
STEALTHY FALSE DATA INJECTION AT TACK DETECTION IN POWER

TRANSMISSION SYSTEM USING SECURITY ANALYTIC S

A Dissertation

Presented in Partial Fulfillment of the Requirements for the

D E G R E E O F D O C T O R O F P H I L O S O P H Y

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

by

M O H A M M A D A S H R A F U Z Z A M A N

Major Professor
F R E D E R I C K T. S H E L D O N , P H . D .

Committee Members
H A S A N M . JA M I L , P H . D . , R O B E R T B . H E C K E N D O R N , P H . D . ,

D A N I E L C O N T E D E L E O N , P H . D . , M I C H A E L A . H A N E Y , P H . D . ,
C L I N T O N L . J E F F E RY , P H . D .

Department Administrator
T E R E N C E S O U L E , P H . D .

D E C E M B E R 2020



ii

AUTHORIZATION TO SUBMIT D ISSERTATION

This dissertation of Mohammad Ashrafuzzaman, submitted for the degree of Doctor of

Philosophy with a Major in Computer Science and titled “Stealthy False Data Injection

Attack Detection in Power Transmission System using Security Analytics,” has been

reviewed in final form. Permission, as indicated by the signatures and dates below, is

now granted to submit final copies to the College of Graduate Studies for approval.

Major Professor:
Frederick T. Sheldon, Ph.D. Date

Committee Members:
Hasan M. Jamil, Ph.D. Date

Robert Heckendorn, Ph.D. Date

Daniel Conte de Leon, Ph.D. Date

Michael A. Haney, Ph.D. Date

Clinton L. Jeffery, Ph.D. Date

Department

Administrator:
Terence Soule, Ph.D. Date



iii

AB STRACT

The electric smart grid, a critical national infrastructure and among the largest and

most complex cyber-physical systems, is under constant and multifarious threat of

cyber-attacks. State estimation (SE) is at the foundation of a series of critical con-

trol processes in a power transmission system. A sophisticated cyber-attacker can

intelligently change the values in the measurement matrix used to compute state

estimation. These data integrity attacks can potentially disrupt the critical control

processes, adversely affecting a power system operationally and economically. Stealthy

false data injection (SFDI) attacks against SE cannot be detected by the conventional

bad-data detection mechanisms.

In this dissertation, a security analytics framework to detect SFDI attacks on static

SE measurement data is presented. A threat model that identified three possible attack

models was developed, and synthetic datasets corresponding to these attack models

were generated for standard IEEE 14-bus and 57-bus systems. After normalizing and

reducing the number of features in the datasets, a number of supervised, unsupervised,

and stacking ensemble machine learning models were trained and tested for model

selection. Through the model selection process, including hyper-parameter tuning

and cross-validation, trained models were identified that can detect the SFDI attacks

accurately and reliably. Evaluation of the models using standard metrics shows that

supervised artificial neural networks with four hidden layers and 1200 hidden units

per layer can detect 98.24% of the attacks with a false alarm rate of 1.25%. Among

the unsupervised models, elliptic envelope performs the best with 73% detection rate

with 3% false alarm rate. It was also found that the detection rate is the same for all
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the machine learning methods for all the six datasets corresponding to different attack

models and bus systems.

The core contributions of this dissertation are the demonstration that a machine

learning based security analytics framework can successfully detect the SFDIA attacks

and the identification of artificial neural network with the right set of hyper-parameter

values as the best performing model. Additional contributions include a survey and a

taxonomy of false data injection attacks on different parts of the power grid for the first

time in the literature, an exhaustive survey of machine learning based approaches for

detecting SFDI attacks, implementation of a software for running the machine learning

models, and identification of a number of research ideas based on this research.
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L IST OF ABBREVIATIONS

TA B L E 1 : List of abbreviations used in the dissertation.

Abbreviation Term Abbreviation Term

AC alternating current IRP incident response plan
ADMM alternating direction method of multipliers IT information technology
AE autoencoder KLD Kullback-Leibler distance
AGC automatic generation control kNN k-nearest neighbors
AMI advanced metering infrastructure KPCA kernel PCA
ANN artificial neural network LMP locational marginal pricing
BDD bad data detection LR logistic regression
CDBN conditional deep belief network LSTM long short-term memory
CGB conditional Gaussian-Bernoulli MGD mixed Gaussian distribution
CNN convolutional neural network ML machine learning
CPS cyber-physical system MLP multi-layer perceptron
DC direct current MSA margin-setting algorithm
DRE density ratio estimation MSE mean squared error
DRF distributed random forest MV majority voting
DT decision tree NAN neighborhood area network
EBL explanation-based learning NB naïve Bayes
ED Euclidean distance NN neural network
EE elliptic envelope OCSVM one-class SVM
EEN edited nearest neighbor OCSVM_L OCSVM with linear kernel
ELM extreme learning machine OCSVM_P OCSVM with polynomial kernel
EMS energy management system OPF optimal power flow
ENN extended nearest neighbor OT operational technology
Ens_DT ensemble with decision tree PCA principal component analysis
Ens_LR ensemble with logistic regression PMU phasor measurement unit
Ens_MV ensemble with majority voting PTS power transmission system
Ens_NB ensemble with naïve Bayes RBM restricted Boltzmann machine
Ens_NN ensemble with neural network RC robust covariance
Ens_SVM ensemble with SVM RFC random forest classifier
ERT extremely randomized tree RLR robust logistic regression
FAR false alarm rate (same as FPR) RNN recurrent neural network
FCM fuzzy C-means ROC receiver operating characteristic
FDI false data injection RTU remote terminal unit
FDIA false data injection attack S3VM semi-supervised SVM
FN false negative SAE stacked autoencoder
FP false positive SARSA state–action–reward–state–action
FPR false positive rate SCED security-constrained economic dispatch
FRTU feeder remote terminal unit SE state estimation
GA genetic algorithm SFDI stealthy false data injection
GBM gradient boosting machine SFDIA stealthy false data injection attacks
GLM generalized linear model SG smart grid
GPS global positioning system SLR sparse logistic regression
GPU graphical processing unit SSA static security assessment
HAN home area network SVM support vector machine
HPC high-performance computing TN true negative
ISOF isolation forest TP true positive
ICA independent component analysis TPR true positive rate
ICT information & communication technology WLS weighted least square
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C H A P T E R 1

INTRODUCTION

1 . 1 T H E C O N T E X T

The power grid1, including generators, transmission systems, distribution systems, and

numerous other devices, is one of the largest and most complex critical infrastruc-

tures. The power grid and its various components have, for decades, been undergoing

evolution. Significant changes came when the components of the grid and the super-

visory control and data acquisition (SCADA) systems that monitor and control these

components were updated with networking capabilities. This essentially transformed

power grids into cyber-physical systems (CPS), with the downside of inheriting issues

associated with being “cyber” (e.g., vulnerability to exploitation by cyber-attackers).

Nonetheless, the industry has attempted to “air-gap” operational technology (OT) from

information technology (IT) networks toward protecting valuable CPS assets critical to

stable operations. Unfortunately, many OT networks are still not fully insulated from

the IT networks [16] and are vulnerable to both internal and external threats [77]. A

study by the Ponemon Institute reports that 90% of organizations relying on OT have

experienced at least one business-impacting cyber-attack within the 2 years prior to

the report [92]. As a result the power grid has been subjected to a new set of exploits,

in addition to the ones already present due to the complexity of internetworking of

SCADA systems [35, 89, 104, 130].

The vulnerabilities of power grids are illustrated with a few well-known incidents.

In January of 2008 the Central Intelligence Agency (CIA) reported that a number of

1throughout this dissertation, the terms “smart grid” and “power grid” are used interchangeably.
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non-US cities were under cyber-attack affecting distribution systems causing a wide-

spread blackout [1]. In December 2015, three power distribution companies were

taken down in a coordinated cyber-attack where seven substations were isolated for

7 hours and operators were forced to switch to manual mode in order to gain control

back to the grid, resulting in a power outage for about 225,000 Ukrainians [61].

1 . 2 T H E R E S E A R C H P R O B L E M

One of the many ways smart grids can be attacked over the cyber network is using

stealthy false data injection (SFDI) attacks, which are described as a new class of

cyber-attacks in power grids by Liu et al. [74]. In SFDI attacks, also called deception

attacks or covert data integrity attacks, adversaries intrude into different parts of the

power grids, for example smart meters, substation meters or sensors, any part of

the cyber-network, i.e., wired or wireless communication channels, routers, SCADA

control system computers, etc. and then inject or modify any measurement data with

the goal of causing disruption in the grid operation, power theft, or any other malicious

intent. As shown by Xiang et al. [116], false data injection is can be an important

element of a coordinated attack on the power grid and represents an important class

of attack on cyber-physical systems.

One such SFDI attack targets the state estimation process in the power transmission

systems. State estimation (SE) is a fundamental tool in the energy management

system (EMS) at the power grid control center. The SE computes voltage magnitudes

and phase angles at all of the different buses of the power system after collecting

measurements that are communicated to the control center from remote terminal

units (RTUs) equipped with SCADA units [2]. State estimation process is described



3

in Section 3.2. If the incorrect measurement data affect the outcome of state esti-

mation, the resulting misinformation can reduce the control center operators’ level

of situational awareness [6]. This potentially forces the operators to take corrective

actions under the false assumption that the state variable values obtained from state

estimation are correct. This may cause disruption in the real-time operation of the

transmission system by adversely impacting tools for contingency analysis, unit com-

mitment, optimal power flow and computation of locational marginal pricing (LMPs)

for electricity markets. Cyber-attacks that impact the SE results have been presented

in several publications [56, 62, 72, 74].

The state estimation process includes a step called “bad data processing” whereby

any anomalous data, be it due to telemetry malfunction or false data injection (FDI)

attack, is corrected or suppressed. However, there is a subclass of FDI attacks, termed

stealthy false data injection (SFDI) attacks that cannot be detected by the traditional

bad data detection mechanisms based on residual analysis. An explanation of what

constitutes “stealthy” false data injection attacks on the state estimation in power

transmission system is given in Section 3.3. Efficient detection of SFDI attacks on

the state estimation is an active research area.

1 . 3 S E C U R I T Y A N A LY T I C S A P P R O A C H

Rapid advancement in machine learning algorithms have enabled them to find natural

patterns in data that generate insight and enable better decisions and predictions. The

use of data analytics to predict, detect, and prevent security threats is termed security

analytics [25]. The incorporation of cyber capabilities into smart grid functionality

has led to the proliferation of new data sources. The availability of abundant data
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generated by these components has enabled investigators to better study cybersecurity

threats and countermeasures in smart grids using security analytics [104].

After using traditional statistical approaches and physics of state estimation, re-

searchers have embarked on using machine learning based approaches to detect SFDI

attacks. A literature review on machine learning based stealthy false data injection

attack (SFDIA) detection approaches given in Chapter 2 shows that this research area

is still far from being mature, and a natural progression seems toward using machine

learning (ML) based approaches to develop an effective way to detect the SFDI attacks

on the state estimation in power transmission systems [85].

In this dissertation research, an empirical-based security analytics approach is used

to investigate and identify suitable machine learning methods that will reliably and

accurately detect presence of SFDI attacks in the state estimation measurement data.

The steps followed in this approach are enumerated below.

1. As part of threat modeling, three attack models for stealthy false data injection

attacks on the state estimation in power transmission systems were identified

depending on how many RTUs are compromised.

2. Standard IEEE power transmission systems with 14 buses and 57 buses were

simulated using MATLAB MATPOWER. This simulation generated power flow

measurement data used by state estimation under normal operation of the sys-

tems.

3. An attack generation module was used to generate spoofed data that replaced

actual data in some of the normal measurement data, simulating stealthy false

data injection attacks. For each of the three attack models, datasets were gen-
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erated and attack data were injected in the SE measurement data, obtaining six

datasets (three per IEEE bus system).

4. The features (i.e., the sensor measurements) in the datasets were ranked accord-

ing to their importance (in training machine learning models) using random

forest classifier and eliminated the features that have minimum contribution on

model training.

5. Three supervised machine learning models, namely GLM, GLB, and DRF, were

trained, tested, and evaluated for performance using standard metrics to find out

the efficacy of these models in detecting SFDI attacks.

6. Two stacking ensembles using supervised and unsupervised machine learning

models were developed. The ensemble models were trained, tested, and eval-

uated for performance using standard metrics to find out the efficacy of these

models in detecting SFDI attacks.

7. Unsupervised elliptic envelope method with different hyper-parameter settings

was trained, tested and evaluated for performance using standard metrics to find

out the efficacy of these models in detecting SFDI attacks.

8. Supervised artificial neural networks with various hyper-parameter settings were

trained, tested and evaluated for performance using standard metrics to find out

the efficacy of these models in detecting SFDI attacks.

9. After analyzing and comparing the performance of the different models in de-

tecting SFDI attacks, the best-performing models were identified. It was found

that artificial neural network performs the best, among supervised models, with

98.25% detection rate and 1.25% false alarm rate and elliptic envelope performs
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the best among unsupervised models with 73% detection rate and 3% false alarm

rate on an average over all the six datasets.

1 . 4 S C O P E O F T H E R E S E A R C H

This research is scoped by the following constraints:

1. The research considered SFDIA on only static state estimation in AC power

transmission systems.

2. The research considered time-discrete data only, and not time-series data.

3. The research was performed using simulated dataset, because of non-availability

of real data.

1 . 5 C O N T R I B U T I O N S

The main contributions of the dissertation are:

1. Use of a security analytics based framework to analyze power transmission sys-

tem state estimation measurement data to detect presence of stealthy false data

injection attacks.

2. Using the framework, achieving over 98% detection rates with negligible false

alarm rates, which is among the best in the literature.

Other contributions of the dissertation are:

1. An exhaustive survey of machine learning based approaches for detecting SFDI

attacks, as presented in Chapter 2.
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2. A taxonomy and survey of SFDI attacks on different components of the smart

grid, as presented in Chapter 4.

3. Developing a guideline for generating simulated measurement data with SFDI

attack, as described in Section 5.5.

4. Implementation of a software tool as a framework for running different machine

learning models on a dataset. The framework runs the ML methods with differ-

ent hyper-parameter settings one by one, collects different evaluation metrics

for the methods, and prints out the collated results in tables and as graphs.

(Described in Section 5.11).

5. Model selection and evaluation of SFDI attack detection efficiency of three super-

vised methods, namely GLM, GLB, and DRF, as described in Chapter 6.

6. Use of stacking ensemble models for detecting SFDI attacks, as described in

Chapter 7. The ensemble framework consists of two stacking ensembles: one

using five supervised methods in the first stage of the stacks, and another using

five unsupervised models. Six binary classifiers were used in the second stage as

ensemble classifiers.

7. Model selection and evaluation of SFDI attack detection efficiency of artificial

neural network with varying hyper-parameter values to find out the best-performing

model, as described in Chapter 8.

8. Model selection and evaluation of SFDI attack detection efficiency of elliptic

envelope unsupervised method with varying hyper-parameter values to find out

the best-performing model, as described in Chapter 9.
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9. Identifying a number of research that can be undertaken as direct consequences

of this research, as enumerated in Section 10.3.

1 . 6 A U T H O R ’ S R E L AT E D P U B L I C AT I O N S

1. M. Ashrafuzzaman, S. Das, Y. Chakhchoukh, S. Shiva, and F. T. Sheldon. “De-

tecting stealthy false data injection attacks in the smart grid using ensemble-

based machine learning,” Journal of Computers & Security, Elsevier, August 2020.

doi:10.1016/j.cose.2020.101994

2. M. Ashrafuzzaman, S. Das, Y. Chakhchoukh, S. Duraibi, S. Shiva, and F. T.

Sheldon. “Supervised learning for detecting stealthy false data injection attacks

in the smart grid,” Transactions on Computational Science and Computational

Intelligence, Advances in Security, Networks, and Internet of Things, Springer

Nature, 2020.

3. M. Ashrafuzzaman, S. Das, A. Jillepalli, Y. Chakhchoukh, and F. T. Sheldon.

“Elliptic envelope for detecting stealthy false data injection attacks in the smart

grid control systems,” in IEEE Symposium Series on Computational Intelligence

(SSCI), IEEE, December 2020.

4. M. Ashrafuzzaman, Y. Chakhchoukh, A. Jillepalli, P. Tosic, D. Conte de Leon,

F. Sheldon, and B. Johnson, “Detecting stealthy false data injection attacks in

power grids using deep learning,” in IEEE Wireless Communications and Mobile

Computing Conference (IWCMC), 14th International, pp. 219–225, IEEE, 2018.

doi:10.1109/IWCMC.2018.8450487

http://doi.org/10.1016/j.cose.2020.101994
http://doi.org/10.1109/IWCMC.2018.8450487
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5. M. Ashrafuzzaman, H. Jamil, Y. Chakhchoukh, and F.T. Sheldon, “A best-effort

damage mitigation model for cyber-attacks on smart grids,” 2018 IEEE 42nd

Annual Computer Software and Applications Conference (COMPSAC), vol. 2,

pp. 510-515, IEEE 2018. doi:10.1109/COMPSAC.2018.10285

The author’s other collaborative publications not directly related to this dissertation

are:

1. V. Koganti, M. Ashrafuzzaman, A. Jillepalli and F.T. Sheldon, “A virtual testbed

for security management of cyber-physical control systems,” IEEE 12th Interna-

tional Malicious and Unwanted Software Conference (MALCON), Puerto Rico,

11-14 October 2017.

2. S. Das, M. Ashrafuzzaman, F. T. Sheldon, and S. Shiva, “Network intrusion

detection using natural language processing and ensemble machine learning,” in

IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, December

2020. (accepted)

3. I. Oyewumi, A. Jillepalli, P. Richardson, M. Ashrafuzzaman, B. Johnson, Y. Chakh-

choukh, M. Haney, F. Sheldon, and D. Conte de Leon, “ISAAC: The Idaho CPS

smart grid cybersecurity testbed,” IEEE Texas Power and Energy Conference

(TPEC), 2019.

4. A. Jillepalli, D. Conte de Leon, B. Johnson, Y. Chakhchoukh, I. Oyewumi, M.

Ashrafuzzaman, F. Sheldon, J. Alves-Foss and M. Haney, “METICS: A holistic

cyber-physical system model for IEEE 14-bus power system security,” 13th Inter-

national Conference on Malicious and Unwanted Software (MALCON), 2018.

http://doi.org/10.1109/COMPSAC.2018.10285
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5. A. Jillepalli, D. Conte de Leon, M. Ashrafuzzaman, Y. Chakhchoukh, B. Johnson,

F. Sheldon, J. Alves-Foss, P. Tosic and M. Haney, “HESTIA: Adversarial modeling

and risk assessment for cyber-physical control systems,” 14th IEEE International

Wireless Communications and Mobile Computing Conference (IWCMC), Limas-

sol, Cyprus, June 2018.

6. A. Jillepalli, D. Conte de Leon, Y. Chakhchoukh, M. Ashrafuzzaman, B. Johnson,

F. Sheldon, J. Alves-Foss, P. Tosic and M. Haney, “An Architecture for HESTIA:

High-level and extensible system for training and infrastructure risk assessment,”

International Journal of Internet of Things and Cyber Assurance, 2018.

1 . 7 O R G A N I Z AT I O N O F T H E D I S S E R TAT I O N

The remainder of the dissertation is organized as follows. Chapter 2 summarizes the

related work that used machine learning methods for detecting SFDI attacks on the SE.

Chapter 3 provides a description of state estimation in power transmission systems,

SFDI attacks on state estimation, and the SFDI attack process. Chapter 4 presents a

taxonomy and a survey of SFDI attacks in smart grid. Chapter 5 describes the security

analytics based SFDIA detection framework put forward in this dissertation. Chapter 6

describes the use of supervised methods GLM, GLB, and DRF to detect SFDIA and

presents the corresponding results. Chapter 7 describes the use of stacking ensemble

models to detect SFDIA and presents the corresponding results. Chapter 8 describes

the use of artificial neural networks and corresponding results. Chapter 9 describes

the use of of unsupervised elliptic envelope method and corresponding results. The

dissertation is concluded in Chapter 10, followed by the References. Detail results from
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the machine learning model selections and evaluations in Chapters 7–9 are presented

in Appendix A. An outline of a damage mitigation model is described in Appendix B.
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C H A P T E R 2

RELATED WORK

2 . 1 I N T R O D U C T I O N

The literature is replete with detection of SFDIA using different machine learning

methods, however none has described the complete process using security analyt-

ics. Therefore, in this chapter, a review of the literature for machine learning-based

approaches to detect stealthy false data injection attacks on the state estimation of

power grids is presented. Table 2.1 shows the learning class, algorithms used for

feature selections, algorithms used for training, and how the datasets were generated

or obtained for each of the works reviewed. The table also lists the metrics used by

different works to evaluate their proposed methods.

2 . 2 D E T E C T I O N U S I N G S U P E RV I S E D L E A R N I N G

In supervised learning, labeled data, i.e., a training set of examples with correct re-

sponses or ground truths, is provided and based on this training the machine learning

algorithm generalizes (i.e., learns the patterns in the training data) respond correctly

to input sets that are unlabeled. In this section, the supervised methods used for

detecting SFDIA on the state estimation in power transmission systems are described.

The performance comparison of several supervised learning methods by Ozay et

al. [88] is one of the early works that used machine learning for detection of SFDIA.

They ran multi-layer perceptron (MLP), k-nearest neighbours (kNN), support vector

machine (SVM), sparse logistic regression (SLR), and AdaBoost and gave comparative
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performances of these models. They used simulated data from MATPOWER [132].

They reported performance of the models as a function of sparsity of attacks. Depend-

ing on the sparsity the performance for different models change a lot. They showed

that with the least sparse attack model AdaBoost can achieve 100% precision.

He et al. [43] proposed a conditional deep belief network (CDBN), one of var-

ious deep neural network architectures, to efficiently reveal the high-dimensional

temporal behavior features of the stealthy FDI attacks. The CDBN they employed

uses conditional Gaussian-Bernoulli restricted Botzmann machines (CGB-RBM) for

the first hidden layer to extract the high-dimensional temporal features. In all other

hidden layers conventional RBM were used. They used IEEE 118-bus system simulated

using MATPOWER to validate their proposed solution. They showed that the attack

detection increases with increase in number of buses. The highest accuracy value of

98.10% is obtained by a CDBN with 5 hidden layers, which is only a 0.5% improvement

over a 3-layer CDBN.

Wang et al. [110] applied the concept of “first difference”, borrowed from eco-

nomics and statistics to time-series measurement data to detect time-synchronous

attacks on the measurements. The “first-difference aware” data is then trained using

supervised models kNN, artificial neural network (ANN), SVM, naïve Bayes (NB), and

decision tree (DT). They tested their proposed approach on MATPOWER-simulated

IEEE 14-bus system. They achieved 99.73% overall accuracy with an ANN model.

Ashrafuzzaman et al. [11] proposed a feed-forward neural networks (FFNN) based

scheme with different configurations for detecting stealthy FDI attacks on the state

estimation of a power grid. They used random forest for feature selection and com-

pared performances of the deep learning scheme with three other machine learning

algorithms, namely gradient boosting machines (GBM), generalized linear models
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(GLM) and distributed random forests classifier (DRF). Like others they conducted

the experiments using data generated for an IEEE 14-bus system using MATPOWER.

Ahmed et al. [3] proposed two Euclidean distance-based anomaly detection schemes.

The first scheme utilizes unsupervised-learning over unlabeled data to detect outliers

or deviations in the measurements. The second scheme employs supervised-learning

over labeled data to detect the deviations in the measurements. The authors used a

genetic algorithm for feature selection. They have tested the proposed methods on

IEEE 14-, 39-, 57- and 118-bus systems using MATPOWER generated data.

The proposed framework by Niu et al. [87] has two detectors: a network anomaly

detector and an FDI attack detector. For detecting the FDI attacks, they formulated

these attacks as time-series anomaly and used an LSTM-based convolutional neural

network (CNN). At the same time a recurrent neural network with LSTM cell is de-

ployed to capture the dynamic behavior of the cyber-networks in the power system.

They tested their model on an IEEE 39-bus system simulated by MATPOWER.

Camana-Acosta et al. [17] proposed a classification scheme based on the extremely

randomized trees (ERT) algorithm and kernel principal component analysis (KPCA) for

dimensionality reduction. They evaluated the proposed scheme using MATPOWER-

simulated standard IEEE 5- and 118-bus systems.

Mohammadpourfard et al. [80] used the idea of concept drift, unpredictable shifts

in the underlying distribution of historical data over time, to develop a technique to

improve the performance of existing supervised learning methods in detecting SFDI

attacks. They tested their idea using kNN with PCA as feature extractor and evaluated

the performance using a MATPOWER-simulated standard IEEE 14-bus system.

