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Abstract

Proteins are critical to the function of cells and to life. It is well established that changes to the DNA

sequence (genotype) of a protein can have a significant impact on how they function or interact within

the cell. Understanding the mapping between changes in a protein genotype and how those changes

modify an organism phenotype is a largely unsolved problem in biology. Solving this problem will require

integration of experimental methods with computational and mathematical approaches. In this thesis,

we utilize both computational and mathematical methodologies. We start by using statistical methods

to investigate potential physical features that can explain epistasis in proteins. Here we find a number

of intuitive features that play a role, but we can only explain ∼30% of the observed epistasis in both

protein binding and folding. Next, we use molecular dynamics to inform statistical models and predict

the spectral sensitivity of opsin proteins with high accuracy. Following that, we investigate a suite of fast

methods for predicting protein-protein binding affinity, finding their performance to be largely context

dependent. Lastly, we explore using two different molecular modeling techniques to calculate free energies

and build a watch list of antibody escape mutations for the current COVID-19 pandemic.
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Chapter 1: Introduction

1.1 Statistical and molecular modeling of proteins

Proteins play a crucial role in nearly all biological processes in cells. They are mediators for processes

such as energy transport, immune response, and color vision. When proteins are generated in a cell, it is

possible for errors to occur in their sequence; called amino acid substitutions or mutations. When these

mutations occur, the proteins can malfunction and lead to disease or alternatively provide better immune

response or other positive outcomes. Conversely, when mutations occur in viruses or antigens, they can

change in such a way to escape immune response yet still be functional enough to wreak havoc on their

host. These points highlight that understanding and predicting how proteins function and interact —

especially as they evolve and mutate — is key to developing better drugs and therapeutics. While there

are many existing experimental methods designed to better understand proteins, they are often limited

by low throughput and resolution and are unable to determine atomistic mechanisms.

Molecular modeling provides a conduit to understand mechanisms that experimental methods do

not have the resolution to decipher. This form of modeling can be used to simulate protein systems

under physiological condition at atomistic resolution, with force field inaccuracy being one of the greatest

limitations. Molecular dynamics is a form of molecular modeling that uses full physical descriptors of

atoms, bonds, and forces to replicate how a given system progresses in its environment (e.g., membrane,

water and ions). One caveat however, is that molecular dynamics can require long simulation times and

large computation power to obtain accurate results. While still less costly compared to some experimental

methods, these simulations can still take time on the order of days, weeks, or months depending on the

system and desired outcomes.

Statistical modeling on the other hand relies on a priori information and statistical principles rather

than rigorous simulation, thus saving time. Such methods can be used to predict the effects of mutations

on proteins for quantifiable phenotypes, like binding affinity. Statistical methods can also be used to

build mechanistic pictures based on what elements are most important or contribute most strongly to a

given effect. While these methods are fast, they tend to exclude relevant information like flexibility or

conformation — a limitation since proteins are dynamic systems. To improve on this, it is possible to

utilize the rigor of molecular dynamics simulations and resulting trajectories on the wildtype structure

as input files for statistical methods to ascertain the effects of mutation sets quickly.
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1.2 Quantification of protein function and interaction

All proteins start out as an unfolded string of amino acids. In order to function, most proteins must

fold into a well-defined 3D structure. There is an energy associated with this folding process that can

be quantified by comparing the Gibbs free energy (G) between the folded and unfolded state. Statistical

mechanics tells us that systems in equilibrium will spend more time in lower free energy states. For most

proteins to be functional, the folded state must have a lower Gibbs free energy than the unfolded state.

Said another way, the Gibbs free energy difference between the folded and unfolded states determines

stability and can be given by Equation 1.1 and shown visually by Figure 1.1:

∆Gfold = Gfolded −Gunfolded. (1.1)

Figure 1.1: Example of change in the Gibbs free energy due to protein folding

Analogous to folding, proteins can interact with other bio-molecules by binding to them with a certain

free energy. In order for an antibody to fulfill it’s purpose of inhibiting an antigen it needs to be able to

bind to same receptors said antigen uses to affect a human, or animal, cell. As a corollary to folding, we

can use the change in Gibbs free energy of binding (also called binding affinity) as a metric for binding

strength. The free energy difference will indicate whether the bound state is preferred or not ( Equation

1.2, Figure 1.2):

∆Gbind = Gbound −Gunbound. (1.2)

Here, ∆Gbind is the change in the Gibbs free energy of binding and Gbound, Gunbound correspond to

the bound and unbound state respectively.
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Figure 1.2: Example of change in binding free energy (affinity)

We are particularly interested in how these free energy differences change upon mutation. Most

notably, whether or not a given mutation will disrupt binding or folding. To calculate this, we compare

the difference in the changes of free energy, or the ∆∆G value. More specifically:

∆∆G = ∆Gmut −∆Gwt. (1.3)

Where “mut” and “wt” correspond to the mutant and wild-type sequences respectively. A smaller

value of ∆∆G for folding/binding indicates that the mutation has very little impact on the ability of the

protein to fold or bind.

