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Abstract

Mobility-On-Demand (MoD) systems using electric vehicles (EVs) are expected to play

a significantly increasing role in the near future of urban transportation systems, to both

cope with the massive increases in urban population and reduce carbon emissions. One

inconvenience in MoD-EV systems is the need for some customers to charge the vehicles for

almost out of charge EVs before reaching their destinations. In this thesis, we propose three

different routing models that aim to reduce this inconvenience by minimizing the relative

excess time spent by MoD-EV systems customers in charging compared to the on-road trip

time. In the first model, the routing problem between multiple MoD-EV stations with in-

route charging as a multi-server queuing system is considered. We formulate our objective

as a stochastic convex optimization problem that minimizes the average overall trip time

for all customers relatively to their actual trip time without in-route charging. Both single

and multiple charging units per charging station are considered, and modeled as M/M/1

and M/M/c queues, respectively. In the second model, a cost on the charging is added in

the process and the objective is to minimize the total trip time with charging relative to

the time without charging as well as reducing the total cost of charging. The problem is

modeled also as convex optimization with two objectives, and is solved also for both types of

queues M/M/1 and M/M/c. In the third model, two options of charging are considered in

the routing scheme of the first model. Customers can charge either at the pick-up locations

or perform in-route charging. Obviously, charging all the EVs at the pick-up locations

might not be the best solution as the delay may go large or even unbounded. Hence, an

optimization problem needs to be solved to determine which customers will charge at the

pick-up locations and which will perform in-route charging with the objective to minimize

the average total trip time for all the customers. It is modeled also as a convex optimization

problem. In all the models, the optimal routing proportions are derived analytically using

Lagrangian analysis and Karush-Kuhn-Tucker (KKT) conditions. Simulation results show
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the merits of our proposed solution in all cases as compared to the shortest time and the

random routing decisions.
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CHAPTER 1

Introduction

1.1 Motivation

Transportation systems in urban areas are facing many challenges nowadays due to the

high demand on private vehicles ownership, which increases road congestion [2], demand on

parking spots [3], and harmful emissions to the environment [4]. A recent study from the

United Nations expects the urban population to double by 2050 [5]. This fact will definitely

increase the demand for private mobility services even more. The metropolitan spatial re-

strictions will impose strict limitations on constructing new roads and parking spaces that

can cope with this increase in private transportation demands. Consequently, the current

dependence on personal vehicles for private transportation seems to be an unsustainable

and polluting solution for urban mobility in the near future. One promising solution for this

problem is the one-way vehicles sharing, widely known as Mobility-On-Demand (MoD) [6].

Using electric vehicles (EVs) for these MoD systems (that we will refer to as MoD-EV) is

an even more attractive solution, not only for future private mobility services but also to

reduce the emissions of greenhouse gases that cause drastic pollution to the environment [7].

Since EVs are running on electric batteries, they need to be regularly charged. Such

charging usually takes relatively and much longer times, using fast and conventional charg-

ing units, respectively, than filling up fossil fuel based vehicles with gas. The availability of

only slow-charging units and/or less fast-charging units compared to the number of EVs in

MoD-EV stations, may frequently result in EVs not having enough time to be sufficiently

(or at all) charged before their next pick-up, especially in high demand MoD-EV systems.

Indeed, with heavy dependency on such services, many customers may simultaneously en-

counter instances of needing (if they have no other choices given their tight schedules) or

choosing (due to their more relaxed schedules and proper compensation) to use these not-

sufficiently charged EVs. Their only alternative to use these EVs is to charge them at
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dedicated fast-charging stations so that they can drive them to their destinations. On the

other hand, the current limited fast-charging infrastructure in many cities may suffer from

large queuing delays if not smartly managed given this high MoD-EV fast-charging demand,

especially if they run on renewable energy [8]. These two aspects combined can pose a signif-

icant threat to the wide proliferation of MoD-EV systems. Clearly, tight-schedule customers

will not be happy with the service if their charging delays make them arrive late to their

destinations. Even if the MoD-EV operators allocate such EVs only to delay-tolerant cus-

tomers in return for compensation (e.g., special discounts on their current or future trips),

significant charging delays can still cause high frustration and lack of interest in continuing

to use this service.

Consequently, minimizing the average total trip times of these customers and the excess

times they spend for the charging of these vehicles, with the respect to the actual on-road trip

time, is a crucial point to reduce customer frustration and discouragement in using MoD-EV

systems. Such minimization requires real-time knowledge of many system parameters, such

as the number/rate of vehicles requesting in-route charging, their origin and destination sta-

tions, the possible charging stations, their charging rates, their current queuing times, etc.

Luckily, the advancement and near-future deployment of the Internet-of-Things (IoT) and

cloud-based smart cities technologies have been enabling the collection of this information

at a cloud server, and the optimization of the entire process. Indeed, the cloud server can

employ the collected information to direct these vehicles to the different available charging

stations so as to balance their loads with respect to their real-time energy supply, and thus

reduce the customer excess delays at these stations, relative to their original on-road trip

times.

Another influential parameter from the service operator side is the various charging costs

of the different charging stations, due to their various charging rates from both local re-

newable sources and the grid. Consequently, the selections of customers on which charging

station they go to, may significantly increase, not only their delays, but also the operator
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overall costs for charging. The latter problem can significantly affect the operator’s revenues

and thus interest in pursuing/proceeding with this business.The only solution to these prob-

lems is to exploit the near-future establishment of connected and smart cities. By connecting

the operator to the charging stations to collect their real-time energy supply, occupancy, and

charging costs, the former can smartly route its customers to the different available charging

stations so as to reduce both customer excess delays and cost of charging.

1.2 Related Work

Many works have considered different problems related to EV charging [8, 9, 10], to opti-

mize different metrics such as charging delays and pricing, using different approaches such as

queuing networks [9, 10] and Markov decision processes [8]. In [9], a queuing network model

was proposed to estimate the charging demand of the EVs at different stations and how the

charging prices are affecting the driver decisions on the choice of the stations. In [8, 9], only

one EV arrives at a time to each charging station, while in [10] multiple EVs arrive as a pla-

toon to the charging station. The operation of one charging station with multiple charging

units was modeled as a multi-server queue in [8] with two different sources of energy; power

grid and renewable sources (considered free). The objective was to minimize the overall cost

of EV charging in this station. Different works also considered various approaches for EV

battery charging, such as charging from the power grid [9], charging from renewable sources

[10], a combination of both [8], and battery swapping [11]. Lately, wireless charging was

also proposed to further reduce charging delays at the expense of high installation costs for

equipment and infrastructure [12]. In [11], a charging station equipped with battery swap-

ping technology was modeled as a network with two queues; an open queue of the EVs and

a closed queue of the batteries. This system was tested for different numbers of EV arrivals

and batteries to evaluate the performance of battery swapping stations. Moreover, several

parameters were measured like the probability of being not served, number of busy chargers,



4

and waiting time. In [13], a new method was proposed for the optimal load scheduling of

plug-in hybrid EVs mainly to optimize two objectives; the peak-to-valley difference and the

economic loss and then solved algorithmically. In [14], another method for scheduling and

centralized charging for EVs was proposed again to optimize power losses, overload, voltage

fluctuation and charging costs on the power grid.

Other works have considered the routing of EVs to minimize the costs, improve battery

lifetime [15][16], or safely reach a charging station [17]. In [15], the proposed model aimed to

optimize the routing of airport shuttles which operate on electric battery, and each having a

fixed schedule. However, none of these prior works focused on the relation between routing

and charging.

In [18], a joint routing and charging reservation scheme was analyzed to minimize the

overall trip delay. However, the reservation-based charging model was very simplistic and

did not capture the real dynamics of queues at charging stations. On the other hand, re-

cent works have considered MoD systems and its autonomous driving version, known as

autonomous MoD (AMoD) [6, 19]. However, these works mainly considered the re-balancing

problem of vehicles between the different passenger stations [6], and AMoD fleet sizing [19],

and no EVs charging issues were considered. In [20], the authors’ objective is to re-balance

MoD systems while minimizing the cost of re-balancing (car relocation). In [21], scheduling

algorithm for MoD-EV systems was discussed. The authors objective was to maximize the

number customers using the EVs based on a reservation system one day before any trip

while optimizing also the charging of EVs during the day. In [22], a model for optimizing the

fleet size of car-sharing system at different pickup locations were discussed. In [23], the joint

dispatching and charging of AMoD EVs was studied, but without any routing nor in-route

charging issues. In both [6, 23], the systems were modeled as queuing networks with different

objectives (minimizing the number of re-balancing vehicles in the roads [6] and minimizing

the response time of EV assignment to customers [23]) and both problems were solved us-

ing linear programming techniques. In [24], different machine intelligence algorithms were
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discussed for implementation and testing on fully automated cars which is the future of

transportation and MoD.

Finally, recent works have employed the connectivity capabilities of transportation and

smart grid infrastructure to safely navigate vehicles to charging station and provision enough

energy resources to charge them [17]. The moving EVs that require charging send a request

to road-side-units (RSUs), which route them to charging stations (not necessarily their near-

est ones) based on the current available data from the RSUs and the load on the charging

stations to avoid overloading the power grid [17]. However, this work did not consider any

optimization of charging delays, nor excess charging times.

1.3 Our Contribution

In this thesis, we focus on the routing of MoD EVs between a group of passenger stations,

while each of them needs charging in one of multiple available charging stations with different

energy resources. Customers with less delay constraints are allocated to these EVs but still

require to have the minimal increase in their trip times to charge these EVs. Similar to [17],

the system will harness the emergent ubiquitous connectivity and cloud technology to enable

the real-time collection of EV state-of-charge information, departure rates from passenger

stations, energy supplies at different stations, and trip times without charging. The cloud

server will then make decisions on the proportions of EVs routed from each of the passenger

stations to each charging station, so as to minimize the expected overall trip time for all

customers over all routes relative to their trip time without charging. We propose three

different models in this thesis.

In the first model, customer can perform in-route charging in the multiple charging

stations available in the city. However, they need to have the minimal increase in their

trip time to reach the destination. Two charging station settings are considered, namely

the single and multiple charging unit stations, which both exist in practical life. To solve
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this problem, we first model the system as a multi-server queuing network, where each

server represents one of the possible charging stations. We further model the two considered

settings for each charging station by M/M/1 and M/M/c queuing systems, respectively. We

then employ this model to formulate the aforementioned problem as a convex optimization

over stochastic decision variables, representing EV routing proportions between each pair

of passenger stations through the different charging stations. Expressions of the optimal

routing proportions are derived using Lagrangian analysis and Karush-Kuhn-Tucker (KKT)

conditions. The derived optimized routing proportions are tested for a wide variation range

of the different system parameters and different charging approaches (i.e., direct charging and

battery swapping) through extensive simulations. The overall expected trip times and excess

delay percentages due to charging using our optimized routing proportions are compared

to conventional shortest time and random routing decisions for both M/M/1 and M/M/c

charging station models. Finally, the proposed routing method is tested on a real-world

scenario and the computation times for the different settings are discussed.

In the second model, a cost on the charging is added to the first model. Hence, there are

two objectives now to minimize the overall expected trip times for all the customers relative to

their trip times without charging as well as minimizing the charging costs from the operator

side. Two settings of charging station are also considered M/M/1 and M/M/c. The problem

is formulated as dual objective convex optimization problem with convex constraints. Similar

to the first model, the Lagrangian analysis and KKT conditions are used to provide analytical

solutions for the routing proportions. The performance of this model is tested through

extensive simulations for different parameters to evaluate the model. The model is also

compared to other routing schemes and is tested on a real-world scenario.

In the third model, two options of charging are considered in the first model. Customers can

charge at the pick-up location or perform in-route charging. Clearly, charging all the EVs

at the pick-up location might not be the best solution as the delay may go large. The traffic

conditions on different roads are considered in this model. The problem is formulated as a
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convex optimization problem with objective to minimize the average trip times for all the

customers relative to their trip times without charging. Again, the problem is solved using

Lagrangian analysis and KKT conditions to find the analytical solutions for the optimization

variables. It is tested then using simulations to evaluate the performance of the model with

different system parameters and comparing it to other routing schemes.
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CHAPTER 2

Optimal Routing with In-Route Charging Of MoD-EV Systems

This chapter discusses the issue of the in-route charging only where the customers need

to charge EVs before reaching their destination. The problem is formulated using queuing

theory based on M/M/1 and M/M/c queues and then solved analytically and numerically

to illustrate the performance of the proposed method.

2.1 System Model

This thesis considers the MoD-EV system in Figure 2.1, with n passenger stations (PSs)

and m charging stations (CSs). PSs are the locations at which customers pick-up EVs close

to their origin and drop them off close to their destinations. The model only considers EVs

that need to be charged on the way to the destination by less time-constrained customers.

These customers and EVs are modeled by arrival and service queues, respectively, in each

PS as illustrated in Figure 2.1. Each charging station is also modeled by a queuing system,

as also illustrated in Figure 2.1. This queuing system can be either an M/M/1 or M/M/c

queuing model for all the charging stations in the system. Clearly, the M/M/1 model is a

special case of the general M/M/c, and both of them will be considered separately in the

analysis.

Similar to [6, 9], the overall departure rate of these EVs from PS i is modeled by a

Poisson process with rate λi EVs / unit time. When departing, each customer intends to go

to PS j with probability qij (qii = 0). On the other hand, each (or the only) charging unit

in CS k can complete either the direct EV charging or the swapping of its battery [11, 18]

in an exponentially distributed duration with rate µk EVs / unit time per server similar to

[11, 25], which is different from one CS to another given their different supplies of energy.

Finally, the real-time trip duration between PSs i and j through CS k, without charging, is

denoted by t
(k)
ij . Table 2.1 summarizes the different parameters considered in our model.



9

Figure 2.1: General model of a city with n passenger stations and m charging stations
showing the queues at each passenger station and charging station.

