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Abstract  

Mechanisms driving ungulate population declines are complex and poorly understood. 

Limitations in forage availability or quality may be contributing, but current habitat 

assessments lack fine-scale vegetation information needed to evaluate nutrition. To fill this 

gap, I developed predictive distribution models for ungulate forage species across Idaho using 

existing vegetation surveys, maps, and remotely-sensed data. Models predict plant species 

presence, and provide key insight to species-environment relationships that can aide habitat 

management strategies to improve nutritional quality. Additionally, I examined elk habitat 

selection on a summer range in north-central Idaho. Selection was influenced by the presence 

of herbaceous plant species and wildfire disturbance. Management strategies that re-open 

matured forest canopies that currently limit herbaceous understory vegetation will be useful 

for enhancing the nutritional quality of elk summer habitat. Considerations for non-native 

plant infestations in areas of highly recurrent and severe wildfires will also be important. 
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Chapter 1 : Predicting plant species distributions to inform ungulate nutrition. 

Abstract 

The continual decline of ungulate populations in the western U.S. suggests key mechanisms 

driving wildlife populations are complex and poorly understood. Nutrition affects individual 

fitness and population dynamics, but current vegetation maps are too coarse thematically and 

spatially to effectively characterize habitat nutritional quality. Additionally, temporal changes 

in vegetation structure and composition resulting from natural disturbance events or human 

management activities are often not considered. To fill these gaps, our study used existing 

vegetation surveys, maps, and remotely-sensed data to develop models that predict plant 

species distributions at finer scales, and across broad landscapes. We modeled 20 plant 

species in Idaho, that are accepted forage for mule deer (Odocoileus hemionus) and Rocky 

Mountain elk (Cervus elaphus nelsoni). Climatic, topographic, soil, vegetation, and 

disturbance variables were used to identify key environmental gradients. Lasso logistic 

regression was implemented to produce predictive models. We found that proximal 

environmental variables (e.g. 30-year normal minimum precipitation, 30-year normal 

minimum temperature, solar radiation) were more informative than distal environmental 

variables (e.g. elevation, aspect, slope) when predicting the probability of plant species 

presence. We also found that each plant species model selected different environmental 

variables suggesting individual species response to environmental gradients. All models 

provided high predictive accuracy (average AUC 0.82) and revealed key species-environment 

relationships that can be supported in ecological theory. Our approach is novel and can inform 

ungulate nutrition by predicting the occurrence of accepted forage species presence and aide 

habitat management strategies to improve nutritional quality across Idaho.  

Introduction 

The continual decline of ungulate populations in the western U.S. suggests key 

mechanisms driving wildlife populations are complex and poorly understood (Tollefson et al. 

2011, Cook et al. 2016, Proffitt et al. 2016). The recovery of large carnivores has resulted in 

increased predation on ungulates, directing management towards predator control, however, 

bottom up effects such as habitat nutrition and climate partially compensate the magnitude of 

predatory effects (Shallow et al. 2015, Proffitt et al. 2016). For example, prey populations are 
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likely to experience greater adversity from predation in areas of less productive habitat or 

severe climates (Melis et al. 2009, Proffitt et al. 2016). Therefore, it is important to examine 

the bottom up effects, such as habitat nutritional quality, driving ungulate populations. 

Declines in forage quality and nutritional conditions could be contributing to declining 

ungulate populations (Crete and Huot 1993, Enk et al. 2001, White et al. 2010, Tollefson et al. 

2010, 2011, Monteith et al. 2015, Cook et al. 2004, 2016, Hurley et al. 2017). Yet, fine-scale 

vegetation assessments needed to examine habitat nutritional quality across broad landscapes 

are limited. National mapping efforts such as LANDFIRE (www.landfire.gov), the USGS 

Gap Analysis Project (http://gapanalysis.usgs.gov/), and the National Land Cover Database 

(www.mrlc.gov) have mapped vegetation across large spatial scales describing plant 

communities or ecological systems, but lack information regarding individual plant species 

distributions. Alternatively, species distribution models (SDMs) are used to study species-

environment relationships and make predictions of species occurrence across their range. 

Approaches include data-driven statistical analyses (generalized linear models, Bayesian 

hierarchies, and occupancy models), principal component analyses (MaxEnt), and other 

algorithm-driven, machine learning analyses (Random Forests and regression trees) (Hegel et 

al. 2010). However, most SDMs are applied locally rather than across landscapes. 

 Plant species distributions vary with environmental gradients and disturbance events 

across landscapes (Harmon et. al. 1984, Austin 2002, Merow et al. 2014). In SDMs 

environmental variables are used to describe such influences based on their relationship to 

plant growth and adaptation. Proximal environmental variables exert direct physiological 

effects on plants (e.g. solar radiation, temperature, and disturbance) whereas distal 

environmental variables influence plant processes indirectly (e.g. elevation, slope, and aspect) 

(Austin 2002, Austin and Van Niel 2011, Merow et al. 2014). Distal variables are often used 

as surrogates for more proximal variables, but this may allude to inaccurate representations of 

species-environment relationships (Austin and Van Niel 2011, Merow et al. 2014). These 

relationships are relatively unknown across broad landscapes therefore we sought to 

understand why individual plant species occur where they do on the landscape to better 

inform ungulate nutrition. 

As a part of a larger collaborative effort with the Idaho Department of Fish and Game 

(IDFG; Aycrigg et al. 2017), we used existing vegetation surveys, maps, and remotely-sensed 
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data to develop models that predict plant species distributions at finer scales, and across broad 

landscapes. We focused on plant species in Idaho, that are accepted forage for mule deer 

(Odocoileus hemionus) and Rocky Mountain elk (Cervus elaphus nelsoni). Our objective was 

to build models that predict the probability of plant species presence and identify key 

environmental variables influencing forage species distributions to better inform ungulate 

nutrition. We hypothesized that lasso logistic regression would provide accurate predictions 

of plant species occurrence for multiple plant species across Idaho. To test this, we modeled 

plant species with different lifeforms, taxonomic groups, and environmental tolerances. We 

predicted all plant species models would provide better predictive accuracies than chance. In 

addition, we compared two models for each plant species (one containing proximal and distal 

environmental variables and a second containing only proximal environmental variables) to 

determine the relative effects of proximity on plant species distributions with regards to 

environmental gradients and disturbance events.  

Methods 

Study area 

Idaho (216,440km
2
) is ecologically diverse, comprising five Bailey’s ecoregions, and 

fourteen ecological sub sections (Bailey et al. 1994, IDFG 2017). Key habitat types include: 

arable land, dry and mesic coniferous forests, subalpine forests, deciduous forests and 

shrublands, dry canyon grasslands, wetlands, riparian woodlands, xeric shrublands and steppe, 

Palouse prairie, non-native herbaceous lands, dunes, and rocklands (IDFG 2017). The state is 

naturally divided into two regions, North Idaho (i.e. the Panhandle) and southern Idaho, by 

east-west mountain ranges and a time change crossing the Salmon River near the town of 

Riggins. Indicators of statewide climate change between 1975 and 2010 show water 

availability, drought, and wildfire have departed from historic conditions (Klos et al. 2015). 

Documented changes include significant decreases in the volume of annual streamflow, 

increasing precipitation intensity, and extended wildfire seasons (Klos et al. 2015). 

Consequently, plant species compositions and wildlife habitat are being altered. 

Unit of analysis 

 To model plant species presence statewide, we created a spatial data layer of spectrally 

similar polygons to use as our sample unit of analysis. Polygons were developed by 
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segmenting 2015 1m resolution NAIP imagery based on red, green, blue, and near infrared 

spectral values (http://www.insideidaho.org, Trimble 2015, Aycrigg et al. 2017). Our intent 

was to minimize variation in vegetation characteristics within polygons and capture variation 

between polygons.  

Vegetation surveys 

We compiled vegetation survey data collected by the Bureau of Land Management 

(BLM) and the IDFG between 2012 and 2016 to spatially join with our segmented polygons. 

Surveys consisted of 50-100m transects sampled every half meter or meter respectively (100 

points) using line-point intercept (Herrick et al. 2005). At each point, a pin was dropped and 

all plant species intercepted were recorded, including interceptions with rock, litter, duff, bare 

ground, lichen, and moss. This method provides a less biased estimate of plant cover, because 

the only decision made is whether a plant species is intercepted at a given point (Elzinga et al. 

2001). Canopy cover for each plant species was estimated for each polygon, by dividing the 

total number of point occurrences by the number of species interceptions.  