1.3 Linear models and their applications on protein function

Statistical methods can help simplify and explain complex phenomena, including complex aspects of

protein interactions that may only be dependent on structural effects or intrinsic attributes. For those

cases, it’s possible to use molecular dynamics to develop a picture of the conformational changes the

molecule goes through or utilize a priori information about the proteins or amino acids themselves as

inputs for statistical models. Linear models assume that a given response variable is directly proportional

to a sum of independent variables, scaled by a coefficient. More succinctly,

Y = c1 ·X1 + c2 ·X2 + c3 ·X3 + . . . (1.4)

where Y is the response variable, ci are scalar coefficients, and Xi is the value of a given independent

variable. The assumption here is that the response variables are truly independent with no multicollinear-

ity. In the case of proteins, the response variable could be the Gibbs free energy difference, as is the case
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with some the aforementioned models that are mostly properties like the entropy, VDW forces, and other

metrics. Or in the case of epistasis, it can be the difference between the Gibbs free energy of different

mutational states. Alternatively, it could be another phenotype of the system such as in the case of

opsins where parameters generated via molecular dynamics were used as inputs to predict their spectral

sensitivity.

1.4 Overview of dissertation

In this dissertation I will demonstrate how to use molecular and statistical modeling to determine

structure function relationships in proteins and protein systems:

1.4.1 Searching for a mechanistic description of pairwise epistasis in pro-

tein systems

When two or more amino acid mutations occur in protein systems, they can interact in a non-additive

fashion termed epistasis. One way to quantify epistasis between mutation pairs in protein systems is by

using free energy differences: ε = ∆∆G1,2 - (∆∆G1 + ∆∆G2) where ∆∆G refers to the change in the

Gibbs free energy, subscripts 1 and 2 refer to single mutations in arbitrary order and 1,2 refers to the

double mutant. In this study, we explore possible biophysical mechanisms that drive pairwise epistasis

in both protein-protein binding affinity and protein folding stability. Using the largest available datasets

containing experimental protein structures and free energy data, we derived statistical models for both

binding and folding epistasis (ε) with similar explanatory power (R2) of 0.299 and 0.258, respectively.

These models contain terms and interactions that are consistent with intuition. For example, increasing

the Cartesian separation between mutation sites leads to a decrease in observed epistasis for both folding

and binding.

1.4.2 Short-wavelength-sensitive 2 (Sws2) visual photopigment models com-

bined with atomistic molecular simulations to predict spectral peaks

of absorbance

For many species, vision is one of the most important sensory modalities for mediating essential tasks

including navigation, predation and foraging, predator avoidance, and numerous social behaviors. The

vertebrate visual process begins when photons of light interact with rod and cone photoreceptors that

are present in the neural retina. Vertebrate visual photopigments are housed within these photoreceptor

cells and are sensitive to a wide range of wavelengths that peak within the light spectrum, the latter of

which is a function of the type of chromophore used and how it interacts with specific amino acid residues
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found within the opsin protein sequence. Minor differences in the amino acid sequences of the opsins

are known to lead to large differences in the spectral peak of absorbance (i.e. the λmax value). In our

prior studies, we developed a new approach that combined homology modeling and molecular dynamics

simulations to gather structural information associated with chromophore conformation, then used it to

generate statistical models for the accurate prediction of λmax values for photopigments derived from

Rh1 and Rh2 amino acid sequences. To build a model that can predict the λmax using our approach

presented in our prior studies, we selected a spectrally-diverse set of 11 teleost Sws2 photopigments

with known amino acid sequences and λmax values are known. The final first-order regression model,

consisting of three terms associated with chromophore conformation, was sufficient to predict the λmax

of Sws2 photopigments with high accuracy.

1.4.3 Analysis of Software Methods for Estimation of Protein-Protein

Relative Binding Affinity

Here, eight non-rigorous computational methods were assessed using eight antibody-antigen and eight

non-antibody-antigen complexes for their ability to accurately predict relative binding affinities (∆∆G)

for 654 single mutations. We found that Rosetta-based JayZ and EasyE methods classified mutations as

destabilizing (∆∆G < -0.5 kcal/mol) with high (83–98%) accuracy and a relatively low computational

cost for non-antibody-antigen complexes. Some of the most accurate results for antibody-antigen systems

came from combining molecular dynamics with FoldX with a correlation coefficient (r) of 0.46, but this

was also the most computationally expensive method. Overall, our results suggest these methods can be

used to quickly and accurately predict stabilizing versus destabilizing mutations but are less accurate at

predicting actual binding affinities. This study highlights the need for continued development of reliable,

accessible, and reproducible methods for predicting binding affinities in antibody-antigen proteins and

provides a recipe for using current methods.

1.4.4 Unfinished Works

1.4.4.1 The Effect of Mutations on Binding Interactions Between the

SARS-CoV-2 Receptor Binding Domain and Neutralizing Antibod-

ies

1.4.4.2 An EvoDevo study of visual opsin dynamics and spectral modeling

in salmonids
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2.1 introduction

Multiple amino acid mutations can interact in biological systems, leading to nonadditive effects termed

epistasis. While a general understanding of the concept of epistasis has existed for many years, the

prevalence of epistasis, or its importance in biological systems, is still a matter of debate [3, 4, 5, 6, 7].