Table 2.1: List of System and Decision Parameters
Parameter Definition

n: Total number of PSs
m: Total number of CSs
λi: Departure rate from PS i
qij: Probability for customer to go from PS i to PS j
µk: Charging or battery-swapping rate at CS k per server

t
(k)
ij : Time spent on the road only from PS i to PS j through

CS k without considering the charging time

P
(k)
ij : Routing proportion from PS i to PS j through CS k
c: Total number of servers at each CS k

τ
(k)
ij : Actual trip time from PS i to PS j through CS k including charging

T
(k)
ij : An upper bound on τ

(k)
ij

The charging rates µk at each charging station regularly changes depending on the status

of the storage devices and the arrivals of energy to each of them. In addition, t
(k)
ij also changes

due to natural changes of traffic conditions at different times of the day. Given the trendy

ubiquitous connectivity through IoT, a cloud controller similar to the one in Figure 2.2 can

periodically collect all the above parameters in real-time given time-varying charging and

traffic conditions (and thus time-varying of µk and t
(k)
ij ∀ i, j, k), and predicts the requests

at the PSs based on previous data. The cloud controller will then employ this collected

information in guiding EVs departing from PS i towards PS j to route through and charge
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Figure 2.2: Cloud controller to assign routing proportions to the EVs.

at CS k with a routing proportion P
(k)
ij . It is easy to see that:

m∑
k=1

P
(k)
ij = qij ∀ i, j and i 6= j (2.1)

n∑
j=1

i 6=j

m∑
k=1

P
(k)
ij = 1 ∀ i (2.2)

Equation (2.1) shows that the sum of the proportions P
(k)
ij for specific origin PS i and des-

tination PS j over all the charging stations equals to qij (i.e. the portions of EVs traveling

between i and j through all possible CSs should be equal to portion of customers requesting

this route). Equation (2.2) shows that the sum of all proportions P
(k)
ij leaving each PS equals

1 (i.e., the number of EVs leaving PS i must equal to portion of customers requesting to

travel from PS i, which is 100%).

The routed EVs from all PSs to CS k queue up to charge, thus acquiring excess delays

in these CSs on top of the actual trip time t
(k)
ij without charging. After departing from the

CS, EVs continue their routes to their destination PSs. The cloud server is thus required to

periodically determine these proportions P
(k)
ij , given the real-time values of λi, qij, µk, and

t
(k)
ij ∀ i, j, k, in order to minimize the average total trip time of all customers through any

route relative to its t
(k)
ij value ∀ i, j, k.
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Clearly, the conventional shortest time routing strategy, which routes a customer depart-

ing from PS i and destined to PS j through CS k = arg mink

{
t
(k)
ij

}
may not necessarily

be the best strategy since the CS in this route might be overloaded or having insufficient

charging rate, and will thus result in an extremely large (or even unbounded) charging delay.

The question that the cloud server should periodically resolve is: Which stochastic routing

strategy should be followed in each period (given the collected real-time values of the different

system parameters) in order to minimize the overall average trip time between any pair of

PSs, as well as the excess percentage of times wasted by customers in CSs, relative to the

actual trip times without charging.

Given this system model described above, and well-known thinning properties of Poisson

processes, the arrival process to the queue of each CS k is an independent Poisson process

with rate λk, which can be expressed as:

λk =
n∑

i=1

n∑
j=1

i 6=j

λiP
(k)
ij (2.3)

This expression is obtained for CS k by summing the rates of all thinned departure processes

from each PS i whose rate is λiP
(k)
ij .

It is important to note that this paper assumes customers’ compliance with the optimized

routing proportions suggested to them by the system. However, the extension of the solution

to cases of customer incompliance, which are indeed possible to occur in reality, can be done

by our suggested cloud and IoT enabled system. Indeed, such incompliances can be easily

detected through the collected GPS information from the EVs or their charging at other

CSs than the ones they were directed to go to. The system can thus resolve these situations

by either making corrective adjustments to subsequent EV routing so as to maintain the

optimized proportions, or re-running the optimization algorithm if drastic changes to the

system parameters were detected. The system can also reduce these incompliance events by

informing customers who chose to use such EVs for discounted prices that their discounts
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will be reduced if they do not comply.

2.2 M/M/1 CS Model

In this section, we will first formulate our problem of interest while assuming that all

CSs consists of a single charging unit, and thus can be modeled as M/M/1 queues. The

optimal routing proportions for this problem will then be derived using Lagrangian analysis

and KKT conditions.

2.2.1 Stability Constraints

Since the arrival process to each CS k is Poisson with rate λk and the charging duration at

each CS k are exponentially distributed with rate µk, the overall queuing system at each CS

k becomes an M/M/1 queue [26]. Consequently, the entire system becomes a multi-server

queuing system consisting of m independent CS M/M/1 queues, with different arrival rates

depending on the routing proportions P
(k)
ij , ∀ i, j, k, and different service rates due to their

energy supplies. To ensure the stability of each CS k queue, the arrival rate to this CS k

must be strictly less than its service rate µk. That is:

n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij < µk ∀ k (2.4)

By summing the left-hand sides and right-hand sides of the inequalities (2.4) for all k, we

get the general stability condition of the entire queuing system, expressed as:

n∑
i=1

λi <
m∑
k=1

µk (2.5)

In other words, the sum of the departure rates from all PSs must be strictly less than the

sum of all charging rates at all CSs to ensure the stability of the entire queuing system.
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Now from a practical operation point of view, What if the requests of charging are more

than what the CSs can handle? The considered cloud-based management system in this pa-

per can handle such scenarios of higher demand on EV requiring in-route charging compared

to the overall charging rates. Since the system is connected to both the customer service

apps, EVs, and the charging stations, it can determine the maximum number of EVs that

can charge in-route using the derived stability conditions, and block any further request of

such EVs if the demand surpasses this maximum number.

2.2.2 Problem Formulation

From basic analysis of M/M/1 queues [26], the expected charging time (denoted by Dk)

at each CS k can be expressed as :

Dk =
1

µk −
∑n

i=1

∑n
j=1

i 6=j

λiP
(k)
ij

∀ k (2.6)

Therefore, the total expected trip time
(

denoted by τ
(k)
ij

)
from PS i to PS j through CS k

with in-route charging can be expressed as:

τ
(k)
ij = t

(k)
ij +

1

µk −
∑n

i=1

∑n
j=1

i 6=j

λiP
(k)
ij

∀ i, j, k (2.7)

As stated earlier, the main objective of our routing proportion optimization is to minimize

the expected overall trip time for all customers over all routes, relative to their trip time

without in-route charging, while respecting the stability constraints of the system. We can

now introduce a new variable T
(k)
ij which is an upper bound on the actual trip time τ

(k)
ij (i.e.

τ
(k)
ij ≤ T

(k)
ij ). By minimizing the upper bound T

(k)
ij , we ensure that the actual trip time τ

(k)
ij
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is also minimized. This problem can be formulated as follows:

minimize
P

(k)
ij ∀i,j,k

n∑
i=1

n∑
j=1

i 6=j

m∑
k=1

T
(k)
ij

t
(k)
ij

(2.8a)

s.t. t
(k)
ij +

1

µk −
∑n

i=1

∑n
j=1

i 6=j

λiP
(k)
ij

≤ T
(k)
ij ∀ i, j, k (2.8b)

m∑
k=1

P
(k)
ij = qij ∀ i, j (2.8c)

n∑
j=1

i 6=j

m∑
k=1

P
(k)
ij = 1 ∀ i (2.8d)

0 ≤ P
(k)
ij ∀ i, j, k (2.8e)

T
(k)
ij > t

(k)
ij ∀ i, j, k (2.8f)

Constraints (2.8b) combined with the objective function guarantee the achievement of the

desired goal
(

minimizing τ
(k)
ij relative to t

(k)
ij

)
in a weighted epigraph form [27]. Constraints

(2.8c) and (2.8d) represent the facts in equations (2.1) and (2.2), respectively, on the routing

proportions P
(k)
ij . Constraint (2.8e) guarantees that each routing proportion is always greater

than or equal to 0 and constraint (2.8c) guarantees that each routing proportion is always

equal or less than q
(k)
ij , while Constraint (2.8f) guarantees the positivity of the charging delay

Dk.

By re-arranging (2.8b), we get:

n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij ≤ µk −

1

T
(k)
ij − t

(k)
ij

∀ i, j, k (2.9)

Consequently, the problem in (2.8) becomes a convex optimization problem with linear ob-

jective function and convex constraints. Moreover, (2.8f) guarantees the strict positivity of

the second term of the right-hand side of (2.9), thus making the latter ensure the stability
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of the system.

2.2.3 Optimal Routing Proportions

Since the problem in (2.8) is convex, it satisfies Slater’s theorem. Thus, strong duality

holds and the solutions of the primal and dual problems are identical [27]. Furthermore,

the KKT conditions provide necessary and sufficient conditions for optimality [27]. The

Lagrangian function corresponding to (2.8) is given in equation (2.10), where α
(k)
ij , β

(k)
ij , γij,

ωi and χ
(k)
ij are the Lagrange multipliers associated with the different problem constraints.

L(P, T, α, β, γ, ω, ζ, χ) =
n∑

i=1

n∑
j=1

i 6=j

m∑
k=1

T
(k)
ij

t
(k)
ij

+
n∑

i=1

n∑
j=1

i 6=j

m∑
k=1

α(k)
ij

 n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij +

1

T
(k)
ij − t

(k)
ij

− µk




+
n∑

i=1
i 6=j

ωi

((
n∑

j=1

m∑
k=1

P
(k)
ij

)
− 1

)
+

n∑
i=1

n∑
j=1

i 6=j

m∑
k=1

(
−χ(k)

ij P
(k)
ij

)

+
n∑

i=1

n∑
j=1

i 6=j

m∑
k=1

−β(k)
ij

(
T

(k)
ij − t

(k)
ij

)

+
n∑

i=1

n∑
j=1

i 6=j

γij

((
m∑
k=1

P
(k)
ij

)
− qij

)

(2.10)

In addition, the following expressions are derived by applying the KKT conditions on the

inequality and equality constraints (2.8b)-(2.8f).
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α
(k)∗

ij

 n∑
i=1

n∑
j=1

i 6=j

λiP
(k)∗

ij +
1

T
(k)∗

ij − t(k)ij

− µk

 = 0 ∀ i, j, k (2.11a)

− β(k)∗

ij (T
(k)∗

ij − t(k)ij ) = 0 ∀ i, j, k (2.11b)

χ
(k)∗

ij P
(k)∗

ij = 0 ∀ i, j, k (2.11c)

n∑
j=1

m∑
k=1

P
(k)∗

ij − 1 = 0 ∀ i (2.11d)

m∑
k=1

P
(k)∗

ij − qij = 0 ∀ i, j (2.11e)

α
(k)∗

ij ≥ 0, β
(k)∗

ij ≥ 0, χ
(k)∗

ij ≥ 0 (2.11f)

From equation (2.10), and the fact that the gradient of the Lagrangian function equals 0 at

the optimal solution, we obtain the following equations:

1

t
(k)
ij

−
α
(k)∗

ij

(T
(k)∗

ij − t(k)ij )2
− β(k)∗

ij = 0 ∀ i, j, k (2.12a)

λi

 n∑
i=1

n∑
j=1

i 6=j

α
(k)∗

ij

+ γ∗ij + ω∗i − χ
(k)∗

ij = 0 ∀ i, j, k (2.12b)

It is clear from (2.11b) that β
(k)∗

ij = 0 since
(
T

(k)∗

ij − t(k)ij

)
> 0. From equation (2.12a), we

get the optimal value of T
(k)∗

ij :

T
(k)∗

ij =

√
α
(k)∗

ij t
(k)
ij + t

(k)
ij ∀i, j, k (2.13)
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Multiplying equation (2.12b) by P
(k)∗

ij we get :

P
(k)∗

ij

λi( n∑
i=1

n∑
j=1

i 6=j

α
(k)∗

ij ) + γ∗ij + ω∗i − χ
(k)∗

ij

 = 0 (2.14)

From equation (2.11c), we can find that χ
(k)∗

ij P
(k)∗

ij = 0. P
(k)∗

ij that is multiplied by γ∗ij and

ω∗i is replaced by

(
qij −

∑m
u=1

u6=k

P
(u)∗

ij

)
. Substituting these in (2.14) and by rearrangement,

we get the optimal routing proportions as:

P
(k)∗

ij = max

0 ,

−

(
qij −

∑m
u=1

u6=k

P
(u)∗

ij

)(
γ∗ij + ω∗i

)
∑n

i=1

∑n
j=1α

(k)∗

ij


∀ i, j, k

(2.15)

Note that the second term in equation (2.15) was always found to be positive in all tested

scenarios ( by all tested scenarios, we mean the simulation results), due to the fact that

(γ∗ij + ω∗i ) is negative and thus makes the term positive. However, we use the form in (2.15)

to set the routing proportion to zero in the rare case of having the second term negative

(in all of our simulations, we have not got a zero routing proportion but the expression is

written in this way in order to avoid having negative proportions). Finally, (2.13) and (2.15)

are the optimal solutions for the Lagrangian function. From Slater’s theorem, strong duality

holds, and thus (2.13) and (2.15) are the optimal solutions of the original problem in (2.8)

[27].

2.3 M/M/c CS Model

In this section, we extend the steps of Section 2.2 to solve our problem of interest given that

each CS has c charging units. In this case, each CS can be modeled as an M/M/c queue.
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2.3.1 Stability Constraints

Similar to the M/M/1 model explained in Section 2.2, the arrival process to each CS k is

Poisson with rate λk as shown in equation (2.3). Here, each CS consists of c servers and

each server has an exponentially charging rate µk at CS k. The charging rate µk for each

server is the same in each CS and may differ from one CS to another depending on the

available energy sources at each CS. Consequently, the entire system becomes a multi-server

queuing system consisting of m independent CS M/M/c queues, with different arrival rates

depending on the routing proportions P
(k)
ij , ∀ i, j, k, and different service rates. To ensure

the stability of each CS k queue, the arrival rate to this CS k must be strictly less than its

total service rate cµk. That is:

n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij < cµk ∀ k (2.16)

The general stability condition of the whole queuing system can be found in a similar way

to the M/M/1 model from equation (2.16) and is represented by:

n∑
i=1

λi <
m∑
k=1

cµk (2.17)

Similar to the M/M/1 model, if the demand on charging is too high (CSs can not charge

all the EVs requesting in-route charging), then the system will block the extra requests.
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2.3.2 Problem Formulation

From basic analysis of M/M/c queues [28], the expected charging time (denoted by Dc−k)

at each CS k can be expressed by:

Dc−k =

1

(cµk − λk)(
1 +

(
c! (cµk − λk)

cµk (λk/µk)c

)(∑c−1
h=0

(λk/µk)h

h!