Ganjkhani et al. [33] took into account the high correlation between the power

flow measurements data as well as among the state variables and proposed a method
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that uses a recurrent architecture of ANN configured with nonlinear auto-regressive ex-

ogenous (NARX). They simulated an IEEE 14-bus system and used the corresponding

data to validate their model.

Hamlich et al. [39] used five classifiers, namely kNN, random forest (RF), decision

trees (DT), MLP and SVM, for detecting SFDIA. They collected power flow data from

a physical bus feeding system connected to a power system stabilizer and then used

MATPOWER to introduce the false measurements.

2 . 3 D E T E C T I O N U S I N G U N S U P E RV I S E D L E A R N I N G

In this section, the unsupervised methods used for detecting SFDIA on the state estima-

tion in power transmission systems are described. Unsupervised methods are trained

with unlabeled datasets. Instead of relying on ground truths, these methods attempt

to learn the intrinsic properties of the data, and separates the data into regions or

clusters of data that have similar properties. In other words, the algorithms attempt to

learn the hidden patterns in the input data, and later predicts responses to test inputs

based on the learned patterns.

Chaojun et al. [20] proposed a method that tracks the dynamics of variations in

the measurement data. They used Kullback-Leibler distance (KLD), that calculates the

distance between two probability distributions derived from measurement variations,

for tracking that dynamics. The method detects presence of SFDIA when KLD is larger

than those for the historical data. They generate the attack data for an IEEE 14-bus

system by modifying load data from the New York independent system operator. The

method fails to detect SFDIA in system buses where the change in measurement data

is very small.
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Wang et al [109] developed an interval state estimation based defense mechanism.

It’s a two step sparse model. First, the lower and upper bounds of each state variable

are modeled as a dual optimization problem that aims to maximize the variation

intervals of the system variable. Then stacked auto-encoder (SAE), is used to extract

the nonlinear and non-stationary features in electric load data. The 6-layer SAE had

logistic regression as the final layer. They also used MATPOWER to simulate 9-bus,

14-bus, 30-bus and 118-bus systems, and generated attack data using MATLAB. Their

dataset is also quite small, 35,000, for any deep learning training. The training phase

takes just over 12 minutes. While this work deals with data in the power systems, the

goal of the paper was to predict electric load forecasting more accurately, not to detect

SFDI attacks.

Hao et al. [41] proposed a sparse PCA-approximation based model to detect stealthy

FDI attacks. In this model, identification of real measurements with the availability of

sparse data sets is achieved by using recovery functions. The recovery function’s accu-

racy is inversely proportional to the sparsity of available data. As such, this model falls

short at identifying FDI attacks when data is too sparse to produce reliably accurate

recovery functions. They evaluated their approach on IEEE 9-, 14-, and 57-bus systems

simulated with MATPOWER. They showed that the probability of successful detection

of attack increases if the system’s error tolerance performance is relaxed. If the system

can tolerate a false alarm rate of 10%, then attack detection accuracy approaches

100%.

Ahmed et al. [5] utilized unsupervised learning method isolation forest to detect

FDI attacks–they call it covert data integrity assault–using simulated data generated by

MATPOWER. They reduce the dimensionality of the data using principal component

analysis (PCA). In order to demonstrate that isolation forest performs better, they
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compare the results with performance of a few other learning models namely SVM,

kNN, NB and MLP. They did not report how long it took to train the models. It is

unexpected that their results of isolation forest is better than the other models which

are all supervised models. That is because supervised models generally perform better

in terms of accuracy than unsupervised models on the same dataset. They showed

accuracy of up to 94.67% and F1-score of up to 94.41%.

Mohammadpourfard et al. [79] used Fuzzy C-Means (FCM) too detect SFDIA by

measuring and comparing deviations in the probability distributions in the data. They

used PCA for feature reduction. They generated the attack data for IEEE 14-bus and

IEEE 9-bus systems by replacing load data from the New York independent system

operator with spoofed data. They reported that their method can achieve 92.88%

detection rate.

Ahmed et al. [5] utilized unsupervised learning method isolation forest (ISOF) to

detect FDI attacks using simulated data generated by MATPOWER. They reduced the

dimensionality of the data using principal component analysis (PCA). To demonstrate

that ISOF performs better, they compared their results with those of a few other

learning methods namely support vector machines (SVM), k-nearest neighbors (k-NN),

naive Bayes (NB) and multilayer perceptron (MLP). They did not report how long it

took to train the models. They reported only accuracy, precision and F1-score values.

It is unexpected that their results of ISOF are better than the other models which

are all supervised models. Generally, supervised models perform better in terms of

accuracy and precision than unsupervised models on the same dataset because they are

trained with labeled data. In a separate work, Ahmed et al. [3] proposed a Euclidean

distance-based anomaly detection scheme. The authors used a genetic algorithm for
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feature selection. They tested the proposed methods on IEEE 14-, 39-, 57- and 118-bus

systems using MATPOWER generated data.

Yang et al. [121] used one-class SVM (OCSVM), robust covariance, ISOF and local

outlier factor (LOF) methods. They ran these methods using data from a simulated

IEEE 14-bus system. However, the dataset uses only 1000 set of measurements. They

reported only accuracy and precision values for the algorithms which can be mis-

leading metrics for anomaly detection. The most relevant metrics for sparse attack

detection are sensitivity or recall, specificity, and F1-score.

2 . 4 D E T E C T I O N U S I N G S E M I - S U P E RV I S E D L E A R N I N G

In semi-supervised learning, the models are trained using a small amount of labeled

data along with a large amount of unlabeled data during training. These methods are

suitable when labeled data is sparse and the training with small amount of labeled

data can considerably improve training accuracy. In this section, the works that used

semi-supervised methods for detection of SFDIA are summarized.

Esmalifalak et al. [29] attempted to use two methods for detecting SFDIA. The first

of the two models they proposed utilizes the multivariate Gaussian semi-supervised

learning algorithm and the second model utilizes a distributed support vector machine

(SVM) based algorithm, which requires no supervised learning. Both models use

principal component analysis to reduce the dimension of measurements. They use a

non-linear classifier with a Gaussian kernel to define the attacked and the safe modes’

boundary. In their simulation to generate data using MATPOWER, they collect active

power measurements from each transmission line. However, the dataset they use is

too small, namely 1000. They report that the semi-supervised model can attain up to
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82% and the SVM-based method can attain up to about 78% of F1-score. This work is

a preliminary investigation of applicable of machine learning techniques for detecting

SFDI attacks on SE in transmission systems, and they demonstrate that this approach

has promise. They simulated a 118-bus system.

Foroutan and Salmasi [32] proposed a four-phase classification: 1) they reduced

the dimension of the data using PCA, 2) used a positively labeled set to build mixed

Gaussian model, 3) used a mixture dataset to choose a proper classification threshold

and finally 4) used an unlabeled dataset for evaluation. They used an IEEE 118-

bus system simulated using MATPOWER to validate their semi-supervised learning

solution by comparing its performance with those of SVM and MLP. They reported

having F1-score of 95.65% for their MGD-based method.

Ozay et al. [88] used semi-supervised SVM (S3VM), variation of supervised SVM,

to detect SFDIA. S3VM is based on the assumption that the input data in the same

cluster have the same labels and the difference in number of input data in sub-clusters

is not large. However, since SFDIA is sparse, yielding an imbalanced dataset, S3VM

does not work very well when sparsity is high. The authors conducted experiments on

simulated IEEE 9- 57- and 118-bus systems.

Chakhchoukh et al. [19] proposed a detection method using a newly developed ma-

chine learning technique known as the density ratio estimation (DRE). The DRE [101]

is an effective countermeasure against cyber-attacks, which does not require supervi-

sion or an attack model. Given two sets of samples from two different distributions,

DRE learns the ratio between the two probability density functions. Here the authors

use data from “normal” operation of the power system as one set of samples and the

data that might be contaminated with noise, bad-data or false data injection attacks as

another. They demonstrated the method using simulation of an IEEE 118-bus system.
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They reported that the DRE method can detect 100% of the attacks. However, they

did not report the corresponding FAR.

2 . 5 D E T E C T I O N U S I N G R E I N F O R C E M E N T L E A R N I N G

In reinforcement learning, the machine learning model uses an agent that facilitates

learning in an interactive environment by trial and error using feedback from its own

actions and outcomes. In reinforcement learning the goal is to find a suitable action

model that would maximize the total cumulative rewards and punishments of the

agent.

Kurt et al. [57] proposed a detection mechanism using state–action–reward–state–action

(SARSA), a reinforcement learning algorithm. They formulated the problem of SFDI

attack detection as a partially observable Markov decision process (POMDP). They

tested their proposed solution using MATPOWER-generated data for an IEEE 14-bus

system.

2 . 6 S U M M A RY

In this chapter, a review of the works that use machine learning to detect SFDIA is

presented. A few observations from this literature review include:

1. None of the works combined both supervised and unsupervised models together

in one solution.

2. A few works mentioned here used multiple classifier models as individual models,

but none used those classifiers together as ensemble models.
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3. Different learning classes had been attempted by the researchers. However, no

attempts to use adversarial learning or explanation-based learning is undertaken

so far.

4. Almost all the works used simulated datasets for testing their models. Three

works used power flow data from power grid, but they added synthetic attacks

to the dataset later making it simulated data.

5. Most of the attack data are generated randomly. However, in real-life an ad-

versary would craft the SFDIA intelligently considering the system dynamics.

Unless tested with real attack data, the performance of the methods against such

sophisticated SFDIA will remain unknown.
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C H A P T E R 3

STATE ESTIMATION AND STEALTHY FALSE DATA

INJECTION AT TACKS

3 . 1 I N T R O D U C T I O N

This chapter briefly describes state estimation in power transmission system and the

mathematical formulation for stealthy false data injection attacks on static state esti-

mation in power systems. The chapter also describes the SFDI attack process.

3 . 2 S TAT E E S T I M AT I O N I N P O W E R T R A N S M I S S I O N S Y S T E M S

State estimation (SE) at the transmission system in electric power grids is a key

function in supervisory control and planning of the system. It is used to provide

the best estimate of the values of the system’s unknown state variables, i.e., voltage

magnitudes and phase angles of the system buses, from the measurements available

from the network model and sent by the SCADA system to the control center. State

estimation is run in every few seconds to a few minutes. The functions of the state

estimator include identifying and correcting anomalies in the data, suppressing any

bad data, and refining the measurements. Finally it gives a set of state variables that

is acceptable to the operator and as inputs to other computational programs of the

energy management system (EMS). Figure 3.1 gives the data flow in a typical state

estimator.

The SE process generates a “residual vector” which is analyzed to detect possible

abnormal measurements by checking for residuals that do not obey the Gaussian
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assumption. While the standard residual analysis tests can identify the presence of

errors, it may not detect “stealthy” FDIA because an attacker familiar with the power

transmission system topology information can carefully craft the data amounts to be

injected in a way that the residual of the original measurement vector remains the

same as the residual of the measurement vector with the injected data.

F I G U R E 3 . 1 : A flow chart of the state estimation process (from [105]).

The following EMS tools are dependent on the state variable values estimated by

the SE.

Contingency analysis involves performing efficient calculations of system per-

formance from a set of simplified system conditions. Contingency analysis is one

of the most important tasks of the Energy Management Systems (EMS). Used
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for the purpose of fast estimation of system stability right after outages, by bulk

power system operators.

Unit commitment is an operational planning method used to determine a sched-

ule called Unit Commitment Schedule which tells us beforehand when and which

units to start and shut down during the operation over a pre-specified time, such

that the total operating cost for that period becomes minimum.

Optimal Power Flow is a technique used to simulate load flow through an AC

power system and find the combination of the flows that is operationally and

economically optimal.

Locational marginal pricing tools are used to price out the cost of electricity for

the local distributors or consumers.

3 . 3 F O R M U L AT I O N O F S TAT E E S T I M AT I O N A N D F A L S E D ATA

I N J E C T I O N AT TA C K S

This section introduces the mathematical formulation for stealthy false data injection

attacks on static state estimation in power transmission systems [2, 74].

In a power transmission system, the static SE is run after collecting measurements

from the SCADA units at chosen time snapshots and communicating those to the

control center every few seconds to a few minutes. These measurements are power

flows and injections, as well as voltage magnitudes. The AC static SE estimates the

(state) vector x ∈ Rn that contains phase angles and voltage magnitude at the different

buses, where n = 2k − 1 and k is the number of buses in the system. The slack bus

phase angle is assumed to be the reference and is fixed to 0. The state vector obeys
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the following nonlinear equation:

z = h(x) + e (3.1)

The nonlinear vector function h(·) is computed from the grid topology and the pa-

rameters for transmission lines, transformers and other devices. The error vector

e ∈ Rm is assumed Gaussian with a covariance matrix R, where m is the number of

measurements. The vector of measurements z ∈ Rm contains communicated readings

from SCADA units. The AC SE is executed using an iterative algorithm based on the

weighted least squares (WLS) [2] to compute and estimate the vector x, i.e.,

x̂k = x̂k−1 + H]
k (zk − h(xk−1)) (3.2)

where H]
k = (H>k R−1Hk)

−1H>k R−1, the matrix Hk is the Jacobian of h with respect to

x at step k. The WLS algorithm is optimal under Gaussian noise.

Let ∆zk = zk − h(xk−1) be the kth residual vector. After the convergence of the

algorithm, i.e., once ‖x̂k − x̂k−1‖ < δ for some chosen threshold δ > 0, the obtained

residuals are analyzed by practitioners to detect possible abnormal measurements by

checking for residuals that do not obey the Gaussian assumption. These abnormal or

bad data could be due to natural failures such as sensor or communication misbehavior,

or to FDI attacks. The most practical bad data detection rules are known as the chi-

square test (χ2) and the ”3σ” rejection rule [2]. The iterative algorithm is equivalent

to an estimation that is run iteratively after linearizing the regression in each step. The

AC SE problem can also be reformulated as:

z = Hx + e (3.3)
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If contamination occurs due to an FDI attack then the measurement vector z re-

ceived at the control center is replaced by za with za = z+ Hc. The obtained new state

is biased by the contamination vector c, i.e., x̂a = x̂ + c. The conventional methods

detect such contamination by analyzing the residual (i.e., the difference between the

measurement vector z and the calculated value from the state estimation, i.e., z−Hx̂).

In the largest normalized residual test, if the largest absolute value of the elements in

normalized residual is greater than a pre-defined threshold α > 0, (α is generally

chosen to be 3) the corresponding measurement is identified as bad data and reported

to system operators. The measurement is removed and the estimation is re-executed.

3 . 4 S T E A LT H Y F A L S E D ATA I N J E C T I O N AT TA C K S

In the case of FDI attacks, if the injected data are large enough the conventional

residual tests can detect them and these are called non-stealthy FDI attacks. In the

non-stealthy case, the measurement matrix H is not known to the attackers and they

simply generates random attack vectors and manipulate the meter readings.

On the other hand, if the attackers are familiar with the power system topology

information or know the measurement matrix H, they can carefully craft the data

amounts to be injected in a way that the residual r of the original measurement vector

z remains the same as the residual ra of the measurement vector z with the injected

data z.

ra = za − Hx̂a = z− Hx̂ = r (3.4)

These are called stealthy FDI attacks as they cannot be detected using the conventional

methods based on residual analysis [74].
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F I G U R E 3 . 2 : Diagram showing relationship between bad data, false data and
stealthy false data.

Figure 3.2 shows the rough relationship between bad data and false data. The

middle band can have both bad data and false data. The false data that fall into the

middle band are detected by the state estimation’s bad-data detector. The false data

that fall in the bottom band, i.e., the stealthy false data, cannot be detected by the

bad-data detector.

3 . 5 S T E A LT H Y F A L S E D ATA I N J E C T I O N AT TA C K P R O C E S S

False data injection attacks can be carried on different parts of the power grid, e.g.,

transmission systems, distribution systems, advanced metering infrastructure, etc. [72].

However in this research proposal, SFDI attacks only on the state estimation in the AC

power transmission system are considered. Figure 3.3 shows a simplified diagram of
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F I G U R E 3 . 3 : A simplified diagram of a power grid with its SCADA and
communication systems showing the FDI attack vectors.
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the power grid with the transmission system, the SCADA and the wireless commu-

nication links. It also indicates the possible attack vectors. An attacker can break

into the remote sensors associated with the buses and modify the measurement data

or/and compromise the communication channels, possibly through man-in-the-middle

attacks, to intercept and modify the network packets.

The following are typical steps an adversary may follow for an SFDI attack:

1. Intrusion into the System (the stepping-stone):

(a) If the adversary is an outsider, they will hack into the system using one

or more of the usual cyber-attacks, e.g., spear-phishing, password-cracking,

cracking the cryptographic protection, etc. or using a man-in-the-middle

attack by compromising any wired or wireless communication channel.

(b) An outside adversary can also be successful in installing a malware in the

system either using the means above or using social engineering ploys. This

malware may have the ability to steal system information, particularly the

system topology.

(c) If the adversary is a trusted insider, then s/he may already have the access

and authority to get the system information.

2. Carry out SFDI attacks:

(a) After the adversary has gained access into the system and obtained neces-

sary system information, they can now surreptitiously change the measure-

ment data and hence launch a stealthy FDI attack.

(b) The operator and the state estimator assume that the data is correct and

estimate the state variable values based on this false assumption.
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(c) Since the state variable values do not represent the actual state of the

system, calculation by any of the post-SE tools will be incorrect. This will

cause adverse operation of the system and may result in malfunctions or

major disruptions.

The goal of the attacker is to disrupt the operation of the transmission system

leading to a failure in one or more component or bus, which may even trigger a cascade

of failures, i.e., tripping of breakers because of power overload, and causing localized

or wide-scale power failure.

3 . 6 S U M M A RY

In this chapter, the static state estimation process for power transmission systems,

the mathematics of bad-data in PTS, what constitutes SFDIA, and the SFDIA process

are described. State estimation process calculates the values for bus system variables

using the matrix of measurements from different RTUs. The bad-data detection tools

can identify and rectify anomalous data and spoofed data. However, there is a class of

spoofed data that cannot be detected by bad-data detectors. These stealthy false data

injection attacks can be a second line of attack in a coordinated attack on the power

grids.
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C H A P T E R 4

TAXONOMY OF FALSE DATA INJECTION AT TACKS

4 . 1 I N T R O D U C T I O N

Extensive research have been done since the identification of false data injection (FDI)

attacks by Liu et al. [73]. Research on FDI attacks mainly focuses on three aspects:

theoretical research, application research, and defensive research [62].

The theoretical research is concerned with developing the SFDI attack schemes,

i.e., the construction of vectors to be injected into actual data matrices. These vectors,

capable of evading detection by the control center, are developed for different compo-

nents of the grid, situations, and constraints. In application research, the focus is on

analyzing the impacts of SFDI attacks on power system operation, mainly on energy

management systems (EMS) and market management systems (MMS), for instance,

economic dispatch, congestion managements, etc. The defensive research is garnered

towards proposing detection mechanisms and defense strategies from the viewpoint

of the system operator.

In this chapter, a survey of the theoretical research and a taxonomy of SFDI attack

models is presented.

4 . 2 R E L AT E D W O R K S

There are only a few works in the literature that attempted to classify false data

injection attacks on smart grids. None of these works claimed to have developed a

taxonomy of such attacks.
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Guan et al. [37] in a limited survey of FDI attacks, described centralized and

distributed attacks on the DC state estimation, a generic attack on AC state estimation,

and a superficial discussion of FDI attacks on the control system. They did not cover

many other FDI attacks and they limited their survey to only a few works.

Liang et al. [62] did a review of FDI attacks on the power grids. They summarized

the different strategies of constructing valid FDI attacks under various constraints.

They described FDI attacks when 1) attacker has full knowledge of the system, 2)

attacker has incomplete knowledge of the system, 3) attacks are on the system topol-

ogy, and 4) attacks are on the AC power flow. They did not cover attacks on other

parts of the transmission system and on other parts of the power grid. Their work is a

review of FDIA, rather a taxonomy.

Liu and Li [72] did a broader survey of FDI attacks covering attacks on the trans-

mission system, distribution system and microgrid. However, the paper is more of a

survey of FDIA models, impact analyses and defense strategies, than a taxonomy of

FDIA.

In comparison to the previous works, this is an effort to present a taxonomy of

attacks classified based on the power grid components targeted and based on the kind

of impacts the attacks cause.

4 . 3 C O M P O N E N T- B A S E D AT TA C K C L A S S I F I C AT I O N

In the following few sections, a taxonomy of FDI attacks based on the targeted com-

ponents of the power grid is presented. Section 4.4 presents FDIAs on transmission

systems, Section 4.5 on distribution systems, Section 4.6 on microgrids and Section 4.7
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F I G U R E 4 . 1 : Diagram showing taxonomy of stealthy false data injection attacks on the power grid.
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on advanced metering infrastructure (AMI). Figure 4.1 shows a diagram of a taxonomy

of FDI attacks on the power grid.

4 . 4 AT TA C K S O N T R A N S M I S S I O N S Y S T E M

False-data injections in power grid was identified as cyber-attacks by Liu et al. [73] for

the direct current (DC) power flow model in the transmission system. They argued that

if an attacker can construct a false data injection attack such that the overall residue

of the system will not increase, the attack on measurements can bypass the residual

test for bad-data detection and constitute a successful attack. Rahman and Mohsenian-

Rad [81] formulated the false-data injection attacks for the alternating current (AC)

case which is more complicated than the DC case.

The FDI attacks on the transmission system can be broadly categorized in two

groups depending on whether the attacker has full knowledge of the system topology

and other system values or not.

4 . 4 . 1 With Complete System Knowledge

If an adversary has complete knowledge of the system configuration information,

including system parameters, power grid topology, state estimation algorithm, bad-

data detection mechanism, and transmission-line admittance values, etc., and has the

ability to modify data at all the meters, they can adjust the false data injection attack

vector in a way that the attack remains undetected and successfully passes the residue-

based bad-data detection tests.
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4 . 4 . 1 . 1 Attacks on the DC State Estimation

After the initial identification by Liu et al. [73] for the DC model, a number of works

followed. Kosut et al. [56] proposed a graph-theory based algorithm to construct false-

data injection attacks. Kim et al. [55] proposed a data-framing FDI attack where it

was shown that an attacker can inject data in such a way that the energy management

system (EMS) identifies correctly functioning measurement devices as a false data

injection source. Yang et al. [123] proposed a collective sparse attack strategy where

state variables in the same cluster are attacked by the same attack vector. Wang

and Ren [111] studied the situation when FDIA is on transmission system and the

topology is not fixed. Assuming that only one line can be cut off per time interval,

they developed necessary and sufficient condition under which successful stealthy FDI

attack can be generated.

4 . 4 . 1 . 2 Attacks on the AC State Estimation

Hug and Giampapa [48] analyzed stealthy false data attacks against the AC state

estimation and showed that an attacker can launch a successful stealth attack if they

have the full network information of a power grid. They developed a graph-theoretic

approach to minimize the number of measurements to be modified for attacking a load

measurement at a bus. Since the injected power at a zero-injection bus must be zero

to ensure power flow feasibility, any malicious modification of the readings of these

measurements will be detected with a relative high probability. Thus they concluded

that the zero-injection buses can improve the resilience of a power system to false data

injection attacks.
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Chakhchoukh and Ishii [18] identified two attack scenarios on both AC and DC

state estimations. In one scenario, called masked attacks, attacks are possibly uniden-

tified with a convergence to an arbitrary state unknown to the attacker. In the second

scenario, called stealthy attacks, convergence to a known state is targeted by the

attacker.

4 . 4 . 1 . 3 Attacks on the Topology

In topology-based attacks, adversaries aim at creating errors in the topology informa-

tion by virtue of knowledge of measurement configuration. In power transmission

systems, the status of each transmission line, whether the line is in service or not,

is sent to the control center in real time. Under normal operations, the topology

of a transmission system changes due to faults or forced outages of transmission

lines. However, during transmission of this status data, an attacker can intercept

and modify the status of a line sent to the control center exploiting the vulnerability

of communication networks. This alteration in the status data can lead the control

center to erroneously believe the system is operating under a topology different from

that in reality. This can lead to serious implications: a grid that is under stress may

appear to be normal to the operator thereby delaying the deployment of necessary

measures to ensure stability. On the other hand, an operator may deem a normally-

operating grid to be under stress and can take costly remedial actions including load

shedding. To construct stealthy attacks, the attacker modifies the meter data for

transmission systems and the network topology data simultaneously in such a way

that the estimated topology is consistent with the modified data.