Some believe it is a major force in evolution, either by constraining the available pathways for systems to

evolve, by counteracting mutations that reduce fitness through compensatory effects, or by contributing

to a more rugged fitness landscape [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Others have explored the

epistatic effect between sets of beneficial mutations, finding that epistasis is pervasive and a key aspect

of adaption, but leading to diminishing returns or negative epistasis [12, 21, 22, 23, 24]. Other studies

using RNA viruses have shown that epistasis is prevalent and likely a mechanism for their evolution

[25, 26, 27, 28, 29, 30]. Epistasis has also been shown to be a likely contributing factor to drug and

antibody resistance of influenza A, HIV-1 and other pathogens [14, 26, 31, 32], and for general disease

susceptibility in humans [33]. Finally, the complexity that epistasis provides in understanding mutation
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effects must be accounted for in protein engineering and design [34, 35, 36, 37].

For pairs of simultaneous mutations in proteins (we will refer to these as “double mutations”), epistasis

can be expressed in terms of free energy differences:

ε = ∆∆G1,2 − (∆∆G1 + ∆∆G2) (2.1)

Where ∆∆G1,2 corresponds to the change in the folding or binding free energy due to the double

mutation, and ∆∆G1 + ∆∆G2 refers to the sum of the constituent single mutation free energy changes.

This nonadditivity can be caused by direct interactions between mutational sites, or by indirect effects

such as conformational perturbations. Epistasis is positive when the double mutant is more stabilizing

than the sum of the constituent singles (ε < 0) and negative when the double mutant is more destabilizing

than the sum of the constituent singles (ε > 0).

Despite its importance to understanding biological systems, a comprehensive mechanistic picture of

the drivers of epistasis in proteins is not known. An early attempt to explain epistasis mechanisms is

a study by Wells [38]; they concluded that features like separation distance, electrostatic interactions,

and conformational perturbations were likely contributors. However, this conclusion was based on a

small data set containing a total of 12 folding and binding systems, with less than 75 total multiple

mutations. More recent studies have examined specific protein systems like TEM-1 β-lactamase [39, 40]

and the IgG-binding domain of protein G [41], finding pervasive negative epistasis. Long-range epistasis

has also received attention. Gromiha et al. proposed that distant residues that are part of a specific

local group (they defined this as a rigid cluster) could lead to epistasis [42]. Other researchers have

used tools like molecular dynamics to analyze if networks of interactions can mediate long-range epistasis

[43]. Classification systems have also been developed. Jemimah et al. used structural features to build

a model to classify whether mutational pairs would be additive (i.e., not epistatic) [44]. These previous

studies provide a basis for understanding possible contributors to epistasis and some even offer predictive

capability, however they do not provide a complete understanding of epistasis mechanisms and their

interactions.

In this study, we determine biophysical drivers of pairwise epistasis in protein systems and rank

their contribution to the observed epistasis, ε (Equation 2.1). We used protein structural data, protein-

protein binding affinities, and protein folding stabilities from the largest, most diverse datasets currently

available. We explored possible relationships between the observed epistasis and features that are intrinsic

to both the proteins and the mutated residues. A statistical model selection procedure was performed

to determine the features that are most important to explaining the observed epistasis. The models
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determined for binding and folding have similar and modest predictive power. Both models contain

similar features that include separation distance and charge interactions. Our work serves as a stepping

stone to further our understanding of the biophysical drivers of epistasis, and to build future models with

more complex features and interactions.

2.2 Methods

2.2.1 Curating experimental data

Experimental binding affinity data was obtained from SKEMPI v2.0 [45] and folding stability data

from ProTherm 4 [46]. Since the focus of our study is pairwise epistasis, we extracted a subset of the data

consisting of all instances where there was data for a double mutant and the corresponding constituent

singles. For both folding and binding data, values were converted to kcal/mol. A temperature of 298 K

was used if not specified in the dataset. Averages were calculated for mutations that included multiple

free energy values. The attributes in the resulting curated folding and binding datasets used in our study

include the PDB ID, protein complex name, the mutation(s), and either binding or folding free energy

values. The total number of data points for double mutants with constituent single mutants were 572

from 58 protein-protein complexes for binding, and 204 from 30 protein systems for folding. Epistasis

was calculated for each double mutation data point using Equation 2.1, that is, by taking the difference

between the free energy change due to the double mutation and the sum of the free energy changes due

to the constituent single mutations. Protein structures used for analysis were acquired from the RCSB

Protein Data Bank (PDB) [47].

2.2.2 Extracting Features as Possible Drivers of Epistasis

For electrostatics, and other categorical features described below, the explicit wildtype-mutant pairs

are henceforth denoted separated by a semicolon for simplicity: wt1wt2;mut1mut2.

2.2.2.1 Amino Acid Properties

To investigate the effect of electrostatics on epistasis, we classified amino acids as positively charged

(+), negatively charged (-), or neutral (0). To incorporate every wildtype-mutant pair state would be

infeasible due to overparameterization, as it would result in 34=81 possible categories (++;--, ++;-

+, ++;+-, +-;--, ...). To avoid overparameterization, we explored various abstractions of this data,

incorporating this into our model selection process (detailed below). The resulting charge contribution

was given by a simplified charge-interaction scheme with pairs belonging to one of three categories:

attractive (+- or -+, denoted “A”), repulsive (-- or ++, denoted “R”), and neutral (all other cases,
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denoted “0”). The reverse of each wildtype-mutant states were classified as the same (e.g. 0;A = A;0),

resulting in four categories: 0A, 0R, AR, and 00 to capture all possible electrostatic interactions. Note

that the AR case was not present in either dataset.