Environmental variables 

We used remotely-sensed data and existing maps to generate environmental variables, 

which we attributed to our polygons using mean or mode values. We divided variables into 

five categories: climatic, topographic, soil, vegetation and disturbance. Climatic variables 

included 30-year normal temperature (°C) and precipitation (mm) values from PRISM climate 

data 1981-2010 (Gibson et al. 2002), downscaled to a 250 m resolution using cubic 

convolution (ArcGIS 10.3; ESRI, Redlands, California) for precipitation and an empirical 

algorithm for temperature (Holden et al. 2011). Topographic variables were generated from a 

10 m digital elevation model (DEM; http://www.insideidaho.org) including elevation (m), 

slope (degrees), aspect (degrees), and indices for solar radiation (insolation), topographic 

wetness (determines hydrologic influence; Moore et al. 1993), slope position (classifies 

hilltops, valley bottoms, exposed ridges, and flat plains) and landscape curvature ( indicates if 

surface is convex or concave). Soil characteristic variables were generated by stitching the 

Natural Resource Conservation Service’s (NRCS) soil surveys together, SSURGO and 

STATSGO 1902-2015, to generate a combined dataset across Idaho. Variables included soil 

available water supply (cm), percent clay, percent sand, percent silt, percent organic matter, 

percent calcium carbonate, pH, cation-exchange capacity (mEq/100g), and depth to restrictive 
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layer (cm) (IDFG, unpublished data; SSURGO and STATSGO). Vegetation variables 

included percent canopy cover of trees (30 m; Homer et al. 2015) and percent canopy cover of 

shrubs (30 m; LANDFIRE 2011). Disturbance variables included wildfire characteristics 

generated from the Monitoring Trends in Burn Severity 30 m burn severity data between 1984 

and 2014 (MTBS 2017). The two wildfire variables were time since most recent wildfire 

(years) and wildfire frequency (years). The centroid latitude and longitude of each polygon 

were also included to examine locational influences on plant species distributions. All 

environmental variables were included based on functional scale and data availability. 

Developed areas, agricultural areas, barren land, and perennial snow and ice were omitted for 

the purpose of modeling natural vegetation and ungulate habitat. 

Predictive distribution modeling 

We used lasso logistic regression (lasso hereafter; Tibshirani 1996) via the ‘glmnet’ 

package in R (Friedman et al. 2010) to predict the probability of plant species presence within 

polygons and to identify the most informative environmental variables influencing their 

distributions. The lasso applies a penalty term to the maximum likelihood function which 

forces coefficients towards zero if they do not improve model prediction (Tibshirani 1996, 

Hastie et al. 2017). This causes some coefficients to become zero, effectively eliminating their 

corresponding predictors (i.e. environmental variables) from the model, providing a pragmatic 

approach for variable selection (Tibshirani 1996, Hastie et al. 2017). We validated model 

predictive accuracy using cross validation (k=10) and the area under the curve (AUC) of the 

receiver-operating characteristic (ROC) curve (Hanley and McNeil 1982).  

Results 

Approximately 44.3 million polygons were segmented across Idaho. Of these, 3,500 

contained vegetation survey data which included 463,808 points (Table 1). We attributed 28 

environmental variables across all polygons and modeled the probability of presence for 20 

accepted forage species (Table 2 and 3). We identified 12 environmental variables as 

proximal, having direct physiological effects on plant growth. Thirty-year normal minimum 

temperature and depth to soil restrictive layer have direct effects on cellular and root growth 

respectively. Thirty-year normal minimum precipitation, total annual precipitation, and soil 

available water supply directly affect water uptake. Soil organic matter and calcium carbonate 
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provide direct nutrient sources, and solar radiation directly regulates photosynthesis and soil 

moisture. Tree and shrub canopy cover directly influence space and competition, and lastly, 

time since last wildfire and wildfire frequency exhibit direct effects of disturbance.   

 For each plant species model, we generated a cross validation curve, which included 

the number of variables that were selected by the lasso and an average AUC at each penalty 

(See Figure 1 for an example). Further, we produced table outputs of the selected variables 

and their associated coefficients grouped by lifeform (grasses, forbs, shrubs, and trees; 

Appendix 1). Because models were fit using logistic regression, coefficients were placed on 

the logit scale therefore we exponentiated coefficients to be interpreted as odds ratios. Thus, 

the probability of plant species presence was interpreted based on a one unit change of the 

selected environmental variables. For example, in the model containing only proximal 

environmental variables for predicting the presence of sticky purple geranium (Geranium 

viscosissimum), soil available water supply was selected as an important variable with the 

exponentiated coefficient of 1.14. This meant for every one-unit increase in soil available 

water supply (1 cm), the odds of sticky purple geranium being present, increased by 14%. 

All models provided higher predictive accuracy than chance, with a mean AUC of 

0.82. Models containing both distal and proximal variables had AUC values that ranged from 

0.69-0.97 with a mean value of 0.83, selecting on average 11 variables (Table 4, Appendix 1). 

Whereas models containing only proximal variables had AUC values ranging from 0.67-0.96 

with a mean value of 0.81, selecting on average 5 variables (Table 4, Appendix 1). The most 

common selected environmental variables across all plant species models were: 30-year 

normal minimum precipitation, 30-year normal minimum temperature, soil available water 

supply, percent tree canopy cover, percent shrub canopy cover, soil percent organic matter, 

and soil percent calcium carbonate. Species models that selected wildfire as key indicators of 

presence were: Sandberg bluegrass (Poa secunda), Idaho fescue (Festuca idahoensis), 

arrowleaf balsamroot (Balsamorhiza sagittata), lupine (Lupinus ssp.), yarrow (Achillea 

millefolium), mountain big sagebrush (Artemisia tridentata ssp. vaseyana), antelope 

bitterbrush (Purshia tridentata), and mallow ninebark (Physocarpus malvaceus). Remaining 

variables were either less common or specific to certain lifeforms—e.g. soil percent clay was 

commonly selected for grass species. 
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Pinegrass (Calamagrostis rubescens), sticky purple geranium, mallow ninebark, and 

lodgepole pine (Pinus contorta) had models with the highest predictive accuracies for each 

plant lifeform (Appendix 1). Pinegrass presence was positively correlated with 30-year 

normal minimum precipitation, soil available water supply, and percent tree canopy cover and 

negatively correlated with 30-year normal minimum temperature, soil depth to restrictive 

layer, and percent shrub canopy cover (Appendix 1). Sticky purple geranium presence was 

positively correlated with 30-year normal minimum precipitation and soil available water 

supply and negatively correlated with 30-year normal minimum temperature and soil percent 

calcium carbonate (Appendix 1). Mallow ninebark presence was positively correlated with 

soil percent calcium carbonate and percent tree canopy cover, and negatively correlated with 

time since last wildfire (Appendix 1). Lodgepole pine presence was positively correlated with 

30-year normal minimum precipitation and soil percent organic matter, and negatively 

correlated with percent shrub canopy cover and 30-year normal minimum temperature 

(Appendix 1). 

Discussion 

Using lasso logistic regression we predicted the probabilities of plant species presence 

for 20 accepted forage species for mule deer and Rocky Mountain elk across Idaho. We 

identified key environmental gradients using climatic, topographic, soil, vegetation, and 

disturbance variables that were included based on functional scale and data availability. A 

growing consensus in the ecological literature suggests the incorporation of variables based 

on their operative (i.e. functional) scale will yield more robust models, provide stronger 

predictions, and provide more reliable inferences of ecological relationships (Store and 

Jokimaki 2003, Weaver et al. 2012, Miller et al. 2015, McGargial et al. 2016). Similarly, we 

found the inclusion of environmental variables at their functional scale provided accurate 

predictions of plant species presence statewide, and provided insight for underlying 

mechanisms driving their distributions. 

We predicted all models would provide higher predictive accuracy than chance, which 

was observed, with an average AUC of 0.82.  Predictive accuracies between models 

containing both distal and proximal variables versus models containing only proximal 

variables were similar. Yet, models containing only proximal variables were reduced by the 
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lasso considerably in terms of the number of selected variables, suggesting a more practical 

approach for future modeling efforts. In addition, the most commonly selected environmental 

variables across all models were proximal (Appendix 1). Therefore, we suggest proximal 

environmental variables are the most informative to include in plant species distribution 

models. 