Kim and Tong [54] derived a necessary and sufficient condition for the existence

of an undetectable attack for strong adversaries who has knowledge of the complete
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system, in other words can observe all meter and network data. They presented a

simple undetectable attack, called state-preserving attack, where the attack intention-

ally preserves the state in order to have a sparse attack vector. Under this attack

an adversary can simulate the physical outage of a transmission line without actually

severing the line where a pair of additional power increments is injected into the power

measurements (and not the phase angles) at the terminal buses of the targeted line.

The topology attack model in Kim and Tong [54] assumes that the injected false

power at a bus is infinite which is quite impractical since a control center operator

usually has some knowledge about the load distribution of a power grid and can

predict future loads using load forecasting. To overcome this drawback, Liu and

Li [71] proposed a heuristic algorithm to reduce the required network information

for determining a feasible attack region, thereby a local topology attack model that

limits the injected power at a bus within a certain range.

Liu and Li [71] and Li et al. [60] proposed a topology attack model to mask the

physical outage of a transmission line injecting false data into some measurements

such that the new power flow is consistent with the case in which the line is on outage.

This will cause the control center to believe that this line is still in service although it

is physically on outage.

4 . 4 . 1 . 4 PMU Attacks

Phasor measurement units (PMU) are used to estimate real-time phasor and sequence

measurements from geographically dispersed nodes in the power transmission grid

with high-sampling rate. These measurements, known as synchrophasors, including

magnitude and phase angle of an electrical phasor quantity, such as voltage or current,

are time-synchronized to an absolute time reference provided by the global positioning
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system (GPS). These measurements are transmitted to the control centre and are used

to reliably evaluate, monitor, control, and protect the grid.

Use of GPS allows PMUs to synchronize real-time measurements of multiple re-

mote points on the grid with high accuracy. However, dependence of synchronized

measurements on GPS signals has been identified as an attack surface. Two kinds of

attacks have been identified. Zhang et al. [131] and Jiang et al. [50] demonstrated

that PMUs are vulnerable to spoofing attacks that provide false time stamps on the

PMU measurements. The spoofed time stamps cause two types of errors: the phase

angle error and the time-of-arrival (TOA) error. The phase angle error will render the

operator unable to or to wrongly detect the outages of transmission lines; the TOA

error will result in miscalculation of the locations of disturbance events. The spoofing

can also attack the clock offset of a PMU to disrupt voltage stability monitoring.

Liu and Li [68] showed that the line outage detection using the PMU data can

be significantly disrupted by false data injection attacks. The masking scheme is to

maximize the residual of the outage line in the detection algorithm. When a line

outage occurs, the operator calculates the expected phase angle changes due to this

outage based on received real-time measurements and compares the values to these

real phase angle changes measured by PMUs to locate the fault line. With the PMU

measurement data changed, the operator is forced to take incorrect remedial actions

causing disruptions.

4 . 4 . 2 With Incomplete Network Information

So far the review dealt with FDI attacks that are based on the assumption that the

attacker knows the complete configuration information of the power grid and power

network. In practice, it is difficult for an adversary to know the complete network



40

information and therefore it is not possible to launch a successful FDI attack on power

grids. However, research has established that it is still possible for an adversary to

launch a successful FDI attack even if they have incomplete information about the grid.

In this section, a review of research that developed FDI attack models with incomplete

system information will be presented. The focus of this line of research is to ascertain

enough system information from grid operation to launch a successful FDI attack.

4 . 4 . 2 . 1 Attacks on DC State Estimation

Esmalifalak et al. [30] observed that topology information is embedded into the corre-

lations among power flow measurements when the system parameters (e.g., active or

passive loads) vary within a small dynamic range, and that the topology information

can be extracted from this. In practice, power system topology remains the same unless

there is a reconfiguration of the system. Hence, due to the slow dynamic nature for a

short period of time, the equivalent knowledge of the topology can be revealed using

the correlations among power flow measurements. They proposed an independent

component analysis (ICA) based algorithm to obtain topology information from power

flow measurements.

Rahman and Mohsenian-Rad [93] formulated FDI attacks with incomplete infor-

mation from both the attacker’s and system operator’s viewpoints and introduced a

novel vulnerability measure that can compare and rank different power grid topologies

against such attacks. Rahman and Mohsenian-Rad [93] and also Giani et al. [34]

developed an approach to construct FDI attacks by splitting the grid into several

subnetworks, and increasing or decreasing phase angles by the same amount incre-

mentally in each subnetwork. Since the bus angles in the subnetworks change by

the same degrees, the power flows in the area covered by the subnetworks will not
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change. They termed this as “local attack” where the modified phase angles constitute

the attacks.

Kekatos et al. [52] showed a way to identify grid topology using electricity prices.

They proposed an iterative alternating direction method of multipliers (ADMM) based

algorithm to estimate the grid Laplacian matrix from the locational market prices

(LMPs) using a regularized maximum likelihood estimator, since under the DC model,

LMPs correspond to the Lagrange multipliers of network-constrained economic dis-

patch problem. The authors solved the problem using an ADMM-based algorithm and

demonstrated that the estimated Laplacian matrix is close to the real topology. Moya

et al. [84] introduced the concept of correlation index for wide-area measurement

attacks at sub-transmission level inspired by forensic analysis. The correlation index

was developed by studying the pattern of measurement attacks.

Yang et al. [123] developed three attack models, namely least-effort attack model,

optimal attack model and optimal attack model for large grid. First an adversary can

launch the least-effort attack in order to find the sparsest attack vector so that the

attack can be conducted by compromising the minimal necessary number of sensors.

After gaining knowledge of some state variables, the adversary can launch the linear

transformation based optimal attack to launch a full-fledged FDI attack on the grid.

The third model is based on a heuristic algorithm that can be used to launch a full-

fledged FDI attack on a large grid network.

Yu and Chin [124] proposed a method to generate sparse false data injection

attacks of the general kind on both the DC and AC cases by applying the principal

component analysis (PCA) to the measurement data matrix into a new subspace, pre-

serving the spatial characteristics as much as possible. PCA is a multivariate statistical

technique which can transform the correlated observations into uncorrelated variables
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known as principal components. These orthogonal principal components are the linear

combinations of the original observations. The authors construct FDI attacks based

on the data of the new projected space. These attacks are generated without the

knowledge of the measurement matrix and the assumption regarding the distribution

of state variables. In order to generate the false data injection attack vector, they

applied PCA on the vector of actual measurements, and multiplied it with the transpose

of a vector with a non-zero vector obtaining the attack vector.

Anwar et al. [8, 9] extended the idea of Yu and Chin [124] to construct an attack

from only the measurement signals even in the presence of gross, non-Gaussian, errors.

They further developed a sparse optimization based blind (no system knowledge)

stealthy attacks construction strategy that is stealthy and successful even in the pres-

ence of grossly corrupted measurements due to device malfunction and communica-

tion errors.

4 . 4 . 2 . 2 Attacks on AC State Estimation

AC power flow equations are highly nonlinear and it is much more difficult to formu-

late an attack for the AC model with incomplete network knowledge. Rahman and

Mohsenian-Rad [94] proved that constructing FDI attacks on AC systems using DC

models will be easily detected by the bad-data detector.

Liu and Li [70] extended the local attack model for DC systems in [67] to the

AC case by replacing the estimated voltage magnitudes at the boundary buses in the

attacking region with the corresponding voltage measurements and setting the power

flows on the tie-lines calculated using the estimated voltage magnitudes and phase

angles to be the corresponding line flow measurements on these tie-lines.
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4 . 4 . 3 Attacks on Topology

Kim and Tong [54] proposed a heuristic method for constructing FDI attack on network

topology for the case when the adversary has only limited knowledge of the system.

They demonstrated that the physical outage of a line can be simulated by launching the

state preserving attack (described in Section 4.4.1.3) without physically disconnecting

this line. Kim and Tong [54] also demonstrate that a topology attack has significant

impact on the locational marginal price (LMP).

4 . 4 . 4 Attacks on Automatic Generation Control

Tan et al. [102, 103] formulated stealthy false-data injection attacks on the sensor

measurements for automatic generation control (AGC), a fundamental control system

used in power grids to maintain the grid frequency at a nominal value. The authors

show that, if an attacker can gain access to sensor data and a few system constants,

they can learn the attack impact model and achieve the optimal attack. False data

injection attacks on the sensor measurements for AGC can cause frequency excursion

that triggers remedial actions, by control center operators, such as disconnecting loads

or generators, that may lead to blackouts and potentially costly equipment damage.

4 . 4 . 5 Attacks on Static Security Assessment

Chen et al. [21] investigated the impact of FDI attacks on the static security assessment

(SSA), a process that determines if the power system is in a secure or alert (insecure)

state; the secure state implies the load is satisfied and no limit violation will occur

under present operating conditions and in the presence of unforeseen contingencies

(i.e., outages of one or several lines, transformers or generators). They showed that
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successful FDI attacks can manipulate the results of SSA. They identified two scenarios.

In fake secure signal attack, the system operator is made to believe that the system is

operating in a secure condition when actually it is not. In fake insecure signal attack,

the operator is deceived to make corrective actions, such as generator rescheduling,

load shedding, etc. when these actions were not warranted. f

4 . 5 AT TA C K S O N D I S T R I B U T I O N S Y S T E M S

The existing research on FDI attacks against state estimation in transmission systems

cannot be trivially extended to distribution systems. In order to launch an FDI attack

on the distribution system, the attacker must know the estimated state of the system.

This makes the FDI attacks difficult to be implemented in practice.

Lim et al. [63] was among the first to investigate false data injection attacks in the

power distribution systems, even though they didn’t call it FDI attacks. FDI attacks

on the distribution systems are realized by tampering with the messages between the

server and the feeder remote terminal units (FRTU). These messages contain voltage

and current data and control commands. The authors categorized the attacks into

three distinctive attacks. First, altering the contents of these messages and sending to

the FTRUs. The altered messages can control automatic switches in the system ma-

liciously, eventually causing power outages. Second, creating spoofed messages and

injecting them in the communication channel, thereby delivering illegal commands

to the FRTUs. Third, sending a previous message again, thus effectively delivering

incorrect time-varying information that reflects system status and actions. This is a

replay attack.
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Guo et al. [38] showed that an attacker on the distribution system can attack

the feeders or FRTUs, subsystems or the customers. Deng et al. [27] showed that

an adversary can approximate the system state based on the power flow or injection

measurements and construct attacks on the state estimation of the distribution system.

4 . 6 AT TA C K S O N M I C R O G R I D S

Microgrids are local and decentralized low-voltage electric power grids that can dis-

connect from traditional power grid for autonomous and self-sufficient operations.

Lin et al. [64] investigated FDIA against the distributed energy routing process

in microgrids. They considered several general attacks, in which the adversary may

manipulate the quantity of energy supply, the quantity of energy response, and the

link state of energy transmission. They quantitatively demonstrated that the false data

injected by those attacks cause imbalanced demand and supply, increase the cost for

energy distribution, and disrupt the energy distribution.

Zhang et al. [128] investigated the impacts of FDIA on the dynamic microgrid

partition process. They identified three FDI attacks on microgrids: i) claim less energy

than what can be provided, ii) claim more energy than what is required, and iii) both

i) and ii) at the same time. They show that for all these situations injected false data

can disrupt the dynamic microgrid partition process.

Hao et al. [40] observed aberrant operation of a microgrid when false data is

injected into the voltage controller of the substation. Liu et al. [71] proposed an

FDI attack model against control signals of solar photovoltaic (PV) and energy storage

system (ESS) controls in microgrids, Li et al. [59] studied FDIA against the control
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signals of the inverters in microgrids, and Beg et al. [14] considered false data injection

attacks in cyber-physical DC microgrids.

Zhang et al. [127] investigated impact of FDIAs on the economic vulnerabilities

in microgrids by categorizing the attacks by their utilization levels and monitored the

stability of microgrids under different conditions.

Liu et al. [66] considered FDI attacks on communication links in a microgrid and

theoretically formulated the conditions when the data injection constitutes i) a false

attack, and ii) a missed or undetected attack. They further defined two classes of

undetectable attacks: i) zero trace undetectable, and ii) non-zero trace undetectable.

4 . 7 AT TA C K S O N A D VA N C E D M E T E R I N G I N F R A S T R U C T U R E

Advanced metering infrastructures (AMI) facilitate bidirectional communication be-

tween smart meters located at the consumers and utility companies, allowing infor-

mation about consumption, outages, and electricity rates to be shared reliably and

efficiently and for efficient, accurate and advanced monitoring and control.

Grochocki et al. [36] investigated FDI attacks as part of larger scheme of cyber-

attacks on smart meters, neighborhood area networks (NAN) and home area networks

(HAN). They developed an elaborate attack tree after performing threat analysis. FDI

attack is an important part of this attack tree.

Anwar et al. [10] described a relationship between the power system stability

indices and the FDI attacks when the attacks are injected through smart meters. They

identified the level of vulnerabilities of each smart meter in terms of different degrees

of FDI attacks.
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4 . 8 I M PA C T- B A S E D AT TA C K C L A S S I F I C AT I O N

4 . 8 . 1 Load Redistribution Attacks

Yuan et al. [125] developed the concept of load redistribution (LR) attack that can

disrupt the grid operation by attacking the security-constrained economic dispatch

(SCED). The SCED minimizes total system operation cost (e.g., generation cost, load

shedding cost, etc.) by re-dispatching the generation outputs. In order to achieve

a successful LR attack, the attacker makes sure that the attack amount at a load

measurement must be limited within a small range to reduce the situational awareness

of the system. Under an LR attack, the falsified SCED solution leads the operator to

redistribute the loads in a way that may drive the system to an uneconomic operating

state. The damage of LR attacks to power system operations can manifest in an

immediate or a delayed fashion. The authors classified the LR attacks into i) immediate

attack and ii) delayed attack. Yuan et al. [126] further developed the concept of LR

attack by developing models to quantify the damage of both immediate and delayed

attacks.

Liu and Li [69] and Liu et al. [67] investigated local load redistribution attacks

with incomplete information. Xiang et al. [115] demonstrated that the LR attacks

have a non-negligible impact on the power system reliability. The authors modeled

the FDI attacks using semi-Markov modeling for both non-encrypted and encrypted

communication and quantified the influence of load redistribution (LR) attack on the

long-term power supply reliability. Xiang et al. [116] showed that LR attacks can

be part of a coordinated cyber-attacks on the power grid. Mohsenian-Rad and Leon-

Garcia [81] showed that the direct load control command signals and indirect load

control price signals can be attacked by launching load altering FDI attacks.
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4 . 8 . 2 Attacks on the Electricity Market

FDI attacks can be constructed to manipulate the locational market pricing (LMP) by

modifying the measurement matrix of the state estimation, because the real-time LMP

is calculated using estimated congestion pattern obtained from the state estimation.

Xie et al. [117, 118] were the first to study this kind of attacks on the electricity

markets and formulated a convex optimization problem to construct an optimal attack

vector to maximize profit in the real-time market. They also developed a heuristic-

based method for the attacker to improve the attack efficiency.

Jia et al. [49] took into consideration the effects of both the RTU measurements

and the system topology state on real-time LMP and proposed formulation to calculate

the injected false-data vectors for causing congestion pattern that affect the LMP most.

Choi and Xie [22] studied the impacts of topology errors on LMPs. Esmalifalak et

al. [31] studied the effect of FDIA on power market using a game-theoretic approach.

Rahman et al. [95] proposed a formal verification-based framework to analyze the

impact of topology attacks on the integrity of optimal power flow (OPF) and, hence,

electricity pricing since the LMP is a by-product of OPF.

4 . 8 . 3 Energy Deceiving Attacks

It was seen before that the smart meters are susceptible to FDI attacks and an adver-

sary can cause a major disruption in the system by attacking a set of critical meters.

McLaughlin et al. [78] demonstrated how energy theft can be achieved by altering

readings of a set of smart meters.

While investigating FDI attacks against the distributed energy routing process in

microgrids, Lin et al. [64] identified the energy deceiving attack. The authors showed
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how an attacker can manipulate the memory of smart meters in the microgrids and in-

ject erroneous energy demand and supply messages to cause energy deceiving attacks.

4 . 9 S U M M A RY

False data injection attacks or covert data integrity attacks can be targeted on different

parts of the smart grid, and for different purposes. This chapter presented a compre-

hensive review and a taxonomy of different FDI attack models classified based on the

components attacked and also the impacts intended.
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C H A P T E R 5

SECURITY ANALYTIC S FRAMEWORK

5 . 1 I N T R O D U C T I O N

In this chapter, the security analytics framework that is used to detect SFDI attacks

on state estimation in power transmission systems is presented. Security analytics

has been around for just about a decade, mostly to protect from threats in the cyber

systems. In this dissertation research, security analytics is being used to detect cyber-

attacks in a cyber-physical system.

5 . 2 S E C U R I T Y A N A LY T I C S

Security Analytics is a data-driven approach to cybersecurity focused on the analysis

of data using machine learning to produce proactive security measures, including

detection, prevention and defense mechanisms. For example, monitored network

traffic could be used to identify indicators of compromise before an actual threat

occurs. Security analytics often, but not always, employs big data analytics.

In this dissertation research, a security analytics framework is used for detecting

SFDI attacks. The central part of the framework is to use machine learning models

for attack detection where machine learning models are first developed by letting

the models learn the data behavior, i.e., relations in different types of data instances,

through the training process. Once the models exist, real-time data is classified as

either legitimate or anomalous in a detection phase. A key disadvantage of using

machine learning is that the training process typically requires significant time and
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computational resources. However, once the model is trained, subsequent analysis

is generally efficient. In this framework, a number of supervised, unsupervised, and

stacking ensemble models are used.

The components of the security analytics framework are:

1. Risk Analysis

2. Threat Modeling

3. Data Generation

4. Data Engineering

5. Feature Reduction

6. Machine Learning Model Selection

7. Deployment of Trained Models

8. Monitoring for Attacks

A process flow diagram of the scheme is given in Figure 5.1. The process flow

starts with a brief risk analysis, followed by threat modeling where the attack models

are identified. These attack models are used when data generation module creates the

synthetic datasets. Data engineering normalizes the data with standard scaling and

balances the datasets for the supervised models. The scaled and balanced datasets are

used by the feature reduction module. All the machine learning methods separately

use the feature-reduced datasets to train. The trained models are tested and evaluated

using standard evaluation metrics. This model selection phase produces the best per-

forming models which are to be deployed to detect SFDI attacks. The deployed models
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F I G U R E 5 . 1 : A process flow diagram of the security analytics framework.

monitor and analyze the oncoming SE measurement data vectors for the presence of

any SFDI attack.

The following sections describe the components of the security analytics frame-

work.

5 . 3 R I S K A N A LY S I S

Risk is the level of impact on the organization’s operations, operational assets, and

personnel given the potential impact of a threat and the likelihood of the threat occur-
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ring. In other words, risk is the possibility of damage or harm and the likelihood that

damage and harm will be realized. Risk analysis is an effort to identify vulnerabilities

and their related threats, assess the potential costs of exploitation, and determine

appropriate and cost-effective security controls [113].

In this dissertation, it is considered that SFDI attacks have already been identified

as threats to the power transmission systems, since it is assumed that the adversaries

have already intruded into the system by way of compromising sensors or communica-

tion channels and have adequate knowledge of the system topology to craft effective

SFDI attacks. As shown in Section 4.8, the impacts of the SFDI attacks on the system

depend on the particular kind of SFDI attack being constructed. A risk analysis of SFDI

attacks will have to consider the type, scope, and intensity of the attacks, the assets and

services affected, the duration of the affected services, severity of physical, economic,

and intangible damages, etc. Risk analysis of SFDI attacks on state estimation in power

transmission system is out of scope for this dissertation research.

5 . 4 T H R E AT M O D E L I N G

A threat is an agent that can potentially compromise the normal operation of a system.

The threat agent can be a human actor, or an event or circumstance. The agent can be

a malicious actor or a benign but naive actor accidentally causing a security incident.

Threats are identified, categorized, and prioritized using the threat modeling process.

For the case of SFDI attacks, the threat agents are malicious, purposeful, and

highly resourceful. In this limited threat modeling, the different ways adversaries

can constitute attacks on the measure data are identified. These attack models are

described below.
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The threat model is built on the following assumptions:

1. The attacks are only on the static state estimation measurement data in AC power

transmission systems.

2. The attacks are targeted attacks and not random attacks. That means the same

set of compromised RTUs are attacked for the entire duration of the attack.

3. The attacker has partial knowledge of the system topology. They know the

regions in vicinity of the compromised RTUs.

4. The attacks are general attacks without intending any particular impact.

5 . 4 . 1 Attack Models

As described in Chapter 4, the SFDI attacks can occur at different points of the trans-

mission system enabling the attackers according to the access point. An attacker

can break into one of the remote sensors associated with the buses and modify the

measurement data or compromise the communication channels at the control center or

the Enterprise SCADA center, possibly through man-in-the-middle attacks, to intercept

and modify the network packets. In order to cover this broad scope of SFDI attacks,

three attack models for the investigation in the proposed research are considered.

These attack models are described with the help of Figure 5.2. It shows a simplified

diagram of a 14-bus transmission system, along with the cyber network that consists

of the SCADA and the wireless communication links.
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F I G U R E 5 . 2 : Representation of a 14-bus based power transmission system showing
physical and cyber networks (adapted from [51]).
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5 . 4 . 1 . 1 Attack Model 1: Compromise One Substation

In this scenario, it is assumed that sensors in one of the substations in the system

are compromised by an attacker and hence the attacker can change the measurement

values corresponding to the sensors in that Substation only. For example, if Substation

SS-1 in Figure 3.1 is hacked then values from all the sensors in that substation can be

modified.

5 . 4 . 1 . 2 Attack Model 2: Compromise One Control Center

A control center in the system collects the measurement values from the sensors in

a number of buses, collates those and relays to the central SCADA center. If an

attacker can intrude into one of the control centers, they can modify the measurements

values that go through this control center. Referring to Figure 5.2, if the attacker gets

access into control center CC-1, they can modify the measurement values from sensors

associated with the buses in Substations SS-9, SS-6 and SS-5.

5 . 4 . 1 . 3 Attack Model 3: Compromise Enterprise Center

This scenario covers the cases when an outside adversary gets access into the enterprise

SCADA center or when the attacker is a trusted insider hereby having full access to the

matrix of measurement values. This later scenario can also be a malware that has gone

into the SCADA center and has the ability to change the measurement values. In this

model, since the attack happens at the central SCADA center, the adversary has the

capability to change any or all the measurement values from all the sensors.
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5 . 5 D ATA G E N E R AT I O N

For this research, instead of collecting, data was generated because of lack of availabil-

ity of real data. Real SFDIA data, even if they exist, will be very few, because SFDI

attacks are currently limited to the academic research labs.

The generation of data for this research is a two-step process: 1) State Estimation

(SE) measurement data representing normal operation of the power system and 2)

SFDI attack generation and injection into the measurement data.

5 . 5 . 1 State Estimation Measurement Data Generation

For generating power flow SE measurement data, standard IEEE 14-bus and 57-bus

systems were simulated using MATPOWER [132]. The measurements are obtained

from solving power flows using the MATPOWER and adding Gaussian measurement

noise. The loads are considered to vary randomly around their average values.

The IEEE 14-bus system has 5 generators and 11 loads [106], as shown in Fig-

ure 5.3. The measurements are: 40 active power-flows, 14 active power-injections, 40

reactive power flows, 14 reactive power-injections, and 14 voltage magnitudes giving

a total of 122 measurement features. The IEEE 57-bus system has 7 generators and

41 loads [106], as shown in Figure 5.4. The measurements for the 57-bus system are:

188 active power-flows, 57 active power-injections, 188 reactive power flows, 57 reac-

tive power-injections, and 57 voltage magnitudes giving a total of 546 measurement

features.
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5 . 5 . 2 Attack Generation

The attack generation program is written using MATLAB. The buses considered com-

promised are selected randomly following the three attack models described earlier.

Then the measurement values corresponding to those buses are replaced by attack

data generated by this program. 10% of ‘normal’ data were randomly chosen to be

‘attack’ data.

The generated measurement vectors with attacks, i.e., modifications in the mea-

surements, were used for state estimation using state estimation simulation in MAT-

POWER. As the state estimation successfully processed the data vectors, it demon-

strated that bad-data detector could not detect the attacked data vectors. This shows

that the generated attack data was stealthy.

F I G U R E 5 . 3 : Diagram of standard IEEE 14-bus system (adapted from [106]).
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F I G U R E 5 . 4 : Diagram of standard IEEE 57-bus system (adapted from [106]).

5 . 6 D ATA E N G I N E E R I N G

During the data engineering, also called data wrangling or data preprocessing, phase,

data is prepared to be fitted for the subsequent analytics method or tool.
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The dataset generated did not have any missing data or invalid data; consequently,

no data imputation or cleaning was required. The data types of all the features in the

dataset are numeric, except for the class label which is either ‘normal’ or ‘attack’. As

part of preprocessing, all the ‘normal’ strings were changed to 0s and ‘attack’ strings

to 1s.

