0.166

Interpolate
Data (sec)

0.004 0.007 0.018 0.043 0.074 0.090 0.238 0.299 0.326

Apply Geolocation
(sec)

0.011 0.022 0.058 0.115 0.170 0.224 0.325 0.552 0.538

Optimize Point
Cloud (sec)

0.036 0.069 0.172 0.360 0.534 0.782 1.116 1.586 1.592

Convolve Point
Cloud (sec)

0.150 0.185 0.301 0.551 0.691 0.912 1.006 3.075 3.221

Total Time
(sec)

0.235 0.350 0.720 1.455 2.004 2.767 3.859 7.032 7.418
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Table A.12: Average computation time for each algorithm step with a selected convolution threshold of
250 and 16GB of RAM.

1sec 2sec 5sec 10sec 15sec 20sec 30sec 40sec 47sec

Read and Prepare
Data (sec)

0.031 0.065 0.165 0.359 0.503 0.715 1.055 1.355 1.587

Correct Reference
Coordinates (sec)

0.001 0.004 0.009 0.019 0.038 0.049 0.125 0.149 0.165

Interpolate
Data (sec)

0.004 0.008 0.018 0.040 0.072 0.089 0.243 0.301 0.325

Apply Geolocation
(sec)

0.011 0.023 0.057 0.110 0.168 0.220 0.338 0.492 0.546

Optimize Point
Cloud (sec)

0.034 0.071 0.172 0.350 0.512 0.726 1.237 1.417 1.580

Convolve Point
Cloud (sec)

0.141 0.182 0.297 0.540 0.682 0.877 1.009 3.003 3.223

Total Time
(sec)

0.222 0.353 0.718 1.418 1.975 2.676 4.007 6.717 7.426
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