To include the change in size for the constituent amino acids we used the van der Waals volume in

Å. To capture the net effect due to the change in size for both sites we used the metric (referred to as

sizenet.

sizenet = | sizem1 - sizewt1| + | sizem2 - sizewt2| (2.2)

where wt and m correspond to the wildtype and mutant amino acids, respectively, and 1 and 2 denote

the amino acid sites in an arbitrary order. Under this scheme, if one or both sites undergo a large/small

change in volume occupancy the corresponding metric will be large/small respectively, even if they are

in opposing directions.

To include the effect of hydrophobicity, each residue is classified as either “H” for hydrophobic or “P”

for polar. Using all possible 16 categories would be possible, but risk overfitting. We instead found the

following abstraction: a boolean value (“0” or “1”) that denotes whether the net hydrophobicity of the

pair changed upon mutation. For example, HP;PH would give 0 since the net hydrophobicity remained

the same. By contrast, PP;HP or PP;HH would both give 1, since the net hydrophobic state changed

upon mutation.

2.2.2.2 Structural Properties

Separation distance was defined as the Cartesian separation between the alpha carbons for each

mutational site. This Euclidean distance r was calculated using the x, y, z coordinates for the mutation

sites via the standard formula:

r =
√

(xwt1 − xwt2)2 + (ywt1 − ywt2)2 + (zwt1 − zwt2)2 (2.3)

Secondary structure information was included by considering whether a given mutational site was

located in an alpha helix (“H”), beta sheet (“S”), or loop (“L”). Secondary structure content was de-

termined using a PyMol script [48]. As with other categorical features overparameterization may be a

concern, though in this case the explicit consideration only has nine possible cases. We tested the possible

abstractions, ranging from explicit consideration of the structures at each site (e.g., HL,LL,LS,...) to the

simplest case of a boolean value denoting whether both sites belong to the same type of structure (“0”)

or different structures (“1”).
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We also considered the effect of solvent accessible surface area (SASA): a metric describing whether

a residue is exposed or buried. To calculate the SASA, we first prepared the PDB files using pdbfixer

from the OpenMM software suite [49], to add missing residues, replace non-standard residues with their

standard equivalents, and add missing hydrogens. The repaired structures were then processed with

FoldX [50] to generate mutations using the BuildModel command. DSSP v3.0.0 [51] was then used to

calculate the absolute SASA (SASAabs) for each residue of interest. Both absolute and relative SASA

were considered, relative SASA (SASArel) was calculated using the empirical max accessible surface area

(ASAmax) generated by Tien et al [52] via the formula:

SASArel = SASAabs / ASAmax (2.4)

Since SASA changes affect both wildtype and mutant residues, we used a modified version of 2.2

replacing sizenet with SASA.

We also included classification information. For binding, we included the type of protein-protein

complex broken into five categories, based on the information provided in the SKEMPI v2.0 database:

antibody-antigen (AB/AG), T cell receptor-peptide bound major histocompatibility complex (TCR/pMHC),

Cytokine-Cytokine receptor (Cyto/Cyto), GTPase-other, and non-specific protein-protein interaction

(Pr/PI) which functioned as the reference category for the statistical models. We also included a boolean

value indicating whether or not the mutational sites occur on the same (“0”) or different (“1”) protein

chains, as sites which occur on the same chain may have a different effect on binding than if they occur on

opposing chains. For folding, we included the system size given by the total number of residues acquired

from the PDB.

2.2.3 Statistical Analysis

To analyze the relationship between epistatic effect and separation distance, we conducted a likelihood

ratio test that compares a null model (where separation distance is unrelated to epistasis) against an

alternative model (where epistasis decays with increasing separation). More precisely, we defined the

null model to be that epistasis values are sampled from a normal distribution that is independent of the

separation between residues. For the alternative model, epistasis values are sampled from a normal (same

mean as the null case) with a standard deviation that decays exponentially as a function of separation

according to aeα·r where r is the separation between residue site alpha-carbons (Equation 2.3) and a and

α are the curve’s parameters estimated by maximum likelihood for the dataset. This maximum likelihood

was determined by a grid-search method, considering all possible a and α, taking the resulting model
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with the largest likelihood. The likelihood ratio is given by the ratio of the log of the two likelihoods of

the data under the two models:

Λ(ε) =
L(θ0|ε)
L(θ1|ε)

→ log(Λ(ε)) = log(L(θ0|ε))− log(L(θ1|ε)) (2.5)

where L refers to the likelihood, log is the natural logrithm, and θ0θ1 correspond to the null and alter-

native models respectively. Small values of Λ indicate that the alternative model has more explanatory

power than the null. We first calculated the likelihood ratio for the experimental data, Λexp. In order to

determine statistical significance of Λexp we then obtained the distribution of Λ under the null through

parametric simulation. Specifically, we simulated datasets using the mean and standard deviation of

the experimental epistasis data. We then repeated the fitting exercise used on the real dataset for the

simulated dataset, using the same separation data, and calculated Λ. This process was repeated 1000

times to obtain the distribution of Λ under the null: Λsim. The p-value for the test was then calculated

as the proportion of Λsim less than or equal to Λexp.