5 . 6 . 1 Scaling

Standard scaling was applied to the dataset. In standard scaling, the features are

normalized by removing the mean and scaling to unit variance. Standard scaling

replaces the data values in a feature by their z score. For a value x, the z score is

calculated as: z = (x− µ)/σ, where µ is the mean and σ is the standard deviation of

the data values for a given feature.

5 . 6 . 2 Balancing

The dataset generated contains 90% normal data and 10% attack data implying that

the dataset is imbalanced. Supervised classifiers perform poorly when trained with

imbalanced datasets, especially for the minority class. In this case, the ‘attacks’ are

in the minority class, and the goal is to detect these precisely. Therefore detection

of these minor class ‘attack’ instances in an imbalanced dataset will not be accurate.

To overcome this problem, two popular techniques to balance datasets, namely the

synthetic minority over-sampling technique (SMOTE) and the edited nearest neighbor

(ENN), were applied to over-sample the ‘attack’ sets of data and under-sample the

‘normal’ sets of data respectively [13]. After this balancing act the ratio of major and

minor class samples in the dataset was 3:2. Since the unsupervised models function
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as outlier or anomaly detectors, the dataset does not need to be balanced for the

classification using unsupervised models.

5 . 7 F E AT U R E R E D U C T I O N

The complexity and time for model training increase sharply with an increase in the

number of features, i.e., feature dimensionality, in the dataset, because of the so-

called “curse of dimensionality” [107]. The number of data items, i.e., features, in

SE measurement data increases with the number of buses in the system. For example,

the number of features in the measurement data for an IEEE 9-bus system is 27, for

an IEEE 14-bus system it is 122, for an IEEE 57-bus system is 547, and for an IEEE

300-bus system it is 1122.

It is often observed that not all the features in a dataset contribute equally in

training the models. Hence, the features with the least discriminating properties can

be safely eliminated from the dataset without compromising the model performance.

Feature selection may lead the trained model to maximizing its performance while

minimizing its running time.

5 . 7 . 1 Random Forest Classifier Method

In the security analytics scheme presented in this dissertation, random forest classifier

(RFC) [46] was used to rank and select the features in the SE dataset according to

their importance in model training.

Random forest, a popular classification and regression method, can also be used

to rank the features in a dataset based on their importance. Random forest is an

ensemble of a large number of decision trees. Each of the trees is constructed over



62

a random extraction of the instances from the dataset and a random extraction of

the features. These trees are uncorrelated since they can’t access all features or all

observations. Every node in the trees is a condition on a single feature, designed to

split the dataset into two such that similar response values end up in the same set. At

the time of this split, a measure of how much each feature contributes in making this

decision is taken. This measure forms the basis of ranking the features according to

their importance. Then, a number of the most important features are retained from

the ordered list of features while the others are deleted from the dataset to obtain a

feature-reduced dataset.

F I G U R E 5 . 5 : Features in the 14-bus-AM1 dataset in order of importance.
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F I G U R E 5 . 6 : Features in the 57-bus-AM2 dataset in order of importance.

5 . 7 . 2 Selecting SE Measurement Features

The random forest classifier was used on the dataset to obtain an ordering of the

features according to their importance. A plot showing the feature importance for

the 14-bus-AM1 dataset is given in Figure 5.5. The figure shows that the first 21

features have the largest variances, and therefore only these features were retained in

the dataset as the predictor variables, plus the target variable. Figure 5.6 shows the

feature importance for the 57-bus-AM2 dataset showing that the first 43 features have

largest variances, and therefore these features were retained in the dataset.
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In summary, the datasets generated in Section 5.5 are scaled and balanced (for

supervised methods only) in Section 5.6, and finally feature-reduced in Section 5.7.

The properties of the twelve datasets after scaling, balancing, and feature selection are

given in Table 5.1. These datasets will be used for model selection, i.e., for training

and evaluating machine learning models, in Chapters 6–9.

TA B L E 5 . 1 : Properties of the datasets after scaling, balancing, and feature reduction.

Total Buses Learning Total Normal Attacked Total Selected
Datasets Buses Attack Class Data Data Data Features Features

14-Bus-AM1 14 5 Supervised 112,568 66,980 45,588 122 21
Unsupervised 100,000 90,124 9,876 122 21

14-Bus-AM2 14 4, 8, 9 Supervised 110,652 66,778 43,874 122 21
Unsupervised 100,000 90,079 9,921 122 21

14-Bus-AM3 14 All Supervised 113,567 66,762 46,805 122 21
Unsupervised 100,000 90,020 9,980 122 21

57-Bus-AM1 57 7 Supervised 106,048 63,515 42,533 547 43
Unsupervised 100,000 90,034 9,966 547 43

57-Bus-AM2 57 7, 11, 19, 21 Supervised 102,092 61,824 40,268 547 43
Unsupervised 100,000 90,008 9,992 547 43

57-Bus-AM3 57 All Supervised 104,582 62,630 41,952 547 43
Unsupervised 100,000 90,123 9,877 547 43

Table 5.1 shows that the ratio of normal data and attack data, i.e., data tampered

with by the attackers, is roughly 3:2 for datasets used in supervised model selections

and roughly 9:1 for datasets used in unsupervised model selections. It also shows

that the total number of data instances for supervised datasets are more than 100,000.

This is because when SMOTEEN method is used to balance a dataset, the method

increases the minor class instances and reduces the major class instances. At the end,

the number comes something close to 100,000.

5 . 8 M A C H I N E L E A R N I N G M O D E L S E L E C T I O N

A machine learning ‘method’ is the implementation of a machine learning algorithm.

A machine learning ‘model’ is obtained when the corresponding ‘method’ is used to

train on a particular dataset. It is then said that the ‘model’ has learned the patterns or
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relationships in the data instances using the ‘method’. Many models can be built using

one method by using different datasets or different sets of parameters for the method.

Even if only one dataset and one set of parameters are used, different models can be

built using different ways of training, i.e., depending on how the dataset was split or

what kind of training was used.

Model selection is the process of training and evaluating machine learning methods

and selecting the best model from among a collection of machine learning models for

a particular training dataset. The process can be applied to 1) models of different

methods (e.g., decision tree, logistic regression, SVM, kNN, etc.), 2) models of the

same method configured with different hyper-parameter values (e.g., different hidden

layers and units for ANN), and 3) models of the same method and same set of hyper-

parameter values trained repeatedly with resampled training data.

In this security analytics framework, all of these three types are used to train the

most robust models. For each of the different machine learning methods, a set of

hyper-parameter values were chosen and the models were trained using 10-fold cross-

validation over randomly divided (resampled) training data. In 10-fold cross valida-

tion, the training dataset is divided into 10 equal subsets. The training is repeated

10 times with 9 subsets and the remaining 1 subset, called the validation dataset, is

used to test the trained model. In every repetition, a different sets of training subsets

and validation subset are used. Figure 5.7 shows the k-fold cross-validation process.

The performance is calculated by averaging the 10 sets of performance results. This

process yields the best model out of several models of one ML method with one set

of hyper-parameter values. Then this process is repeated for different sets of hyper-

parameter values for that one ML method. The best models obtained from each of

these sets of hyper-parameter values are then compared using standard evaluation
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F I G U R E 5 . 7 : Diagram showing k-fold cross-validation process.

metrics described in Section 5.8.1. Finally, this entire process is applied to all the

different methods yielding one best model for each of the different methods. The final

best model is then selected by comparing these models using evaluation metrics.

The best models are selected after the models are trained with cross-validation and

their performance are measured against the testing dataset using standard evaluation

metrics described below. Since the goal is to detect attack data, which is in the

minor class, the appropriate metrics to be used to select optimum models are F1-score,

sensitivity, and specificity. The ideal situation would be when one model exhibits

highest values for all these three metrics. However, that is not always the case. Then,

a model is chosen as the best one that gives highest sensitivity along with highest or

very close to highest values for F1-score and specificity. These best-performing models

are then deployed to detect the attacks in real-time.

Chapters 6–9 will elaborate on this section in describing the model selection with

different machine learning methods and will present the results showing how good

the models are in detecting SFDI attacks.
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5 . 8 . 1 Standard Evaluation Metrics

A machine learning classification model predicts class labels as output for a given

input dataset. In this case, the class labels are “normal” and “attack”. Depending on

the predicted class labels, the outcomes for binary classification can be categorized as:

1) True positive (TP): when the model correctly identifies an attack, 2) True negative

(TN): when it correctly identifies a normal or non-attack, 3) False positive (FP): when

a non-attack is incorrectly identified as an attack, and 4) False negative (FN): when

an attack is incorrectly identified as a non-attack. These four categories constitute the

so-called confusion matrix [42] shown in Table 5.2.

TA B L E 5 . 2 : The Confusion Matrix.

Predicted Predicted
Normal Attack

Actual Normal TN FP
Actual Attack FN TP

To evaluate the models in this paper, the following metrics derived from the confu-

sion matrix are used in the dissertation [100].

1. Accuracy = (TP + TN)/TotalPopulation

2. Precision = TP/(FP + TP)

3. False Positive Rate (FPR) = FP/(FP + TN)

4. Sensitivity = TP/(FN + TP)

5. Specificity = TN/(FP + TN)

6. F1-score = 2TP/(2TN + FP + FN)
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Accuracy is the percentage of correct identification over total data instances. Pre-

cision, also known as the positive predictive value, represents how often the model

correctly identifies an attack. Sensitivity, also known as the true positive rate (TPR),

recall, or detection rate, indicates how many of the attacks the model does identify

correctly. Sensitivity intuitively gives the ability of the classifier to find all the positive

samples and the precision intuitively gives the ability of the classifier not to label

as positive a sample that is negative. Specificity, also known as the true negative

rate, measures the proportion of actual negatives, i.e., non-attacks, that are correctly

identified as such. F1-score, also known as F-measure, provides the harmonic average

of precision and sensitivity.

The ROC curve plots FPR on the X-axis and TPR on the Y-axis. This means that

the top left corner of the plot is the “ideal” point, where the FPR = 0, and TPR = 1.

The larger the area under the curve (AUC) the better. The red dotted line indicates the

random classification and has an AUC of 0.5. The ROC AUC score is a measure of the di-

agnostic ability of binary classifier systems. To demonstrate the detection performance

of different models over all possible thresholds, the ROC curves are plotted.

In addition, the run times (i.e., elapsed times) are usually measured for compar-

ing the speed of different training models running the all-feature dataset versus the

reduced-feature dataset.

5 . 9 M O D E L D E P L O Y M E N T

One or more best models based on a comparison of the standard evaluation metrics

across all models that were tested are then deployed in the system being protected to

detect security issues in real-time. For this case, the model(s) are to be deployed at
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the power control center within the state estimation process and right after the bad-

data detection. In this dissertation research, the model deployment phase was not

performed. This has been left as one of the future works.

5 . 1 0 AT TA C K M O N I T O R I N G

The SE measurement data matrix goes through the steps in data engineering phase,

where it is normalized and feature-reduced. Then it goes through the deployed models.

If any of the models identifies the presence of a potential SFDI attack then the mech-

anism raises an alert for the control center operator to take necessary action. Since,

the models were not deployed in this research, attack monitoring is also left out as a

future work.

5 . 1 1 T H E S O F T WA R E

A software was implemented to perform most of the phases of the security analytics

process presented above. This software was used to do data generation, data engineer-

ing, feature reduction, model selection, and evaluating the models.

The data generation module was implemented using MATPPOWER [132] and MAT-

LAB, and all the other functionalities were implemented using the Python program-

ming language. Python library scikit-learn [90] was used to write the feature reduction

method and machine learning model training and selection.

At this time, the implemented software supports RFC for feature reduction; GLM,

GBM, DRF, ANN, SVM, NB, DT, and LR for supervised learning; OCSVM with two

kernels, ISOF, LOF, and EE for unsupervised learning; stacking ensembles using the

supervised and unsupervised methods; standard and MinMax scaling; evaluation of
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the model performance and printing out the results in tabular forms; and plotting

performance graphs.

5 . 1 2 S U M M A RY

In this chapter, the security analytics framework used for detecting SFDI attacks on

state estimation in power transmission systems is presented. This chapter discusses

the steps in the framework and describes what were done for different steps for

this research, except the “Machine Learning Model Selection” phase. The following

four chapters discuss machine learning model selection using supervised, ensemble,

artificial neural networks, and elliptic envelope methods, and demonstrate how good

the models will be in detecting SFDI attacks using standard evaluation metrics.
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C H A P T E R 6

SUPERVISED MODELS

6 . 1 I N T R O D U C T I O N

This is the first of four chapters that represents machine learning model selection phase

(Section 5.8) in the security analytics framework. These chapters present building of

machine learning models using different machine learning methods using the datasets

generated and prepared in Chapter 5. The model selection process ends with deter-

mining the efficacy of the models in detecting SFDI attacks using standard evaluation

metrics as described in Section 5.8.1.

This chapter describes the model selection using three popular supervised meth-

ods, namely generalized linear model (GLM), gradient boosting machine (GBM), and

distributed random forests (DRF) and resultant detection strengths of the models.2

6 . 2 M O T I VAT I O N

An empirical approach to identify the best machine learning model(s) to accurately

and reliably detect SFDI attacks was started with three popular and simple to use

methods. For that reason, a powerful linear method, GLM, a boosting method, GBM,

and a bagging method, DRF, are chosen.

2The work presented in this chapter has been published in the following paper:
M. Ashrafuzzaman, Y. Chakhchoukh, A. Jillepalli, P. Tosic, D. Conte de Leon, F. Sheldon, and

B. Johnson, “Detecting stealthy false data injection attacks in power grids using deep learning,” in
IEEE Wireless Communications and Mobile Computing Conference (IWCMC), 14th International, pp.
219–225, IEEE, 2018. doi:10.1109/IWCMC.2018.8450487

http://doi.org/10.1109/IWCMC.2018.8450487
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6 . 3 T H E S U P E RV I S E D M E T H O D S

This section briefly describes the three machine learning methods used in this chapter.

6 . 3 . 1 Generalized Linear Model

Generalized linear models (GLM) were first proposed as a general framework for uni-

fying various other statistical models, including linear regression, logistic regression

and Poisson regression [86]. A few other linear regression and classification methods

have been added to GLMs since then. An implementation of the GLM suite generally

includes Gaussian (i.e. normal), Poisson, Gamma and Ordinal regressions as well as

binomial and multinomial classifications. The GLM allows the linear model to relate

to the response variable using a link function and the magnitude of the variance of

each measurement is a function of its predicted value.

6 . 3 . 2 Gradient Boosting Machine

Gradient boosting machine (GBM) is a forward-learning ensemble method. An ensem-

ble is a collection of weak classifiers. The mean of predictions by all these classifiers

is deemed as the final prediction. GBM trains many models in a gradual, additive and

sequential manner. GBM overcomes the limitations of the weak classifiers by using

gradients in the loss function which is a measure of how good the model’s coefficients

are at fitting the underlying data.

6 . 3 . 3 Distributed Random Forest

Distributed random forest (DRF) is another ensemble-based method that works by gen-

erating a forest of classification trees, rather than a single classification or regression
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tree, using the given dataset. Each of the trees in the forest is a weak classifier built

on a subset of rows and columns. More trees will obviously reduce the variance. The

average prediction over all of these trees is used to make a final prediction.

6 . 4 M O D E L S E L E C T I O N

Each of the six datasets was split into a 7:3 ratio for training and testing dataset

respectively. The training datasets are used to train the three models and the testing

datasets are used to evaluate the models for selection using the standard metrics. 10-

fold cross-validation over randomly divided training data was used during training of

the models.

6 . 5 R E S U LT S

The numerical results in terms of the evaluation metrics for testing the models using

test datasets are shown in Table 6.1.

TA B L E 6 . 1 : Evaluation metrics values for the three supervised methods for all the
six datasets.

Datasets Model F1-Score Accuracy Precision Sensitivity Specificity ROC Elapsed
AUC Time

14-Bus-AM1 GLM 0.8343 0.8728 0.9821 0.7234 0.9827 0.8522 15.55s
GLB 0.8356 0.8736 0.9843 0.7245 0.9816 0.8576 16.95s
DRF 0.8349 0.8787 0.9844 0.7258 0.9832 0.8577 21.23s

14-Bus-AM2 GLM 0.8343 0.8727 0.9819 0.7232 0.9826 0.8521 14.43s
GLB 0.8355 0.8734 0.9842 0.7242 0.9815 0.8573 15.88s
DRF 0.8350 0.8785 0.9841 0.7254 0.9833 0.8574 21.34s

14-Bus-AM3 GLM 0.8342 0.8728 0.9820 0.7234 0.9826 0.8519 15.21s
GLB 0.8357 0.8737 0.9844 0.7243 0.9817 0.8577 16.45s
DRF 0.8348 0.8786 0.9842 0.7259 0.9833 0.8576 21.02s

57-Bus-AM1 GLM 0.8334 0.8719 0.9814 0.7222 0.9821 0.8511 17.35s
GLB 0.8347 0.8726 0.9832 0.7234 0.9816 0.8559 18.78s
DRF 0.8340 0.8777 0.9836 0.7246 0.9828 0.8562 23.12s

57-Bus-AM2 GLM 0.8335 0.8721 0.9816 0.7224 0.9823 0.8512 17.47s
GLB 0.8349 0.8728 0.9837 0.7233 0.9818 0.8561 18.66s
DRF 0.8344 0.8777 0.9839 0.7248 0.9829 0.8563 23.35s

57-Bus-AM3 GLM 0.8334 0.8722 0.9818 0.7225 0.9822 0.8516 18.02s
GLB 0.8347 0.8735 0.9838 0.7238 0.9817 0.8558 18.95s
DRF 0.8340 0.8779 0.9839 0.7249 0.9827 0.8564 23.43s
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6 . 6 D I S C U S S I O N O F R E S U LT S

The following observations are made from Table 6.1 for the evaluation metrics values

for the three ML models for the six datasets:

1. The performance for all the three ML models are effectively same.

2. The performance of these models for all the six datasets are also effectively the

same.

3. The overall accuracy values for the models are 87%, whereas precision values are

about 98%. However, in a classification problem where the goal is to detect the

minor class occurrences, the most important metrics are the sensitivity which, in

this case, measures the proportion of actual “attacks” that are correctly identified

as such; and the specificity which measures the proportion of actual “non-attacks”

that are correctly identified as such. For these models, the sensitivity values

are about 72%. This indicates that even the any of these model would be able

to detect about 72% of the attacks and the rest 28% will go undetected. The

specificity values for the models are about 98% meaning that the models are able

to identify a “non-attack” as such 98 times out of 100, with 2 as false alarms.

The corresponding full-feature datasets (122 features for 14-bus system and 547

features for 57-bus system) were also used to train the three models. It was found

that the performance numbers for the models do not change at all for these cases.

However, it was found that the elapsed times for training with the full-feature datasets

for 14-bus system take up to 400% more time, and for 57-bus system take up to 600%

more time.
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6 . 7 S U M M A RY

In this chapter, use of the security analytics framework with supervised learning in the

model selection phase was described for detection of SFDI attacks. The supervised

models used are GLM, GBM and DRF. It cannot be confidently said that the models

performed well in detecting the attacks as the average detection rate obtained by

these models is only around 72%. It was found that using the datasets with all the

features do not improve the performance values, however it slows the training down

significantly.
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C H A P T E R 7

STACKING ENSEMBLES

7 . 1 I N T R O D U C T I O N

This chapter presents the model selection part of the security analytics framework

using stacking ensemble. It also describes the ensemble framework3 and building of

machine learning models using machine learning methods in the ensemble framework

using the datasets generated and prepared in Chapter 5. The model selection process

ends with determining the efficacy of the ensemble models in detecting SFDI attacks

using standard evaluation metrics as described in Section 5.8.1.

The ensemble framework employs two sets of machine learning stacking ensembles.

One set of the ensembles uses only supervised methods while the other one uses only

unsupervised methods. In addition to the ensemble classifiers, the performance of the

individual classifiers are evaluated for comparison.4

7 . 2 M O T I VAT I O N

Different classifiers usually perform differently on the same data. In stacking ensemble-

based machine learning, multiple different classifiers are used together and the results

given by these constituent classifiers are further classified by another (second stage)
3The ensemble framework is a part of the security analytics framework.
4The work presented in this chapter has been published in the following two papers:

1. M. Ashrafuzzaman, S. Das, Y. Chakhchoukh, S. Shiva, and F. T. Sheldon. “Detecting stealthy false
data injection attacks in the smart grid using ensemble-based machine learning,” Journal of Computers
& Security, Elsevier, August 2020. doi:10.1016/j.cose.2020.101994

2. M. Ashrafuzzaman, S. Das, Y. Chakhchoukh, S. Duraibi, S. Shiva, and F. T. Sheldon. “Supervised
learning for detecting stealthy false data injection attacks in the smart grid,” Transactions on
Computational Science and Computational Intelligence, Advances in Security, Networks, and Internet
of Things, Springer Nature, 2020. (accepted)

http://doi.org/10.1016/j.cose.2020.101994
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classifier [28, 91]. This approach is called a two-layer ensemble or stacking [114].

Stacking ensemble-based machine learning approaches have been shown to perform

well in solving other problems [26, 83, 129].

In supervised learning, labeled data, i.e., a training set of examples with correct

responses, is provided and based on this training the machine learning method gen-

eralizes (i.e., learns the patterns in the training data) to classify the unlabeled input

sets. In unsupervised learning, the method is trained with unlabeled data to identify

similarities between the inputs that have something in common. These similar inputs

are then categorized together. In other words, the method attempts to learn the hidden

patterns in the input data, and later predicts responses to test inputs based on the

learned patterns.

If trained with well-developed labeled data, supervised learning models perform

better than unsupervised models. However, the additional and often cumbersome

data engineering needed to label raw data is painstaking and challenging. Moreover,

attack data is very sparse. Consequently, the availability of labeled data is not always

guaranteed in a timely manner. That is why most datasets are synthetic. Because

supervised models are trained with labeled data, they learn the patterns associated

with “attacks” very well and can detect such patterns more consistently. However,

if the attack pattern is not one of the learned patterns or if the attack is a new

one, then the performance of supervised models is highly degraded. In these cases,

unsupervised models which flag any out-of-the-ordinary pattern more consistently

must be considered. For these reasons, both supervised and unsupervised models

are included in the ensemble framework.
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7 . 3 M E T H O D S U S E D I N E N S E M B L E

This section briefly describes the machine learning methods used in the ensemble

framework. More information on these learning methods can be found in the books

by Hastie et al. [42] and Marsland [76].

7 . 3 . 1 Supervised Learning Algorithms

7 . 3 . 1 . 1 Logistic Regression

Logistic regression (LR) is a classification algorithm that performs very well on linearly

separable classes. LR builds on ideas from the field of statistics where the logistic

model is used to discern the probability of a true/false class or event. This can be

extended to models with more than two classes of events. Each of the events would

be assigned a probability value between 0 and 1, where the sum of all probabilities

is unity. The coefficients of the logistic regression algorithm must be estimated from

the training data which is done by using maximum-likelihood estimation. The best

coefficients would result in a model that would predict a value very close to 1 for the

default class and value very close to 0 for the other class.

7 . 3 . 1 . 2 Support Vector Machine

Support vector machine (SVM) is a group of supervised learning methods that identify

the patterns for data classification or regression analysis based on finding a separating

hyperplane in the feature space between two classes, in such a way that the distance

between the hyperplane and the closest data points for each class is maximized. The

SVM algorithm is based on probabilistic statistical learning theory [24] whereby the

approach favors a minimized classification risk rather than optimal classification. Var-
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ious types of dividing classification surfaces can be realized by applying a kernel, such

as linear, polynomial, Gaussian, radial basis function (RBF), sigmoid, or hyperbolic

tangent [23].

7 . 3 . 1 . 3 Naïve Bayes

Naïve Bayes is a simple classifier used in many machine learning problems. Based on

the Bayes theorem this probabilistic classifier helps define the probability of an event

based on some prior knowledge of certain conditions associated with that event. The

name naïve Bayes originates from the fact that the input features are assumed to be

independent, even though in practice this may not always be true.

7 . 3 . 1 . 4 Decision Tree

Decision tree (DT) is a non-parametric supervised learning method and is used both for

classification and regression. DT builds a tree in which each branch shows a probability

between a number of possibilities and each leaf shows a decision. The paths from the

root of the tree to the leaves represent classification rules. The algorithm collects

information and applies the rules for the purpose of the decision to take a particular

path. In DT, each level splits the data according to different attributes and attempts to

achieve perfect classification with a minimal number of decisions.

