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Abstract 

The FDTD method is being used to calculate transmission in nanoscale transistors using the 

Python programming language.  The programs being used are three-dimensional 

implementations of the time-dependent Schrodinger Equation.  Transmission is calculated by 

initializing a waveform representing an electron at the input of a transistor potential and  using 

the FDTD method to simulate the interaction of the particle as it passes through the channel of 

the transistor.  The percentage of the particle that passes through is the transmission.  

Simulations are done for MOSFET and FinFET transistors.  The transmission is then used to 

calculate the current in the transistor for various bias voltages. 
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Chapter 1: Introduction 

The research described in this paper is in anticipation of modern techniques for measuring 

performance capabilities in semi-conductor devices that can no longer be analyzed with classical 

methods due to the shrinking size of said devices [1]. Quantum mechanics can play a significant part 

in this analysis, which results in substantial development in quantum simulation of semiconductor 

devices, such as nanoscale transistors [2-3]. 

An important parameter in the analysis of low-frequency nanoscale transistors is the transmission: the 

probability that a particle will be transmitted through a channel as a function of energy [4]. This 

project presents a means of calculating the transmission in three dimensions using the time-dependent 

Schrödinger equation via the finite-difference time-domain (FDTD) method [5-7]. The FDTD method 

is a widely-used method in the field of electromagnetic simulation [8-10]. The FDTD method is also 

already being used for quantum simulation in nano-electronics and nano-antennas [11-12]. 

The main goal of this project is the development of simulations using the FDTD method to calculate 

transmission of several potential barriers that are relevant to the field of microelectronics. This 

method is tested by the Green’s function, described in Appendix A, first in one dimension, then in 

three dimensional space. Once the FDTD method is adequately verified, it can be used to determine 

transmission in 3-D MOSFET and finFET channels.  

Python 3.9 was used to simulate the channels using the FDTD method. Python is a free, open-source, 

well documented and widely used method for scientific computing. Most of the packages offered 

such as SciPy, NumPy, Matplotlib, and Pandas are included in the Anaconda Distribution. This 

distribution includes Spyder, a cross-platform integrated development environment (IDE) optimized 

for use in scientific computing. This IDE was exclusively used for this project.  

Goals: 

Overall aspirations for this project were to  

1. Use the Green’s function method to verify the accuracy of one-dimensional transmission results 

calculated by the FDTD method. 

2. Use the Green’s function method to verify the accuracy of three-dimensional transmission 

simulations with potentials that do not vary in transverse directions.  

3. Determine the transmission through three-dimensional MOSFET and FinFET channels using the 

FDTD method. 
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4. Use the transmission results to determine the current-voltage calculations for MOSFETs and 

FinFETs. 
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Chapter 2: FDTD 

The time-dependent Schrödinger equation [6] is written as: 
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The above equation is then divided by iℏ to give the equation in this form 
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The state variable ( , , , )x y z t  in equation (2) can be divided into real and imaginary parts: 
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These equations can then be written using the finite-difference approximations in space and time, 

leading to: 
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Transmission is then calculated as the modulus of the state variable at the output divided by the 

original state variable at the input : 

 ( )
( )

( )
out
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E
TM E

E


=


 (6) 

In Eq. (5) the indices m, n, l represent the Cartesian coordinates x, y, z, respectively. The k in 

Eq. (5) replaces the time step t in Eq. (4). The calculation of the real and imaginary 

components Eq. (5a) and (5b) implements the behavior of 𝜓 as it evolves in time. 
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Chapter 3: One-dimensional Simulation 

 

Figure 1. X direction problem space 

The problem space used in the one-dimensional (1D) simulation is shown in Fig.1.  A time-

domain waveform is generated at the point labeled “source”. This time-domain method of 

generating the waveform is used to save space.  It generates a waveform that goes both 

directions, but the left-going waveform is absorbed by a Perfectly Matched Layer (PML) [5-

7].  The PML is a layer of cells that absorbs out-going waveforms. Prior to doing simulations 

with a potential in the channel, it is necessary to do a calibration run to determine the 

normalization of the waveform.  This is illustrated in Fig. 2.  In Fig. 2a, the waveform is being 

generated.  In Fig. 2b, the left-going portion is absorbed in the PML.  In Figs. 2c, the right-

going portion of the waveform has reached the transmission detection area and the modulus is 

determined by Equation (7).  