Linear statistical models were used to determine the biophysical features that are best able to explain

the observed epistasis. The absolute value of the epistasis, ε, was used as a response variable for our

model building. The choice to use the absolute value was necessary to ensure a monotonic relationship

between the features and the response variable, as assumed when using linear models. One could imagine

analyzing positive and negative epistasis separately; however, this was not possible due to small sample

sizes. All features described above were considered in a standard model selection procedure, including

all pairwise interactions terms. For any features where we considered more than one level of abstraction,

only one level was included in any given model. To evaluate model performance, the corrected Akaike

information criterion (AICc) was used. The corrected criterion was chosen over the standard AIC due

to the potential for overfitting models that contain a large number of terms given a small amount of

data [53]. Models were generated and tested using R software [54] by considering all permutations of

abstracted and non-abstracted features. Model selection was performed using a modified form of stepAIC

from the MASS [55] package to perform forward and backward selection based on AICc (further verified

by the AICc function of AICcmodavg [56] and compared to standard AIC). Forward selection explores

model space by starting with a term-less model and systematically adding terms to find the model with

the best value for a given criterion. Conversely, backward selection starts with the complete full-term

model and removes terms to find the best model. This model selection process was performed twice with

randomized input terms to avoid potential ordering bias (terms treated differently based on their position

in the initial list) and the lowest AICc values were compared for consistency. Once we verified that there
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was no ordering bias, the model with the lowest AICc for both binding and folding was used for further

analysis.

To rank the importance of features present in the final statistical models for their effect on epistasis we

compared R2 values with and without each feature and its interactions. Features with larger explanatory

power of the observed epistasis will have a larger change in R2 when removed.

2.2.4 Quantification of Experimental Error and Model Validation

In order to develop a model for epistasis, it is important to quantify how much of the observed epistasis

could be attributed to error, or noise, in the experimental data. Quantification of overall error is based on

the error in three values (∆∆G1,2, ∆∆G1, ∆∆G2), each of which were determined using a broad range

of techniques and conditions from diverse studies (e.g., 60+ for binding). A survey of six studies that

contained some of the largest observed epistasis for binding showed the experimental standard error for

∆∆G to be in the range 0.05 - 0.3 kcal/mol [57, 58, 59]. However, some studies do explicitly include the

error for epistasis (frequently termed the coupling energy). For example, in the case of barnase-barstar,

Schreiber et al., reports errors in ε from 0.2 - 0.39 kcal/mol across 33 mutation pairs [60] and Goldman et

al. reports an error of 0.3 kcal/mol across 13 pairs for an Idiotype-AntiIdiotype Protein-Protein complex

[61]. There are outliers, such as the study from Pielak, et al. with six mutational pairs in the Iso-1-

cytochrome C Peroxidase complex [62] found to have an error range of 0.4 - 1.0 kcal/mol with an average

error of 0.75 kcal/mol for six samples; an unusually large error. In summary, the reported error for

our curated binding and folding datasets are in the range of 0.2 - 1.0 kcal/mol, with mean around 0.4

kcal/mol. For the remainder of this study, we will use a slightly more conservative estimated error of 0.5

kcal/mol to quantify the amount of observed epistasis.

Since our binding and folding data comes from many different protein systems collected by a diversity

of methodologies and laboratories, there is an inherent imbalance in the quantity and quality of data for

each system. To test the robustness of our model to this bias, we applied a modified “leave-one-out”

procedure. We randomly removed 10% of the protein systems and their data, creating a subset from the

remaining 90% of systems. The model selection procedure was performed on this subset to generate a

new model. This process of removing 10% of the systems and running model selection was repeated 100

times. The resulting 100 subset models were analyzed and compared to determine which terms appeared,

their frequency of appearance, and average performance or ranking when present in a model.
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2.3 Results

To build a statistical model for epistasis in proteins we used data for binding curated from SKEMPI

v2.0 (572 mutation pairs), and for folding curated from ProTherm 4 (204 mutation pairs). We first

considered the extent to which epistasis was present in our data set. To determine this, we defined an

epistasis cutoff; values where |ε| is larger than the cutoff are considered epistatic, and other values are

not. Ideally, the cutoff would be chosen based on the experimental error or uncertainty, however, given

that our data come from a broad spectrum of methods and sources, this is not possible to determine for

the dataset as a whole.

Figure 2.1: Epistasis scatterplots for binding (left) and folding (right). Both figures use a cutoff of
0.5 kcal/mol and show data characterized as no epistasis (black), positive epistasis (blue), and negative
epistasis (red).

Figure 2.1 shows the free energy change of the double mutant as a function of the sum of individual

free energies for both binding and folding datasets with a cutoff of 0.5 kcal/mol. In both datasets there

is a marked trend for large sums of constituent single mutations (sum in Equation 2.1) to correspond

to a double mutant with free energy falling below the 1:1 line (i.e., more stabilizing that predicted by

additivity). The opposite is true for constituent mutations with smaller sums.
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Figure 2.2: Observed epistasis as a function of alpha-carbon separation between mutation sites for binding
(top) and folding (bottom). Black indicates no-epistasis using our cutoff of 0.5 kcal/mol, and blue and
red indicate positive and negative epistasis, respectively.

After ascertaining the extent to which epistasis is present in our data, we investigated how well the

separation between mutation sites could explain the epistatic effect. Figure 2.2 shows the relationship

between separation distance and the observed epistasis for binding (top) and folding (bottom). Both

show the general expected trend of less epistasis as separation increases. Both also show a larger number

of data points for distances with the largest ε values, or spread in ε (around 6-10 Å).
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Figure 2.3: Comparison between the alternative and null models for epistatic effect, ε, as a function
of separation distance, r (left). Results of log(likelihood) ratio test for separation distance with 1000
samples for simulated data for binding affinity (center) and folding stability (right). These plots show
the alternative model is a significantly better explanation of the data than the null model.