)) +
1

µk

∀ k (2.18)

Therefore, the total expected trip time
(

denoted by τ
(k)
ij

)
from PS i to PS j through CS

k with in-route charging can be expressed as:

τ
(k)
ij = t

(k)
ij +Dc−k ∀ i, j, k (2.19)

Given the above expressions and the stability constraints of the system, the problem can be

formulated for the M/M/c CS model as follows:

minimize
P

(k)
ij ∀i,j,k

n∑
i=1

n∑
j=1

i 6=j

m∑
k=1

T
(k)
ij

t
(k)
ij

(2.20a)

s.t. t
(k)
ij +Dc−k ≤ T

(k)
ij ∀ i, j, k (2.20b)

n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij < cµk ∀ k (2.20c)

m∑
k=1

P
(k)
ij = qij ∀ i, j (2.20d)

n∑
j=1

i 6=j

m∑
k=1

P
(k)
ij = 1 ∀ i (2.20e)

0 ≤ P (k)
ij ∀ i, j, k (2.20f)

T
(k)
ij > t

(k)
ij ∀ i, j, k (2.20g)

Constraints (2.20b) combined with the objective function guarantee the achievement of
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our goal in a weighted epigraph form. Since the reciprocal of the delay function Dc−k is a

concave function [29] for constant uk and c, and since the reciprocal of a positive concave

function is convex [30], then Constraint (2.20b) is convex. Constraints (2.20d)-(2.20g) are the

same as constraints (2.8c)-(2.8f) in the M/M/1 formulation, and are all linear. Constraints

(2.20c) and (2.20g) guarantee the stability of the queuing system and are also all linear.

Consequently, the problem in (2.20) is a convex optimization problem with linear objective

function and convex constraints.

2.3.3 Optimal Routing Proportions

Similar to Section 2.2.3, the problem (2.20) satisfies Slater’s conditions as it is a convex

problem. Hence, strong duality holds, the solutions of the primal and and dual problems are

identical, and the KKT conditions provide necessary and sufficient conditions for optimality

[27]. The Lagrangian function for the problem in (2.20) is given by Equation (2.21), where

ν
(k)
ij , ηk, ξ

(k)
ij , κij, σi and ψ

(k)
ij are the Lagrange multiplies for the different constraints in

(2.20).

L(P, T, ν, η, ξ, κ, ρ, ψ, σ) =
n∑

i=1

n∑
j=1

i 6=j

m∑
k=1

T
(k)
ij

t
(k)
ij

+
n∑

i=1

n∑
j=1

i 6=j

m∑
k=1

ν(k)ij

 n∑
i=1

n∑
j=1

i 6=j

t
(k)
ij +Dc−k − T (k)

ij




+
m∑
k=1

ηk n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij − cµk

+
n∑

i=1

n∑
j=1

i 6=j

m∑
k=1

(
−ψ(k)

ij P
(k)
ij

)
+

n∑
i=1

n∑
j=1

i 6=j

m∑
k=1

−ξ(k)ij

(
T

(k)
ij − t

(k)
ij

)

+
n∑

i=1

n∑
j=1

i 6=j

κij

((
m∑
k=1

P
(k)
ij

)
− qij

)
+

n∑
i=1

n∑
j=1

i 6=j

m∑
k=1

(
−ψ(k)

ij P
(k)
ij

)
+

n∑
i=1
i 6=j

σi

((
n∑

j=1

m∑
k=1

P
(k)
ij

)
− 1

)

(2.21)

In addition, the following expressions are obtained by applying the KKT conditions on

the optimization problem in (2.20).
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ν
(k)∗

ij

(
t
(k)
ij +Dc−k − T (k)∗

ij

)
= 0 ∀ i, j, k (2.22a)

η∗k

 n∑
i=1

n∑
j=1

i 6=j

λiP
(k)∗

ij − cµk

 = 0 ∀ k (2.22b)

− ξ(k)
∗

ij

(
T

(k)∗

ij − t(k)ij

)
= 0 ∀ i, j, k (2.22c)

ψ
(k)∗

ij P
(k)∗

ij = 0 ∀ i, j, k (2.22d)

n∑
j=1

m∑
k=1

P
(k)∗

ij − 1 = 0 ∀ i (2.22e)

m∑
k=1

P
(k)∗

ij − qij = 0 ∀ i, j (2.22f)

ν
(k)∗

ij ≥ 0, η∗k ≥ 0, ξ
(k)∗

ij ≥ 0, ψ
(k)∗

ij ≥ 0 (2.22g)

From equation (2.21) and the fact that the gradient of the Lagrangian function equals 0 at

the optimal solution, we obtain equations (2.23) and (2.24).

1

t
(k)
ij

− ν(k)
∗

ij − ξ(k)
∗

ij = 0 ∀ i, j, k (2.23)

κ∗ij − ψ
(k)∗

ij + σ∗i +

 n∑
i=1

n∑
j=1

i 6=j

ν
(k)∗

ij

×
λiq − (cµk − λk)

(
−λi
cµk

(
c!

ac

)∑c−1
h=0

(
ah

h!

)
− cλi
µk

c!

ac+1

(
1− a

c

)∑c−1
h=0

(
ah

h!

)
+
λi
µk

(
1− a

c

)( c!
ac

)∑c−1
h=1

(
ah

h!

))
q2

 = 0

where λk =

n∑
i=1

n∑
j=1

i 6=j

λiP
(k)∗

ij a =
λk
µk

and q =

(
cµk − λk

)(
1 +

(
1− a

c

)( c!
ac

) c−1∑
h=0

ah

h!

)
(2.24)

It is obvious from (3.10b) that ξ
(k)∗

ij = 0 since
(
T

(k)∗

ij − t(k)ij

)
> 0. This leads to the
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optimal value of ν
(k)∗

ij expressed as:

ν
(k)∗

ij =
1

t
(k)
ij

> 0 ∀ i, j, k (2.25)

From the expression (2.22a) and the fact that ν
(k)∗

ij > 0, we can easily find the optimal

solution of T
(k)∗

ij , which is expressed as:

T
(k)∗

ij = t
(k)
ij +Dc−k ∀ i, j, k (2.26)

The above expression shows that T
(k)∗

ij is an exact bound on the actual trip time. It is clear

from (2.22b) that η∗k = 0 since

(∑n
i=1

∑n
j=1

i 6=j

λiP
(k)∗

ij − cµk

)
< 0. Having these parameters

defined, the optimal routing proportions P
(k)∗
ij ∀ i, j, k could be found by solving equation

(2.24) for P
(k)∗

ij .

2.4 Simulation Results

In this section, we consider a simulation model with 4 PSs and 3 CSs to show the system

dynamics and the routing proportions P
(k)
ij for both the M/M/1 and M/M/c CS models un-

der different parameters. Table 2.2 shows the different values of t
(k)
ij (time spent on the road

only) used in the simulations for all possible routes. These values are generated randomly

for the 4 PSs and 3 CSs we have. Uniform destination PS probabilities are assumed from

each origin PS (i.e. qij = 1/3 ∀ i 6= j). We consider two types of charging in the simulations,

namely battery-swapping and conventional charging. With the conventional charging, we

allow the charging rate per charging unit to vary from 8 to 18 EVs/hour. A new study

showed that an EV battery fully-depleted could be charged in 5 minutes [31], which corre-

sponds to the value of 12 EVs/hour. Slightly lower (8 to 11 EVs/hour) and higher (13 to 18

EVs/hour) charging rates are also considered to represent cases where the charging stations

have low-energy supplies and the EV batteries are not fully-depleted, respectively. For the
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Table 2.2: Different values of t
(k)
ij in hours forall possible routes

t
(1)
12 t

(2)
12 t

(3)
12 t

(1)
13 t

(2)
13 t

(3)
13

0.5 0.7 0.7 0.65 0.5 0.5

t
(1)
14 t

(2)
14 t

(3)
14 t

(1)
21 t

(2)
21 t

(3)
21

0.65 0.6 0.4 0.5 0.7 0.7

t
(1)
23 t

(2)
23 t

(3)
23 t

(1)
24 t

(2)
24 t

(3)
24

0.65 0.4 0.6 0.65 0.5 0.5

t
(1)
31 t

(2)
31 t

(3)
31 t

(1)
32 t

(2)
32 t

(3)
32

0.65 0.5 0.5 0.65 0.4 0.6

t
(1)
34 t

(2)
34 t

(3)
34 t

(1)
41 t

(2)
41 t

(3)
41

0.8 0.3 0.3 0.65 0.6 0.4

t
(1)
42 t

(2)
42 t

(3)
42 t

(1)
43 t

(2)
43 t

(3)
43

0.65 0.5 0.5 0.8 0.3 0.3

battery-swapping option, the charging rate per server varies from 40 to 100 EVs/hour.

Given these charging parameters, the optimal routing proportions P
(k)
ij , ∀ i, j, k are first

illustrated for a wide variety of system variables. The average total trip time and per-

centage excess charging delay performances achievable by our proposed decision scheme are

also tested through extensive simulations, and compared to the conventional shortest time

scheme, i.e., the scheme selecting k∗ = arg mink

{
t
(k)
ij

}
, and random routing scheme, i.e., the

scheme assigning random values to P
(k)
ij without any optimization (thus emulating a random

non-connected driver behavior). Without loss of generality, and to avoid confusion, we will

only illustrate the results for PS 1 as an example.

2.4.1 Results for M/M/1 CS Model

In the following figures, the charging stations are assumed to be equipped with battery-

swapping technology only, unless otherwise stated. Figure 2.3 shows the behavior of the

optimal routing proportions P
(k)
12 as a function of the charging rates µ1, µ2 and µ3, while

keeping the departure rate from each of the PSs set to 30 EVs/hour. For this selected origin

and destination pair, CS 1 is the one that achieves the shortest time routing. For ease of

illustration, we will employ equal charging rates in CSs 2 and 3 (i.e., µ2 = µ3), which enables
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Figure 2.3: Effect of charging rate variation.

varying their common value on one axis of the 3D plot. This setting leads to equal routing

proportions variables P
(2)
12 and P

(3)
12 , which are illustrated using one curve in Figure 2.3. As

shown in the Figure, the proportion P
(1)
12 is lower than P

(2)
12 = P

(3)
12 when the charging rates

µ2 = µ3 are comparable to µ1 even though (t
(1)
12 < t

(2)
12 = t

(3)
12 ). This occurs due to the optimal

balancing of loads on charging stations, which will lead to a smaller average total trip time

(as will be illustrated later in Figure 2.5). Even when the charging rate µ1 is much higher

than the other two, the proportion variable P
(1)
12 naturally becomes higher, but non-zero

proportions of the EVs are still routed to the other two CSs to minimize the total trip time.

The lower left 2D plane in Figure 2.3 represents the plane in the 3D plot having µ2 = µ3 = 50

EVs/hour. As shown, P
(1)
12 increases, whereas P

(2)
12 = P

(3)
12 decrease, as µ1 increases. On the

other hand, the lower right 2D plot represents the plane having µ1 = 50 EVs/hour. We can

see that P
(2)
12 = P

(3)
12 increase, whereas P

(1)
12 decreases, as µ2 = µ3 increase. In both cases,

no routing proportion to any CS reaches zero, which means that EVs are still routed to all

three CSs.

Figure 2.4 shows how the routing proportions P
(k)
12 behave when varying the departure

rate from PS 1 (λ1), for fixed departure rates from the other PSs and two cases of charging

rates at the different CSs. The first case is when the charging rates are set to the following

values, µ1 = 70, µ2 = 90 and µ2 = 60 EVs/hour. As shown in the Figure, P
(2)
12 increase while
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Figure 2.4: Effect of departure rate variations for two cases of charging rate distributions.

P
(3)
12 decreases, despite the fact that t

(2)
12 = t

(3)
12 . Even P

(1)
12 is decreasing slowly, despite its

smaller trip time without-charging. This shows the effect of the higher charging rate CS (in

this example CS 2) in attracting more EVs even when other CSs have equal or even smaller

trip times without-charging. The second case is when µ2 = µ3 = 90 EVs/hour and µ1 = 60

EVs/hour. Again, P
(2)
12 = P

(3)
12 and are both increasing, while P

(1)
12 is decreasing even though

it is the shortest time route without charging. Clearly, all these results show the merits of

our cloud-based optimization approach in achieving optimal real-time routing proportions,

according to real-time values of system parameters, for a better experience for the customers

driving these EVs.

Figure 2.5 shows a comparison of the trip and charging temporal behaviors of our pro-

posed optimized scheme with the shortest time route selection and the random routing

scheme. The departure rates from PSs 1, 2, 3, and 4 are set to 40, 40, 30, and 30 EVs/hour,

respectively, and the charging rates of all CSs are set to 50 EVs/hour. The left sub-figure

depicts the comparison of the average total trip time between the three schemes. As shown,

the average total trip times of both the shortest time and random routing schemes are

higher than that of our proposed optimized scheme for all three destinations PSs 2, 3,

and 4. The right sub-figure illustrates the percentage excess duration in the charging sta-

tions
(

defined as (τ
(k)
ij − t

(k)
ij )/t

(k)
ij × 100

)
by our proposed model in comparison to the con-

ventional shortest time routing scheme. The figure clearly shows the significant reduction

achieved by our proposed optimized routing scheme in the percentage excess charging du-
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Figure 2.5: Comparison of the trip and charging temporal behaviors of the three tested
schemes with battery-swapping technology.

Figure 2.6: Comparison of the trip and charging temporal behaviors of the three tested
schemes with conventional charging.

rations, and thus its great impact on reducing the frustration and/or anxiety of customers

performing in-route charging of their allocated EVs.

Finally, Figure 2.6 shows the same comparisons of Figure 2.5 for the conventional charging

technology (as opposed to battery-swapping in Figure 2.5). The departure rates from PSs 1,

2, 3, and 4 are set to 7, 7, 6, and 6 EVs/hour, respectively, and the charging rates of all CSs

are set to 10 EVs/hour. Similar to Figure 2.5, the proposed routing method outperforms

the other two methods in the average total trip time performance. Likewise, a tremendous

reduction in the excess time spent in CSs can be observed when employing our optimized

scheme, which significantly improves the customers’ quality of experience.

2.4.2 Results for M/M/c CS Model

In this section, we simulated our model under the same system parameters of the previous

section with the charging stations modeled as M/M/c queues. The number of servers (c)
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is set to 5 in all the following results. For the following results, the type of charging is

the conventional one unless otherwise stated. Figure 2.7 shows the behavior of the optimal

routing proportions P
(k)
12 as a function of the charging rates µ1, µ2 and µ3 while keeping the

departure rate from each of the PSs set to 30 EVs/hour. The x-axis and y-axis in Figure

2.7 represent the total charging rate in a designated charging stations i.e cµ. The two sub-

Figures in Figure 2.7 are two planes of the 3D figure, showing the behavior of the optimal

routing proportions P
(k)
12 as a function of the charging rates. In the left sub-figure, the value

of µ2 and µ3 are set to 10 EVs/hour. Also, µ1 is set to 10 EVs/hour in the right sub-figure.