 Our use of the lasso to achieve model optimization, variable selection, and coefficient 

estimation in regression for plant species distribution modeling has rarely been implemented 

in ecological research (Elith et al. 2006, Phillips and Dudik 2008, Breiner et al. 2015). One of 

the greatest challenges in species distribution modeling is selecting appropriate candidate 

variables (Araujo and Guisan 2006, Elith and Leathwick 2009), and the lasso provides a 

reasonable solution. It restrains the effects of the coefficients to identify variables that 

contribute little to the explanation of the response and removes those variables from the 

model. Consequently, the lasso treats issues with multi-collinearity and reduces model 

complexity (Tibshirani 1996, Dormann et al. 2013, Hastie et al. 2017). This approach is useful 

in situations like ours, where the information about numerous environmental variables and 

their relative influence on multiple plant species distributions is limited.  

 Alternatively, other techniques have been implemented to model plant species 

distributions. Growing applications of MaxEnt have emerged in the ecological literature and 

resource management with over 1000 published applications since 2006 (Merow et al. 2013). 

However, the use of MaxEnt requires a considerable number of decisions regarding 

appropriate data inputs and software settings, and the basis for these decisions has been 

unclear in many studies, or resorted to default selections (Merow et al. 2013). Phillips and 

Dudik (2008) found with specific parameter tuning, MaxEnt was effective in modeling plant 

species distributions of 226 plant species from 6 regions, but this kind of detailed parameter 

tuning requires good statistical knowledge, and their findings suggest more regularization 

may be needed if the number of environmental variables exceeds the number they analyzed 

which was 11-13. Further, MaxEnt outputs (i.e. raw values) are not intuitive, and would not 

have met our study expectations for the following reasons: 1) MaxEnt raw values give 

important insight about features (variables) by estimating their relative suitability compared to 

one another, but do not produce estimates of variable effects on the response, 2) raw values 

must sum to 1 resulting in very small values for each data point making interpretation 
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difficult, and 3) projections of raw values are not necessarily proportional to the probability of 

occurrence (Phillips and Dudik 2008,  Baldwin 2009, Elith et al. 2011).  

Classification and regression trees (CART) have also been used to model plant species 

distributions. These applications however do not provide continuous response curves to 

illustrate species-environment relationships, nor do they provide generalized probabilistic 

estimates of species occurrence (Vayssieres et al. 2000). MaxEnt and CART applications may 

be better suited for analyses looking to capture a broader overview of plant community 

dynamics. Our use of generalized linear models (GLMs) was best suited to provide more 

robust, species-specific models (Guisan et al. 1999). Additionally our implementation of lasso 

logistic regression provided the following advantages: 1) it allowed for consideration of a 

greater number of environmental variables, 2) did not require refinements of software settings 

or statistical parameter tuning, 3) provided accurate predictions of the probability of presence 

for multiple plant species, and 4) provided direct estimates of environmental variable effects 

(coefficients), that can be used to extrapolate and project forage species distributions 

statewide.  

Limitations 

Ideally, expert knowledge regarding the underlying mechanisms, interactions, and 

complex relationships between plant species and environmental variables, and between 

variables themselves should be incorporated in SDMs (Austin 2002, Evans et al. 2011). 

However, this fine-scale information is limited across Idaho. We were unable to predict 

response curves for the numerous plant species and environmental variables involved 

therefore we assumed a linear combination between the two. This was the simplification of 

the ecological process that dictates where a plant species occurs. Alternatively, we could have 

examined the use of non-parametric algorithmic approaches like MaxEnt to explore non-

intuitive relationships (Evans et al. 2011). But parametric tests provide structure on otherwise 

unstructured problems, which is helpful for providing a starting point for data analysis in 

situations like ours, where the number of possible outcomes is markedly high. Also, our 

expectations were to estimate the relative effects of environmental variables on plant species 

occurrence, and extrapolate this information to predict distributions statewide, which is not as 

straight forward with nonparametric methods (Whitley and Ball 2002, Phillips and Dudik 

2008). 
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Plant species detectability was also limited in our models because vegetation surveys 

(line-point intercept) did not provide identification of true absences. For example, if a plant 

species was not recorded at a given point, we presumed it absent, however, this may be 

inaccurate if the plant species was misidentified, or was intercepted but not seen by the 

observer. For future analyses, we suggest our polygons be thoroughly sampled including a 

greater number of vegetation points recorded by different observers to assess detectability. 

We also encountered a few limitations with our environmental variables. Percent 

shrub canopy cover and wildfire variables were generated using LANDFIRE (2011) data, 

which is not recommended for use in analyses with resolutions < 30 m (Vogelmann et al. 

2006). Also, LANDFIRE generates wildfire layers using entire fire perimeters meaning 

unburned or low severity areas within perimeters are not accounted for separately. Regardless, 

LANDFIRE products represent an integration of the best available data in remote sensing, 

landscape fire and succession modeling, and predictive landscape mapping (Vogelmann et al. 

2006). Additional variables were questionable providing either the same affect across all plant 

species models (solar radiation and total annual precipitation) or no affect at all (landscape 

curvature and topographic slope position). We recommend these variables be further 

evaluated prior to their inclusion in additional plant species distribution models. 

Ecological inference 

 Our models demonstrated good predictive properties, and revealed key species-

environment relationships that can be supported in ecological theory. For example, pinegrass 

is predominately a forest species and exhibits increased growth response to disturbance in 

years with higher precipitation and/or cooler temperatures (Parish et al. 1996, FEIS 2017). 

Respectively, our model exhibited positive correlations with percent tree canopy cover and 

30-year normal minimum precipitation, and negative correlations with percent shrub canopy 

cover and 30-year normal minimum temperature. Pinegrass also has high soil water usage 

during its rapid early-season growth and acts as an aggressor for soil moisture which may 

explain the positive correlation observed with soil available water supply (FEIS 2017). Our 

model also designated a negative correlation with depth to soil restrictive layer which may be 

explained by pinegrass’ sod-forming root system and occupancy of shallower sites (Agee 

1996, FEIS 2017). Furthermore, pinegrass presence is indicative of wildfire disturbance and 

highly severe wildfire events (Johnson 1998, FEIS 2017). Therefore, high presence of this 



11 

 

 

 

species may indicate areas of high nutritional quality for ungulates following a recent wildfire 

disturbance. Such inferences are needed to better examine plant species distributions, habitat 

nutritional quality, and related effects influencing ungulate populations statewide. 

Management implications 

Large carnivore recovery in the western U.S. has led managers to place greater efforts 

towards controlling top-down effects on ungulate populations, such as predation (Proffitt et al. 

2016). However, the magnitude of predatory effects is partially compensated by bottom-up 

drivers like habitat nutrition (Shallow et al. 2015, Proffitt et al. 2016). Nutrition drives 

individual fitness and various aspects of ungulate population dynamics (Crete and Huot 1993, 

Enk et al. 2001, White et al. 2010, Tollefson et al. 2010, 2011, Monteith et al. 2015, Cook et 

al. 2004, 2016, Hurley et al. 2017). However, current vegetation maps are too coarse 

thematically and spatially to effectively characterize nutrition. Our predictive plant species 

distribution models provide resource managers a tool to evaluate nutritional quality across 

broad landscapes. Estimated probabilities of plant species presence can be extrapolated and 

mapped statewide to exhibit areas of high or low forage occurrence. Further, model 

parameters can be used to investigate key relationships between plant species distributions, 

environmental gradients, and disturbance events. To strengthen our models, we suggest field 

validation and greater sampling efforts be executed statewide to build upon existing 

vegetation surveys. We also suggest variables be considered relative to their proximate effects 

on plant growth and adaptation. Additional variables that might be considered include: 

seasonal effects of temperature and precipitation (e.g. growing season precipitation), shrub 

and tree canopy cover at finer resolutions, influences of other plant species and interactions, 

and wildfire severity. Our study provides a novel approach for predicting fine-scale vegetation 

across broad landscapes to inform ungulate nutrition and better understand why plant species 

occur where they do on the landscape. 
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Table 1—1 Summary of vegetation survey data compiled from line-point intercept transects 

across Idaho to use in predictive ungulate forage species distribution models. Data source, 

description and location, total number of vegetation transects, total number of point 

interceptions, and years collected are included. BLM: Bureau of Land Management, IDFG: 

Idaho Department of Fish and Game, DIMA: Database for Inventorying and Monitoring. 