Figure 2.3 shows our analysis to determine whether the apparent decrease in epistasis with increasing

separation distance (Figure 2.2) is due to an actual relationship or a consequence of the larger number of

data points at small distances. Figure 2.3 left shows null model (σ(ε) is not a function of r) and alternative

model (σ(ε) exponentially decreases as a function of r) for the likelihood ratio analysis. Figure 2.3 center

and right shows the simulated distribution of the likelihood ratio, Λ,from the analysis with 1000 samples

for binding and folding respectively. The experimentally observed likelihood ratio is well outside the

distribution of null ratios given by the label “EXP” and has a value of -5.50 compared with the tail of

the simulation distribution minimum of -4.59. In simple terms, this results in a p-value of p < 1/1000

(p<0.001) in strong support of the alternative model.
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Table 2.1: Summary of epistasis model for binding. The leftmost column (column one) contains features.
Any categorical abstractions are listed directly below the category with right justification. Column two
gives the specific number of mutation pairs for a given category, where applicable. For complex type
specifically, the number of complexes of that type are indicated in parentheses. Column three is the
change in R2 (∆R2), i.e., how much poorer the model fits the data after removing this feature. In the
case of the full model, column three is the R2. Removal of a feature also removes all subcategories and
any interaction terms involving the feature. Column four lists coefficients for the feature/interaction term
in the full model. The rightmost column contains p-values for the features,and features within a given
category.
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Table 2.2: Summary of epistasis model for folding. The leftmost column (column one) contains features.
Any categorical abstractions are listed directly below the category with right justification. Column two
gives the specific number of mutation pairs for a given category, where applicable. Column three is the
change in R2 (∆R2), i.e., how much poorer the model fits the data after removing this feature. In the
case of the full model, column three is the R2. Removal of a feature also removes all subcategories and
any interaction terms involving the feature. Column four lists coefficients for the feature/interaction term
in the full model. The rightmost column contains p-values for the features,and features within a given
category.

Tables 2.1 and 2.2 show a summary of the binding and folding statistical models for epistasis in protein

systems, respectively. The final model for binding had an AICc value of 1418.65, with the other models

considered having AICc values ranging from 1420.86 to 1493.66. The final model for folding had an AICc

value of 481.60 with the other models considered having AICc values ranging from 482.20 to 507.90. Note

that all other models consist of the remaining permutations of all features considered. Both models have

similar predictive power in the range of 25-30%. The final selected binding model contains all features that

we considered except for hydrophobicity (seven features, 28 terms including interactions) and depends

on SASAabs and secondary structure in addition to binding specific features like the complex type. The
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folding model is simpler (five features, 12 terms with interactions), and depends on hydrophobicity and

SASArel. Features are listed in order according to their relative contribution to the explanatory power

of the full model. That is, the highest-ranked feature is the one whose removal leads to the greatest

reduction in R2. For the binding epistasis model, the largest contributor was the complex type, with a

change in R2 of 0.128 upon removal followed by charge with a change in R2 of 0.078 upon its removal.

The remaining terms each have a ∆R2 of ∼0.05 or less. For the folding epistasis model, the largest

contributor was hydrophobicity with a change in R2 of 0.151 upon removal, followed by both size and

charge with similar contributions (change in R2 of 0.0765 and 0.0695 with their removal respectively).

The remaining terms each have a ∆R2 of ∼0.045 or less.

Table 2.3: Results from 100 trials of our “leave-10%-out” model robustness test for binding (top) and
folding (bottom). The feature is indicated by the first column. The second column indicates the average
rank across all trials the given feature appeared in, lower numbers suggest more robust features. The
third column indicates the average ∆R2 from all trials the feature appeared in (higher numbers suggest
more robustness), the fourth column indicates the total number of trials a given feature occurred in out
of 100 possible, the fifth column indicates whether the feature was present in the full model, and the last
column indicates the rank of the feature in the full model

Table 2.3 shows the results of 100 trials of our “leave-10%-out” robustness test where 10% of the

available systems were randomly removed. These results show that both of our full models are highly

robust -- with the binding model being slightly more robust than the folding model. All terms present in

the full models are present in the “leave-10%-out” analysis, most occurring in all trials. Additionally, the

mean ranks of most terms are identical to the full-data binding model with more variance in the folding

model.
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Figure 2.4: Comparison of binding model of epistasis for the categories of charge (left) and complex
type (right). The mean value for a given subcategory is indicated by a black dot. The barplots show
the histograms within the categories. In parenthesis is the number of mutation pairs belonging to each
category. For the complex type, the number of complexes belonging to each category are shown in square
brackets.

Figure 2.4 further illustrates the results of our statistical model for epistasis in binding. For charge,

the subcategory for interactions involving an attractive pairing (0A) contains the most strongly epistatic

mutations. While mutations in this subcategory cover a broad range of values, many tend towards positive

epistasis; the largest value belongs to this subcategory. Neutral or constant charge states (00) show a

near normal distribution centered on zero with some low levels of epistasis. Changes involving a repulsive

interaction (0R) contain the least number of data and have a narrow distribution, with fewer large

values for ε in either direction. For the complex type category, the antibody-antigen subcategory shows

the most epistasis, including the most positive. TCR/pMHC also contains a large amount of positive

epistasis. Cytokine-cytokine is the only subcategory with a negative mean suggesting that mutations in

this subcategory tend to have negative epistasis. Generic protein-protein complexes show similar behavior

to the neutral charge category; centered on zero, broad spread, but low numbers of epistatic data points.