In all three sub-figures, we can easily notice the same behavior as the one exhibited in the

M/M/1 CS models. Likewise, the optimal routing proportions are always non-zero even in

extreme cases, which shows the need for and merits of our optimized cloud-based routing

approach.

Figure 2.8 shows the behavior of the proportions P
(k)
12 when varying the departure rate

from PS 1 (λ1) while fixing the other the departure rates from the Other PSs to 25 EVs/hour.

This setting is tested for two different cases of charging rates. The charging rates are set

to µ1 = 14 EVs/hour, µ2 = 18 EVs/hour and µ3 = 12 EVs/hour in the first case. In the

other case, the rates are set to the following values µ1 = 14 EVs/hour and µ2 = µ3 = 18

Evs/hour. The optimal routing proportions P
(k)
12 in Figure 2.8 are behaving in the same way

as in Figure 2.4 with small changes in the values, which again gives all credit to our proposed

route optimization process.

Figures 2.9 - 2.10 show a comparison between our proposed solution with the shortest

time and random routing schemes. In Figure 2.9, the departure rates from PSs 1-4 are set to

40, 40, 30, and 30 EVs/hour, respectively, and the charging rates per charging unit of all CSs

are set to 10 EVs/hour (conventional charging). As shown, the proposed method outperforms

the other two in both the average total trip time and the excess percentage for charging.

Figures 2.10 demonstrates the same comparison with battery-swapping technology at the

CSs. In Figure 2.10, the charging rates per charging unit of all CSs are set to 50 EVs/hour
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Figure 2.7: Effect of charging rate variation.
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Figure 2.8: Effect of departure rate variations for two cases of charging rate distributions.

and the departure rates from PSs 1-4 are set to 240, 240, 120 and 120 EVs/hour. Figure 2.10

shows that the performance of the proposed routing method is better than the other two

schemes in both the average total trip duration and the percentage excess charging durations.

2.4.3 Real-World Scenario

In this section, we present the results of implementing our proposed routing optimization

approach with M/M/c CS model for the real-world PSs of Autolib, the well-known current

MoD provider in Paris. The different travel times in this study were obtained using Google

Maps on January 15, 2018 at 9:05 a.m. [32]. To test our model, we have chosen 10 different

Autolib PSs and 3 CSs in Paris [33], all shown in Figure 2.11. The departure rates from PSs
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Figure 2.9: Comparison of the trip and charging temporal behaviors of the three tested
schemes with conventional charging.

Figure 2.10: Comparison of the trip and charging temporal behaviors of the three tested
schemes with battery-swapping technology.

1-10 are set to 7, 9, 8, 7, 8, 8, 8, 8, 8, 12 EVs/hour. The charging rates at all CSs are set to

14 EVs/hour with 2 charging units at each CS (i.e. c=2). Figure 2.12 shows a comparison

between our model and the other two schemes of routing for the real-world scenario. Due to

space limitations, we limited the comparison to only three destinations. As we can see, the

proposed model still outperforms the other two schemes even with a real-world scenario.

2.4.4 Computation Times

Optimization techniques are known to suffer from high execution times due to their nature

and the many iterations needed to achieve the optimal solutions. The total number of

variables to be calculated in our model is 2×n×(n−1)× m. It is obvious that the execution

time will increase as the number of variables and equations increase. The simulations were

done using MATLAB 2012 on a computer with i5-core 2.6 GHz Intel processor and 6 Gb

RAM [34]. Table 2.3 shows the average execution times and the number of variables for
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Figure 2.11: Paris map with 10 of Autolib PSs and 3 CSs.

Figure 2.12: Comparison of the trip and charging temporal behaviors of the three tested
schemes for real-world scenario.

the three different cases discussed in the simulation results. As we can see, even though

the M/M/1 model and M/M/c one have the same number of variables and equations, we

see that M/M/c model has higher execution time due to the complexity of the equations

in the problem. The real-world example has a higher execution time due to the number of

variables and equations. As the number of PSs and CSs increase, the execution time will

increase as well. Since the optimal routing proportions are assumed to be calculated in time

span of one hour or 30 minutes, the execution time will be within the time span. Figure 2.13

shows a more detailed study on how the computation time is increasing with the number of

variables in the M/M/1 model case. As we can see, the time is approximately 55 seconds

when the number of variables is 2000 which is still tolerable if the optimization problem has

a span of 30 minutes or one hour. In addition, if the simulations were done on C++ rather

than MATLAB, it will be 100 times faster which means the proposed methods are highly

tolerable even with large number of variables [35].
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Table 2.3: Computation times and number of variablesfor all case studies.
M/M/1 CS

Model
M/M/c CS

Model
Real-World

Scenario
Total Number
of Variables

72 72 540

Execution Time
(seconds)

2.85 3.3 11.5
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Figure 2.13: Computation time as a function of the total number of variables.
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CHAPTER 3

Joint Delay and Cost Optimization of In-Route Charging for

MoD-EV Systems

This chapter discusses the issue of the in-route charging similar to Chapter 2 in addition

to the cost on charging problem with an objective to minimize the average travel time

for all the customers as well as minimizing the charging costs from operator side. The

problem is formulated as a dual objective optimization problem using queuing theory based

on M/M/1 and M/M/c queues and then solved analytically and numerically to illustrate the

performance of the proposed method similar to the previous Chapter.

3.1 System Model

This chapter considers the MoD-EV system in Figure 2.1 similar to Chapter 2, with n

passenger stations (PSs) and m charging stations (CSs). As illustrated by the PS queues in

Figure 2.1, the model only considers EVs that need charging on the way to the destination

by less time-constrained customers. Each charging station is modeled by a queuing system

as shown in Figure 2.1. This queuing system can be either an M/M/1 or M/M/c queuing

model for all the charging stations in the system. Clearly, the M/M/1 model is a special case

of the general M/M/c, and both of them will be considered separately in the analysis. The

number of servers c at each CS might be different. From now on, It is labeled by M/M/rk

where rk is the number of servers at CS k.

Similar to Chapter 2, the overall departure rate of these EVs from PS i is modeled by a

Poisson process with rate λi EVs / unit time and the probability of a customer to go from

origin i to destination j is labeled by qij. On the other hand, each charging server at CS k

can complete either the direct EV charging or the swapping of its battery [11], [18] in an

exponentially distributed duration with rate µk EVs / unit time per server, which is different

from one CS to another given their different supplies of energy. In each CS k, there are two

different supplies of energy, namely the renewable and grid sources whose charging rates are
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Table 3.1: List of System and Decision Parameters
Parameter Definition

n: Total number of PSs
m: Total number of CSs
λi: Departure rate from PS i
qij: Probability for customer to go from PS i to PS j
µr
k: Charging or battery-swapping rate at CS k from the renewable

energy sources
µg
k: Charging or battery-swapping rate at CS k from the power grid
µk: Total charging rate at CS k
rk: The number of servers at CS k
ck: cost of charging from the grid at CS k per EV

t
(k)
ij : Time spent on the road only from PS i to PS j through CS k

without considering the charging time

P
(k)
ij : Decision routing probability to go from PS i to PS j through CS k

τ
(k)
ij : Actual trip time from PS i to PS j through CS k including charging

T
(k)
ij : An upper bound on τ

(k)
ij

µr
k and µg

k EVs / unit time per server, respectively, totaling up to µk (i.e., µr
k + µg

k = µk).

As in [8], it is assumed that the costs of charging from the renewable and grid sources are 0

and ck per EV, respectively. Consequently, EVs will first charge from the renewable energy

sources, and will only use the power grid if the arrival rate to the CS is more than µr
k (i.e.,

only if the renewable energy generation rate is not sufficient to cope with the EVs’ demand

at this CS). Finally, the real-time trip duration, without charging, between PSs i and j

through CS k is denoted by t
(k)
ij . Table 3.1 summarizes the different parameters we consider

in our model.

Having the operator cloud control collecting all the above time-varying parameters (and

thus time-varying of µr
k, µg

k, ck and t
(k)
ij ∀ i, j, k) in real-time due to typical changes in charg-

ing and traffic conditions, this controller is required to guide each EV departing from PS i

towards PS j to route through and charge in CS k with probability P
(k)
ij which will lead us

to equations (2.1) and (2.2) as in Chapter 2.

The routed EVs from all PSs to CS k queue up to charge, thus acquiring excess delays

in these CSs on top of the actual trip time t
(k)
ij without charging. After departing from the
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CS, EVs continue their routes to their destination PSs.

Clearly, the conventional shortest time routing strategy, which routes a customer depart-

ing from PS i and destined to PS j through CS k = arg mink

{
t
(k)
ij

}
may not necessarily be

the best strategy since the CS in this route might be overloaded, have insufficient charging

rate (especially from the free renewable sources), and/or high cost of charging from the grid,

and thus an extremely large (or even unbounded) charging delay or cost. The controller

is thus required to periodically determine the optimal routing proportions P
(k)
ij , given the

real-time values of λi, qij, µ
r
k, µg

k, and t
(k)
ij ∀ i, j, k, in order to jointly minimize the total trip

time of all customers through any route, relative to its t
(k)
ij value ∀ i, j, k, and the total cost

of charging.

Given the system model described above, and well-known thinning properties of Poisson

processes, the arrival process to the queue of each CS k is an independent Poisson process

with rate λk, which can be expressed by equation (3.1) which is obtained in the same way

as equation (2.3).

λk =
n∑

i=1

n∑
j=1

i 6=j

λiP
(k)
ij (3.1)

3.2 M/M/1 CS Model

In this section, we will formulate our problem using M/M/1 queues at the different

CSs (i.e one charging server per CS). Then, optimal routing decisions will be derived using

Lagrangian Analysis and KKT conditions.

3.2.1 Stability Constraints

Since the arrival process to each CS k is Poisson with rate λk and the charging duration at

each CS k are exponentially distributed with rate µk, the overall queuing system at each CS
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k becomes an M/M/1 queue [26]. Consequently, the entire system becomes a multi-server

queuing system consisting of m independent M/M/1 CS queues with different arrival rates,

which depend on the decision probabilities P
(k)
ij , ∀ i, j, k, and different service rates due to

their different energy supplies. To ensure the stability of CS k’s queue, ∀k, the arrival rate

to this CS k must be strictly less than its service rate µk. That is:

n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij < µk = µrk + µgk ∀ k (3.2)

By summing the left hand sides and right hand sides of the inequalities (2.4) for all k,

we get the general stability condition of the entire queuing system, expressed as:

n∑
i=1

λi <
m∑
k=1

µk =
m∑
k=1

(
µrk + µgk

)
(3.3)

In other words, the sum of the departure rates from all PSs must be strictly less than

the sum of all charging rates at all CSs to ensure that the queuing system is stable.

3.2.2 Problem Formulation

From basic analysis of M/M/1 queues [26], the expected charging time (denoted by Dk)

at each CS k is expressed as :

Dk =
1

(µr
k + µg

k)−
∑n

i=1

∑n
j=1

i 6=j

λiP
(k)
ij

∀ k (3.4)

Therefore, the total expected trip time (denoted by τ
(k)
ij ) from PS i to PS j through CS

k with in-route charging can be expressed as:

τ
(k)
ij = t

(k)
ij +

1

(µr
k + µg

k)−
∑n

i=1

∑n
j=1

i 6=j

λiP
(k)
ij

∀ i, j, k (3.5)
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Also, the charging cost at CS k can be represented by:

Costk = ck ·max

0,
n∑

i=1

n∑
j=1

i 6=j

λiP
(k)
ij − µr

k

 ∀ k (3.6)

As stated earlier, the main objective of our decision probabilities optimization is to jointly

minimize both the expected overall trip time for any customer over all routes, relative to

their trip time without in-route charging, and the overall cost of charging, while respecting

the stability constraint of the system. This problem can be formulated as follows:

minimize
P

(k)
ij ∀i,j,k

ρ
n∑

i=1

n∑
j=1

i 6=j

m∑
k=1

T
(k)
ij

t
(k)
ij

+ (1− ρ)
m∑
k=1

ck ·max

0,
n∑

i=1

n∑
j=1

i 6=j

λiP
(k)
ij − µ

r
k


(3.7a)

s.t. t
(k)
ij +

1

µk −
∑n

i=1

∑n
j=1

i 6=j

λiP
(k)
ij

≤ T (k)
ij ∀ i, j, k (3.7b)

m∑
k=1

P
(k)
ij = qij ∀ i, j (3.7c)

n∑
j=1

i 6=j

m∑
k=1

P
(k)
ij = 1 ∀ i (3.7d)

0 ≤ P (k)
ij ∀ i, j, k (3.7e)

T
(k)
ij > t

(k)
ij ∀ i, j, k (3.7f)

n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij − µ

r
k < µgk ∀ k (3.7g)

Constraint (3.7b) with the first objective function guarantee the achievement of the first

desired goal (minimizing τ
(k)
ij relative to t

(k)
ij ) in a weighted epigraph form [27] and the second

objective function guarantees the minimization of the total charging costs. Hence, we cast

the problem as a weighted sum of these two convex objective functions where 0 ≤ ρ ≤ 1.
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Constraints (3.7c) and (3.7d) represent the facts on the decisions P
(k)
ij in (2.1) and (2.2),

respectively. Constraint (3.7e) and (3.7c) guarantee that each routing proportion of each

source-destination pair EVs is always between 0 and q
(k)
ij , while Constraint (3.7f) guarantees

the positivity of the charging delay Dk. Constraint (3.7g) guarantees that the rate of EVs

charging from the power grid is less than the charging rate of the grid µg
k.

By re-arranging (3.7b), we get:

n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij ≤ µk −

1

T
(k)
ij − t

(k)
ij

∀ i, j, k (3.8)

Consequently, the problem in (3.7) becomes a convex optimization problem with convex

objective function and convex constraints. Moreover, (3.7f) guarantees the strict positivity

of the second term of the right hand side of (3.8), thus making the latter ensure the stability

of the system.

3.2.3 Optimal Routing Proportions

Since the problem in (3.7) is convex, it satisfies Slater’s theorem. Thus, strong duality

holds and the solutions of the primal and dual problems are identical [27]. Furthermore,

the Karush-Kuhn-Tucker (KKT) conditions provide necessary and sufficient conditions for

optimality [27]. The Lagrangian function corresponding to (3.7) is given in equation (3.9),

where α
(k)
ij , β

(k)
ij , γij, ωi, χ

(k)
ij and ηk are the Lagrange multipliers associated with the different

problem constraints. The expressions (3.10) are derived by applying the KKT conditions on



38

the inequality and equality constraints (3.7b)-(3.7g).