Source Description/ Location # transects # points Years 

BLM Sand Creek vegetation data 118 35,400 2015 

BLM DIMA data for Lemhi 398 170,750 2014-2016 

IDFG DIMA data for Craig Mountain 107 26,750 2012 

IDFG Mule deer composition data 323 88,503 2012-2014 

IDFG DIMA data for Antelope pocket, 

Cecil D Andrus, CJ Strike, Fish 

Creek, Fort Boise, Mountain 

Home, Payette River, Roswell 

Marsh, Sand Creek, Ted 

Trueblood, Tilden flats, Thousand 

Springs Creek—Whiskey Springs, 

and Weiser River Ranches 

611 151,790 2011-2015 
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Table 1—2 Environmental variables used to model plant species distributions across Idaho. 

Plant species are accepted forage for mule deer (Odocoileus hemionus) and Rocky Mountain 

elk (Cervus elaphus nelsoni). Variable category, variable, data description, and data source are 

included. DEM: digital elevation model. Centroid latitude and longitude of polygons were 

also included to assess locational influence. 

Category Variable Description Source 

Climatic Minimum precipitation 30-year normal  Prism.oregonstate.edu 

 Maximum precipitation 30-year normal Prism.oregonstate.edu 

 Total annual precipitation 30-year normal Prism.oregonstate.edu 

 Minimum temperature 30-year normal Prism.oregonstate.edu 

 Maximum temperature 30-year normal Prism.oregonstate.edu 

Topographic Elevation
 

DEM  InsideIdaho.org 

 Slope Degree of slope Calculated from DEM  

 Aspect (sine & cosine) North-south, east-west Calculated from DEM 

 Topographic wetness Steady-state wetness Calculated from DEM  

 Landscape curvature Convex, concave, flat  Calculated from DEM 

 Solar radiation Incident insolation ESRI tool 

 Topographic position Valleys, ridges Jennessent.com 

Soil Available water supply
 

Water storage capacity Nrcs.usda.gov 

 Percent clay Soil structure Nrcs.usda.gov 

 Percent sand Soil structure Nrcs.usda.gov 

 Percent silt Soil structure Nrcs.usda.gov 

 Cation-exchange capacity Essential nutrients  Nrcs.usda.gov 

 Depth to restrictive layer
 

Root growth Nrcs.usda.gov 

 pH pH Nrcs.usda.gov 

 Percent organic matter Essential nutrients  Nrcs.usda.gov 

 Percent calcium carbonate Essential nutrients  Nrcs.usda.gov 

Vegetation Percent tree cover  Canopy cover  Nlcd.gov 

 Percent shrub cover
 
 Canopy cover  Landfire.gov 

Disturbance Time since wildfire  Years since last fire  Mtbs.gov 

 Wildfire frequency
 
 Total number of fires Mtbs.gov 

Location Longitude Centroid x-coordinate  ESRI tool 

 Latitude
 

Centroid y-coordinate ESRI tool 
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Table 1—3 Plants species selected for distribution modeling. All species occur in Idaho and 

are accepted forage for mule deer (Odocoileus hemionus) and Rocky Mountain elk (Cervus 

elaphus nelsoni). Scientific name, common name, and life form are included. 

Scientific name Common name Life form 

Pseudoroegneria spicata Bluebunch wheatgrass grass 

Poa secunda Sandberg bluegrass grass 

Festuca idahoensis Idaho fescue grass 

Calamagrostis rubescens Pinegrass grass 

Carex spp. Sedge grass 

Lupinus spp. Lupine forb 

Balsamorhiza sagittata Arrowleaf balsamroot forb 

Achillea millefolium Common yarrow forb 

Geranium viscosissimum Sticky purple geranium forb 

Mahonia repens Creeping Oregon grape shrub 

Artemisia tridentata ssp. vaseyana Mountain big sagebrush shrub 

Purshia tridentata Antelope bitterbrush shrub 

Symphoricarpos albus Common snowberry shrub 

Amelanchier alnifolia Saskatoon serviceberry shrub 

Physocarpus malvaceus Mallow ninebark shrub 

Populus tremuloides Quaking aspen tree 

Prunus virginiana Chokecherry tree 

Pseudotsuga menziesii Douglas-fir tree 

Salix spp. Willow tree 

Pinus contorta Lodgepole pine tree 
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Table 1—4 A summary of the average AUC values and number of 

selected environmental variables (EV) for plant species distribution 

models with distal and proximal variables, and models with proximal 

only variables. Plant species are grouped by life form. All plant species 

occur in Idaho and are accepted forage for mule deer (Odocoileus 

hemionus) and Rocky Mountain elk (Cervus elaphus nelsoni ).  

 Distal and Proximal Proximal Only 

Species AUC # EV AUC # EV 

Grasses 

Bluebunch wheatgrass 0.71 4 0.67 6 

Sandberg bluegrass 0.73 23 0.70 7 

Sedge ssp. 0.78 5 0.75 3 

Idaho fescue 0.79 18 0.72 4 

Pinegrass 0.93 7 0.94 6 

Forbs 

Common yarrow 0.69 18 0.67 4 

Lupine ssp. 0.73 11 0.68 5 

Arrowleaf balsamroot 0.79 10 0.78 7 

Sticky purple geranium 0.86 7 0.85 6 

Shrubs 

Mountain big sagebrush 0.81 18 0.79 8 

Common snowberry 0.86 12 0.84 4 

Creeping Oregon grape 0.85 18 0.80 6 

Saskatoon serviceberry 0.88 6 0.87 1 

Antelope bitterbrush 0.92 18 0.88 9 

Mallow ninebark 0.96 7 0.96 5 

Trees 

Willow ssp. 0.77 10 0.76 2 

Chokecherry 0.78 1 0.78 1 

Douglas-fir 0.88 4 0.87 4 

Quaking aspen 0.89 5 0.86 3 

Lodgepole pine 0.97 11 0.96 5 
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Figure 1—1 Cross validation curve for the model containing only 

proximal environmental variables for predicting sticky purple geranium 

(Geranium viscosissimum) presence. Graph contains validation curve (red 

line), average AUC (y-axis), log of the penalty value (lambda; x-axis) and 

number of selected environmental variables for each penalty (top). Left 

vertical dotted line represents the penalty value and number of selected 

environmental variables with the greatest predictive accuracy. Right 

vertical dotted line represents the penalty value and the number of selected 

environmental variables within one standard error of the greatest 

predictive accuracy. 
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Chapter 2 : Modeling summer habitat selection by Rocky Mountain elk (Cervus elaphus 

nelsoni) in north-central Idaho. 

Abstract 

Rocky Mountain elk (Cervus elaphus nelsoni) populations in the Clearwater River Basin in 

north-central Idaho have declined due to increasing human occupancy, habitat alterations, and 

increased predation. Growing evidence suggests summer nutrition is especially critical for 

individual fitness and population dynamics. To understand how Rocky Mountain elk select 

summer habitat to optimize nutritional needs, lactating females were collared in the 

Clearwater River Basin to monitor body condition and reproduction. Using GPS locations and 

resource selection functions (RSFs), I evaluated a series of habitat variables to identify key 

indicators of summer habitat selection on the Craig Mountain Wildlife Management Area 

(CMWMA). I found that in the months of July and August, elk selected for habitats that were 

predicted to support sticky purple geranium (Geranium viscosissimum), that were more 

frequently burned, and that had greater 30-year normal minimum precipitation and available 

soil water supplies. Elk also exhibited less selection for habitats with greater shrub canopy 

cover. The presence of herbaceous plant species and wildfire disturbance were the most 

informative variables for predicting summer habitat selection by elk on the CMWMA. 

Management strategies that re-open matured forest canopies which are currently limiting 

herbaceous understory vegetation, will be useful for enhancing the nutritional quality of elk 

summer habitat. Considerations for non-native plant infestations in areas of highly recurrent 

and severe wildfires will also be important.  

Introduction 

The Clearwater River Basin in north-central Idaho has been significantly altered by 

highway and reservoir construction, increased fire suppression and decreased timber harvest, 

predator reintroductions, and infestations of non-native plant species (ERG 2013, CBC 2017). 

Vegetation has departed from natural conditions as much as 40% (ERG 2013, CBC 2017). 

Consequently, once-abundant Rocky Mountain elk (Cervus elaphus nelsoni; hereafter elk) 

populations have declined. To address population declines and other long-standing conflicts 

regarding the depletion of natural resources in the Clearwater River Basin, a partnership of 21 

groups was formed (i.e. the Clearwater Basin Collaborative;  CBC), including federal and 
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state agencies, private land owners, tribal nations, county commissioners, conservation 

groups, recreation groups and producers of livestock, agriculture and timber (ERG 2013, CBC 

2017).  