7 . 3 . 1 . 5 Artificial Neural Networks

The computational architecture of neural networks mimics the neural structure and

function of the brain forming the interconnected groups of artificial neurons. Each of

these artificial neurons is a set of input values and associated weights that trigger the
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neuron beyond a threshold. The neural network is organized in layers of neurons. The

first layer is the input layer and the last one is the output layer. The layers in between

these two are called hidden layers. The neural networks attempt to hierarchically

learn deep features and correlations in input data by adjusting the weight associated

with the neurons. Neural network architectures have many variants with each finding

success in specific domains of applications. An extensive review of neural networks

can be found in the paper by Schmidhuber [98].

7 . 3 . 2 Unsupervised Learning Algorithms

7 . 3 . 2 . 1 One-Class SVM

One-class classification, also known as unary classification or class-modeling, tries to

identify objects of a specific class primarily by learning from an unlabeled training

set containing only the objects of that class. Trained in this way, the classifier flags

any object not recognized according to the learned generalization as an outlier or

anomaly [53]. OCSVM [99] is a support vector machine based anomaly detector. Like

the supervised SVM models, unsupervised one-class versions also work with different

kernels. In the ensemble framework, one-class SVMs with a linear kernel and a

polynomial kernel are used.

7 . 3 . 2 . 2 Isolation Forest

Isolation forest [65] is an ensemble regressor consisting of a number of isolation trees.

Each tree is trained on a random subset of the training data. Isolation forest is used to

perform the outlier detection efficiently in high-dimensional datasets. The algorithm

isolates observations by randomly selecting a feature and then randomly selecting
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a split value between the maximum and minimum values of the selected features

using recursive partitioning. The required number of splits to isolate a sample is

equivalent to the path length from the root to the leaf. The path length from the

root to leaf, averaged over a forest of such random trees, is a measure of normality

and the decision function. Random partitioning produces noticeably shorter paths for

anomalies. Therefore, the trees that collectively produce shorter paths for particular

samples are highly likely to be anomalies.

7 . 3 . 2 . 3 Elliptic Envelope

Elliptic envelope (EE) attempts to ‘draw’ an ellipse putting the normal class members

inside the ellipse. Any observation outside the ellipse is then classified as an outlier or

anomaly. EE models the data as a high dimensional Gaussian distribution with possi-

ble covariances between feature dimensions and uses the FAST-Minimum Covariance

Determinant [47, 97] to estimate the size and shape of the ellipse.

7 . 3 . 2 . 4 Local Outlier Factor

The local outlier factor (LOF) [15] first computes the local densities of the data objects

using distances given by k-nearest neighbors (k-NN) algorithm. LOF then identifies

regions of similar density by comparing the local density of a given data object to the

local densities of its neighbors. The data objects that have substantially lower densities

than their neighbors are identified as the anomalies.
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(a) Supervised Ensemble Models.

(b) Unsupervised Ensemble Models.

F I G U R E 7 . 1 : Five individual classifiers combining with one of six ensemble classifiers
to form six ensembles.

7 . 4 E N S E M B L E - B A S E D F R A M E W O R K

This section provides an overview of the stacking ensemble-based SFDI attack de-

tection scheme. The ensemble framework (a smaller framework within the overall

security analytics frame) consists of both supervised and unsupervised classifiers.

7 . 4 . 1 Individual Classifiers

In this ensemble-based approach, two different ensembles are used: one using five

supervised classifiers and another one five unsupervised classifiers. These individual

classifiers when run together, simultaneously or one after another, form the first phase

of the stacking ensemble.
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7 . 4 . 1 . 1 Supervised Classifiers

The supervised classifiers included in the ensemble framework are: decision tree

(DT), logistic regression (LR), naïve Bayes (NB), support vector machine (SVM), and

artificial neural network (ANN).

7 . 4 . 1 . 2 Unsupervised Classifiers

The unsupervised classifier models included in the ensemble framework are: one-class

support vector machine with polynomial kernel (OCSVM_P), one-class support vector

machine with linear kernel (OCSVM_L), isolation forest (ISOF), elliptic envelope (EE),

and local outlier factor (LOF).

7 . 4 . 2 Stacking Ensemble Classifiers

Stacking ensemble is a learning method where different classifiers are combined into

a meta-classifier that has better generalization performance than each individual clas-

sifier alone [28, 91]. Stacking ensemble is a two-stage process. The first stage consists

of different classification methods, for example, DT, SVM, LR, and so on, or one base

classification algorithm can be used repeatedly with different subsets of the training

data. These individual classifiers are run together, simultaneously or one after another.

In the second stage, the decisions given by individual classifiers are fed as input to

another classifier, called the ensemble classifier, for the final decision. Majority voting

is the most popular ensemble method, which selects the class label that has been

predicted by the majority of the constituent classifiers. Instead of majority voting, any

binary classification method can be used as the ensemble classifier. The ensemble

framework uses six classifiers as the ensemble classifier: majority voting (Ens_MV), lo-
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gistic regression (Ens_LR), naïve Bayes (Ens_NB), neural network (Ens_NN), decision

tree (Ens_DT), and support vector machine (Ens_SVM).

7 . 5 M O D E L S E L E C T I O N

This section presents a set of model selection experiments that were performed using

the ensemble framework presented above. The goal of the experiments is to find

one or more machine learning models in the ensemble framework that can detect

SFDI attacks accurately and reliably. The experiments were conducted with individual

classification first and then ensemble classification. The experiments ran the data

through five supervised and five unsupervised learning models. Six ensemble models

were run with the outcomes of the supervised models, and six ensemble models with

the outcomes of the unsupervised models. The hyper-parameters used for different

models are given in Table 7.1. The dataset was split into two subsets: 70% for training

and 30% for testing. To avoid over-fitting and to obtain robust models, 10-fold cross

validation over randomly divided training data was used. Then the test data was used

for prediction and for measuring model performance.
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TA B L E 7 . 1 : Hyper-parameter values used for different individual and ensemble
classifiers.

Classifier Short Hyper-parameter Values
Names

Supervised Logistic Regression LR default parameters
Models Decision Tree DT default parameters

Naïve Bayes NB alpha=1.0, binarize=0.0,
fit_prior=True, class_prior=None

Neural Network NN solver=‘adam’, alpha=1e-5,
hidden_layer_sizes=(20, 20), random_state=1

Support Vector SVM C=1.0, kernel=‘rbf’, degree=3, gamma=‘scale’,
Machine coef0=0.0, shrinking=True, probability=True

Unsupervised One Class SVM- OCSVM_P nu=0.2, kernel=‘poly’, gamma=0.1
Models Polynomial Kernel

One Class SVM- OCSVM_L nu=0.2, kernel=‘linear’, gamma=0.1
Linear Kernel
Local Outlier Factor LOF n_neighbors=20,

contamination=0.1, novelty=True
Isolation Forest ISOF behaviour=‘new’, max_samples=100,

random_state= rng, contamination=0.1
Elliptic Envelope EE support_fraction=1, contamination=0.03,

random_state = rng

Ensemble Majority Voting Ens_MV none
Models Decision Tree Ens_DT default parameters

Naïve Bayes Ens-NB alpha=1.0, binarize=0.0,
fit_prior=True, class_prior=None

Logistic Regresion Ens_LR random_state=0, solver=‘lbfgs’,
multi_class=‘multinomial’

Neural Network Ens_NN solver=‘adam’, alpha=1e-5, novelty=True
hidden_layer_sizes=(5), random_state=1

Support Vector Ens_SVM C=1.0, kernel=‘rbf’, degree=3, gamma=‘scale’,
Machine coef0=0.0, shrinking=True, probability=True

7 . 6 R E S U LT S

Table 7.4 lists representative individual and ensemble models for different datasets

and their corresponding evaluation metrics values. Detail results of all the individual

and ensemble models using different datasets and the associated evaluation metrics

values are given in Appendix A.1.
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TA B L E 7 . 2 : Training times for supervised individual and ensemble models for the
14-bus-AM1 dataset.

Elapsed Time
Models 21 Features 122 Features Without SVM

LR 0.56s 1.02s
NB 0.27s 1.03s
NN 0.57s 0.83s
DT 1.59s 1m 55s
SVM 45m 14s 2h 28m
Ens_MV 45m 19s 2h 30m 6.07s
Ens_LR 45m 17s 2h 30m 4.15s
En_NB 45m 17s 2h 30m 4.12s
Ens_NN 45m 17s 2h 30m 4.33s
Ens_DT 45m 17s 2h 30m 4.08s
Ens_SVM 45m 33s 2h 31m 8.55s

TA B L E 7 . 3 : Training times for unsupervised individual and ensemble models for the
14-bus-AM1 dataset.

Elapsed Time
Models 21 Features 122 Features Without LOF

OCSVM_L 35.14s 3m 20s
OCSVM_P 4m 44s 2h 13m
ISOF 7.87s 19.16s
EE 12.39s 1m 24s
LOF 14m 1s 50m 48s
Ens_MV 20m 13s 3h 9m 6m 12s
Ens_LR 20m 11s 3h 9m 6m 10s
En_NB 20m 11s 3h 9m 6m 10s
Ens_NN 20m 11s 3h 9m 6m 10s
Ens_DT 20m 11s 3h 9m 6m 10s
Ens_SVM 20m 24s 3h 9m 6m 23s
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TA B L E 7 . 4 : Representative supervised and unsupervised, individual and ensemble models for the six datasets.

Dataset Learning Classifier Models F1-Score Accuracy Precision Sensitivity Specificity ROC Elapsed
Type Category AUC Time

14-Bus-AM1 Supervised Individual All Models 0.8439 0.8931 0.9991 0.7304 0.9997 0.8650 0.57s
Ensemble All Models 0.8472 0.8961 0.9993 0.7353 0.9997 0.8675 45m 17s

Unsupervised Individual EE 0.6318 0.9214 0.5606 0.7237 0.9418 0.8327 12.39s
Ensemble Ens_NN 0.6218 0.9216 0.5428 0.7278 0.9505 0.8341 20m 11s

14-Bus-AM2 Supervised Individual All Models 0.8472 0.8913 0.9989 0.7354 0.9987 0.8951 0.59s
Ensemble All Models 0.8477 0.8911 0.9991 0.7361 0.9989 0.8686 45m 17s

Unsupervised Individual EE 0.6534 0.9379 0.7031 0.6107 0.9728 0.7923 12.4s
Ensemble Ens_SVM 0.6521 0.9321 0.7083 0.6048 0.9701 0.7893 20m 11s

14-Bus-AM3 Supervised Individual All Models 0.8479 0.8974 0.9994 0.7363 0.9998 0.8954 0.62s
Ensemble All Models 0.8482 0.8964 0.9996 0.7367 0.9999 0.8682 45m 18s

Unsupervised Individual EE 0.6540 0.9392 0.7034 0.6110 0.9733 0.7921 12.37s
Ensemble Ens_NB 0.6529 0.9395 0.7089 0.6051 0.9743 0.7896 20m 11s

57-Bus-AM1 Supervised Individual All Models 0.8369 0.8826 0.9897 0.7288 0.9921 0.8591 0.60s
Ensemble All Models 0.8424 0.8893 0.9903 0.7261 0.9921 0.8591 45m 18s

Unsupervised Individual EE 0.6331 0.9189 0.5564 0.7198 0.9389 0.8327 12.4s
Ensemble Ens_NN 0.6202 0.9188 0.5375 0.7201 0.9486 0.8341 20m 12s

57-Bus-AM2 Supervised Individual All Models 0.8449 0.8862 0.9991 0.7305 0.9994 0.9056 0.62s
Ensemble All Models 0.8449 0.8862 0.9991 0.7305 0.9994 0.8652 45m 18s

Unsupervised Individual EE 0.6420 0.9388 0.7115 0.5841 0.9751 0.7803 12.39s
Ensemble Ens_SVM 0.6457 0.9402 0.7353 0.5757 0.9788 0.7771 20m 11s

57-Bus-AM3 Supervised Individual All Models 0.8453 0.8866 0.9996 0.7322 0.9998 0.9059 0.61s
Ensemble All Models 0.8453 0.8866 0.9996 0.7322 0.9998 0.8655 45m 19s

Unsupervised Individual EE 0.6421 0.9390 0.7119 0.5848 0.9756 0.7802 12.38s
Ensemble Ens_SVM 0.6462 0.9402 0.7359 0.5760 0.9791 0.7772 20m 10s
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7 . 7 D I S C U S S I O N O F R E S U LT S

The following observations are made from the tables above:

1. For a particular dataset, the performance values for all the supervised individual

classifiers and all the supervised ensemble classifiers are effectively the same for

all the metrics.

2. Moreover, the performance values for all the supervised individual classifiers and

all the supervised ensemble classifiers are effectively the same for all the metrics

for all six datasets, i.e., the performance numbers do not vary for different

datasets.

3. The supervised ensemble models do not exhibit better performance than the

supervised individual models.

4. The precision values for the supervised models are very close to 100%, whereas

accuracy values are about 90%. However, in a classification problem where the

goal is to detect the minor class occurrences, the most important metrics are

the sensitivity which, in this case, measures the proportion of actual “attacks”

that are correctly identified as such; and the specificity which measures the

proportion of actual “non-attacks” that are correctly identified as such. For

supervised models, the sensitivity values for all the models are very similar,

varying between 73.53%. This indicates that the models would be able to detect

at most 73% of the attacks and the rest 27% will go undetected. The specificity

values for the models are 99.97% meaning that the models are able to identify a

“non-attack” as such almost always, and will seldom raise a false alert.
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5. For unsupervised models, the performance for different models vary widely for

any dataset.

6. For six different datasets also the performance of unsupervised models vary.

7. The performance numbers of the best-performing unsupervised individual and

ensemble models are very close to each other for any particular dataset.

8. Out of six datasets, the best-performing ensemble models are a bit better than

corresponding best-performing individual models. Therefore, it cannot be con-

cluded either way that ensembles are better than individuals or vice versa.

9. Among the unsupervised individual models, EE performed the best for all six

datasets.

10. Among the unsupervised models, the best sensitivity of 72.78% is given by Ens_NN

for 14-Bus-AM1 dataset. The corresponding specificity value is 95.05%.

11. Among the six datasets, the lowest sensitivity of 58.41% is given by EE. The

corresponding specificity value is 97.51%.

Table 7.2 shows the elapsed time for training the different supervised models. It

is notable that not only the ensemble models do not perform any better, but they also

take more time to run than the individual models. This is because the ensembles first

run all the five individual models and then run the ensemble classifier, and the accumu-

lated elapsed time is therefore higher. The same can be said about the unsupervised

models, as shown in Table 7.3.

As seen in Chapter 2, the SVM is a popular model among the researchers working

on the problem of detecting stealthy FDI attacks on SE. However, the experiment

shows that SVM performs the same as the other models. Moreover, SVM takes much
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more time to train. Whereas the other individual models take less than 2 seconds

to train, SVM takes more than 2700 seconds or 45 minutes on the feature-reduced

dataset. On the original dataset with 122 features, SVM takes an astounding 8900

seconds or 2.47 hours. This also exemplifies the “curse of dimensionality” and how it

can be handled by reducing the feature set. It was also observed that if SVM is taken

out as a constituent individual model, then the times taken by the ensemble models

were reduced drastically without any reduction in performance. The last columns in

Tables 7.2 and 7.3 show times taken by the ensemble models when SVM or LOF models

are not included in the set of the individual models.

The experiment also used the corresponding full-feature dataset (122 features for

14-bus system) to train the models. It was found that the performance numbers for the

models do not change at all for these cases. However, it was found that the elapsed

times for training with the full-feature datasets for 14-bus system take over 300%

more time. For unsupervised models, the elapsed times are 900% higher respectively

for 14-Bus-AM1 dataset.

7 . 8 S U M M A RY

In this chapter, use of the security analytics framework with ensemble learning in the

model selection phase was described for detection of SFDI attacks. The performance

of the ensemble models were compared with the performance of individual models. It

was found that the performance of individual supervised models are the same as those

of the ensemble models. However, for the unsupervised models, the ensemble models

performed better for two datasets, and the individual models performed better for the

other four datasets. The best detection rate found for any of the models is 73%. For
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both the supervised and unsupervised models, reducing the feature set increases the

training speeds by many folds without suffering any degradation in detection rates.
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C H A P T E R 8

ARTIF ICIAL NEURAL NETWORKS

8 . 1 I N T R O D U C T I O N

In this chapter, the model selection part of the security analytics framework using

artificial neural networks (ANN) is presented. The ANN models are built using ANN

methods training on the datasets generated and prepared in Chapter 5. The model

selection process ends with determining the efficacy of the ANN models in detecting

SFDI attacks using standard evaluation metrics as described in Section 5.8.1.

8 . 2 M O T I VAT I O N

So far in the previous two chapters, eight supervised models, five unsupervised mod-

els, and six stacking ensemble models were used to detect SFDI attacks with decent

detection rate. However, none of the models showed any acceptable performance.

Moreover, all the supervised models returned effectively the same detection rate of

about 73%, with artificial neural network showing a little better results than the

others. Therefore, as a next logical step, a decision to treat artificial neural networks

through full range of model selection was taken because ANNs have been known to

learn complicated structures in the data instances.

8 . 3 A R T I F I C I A L N E U R A L N E T W O R K M E T H O D

The artificial neural network, also known as feedforward neural networks (FFNN)

or multilayer perceptrons (MLPs), are the quintessential first-generation deep learn-
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ing models. The main idea for deep learning came from Hecht-Nielsen who proved

the universal expressive power of a three-layer neural network back in 1989 [44].

However, it needed the development of a training algorithm by Hinton in 2006 to

make way for harnessing the power of this model and for practical implementation

architectures [45].

F I G U R E 8 . 1 : Basic architecture of an artificial neural network showing the input
layer (L1), two hidden layers (L2 and L3) and the output layer (L4) with two
responses.

The computational architecture of neural networks mimics the neural structure and

function of the brain forming the interconnected groups of artificial neurons. Each of

these artificial neurons is a set of input values and associated weights that trigger the

neuron beyond a threshold. The neural network is organized in layers of neurons. The

first layer is the input layer and the last one is the output layer. The layers in between

these two are called hidden layers. The basic architecture has an input layer of nodes

equal to the number of input data, one or more hidden layers with varying number of

nodes or neurons, and an output layer with number of nodes equal to the number of

responses. Figure 8.1 shows a basic architecture of an artificial neural network with

the input layer, 2 hidden layers and the output layer. The neural networks attempt
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to hierarchically learn deep features and correlations in input data by adjusting the

weight associated with the neurons. Neural network architectures have many variants

with each finding success in specific domains of applications. An extensive review of

neural networks can be found in the paper by Schmidhuber [98].

8 . 4 M O D E L S E L E C T I O N

This section presents the model selection process with artificial neural networks. The

goal of the process is to identify an ANN model that can detect SFDI attacks accurately

and reliably. To find out the best-performing ANN model, the ANN method was

run through a grid-search with hidden layers and hidden units as the varying hyper-

parameters. The hidden layers were chosen from 2, 4, and 6; and with each of

these hidden layers, hidden units were chosen between 50 and 2500. Other hyper-

parameters used are given below.

batch_size=‘auto’,

beta_1=0.9,

activation= ‘relu’,

solver=‘adam’,

beta_2=0.999,

early_stopping=False,

epsilon=1e-08,

alpha=0.0001,

learning_rate_init=0.001,

max_iter=500,

momentum=0.9,
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power_t=0.5,

random_state=None,

n_iter_no_change=10,

shuffle=True,

tol=0.0001,

validation_fraction=0.1,

warm_start=False.

TA B L E 8 . 1 : Evaluation metrics values for the best-performing ANN models for the
six datasets.

Datasets Hidden Hidden F1-Score Accuracy Precision Sensitivity Specificity ROC Elapsed
Layers Units AUC Time

14-Bus-AM1 4 1200 0.9834 0.9853 0.9744 0.9824 0.9878 0.9956 23h 50m
14-Bus-AM2 4 1200 0.9832 0.9855 0.9747 0.9824 0.9878 0.9956 22h 12m
14-Bus-AM3 4 1200 0.9836 0.9855 0.9746 0.9826 0.9887 0.9956 23h 56m
57-Bus-AM1 4 1200 0.9827 0.9847 0.9739 0.9819 0.9872 0.9951 1d 9h
57-Bus-AM2 4 1200 0.9829 0.9850 0.9740 0.9820 0.9874 0.9954 1d 3h
57-Bus-AM3 4 1200 0.9831 0.9853 0.9742 0.9822 0.9876 0.9956 1d 6h

8 . 5 R E S U LT S

Table 8.1 lists the best ANN models for different datasets and their corresponding eval-

uation metrics values. Detail results of ANN model selection using different datasets

and associated evaluation metrics values are given in Appendix A.2.

8 . 6 D I S C U S S I O N O F R E S U LT S

From Table 8.1 above, the followings are observed:

1. For all the six datasets, the best-performing ANN models are the ones with

4 hidden layers and 1200 hidden units in each of the hidden layers. These
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particular models were chosen because these models have highest sensitivity,

specificity, and F1-score values.

2. The sensitivity values for the best-performing models are around 98.25%, mean-

ing the models can correctly detect over 98% of the attacks. The specificity values

are around 98.75%, meaning that on less than 1.25% times the models would

raise a false alarm. These results are by far the better results that were seen with

other models in this research. As a matter of fact, these results are among the

best results for SFDI attack detection in the literature.

3. Models with more than 4 layers and 1200 units were also trained. However, it

was observed that the performance ratings actually go down with higher layers

and units after reaching the peaks at 4x1200.

4. The time taken to train the best models are around a day and a half, i.e., about

36 hours. The training was done on a iMac desktop with an Intel®Core™i5

CPU@2.7GHz and 20GB memory running a 64-bit High Sierra macOS. This is not

a high-performance machine for this kind of heavy-duty computing. Moreover,

the machine was not dedicated to this task. The training time will reduce dras-

tically when a high-performance computing machine with graphical processing

units (GPU) is used. Moreover in practice, the training is seldom done in real-

time. Instead, the training is used off-line to obtain a robust model and then this

“trained” model is deployed online to detect real-time attacks.

8 . 7 S U M M A RY

In this chapter, use of the security analytics framework with artificial neural networks

in the model selection phase was described for detection of SFDI attacks. Model
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selection was performed using artificial neural network models with wide range of

hyper-meter settings. It was found that models with 4 hidden layers and 1200 hidden

units in each hidden layers can detect 98.25% attacks while raising only 1.25% false

alarms. These results are the best it was seen in this research and are among the best

in the literature.
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C H A P T E R 9

ELLIPTIC ENVELOPE

9 . 1 I N T R O D U C T I O N

In this chapter, the model selection part of the security analytics framework using ellip-

tic envelope (EE) method is presented. The EE models are built using EE methods with

different hyper-parameter values and training on the datasets generated and prepared

in Chapter 5. The model selection process ends with determining the efficacy of the

EE models in detecting SFDI attacks using standard evaluation metrics as described in

Section 5.8.1.5

9 . 2 M O T I VAT I O N

Supervised methods have the advantage of learning to differentiate the anomalous

from normal data using a tagged or labeled dataset. Unsupervised methods, on the

other hand, sort data into different clusters where the strength of the clustering lies

within the algorithm itself. Among unsupervised methods, novelty and outlier detec-

tion strategies have shown significant promise in detecting otherwise hidden anoma-

lies [58, 26]. The supervised methods require large amounts of data to be curated as

labeled data (i.e., with ground truth). Unsupervised methods do not require labeled

data. Therefore, unsupervised learning can be applied to a wider range of datasets.

5The work presented in this chapter has been published in the following paper:
M. Ashrafuzzaman, S. Das, A. Jillepalli, Y. Chakhchoukh, and F. T. Sheldon. “Elliptic envelope for

detecting stealthy false data injection attacks in the smart grid control systems,” in IEEE Symposium
Series on Computational Intelligence (SSCI), IEEE, December 2020.
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While it may not be very difficult to collect data during normal operation of trans-

mission systems, “attack” data is very rarely available because attacks do not happen

often. In addition to that the process of curating the data to create labeled datasets is

an onerous task. Instead of being trained on data labeled with ground truth, unsuper-

vised models work by finding the hidden similarities in different data components and

attempt to group similar data instances in regions or clusters. For bi-modal data like SE

measurement data with sparse attacks, unsupervised models create one cluster fitting

most of the non-attack data (major data) and treat instances lying far outside the

cluster as anomalies. Therefore, unsupervised models are particularly well-suited to

discover zero-day attacks never before encountered. Elliptic envelope algorithm is an

unsupervised machine learning method that uses covariance estimation on Gaussian

distribution data [96]. Elliptic envelope tries to make an elliptical cluster and fits the

major class instances in that. Instances far away from the cluster are then considered

as anomalies. Therefore, elliptic envelope is suitable for Gaussian SE measurement

data with sparse SFDIA.