L(P, T, α, β, γ, ω, χ, η) = ρ
n∑

i=1

n∑
j=1

i 6=j

m∑
k=1

T
(k)
ij

t
(k)
ij

+ (1− ρ)
m∑
k=1

ck ×max

0,
n∑

i=1

n∑
j=1

i 6=j

λiP
(k)
ij − µ

r
k



+
n∑

i=1

n∑
j=1

i 6=j

m∑
k=1

−β(k)ij

(
T
(k)
ij − t

(k)
ij

)
+

n∑
i=1

n∑
j=1

i 6=j

m∑
k=1

α(k)
ij

 n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij +

1

T
(k)
ij − t

(k)
ij

−
(
µrk + µgk

)


+

n∑
i=1

n∑
j=1

i 6=j

γij

((
m∑
k=1

P
(k)
ij

)
− qij

)
+

n∑
i=1

n∑
j=1

i 6=j

m∑
k=1

(
−χ(k)

ij P
(k)
ij

)

+

n∑
i=1
i 6=j

ωi

 n∑
j=1

m∑
k=1

P
(k)
ij

− 1

+

m∑
k=1

ηk

 n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij −

(
µrk + µgk

) (3.9)

The KKT conditions:

α
(k)∗

ij

 n∑
i=1

n∑
j=1

i 6=j

λiP
(k)∗

ij +
1

T
(k)∗

ij − t(k)ij

− µk

 = 0 ∀ i, j, k (3.10a)

− β(k)∗

ij (T
(k)∗

ij − t(k)ij ) = 0 ∀ i, j, k (3.10b)

χ
(k)∗

ij P
(k)∗

ij = 0 ∀ i, j, k (3.10c)

n∑
j=1

m∑
k=1

P
(k)∗

ij − 1 = 0 ∀ i (3.10d)

m∑
k=1

P
(k)∗

ij − qij = 0 ∀ i, j (3.10e)

η∗k

 n∑
i=1

n∑
j=1

i 6=j

λiP
(k)∗

ij − (µr
k + µg

k)

 = 0 ∀ k (3.10f)

α
(k)∗

ij ≥ 0, β
(k)∗

ij ≥ 0, ζ
(k)∗

ij ≥ 0, χ
(k)∗

ij ≥ 0, η∗k ≥ 0 (3.10g)
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From (3.10), and the fact that the gradient of the Lagrangian function equals 0 at the

optimal solution, we obtain the following equations:

ρ

t
(k)
ij

−
α
(k)∗

ij(
T
(k)∗

ij − t(k)ij

)2 − β(k)∗ij = 0 ∀ i, j, k (3.11a)

λi

 n∑
i=1

n∑
j=1

i 6=j

α
(k)∗

ij

+ γ∗ij + ω∗i − χ
(k)∗

ij + λiη
∗
k = 0

∀ i, j, k if Costk = 0

(3.11b)

λi

 n∑
i=1

n∑
j=1

i 6=j

α
(k)∗

ij

+ γ∗ij + ω∗i − χ
(k)∗

ij + λiη
∗
k

+ (1− ρ)λick = 0 ∀ i, j, k if Costk > 0

(3.11c)

It is clear from (3.10b) that β
(k)∗

ij = 0, since
(
T

(k)∗

ij − t(k)ij

)
> 0. Also, we can easily see

that η∗k = 0 from (3.10f). From (3.11a), we get the optimal value of T
(k)∗

ij :

T
(k)∗

ij =

√
α
(k)∗

ij t
(k)
ij

ρ
+ t

(k)
ij ∀i, j, k (3.12)

Multiplying (3.11b) by P
(k)∗

ij , we get for Costk = 0 that:

P
(k)∗

ij

λi
 n∑

i=1

n∑
j=1

i 6=j

α
(k)∗

ij

+ γ∗ij + ω∗i − χ
(k)∗

ij

 = 0 (3.13)

From equation(3.10c), we can find that χ
(k)∗

ij P
(k)∗

ij = 0. P
(k)∗

ij that is multiplied by γ∗ij

and ω∗i is replaced by

(
qij −

∑m
u=1

u6=k

P
(u)∗

ij

)
. Substituting these in (3.13) and rearranging, we
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get the optimal routing proportions as:

P
(k)∗

ij = max

0 ,

−

(
qij −

∑m
u=1

u6=k

P
(u)∗

ij

)(
γ∗ij + ω∗i

)
∑n

i=1

∑n
j=1α

(k)∗

ij


∀ i, j, k if Costk = 0

(3.14)

By applying the same procedure done on (3.11b) on (3.11c), we get the optimal routing

proportions as in equation (3.15) for Costk > 0. Note that the second term in equations

(3.14) and (3.15) were always found to be positive in all tested scenarios (i.e. simulation

results), due to the fact that γ∗ij +ω∗i is negative and thus makes the value positive. However,

we use the form in (3.14) and (3.15) to set the routing proportions to zero in the rare case

of having the second term negative.

P
(k)∗

ij = max

0 ,

−

(
qij −

∑m
u=1

u6=k

P
(u)∗

ij

)(
γ∗ij + ω∗i

)
∑n

i=1

∑n
j=1α

(k)∗

ij + λick (1− ρ)

 ∀ i, j, k if Costk > 0 (3.15)

3.3 M/M/rk CS Model

In this section, we will extend the analysis of the special case of queues M/M/1 in the

previous section to include the more general form. M/M/rk are assumed at each CS k with

rk charging servers.

3.3.1 Stability Constraints

Similar to the M/M/1 model explained earlier in Section 3.2, the arrival process to

each CS k is again Poisson with rate λk as shown in equation (3.1). Here, CS k consists of

rk servers and each server has an exponentially charging rate µk. The charging rate µk for
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each server is the same in each CS and may differ from one CS to another depending on the

renewable sources and the power from the gird available at CS k. Consequently, the entire

system becomes a multi-server queuing system consisting of m independent CS M/M/rk

queues, with different arrival rates depending on the routing proportions P
(k)
ij , ∀ i, j, k, and

different service rates. To ensure the stability of each CS k queue, the arrival rate to this

CS k must be strictly less than its total service rate rkµk. That is:

n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij < rkµk ∀ k (3.16)

The general stability condition of the whole queuing system can be found in a similar

way to the M/M/1 model from equation (2.16) and is represented by:

n∑
i=1

λi <
m∑
k=1

rkµk (3.17)

3.3.2 Problem Formulation

From basic analysis of M/M/rk queues [28], the average charging time (denoted by Drk)

at each CS k can be represented by equation (3.18).

Drk =
1

(rkµk − λk)

(
1 +

(
1− λk

rkµk

)(
rk!

(λk/µk)rk

)(∑rk−1
h=0

(λk/µk)h

h!

)) +
1

µk

∀ k (3.18)

Therefore, the total average trip time
(

denoted by τ
(k)
ij

)
from PS i to PS j through CS

k with in-route charging can be represented as:

τ
(k)
ij = t

(k)
ij +Drk ∀ i, j, k (3.19)

Also, the charging cost at CS k can be represented in a very similar way to equation (3.6)
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by :

Costk = ck ·max

0,
n∑

i=1

n∑
j=1

i 6=j

λiP
(k)
ij − rkµr

k

 ∀ k (3.20)

Given the above expressions and the stability constraints of the system, the problem can

be formulated for the M/M/rk CS model as follows:

minimize
P

(k)
ij ∀i,j,k

ρ
n∑

i=1

n∑
j=1

i 6=j

m∑
k=1

T
(k)
ij

t
(k)
ij

+ (1− ρ)
m∑
k=1

ck ·max

0,
n∑

i=1

n∑
j=1

i 6=j

λiP
(k)
ij − rkµ

r
k


(3.21a)

s.t. t
(k)
ij +Drk ≤ T

(k)
ij ∀ i, j, k (3.21b)

n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij < rkµk ∀ k (3.21c)

m∑
k=1

P
(k)
ij = qij ∀ i, j (3.21d)

n∑
j=1

i 6=j

m∑
k=1

P
(k)
ij = 1 ∀ i (3.21e)

0 ≤ P (k)
ij ∀ i, j, k (3.21f)

T
(k)
ij > t

(k)
ij ∀ i, j, k (3.21g)

The formulation is very similar to the M/M/1 CS model. Constraint (3.21b) combined

with the objective function guarantee the achievement of the first goal (minimizing the aver-

age total trip time relative to the actual time without charging) while the second objective

guarantees the minimization of the charging costs. Hence, we formulated the objective func-

tion as a weighted sum of the two objectives where 0 ≤ ρ ≤ 1. Since the reciprocal of the

delay function Drk is a concave function [29] for constant uk and rk, and since the reciprocal

of a positive concave function is convex [30], then Constraint (3.21b) is convex. Constraints
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(3.21d)-(3.21g) are the same as constraints (3.7f)-(3.7e) in the M/M/1 formulation, and are

all linear. Constraints (3.21c) and (3.21g) guarantee the stability of the queuing system and

are also all linear. In addition, constraint (3.21c) guarantees that number of EVs that will

charge from the grid is less than the charging rate of the grid µg
k at CS k. Consequently,

the problem in (3.21) is a convex optimization problem with convex objective function and

convex constraints.

3.3.3 Optimal Routing Proportions

Similar to the M/M/1 analysis in Section 3.2.3, since the problem (3.21) is convex and

satisfies Slater’s conditions then a strong duality holds. That means the solutions of the

primal and and dual problems are identical, and the KKT conditions provide necessary and

sufficient conditions for optimality [27]. The Lagrangian function for the problem in (3.21)

is given by Equation (3.22), where ν
(k)
ij , ζk, ξ

(k)
ij , κij, σi, and ψ

(k)
ij are the Lagrange multiplies

for the different constraints in (3.21). In addition, the expressions (3.23) are obtained by

applying the KKT conditions on the optimization problem in (3.21).

L(P, T, ν, ζ, ξ, κ, ψ, σ) = ρ
n∑

i=1

n∑
j=1

i 6=j

m∑
k=1

T
(k)
ij

t
(k)
ij

+ (1− ρ)
m∑
k=1

ck ×max

0,
n∑

i=1

n∑
j=1

i 6=j

λiP
(k)
ij − rkµr

k



+
n∑

i=1

n∑
j=1

i 6=j

m∑
k=1

ν(k)ij

 n∑
i=1

n∑
j=1

i 6=j

t
(k)
ij +Drk − T

(k)
ij


+

m∑
k=1

ζk n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij − rkµk


+

n∑
i=1

n∑
j=1

i 6=j

m∑
k=1

−ξ(k)ij

(
T

(k)
ij − t

(k)
ij

)
+

n∑
i=1

n∑
j=1

i 6=j

κij

((
m∑
k=1

P
(k)
ij

)
− qij

)

+
n∑

i=1

n∑
j=1

i 6=j

m∑
k=1

(
−ψ(k)

ij P
(k)
ij

)
+

n∑
i=1
i 6=j

σi

((
n∑

j=1

m∑
k=1

P
(k)
ij

)
− 1

)

(3.22)
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The KKT conditions:

ν
(k)∗

ij

(
t
(k)
ij +Drk − T

(k)∗

ij

)
= 0 ∀ i, j, k (3.23a)

ζ∗k

 n∑
i=1

n∑
j=1

i 6=j

λiP
(k)∗

ij − rkµk

 = 0 ∀ k (3.23b)

− ξ(k)
∗

ij

(
T
(k)∗

ij − t(k)ij

)
= 0 ∀ i, j, k (3.23c)

ψ
(k)∗

ij P
(k)∗

ij = 0 ∀ i, j, k (3.23d)

n∑
j=1

m∑
k=1

P
(k)∗

ij − 1 = 0 ∀ i (3.23e)

m∑
k=1

P
(k)∗

ij − qij = 0 ∀ i, j (3.23f)

ν
(k)∗

ij ≥ 0, ζ∗k ≥ 0, ξ
(k)∗

ij ≥ 0, ψ
(k)∗

ij ≥ 0 (3.23g)

From (3.23) and the fact the gradient of the Lagrangian function equals 0 at the optimal

solutions, we obtain equations (3.24), (3.25) and (3.26).

ρ

t
(k)
ij

− ν(k)
∗

ij − ξ(k)
∗

ij = 0 ∀ i, j, k (3.24)

κ
∗
ij − ψ

(k)∗
ij + σ

∗
i +


n∑

i=1

n∑
j=1

i6=j

ν
(k)∗
ij

×


λiq − (rkµk − λk)

(
−λi

rkµk

(
rk!

ark

)∑rk−1

h=0

(
ah

h!

)
−
rkλi

µk

rk!

ark+1

(
1 −

a

rk

)∑rk−1

h=0

(
ah

h!

)
+
λi

µk

(
1 −

a

rk

)(
rk!

ark

)∑rk−1

h=1

(
ah

h!

))
q2

 = 0

if Costk = 0 where λk =

n∑
i=1

n∑
j=1

i6=j

λiP
(k)∗
ij , a =

λk

µk

and q =

(
rkµk − λk

)(
1 +

(
1 −

a

rk

)(
rk!

ark

) rk−1∑
h=0

ah

h!

)
(3.25)

It is easy to see from (3.23c) that ξ
(k)∗

ij = 0 since
(
T

(k)∗

ij − t(k)ij

)
> 0. This leads to the
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(1 − ρ)λick + κ
∗
ij − ψ

(k)∗
ij + σ

∗
i +


n∑

i=1

n∑
j=1

i6=j

ν
(k)∗
ij

×


λiq − (rkµk − λk)

(
−λi

rkµk

(
rk!

ark

)∑rk−1

h=0

(
ah

h!

)
−
rkλi

µk

rk!

ark+1

(
1 −

a

rk

)∑rk−1

h=0

(
ah

h!

)
+
λi

µk

(
1 −

a

rk

)(
rk!

ark

)∑rk−1

h=1

(
ah

h!

))
q2

 = 0

if Costk > 0 where λk =
n∑

i=1

n∑
j=1

i6=j

λiP
(k)∗
ij , a =

λk

µk

and q =

(
rkµk − λk

)(
1 +

(
1 −

a

rk

)(
rk!

ark

) rk−1∑
h=0

ah

h!