Restoration of elk populations in north-central Idaho has since been a primary goal of 

the CBC (CBC 2017). Specific objectives require the monitoring of elk habitat use, nutritional 

status, and population conditions with initial efforts directed towards summer range. 

Inadequate summer nutrition has shown to decrease elk body mass and condition, delay 

breeding times, and reduce pregnancy rates, overwinter survival, and juvenile recruitment 

(Cook et al. 2001, 2004, 2016, White et al. 2010). The CBC initiated monitoring efforts by 

targeting lactating females to assess reproductive status and body condition as indicators of 

summer nutritional quality. Multiple capture events were conducted between December 2012 

and January 2013, of which 82 female elk were collared across the Clearwater River Basin 

(Hetzner Hagle 2016). 

The elk population on the Craig Mountain Wildlife Management Area (CMWMA) has 

been monitored as one of four distinct populations. In 1992, when the Idaho Department of 

Fish and Game (IDFG) first acquired the Peter T. Johnson management Unit, the population 

comprised approximately 500 individuals, and by 2012, tripled in size (Barrett 2014). A 

survey conducted in 2013 however indicated signs of habitat limitation (IDFG 2014). Female 

elk nutritional conditions were suboptimal and juvenile recruitment exhibited a marked 

decline (IDFG 2014). Calf-cow ratios (17:100) were less than half of what was observed in 

1996 (37:100; IDFG 2014). Low recruitment and poor nutritional conditions may be 

indicative of summer habitat limitations, therefore the need to assess habitat selection and 

nutritional quality, as well as alteration of habitat by non-native plant species, has become a 

management concern (IDFG 2014). 

Resource selection functions (RSFs) can quantitatively assess habitat selection using 

GPS locations of collared animals by comparing characteristics of used and available habitat 

(Nielson and Sawyer 2013, Boyce et al. 2016). Used habitat refers to areas with documented 

animal locations, which may be quantified and described based on type of use (i.e. forage, 

escape, security, or calving; Krausman 1999, Manly et al. 1993, 2002). Available habitat 

refers to areas that are accessible or have been encountered by animals during a given 
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temporal period (Manly et al. 1993, 2002). Habitat selection therefore describes how an 

animal chooses to use or forgo available habitat. 

In this study, I examined summer habitat selection by elk on the CMWMA using GPS 

collar locations. I evaluated different measures of habitat (vegetation, topography, soil 

characteristics, and disturbance) to predict the relative intensity of elk use and to identify key 

drivers of summer habitat selection. I hypothesized that summer habitat selection by elk can 

be estimated using predicted probabilities of forage species occurrence. To test this, I 

compared RSFs using three variable categories: 1) predicted probabilities of accepted forage 

species presence, 2) environmental variables important to plant growth and 3) environmental 

variables important to elk use. I predicted RSFs containing probabilities of accepted forage 

species presence would provide as accurate, if not better, predictions of elk use as those 

containing environmental variables, because plant species presence is the direct result of 

environmental gradients. Therefore, I assumed the probabilities of accepted forage species 

presence could be used as surrogates for environmental variables, with the idea that model 

parameters could be reduced, and highly correlated variables (e.g. temperature and elevation) 

could be avoided.  

Methods 

Study area  

The CMWMA in north-central Idaho comprises approximately 50,585 hectares of 

public land bordering eastern Washington and Oregon (Figure 1). Bound by the Snake and 

Salmon Rivers the area provides critical year-round habitat for many wildlife species (Barrett 

2014). The CMWMA is a montane ecological system with vegetation characterized by a 

rolling forested plateau on top and deeply dissected canyon grasslands following the river 

breaks (Barrett 2014). Temperatures vary substantially with elevation and season—e.g. an 

average January low of 22.3F may be found at higher elevations (1808 m) whereas July 

temperatures frequent over 100F in the river canyons (240 m; Barrett 2014). Mean annual 

precipitation ranges from 340-508 mm falling primarily as snow and spring rains (Barrett 

2014). This area is also prone to severe thunderstorms, which in combination with a changing 

climate has increased the occurrence of wildfires, departing from a historic fire return interval 
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of 5-10 years in the canyon grasslands, to now four wildfires (each >20,000 hectares) in the 

last ten years (Barrett 2014).  

Elk locations, sample units, and habitat use-availability 

To capture summer habitat selection by elk on the CMWMA, I compiled July and 

August GPS locations that were recorded in 2014 and 2015. Habitat nutritional conditions in 

June and September are also likely important, but elk locations and habitat selection may be 

influenced by calving in June, and hunting in September, thus they were not included in my 

analysis. My sample units were spectrally similar polygons developed by Aycrigg et al. 

(2017) which represented more similar vegetation characteristics within polygons than 

between. Polygons were developed by segmenting 2015 1m resolution NAIP imagery based 

on red, green, blue, and near-infrared spectral values (http://www.insideidaho.org, Aycrigg et 

al. 2017). To quantify used and available habitat, I spatially joined elk locations with the 

polygons and used the minimum bounding geometry tool, convex hull, in ArcGIS 10.3 (ESRI, 

Redlands, California) to define summer range. I identified polygons within the defined 

summer range as used—if elk locations occurred within the polygon—or available, otherwise.  

Variables 

I generated three categories of variables to assess habitat selection across polygons.  

The first category was probabilities of accepted forage species presence (%). I selected plant 

species that are accepted forage by elk and occur on the CMWMA (Kufeld 1973, Korfhage et 

al. 1980, Baker and Hobbs 1982, Edge et al. 1987, 1988, Mancuso and Moseley 1994—

updated with J. Barrett and L. Danly 2015, NRCS 1999, Alldredge et al. 2002, Innes 2011, 

Cook J. and R. 2016). I also included yellow star thistle (Centaurea solstitialis) because it is 

the most prevalent non-native plant species. I estimated the probability of presence for each 

plant species in each polygon using lasso (Tibshirani 1996) logistic regression and the line-

point intercept vegetation data and environmental variables generated in chapter one. Further, 

I identified the top three models (one grass, one forb, one shrub) relative to their influence on 

elk summer habitat selection via univariate analyses, and used these three species and their 

associated probabilities of presence as variables for my first variable category. My second 

variable category included environmental variables that are important to plant growth (i.e., 

plant variables) which were the most commonly selected environmental variables in chapter 

one. My third category included a subset of environmental variables from chapter one that 
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have been commonly used in similar resource selection applications, and are important to elk 

habitat selection (i.e., elk variables).  

Resource selection functions 

 Using GPS locations, I generated counts for the number of elk locations within 

polygons and estimated RSFs using Poisson and negative binomial (NB) regressions. I 

assumed the size of each polygon had a relative effect on the number elk locations within, 

thus I included polygon area as an offset term in each model. Therefore, I used variable 

categories to predict the relative intensity of elk use (i.e. the number of elk locations within 

polygons relative to polygon area) and evaluated differences between highly used polygons 

and non-used polygons (i.e. habitat selection). I fit Poisson RSFs using the glm( ) function 

from the ‘stats’ package in R and NB RSFs using the glm.nb( ) function from the ‘MASS’ 

package (Venables and Ripley 2002, R 2017). For each RSF and variable category I 

compared: 1) model coefficients and standard errors, 2) model fit using the AICc and BIC 

selection criterion, and 3) actual count values (i.e. the number of elk locations within 

polygons) versus model-predicted values. Due to the multiplicative nature of the log link 

function, Poisson and NB regressions place coefficients on the natural log scale (Beaujean 

and Morgan 2016). Therefore to interpret coefficient effects I defined a percent change in the 

expected counts as  

Percent Change in Expected Counts = 100× [exp (b × Δ)-1]  

where b was the regression coefficient and ∆ was the amount of change in the variable; which 

I chose ∆ = 1 for a one unit change in the variable (Beaujean and Morgan 2016). 

Results 

My defined summer range included 77, 536 spectrally similar polygons with an 

average polygon area of approximately 0.42 hectares. I joined 1,404 GPS collared elk 

locations from 23 individuals (Figure 2) resulting in 1,145 used polygons. The frequency of 

elk locations in used polygons ranged from 1 to 15 locations with an average frequency of 1.  

I identified 29 plant species as accepted forage for elk on the CMWMA (Table 1). 