 ( )
95

2

20

nm

nm

ptot x dx=   (7)

 This is used to scale the subsequent waveforms so the resulting normalization will be one.  

 

a.) The waveform is generated at the origin point of 7nm. 
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b.) The left-going part of the waveform is absorbed into the PML as the 

right-going part continues propagating through the problem space. 
 

  

c.) The waveform continues propagating through the problem space. 
 

Figure 2. The calibration run without the channel as a.) the waveform is 

generated at the origin point; b.) the left-going part of the waveform is 

absorbed into the PML and the right-going propagates forward; c.) the 

waveform continues propagating through the problem space. 
 

Figure 3 illustrates a simulation with a resonant barrier in the channel.  Figure 3a shows the 

resonant barrier in question. This barrier does not correspond to any known device, but is 

chosen to demonstrate the accuracy of the FDTD method when compared to the Green’s 

function method. Figure 3b shows the pulse being generated at the source. As in Fig. 2, the 

left-going waveform is absorbed by the PML. Figure 3c shows the pulse interacting with the 

resonant barrier. Once again, part of the waveform is reflected to the left and is absorbed into 

the PML, with the right-going part of the waveform moving toward the detection region. It 

shows the problem space, with x of 100nm. Cell size is given as 0.1nm and time step is given 

as 0.1fs. Once again the waveform is generated and the left-going part is absorbed in the PML.  

However, the right-going waveform interacts with the potential in the channel.  Some of the 

waveform is reflected by some the potential but some is transmitted through the channel.  This 

later part reaches the detection area and is used to determine the transmission characteristics of 

the potential in the channel. 
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a.) Double Barrier  

 

b.) The waveform is generated at the origin. 

 

c.)  The left-going waveform is absorbed by the PML as the right-

going waveform passes through the barrier. 

 

d.) Part of waveform is bounced back from the barrier and is 

absorbed while the rest continues propagating. 
 

Figure 3. Transmission through the resonant barrier at an energy of 0.5eV 

with a.) Double barrier; b.) The waveform is generated at the origin; c.) 

The left-going waveform is absorbed by the PML as the right-going 

waveform passes through the barrier; d.) Part of waveform is bounced 

back from the barrier and is absorbed while the rest continues propagating. 
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The one-dimensional double barrier run was used to validate the FDTD in comparison with 

the analytical Green's function. Each barrier is 0.5 nm wide and the barriers are 0.5nm apart. 

Time steps ranging from 6000 to 24000 were implemented based on the input energy being 

simulated, showing that the waveform has long since passed through/reflected off the barrier. 

The PML is placed at 50nm and 950nm in the first subplot of Figures 4-7.  

The second subplot of Figures 5-8 shows the two methodologies used to calculate 

transmission. The black plot is the Green's function and the dotted green plot is the FDTD. 

As a drain source voltage is applied across the problem space, the transmission values shift 

slightly to the left. 

The drain-source voltage, or Vds [13], is the voltage applied across the field that results in that 

slant in the x-direction seen in Figures 4-7, that starts with the first barrier and reaches a 

constant value after the second barrier. This is the effect seen in the 1D results of the 

transmission values shifting to the left. Gate-source voltage, or Vgs [14] , is a voltage that is 

applied on top of the field, resulting in the total barrier height being decreased by that value 

of Vgs. 

It can be observed that consistently, there is some discrepancy between the FDTD time 

domain and Green’s method calculations with regards to the lower end of the input energy 

range. It could be that the FDTD method needs more time steps implemented to generate the 

waveform with such a low input energy. It could also be due to the finite size of the envelope 

of the waveform: with an infinite size, the peaks around 0.07 eV and 0.45eV would reach 

1.0. 

Below are the Green’s function and FDTD method in 1-D plotted for visual verification. 
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Figure 4. 1D FDTD vs Green's function methodologies for a double 

barrier with height of 0.4eV with a drain source voltage of 0eV. 