)
(3.26)

value of optimal value of ν
(k)
ij expressed as:

ν
(k)∗

ij =
ρ

t
(k)
ij

> 0 ∀ i, j, k (3.27)

From the expression (3.23a) and the fact that ν
(k)∗

ij > 0, we can easily find the optimal

solution of T
(k)∗

ij , which is expressed as:

T
(k)∗

ij = t
(k)
ij +Drk ∀ i, j, k (3.28)

The above expression shows that T
(k)∗

ij is an exact bound on the actual trip time. It

is clear from (3.23b) that ζ∗k = 0 since

(∑n
i=1

∑n
j=1

i 6=j

λiP
(k)∗

ij − rkµk

)
< 0. Having these

parameters defined, the optimal routing proportions P
(k)∗
ij ∀ i, j, k could be found by solving

equations (3.25) and (3.26) for P
(k)∗

ij for the cases of Costk = 0 and Costk > 0, respectively.

3.4 Simulation Results

In this section, we consider a simulation model with 4 PSs and 3 CSs as in Section 2.4 to

evaluate the performance of our proposed model for both types of queues at CSs M/M/1 and

M/M/rk. Table 2.2 shows the different values of t
(k)
ij (time spent on the road only) used in the

simulations for all possible routes. Uniform destination PS probabilities are assumed from

each source PS (i.e. qij = 1/3 ∀ i 6= j). Although our model works for all types of charging,
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conventional charging is used to show the performance of our proposed model when having

to charge the EV from the power grid when renewable energy sources are exhausted. We

allow the total charging rate (µk) per server at CS k to vary from 8 to 28 EVs/hour. A new

study showed that an EV battery fully-depleted could be charged in 5 minutes [31], which

corresponds to the value of 12 EVs/hour. Slightly lower (8 to 11 EVs/hour) and higher (13

to 28 EVs/hour) charging rates are also considered to represent cases where the charging

stations have low-energy supplies (or longer than 5 minutes charging time) and customers

not fully charging the batteries to reduce their delays, respectively.

Given this setting for the charging rates, the optimal routing proportions P
(k)
ij , ∀ i, j, k are

first illustrated for a wide variety and interplay of system variables. The average total trip

time, percentage excess charging delay, and total charging cost performances achievable by

our proposed decision scheme are also tested through extensive simulations, and compared

to the conventional shortest time scheme, i.e., the scheme selecting k∗ = arg mink

{
t
(k)
ij

}
,

and random routing scheme, i.e., the scheme assigning random values to P
(k)
ij without any

optimization (thus emulating a random non-connected driver behavior). Due to space lim-

itation, we will only illustrate the results for PS 1 as an example. In most of the following

simulations, the value of ρ is chosen to be either 0.25 or 0.5.

3.4.1 Results for M/M/1 CS Model

Figure 3.1 illustrates the behavior of the routing proportions P
(k)
12 as a function of the

renewable sources’ charging rates µr
1, µ

r
2 and µr

3, while the departure rates from the PSs are

set to 20, 15, 15 and 15 EVs/hour respectively. The maximum charging rate from the grid

(i.e., µg
k ∀k) is set to 10 EVs/hour in all CSs, while the charging costs from the grid are set

to c1 = 2 and c2 = c3 = 1 cost unit/EV. Also, ρ is chosen to be 0.5. For ease of illustration,

Table 2.2 shows equal without-charging trip times from PS 1 to PS 2 through both CSs 2 and

3, which is larger than the time through CS 1 (i.e., t
(2)
12 = t

(3)
12 > t

(1)
12 ). We will also assume
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Figure 3.1: Effect of renewable charging rate variation.

equal charging rates in CSs 2 and 3 (i.e., µ2 = µ3), which enables varying their common

value on one axis of the 3D plot. This setting leads to equal routing proportions P
(2)
12 and

P
(3)
12 , which are illustrated using one curve in Figure 3.1. As shown in the figure, P

(1)
12 is

lower than P
(2)
12 = P

(3)
12 when the charging rates µr

2 = µr
3 are much higher than µr

1 since the

delay of charging and the cost are less in CSs 2 and 3 even though (t
(1)
12 < t

(2)
12 = t

(3)
12 ). Even

when the charging rate µr
1 becomes much higher than the other two, P

(1)
12 starts to increase

but is still less than the other two, since the cost of charging in CS 1 is double that of the

other two CSs. The lower left 2D plane in Figure 3.1 represents the plane in the 3D plot

having µr
2 = µr

3 = 10 EVs/hour. As shown, P
(1)
12 increases as µr

1 increases, while being still

lower than P
(2)
12 = P

(3)
12 (which gradually decrease, as µr

1 increases) due to the charging cost.

On the other hand, the lower right 2D plot represents the plane having µr
1 = 10 EVs/hour.

We can see that P
(2)
12 = P

(3)
12 increase then saturate, whereas P

(1)
12 decreases then saturates,

as µr
2 = µr

3 increase. We see that P
(2)
12 = P

(3)
12 increase and P

(1)
12 decreases at the beginning

(i.e., at low charging rates at CS s2 and 3) due to their lower charging costs from the grid.

As the renewable charging rates surpass a certain value, accessing grid charging becomes

very minimal and unnecessary at all stations, which stabilizes the proportions to the values

minimizing the delays.
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Figure 3.2 illustrates how the routing proportions P
(k)
12 behave when varying the departure

rate from PS 1 (λ1), for fixed departure rates from other PSs, different/fixed renewable/grid

charging rates, and two cases of charging costs at the different CSs. The charging rates

from renewable sources are set to µr
1 = 10, µr

2 = 12 and µ3 = 18 EVs/hour, and the fixed

charging rate from the grid (i.e., µg
1 = µg

2 = µg
3) is set to 10 EVs/hour. ρ is set to 0.25 in

this simulation. The first case is when the charging costs are set equal to c1 = c2 = c3 = 1

cost unit/EV, which is illustrated in the left plot. As λ1 increases in the low range, P
(3)
12

increases while P
(1)
12 decreases and P

(2)
12 remains fairly constant. This occurs since CS 3 has

a higher rate of renewable energy, which makes it the most attractive from the delay and

the cost (almost all its EVs charge from the renewable source) perspectives. As λ1 grows to

higher ranges, the load on CS 3 becomes high enough to mandate charging from the grid,

thus reducing its attractiveness (and thus reducing P
(3)
12 ) as opposed to CS 1 (and thus P

(1)
12

increases). However, CS 3 still gets the higher share due to its higher renewable and overall

charging rates, thus resulting in less delays and less EVs charging from the grid. The

second case is when c1 = c2 = 1 and c3 = 1.5 cost unit/EV, which is illustrated in the right

plot of Figure 3.2. Again, at lower ranges of increasing λ1, P
(3)
12 is increasing. Due to the

same effect depicted for the same range in the left plot. As λ1 grows to the intermediate

range, forcing all CSs to need grid charging, the higher cost in c3 compared to c1 and c2

results in a steeper drop (compared to the left plot) in P
(3)
12 to even below the proportions

of the other two CSs. However, as λ1 grows very large, the cost of charging becomes less of

an issue compared to the delays, which gives a boost (drop) again to P
(3)
12 (P

(1)
12 and P

(2)
12 ) as

it has higher (lower) charging rates. All these variations clearly demonstrate the merits of

our cloud-enabled optimization approach due to the high sensitivity of the system behavior

(delay and cost wise) to the real-time values of all the above parameters.

Figure 3.3 shows how the routing proportions P
(k)
12 vary as a function of the charging

costs ck. The departure rates from all PSs are set to 17 EVs/hour while the renewable

energy charging rates are set as follow µr
1 = 10 EVs/hour and µr

2 = µr
3 = 16 EVs/hour. The
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Figure 3.2: Effect of departure rate variations for two cases of charging rate distributions.
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Figure 3.3: Effect of varying the charging prices.

charging rates from the grid are set to 10 EVs/hour in all CSs. The value of ρ here is set

0.5. Similar to Figure 2.3, P
(1)
12 is shown in one curve while the other one illustrates the

behavior of P
(2)
12 = P

(3)
12 since CSs 2 and 3 have the same settings and t

(2)
12 = t

(3)
12 . As shown

in the figure, the proportions P
(2)
12 = P

(3)
12 are much higher than P

(1)
12 when the cost at CS

1 c1 is high compared to the other two. Even when c2 and c3 are much higher than c1, the

proportions P
(2)
12 = P

(3)
12 are still slightly higher than P

(1)
12 due to their higher charging rates.

Figure 3.4 shows the trade-off between the two problem objectives (i.e., total cost and

the average ratio of trip times with and without charging) as a function of ρ (varying from

0.05 to 0.95). The departure rates form all PSs are set to 14 EVs/hour and the renewable

charging rates are set as follow µr
1 = µr

2 = 10 EVs/hour and µr
3 = 14 EVs/hour. The grid
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Figure 3.4: Total cost vs. Average relative time for different values of ρ.

charging rate at all CSs is set to 10 EVs/hour and the charging costs are set to the following

values c1 = c2 = 1 and c3 = 1.5 cost unit/EV. On one end of the curve, the highest value

of ρ = 0.95 gives the highest total cost and the lowest total delay. On the other end, the

lowest value of ρ = 0.05 gives the lowest total cost and the highest delay for this specific

configuration. The figure can be indeed used to determine the best choice of ρ to achieve a

certain upper bound constraint on either or both metrics. For example, for this particular

configuration, if the trip time ratio (cost) is not to exceed 1.6 (120 cost units/hour),ρ must

be chosen to be 0.15 (0.35) to achieve the lowest cost (trip time ratio) while satisfying the

above trip time ratio (cost) constraint.

Finally, Figures 3.5 and 3.6 compare our proposed optimized scheme with the shortest

time path selection and the random routing scheme in terms of the total with-charging trip

duration and charging cost. The departure rates from PSs 1, 2, 3, and 4 are set to 18, 18,

14, and 14 EVs/hour, respectively, the renewable charging rates of all CSs are set to 10

EVs/hour, the grid charging rates of all CSs are set to 12 EVs/hour and the cost of charging

are set 15, 10 and 12 cost unit/EV, respectively. Here, the value of ρ is set to 0.5. Figure

2.5 depicts the comparison of the average total trip time achieved by the three schemes. As

shown, the average total trip time in the shortest time and random schemes is higher than

that of our proposed optimized scheme for all three destinations PSs 2, 3, and 4. Figure
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Figure 3.5: Comparison of the total trip time of the three tested schemes.

Figure 3.6: Comparison of the charging costs of the three tested schemes.

2.6 shows that our proposed method also outperforms the other two in terms of total cost.

Consequently, tremendous gains to both the customers and the operator can be observed

when employing our optimized scheme.

3.4.2 Results for M/M/rk CS Model

In this section, we simulated the system under the same model with 4 PSs and 3 CSs. The

CS model is M/M/rk queues. Similar to Figure 2.3, Figure 3.7 shows the behavior of the

optimal routing decisions P
(k)
12 with variation of the renewable charging rates. The x-axis

and y-axis in the Figure represent the charging rate per server. The departure rates from

all PSs are set to 26 EVs/hour. CSs 2 and 3 have the same settings to allow varying P
(2)
12

and P
(3)
12 on one axis similar to Figure 3.1. The charging rates from the grid are set to 10
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Figure 3.7: Effect of renewable charging rate variation.

EVs/hour while the number of servers at each CS is set to 2 (i.e µg
k = 10 and rk = 2 ∀k).

The charging costs from the grid are set as follows c1 = 2 and c2 = c3 = 1 cost unit/EV,

and ρ = 0.5. The two sub-Figures are two planes taken from the 3D one. The left sub-

figure is when µr
2 = µr

3 = 13 EVs/hour while the right sub-figure is with µr
1 = 13 EVs/hour.

The curves show very similar behavior to Figure 3.1 in M/M/1 CS model. The routing

decisions P
(k)
12 have slightly different values from the ones in Figure 3.1 but still having the

same general behavior which shows the merit of our proposed method. Figure 3.8 shows

how the routing decisions P
(k)
12 behave when varying the departure rate from PS 1 (λ1), for

fixed departure rates from other PSs, fixed renewable/grid charging rates, and two cases of

charging costs at the different CSs. The charging rates from renewable sources are set to

µr
1 = 10, µr

2 = 12 and µ3 = 14 EVs/hour, and the fixed charging rate from the grid is set

to 10 EVs/hour. ρ is set to 0.25 in this simulation. The number of server at CSs are set to

r1 = 3 and r2 = r3 = 2 servers. Similar to Figure 3.2, the first case is when the charging

costs are set equal to c1 = c2 = c3 = 1 cost unit/EV, which is illustrated in the left plot. As

λ1 increases in the low range, P
(1)
12 decreases while P

(2)
12 and P

(3)
12 . As we can see, P

(1)
12 has

the higher value at the beginning since CS 1 has the higher rate but as the arrival rate λ1

increases P
(1)
12 decreases while the other two are increasing to both minimize the delay and
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Figure 3.8: Effect of departure rate variations for two cases of charging cost distributions.

the cost. However, this behavior changes at the middle since now all EVs have to charge

from the grid. P
(1)
12 is increasing now while the other two are decreasing since it is attractive

from both the cost and delay point of view.

The second case is when c1 = 1.5 and c2 = c3 = 1 cost unit/EV, which is illustrated

in the right plot of Figure 3.8. The plot has very similar behavior to the left sub-figure.

P
(1)
12 decreases while the other two decisions are increasing in the first part of the curve since

the arrival rate increasing. However, P
(2)
12 and P

(3)
12 are increasing much faster than the left

sub-figure. Again, the behavior of the decisions change in the middle of the plot when all

of them need to charge from the grid. As we can see, P
(1)
12 is increasing while the other

two are decreasing even though the cost of CS 1 is higher but it is much better in term of

delay compared to CS 2 and 3 which shows how the optimization problem is sensitive to the

parameters.

Figure 3.9 shows how the routing decisions P
(k)
12 behave when varying the cost of charging

from the grid while keeping all the parameters constants. The departure rates from all PSs

are set to 15 EVs/hour while the charging rates from the grid are set to 10 EVs/hour. The

charging rates from the renewable sources are set as follows µr
1 = 10 and µr

2 = µr
3 = 12

EVs/hour. Two charging servers are installed at each CS. The decisions are behaving in a

very similar way to Figure 3.3. P
(1)
12 is shown in one curve while the other one illustrates the

behavior of P
(2)
12 = P

(3)
12 since CSs 2 and 3 have the same settings and t

(2)
12 = t

(3)
12 . As shown in
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Figure 3.9: Effect of varying the charging prices.

the figure, the proportions P
(2)
12 = P

(3)
12 are higher than P

(1)
12 when the cost at CS 1 c1 is high

compared to the other two. Even when c2 and c3 are much higher than c1, the proportions

P
(2)
12 = P

(3)
12 are still slightly higher than P

(1)
12 due to their higher charging rates.