Bluebunch wheatgrass (Pseudoroegneria spicata) and Idaho fescue (Festuca idahoensis) had 

the greatest probabilities of presence for grass species across the defined summer range, 

yellow star thistle for forb species, and common snowberry (Symphoricarpos albus) and 
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mallow nine bark (Physocarpus malvaceus) for shrub species (Table 2). Based on the 

univariate analyses, the top species models for each lifeform relative to the intensity of elk 

summer use were bluebunch wheatgrass, sticky purple geranium (Geranium viscosissimum), 

and common snowberry. The most commonly selected environmental variables that were 

important to plant growth (i.e. plant variables) were: 30-year normal minimum precipitation 

(mm), 30-year normal minimum temperature (C), soil available water supply (cm), percent 

tree canopy cover, percent shrub canopy cover, and percent soil organic matter. The most 

common environmental variables used in similar applications of elk habitat selection (i.e. elk 

variables) were: elevation (m), slope (), percent tree canopy cover, percent shrub canopy 

cover, and wildfire frequency (years; Edge et al. 1987, Unsworth et al. 1998, Hebblewhite et 

al. 2008, Coe et al. 2011, Proffitt et al. 2013, Hetzner Hagle 2016). 

Model comparison 

 Across all variable categories, Poisson and NB RSFs exhibited similar regression 

coefficients (Table 3). NB RSFs however displayed larger standard errors, indicative of a 

greater allowance for dispersion (Table 3, Beaujean and Morgan 2016). NB RSFs exhibited 

better fit measures than Poisson RSFs having lower AICc and BIC values (Table 3). NB RSFs 

also provided more accurate predictions of the relative intensity of elk summer use, whereas 

Poisson RSFs greatly underestimated these values (Figure 3). 

NB regression allowed for accurate predictions across all variable categories, but some 

variables were more informative than others. Thirty-year normal minimum precipitation, 30-

year normal minimum temperature, soil available water supply, wildfire frequency and the 

probability of sticky purple geranium presence shared positive correlations with the intensity 

of elk summer use (Table 3). Whereas percent shrub canopy cover, percent soil organic 

matter, slope, and the probability of bluebunch wheatgrass and common snowberry presence 

shared negative correlations with the intensity of elk summer use (Table 3). The greatest 

effect was exhibited by soil available water supply in which every one-unit increase (cm) 

resulted in a 97% increase in the intensity of elk summer use (Table 3). The least informative 

variables were percent tree canopy cover and elevation which exhibited zero effects on the 

relative intensity of elk summer use (Table 3).  
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Discussion 

Growing evidence suggests loss of early-seral habitat and the associated effects from 

inadequate summer nutrition are contributing to elk population declines (Cook et al. 2001, 

2004, 2012, 2016, White et al. 2010). Female elk body condition and reproduction is being 

assessed, but knowledge of underlying mechanisms driving summer habitat selection is 

limited. To address this limitation, I developed Poisson and NB RSFs to predict the relative 

intensity of elk summer use on the CMWMA in north-central Idaho. Using predicted 

probabilities of accepted forage species presence and environmental variables associated with 

plant species growth and elk habitat selection, I found that each group of variables provided 

relatively similar predictions of elk summer use, but some variables were more informative 

than others. 

Elk selected for summer habitat predicted to support sticky purple geranium and 

exhibited less selection for summer habitat predicted to support bluebunch wheatgrass. Sticky 

purple geranium is valuable summer forage, highly sought by elk (Kufeld 1973). It is 

aromatic and protocarnivorous meaning it dissolves insects trapped on its sticky leaf surface 

and absorbs the extra protein and nitrogen which may explain elk attraction to its leaves 

(Spomer 1999). Conversely, bluebunch wheatgrass is more valuable as a winter-spring forage 

during early phenological stages when nutrient content is highest (Buechner 1952, Kufeld 

1973, Bryant 1993 Westenkowskow-Wall et al. 1994). During July and August (the time-

period of this analysis), bluebunch wheatgrass senesces, crude protein and digestible matter 

deteriorate, and nutrient quality rapidly decreases with moisture and temperature stress (Cook 

et al. 1956, Bryant 1993). 

Elk also exhibited less selection for summer habitats predicted to support common 

snowberry. This likely relates to the negative relationship observed with percent shrub canopy 

cover. Similar findings were observed by Hebblewhite et al. (2008) who examined elk 

foraging behavior in montane ecosystems in the Canadian Rocky Mountains. They found that 

elk exhibited strong selection for herbaceous forage in summer months, followed by an 

increased selection for shrubs in autumn (Hebblewhite et al. 2008). Although I did not 

examine autumn habitat use, Hebblewhite et al.’s (2008) indication of summer forage 

selection being driven by more herbaceous species in montane systems where shrub quality is 

always high, compliments findings of this study 
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 Further, elevation and percent tree canopy cover did not influence elk summer habitat 

selection on the CMWMA. There was little variation in elevation across the defined summer 

range likely explaining why it was uninformative. Elevation is commonly used as a surrogate 

for climate mechanisms driving habitat selection in many elk resource selection studies (Edge 

et al. 1987, Sawyer et al. 2007, Prokopenko et al. 2017). However, elevation did not capture 

the relative importance of temperature and precipitation across my defined summer range. 

Conversely, percent tree canopy cover did vary widely suggesting variable effects may have 

been masked by others, or that tree canopy cover was simply uninformative over the selected 

temporal period. Elk also selected areas with gentler slopes, which has been observed in other 

elk habitat selection studies in Idaho and western Montana (Irwin and Peek 1983, Edge et al. 

1987). 

Elk selected for habitats with greater 30-year normal minimum precipitation, 30-year 

normal minimum temperature, and soil available water supply. As exhibited in chapter one, 

these variables are highly important to plant species distributions, and may be especially 

critical in summer, indicating where the most nutritious forage will be on the landscape with 

relation to increasing temperatures and water stressors (Akinci and Losel 2012, Hatfield and 

Prueger 2015). In July and August, palatable and nutritious herbaceous forage is likely found 

on the CMWMA in areas with greater precipitation, soil moisture, and cooler temperatures.  

Elk selected for areas that were more frequently burned. This finding is similar to 

previous studies exhibiting elk selection for habitat following wildfire events that shift plant 

communities towards more nutritious herbaceous vegetation (Proffitt et al. 2016). Wildfire is 

an important ecosystem regeneration process that provides valuable forage for elk however, 

suppression activities could lead to decreased nutritional quality in mature forests (Long et al. 

2008, Proffitt et al. 2016). Areas with more frequent fire also likely reverse the accumulation 

of soil organic matter (Neff et al. 2005), therefore if elk are selecting for areas with more 

frequent wildfire, this may explain the negative correlation observed with soil organic matter. 

Lastly, soil available water supply, which is the total volume of water in centimeters 

available to plants, indicated a strong influence on elk summer habitat selection (STATSGO 

2017). Soil variables have not been commonly used in elk resource selection studies, but this 

finding suggests soil may be an indirect driver. Soil available water supply was an important 

indicator of plant species presence across all species modeled in chapter one and reveals the 
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longevity of water available to plants. Therefore, summer forage quantity, and likely quality, 

would be expected to be greater in areas containing greater available soil water supplies 

(Akinci and Losel 2012, STATSGO 2017).  

Limitations 

 One of the greatest challenges in resource selection is defining available habitat 

(Northrup et al. 2013). Many wildlife species including elk are highly mobile and can alter 

selections of habitat under circumstantial conditions. For example, habitat selection by elk 

may be altered in the presence of predators or humans (Creel et al. 2005, Frair et al. 2005, 

Ciuti et al. 2012, Proffitt et al. 2013). Habitat selection thus involves a series of innate and 

learned behavioral decisions which are poorly understood by managers and research 

ecologists (Krausman 1999, Manly et al. 1993, 2002, Ciuti et al. 2012). For my study, I used 

minimum bounding geometry to spatially define an area of interest (i.e. elk summer range on 

CMWMA) of which I assigned polygons containing GPS locations as used habitat, and all 

other remaining polygons as available habitat. This definition of available habitat relies on the 

number of GPS locations and the time at which locations were recorded. A greater sampling 

of GPS locations over a longer temporal period would better define available habitat and 

provide a stronger, ecological basis for elk distributions on the CMWMA.  

The detection of elk locations was also limited. GPS locations were only transmitted 

once-daily. Consequently, elk may have used some of the available polygons without being 

recorded, which would result in failed detections. Failed detections may have also occurred if 

elk locations prevented transmission (e.g. in densely forested areas or canyon bottoms). 