9 . 3 E L L I P T I C E N V E L O P E M E T H O D

In this scheme, unsupervised machine learning method elliptic envelope is used as

an anomaly detector to diagnose SFDIA on state estimation in power transmission

systems. The elliptic envelope method models data as a high dimensional Gaussian

distribution with possible covariances between data-features. It attempts to delineate

an ellipse so that majority of the data instances fit into the ellipse. Data instances

lying far outside the ellipse are then considered anomalies or outliers and, for the

current context, are marked as an attack. The elliptic envelope method uses the FAST-
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minimum covariance determinant (FAST-MCD) [97] to estimate the shape and size

of the ellipse. The FAST-MCD algorithm selects non-intersecting sub-sets of data and

computes the mean µ, and the covariance matrix C, in each data-feature for each sub-

set. The Mahalanobis distance, dMH, a measure of the distance between a point P and

a distribution D, is computed for each multidimensional data vector x, in each sub-

set and the data are ordered in ascending order by dMH. The Mahalanobis distance

obtained from this estimate is used to define the threshold for determining outliers or

anomalies. The Mahalanobis distance is defined by Mahalanobis [75] as:

dMH =
√
(x− µ)TC−1(x− µ) (9.1)

where C is the covariance matrix. If the covariance matrix is the identity matrix,

then dMH reduces to the Euclidean distance and to the normalized Euclidean distance

if the covariance matrix is diagonal. In essence, the Mahalanobis distance measures

how many σ (standard deviation) a data point is from the mean of a distribution.

The FAST-MCD algorithm selects sub-sets from the original dataset, with small values

of dMH. Then computes mean, covariance, and the values of dMH of the sub-sets.

This procedure is iterated until the determinate of the covariance matrix converges.

The covariance matrix with the smallest determinate from all sub-set forms an ellipse

which encloses majority of the data.

An implementation of elliptic envelope method provided by the scikit-learn Python

package [90] was used in this exercise.
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9 . 4 M O D E L S E L E C T I O N

To find an optimized elliptic envelope model, the models were trained with varying val-

ues for the hyper-parameter “contamination rate”. Contamination rate represents the

proportion of anomalies or outliers in the dataset. The contamination rate describes

approximately how much of the data instances should sit outside of the enclosing high-

dimensional ellipse that contains the majority of the data instances. In this model

selection experiment, the values of contamination rate started at 0.001 and gradually

increased to 0.5.

The dataset was split in 7:3 ratio into training subset and test subset retaining the

same distribution of normal and attack data. To obtain robust models without over-

fitting, 10-fold cross-validation over randomly divided sub-sets of training data during

training of the models was used. Then, the test data was used for prediction and for

measuring model performance.

TA B L E 9 . 1 : Evaluation metrics values for the best-performing elliptic envelope
models for the six datasets.

Datasets Contamination F1-Score Accuracy Precision Sensitivity Specificity Elapsed
Rate Time

14-Bus-AM1 0.03 0.7183 0.9432 0.7286 0.7279 0.9787 46.94s
14-Bus-AM2 0.035 0.6945 0.9433 0.6792 0.7105 0.9665 39.77s
14-Bus-AM3 0.035 0.6882 0.9391 0.6762 0.7007 0.9644 42.63s
57-Bus-AM1 0.035 0.6920 0.9418 0.6606 0.7265 0.9631 56.94s
57-Bus-AM2 0.035 0.7046 0.9432 0.6831 0.7275 0.9653 52.92s
57-Bus-AM3 0.035 0.6903 0.9408 0.6663 0.7161 0.9636 56.16s

9 . 5 R E S U LT S

Table 8.1 lists the best EE models for different datasets and their corresponding evalu-

ation metrics values. Detail results of elliptic envelope model selection using different

datasets and associated evaluation metrics values are given in Appendix A.2.
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9 . 6 D I S C U S S I O N O F R E S U LT S

In this section, the results from the evaluations with different elliptic envelope models

are discussed. The observations from Tables A.19-A.24 and Table 9.1 are:

• The contamination rate value corresponding to the best-performing model is

0.03 for 14-Bus-AM1 dataset, and 0.035 for five other datasets.

• The best sensitivity value varies from 70.07% to 72.79% for the six datasets.

• The best specificity value varies from 96.44% to 97.87% for the six datasets.

• The models take on an average 45s to train.

9 . 7 S U M M A RY

In this chapter, use of the security analytics framework with elliptic envelope in the

model selection phase was described for detection of SFDI attacks. For the model

selection process a wide range of hyper-parameter values were used for the elliptic

envelope models. It is found that the best-performing elliptic envelope model can

detect 73% attacks with a false alarm rate of 3%.
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C H A P T E R 1 0

CONCLUSION

1 0 . 1 P R I M A RY R E S U LT S

The primary results of this dissertation include:

1. Successful use of security analytics to detect stealthy false data injection attacks

on the static state estimation process used by power transmission control systems,

demonstrated by using simulated datasets.

2. Achieving a 98.24% detection rate and a 1.25% false alarm rate using supervised

artificial neural networks with 4 hidden layers and 1200 hidden units per layer.

These results are among the best results in the related works in the literature.

3. Among the unsupervised models, achieving a 73% detection rate and a 3% false

alarm rate using elliptic envelope model.

4. Detection rates are the same for datasets with different attack models and differ-

ent bus systems.

1 0 . 2 D I S S E R TAT I O N S U M M A RY

Research has shown that intruders in the power transmission systems can surrep-

titiously change the RTU sensor measurements in such a way that can upend the

situational awareness of the operators of power control centers and force them to act

in ways that may cause electricity theft, changes in the electricity prices, or outages.

These subtle changes in the state estimation measure data, called stealthy false data
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injection attacks, cannot be detected by the conventional measures in the power trans-

mission systems. Very active research is underway to devise a mechanism to accurately,

reliably, and timely detect these attacks.

This research aimed at developing a scheme to accurately and reliably detect SFDI

attacks on the static state estimation in AC power transmission systems. The scheme

developed and presented in this dissertation, is a security analytics framework that

employs machine learning models to detect SFDI attacks on the static state estimation

in AC power transmission systems. As part of the framework, a threat model was

developed and three attack models were identified, based on which synthetic data

simulating standard IEEE 14-bus and 57-bus systems using MATPOWER were gener-

ated. A software for managing machine learning model selection and evaluation was

developed using the Python programming language and scikit-learn machine learning

library. This software supports a number of supervised, unsupervised, and stacking

ensemble (Section 7.4.2) methods. These models were parameter-tuned, trained and

tested with the generated datasets, and evaluated.

The experiments to detect SFDIA were started with three supervised models, GLM,

GBM, and DRF, and it was found that the results, with a detection rate of 72%, were

not very encouraging. Then, stacking ensembles of supervised and unsupervised

models were used with the hope that it will improve the detection rates. However,

even the best results from the ensembles were also not very good, with the detection

rate being 73%. The next attempt was to use artificial neural networks with wide

ranges of hidden layers and hidden units. It was found that when trained with the

right hyper-parameter settings (i.e., 4 hidden layers and 1200 hidden units per layer),

ANN can detect 98.24% of the attacks with only 1.25% false alarm rate. This result is
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among the best results found in the literature for SFDI attack detection for simulated

data using IEEE 14- and 57-Bus systems.

Since, unsupervised models do not need labeled data to train, it was also impera-

tive to find out which unsupervised model performs the best with these datasets. It

was found that the elliptic envelope model can detect 73% of the attacks with a false

alarm rate of 3%. It was also found that the detection rates for all the methods used in

this dissertation are the same for the datasets corresponding to different bus sizes and

different attack models. This means that irrespective of whether the attacker compro-

mised one sensor, multiple sensors, or all sensors, the machine learning methods will

be able to equally detect the attacks.

Therefore, this dissertation shows that machine learning based security analytics

can accurately and reliably detect SFDI attacks on the static state estimation in power

transmission systems.

In addition to the security analytics framework, the software, and the results ob-

tained with that, a survey of different types of false data injection attacks on different

parts of the entire power grid and a taxonomy of such attacks were presented in

the dissertation. Also presented was a survey of literature of the machine learning

based approaches to detect SFDI attacks on the static state estimation of the power

transmission systems. The ideas listed as future work below show that the research will

open up a number of immediate research questions in this urgent and active area. The

software and the datasets will be made available via GitHub so that the experiments

can be reproduced and future works can be performed.
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1 0 . 3 F U T U R E W O R K

The future work items of this research can be categorized as in the sub-sections below.

1 0 . 3 . 1 Extending the Security Analytics Software

• The security analytics software implemented does not have a graphical user

interface. A user-friendly front-end will add to the completion and usability of

the software.

• At this time the software supports GLM, GBM, DRF, DT, LR, NB, ANN, SVM,

OCSVM with different kernels, ISOF, LOF, and EE methods. More methods can

be added to the program easily.

• In addition to incorporating new methods, the software can be made config-

urable. An extensible and configurable framework will ensure that such a tech-

nique could be standardized for systematic use in transmission systems and other

problem areas.

• The methods supported are all for time-discrete data analytics. Addition of time-

series analytics methods like recurrent neural networks will enable the software

to perform time-series analysis.

• Support for adversarial machine learning can be another useful future work.

In adversarial machine learning, the input data is deliberately contaminated to

deceive the ML model in predicting incorrectly. Adversarial machine learning has

been shown to be useful for threat modeling, attack-defense scenario modeling,

attack simulation, etc.
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• Another potential future work is extending the ML software to support explanation-

based learning (EBL).

• At this time, the software uses only RFC for feature selection. More feature

reduction methods can be added.

• More visualization support, e.g., interactive graphs, 3-D graphs, etc., can be

added.

1 0 . 3 . 2 Further Research

• It was seen in chapters 6 and 7 that the performance of all supervised methods

for all the six datasets are essentially the same. This is not expected as different

machine learning methods usually give somewhat different classification perfor-

mance with the same dataset. An important future work will be to investigate

why all the supervised methods resulted in the same performance metrics values.

One way to undertake this investigation can be by using interpretable machine

learning (IML) methods. Traditional machine learning methods use a black-box

approach with the internal operations of the methods hidden to the human. IML

explains a machine learning model in an understandable way for the human.

Interpretability is the degree of measurement on how much a human can under-

stand the reasons behind the ML models’ decisions (i.e., predictions). Alternately,

interpretability is the ability of understanding the decision-making policies of the

machine-learned response function in order to explain the relationships between

independent (input) and dependent (target or response) variables, ideally in

a humanly interpretable manner. The interpretable models are created using

white-box techniques. More information about interpretable machine learning
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can be found in [82]. In another approach to investigate the above issue of

supervised models giving same results, datasets with new parameters can be

generated and/or the datasets can be scrambled before employing the machine

learning methods. This may uncover additional insight into the properties of

datasets pertaining to stealthy false data injection attacks. Combining IML ap-

proach with this may result in formulating a science of SFDIA modeling and

testing to ensure 360 degree fidelity and trustworthiness of the machine learning

model predictions.

• This dissertation used one boosting (GBM) and one bagging (DRF) methods.

None of these methods yielded good classification results. Boosting and Bagging

are often thought of as meta-heuristics. Rather than treat them as separate

algorithms, they might be explored as an additional option on the tests.

• In this research, the machine learning algorithms were run on limited-power

desktop machines. It is anticipated that use of high-performance, parallel com-

puting systems with graphical processing units (GPU) will reduce the training

time drastically. Empirical data is needed to prove this assumption.

• This research used 14-bus and 57-bus system to validate the security analytics

framework. Further testing with systems having large number of buses will shed

light on the scalability of the framework. High-performance computing (HPC)

system with GPUs will be needed for this investigation.

• This research shows 98% detection rate can be achieved for the synthetic datasets.

Further research can be undertaken to investigate the ability of ML to detect

subtler and smaller changes in the measurement data.
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• There is a potentiality that unsupervised anomaly detection can detect never-

before-seen attacks since unsupervised models do not need labeled data. This

needs to be investigated further.

• This research investigated only time-discrete data. Further research is needed

to take into account the correlation in power transmission data with seasons

and time of the day. Correlated time-series data needs to be analyzed using ML

methods like RNN and LSTM.

• This research dealt with measurement data associated with static state estima-

tion. More and more power systems are now using PMUs and hence dynamic

state estimation. It would be interesting to know how SFDI attacks impact

dynamic SE and if machine learning can be used to detect SFDI attacks on

dynamic state estimation.

• The ML software implemented is application-ignorant, i.e., the software can

be used for analytics in many other areas, including security analytics of other

power grid security issues, ICS and CPS security issues, computational biology,

network security, medical analytics, etc.

• SFDI attacks are still limited to academic research. Except for the 2015 Ukraine

attack, there is no other known instance of SFDI attack. Consequently, data cor-

responding to actual attacks are not available. However, it may be possible to use

power system testbeds and real-time digital simulation (RTDS) to generate more

realistic data, and use security analytics to investigate detection performance.

• Deployment of the trained models to find out how efficiently the models detect

SFDI attacks, possibly using a power system testbed, is another future work.
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• Only a conceptual model of a damage mitigation mechanism is presented in

this dissertation (in Appendix B). This conceptual model can be fleshed out,

implemented, and evaluated as another future work.

1 0 . 4 F I N A L C O M M E N T

Stealthy false data injection attacks currently exist only in academic research labs.

However, it is certainly possible that such an attack could be successful in real-life in

causing power theft or even power system failure which could be deadly and extremely

costly. Studies such as this one, help the community to understand more completely

how detection, prevention, and countermeasure mechanisms of this type can play a

role. Ideally, defense-in-depth or layered defenses should prevent the adversaries from

spoofing the system to enable such SFDI attacks. However, there is no guarantee that

adversaries will not be successful in penetrating layered defenses. Moreover, the SFDI

attack is also a threat from the inside. Users, with proper credentials constitute a

significant portion of the threat in this SFDI attack surface. Therefore, active research

is necessary to devise even more effective mechanisms to quickly detect and deter

such attacks. The research presented in this dissertation is a step towards achieving a

higher confidence, more resilient energy delivery systems.
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A P P E N D I X A

DETAILS OF THE RESULTS FROM CHAPTERS 7-9

A . 1 R E S U LT S O F S TA C K I N G E N S E M B L E E X P E R I M E N T S

In this section, the performance metrics values for all six datasets from the experiments

with the ensemble framework in Chapter 7 are presented in tables, graphs and ROC

curves.

The evaluation metric values for supervised and unsupervised individual and en-

semble models for 14-bus-AM1 dataset are tabulated in Tables A.1 and A.2. The

corresponding bar-graphs are shown in Figures A.1 and A.2. The ROC curves are

shown in Figures A.3 and A.4.
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TA B L E A . 1 : Evaluation metrics values for supervised individual and ensemble models
using the 14-bus-AM1 dataset.

Models F1-Score Accuracy Precision Sensitivity Specificity ROC AUC

LR 0.8439 0.8931 0.9991 0.7304 0.9997 0.8639
NB 0.8439 0.8931 0.9991 0.7304 0.9997 0.8081
NN 0.8439 0.8931 0.9991 0.7304 0.9997 0.8650
DT 0.8438 0.8930 0.9991 0.7302 0.9997 0.8797
SVM 0.8439 0.8931 0.9991 0.7304 0.9997 0.8642
Ens_MV 0.8439 0.8931 0.9991 0.7304 0.9997 –
Ens_LR 0.8472 0.8961 0.9993 0.7353 0.9997 0.8675
En_NB 0.8472 0.8961 0.9993 0.7353 0.9997 0.8675
Ens_NN 0.8472 0.8961 0.9993 0.7353 0.9997 0.8675
Ens_DT 0.8472 0.8961 0.9993 0.7353 0.9997 0.8675
Ens_SVM 0.8472 0.8961 0.9993 0.7353 0.9997 0.8675

TA B L E A . 2 : Evaluation metrics values for unsupervised individual and ensemble
models using the 14-bus-AM1 dataset.

Models F1-Score Accuracy Precision Sensitivity Specificity ROC AUC

OCSVM_P 0.0834 0.4549 0.0494 0.2661 0.4743 0.3702
LOF 0.1388 0.8586 0.1604 0.1223 0.9343 0.5283
ISOF 0.3781 0.7939 0.2630 0.6722 0.8065 0.7393
EE 0.6318 0.9214 0.5606 0.7237 0.9418 0.8327
OCSVM_L 0.1731 0.5000 0.1023 0.5617 0.4938 0.5277
Ens_MV 0.4375 0.8892 0.4150 0.4626 0.9331 -
Ens_LR 0.6409 0.9394 0.6739 0.6111 0.9713 0.7912
Ens_NB 0.5502 0.9034 0.4679 0.6676 0.9264 0.7969
Ens_NN 0.6218 0.9216 0.5428 0.7278 0.9505 0.8341
Ens_DT 0.6615 0.9407 0.6689 0.6544 0.9686 0.8114
Ens_SVM 0.6615 0.9407 0.6689 0.6544 0.9686 0.8114
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F I G U R E A . 1 : Graph of the evaluation metrics values for supervised individual and
ensemble models for the 14-bus-AM1 dataset.

F I G U R E A . 2 : Graph of the evaluation metrics values for unsupervised individual and
ensemble models for the 14-bus-AM1 dataset.
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F I G U R E A . 3 : ROC curves for the supervised individual and ensemble models for
14-bus-AM1 dataset.

F I G U R E A . 4 : ROC curves for the unsupervised individual and ensemble models for
14-bus-AM1 dataset.



126

The evaluation metric values for supervised and unsupervised individual and en-

semble models for 14-bus-AM2 dataset in Tables A.3 and A.4. The corresponding bar-

graphs are shown in Figures A.5 and A.6. The ROC curves are shown in Figures A.7

and A.8.

TA B L E A . 3 : Evaluation metrics values for supervised individual and ensemble models
using the 14-bus-AM2 dataset.

Models F1-Score Accuracy Precision Sensitivity Specificity ROC AUC

LR 0.8472 0.8913 0.9989 0.7356 0.9987 0.8661
NB 0.8472 0.8913 0.9989 0.7356 0.9987 0.8115
NN 0.8472 0.8913 0.9989 0.7354 0.9987 0.8951
DT 0.8472 0.8913 0.9989 0.7353 0.9987 0.8842
SVM 0.8472 0.8913 0.9989 0.7356 0.9987 0.8699
Ens_MV 0.8472 0.8913 0.9989 0.7356 0.9987 0.8684
Ens_LR 0.8477 0.8911 0.9991 0.7361 0.9989 0.8686
Ens_NB 0.8477 0.8911 0.9991 0.7361 0.9989 0.8683
Ens_NN 0.8477 0.8911 0.9991 0.7361 0.9989 0.8681
Ens_DT 0.8477 0.8911 0.9991 0.7361 0.9989 0.8682
Ens_SVM 0.8477 0.8911 0.9991 0.7361 0.9989 0.8684

TA B L E A . 4 : Evaluation metrics values for unsupervised individual and ensemble
models using the 14-bus-AM2 dataset.

Models F1-Score Accuracy Precision Sensitivity Specificity ROC AUC

OCSVM_P 0.0500 0.4611 0.0301 0.1501 0.4941 0.3221
LOF 0.0511 0.7105 0.0357 0.0832 0.7762 0.4291
ISOF 0.2582 0.5401 0.1519 0.8547 0.5073 0.6811
EE 0.6534 0.9379 0.7031 0.6107 0.9728 0.7923
OCSVM_L 0.2971 0.6312 0.1812 0.8209 0.6131 0.7192
Ens_MV 0.3532 0.7622 0.2382 0.6810 0.7714 0.7891
Ens_LR 0.6514 0.9321 0.7081 0.6033 0.9701 0.7894
Ens_NB 0.6522 0.9321 0.7083 0.6024 0.9701 0.7892
Ens_NN 0.6516 0.9321 0.7081 0.6034 0.9701 0.7891
Ens_DT 0.6516 0.9321 0.7081 0.6034 0.9701 0.7891
Ens_SVM 0.6521 0.9321 0.7083 0.6048 0.9701 0.7893
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F I G U R E A . 5 : Graph of the evaluation metrics values for supervised individual and
ensemble models for the 14-bus-AM2 dataset.

F I G U R E A . 6 : Graph of the evaluation metrics values for unsupervised individual and
ensemble models for the 14-bus-AM2 dataset.
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F I G U R E A . 7 : ROC curves for the supervised individual and ensemble models for
14-bus-AM2 dataset.

F I G U R E A . 8 : ROC curves for the unsupervised individual and ensemble models for
14-bus-AM2 dataset.
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The evaluation metric values for supervised and unsupervised individual and en-

semble models for 14-bus-AM3 dataset in Tables A.5 and A.6. The corresponding bar-

graphs are shown in Figures A.9 and A.10. The ROC curves are shown in Figures A.11

and A.12.

TA B L E A . 5 : Evaluation metrics values for supervised individual and ensemble models
using the 14-bus-AM3 dataset.

Models F1-Score Accuracy Precision Sensitivity Specificity ROC AUC

LR 0.8479 0.8974 0.9994 0.7362 0.9998 0.8660
NB 0.8479 0.8974 0.9994 0.7362 0.9998 0.8111
NN 0.8479 0.8974 0.9994 0.7363 0.9998 0.8954
DT 0.8478 0.8974 0.9994 0.7361 0.9998 0.8846
SVM 0.8479 0.8974 0.9994 0.7362 0.9998 0.8698
Ens_MV 0.8479 0.8974 0.9994 0.7362 0.9998 0.8688
Ens_LR 0.8482 0.8964 0.9996 0.7367 0.9999 0.8682
Ens_NB 0.8482 0.8964 0.9996 0.7367 0.9999 0.8682
Ens_NN 0.8482 0.8964 0.9996 0.7367 0.9999 0.8682
Ens_DT 0.8482 0.8964 0.9996 0.7367 0.9999 0.8682
Ens_SVM 0.8482 0.8964 0.9996 0.7367 0.9999 0.8682

TA B L E A . 6 : Evaluation metrics values for unsupervised individual and ensemble
models using the 14-bus-AM3 dataset.

Models F1-Score Accuracy Precision Sensitivity Specificity ROC AUC

OCSVM_P 0.0500 0.4623 0.03000 0.1508 0.4947 0.3227
LOF 0.0512 0.7114 0.0371 0.0830 0.7766 0.4298
ISOF 0.2589 0.5400 0.1525 0.8555 0.5078 0.6814
EE 0.6540 0.9392 0.7034 0.6110 0.9733 0.7921
OCSVM_L 0.2978 0.6363 0.1819 0.8211 0.6172 0.7191
Ens_MV 0.3538 0.7663 0.2390 0.6813 0.7752 0.7890
Ens_LR 0.6522 0.9395 0.7086 0.6042 0.9743 0.7892
Ens_NB 0.6529 0.9395 0.70893 0.6051 0.9743 0.7896
Ens_NN 0.6522 0.9395 0.7086 0.6042 0.9743 0.7892
Ens_DT 0.6522 0.9395 0.7086 0.6042 0.9743 0.7892
Ens_SVM 0.6529 0.9395 0.7089 0.6051 0.9743 0.7896
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F I G U R E A . 9 : Graph of the evaluation metrics values for supervised individual and
ensemble models for the 14-bus-AM3 dataset.

F I G U R E A . 1 0 : Graph of the evaluation metrics values for unsupervised individual
and ensemble models for the 14-bus-AM3 dataset.
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F I G U R E A . 1 1 : ROC curves for the supervised individual and ensemble models for
14-bus-AM3 dataset.

F I G U R E A . 1 2 : ROC curves for the unsupervised individual and ensemble models for
14-bus-AM3 dataset.

The evaluation metric values for supervised and unsupervised individual and en-

semble models for 57-bus-AM1 dataset in Tables A.7 and A.8. The corresponding bar-
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graphs are shown in Figures A.13 and A.14. The ROC curves are shown in Figures A.15

and A.16.

TA B L E A . 7 : Evaluation metrics values for supervised individual and ensemble models
using the 57-bus-AM1 dataset.

Models F1-Score Accuracy Precision Sensitivity Specificity ROC AUC

LR 0.8369 0.8826 0.9897 0.7288 0.9921 0.8559
NB 0.8369 0.8826 0.9897 0.7288 0.9921 0.8012
NN 0.8369 0.8826 0.9897 0.7288 0.9921 0.8591
DT 0.8368 0.8820 0.9897 0.7288 0.9921 0.8711
SVM 0.8369 0.8826 0.9897 0.7288 0.9921 0.8587
Ens_MV 0.8369 0.8826 0.9897 0.7304 0.9921 0.8591
Ens_LR 0.8424 0.8893 0.9903 0.7261 0.9921 0.8591
En_NB 0.8424 0.8893 0.9903 0.7261 0.9921 0.8591
Ens_NN 0.8424 0.8893 0.9903 0.7261 0.9921 0.8591
Ens_DT 0.8424 0.8893 0.9903 0.7261 0.9921 0.8591
Ens_SVM 0.8424 0.8893 0.9903 0.7261 0.9921 0.8591

TA B L E A . 8 : Evaluation metrics values for unsupervised individual and ensemble
models using the 57-bus-AM1 dataset.