 

Figure 5. 1D FDTD vs Green's function methodologies for a double 

barrier with height of 0.4eV with a drain source voltage of 0.1eV. 
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Figure 6. 1D FDTD vs Green's function methodologies for a 

double barrier with height of 0.4eV with a drain source voltage 

of 0.2eV. 

 

Figure 7. 1D FDTD vs Green's function methodologies for a 

double barrier with height of 0.4eV with a drain source voltage of 

0.3eV. 
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Chapter 4: 3D Double Barrier Run 

The first 3-D run was tested with the same double barrier [13-15] in the x dimension, with y and z 

dimensions set at a constant value of 0.4 eV (Fig. 8). Instead of using a point in the x-dimension to 

monitor the output waveform after leaving the channel, a plate perpendicular to the x dimension is 

generated in the y and z dimensions was used for monitoring in the 3D run.  

The Green’s function shows its limit for verification once the transverse directions start to vary, 

specifically in the y and z directions, respectively. So here the Green’s function is still usable, as the 

double barriers have been set up to not vary. This is for further reassurance that the FDTD method 

works in three dimensions. 

The same range of time steps from the previous chapter were implemented, with longer compilation 

times lasting up to 2 minutes per run, as this program uses the three-dimensional matrices in the 

FDTD function, compared to one-dimensional arrays in the previous chapter. 

Figure 9 shows the state variable in the XY plane as in moves through the double barrier. 

Figures 10 – 13 illustrate the comparison of the results of the 3D simulation vs. the Green’s function.  

The second subplot shows the two methodologies used to calculate transmission with the same colors 

and textures of plots from the previous chapter. In 3-D it continues to show that as a voltage is 

applied across the problem space, the transmission values shift slightly to the left. 

     

 (a) Close-up of the double barrier (b) The double barrier in the 3D problem space. 

Figure 8. The 3D double barrier channel 
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a.) T = 40 fs, 2000 time steps b.) T = 165 fs, 8250 timesteps  

  

b.) T = 190 fs, 9500 time steps d.) T = 240 fs, 12000 time steps 

Figure 9.  The waveform propagating through the double barrier in 3D space at: 

a.) T = 40fs; b.) T = 165fs; c.) T = 190fs; d.) T = 240fs. 
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Figure 10. 3D FDTD vs Green's function methodologies for a double 

barrier with height of 0.4eV with Vds of 0eV. 

 

Figure 11.  3D FDTD vs Green's function methodologies for a double 

barrier with height of 0.4eV with Vds of 0.1eV. 
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Figure 12. 3D FDTD vs Green's function methodologies for a double 

barrier with height of 0.4eV with Vds of 0.2eV. 

 

Figure 13 3D FDTD vs Green's function methodologies for a double 

barrier with height of 0.3eV with Vds of 0.2eV. 
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Chapter 5: 3-D MOSFET BARRIER RUN 

  

Figure 14. A metal-oxide semiconductor, field-effect transistor (MOSFET) 

a.) Diagram of a MOSFET; b.) A basic circuit containing a MOSFET. 

 

This channel of an n-type MOSFET is modeled in the x-dimension [16-19] (Fig. 15). The potential 

under the oxide is modeled in the y dimension as the notch around 4nm [18-19]. The y-dimension 

starts at 0 nm, which would be the interference with the oxide [19-20], and extends to 10nm, which is 

the end of the problem space. The z dimension is assumed constant. This setup would correspond to 

the "on" condition of the channel[18].  A 3D illustration is shown in Fig. 16. 

 

 

Figure 15. The X and Y dimensions of MOSFET channel potential 
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           (a) Close-up of the MOSFET (b) The MOSFET in the 3D problem space 

           Figure 16. 3D MOSFET Channel 

  
a.) T = 30 fs, 1500 time steps b.) T = 180fs, 9000 timesteps 

 

  
   

            c.) T = 270fs, 13500 time steps d.) T = 300 fs, 15000 timesteps 

 

Figure 17.  The waveform propagating through the MOSFET channel in 3D space. 
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Figures 18 through 20 illustrate the determination of the transmission for various values of the gate-

source and drain-source potentials. 