Figure 3.10 shows the trade-off between the two objectives (i.e total Cost and average

relative time) for the case of M/M/rk at CSs as a function of ρ where ρ varied from 0.05 to

0.95 in the simulation. The departure rates from all PSs are set to 40 EVs/hour while the

number of servers at each CS is set as as follows r1 = 2 and r2 = r3 = 3 servers. The charging

rates from the grid are set to 10 EVs/hour and the charging from renewable sources are set

to the following values ur1 = ur2 = 10 and ur3 = 12 EVs/hour. The cost of charging from

the grid are set to c1 = c2 = 1 and c3 = 2 cost unit/EV. The Figure has the same general

shape of Figure 3.4 but with different values. As we can see in the Figure, ρ = 0.95 gives the

lowest average relative time and the highest total cost while the opposite case is observed

when ρ = 0.05 for this setting of the parameters. The Figure can be used to choose the best

value of ρ depending on the customer and operator restriction on both the delay and the

cost, respectively. In this Figure, choosing ρ to be between 0.65 and 0.25 gives acceptable

values on both objectives.

Figures 3.11 and 3.12 compare the performance of our proposed method with two other
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Figure 3.11: Comparison of the total trip time of the three tested schemes.

schemes of routing, shortest time and random routing decisions for both the average delay

and total cost. Both Figures are tested under the same system parameters. The departure

rates from all PSs are set 28 EVs/hour. The charging rates from the grid are set to 10

EVs/hour at all CSs while charging rates from the renewable sources are set to µr
1 = µr

2 = 10

and µr
3 = 12 EVs/hour. Two servers are installed at each CS (i.e rk = 2 ∀k). The cost of

charging from the grid is set to c1 = 7, c2 = 8 and c3 = 10 cost unit/EV. As observed in

both Figures, our proposed method outperforms the other two methods of routing in both

the average delay and the total cost which the merits of our proposed method for both the

customers and operator.
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Figure 3.12: Comparison of the charging costs of the three tested schemes.

Figure 3.13: Comparison of the total charging costs of the three tested schemes.

3.4.3 Real-World Scenario

In this section, we present the results of implementing our proposed routing optimization

approach with M/M/rk CS model for the real-world PSs of Autolib, the well-known current

MoD provider in Paris [33] as in Section 2.4.3, all shown in Figure 2.11. The departure

rates from PSs 1-10 are set to 11, 13, 12, 11, 12, 12, 12, 12, 12, 16 EVs/hour. The charging

rates at all CSs are set to 21 EVs/hour (i.e. µr
k = 10 EVs/hour and µg

k = 11 EVs/hour ∀k)

with 2 charging units at each CS (i.e. rk = 2 ∀k). The charging costs from the grid are

set as follow r1 = r2 = 1 cost unit/EV and r3 = 1.5 cost unit/EV. Our proposed method is

tested and compared to other routing schemes as shown in Figure 3.13. The model is still

outperforming the shortest path and random schemes even in a real-world scenario.
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3.4.4 Computation Times

As in Section 2.4.4, Computation times are calculated for this proposed model also due

to the high execution times known for solving optimization problems. The total number of

variables to be calculated in our model is 2 × n × (n − 1)× m. The calculations are done

on the same environment as in Section 2.4.4. Table 3.2 shows the average execution times

and the number of variables for the three different cases discussed in the simulation results.

As we can see, even though the M/M/1 model and M/M/rk one have the same number of

variables and equations, we see that M/M/rk model has higher execution time due to the

complexity of the equations in the problem. The real-world example has a higher execution

time due to the number of variables and equations. As the number of PSs and CSs increase,

the execution time will increase as well. Since the optimal routing proportions are assumed

to be calculated in time span of one hour or 30 minutes, the execution time will be within

the time span.

Table 3.2: Computation times and number of variablesfor all case studies.
M/M/1 CS

Model
M/M/rk CS

Model
Real-World

Scenario
Total Number
of Variables

72 72 540

Execution Time
(seconds)

3.1 3.34 11.82
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CHAPTER 4

Optimal Local and In-Route Charging Management of MoD-EV

Systems

In this chapter, we discuss a model similar to the one in chapter 2. However, it is assumed

here that there are charging facilities at both the pick-up locations and some other locations

around the city. Obviously, charging all EVs at the pick-up locations might not be the best

solution as the delay on that charging station may go large or even unbounded and thus some

customers should be routed to other charging stations with an objective of minimizing the

average total trip time for all the customers. In both chapters 2 and 3, we did not consider

the traffic congestion as part of the optimization problem which will be considered in this

chapter. For simplicity, we will implement this new setting on the M/M/c queues only as

we have seen very similar results for both types of queues in the previous chapters.

4.1 System Model

Similar to Sections 2.1 and 3.1, this section considers a MoD-EV system as shown in

Figure 2.1, with n passenger stations (PSs), m charging stations (CSs) around the city (i.e.

their locations are different from the locations of PSs) and n charging stations at the PSs (i.e.

each PS has a charging station) and are abbreviated as CSP. Customers pick-up/ drop-off

EVs close to their origins and destinations, respectively and these locations called PSs. The

model only considers EVs that need charging before reaching to the destination by less time-

constrained customers, as illustrated by the PS queues in Figure 2.1. Similar to Sections 2.1

and 3.1, the overall departure rate of these EVs from PS i is modeled by a Poisson process

with rate λi EVs / unit time. When departing, each customer intends to go to PS j with

probability qij (qii = 0). On the other hand, each server at CS k can complete either the

direct EV charging or the swapping of its battery [11], [18] in an exponentially distributed

duration with rate µk EVs / unit and each server at CSP i complete the charging with rate ρi
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EVs / unit time at PS i, which are different from one charging station to another given their

different supplies of energy. The total number of charging units at each CS or CSP is denoted

by c. In addition, the real-time trip duration between PSs i and j through CS k, without

charging, is denoted by t
(k)
ij while tij represents the time spent on the road only between PS

i and PS j when EVs charge at CSP i (i.e. it is the shortest path). Another important

factor in the model is traffic capacity on each road which is represented by current traffic

capacity (CTC
(k)
ij ) and maximum traffic capacity (MTC

(k)
ij ), respectively. CTC represents

the current number of cars in each route while MTC represents the maximum number that

will not increase the trip time without charging (i.e. sending more cars will not increase the

congestion or the delay on the route). Table 4.1 shows all the parameters considered in our

model.

Having a cloud controller that is capable of collecting all the system parameters in real-

time given time-varying charging and traffic conditions (and thus time-varying of µk, ρi, tij,

t
(k)
ij , CTCij, CTC

(k)
ij , MTCij and MTC

(k)
ij ∀ i, j, k), this controller is required to guide each

EV departing from PS i towards PS j to charge either at the PS i (origin) or charge in the

route at CS k with probabilities Pij and P
(k)
ij , respectively. It is easy to see that:

(
m∑
k=1

P
(k)
ij

)
+ Pij = qij ∀ i, j and i 6= j (4.1)

n∑
j=1

i 6=j

m∑
k=1

(
P

(k)
ij + Pij

)
= 1 ∀ i (4.2)

The EVs departing from all PSs are required to charge at CS k or CSP i and thus they

queue up at the stations, thus having additional delays in these CSs and CSPs on top of the

actual trip times t
(k)
ij and tij without charging. After departing from the CSP or CS, EVs

continue their ways to the destination PSs.

This controller is thus required to determine these proportions Pij and Pij periodically,

given the real-time values of λi, qij, µk, ρi, tij, t
(k)
ij , CTCij, CTC

(k)
ij , MTCij and MTC

(k)
ij
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Table 4.1: List of System and Decision Parameters
Parameter Definition

n: Total number of PSs and total number of CSPs
m: Total number of CSs
λi: Departure rate from PS i
qij: Probability for customer to go from PS i to PS j
µk, ρi: Charging or battery-swapping rate of each server (charging unit) at CS k

and CSP i, respectively
c: The number of servers (or charging units) at each CS or CSp

t
(k)
ij : Time spent on the road only from PS i to PS j through CS k

without considering the charging time

P
(k)
ij : Decision routing probability to go from PS i to PS j through CS k
tij: Time spent on the road only from PS i to PS j when EV is charged

at PS i without considering the charging time (shortest path)
Pij: Decision routing probability to go from PS i to PS j when EV

is charged at PS i

CTC
(k)
ij : Current number of cars on the route from PS i to PS j through CS k

and labeled CTCij when EV is charged at the origin

MTC
(k)
ij : Maximum number of cars on the route from PS i to PS j through

CS k that will not increase the delay on driving and labeled CTCij

when EV is charged at the origin

Tij, T
(k)
ij : Upper bounds on the total trip time including charging delays

∀ i, j, k, in order to optimize the average total trip time for all customers through any route

relative to its shortest path (i.e. tij value ∀ i, j, k). Obviously, the conventional shortest path

routing strategy, which routes a customer departing from pick-up location i and destined

to drop-off location j through charging at the PS i (i.e. charging at CSP i) may not be

the best routing scheme since the CSP may have a huge load (i.e. overloaded) or have low

energy resources, and thus results in a large (or even unbounded charging delay) at the

charging station. So, the cloud controller should periodically be able to calculate the routing

proportions that minimize the overall average trip time for all the customers in each period.
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4.2 Problem Formulation

4.2.1 Queuing System Stability Conditions

Using the system model described above, and the thinning property of Poisson processes,

the arrival process to the queue of each CS k can be represented by an independent Poisson

process with rate λk, which is shown by equation (4.3). Similarly, equation (4.4) shows the

arrival rate at each CSP i.

λk =
n∑

i=1

n∑
j=1

i 6=j

λiP
(k)
ij (4.3)

λiCSP =
n∑

i=1

n∑
j=1

i 6=j

λiPij (4.4)

These expressions are obtained for each charging station by the summation of all thinned

departure processes from each PS i whose rates are λiP
(k)
ij and λiPij as in equations (4.3)

and (4.4), respectively. Since the arrival process to each charging station is Poisson with

rates λk and λiCSP , and the charging time at each server is exponentially distributed with

rates µk and ρi and c servers are available at each station , the overall queuing system

becomes an M/M/c queue at each CSP i and CS k [26]. Consequently, the entire system

becomes a multi-server queuing system consisting of n independent CSP M/M/c and m CS

M/M/c queues, with different arrival rates depending on the decision probabilities P
(k)
ij and

Pij, ∀ i, j, k, and different service (or charging) rates due to energy supplies at each station.

To ensure the stability of the whole system, the arrival rate to each CS k or CSP i must be

strictly less than its total service (charging) rate cµk or cρi . These are represented by:

n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij < cµk ∀ k (4.5)
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n∑
i=1

n∑
j=1

i 6=j

λiPij < cρi ∀ i (4.6)

4.2.2 Problem Statement

The average charging time (denoted by Dk) at each CS k can be represented by equation

(4.7) [28]. Also, the average charging time at each CSP i (denoted by Di) is expressed by

equation (4.8) [28].

Dk =
1

(cµk − λk)

(
1 +

(
1− λk

cµk

)(
c!

(λk/µk)c

)(∑c−1
h=0

(λk/µk)h

h!

)) +
1

µk

∀ k (4.7)

Di =
1

(cρi − λk)

(
1 +

(
1− λiCSP

cµk

)(
c!

(λiCSP /ρi)
c

)(∑c−1
h=0

(λiCSP /µk)h

h!

)) +
1

ρi
∀ i (4.8)

Consequently, the total average trip time (denoted by τ
(k)
ij ) from PS i to PS j through

CS k with in-route charging can be expressed as:

τ
(k)
ij = t

(k)
ij +Dk ∀ i, j, k (4.9)

In addition, the total average trip time from PS i to PS j when EV is charged at CSP i

before leaving the origin (denoted by τij) can be represented as:

τij = tij +Di ∀ i, j (4.10)

As mentioned earlier, the objective of our decision proportions optimization is to mini-

mize the average overall trip time for all customers over all routes relative to their actual trip

time without charging, while maintaining the stability of the system. This problem can be
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formulated as in (4.11). Constraints (4.11b) and (4.11c) with the objective function guaran-

tee the achievement of the desired goal (minimizing τ
(k)
ij and τij relative to tij) in a weighted

epigraph form [27]. Since the reciprocal of the delay functions Dk and Di are concave func-

tions [29] for constant uk, ρi and c, and since the reciprocal of a positive concave function

is convex [30], then Constraints (4.11b) and (4.11c) are convex. Constraints (4.11d) and

(4.11e) guarantee the stability at each charging queue while constraints (4.11f) and (4.11g)

respect the traffic congestion at each route (i.e. guarantee that no more delay will be added

in the travel time). Constraints (4.11h) and (4.11i) represent the facts on the proportions

P
(k)
ij , Pij in (4.1) and (4.2), respectively. Constraint (4.11j) guarantees that the decision

probability is always between 0 and q
(k)
ij while Constraint (4.11k) guarantees the positivity

of the charging delays Dk and Di. All the constraints in the optimization problem (4.11)

are linear except (4.11b) and (4.11c) which are convex. In addition, the objective function

is linear. Consequently, the problem in (4.11) becomes a convex optimization problem with
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linear cost function and a set of convex constraints.

minimize
P

(k)
ij ,Pij ,T

(k)
ij ,Tij ∀i,j,k

n∑
i=1

n∑
j=1

i 6=j

(
Tij
tij

+

m∑
k=1

T
(k)
ij

tij

)
(4.11a)

s.t. t
(k)
ij +Dk ≤ T

(k)
ij ∀ i, j, k (4.11b)

tij +Di ≤ Tij ∀ i, j (4.11c)

n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij < cµk ∀ k (4.11d)

n∑
i=1

n∑
j=1

i 6=j

λiPij < cρi ∀ i (4.11e)

CTC
(k)
ij +

n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij ≤MTC

(k)
ij ∀ i, j, k (4.11f)

CTCij +
n∑

i=1

n∑
j=1

i 6=j

λiPij ≤MTCij ∀ i, j (4.11g)

(
m∑
k=1

P
(k)
ij

)
+ Pij = qij ∀ i, j (4.11h)

n∑
j=1

i 6=j

m∑
k=1

(
P

(k)
ij + Pij

)
= 1 ∀ i (4.11i)

0 ≤ P (k)
ij , Pij ≤ qij ∀ i, j, k (4.11j)

T
(k)
ij , Tij > t

(k)
ij , tij ∀ i, j, k (4.11k)

4.3 Analytical Derivation of Optimal Routing

The problem in (4.11) is a convex optimization problem and it satisfies also Slater’s

theorem. Hence, strong duality holds and the optimal solutions of the primal (original) and

dual problems are identical [27]. The Karush-Kuhn-Tucker (KKT) conditions provide nec-

essary and sufficient conditions for optimality [27]. The Lagrangian function of the problem
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in (4.11) is given by equation (4.12), where α
(k)
ij , βij, ηk γi, ω

(k)
ij , ζij, χij, ψi, ν

(k)
ij , νij, ξ

(k)
ij , ξij,

σ
(k)
ij and σij are the Lagrange multipliers of the different problem constraints. The equations

(4.13) are derived by applying the KKT conditions on the equality and inequality constraints

(4.11b)-(4.11k).