2.4 Discussion

Before building linear models we first determined the extent to which our datasets contain meaningful

epistasis. That is, considering there is uncertainty in the data, where should we draw the line between
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epistatic and non-epistatic values of ε? We estimated (see Methods) that the error for both datasets fall

between 0.2 - 1.0 kcal/mol with an average around 0.5 - 0.6 kcal/mol. From this, we estimated a cutoff of

0.5 kcal/mol, i.e., |ε| > 0.5 kcal/mol are considered epistatic. There are further limitations of our dataset;

the data is not from randomized studies. Instead, the experiments were generally conducted in a targeted

fashion with a priori knowledge of function. This may explain why we find more positive epistasis (more

stabilizing that additivity predicts) than negative epistasis (more destabilizing that additivity predicts)

as shown in Figure 2.1. Alternatively, it is possible that more positive epistasis is present in the data

because negative epistasis could lead to protein misfolding or non-binding events in the experiments. The

former reasoning is an artifact of how the data was generated, and the latter is related to biophysical

features of the proteins; both carry different implications for the dataset and warrant future work.

Separation distance is the most intuitive feature expected to contribute to epistasis, because residues

that are near each other are more likely to interact than those far apart. Simple visual comparisons show

a decreasing spread of epistasis with increasing distance (Figure 2.2). The folding data show this most

strongly with a sharp peak around the shortest separation distances of approximately 6 Å, dropping to

near zero at larger distances. The binding data show a possible peak around 10 Å, however, the trend is

not as clear. Additionally, with binding there is a paucity of data from 25 Å to 40 Å with only one data

point around 40 Å. Our tests using likelihood ratio methods (Figure 2.3) confirm that separation does

play a role in epistasis for both binding and folding. Our alternative model (width of possible ε values

depends on separation) was a better explanation than the null model (no relationship between separation

and ε), with a p-value of p < 0.001 in the case of binding, and p < 0.002 in the case of folding. This

indicates there is an inverse relationship between separation distance and epistasis, but does not quantify

its significance or magnitude. This effect due to separation is confirmed and quantified in our models

(Table 2.1) where both folding and binding models have negative coefficients for separation distance.

In the folding model, a 10 Å increase in separation between residues results in a decrease in epistasis

of 0.416. In the binding model, the effect of separation alone is an order of magnitude less than the

folding model and has less significance in the model (p=0.8074). Instead, the effect of separation in the

binding model is most strongly characterized by the interaction with charge. With charge alone, changes

involving attractive pairings show an increase in epistatic effect whereas changes involving a repulsive

pairing show a decrease. The interaction between charge and separation contributes an opposing effect:

as separation between residues increases, changes involving attractive and repulsive pairings cause a

decrease and increase in epistatic effect respectively. Intuitively, as separation between charged residues,

regardless of categorization, increases the net effect of charge on epistasis tends towards zero (∆εcharge +

∆εcharge:separation ∼ 0).
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In addition to separation distance, amino acid size is present in both models. Size is another feature

one might intuitively expect to contribute to epistasis: large absolute changes in size imply that voids

are created when residues change from larger to smaller, or that smaller to larger residues create steric

clashes. In both models the coefficient is positive (increases in ε occur with change in size) with more of

an effect in the case of folding (on the order of 10-2 vs 10-3 in the case of binding). Size interaction terms

differ between binding and folding. In the case of binding, when there are changes in size that occur on

different protein chains, there is a reduction in epistasis. Otherwise, for all complex types, changes in

size lead to an increase in epistasis, most strongly with Antibody-antigen complexes. For folding, sizenet

interacts with hydrophobicity and SASArel leading to decreases in epistasis. This will be discussed further

with the features specific to the folding model.

In the case of both binding and folding, there are unique features that contribute significantly to

the observed epistasis. In the case of binding, these elements only apply to binding interactions such as

the type of complex (defined by function) and whether both mutations occur on the same side of the

binding interaction. Complex type is the most significant contributor to the observed epistasis (∆R2 =

0.17) with most complexes showing less epistatic effect compared to the reference category of generic

protein-protein complexes. There is an exception with Cytokine-cytokine complexes that shows a small

increase in epistasis with a coefficient of +0.4677. The interaction side is a smaller contributor compared

to complex type (∆R2 = 0.0465), with a slight increase in epistatic effect when mutations occur on

opposite sides of the binding interaction. This is consistent with intuition; if both mutations are near

the binding interface and on opposite sides, they are more likely to directly interact, or propagate effects

at the interface. Additional features that contribute to epistasis in binding are secondary structure and

SASAabs. Secondary structure has a minor contribution, with a slight increase in epistatic effect when

residues belong to different secondary structure types. This is counterbalanced by an interaction with

separation distance, where residues that occur in different secondary structures, and are also far apart,

lead to a decrease in epistatic effect. This could be due to direct interactions between sites; if they

are close together but belong to different secondary structures, they can change these structures either

directly or indirectly. This is less likely to happen if they are further apart. SASAabs is the penultimate

feature in the model ranking with a very small coefficient (-0.006). This implies that changes in the total

exposed surface area due to the two mutations lead to small reductions in the epistatic effect.