 

Figure 18. 3D FDTD simulation for a MOSFET Channel with 

Vgs = 0 and Vds = 0 eV. 

 

Figure 19.  3D FDTD simulation for a MOSFET Channel with 

Vgs = 0 and Vds = 0.1eV. 

. 
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Figure 20. 3D FDTD simulation for a MOSFET Channel with Vgs 

= 0.1eV and Vds = 0.2eV. 

Observations here can be made of the effect of the drain source and gate source voltages. As 

the drain source voltage increases, the slope between 0.4 and 0.6eV becomes steeper, a 

version of the transmission values shifting slightly to the left seen in the previous chapter. 

The increase of the gate source voltage shows an increase in the lower energy range between 

0.2eV and 0.3eV. 
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Chapter 6: 3-D FinFET Channel Transmission 

As more computational power is needed, the transistor’s size must be shrunk [1-2]. However, for a 

typical MOSFET, the proximity between the drain and the source lessens the gate electrode’s ability 

to control the flow of current in the channel region [21-22] . MOSFETs display objectionable short-

channel effects, especially as the gate length below 90nm produces a significant leakage current, and 

below 28nm renders it the current unusable [21]. 

FinFETs increase computational power and computational density, which leads it to display superior 

short-channel behavior, as well as higher ON-current, greater immunity to subthreshold swing 

degradation, and high carrier mobility [22-23]. This also leads to lower switching times and higher 

current density than MOSFET technology [22]. 

For the FDTD method, the channel in the x direction was decreased from 5nm to 2nm, and the y 

dimension was made more symmetrical, maintaining the length of 10nm: 

  

  

Figure 21. X and Y dimensions of a finFET channel 
 

 



20 

 

 

            (a) Close-up of the finFET                   (b) The finFET in the 3D problem space 

Figure 22. Illustration of the simulation of a particle moving through the finFET potential. 

  
a.) T= 30 fs, 1500 time steps            b.) T = 180 fs, 9000 time steps  

  
                c.) T = 270 fs, 13500 time steps       d.) T = 300 fs, 15000 time steps  

 

Figure 23.  The waveform propagating through the finFET channel in 3D space. 
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Figure 24. 3D FinFET run with Vds of 0eV 
 

 

Figure 25. 3D FinFET Run with Vds of 0.1eV 
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 Figure 26. 3D FinFET run with Vds of 0.2eV 

 

Figure 27. 3D FinFET run with Vgs of 0.1eV and Vds of 0.2eV 

As contrasted with Figures 18-20 from the previous chapter, finFET transmission shows a shallower 

incline from the lower to upper energy range.  
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Chapter 7: Current Calculations 

The transmission calculated from Chapter 5 was then used to calculate current [6] using Eq. (8). 

 ( ) ( ) ( )( )
0

S D

q
I TM E f E f E dx



=  −  (8) 

The First Fermi energy (Es) was set to 0.2 eV, which would be found in the source terminal of the 

mentioned MOSFET [6,18]: 
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Second Fermi Energy level was calculated with Eq. (10) [5]: 
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In Eq. (9), kB is the Bolztmann’s constant of
5

1.38 10
−

  eV/K, with T = 300 K, or room temperature 

[18-19]. 

The plots below illustrate the calculation of the current using Eq. (8).  The integration of the 

solid black line gives the total current, Itot. 

 

 
a.) Vgs of 0 eV and Vds of 0.3eV                   b.) Vgs of 0 eV and Vds of 0.5eV 

 
     c.) Vgs of 0eVand Vds of 0.6eV                        d.) Vgs of 0eVand Vds of 0.7eV 

Figure 28. fs and fd v.s. input energy levels at: a.) Vgs of 0eVand Vds of         

0.1eV; b.) Vgs of 0eVand Vds of 0.2eV; c.) Vgs of 0eVand Vds of 0.3eV. 

These plots are for the finFET and show typical current calculations, as seen printed in Figure 28. 

These are not the complete set used in Fig 30, as these are just used to visualize the calculation of the 

current as the integration of the transmission graph multiplied by the intersection of the first and 

second fermi energies. A more complete set was calculated and used to plot the curves in Fig 30. 
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Similar calculations were made using the MOSFET transmission values; these current values can be 

seen in Figure 29.  