Models F1-Score Accuracy Precision Sensitivity Specificity ROC AUC

OCSVM_P 0.0833 0.4531 0.0477 0.2609 0.4656 0.3702
LOF 0.1366 0.8439 0.1611 0.1231 0.9241 0.5283
ISOF 0.3719 0.7897 0.2575 0.6693 0.8012 0.7393
EE 0.6331 0.9189 0.5564 0.7198 0.9389 0.8327
OCSVM_L 0.1722 0.5972 0.1021 0.5583 0.4864 0.5277
Ens_MV 0.4366 0.8818 0.4107 0.4601 0.9309 -
Ens_LR 0.6412 0.9289 0.6697 0.6092 0.9691 0.7912
Ens_NB 0.5509 0.9011 0.4613 0.6574 0.9201 0.7969
Ens_NN 0.6202 0.9188 0.5375 0.7201 0.9486 0.8341
Ens_DT 0.6607 0.9387 0.6601 0.6477 0.9545 0.8114
Ens_SVM 0.6607 0.9387 0.6601 0.6477 0.9545 0.8114
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F I G U R E A . 1 3 : Graph of the evaluation metrics values for supervised individual and
ensemble models for the 57-bus-AM1 dataset.

F I G U R E A . 1 4 : Graph of the evaluation metrics values for unsupervised individual
and ensemble models for the 57-bus-AM1 dataset.
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F I G U R E A . 1 5 : ROC curves for the supervised individual and ensemble models for
57-bus-AM1 dataset.

F I G U R E A . 1 6 : ROC curves for the unsupervised individual and ensemble models for
57-bus-AM1 dataset.

The evaluation metric values for supervised and unsupervised individual and en-

semble models for 57-bus-AM2 dataset in Tables A.9 and A.10. The corresponding bar-
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graphs are shown in Figures A.17 and A.18. The ROC curves are shown in Figures A.19

and A.20.

TA B L E A . 9 : Evaluation metrics values for supervised individual and ensemble models
using the 57-bus-AM2 dataset.

Models F1-Score Accuracy Precision Sensitivity Specificity ROC AUC

LR 0.8451 0.8862 0.9991 0.7305 0.9994 0.8633
NB 0.8449 0.8862 0.9991 0.7305 0.9994 0.7871
NN 0.8449 0.8862 0.9991 0.7305 0.9994 0.9056
DT 0.8448 0.8862 0.9991 0.7305 0.9994 0.8835
SVM 0.8449 0.8862 0.9991 0.7305 0.9994 0.8671
Ens_MV 0.8449 0.8862 0.9991 0.7305 0.9994 0.8652
Ens_LR 0.8442 0.8845 0.9991 0.7302 0.9995 0.8652
Ens_NB 0.8442 0.8845 0.9991 0.7302 0.9995 0.8652
Ens_NN 0.8442 0.8845 0.9991 0.7302 0.9995 0.8652
Ens_DT 0.8442 0.8845 0.9991 0.7302 0.9995 0.8652
Ens_SVM 0.8442 0.8845 0.9991 0.7302 0.9995 0.8652

TA B L E A . 1 0 : Evaluation metrics values for unsupervised individual and ensemble
models using the 57-bus-AM2 dataset.

Models F1-Score Accuracy Precision Sensitivity Specificity ROC AUC

OCSVM_P 0.0492 0.4601 0.0292 0.1504 0.4925 0.3211
LOF 0.0481 0.7102 0.0342 0.0777 0.7762 0.4271
ISOF 0.2533 0.5354 0.1491 0.8432 0.5041 0.6742
EE 0.6420 0.9388 0.7115 0.5841 0.9751 0.7803
OCSVM_L 0.0503 0.5531 0.0309 0.1256 0.5971 0.3617
Ens_MV 0.0525 0.7221 0.0382 0.0819 0.7861 0.7786
Ens_LR 0.6401 0.9393 0.7380 0.5651 0.9788 0.7723
Ens_NB 0.6457 0.9401 0.7353 0.5756 0.9788 0.7773
Ens_NN 0.6441 0.9400 0.7352 0.5731 0.9788 0.7753
Ens_DT 0.6447 0.9402 0.7356 0.5742 0.9788 0.7760
Ens_SVM 0.6457 0.9402 0.7353 0.5757 0.9788 0.7771
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F I G U R E A . 1 7 : Graph of the evaluation metrics values for supervised individual and
ensemble models for the 57-bus-AM2 dataset.

F I G U R E A . 1 8 : Graph of the evaluation metrics values for unsupervised individual
and ensemble models for the 57-bus-AM2 dataset.
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F I G U R E A . 1 9 : ROC curves for the supervised individual and ensemble models for
57-bus-AM2 dataset.

F I G U R E A . 2 0 : ROC curves for the unsupervised individual and ensemble models for
57-bus-AM2 dataset.

The evaluation metric values for supervised and unsupervised individual and en-

semble models for 14-bus-AM3 dataset in Tables A.11 and A.12. The corresponding
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bar-graphs are shown in Figures A.21 and A.22. The ROC curves are shown in Fig-

ures A.23 and A.24.

TA B L E A . 1 1 : Evaluation metrics values for supervised individual and ensemble
models using the 57-bus-AM3 dataset.

Models F1-Score Accuracy Precision Sensitivity Specificity ROC AUC

LR 0.8454 0.8866 0.9996 0.7322 0.9998 0.8632
NB 0.8453 0.8866 0.9996 0.7322 0.9998 0.7872
NN 0.8453 0.8866 0.9996 0.7322 0.9998 0.9059
DT 0.8452 0.8866 0.9996 0.7321 0.9998 0.8838
SVM 0.8453 0.8866 0.9996 0.7322 0.9998 0.8675
Ens_MV 0.8453 0.8866 0.9996 0.7322 0.9998 0.8655
Ens_LR 0.8446 0.8848 0.9996 0.7313 0.9999 0.8655
Ens_NB 0.8446 0.8848 0.9996 0.7313 0.9999 0.8655
Ens_NN 0.8446 0.8848 0.9996 0.7313 0.9999 0.8655
Ens_DT 0.8446 0.8848 0.9996 0.7313 0.9999 0.8655
Ens_SVM 0.8446 0.8848 0.9996 0.7313 0.9999 0.8655

TA B L E A . 1 2 : Evaluation metrics values for unsupervised individual and ensemble
models using the 57-bus-AM3 dataset.

Models F1-Score Accuracy Precision Sensitivity Specificity ROC AUC

OCSVM_P 0.0495 0.4606 0.0296 0.1503 0.4927 0.3215
LOF 0.0481 0.7110 0.0347 0.0780 0.7766 0.4272
ISOF 0.2538 0.5360 0.1494 0.8439 0.5043 0.6740
EE 0.6421 0.9390 0.7119 0.5848 0.9756 0.7802
OCSVM_L 0.0502 0.5535 0.0313 0.1261 0.5977 0.3619
Ens_MV 0.0528 0.7226 0.0387 0.0826 0.7867 0.7789
Ens_LR 0.6404 0.9398 0.7382 0.5655 0.9791 0.7722
Ens_NB 0.6462 0.9402 0.7359 0.5760 0.9791 0.7772
Ens_NN 0.6445 0.9400 0.7358 0.5734 0.9791 0.7759
Ens_DT 0.6452 0.9401 0.7361 0.5743 0.9791 0.7763
Ens_SVM 0.6462 0.9402 0.7359 0.5760 0.9791 0.7772
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F I G U R E A . 2 1 : Graph of the evaluation metrics values for supervised individual and
ensemble models for the 57-bus-AM3 dataset.

F I G U R E A . 2 2 : Graph of the evaluation metrics values for unsupervised individual
and ensemble models for the 57-bus-AM3 dataset.
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F I G U R E A . 2 3 : ROC curves for the supervised individual and ensemble models for
57-bus-AM3 dataset

F I G U R E A . 2 4 : ROC curves for the unsupervised individual and ensemble models for
57-bus-AM3 dataset
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A . 2 R E S U LT S O F A R T I F I C I A L N E U R A L N E T W O R K

E X P E R I M E N T S

In this section, the performance metrics values for all six datasets from the experiments

with artificial neural network methods from Chapter 8 are presented.

Table A.13 and corresponding graph in Figure A.25 show the performance metrics

values for artificial neural network models with different hidden layers and different

hidden units for the 14-Bus-AM1 dataset.
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TA B L E A . 1 3 : Evaluation metrics values for neural networks models with different
hidden layers and different hidden units using the 14-bus-AM1 test dataset. The Time
is elapsed time for training.

ROC
Layers Units F1-Score Accuracy Precision Sensitivity Specificity AUC Time

2 50 0.8902 0.9120 0.9023 0.8784 0.9555 0.9674 32m 5s
100 0.9282 0.9415 0.9176 0.9384 0.9565 0.9855 33m 11s
150 0.9494 0.9588 0.9389 0.9595 0.9587 0.9863 36m 44s
200 0.9528 0.9603 0.9414 0.9618 0.9613 0.9919 40m 32s
250 0.9633 0.9667 0.9574 0.9667 0.9628 0.9924 44m 26s
300 0.9596 0.9688 0.9484 0.9697 0.9773 0.9922 47m 13s
400 0.9755 0.9717 0.9613 0.977 0.9792 0.9935 49m 40s
450 0.9756 0.9724 0.9596 0.9775 0.9777 0.9938 42m 33s
500 0.9683 0.9709 0.9441 0.9817 0.9626 0.9936 52m 2s
550 0.9656 0.9733 0.954 0.9483 0.9866 0.9925 60m 55s
600 0.9713 0.9737 0.9503 0.9814 0.9682 0.9949 1h 5m
650 0.9715 0.9749 0.9557 0.9686 0.9781 0.9948 1h 35m
700 0.978 0.9814 0.9648 0.9798 0.9807 0.9944 2h 10m
800 0.9767 0.9788 0.9637 0.9758 0.9818 0.9933 3h 1m
900 0.9829 0.9836 0.9727 0.9777 0.9885 0.9935 4h 38m
1000 0.9831 0.9737 0.9553 0.9655 0.9797 0.9942 5h 22m
1200 0.9726 0.9815 0.9656 0.9815 0.9808 0.9932 6h 10m
1500 0.9798 0.9832 0.9691 0.9815 0.9835 0.9934 8h 27m
1800 0.9783 0.9797 0.9637 0.9795 0.98 0.9935 10h 38m
2000 0.9778 0.9794 0.9658 0.9748 0.9836 0.9938 13h 34m
2500 0.9693 0.9682 0.9413 0.9746 0.9631 0.9933 22h 10m

4 50 0.9275 0.9346 0.8868 0.9337 0.9398 0.9871 38m 3s
100 0.9579 0.9605 0.9292 0.9639 0.9649 0.9902 44m 10s
200 0.9687 0.9725 0.9517 0.9684 0.9757 0.9926 53m 58s
400 0.9787 0.9813 0.9691 0.9726 0.988 0.9947 1h 10m
600 0.9781 0.9808 0.9647 0.9802 0.9811 0.9954 3h 32m
1000 0.9795 0.9825 0.9725 0.9706 0.9915 0.9957 10h 25m
1200 0.9834 0.9853 0.9744 0.9824 0.9878 0.9956 23h 50m
1500 0.9786 0.9813 0.9671 0.9778 0.984 0.9952 1d 12h

6 600 0.9672 0.9704 0.9443 0.9791 0.9643 0.9943 1d 1h
1000 0.9811 0.9831 0.9704 0.9812 0.9852 0.9949 1d 8h
1200 0.9760 0.9792 0.9595 0.9842 0.9741 0.9950 1d 13h
1500 0.9704 0.9808 0.9664 0.9793 0.9715 0.9945 1d 23h
1800 0.9704 0.9781 0.9612 0.9721 0.9702 0.9913 2d 21h



143F I G U R E A . 2 5 : Graph of metrics values for neural networks models with varying hidden layers and hidden units on 14-Bus-
AM1 dataset.
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Table A.14 and corresponding graph in Figure A.26 show the performance metrics

values for artificial neural network models with different hidden layers and different

hidden units for the 14-Bus-AM3 dataset.

TA B L E A . 1 4 : Evaluation metrics values for neural networks models with different
hidden layers and different hidden units using the 14-bus-AM2 test dataset. The Time
is elapsed time for training.

ROC
Layers Units F1-Score Accuracy Precision Sensitivity Specificity AUC Time

2 50 0.8900 0.9126 0.9024 0.8785 0.9559 0.9675 30m 44s
100 0.9279 0.9414 0.9178 0.9385 0.9567 0.9857 31m 23s
150 0.9491 0.9586 0.9388 0.9597 0.9588 0.9962 35m 20s
200 0.9529 0.9604 0.9413 0.9617 0.9612 0.9917 33m 41s
250 0.9634 0.9664 0.9575 0.9668 0.9629 0.9923 34m 56s
300 0.9595 0.9685 0.9486 0.9699 0.9771 0.9928 40m 10s
400 0.9753 0.9718 0.9612 0.9768 0.9791 0.9939 42m 43s
450 0.9757 0.9726 0.9599 0.9778 0.9779 0.9939 47m 55s
500 0.9681 0.9708 0.9443 0.9815 0.9628 0.9935 48m 39s
550 0.9655 0.9731 0.9541 0.9481 0.9866 0.9928 52m 8s
600 0.9711 0.9739 0.9501 0.9811 0.9680 0.9948 58m 43s
650 0.9716 0.9747 0.9559 0.9687 0.9787 0.9945 1h 15m
700 0.9781 0.9813 0.9646 0.9798 0.9809 0.9947 1h 43m
800 0.9765 0.9788 0.9638 0.9757 0.9819 0.9931 2h 50m
900 0.9827 0.9839 0.9729 0.9779 0.9884 0.9933 3h 41s
1000 0.9832 0.9738 0.9554 0.9656 0.9797 0.9941 4h 50s
1200 0.9728 0.9813 0.9659 0.9814 0.9807 0.9934 5h 53s
1500 0.9799 0.9831 0.9689 0.9816 0.9834 0.9933 7h 6m
1800 0.9781 0.9798 0.9635 0.9794 0.9801 0.9934 9h 34m
2000 0.9779 0.9792 0.9657 0.9749 0.9837 0.9939 13h 28m
2500 0.9692 0.9681 0.9410 0.9747 0.9633 0.9934 22h 4m

4 50 0.9276 0.9345 0.8862 0.9337 0.9398 0.9871 36m 33s
100 0.9576 0.9603 0.9293 0.9639 0.9649 0.9902 40m 8s
200 0.9685 0.9727 0.9509 0.9684 0.9757 0.9926 47m 56s
400 0.9785 0.9814 0.9695 0.9726 0.988 0.9947 1h 9m
600 0.9783 0.9811 0.9642 0.9802 0.9811 0.9954 3h 2m
1000 0.9797 0.9822 0.9723 0.9706 0.9915 0.9957 9h 30m
1200 0.9832 0.9855 0.9747 0.9824 0.9878 0.9956 22h 12m
1500 0.9787 0.9810 0.9673 0.9778 0.984 0.9952 1d 13h

6 600 0.9670 0.9704 0.9442 0.9789 0.9643 0.9943 1d 0h
1000 0.9812 0.9835 0.9711 0.9814 0.9854 0.9946 1d 7h
1200 0.9761 0.9792 0.9593 0.9841 0.9742 0.9948 1d 14h
1500 0.9714 0.9808 0.9662 0.9795 0.9715 0.9942 1d 21h
1800 0.9708 0.9782 0.9612 0.9723 0.9701 0.9911 2d 12h



145F I G U R E A . 2 6 : Graph of metrics values for neural networks models with varying hidden layers and hidden units on 14-Bus-
AM2 dataset.



146F I G U R E A . 2 7 : Graph of metrics values for neural networks models with varying hidden layers and hidden units on 14-Bus-
AM3 dataset.
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Table A.15 and corresponding graph in Figure A.27 show the performance metrics

values for artificial neural network models with different hidden layers and different

hidden units for the 14-Bus-AM3 dataset.

TA B L E A . 1 5 : Evaluation metrics values for neural networks models with different
hidden layers and different hidden units using the 14-bus-AM3 test dataset. The Time
is elapsed time for training.

ROC
Layers Units F1-Score Accuracy Precision Sensitivity Specificity AUC Time

2 50 0.8923 0.9124 0.9024 0.8784 0.9554 0.9672 33m 1s
100 0.9285 0.9414 0.9175 0.9384 0.9563 0.9854 30m 5s
150 0.9497 0.9586 0.9388 0.9595 0.9589 0.9964 35m 6s
200 0.9525 0.9608 0.9415 0.9618 0.9614 0.9917 45m 47s
250 0.9636 0.9669 0.9577 0.9667 0.9629 0.9925 46m 11s
300 0.9597 0.9685 0.9486 0.9697 0.9771 0.9923 47m 22s
400 0.9751 0.9716 0.9609 0.977 0.9793 0.9934 42m 36s
450 0.9754 0.9724 0.9591 0.9775 0.9776 0.9937 47m 33s
500 0.9682 0.9711 0.9443 0.9817 0.9627 0.9934 52m 47s
550 0.9655 0.9732 0.9542 0.9483 0.9864 0.9923 61m 29s
600 0.9716 0.9734 0.9504 0.9814 0.9686 0.9951 68m 58s
650 0.9714 0.9747 0.9556 0.9686 0.9784 0.995 79m 29s
700 0.9782 0.9812 0.9646 0.9798 0.9804 0.9948 82m 55s
800 0.9765 0.9786 0.9638 0.9758 0.9821 0.9932 1h 34m
900 0.9828 0.9833 0.9729 0.9777 0.9884 0.9936 1h 52m
1000 0.9835 0.9736 0.9556 0.9655 0.9793 0.994 2h 1m
1200 0.9793 0.9816 0.9657 0.9815 0.9808 0.9934 3h 47m
1500 0.9797 0.9834 0.9691 0.9817 0.9836 0.9939 4h 39m
1800 0.9779 0.9796 0.9637 0.9792 0.9803 0.9935 10h 38m
2000 0.9773 0.9797 0.9658 0.9744 0.9832 0.9934 14h 11m
2500 0.9695 0.9683 0.9413 0.9741 0.9628 0.9929 24h 58m

4 50 0.9271 0.9344 0.8864 0.9335 0.9394 0.9869 21m 43s
100 0.9578 0.9606 0.9294 0.9635 0.9645 0.9901 24m 49s
200 0.9689 0.9727 0.9513 0.9686 0.9758 0.9924 33m 36s
400 0.9787 0.9811 0.9692 0.9725 0.9882 0.9949 2h 2m
600 0.9783 0.9801 0.9646 0.9804 0.9808 0.9950 1h 53m
1000 0.9792 0.9824 0.9723 0.9705 0.9911 0.9952 14h 55m
1200 0.9836 0.9855 0.9746 0.9826 0.9887 0.9956 23h 56m
1500 0.9785 0.9813 0.9671 0.9777 0.9842 0.9950 1d 18h

6 600 0.9668 0.9705 0.9443 0.9790 0.9642 0.9943 23h 47m
1000 0.9814 0.9838 0.9711 0.9815 0.9855 0.9947 1d 10h
1200 0.9759 0.9788 0.9594 0.9841 0.9742 0.9950 1d 15h
1500 0.9708 0.9807 0.9664 0.9795 0.9715 0.9941 2d 1h
1800 0.9706 0.9780 0.9611 0.9724 0.9702 0.9912 2d 18h
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Table A.16 and corresponding graph in Figure A.28 show the performance metrics

values for artificial neural network models with different hidden layers and different

hidden units for the 57-Bus-AM1 dataset.

TA B L E A . 1 6 : Evaluation metrics values for neural networks models with different
hidden layers and different hidden units using the 57-bus-AM1 test dataset. The Time
is elapsed time for training.

ROC
Layers Units F1-Score Accuracy Precision Sensitivity Specificity AUC Time

2 50 0.9203 0.9294 0.8793 0.9244 0.9332 0.9765 20m 33s
100 0.9493 0.9553 0.9210 0.9553 0.9554 0.9861 21m 41s
150 0.9415 0.9478 0.9253 0.9585 0.9523 0.9869 23m 22s
200 0.9536 0.9588 0.9464 0.9606 0.9592 0.9897 24m 21s
250 0.9615 0.9661 0.9569 0.9662 0.9626 0.9916 30m 2s
300 0.9585 0.9633 0.9481 0.9694 0.9769 0.9914 46m 51s
400 0.9746 0.9777 0.9605 0.9763 0.9787 0.9931 41m 36s
450 0.9742 0.9771 0.9593 0.9769 0.9775 0.9932 48m 23s
500 0.9668 0.9702 0.9435 0.9806 0.9625 0.9933 55m 1s
550 0.9643 0.9692 0.9533 0.9472 0.9863 0.9923 1h 3m
600 0.9701 0.9733 0.9494 0.9801 0.9677 0.9942 1h 11m
650 0.9702 0.9737 0.9553 0.9680 0.9783 0.9931 1h 23m
700 0.9771 0.9800 0.9645 0.9791 0.9806 0.9938 1h 25m
800 0.9756 0.9786 0.9630 0.9747 0.9815 0.9924 1h 45m
900 0.9807 0.9831 0.9722 0.9771 0.9880 0.9920 2h 3m
1000 0.9689 0.973 0.9546 0.9646 0.9792 0.9939 2h 30m
1200 0.9775 0.9805 0.9646 0.9804 0.9803 0.9924 4h 33m
1500 0.9795 0.9822 0.9682 0.9810 0.9832 0.9926 5h 18m
1800 0.9766 0.9792 0.9628 0.9782 0.9801 0.9922 11h 7m
2000 0.9763 0.9793 0.9648 0.9741 0.9832 0.9931 14h 34m
2500 0.9636 0.9679 0.9402 0.9742 0.9631 0.9930 1d 20m

4 50 0.9269 0.9338 0.8862 0.9331 0.9391 0.9863 24m 55s
100 0.9574 0.9596 0.9287 0.9632 0.9642 0.9895 27m 29s
200 0.9679 0.9718 0.9511 0.9677 0.9749 0.9921 36m 32s
400 0.9778 0.9805 0.9685 0.9720 0.9872 0.9943 2h 50m
600 0.9773 0.9801 0.9641 0.9796 0.9805 0.9949 5h 35m
1000 0.9789 0.9817 0.9718 0.9701 0.9908 0.9951 16h 39m
1200 0.9827 0.9847 0.9739 0.9819 0.9872 0.9951 1d 9h
1500 0.9779 0.9808 0.9665 0.9772 0.9835 0.9945 1d 21h

6 600 0.9672 0.9709 0.9447 0.9791 0.9647 0.9947 22h 43s
1000 0.9813 0.9838 0.9712 0.9821 0.9856 0.9949 1d 3h
1200 0.9760 0.9788 0.9597 0.9841 0.9745 0.9949 1d 12h
1500 0.9712 0.9811 0.9667 0.9799 0.9718 0.9947 1d 23h
1800 0.9710 0.9778 0.9613 0.9726 0.9703 0.9912 2d 19h



149F I G U R E A . 2 8 : Graph of metrics values for neural networks models with varying hidden layers and hidden units on 57-Bus-
AM1 dataset.



150F I G U R E A . 2 9 : Graph of metrics values for neural networks models with varying hidden layers and hidden units on 57-Bus-
AM2 dataset.
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Table A.17 and corresponding graph in Figure A.29 show the performance metrics

values for artificial neural network models with different hidden layers and different

hidden units for the 57-Bus-AM2 dataset.

TA B L E A . 1 7 : Evaluation metrics values for neural networks models with different
hidden layers and different hidden units using the 57-bus-AM2 test dataset. The Time
is elapsed time for training.