Exclusion of failed detections would affect habitat selection estimates and result in habitat 

bias. However, among the data used in my analysis there were no indications of GPS collars 

with sub-optimal fix rates. For future analyses, GPS collars that emit more frequent signals 

could minimize potential habitat bias. 

Management implications 

My results suggest the presence of herbaceous plant species and wildfire disturbance 

were most informative for predicting summer habitat selection by elk on the CMWMA. 

Wildfire has remained absent from much of the forested plateau resulting in mature grand-fir 

(Abies grandis) and mixed-conifer habitat types with high canopy closures (Barrett 2014, 

MTBS 2017). Consequently, understory nutrition is limited. It would be useful for managers 
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to adopt habitat strategies that would re-open canopies using prescribed fire or timber harvest 

to promote natural vegetation regeneration and provide greater herbaceous foraging 

opportunities for elk on the CMWMA. Conversely, wildfire frequency and area burned has 

increased in the canyon grasslands over recent decades (Barrett 2014, MTBS 2017). This has 

caused increased infestations of non-native plant species along the river corridors (Barrett 

2014). The predictive plant species distributions models I have developed in this study and in 

chapter one can be used to help managers predict where non-native plant species might occur, 

and extrapolate predictions to various climate, wildfire, or environmental related scenarios to 

determine how their occurrence will influence elk habitat selection and nutritional quality.  

 Additionally, resource-selection studies have identified elk response to roads, or other 

human influences, as key indicators of habitat selection (Irwin and Peek 1983, Edge et al. 

1987, Unsworth et al. 1998, Coe et al. 2011, Montgomery et al. 2013, Proffitt et al. 2013).  

Although these variables were not included in my analysis, elk habitat selection on the 

CMWMA is likely influenced by human presence. The CMWMA is a popular destination for 

hunting, camping, winter snow sports, and off-highway vehicle riding, with over 402 km of 

primary and secondary roads (Barrett 2014). Managers could thus include human disturbance 

variables, such as distance to roads, in the development of habitat selection models as well as 

consider better measures for quantifying human presence, such as locational use and 

frequency of use on the CMWMA. 
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Table 2—1 Plant species selected for modeling summer habitat selection by Rocky Mountain 

elk (Cervus elaphus nelsoni) on Craig Mountain Wildlife Management Area (CMWMA) in 

north-central Idaho. Rank refers to the relative forage value of each plant species to Rocky 

Mountain elk during summer, as identified by Kufeld (1973).  

Scientific name Common name Life form Rank 

Pseudoroegneria spicata Bluebunch wheatgrass grass + 

Poa secunda Sandberg bluegrass grass + 

Festuca idahoensis Idaho fescue grass + 

Calamagrostis rubescens Pinegrass grass * 

Carex spp. Sedge grass + 

Centaurea solstitialis Yellow star-thistle forb  

Potentilla gracilis Slender cinquefoil forb - 

Lupinus sericeus Silky lupine forb + 

Galium triflorum Fragrant bedstraw forb  

Lactuca serriola Prickly lettuce forb + 

Tragopogon dubius Yellow salsify forb + 

Clarkia pulchella Pinkfaries forb  

Balsamorhiza sagittata Arrowleaf balsamroot forb -  

Achillea millefolium Common yarrow forb - 

Taraxacum officinale Common dandelion forb + 

Geranium viscosissimum Sticky purple geranium forb * 

Geum triflorum Old man’s whiskers, 

prairie smoke 

forb + 

Prunus virginiana Chokecherry shrub + 

Symphoricarpos albus Common snowberry shrub * 

Amelanchier alnifolia Saskatoon serviceberry shrub * 

Physocarpus malvaceus Mallow ninebark shrub + 

Berberis repens Creeping Oregon grape shrub - 

Acer glabrum Rocky mountain maple shrub * 

Holodiscus discolor Oceanspray shrub  

Sambucus cerulea Elderberry shrub * 

Vaccinium membranaceum Thinleaf huckleberry shrub * 

Rubus parviflorus Thimbleberry shrub + 

Crataegus douglassii Black hawthorn shrub  

Philadephus lewisii Lewis’ mock orange shrub  
Summer forage value ranking symbol: - = least valued; + = valued, * = highly valued 
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Table 2—2 Percent probability of plant species presence summarized across polygons on the 

Craig Mountain Wildlife Management Area (CMWMA). Mean, minimum, and maximum 

values are provided. Species are listed by life form. Yellow star thistle was included because 

it is the most prevalent non-native plant species on the CMWMA. 

Scientific name Mean Minimum Maximum 

Grasses    

Bluebunch wheatgrass 15.58 0.34 49.96 

Sandberg bluegrass 1.90 0.03 9.75 

Idaho fescue 10.40 0.40 64.75 

Pinegrass 3.01 0.08 53.13 

Sedge 0.45 0.06 10.59 

Forbs    

Yellow star-thistle
 

6.61 0 64.06 

Slender cinquefoil 0.09 0.02 0.45 

Silky lupine 1.26 0.01 16.10 

Fragrant bedstraw 0.25 0 62.07 

Prickly lettuce 0.58 0.03 6.73 

Yellow salsify 0.33 0.02 3.53 

Pinkfaries 2.06 0 50.52 

Arrowleaf balsamroot 2.74 0.12 13.07 

Common yarrow 2.29 0.40 20.68 

Common dandelion 0.14 0.06 0.51 

Sticky purple geranium 0.15 0 1.89 

Old man’s whiskers, prairie smoke 0.30 0.01 6.54 

Shrubs    

Chokecherry 0.60 0.44 1.55 

Common snowberry 6.71 1.10 39.36 

Saskatoon serviceberry 1.09 0.21 14.00 

Mallow ninebark 3.34 0.01 91.78 

Creeping Oregon grape 0.05 0 2.74 

Rocky mountain maple 0.16 0 13.54 

Oceanspray 0.47 0 10.51 

Elderberry 0.09 0 25.09 

Thinleaf huckleberry 0.33 0.03 11.45 

Thimbleberry 0.12 0.01 2.97 

Black hawthorn 1.08 0 24.60 

Lewis’ mock orange 0.08 0 15.18 
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Table 2—3 Summary of Poisson and negative binomial (NB) resource selection functions 

(RSFs) used to model summer habitat selection by Rocky Mountain elk (Cervus elaphus 

nelsoni) on the Craig Mountain Wildlife Management Area (CMWMA). RSFs were 

modeled using three variable categories (probabilities of accepted forage species presence, 

plant variables, and elk variables; see text for explanation of categories). Variables, 

coefficient values, and fit measures (AICc and BIC) are presented for each RSF. Coefficient 

effects are presented for NB RSFs. 

Variable 

Poisson 

Coef. (SE) 

NB 

Coef. (SE) NB Coef. Effects 

Probabilities of Accepted Forage Species Presence 

Intercept -3.68 (0.13) -3.71 (0.15)  

Sticky purple geranium 0.54 (0.10) 0.54 (0.13) 72% 

Bluebunch wheatgrass -0.03 (0.01) -0.02 (0.01) -2% 

Common snowberry 0.0002 (0.01) -0.01 (0.01) -1% 

AICc 13171 12291  

BIC 13208 12337  

Plant Variables 

Intercept -14.07 (0.69) -13.63 (0.80)  

Minimum precipitation 0.30 (0.02) 0.30 (0.03) 35% 

Minimum temperature 0.07 (0.03) 0.09 (0.03) 9% 

Available water supply 0.77 (0.08) 0.68 (0.10) 97% 

Tree cover 0.003 (0.00) 0.001 (0.00) 0% 

Shrub cover -0.35 (0.13) -0.44 (0.14) -36% 

Organic matter -0.17 (0.02) -0.17 (0.02) -16% 

AICc 13073 12251  

BIC 13138 12326  

Elk Variables 

Intercept -3.96 (0.22) -3.87 (0.25)  

Elevation 0.0005 (0.00) 0.0005 (0.00) 0% 

Slope -0.05 (0.00) -0.05 (0.00) -5% 

Tree cover 0.001 (0.00) -0.0009 (0.00) 0% 

Shrub cover -0.47 (0.12) -0.53 (0.13) -41% 

Fire frequency 0.20 (0.04) 0.23 (0.05) 26% 

AICc 12985 12189  

BIC 13040 12254  
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Figure 2—1 Craig Mountain Wildlife Management Area (CMWMA) in north-central 

Idaho. Map was created by the Idaho Department of Fish and Game. For more information 

visit: https://idfg.idaho.gov/. 
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Figure 2—2 GPS locations of Rocky Mountain elk (Cervus elaphus nelsoni) during July and 

August 2014 and 2015 on the Craig Mountain Wildlife Management Area (CMWMA). Red 

line indicates defined summer range using convex hull minimum bounding geometry tool in 

ArcGIS 10.3 (ESRI, Redlands, California). 
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Figure 2—3 Histogram of the number of Rocky Mountain elk (Cervus elaphus nelsoni) GPS 

locations within polygons of the defined summer range on the Craig Mountain Wildlife 

Management Area (CMWMA) in north-central Idaho. Dotted-dashed lines represent the 

model predictions for each RSF (Poisson or negative binomial) and each variable category 

(probabilities of accepted forage species presence, plant variables, and elk variables). Number 

of polygons (y-axis) are represented on the log10 scale (0, 10, 100, 1000, 10000, 100000) and 

intensity (number of elk locations within a polygon) are rounded to the nearest integer. 
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Appendix 1 

Lasso logistic regression outputs for 20 plant species distributions modeled across Idaho. 