 

Figure 29. Ids v.s. Vds characteristics of the MOSFET with varying Vgs 

levels of 0 eV, 0.1eV, and 0.2 eV 

  

Figure 30. Ids v.s. Vds characteristics of the finFET with varying Vgs levels of 

0eV, 0.1eV, and 0.2eV 

Figure 29 shows the current calculations of the MOSFET with the established value of 0.4eV as the 

barrier height and the same x and y dimensions as seen in Chapter 5. Figure 30 shows the current 

calculations of the finFET with the value of 0.6eV as the barrier height, with the same x and y 

dimensions seen in Chapter 6. The barrier height for the finFET was increased to better observe the 

changes of current calculations to the varying levels of the Vgs. It also more starkly shows the 

difference in the slope of the graphs from 0.4eV to 0.8eV. Both graphs had the Vds range from 0 to 

1.1eV and has the Vgs vary from 0eV to 0.2eV. The MOSFET shows the current values starting to 

increase around the 0.4eV mark, whereas the finFET shows the current values starting to increase 

around the 0.5eV mark, resulting in a shift to the right for the current values compared to the 

MOSFET. Both graphs show that the current saturates around the 0.8eV mark, with the finFET 

having a steeper slope from 0.5eV to 0.8eV compared to the MOSFET. 
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Chapter 8: Summary 

The finite-difference time-domain (FDTD) method is used to determine transmission through 3D 

nanostructures. This was done by implementing a finite-difference approximation to the time-

dependent Schrödinger Equation. A particle is modeled as a waveform in the time domain as it enters 

and interacts with a potential that represents a transistor. The ratio of the magnitude of the output 

waveform compared to the magnitude of the input waveform represents the transmission.  

Starting with a one-dimensional model, the accuracy of the transmission as a function of particle 

energy was determined using the FDTD method, and then compared with results from a method 

based on the Green’s function analysis. The potential used in this one-dimensional simulation was a 

resonant structure which produced a transmission function that was far more complex than the 

transmission from a transistor. The excellent comparison of FDTD with the Green’s function verified 

the robustness of the basic method. Subsequently, the same resonant structure was used in a three-

dimensional model resulting in the same excellent agreement.  

The three-dimensional simulation program was then used on two realistic potentials, one of a metal 

oxide semiconductor field effect transistor (MOSFET) and one of a fin field effect transistor 

(FinFET). The transmission results were used to produce current-voltage curves that are used to 

evaluate the performance of a transistor.  

It should be emphasized that the method used for the simulations in this work is a direct 

implementation of the three-dimensional time-dependent Schrödinger equation. No approximations to 

the Schrödinger equation are used, except the finite-differencing to convert the time and space 

derivatives to difference equations. As long as the space and time intervals are small enough, there is 

reason to believe that this is a true representation of the Schrödinger equation. 
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Appendix A: The Green’s Function Method 

The Green's function can be used to determine electron density in a quantum channel [5]. In 

this paper, it is used to determine transmission through its formulation of the Hamiltonian 

[20-21]. 

    
1

1 2
G IE H

−
= − − −  

Where H is the matrix formulation of the Hamiltonian, and 1
 and 2

  formulate the contacts 

on each side.  The spectral function matrix is 

 ( ) ( ) ( )A E i G E G E
+ = −        

Where ( )G E
+  is the transpose conjugate of ( )G E . 

 
1 1 1

i
+  =  −   

 
2 2 2

i
+  =  −   

The transmission is determined by the matrix 

 ( ) 1 2
T E Tr G G

+ =     

This is done because the Green's function is acting as an impulse response to the Schrödinger 

equation. The Schrödinger equation is a function of both space and time, which means that the 

Green's function needs to be a 2-dimensional matrix, culminating in this equation of the Green's 

function: 

    
1

1 2
G IE H

−
= − − −   

with Σ₁ and Σ₂ representing matrices added to the Hamiltonian connecting the two ends of the channel 

to the outside, forming the beginning and ending of the problem space [5]. The transmission can be 

calculated as:  ( ) * *

1 1 2 2
*T E Tr i G i G

+    =  −  −       
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