L(P, T, α, β, η, γ, ω, ζ, χ, ψ, ν, ξ, σ) =

n∑
i=1

n∑
j=1

i 6=j

(
Tij
tij

+

m∑
k=1

T
(k)
ij

tij

)
+

n∑
i=1

n∑
j=1

i 6=j

m∑
k=1

(
α
(k)
ij

(
t
(k)
ij +Dk − T (k)

ij

))

+

n∑
i=1

n∑
j=1

i6=j

m∑
k=1

(βij (tij +Di − Tij)) +
m∑

k=1

ηk

 n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij − cµk

+

n∑
i=1

γi

 n∑
i=1

n∑
j=1

i 6=j

λiPij − cρi



+

n∑
i=1

n∑
j=1

i6=j

m∑
k=1

ω(k)
ij

CTC(k)
ij +

n∑
i=1

n∑
j=1

i6=j

λiP
(k)
ij −MTC

(k)
ij


+

n∑
i=1

n∑
j=1

i 6=j

(
χij

((
m∑

k=1

P
(k)
ij

)
+ Pij − qij

))

+

n∑
i=1

n∑
j=1

i6=j

ζij
CTCij +

n∑
i=1

n∑
j=1

i 6=j

λiP
(k)
ij −MTCij


+

n∑
i=1

ψi

 n∑
j=1

i6=j

m∑
k=1

(
P

(k)
ij + Pij

)
− 1




+

n∑
i=1

n∑
j=1

i 6=j

m∑
k=1

(
ν
(k)
ij

(
P

(k)
ij − qij

))
+

n∑
i=1

n∑
j=1

i 6=j

(νij (Pij − qij)) +
n∑

i=1

n∑
j=1

i 6=j

m∑
k=1

(
−ξ(k)ij P

(k)
ij

)
+

n∑
i=1

n∑
j=1

i 6=j

(−ξijPij)

+

n∑
i=1

n∑
j=1

i 6=j

m∑
k=1

−σ(k)
ij

(
T

(k)
ij − t

(k)
ij

)
+

n∑
i=1

n∑
j=1

i 6=j

− σij (Tij − tij) (4.12)
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α
(k)∗

ij

(
t
(k)
ij +Dk − T (k)∗

ij

)
= 0 ∀ i, j, k (4.13a)

β∗ij
(
tij +Di − T ∗ij

)
= 0 ∀ i, j (4.13b)

η∗k

 n∑
i=1

n∑
j=1

i 6=j

λiP
(k)∗

ij − cµk

 = 0 ∀ k (4.13c)

γ∗i

 n∑
i=1

n∑
j=1

i 6=j

λiP
∗
ij − cρi

 = 0 ∀ i (4.13d)

ω
(k)∗

ij

CTC(k)
ij +

n∑
i=1

n∑
j=1

i6=j

λiP
(k)∗

ij −MTC
(k)
ij

 = 0 ∀ i, j, k (4.13e)

ζ∗ij

CTC(k)
ij +

n∑
i=1

n∑
j=1

i6=j

λiP
∗
ij −MTC

(k)
ij

 = 0 ∀ i, j, k (4.13f)

(
m∑

k=1

P
(k)∗

ij

)
+ P ∗ij − qij = 0 ∀ i, j (4.13g)

n∑
j=1

i 6=j

m∑
k=1

(
P

(k)∗

ij + P ∗ij

)
− 1 = 0 ∀ i (4.13h)

ν
(k)∗

ij

(
P

(k)∗

ij − qij
)
= 0, ν∗ij

(
P ∗ij − qij

)
= 0, ∀ i, j, k (4.13i)

− ξ(k)
∗

ij P
(k)∗

ij = 0, − ξ∗ijP ∗ij = 0, ∀ i, j, k (4.13j)

− σ(k)∗

ij

(
T

(k)∗

ij − t(k)ij

)
= 0, σ∗ij

(
T ∗ij − tij

)
= 0, ∀ i, j, k (4.13k)

α
(k)∗

ij , β
(k)∗

ij , η∗k, γ
∗
i , ω

(k)∗

ij , ζ∗ij , ν
(k)∗

ij , ξ
(k)∗

ij , σ
(k)∗

ij ≥ 0 (4.13l)

We can easily see that η∗k, γ∗i , σ
(k)∗

ij and σ∗ij are all equal to zero since the second term

in equations (4.13c), (4.13d) and (4.13k) is never equal to zero. From (2.10), and since the

gradient of the Lagrangian function equals 0 at the optimal solution, we obtain the following
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set of equations (4.14a) and (4.14b) for T
(k)∗

ij and T ∗ij, respectively:

1

tij
− α(k)∗

ij = 0 ∀ i, j, k (4.14a)

1

tij
− β∗ij = 0 ∀ i, j (4.14b)

The above equations lead to the optimal values of α
(k)∗

ij and β∗ij, which are expressed as:

α
(k)∗

ij = β∗ij =
1

tij
> 0 ∀ i, j, k (4.15)

From expressions (4.13a), (4.13b) and the fact that α
(k)∗

ij , β∗ij > 0, we can easily find

the optimal solution of T
(k)∗

ij and T ∗ij, which are represented by equations (4.16) and (4.17).

These two equations show that both T
(k)∗

ij and T ∗ij are exact bounds on the actual trip time.

T
(k)∗

ij = t
(k)
ij +Dk ∀ i, j, k (4.16)

T ∗ij = tij +Di ∀ i, j (4.17)

The optimal value of P
(k)∗

ij can be obtained using the approach of T
(k)∗

ij and T ∗ij. By using

equation (4.12) and its gradient, we obtain equation (4.18). The optimal routing decisions

P
(k)∗

ij could be found be solving equation (4.18) for P
(k)
ij . Also, the optimal solution for P ∗ij

could also be found by solving equation (4.18) for P ∗ij but with replacing P
(k)∗

ij and µk by P ∗ij

and ρi, respectively.

Finally, the optimal solutions for the Lagrangian function are the same as the optimal

values of the original problem due to the strong duality we have [27].

4.4 Simulation Results

Similar to Sections 2.4 and 3.4, 4 PSs and 3 CSs simulation model is considered. Table 2.2

shows the values of t
(k)
ij (time on the road only without charging) used in the simulations for
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χ
∗
ij + ψ

∗
i + ν

(k)∗
ij − ξ

(k)∗
ij +


n∑

i=1

n∑
j=1

i6=j

ω
(k)∗
ij

λi +


n∑

i=1

n∑
j=1

i6=j

α
(k)∗
ij

×


λiq − (cµk − λk)

(
−λi

cµk

(
c!

ac

)∑c−1
h=0

(
ah

h!

)
−
cλi

µk

c!

ac+1

(
1 −

a

c

)∑c−1
h=0

(
ah

h!

)
+
λi

µk

(
1 −

a

c

)(
c!

ac

)∑c−1
h=1

(
ah

h!

))
q2

 = 0

where λk =
n∑

i=1

n∑
j=1

i6=j

λiP
(k)∗
ij , a =

λk

µk

and q =

(
cµk − λk

)(
1 +

(
1 −

a

c

)(
c!

ac

) c−1∑
h=0

ah

h!

)
(4.18)

all possible combinations of origins and destinations. Uniform destination PS probabilities

are assumed from each origin PS (i.e. qij = 1/3 ∀ i 6= j). The type of charging used in

the following simulations is the conventional one. Given this model, the optimal routing

proportions P
(k)
ij , Pij, ∀ i, j, k are first illustrated for a wide range of system parameters.

The expected total trip time performance achievable by our proposed model is also tested

through simulations, and compared to the conventional shortest path scheme (i.e. letting all

the EVs charge at the PS and then take the shortest route to the destination), and random

routing strategy, i.e., the scheme assigning random values to P
(k)
ij , Pij (non-optimize scheme).

Due to space limitation, we will only discuss the results for PS 1 as an example. In all the

following simulations, the values of CTC and MTC are set to 3 and 15 EVs for all the

available routes.

Figure 4.1 shows the behavior of the routing proportion variables P12 and P
(1)
12 as a

function of the charging rates µ1, µ2, µ3 and ρ1 while keeping the departure rate from each

of the PSs 1-4 set to 100, 100, 50 and 50 EVs/hour, respectively. For ease of illustration,

Table 2.2 shows the without-charging trip time from PS 1 to PS 2 through CS 1 , which

is 0.5 hour (i.e. t
(1)
12 ) and the trip time without charging if the EVs will charge at PS 1 is

0.45 hour (i.e. t12 = 0.45). We are varying the charging rates at the CSs on one axis (i.e.

µ1, µ2, µ3) and the charging rate at PS 1 on the other axis (i.e. ρ1). As shown in the

Figure, the decision P
(1)
12 is higher than P12 when the charging rates µ1 = µ2 = µ3 are high

comparable to µ1 even though (t12 < t
(1)
12 ). Also, we can see that the decision probability
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Figure 4.1: Effect of Charging Rate Variation.

P12 is higher than P
(1)
12 in the lower mid-range of the left axis (i.e. 6 ≤ µ1, µ2, µ3 ≤ 9) even

though the value of ρ1 is small. This happens due to optimality of balancing the loads on

the charging stations and avoiding congested routes, which will result in a smaller expected

total trip time. None of the decisions reached zero in the Figure, that is due to the optimal

balanced on the CSs and CSPs by our proposed method.

Figure 4.2 shows how the routing proportions P12 and P
(1)
12 behave when varying the

departure rate from PS 1 (λ1), for fixed departure rates from other PSs. The departure rates

from PSs 2-4 are set 100, 50, 50 EVs/hour, respectively and the charging rate at all CSs and

CSPs is set to 10 EVs/hour (i.e. µk = ρi = 10 ∀i, k). As seen in the Figure, the decision

probability P12 is much higher than P
(1)
12 when the departure rate is low, that is due to the

fact that (t12 < t
(1)
12 ). As the departure rate λ1 is increasing, P12 is decreasing and P

(1)
12 is

increasing to balance the load on the charging stations and minimize the average tip time

for all the customers. Even with high value of λ1, P12 is still higher than P
(1)
12 because of

the travel time on the road without charging. All these variations clearly demonstrate the

merits of our cloud-enabled optimization approach due to the high sensitivity of the system

behavior (delay) to the real-time values of all the above parameters. Finally, Figure 4.3

compares the trip and charging temporal behaviors of our optimized model with the shortest

time path selection and the random routing scheme. In the shortest time strategy, all EVs

are charged at their pick-up location and then the customers take the shortest path to the
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Figure 4.2: Effect of departure rate variations distributions.

Figure 4.3: Comparison of the trip and charging temporal behaviors of the three tested
schemes.

destination while random decisions are assigned to the EVs in case of the random scheme.

The departure rates from PSs 1-4 are set to 45, 45, 45, and 45 EVs/hour, respectively, and

the charging rates of all CSs and CSPs are set to 10 EVs/hour. The left sub-figure shows

the comparison between the three schemes in terms of the average total trip time . As

shown, the average total trip time in (Shortest) and (Random) is higher than that of our

proposed optimized model for all destinations PSs 2,3, and 4. The right sub-figure shows the

percentage excess duration in the charging stations
(

defined as (τ
(k)
ij − t

(k)
ij )/t

(k)
ij × 100

)
by

our proposed model as compared to the shortest path scheme. As seen, a tremendous gain

has been obtained by the use of cloud-enabled routing strategy in comparison to the other

schemes of routing.
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CHAPTER 5

Summary and Conclusions

In this thesis, we propose a cloud-enabled real-time routing scheme for MoD EVs requiring

charging before reaching their destinations. We propose three different models to minimize

the average trip times for all the customers relative to their trip times without charging.

In the first model, we assume that there is no charging facilities at the pick-up locations

and the customers can only perform in-route charging. Hence, it is required to have the

minimal increase in their trip times to insure sustainability of such services. We first model

the system as a multi-server queuing system using two different models at the CSs, namely

M/M/1 and M/M/c queues. Constrained by this models’ stability conditions, we formulate

the aforementioned problem as two constrained convex problems for the two considered CS

models over stochastic routing proportion variables. The analytical expressions for these

variables are derived in closed form for the M/M/1 model as well as a solution to a system of

equations for the M/M/c model. Furthermore, we plot these optimal routing proportions for

a wide variety of system parameters. We also show the significant gains in the trip times and

excess charging delays achieved by our optimized routing scheme, compared to the shortest

time and random routing schemes, and thus demonstrate its importance in achieving better

customer satisfaction. Finally, we test the proposed routing scheme on a real-world scenario

and we compute the average execution times for the different discussed settings. In the

second model, a cost on the charging is added to the previous model. The objective is to

minimize both the travel time as well as the cost of charging. The problem is formulated as

a convex optimization problem with two objectives. It is solved then using the same analysis

applied on the first model and tested using simulation results to show the performance of

the model. In the third model, two options charging are considered either to charge at the

pick-up location or perform in-route charging. It is required to know how many customers

should charge at the-pick location and how many will perform the in-route one with an

objective to minimize the overall expected trip times for all the customers relative to their



72

trip times without charging. Similar to the previous models, the problem is formulated as

a convex optimization problem and is solved again using the Lagrangian analysis and KKT

conditions. The model is finally tested through extensive simulations for different system

parameters.

For future work, we will extend our study to consider time varying scenarios and then

optimize the routing proportions over the current and future arrivals. Moreover, we will

consider a more realistic model for the charging stations and take into account its effect on

the power grid. Another possible extension is to model the queues at the charging stations

using M/M/1/1 and M/M/c/c which prevent the EVs from waiting at the charging stations

but may result in high probability of EVs not being served and thus needs a fleet dimensioning

and facilities study.
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