Plant species were selected as accepted forage for mule deer (Odocoileus hemionus) and 

Rocky Mountain elk (Cervus elaphus nelsoni). Outputs are grouped into tables by plant 

species life form (grasses, forbs, shrubs, and trees). Tables include: plant species common 

name, selected environmental variables, corresponding coefficients, and average AUC values 

for each species model (one model containing both distal and proximal environmental 

variables (DP) and a second model containing only proximal environmental variables (P)). 

Coefficients are exponentiated to be interpreted as odds ratios. 

 

Grass species 

 
Variable Bluebunch 

Wheatgrass 

Sandberg 

Bluegrass 

Idaho Fescue Pinegrass Carex ssp. 

Model DP P DP P DP P DP P DP P 

Intercept 0.004 1.35 0.00 0.03 0.12 0.71 0.00 0.00 0.00 0.00 

Elevation   1.00  1.00      

Slope 1.02  0.96  0.99      

Aspect (cos)   0.99  1.01  1.00    

Aspect (sin)   0.99  0.99      

Wetness index   0.99      1.09  

Land. curv     1.21      

S. radiation
 

 1.00 1.00  1.00 1.00     

Slope position           

Min. precip  1.02   1.01 1.03 1.00 1.03   

Max. precip   1.02  1.00    1.02  

Annual precip   0.99 0.99      1.00 

Min. temp
i
  1.01 0.99 0.93 1.04   0.94 0.89 0.89 

Max. temp   1.08        

Water supply   1.16 1.13 1.02   1.19   

Clay 1.01  1.03  1.02  1.01    

Sand           

Silt   1.01  1.02      

Cation ex cap.   0.99  0.96      

Depth res.
 
  0.99 0.99 0.99   0.99 0.99   

pH   1.08      0.79  

Org. matter  0.98 0.91 0.98 0.99    1.05 1.06 

Ca. carbonate   0.97  0.90 0.99     

Time since fire           

Fire frequency   0.98  0.76      

Tree cover 0.99 0.97 0.96 0.97 0.94 0.98 1.06 1.06   

Shrub cover   1.11 1.09   0.84 0.93   

Longitude   1.00    1.00    

Latitude 1.00  1.00  1.00      

AUC 0.71 0.67 0.73 0.70 0.79 0.72 0.93 0.94 0.78 0.75 
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Forb Species 

 
Variable Lupine ssp. Arrowleaf 

Balsamroot 

Common 

Yarrow 

Sticky 

Geranium 

Model DP P DP P DP P DP P 

Intercept 0.00 0.01 0.01 0.04 0.02 0.07 0.00 0.00 

Elevation 1.00        

Slope 1.00  1.04    0.99  

Aspect (cos) 1.01  0.99  1.02  1.02  

Aspect (sin)         

Wetness index     1.04    

Land. curv     0.91    

S. radiation
 

    1.00 1.00   

Slope position         

Min. precip   1.02 1.03 1.01  1.03 1.06 

Max. precip 1.01    1.02    

Annual precip 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Min. temp
i
 1.09 1.05 1.15 1.23    0.92 

Max. temp         

Water supply   0.86 0.80    1.14 

Clay 1.02    1.01    

Sand     0.99    

Silt     1.01  1.00  

Cation ex cap.         

Depth res.
 
   1.00  1.00    

pH         

Org. matter     1.05 1.02   

Ca. carbonate 0.97 0.99 0.94 0.95 0.95 0.99 0.98 0.98 

Time since fire 1.03 1.03   1.01    

Fire frequency   0.73 0.81     

Tree cover 0.99 0.99 0.98 0.98 0.99   1.00 

Shrub cover     0.98    

Longitude 1.00    1.00  1.00  

Latitude     1.00    

AUC 0.73 0.68 0.79 0.78 0.69 0.67 0.86 0.85 
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Shrub Species 

 
Variable Mountain 

Big 

Sagebrush 

Antelope 

Bitterbrush 

Common 

Snowberry 

Saskatoon 

Service-

berry 

Mallow 

Ninebark 

Creeping 

Oregon 

Grape 

Model DP P DP P DP P DP P DP P DP P 

Intercept 0.12 0.00 0.00 0.00 143 0.01 0.01 0.00 22.5 12.2 0.00 0.00 

Elevation 1.00            

Slope 0.99  0.96        1.01  

Aspect (cos) 0.98  0.96        0.96  

Aspect (sin) 1.00  0.99        1.01  

Wetness index           0.97  

Land. curv     0.97    0.83    

S. radiation
 

1.00 1.00   1.00    1.00 1.00   

Slope position             

Min. precip 1.00 1.00 0.98 0.99 1.07 1.02 1.01     1.02 

Max. precip   1.03      1.02    

Annual precip 1.00 1.00    1.00    1.00 1.00 1.00 

Min. temp
i
 0.90 0.87  0.58 1.07      0.94 0.80 

Max. temp   1.49        1.02  

Water supply 1.01 1.01 1.86 0.93 1.02 1.10 1.01  1.04  1.17  

Clay   0.97  1.01      0.97  

Sand   1.00  0.99        

Silt 1.01    1.01        

Cation ex cap. 0.99  0.89        0.95  

Depth res.
 
 1.00  0.99 0.99 1.00      0.99  

pH 0.87  0.79        0.87  

Org. matter   0.91 0.97   1.04   1.01 0.97 1.00 

Ca. carbonate 0.90 0.92 0.81 0.68 0.99      0.99 0.98 

Time since fire 1.02 1.01 0.99 0.99     0.98 0.97   

Fire frequency    1.27         

Tree cover 0.95 0.97 0.94 0.93 1.01 1.02 1.03 1.02 1.03 1.03 1.02 1.00 

Shrub cover           1.10  

Longitude 1.00  1.00    1.00  1.00  1.00  

Latitude 1.00  1.00  1.00  1.00    1.00  

AUC 0.81 0.79 0.92 0.88 0.86 0.84 0.88 0.87 0.96 0.96 0.85 0.80 
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Tree Species 

 
Variable Quaking 

Aspen 

Chokecherry Douglas-fir Willow ssp. Lodgepole 

Pine 

Model DP P DP P DP P DP P DP P 

Intercept 0.01 0.00 0.00  0.01 0.00 0.05 0.00 0.00 0.00 

Elevation           

Slope         0.96  

Aspect (cos)         1.06  

Aspect (sin)       1.03  0.97  

Wetness index       1.22  1.15  

Land. curv       0.54    

S. radiation
 

          

Slope position       3.94    

Min. precip      1.00   1.04 1.03 

Max. precip       1.00    

Annual precip 1.00 1.00 1.00 1.00 1.00 1.00   1.00 1.00 

Min. temp
i
       0.85 0.97 0.75 0.82 

Max. temp     0.91      

Water supply       0.89    

Clay           

Sand       0.99    

Silt           

Cation ex cap.           

Depth res.
 
           

pH         0.99  

Org. matter 1.06 1.08   1.12 1.12   1.09 1.09 

Ca. carbonate           

Time since fire           

Fire frequency           

Tree cover           

Shrub cover 0.93 0.91   0.68 0.67 0.54 0.76 0.75 0.93 

Longitude 1.00          

Latitude 1.00      1.00  1.00  

AUC 0.89 0.86 0.78 0.78 0.88 0.87 0.77 0.76 0.97 0.96 

 

 