ROC
Layers Units F1-Score Accuracy Precision Sensitivity Specificity AUC Time

2 50 0.9201 0.9297 0.8795 0.9248 0.9334 0.9767 35m 40s
100 0.9496 0.9556 0.9212 0.9556 0.9556 0.9863 38m 11s
150 0.9419 0.9481 0.9258 0.9588 0.9525 0.9872 42m 20s
200 0.9538 0.9592 0.9468 0.9609 0.9593 0.9900 46m 32s
250 0.9618 0.9664 0.9572 0.9665 0.9629 0.9919 50m 12s
300 0.9589 0.9635 0.9485 0.9697 0.9771 0.9918 53m 47s
400 0.9749 0.9780 0.9607 0.9766 0.9791 0.9934 57m 21s
450 0.9745 0.9776 0.9596 0.9772 0.9779 0.9935 1h 2m
500 0.9671 0.9708 0.9438 0.9810 0.9628 0.9935 1h 8m
550 0.9647 0.9696 0.9537 0.9478 0.9866 0.9925 1h 22m
600 0.9701 0.9735 0.9496 0.9805 0.9680 0.9944 1h 36m
650 0.9704 0.9741 0.9556 0.9682 0.9787 0.9935 2h 20m
700 0.9775 0.9803 0.9646 0.9794 0.9809 0.9942 2h 58m
800 0.9759 0.9789 0.9634 0.9751 0.9819 0.9928 3h 40m
900 0.9811 0.9835 0.9725 0.9773 0.9884 0.9923 4h 27m
1000 0.9693 0.9733 0.9549 0.9650 0.9797 0.9941 5h 10m
1200 0.9780 0.9807 0.9650 0.9808 0.9807 0.9928 5h 57m
1500 0.9799 0.9824 0.9686 0.9811 0.9834 0.9928 7h 27m
1800 0.9766 0.9795 0.9631 0.9788 0.9801 0.9924 9h 5m
2000 0.9767 0.9797 0.9652 0.9744 0.9837 0.9934 15h 20m
2500 0.9640 0.9681 0.9406 0.9744 0.9633 0.9933 24h 8m

4 50 0.9271 0.9341 0.8865 0.9333 0.9394 0.9867 42m 3s
100 0.9576 0.9599 0.9289 0.9636 0.9646 0.9899 48m 36s
200 0.9682 0.9721 0.9513 0.9682 0.9752 0.9925 50m 48s
400 0.9781 0.9809 0.9688 0.9723 0.9876 0.9946 1h 12m
600 0.9776 0.9804 0.9646 0.9799 0.9807 0.9951 3h 54m
1000 0.9792 0.9820 0.9720 0.9703 0.9911 0.9953 11h 43m
1200 0.9829 0.9850 0.9740 0.9820 0.9874 0.9954 1d 3h
1500 0.9782 0.9810 0.9668 0.9775 0.9837 0.9948 2d 4h

6 600 0.9671 0.9708 0.9446 0.979 0.9645 0.9946 1d 20h
1000 0.9810 0.9834 0.9707 0.9811 0.9851 0.9946 2d 8h
1200 0.9762 0.9790 0.9599 0.9843 0.9748 0.9952 2d 22h
1500 0.9712 0.9810 0.9668 0.9798 0.9717 0.9948 3d 8h
1800 0.9711 0.9777 0.9614 0.9724 0.9702 0.9910 3d 21h



152F I G U R E A . 3 0 : Graph of metrics values for neural networks models with varying hidden layers and hidden units on 57-Bus-
AM3 dataset.
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Table A.18 and corresponding graph in Figure A.30 show the performance metrics

values for artificial neural network models with different hidden layers and different

hidden units for the 57-Bus-AM3 dataset.

TA B L E A . 1 8 : Evaluation metrics values for neural networks models with different
hidden layers and different hidden units using the 57-bus-AM3 test dataset. The Time
is elapsed time for training.

ROC
Layers Units F1-Score Accuracy Precision Sensitivity Specificity AUC Time

2 50 0.9203 0.9298 0.8796 0.9249 0.9336 0.9768 20m 32s
100 0.9497 0.9558 0.9213 0.9558 0.9557 0.9865 22m 29s
150 0.9421 0.9483 0.9259 0.9589 0.9527 0.9874 23m 52s
200 0.9541 0.9594 0.9468 0.9611 0.9594 0.9911 25m 5s
250 0.9621 0.9666 0.9574 0.9667 0.9631 0.9921 31m 15s
300 0.9591 0.9635 0.9487 0.9698 0.9773 0.9919 48m 50s
400 0.9751 0.9781 0.9609 0.9768 0.9793 0.9936 43m 7s
450 0.9747 0.9777 0.9598 0.9774 0.9779 0.9937 49m 53s
500 0.9674 0.9711 0.9437 0.9812 0.9631 0.9936 56m 38s
550 0.9649 0.9695 0.9538 0.9479 0.9869 0.9927 1h 4m
600 0.9703 0.9736 0.9498 0.9808 0.9682 0.9946 1h 12m
650 0.9704 0.9743 0.9559 0.9685 0.9789 0.9937 1h 25m
700 0.9775 0.9805 0.9648 0.9796 0.9812 0.9944 1h 26m
800 0.9758 0.9788 0.9636 0.9753 0.9821 0.9931 1h 46m
900 0.9814 0.9837 0.9725 0.9775 0.9886 0.9926 2h 4m
1000 0.9695 0.9734 0.9548 0.9651 0.9799 0.9943 2h 47m
1200 0.9782 0.9809 0.9652 0.9809 0.9809 0.9929 4h 35m
1500 0.9797 0.9826 0.9685 0.9813 0.9836 0.9931 5h 33m
1800 0.9768 0.9797 0.9633 0.9791 0.9803 0.9926 11h 28m
2000 0.9768 0.9798 0.9655 0.9746 0.9839 0.9936 15h 9m
2500 0.9642 0.9683 0.9409 0.9745 0.9636 0.9936 1d 4h

4 50 0.9273 0.9343 0.8865 0.9335 0.9396 0.9869 25m 30s
100 0.9578 0.9599 0.929 0.9638 0.9647 0.9802 28m 18s
200 0.9684 0.9724 0.9515 0.9684 0.9754 0.9905 37m 32s
400 0.9783 0.9812 0.9691 0.9725 0.9878 0.9948 2h 52m
600 0.9776 0.9806 0.9646 0.9799 0.9809 0.9953 5h 37m
1000 0.9795 0.9822 0.9722 0.9705 0.9913 0.9955 16h 40m
1200 0.9831 0.9853 0.9742 0.9822 0.9876 0.9956 1d 6h
1500 0.9784 0.9812 0.9669 0.9776 0.9839 0.9951 1d 23h

6 600 0.9672 0.9709 0.9446 0.9791 0.9646 0.9947 23h 52m
1000 0.9814 0.9838 0.9712 0.9822 0.9856 0.9951 1d 9h
1200 0.9760 0.9788 0.9595 0.9840 0.9742 0.9949 1d 15h
1500 0.9713 0.9811 0.9669 0.9789 0.9718 0.9947 2d 0h
1800 0.9710 0.9776 0.9614 0.9727 0.9705 0.9912 2d 23h
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A . 3 R E S U LT S O F E L L I P T I C E N V E L O P E E X P E R I M E N T S

In this section, the performance metrics values for all six datasets from the experiments

with elliptic envelope method in Chapter 9 are presented.

In this section, the results from the model selection process in terms of the evalua-

tion metrics are presented.

Table A.19 and corresponding graph in Figure A.31 show the effect of contamina-

tion rates for elliptic envelope models for the 14-Bus-AM1 dataset.

TA B L E A . 1 9 : Performance metrics values for elliptic envelope models with different
contamination rates using the 14-bus-AM1 test dataset. The elapsed time is for
training.

Contamination Elapsed
Rate F1-Score Accuracy Precision Sensitivity Specificity Time

0.001 0.0619 0.9079 0.7531 0.0323 0.9989 44.12s
0.005 0.2038 0.9133 0.7483 0.1180 0.9959 45.19s
0.01 0.3467 0.9187 0.7122 0.2291 0.9904 41.09s
0.02 0.5627 0.9312 0.7000 0.4704 0.9791 40.37s

0.025 0.6386 0.9372 0.6960 0.5899 0.9732 45.92s
0.03 0.7183 0.9432 0.7286 0.7279 0.9787 46.94s

0.035 0.6996 0.9412 0.6742 0.7270 0.9635 42.88s
0.04 0.6868 0.9376 0.6504 0.7275 0.9594 43.55s
0.05 0.6605 0.9291 0.6011 0.7328 0.9495 45.16s
0.1 0.5466 0.8835 0.4313 0.7460 0.8978 44.37s
0.2 0.4190 0.7976 0.2870 0.7757 0.7998 43.48s
0.3 0.3435 0.7098 0.2182 0.8069 0.6998 44.22s
0.4 0.2930 0.6201 0.1776 0.8365 0.5976 41.33s
0.5 0.2571 0.5307 0.1511 0.8630 0.4962 45.68s
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F I G U R E A . 3 1 : Plot showing effect of contamination rate on model performance for
14-Bus-AM1 dataset.

Table A.20 and corresponding graph in Figure A.32 show the effect of contamina-

tion rates for elliptic envelope models for the 14-Bus-AM2 dataset.

TA B L E A . 2 0 : Performance metrics values for elliptic envelope models with different
contamination rates using the 14-bus-AM2 test dataset. The elapsed time is for
training.

Contamination Elapsed
Rate F1-Score Accuracy Precision Sensitivity Specificity Time

0.001 0.0452 0.9107 0.7636 0.0233 0.9993 38.04s
0.005 0.1931 0.9154 0.7204 0.1115 0.9957 40.32s
0.01 0.3311 0.9205 0.6995 0.2169 0.9907 39.88s
0.02 0.5435 0.9323 0.7011 0.4437 0.9811 40.38s

0.025 0.6151 0.9374 0.6956 0.5513 0.9759 39.24s
0.03 0.6823 0.9435 0.6969 0.6683 0.9710 40.05s

0.035 0.6945 0.9433 0.6792 0.7105 0.9665 39.77s
0.04 0.6787 0.9388 0.6486 0.7116 0.9615 41.93s
0.05 0.6525 0.9308 0.5994 0.7160 0.9522 41.48s
0.1 0.5356 0.8852 0.4232 0.7293 0.9008 42.62s
0.2 0.4083 0.8001 0.2792 0.7598 0.8041 40.76s
0.3 0.3310 0.7100 0.2094 0.7903 0.7020 43.05s
0.4 0.2825 0.6204 0.1705 0.8231 0.6001 44.48s
0.5 0.2503 0.5349 0.1466 0.8552 0.5029 41.25s
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F I G U R E A . 3 2 : Plot showing effect of contamination rate on model performance for
14-Bus-AM2 dataset.

Table A.21 and corresponding graph in Figure A.33 show the effect of contamina-

tion rates for elliptic envelope models for the 14-Bus-AM3 dataset.

TA B L E A . 2 1 : Performance metrics values for elliptic envelope models with different
contamination rates using the 14-bus-AM3 test dataset. The elapsed time is for
training.

Contamination Elapsed
Rate F1-Score Accuracy Precision Sensitivity Specificity Time

0.001 0.0459 0.9051 0.6389 0.0238 0.9986 39.50s
0.005 0.2031 0.9104 0.6886 0.1191 0.9943 41.16s
0.01 0.3411 0.9162 0.6926 0.2263 0.9893 42.16s
0.02 0.5362 0.9275 0.6935 0.4371 0.9795 40.60s

0.025 0.6122 0.9335 0.6945 0.5474 0.9745 42.91s
0.03 0.6873 0.9412 0.7013 0.6737 0.9696 41.22s

0.035 0.6882 0.9391 0.6762 0.7007 0.9644 42.63s
0.04 0.6723 0.9345 0.6457 0.7012 0.9592 39.05s
0.05 0.6472 0.9263 0.5982 0.7048 0.9498 41.64s
0.1 0.5409 0.8828 0.4331 0.7204 0.9000 40.48s
0.2 0.4159 0.7975 0.2874 0.7519 0.8023 37.53s
0.3 0.3431 0.7122 0.2196 0.7840 0.7045 43.09s
0.4 0.2961 0.6271 0.1808 0.8182 0.6069 39.98s
0.5 0.2598 0.5368 0.1534 0.8477 0.5038 39.90s
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F I G U R E A . 3 3 : Plot showing effect of contamination rate on model performance for
14-Bus-AM3 dataset.

Table A.22 and corresponding graph in Figure A.34 show the effect of contamina-

tion rates for elliptic envelope models for the 57-Bus-AM1 dataset.

TA B L E A . 2 2 : Performance metrics values for elliptic envelope models with different
contamination rates using the 57-bus-AM1 test dataset. The elapsed time is for
training.

Contamination Elapsed
Rate F1-Score Accuracy Precision Sensitivity Specificity Time

0.001 0.0673 0.9125 0.8077 0.0351 0.9992 56.60s
0.005 0.2134 0.9169 0.7166 0.1253 0.9951 57.87s
0.01 0.3569 0.9220 0.6901 0.2407 0.9893 57.64s
0.02 0.5476 0.9322 0.6848 0.4563 0.9792 55.38s

0.025 0.6257 0.9381 0.6855 0.5755 0.9739 58.44s
0.03 0.6863 0.9434 0.6846 0.6880 0.9687 55.33s

0.035 0.6920 0.9418 0.6606 0.7265 0.9631 56.94s
0.04 0.6791 0.9380 0.6350 0.7298 0.9585 54.89s
0.05 0.6494 0.9289 0.5835 0.7320 0.9484 53.82s
0.1 0.5341 0.8828 0.4158 0.7465 0.8963 57.64s
0.2 0.4042 0.7948 0.2735 0.7738 0.7969 53.72s
0.3 0.3309 0.7074 0.2083 0.8045 0.6978 54.64s
0.4 0.2812 0.6176 0.1692 0.8318 0.5964 56.08s
0.5 0.2473 0.5297 0.1445 0.8591 0.4972 55.42s
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F I G U R E A . 3 4 : Plot showing effect of contamination rate on model performance for
57-Bus-AM1 dataset.

Table A.23 and corresponding graph in Figure A.35 show the effect of contamina-

tion rates for elliptic envelope models for the 57-Bus-AM2 dataset.

TA B L E A . 2 3 : Performance metrics values for elliptic envelope models with different
contamination rates using the 57-bus-AM2 test dataset. The elapsed time is for
training.

Contamination Elapsed
Rate F1-Score Accuracy Precision Sensitivity Specificity Time

0.001 0.0460 0.9080 0.6769 0.0238 0.9988 55.35s
0.005 0.1757 0.9114 0.6608 0.1013 0.9947 53.63s
0.01 0.3234 0.9175 0.6836 0.2118 0.9899 54.64s
0.02 0.5362 0.9293 0.6894 0.4388 0.9797 53.01s

0.025 0.6176 0.9357 0.6925 0.5574 0.9746 54.27s
0.03 0.6990 0.9443 0.7042 0.6939 0.9701 55.08s

0.035 0.7046 0.9432 0.6831 0.7275 0.9653 52.92s
0.04 0.6912 0.9394 0.6574 0.7286 0.9610 55.61s
0.05 0.6622 0.9306 0.6058 0.7302 0.9512 57.78s
0.1 0.5549 0.8877 0.4399 0.7514 0.9017 53.44s
0.2 0.4235 0.8019 0.2905 0.7811 0.8040 54.70s
0.3 0.3449 0.7135 0.2191 0.8099 0.7036 54.84s
0.4 0.2966 0.6264 0.1798 0.8456 0.6039 56.46s
0.5 0.2592 0.5369 0.1523 0.8700 0.5027 52.33s
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F I G U R E A . 3 5 : Plot showing effect of contamination rate on model performance for
57-Bus-AM2 dataset.

Table A.24 and corresponding graph in Figure A.36 show the effect of contamina-

tion rates for elliptic envelope models for the 57-Bus-AM3 dataset.

TA B L E A . 2 4 : Performance metrics values for elliptic envelope models with different
contamination rates using the 57-bus-AM3 test dataset. The elapsed time is for
training.

Contamination Elapsed
Rate F1-Score Accuracy Precision Sensitivity Specificity Time

0.001 0.0581 0.9096 0.7179 0.0303 0.9988 57.95s
0.005 0.2036 0.9143 0.7051 0.1190 0.9950 60.37s
0.01 0.3422 0.9200 0.7037 0.2261 0.9903 53.62s
0.02 0.5555 0.9320 0.6980 0.4613 0.9798 56.36s

0.025 0.6216 0.9367 0.6914 0.5646 0.9744 57.33s
0.03 0.6832 0.9419 0.6865 0.6798 0.9685 56.45s

0.035 0.6903 0.9408 0.6663 0.7161 0.9636 56.16s
0.04 0.6729 0.9357 0.6334 0.7177 0.9579 53.98s
0.05 0.6451 0.9267 0.5823 0.7231 0.9474 54.07s
0.1 0.5433 0.8851 0.4285 0.7420 0.8996 53.64s
0.2 0.4147 0.7991 0.2834 0.7729 0.8017 54.35s
0.3 0.3401 0.7120 0.2155 0.8058 0.7025 53.25s
0.4 0.2903 0.6237 0.1757 0.8356 0.6022 52.03s
0.5 0.2533 0.5318 0.1484 0.8621 0.4983 52.63s



160

F I G U R E A . 3 6 : Plot showing effect of contamination rate on model performance for
57-Bus-AM3 dataset.
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A P P E N D I X B

A DAMAGE M IT IGATION MODEL

B . 1 I N T R O D U C T I O N

In this chapter, a model for damage mitigation when SFDI attacks take place without

being detected and damage is either imminent or on the way is proposed.6 The

rationale for such a model is that despite the availability of sophisticated defense

mechanisms, smart grid security breaches may happen causing serious damages. In

the age of cheap and popular internet-enabled commodity products such as smart

home devices, health monitors, vehicles, etc., attackers are finding increasingly more

weakly-protected entry points to breach critical infrastructures such as smart grids.

When fast changing attack signatures are used as a strategy to force the security

apparatuses to relearn the attack properties and rethink countermeasures, critical time

is lost and substantial damage can result. An attack strategy is considered that has

the potentiality to breach smart grid security for which there is limited defense, and

the detection of the attack takes substantially long time. It is proposed that in such

scenarios, measures are deployed to isolate sub-networks to deny attacker’s access to

the most valuable assets.
6The work presented in this chapter has been published in the following paper:

M. Ashrafuzzaman, H. Jamil, Y. Chakhchoukh, and F.T. Sheldon, “A best-effort damage mitigation
model for cyber-attacks on smart grids,” 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), vol. 2, Pages 510-515, IEEE 2018. doi:10.1109/COMPSAC.2018.10285

http://doi.org/10.1109/COMPSAC.2018.10285
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B . 2 T H E G R I D WAT C H M O D E L

The assumption is that in the potentially compromised SG, the incidence response plan

(IRP) no longer is reflective of a true defense or damage control plan for the entire SG

although the IRP was developed meticulously with considerable expense. However, it

may still be an effective plan for part of network and so it is worth implementing the

plan for the pertinent sub-network. Because for those sub-networks, the IRP is still a

valid response to any real failure. The proposed GridWatch damage mitigation model

attempts to isolate sub-networks that can be self-sustaining according to the IRP in an

attempt to shield it from cascading failures prematurely, or due to countermeasures

deployed due to misleading state estimation (SE) by the main controller. Since the

actual state of the SG is unreliable, a predicted time T is used that takes into account

the time needed to detect attacks and estimated grid failure time, to isolate the SG into

k independent sub-networks and temporarily relinquish control to the local controller

so that the global state information does not affect the local operations. The choice of

k will depend on the time-dependent importance or value of the sub-network, its role

in the global SG, and its ability to sustain valuable services, within the predicted time

T. In essence, the most valuable sub-networks is chosen to be saved first even if that

means that a few low priority sub-networks have been compromised that could have

been potentially saved.

In GridWatch, a smart grid is composed of a graph G = 〈V , E , {G}〉 over a set

of vertices V . A vertex can represent any component of the smart grid, such as a

power generator or power plant, load, microgrid, individual or a cluster of consumers,

prosumer, sensor, transmitter, information and communication technology (ICT) tool,

communication system, etc. The properties of a vertex will depend on the component
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it represents. Some of the common properties include capacity, type, criticality index,

vulnerability index, etc.

The set of edges E ⊂ V × V connects the components in a meaningful and func-

tional way. There can be two kinds of edges: i) power-flow and ii) ICT connection.

A power-flow edge will identify direction of power-flow between two components

and the capacity of the power-line. Similarly, an ICT connection will represent if

components are connected over network communication line. The FDI attacks can

propagate only through the ICT edges, and cascading failures can only travel via the

power-flow edges.

The set G is a set of graphs g of the form 〈V, E〉 over the sets V ⊆ V and E ⊆ E such

that for any two graphs g1 = 〈V1, E1〉 and g2 = 〈V2, E2〉, g1, g2 ∈ G, the sets of vertices

and edges are pairwise disjoint, i.e., V1 ∩ V2 = ∅ and E1 ∩ E2 = ∅. This implies that

the graphs gis are sub-networks that are not inter-connected. Furthermore, the sets E

and Eis are pairwise disjoint as well, i.e., E ∩ Ei = ∅, for all i. That means, the edges

in E help connect the sub-networks within the SG. Figure B.1(a) shows a GridWatch

SG network G consisting of different types of resources, including controller nodes (a,

b, and c) shown in blue. There are three sub-networks – red, blue and green (shown

using edge colors). In this figure, red nodes are more valuable than the greens, and

greens more than the yellow nodes. Figure B.1(a) shows three embedded graphs –

blue, red and green. The thicker solid lines are active, and the thinner dashed lines

are inactive but alternate connections. Figure B.1(b) shows re-routing of nodes a and

1, and disconnecting node 2 from the green graph.

The SG is also a tuple of the form 〈G, C, Σ, I, ∆〉, and so are each of the sub-networks

Gj ∈ G, where C is a controller, Σ is an SE, and I is an incident response plan (IRP)

such that
⋃

j Ij ⊆ I, i.e., the IRP for the SG is equal to or more that the union of all the
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(a) Normally functioning SG. (b) The black node is compromised.

F I G U R E B . 1 : Model of GridWatch SG and possible countermeasure.

individual sub-network IRPs. The damage mitigation plan ∆ is a function which aims

to return a list of sub-networks S using a valuation function ϕ and a partition function

π within a time budget T. The list S is computed such that for every member si ∈ S,

for i = 1, . . . , |S|, ϕ(si) ≥ ϕ(si+1) at time t of the valuation. The valuation function ϕ

is fundamentally an optimization function that maximizes the self-sustainability of si,

the integrity of each sub-network g ∈ G (keeping each g intact so that corresponding

IRP I can remain effective), the importance of the network si in G, and topology of G.

However, the partition function π excludes all elements in G that are potentially

compromised (based on sensor data and other network information), and creates

smallest partitions or sub-networks that are self-sustainable. A sub-network is sustain-

able if they are spatially clustered, and includes all required SG components that are

functional. The partition function potentially alters the topology of G since it considers

all v ∈ V and all edges e ∈ E ∪⋃
i Ei. The valuation function ϕ constructs sub-networks

from the set of partitions returned by π, possibly fusing multiple partitions into one

that share connecting edges or bottleneck partitions to maximize the value of the target

sub-network. Finally, a sub-network is deemed self-sustaining if it includes generators

and distribution systems sufficient to meet the energy demands of the consumers in



165

the sub-network, has at least one controller, an SE, and sufficient IRPs. Also, the

damage mitigation function ∆ returns sub-network si sooner than sj if ϕ(si) ≥ ϕ(sj),

for all values of i and j. To limit the possible damage to the sub-network, controller

C disconnects si from the SG when returned by ∆, transfers control to Ci (the sub-

network controller) with an instruction to disregard all control instructions until an

authenticated instruction to relinquish control is received from the controller C, and

serve as the sole independent controller of the sub-network si.

Figure B.1(b) shows the SG in Figure B.1(a) in which it was determined that the

node marked black has been potentially compromised. To limit the potential damage,

with the help of the functions π and ϕ, ∆ reassigned node 1 under the control of node

a, and since controller b cannot reach node 3 anymore, it needed to be reassigned.

But it was determined by ϕ that reassigning it to controller c would result in a better

self-sustaining sub-network system than assigning it to controller a.

B . 3 C U R R E N T S TAT E O F G R I D WAT C H

GridWatch is a conceptual model that aims to limit physical damage to SG, self-inflicted

or otherwise, in real time. GridWatch recognizes the fact that there are many attack

types, and not all attacks are recognizable, especially FDI attacks. It aims to buy time

by isolating the grid into autonomous but smaller SGs so that proper detection and

counter measures may be taken. It also admits some damage, if it must, to save the

most valuable sub-networks from serious damages. In particular, GridWatch postulates

that the spoofed data is a precursor of an attack, and the stealthy intent is to force the

controller sustain self-inflicted wounds and make it damage the most-valuable sub-

network.
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B . 4 S U M M A RY

An outline of the conceptual model for a best-effort damage mitigation scheme is pre-

sented in this chapter. This conceptual model needs to be implemented and deployed

on testbeds to evaluate its effectiveness.
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