Unique to the folding model, hydrophobicity is present, and is the strongest contributor to epistasis

with a ∆R2 of 0.1506. Changes in the net hydrophobicity lead to an increase in the observed epistasis.

This is consistent with other studies that have shown that hydrophobicity contributes to predicting folding

stabilities with double mutations [63]. Most of the other terms present in the folding model interact with
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hydrophobicity leading to a stronger effect on epistasis, and a reduction when paired with changes in

size, and changes in charge involving attractive interactions.

Since our statistical models for both binding and folding explain approximately 25-30% of the observed

epistasis, an important question is: what explains the other 70-75%? We believe the answer lies in

dynamical properties that are beyond the scope of what we investigated here. Protein complexes are

not static objects, thus static features like those considered in this study are only likely to capture some

of the true physical effect they can have on these systems. While a tool like molecular dynamics could

potentially help address this question, given the number of mutations and systems considered here, the

computational cost would be unreasonably large and will be left as a topic for future study.

Given the size of our datasets, and the imbalanced nature of the data in terms of protein systems, we

performed a “leave-10%-out” validation procedure to test the robustness of our models and determine

whether there are system-specific effects (see Table 2.2). We found that our binding model was very

robust; all terms appearing in the full model were also present in the validation trials effectively 100% of

the time (the least significant term, secondary structure, was missing from three trials). The mean rank

was also consistent between the validation trials and the full model ranking for the three most significant

terms, the 4th and 5th are switched but close enough to be within a margin of error, the 6th and 7th were

also consistently ranked. The folding model was slightly less robust. The effect of hydrophobicity was

very robust being ranked first in the full model and appearing in 99 of the 100 validation trials with a

mean rank of one. The remaining folding model terms appear between 96% to 100% of the time, however

their mean rankings are generally inconsistent with their full model rank, indicating that while they are

important to explaining epistasis we cannot be as certain of their relative contribution.

A limitation in the current study, that is also a limitation for all similar studies, is the lack of

comprehensive, diverse, and unbiased datasets. Given the challenges associated with measuring binding

or folding free energies for a large number of mutants, these datasets are built with narrow focus and

small sample sizes. Such databases tend to be biased toward systems of particular interest. Additionally,

they will not contain mutations that result in a nonviable protein or system. This does not make the

data any less relevant since in nature proteins must be viable, and thus we should expect similar results

(e.g., the preponderance of positive epistasis observed in this study). If we want to understand the nature

of epistasis at the level of protein stability, we need to study it across more protein systems in a more

systematic fashion. To build a truly predictive model of epistasis, dynamic properties would need to be

considered and a larger, more representative sample of data would need to be accessible.



23

2.5 Conclusion

In this study we investigated possible mechanisms and determined statistical models for pairwise

epistasis in proteins based on the largest, most diverse, experimental data available. Mechanistic features

were investigated that are intrinsic to the mutating amino acids (e.g., charge, hydrophobicity) or to the

proteins (e.g. secondary structure, distance between mutational sites). Using a model selection procedure

we ranked these features by their power in explaining the observed epistasis. The resulting models for

both binding and folding had similar explanatory power of 25-30% and were composed of similar high-

ranked features. The features included in both models were charge, separation distance, and residue size.

The largest contributing features were complex type for binding, and hydrophobicity for folding. Our

results shed some light on the mechanisms for pairwise epistasis in proteins, and highlights the need for

larger datasets. Our study also suggests that development of a truly predictive model for epistasis will

likely require difficult to ascertain features such as conformational changes, bond formation, and other

propagated mutational effects.
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3.1 Introduction

For many animals, vision is a critical sensory modality that facilitates essential tasks that include

navigation, predation and foraging, predator avoidance, and numerous social behaviors. In vertebrates,

vision is initiated when photons enter the eye and interact with rod and cone photoreceptors found

within the neural retina. Specifically, light is detected by photosensitive visual photopigments that are

housed within the folded membrane of photoreceptor outer segments. Upon the absorbance of photons,

these photopigments activate a specific phototransduction cascade that results in a change in membrane

potential. Once hyperpolarized, visual photoreceptors cause a change in neurotransmitter release that

propagates neural signals through other retinal neurons that ultimately lead the visual centers of the

brain [64, 65, 66].

A vertebrate visual photopigment consists of a transmembrane opsin protein that is covalently linked

to a vitamin A-derived chromophore. Indeed, it is the interaction of the chromophore with specific amino

acids of the protein sequence of the opsin that results in a broad array of different spectral peaks of ab-

sorbance (i.e. the λmax value) [64, 65, 66, 67, 68, 69]. In the visual system, the predominant chromophores

are either based on 11-cis retinal (i.e. rhodopsins or vitamin-A1 photopigments) or 11-cis-3,4-didehydro

retinal (i.e. porphyropsins or vitamin-A2 photopigments) [64, 65, 66, 70]. Throughout vertebrate evo-

lution, the associated visual opsin genes and their gene products have diverged into five classes: these

comprise a long-wavelength-sensitive (LWS ) opsin gene class, two short-wavelength-sensitive (SWS ) opsin

gene classes (SWS1 and SWS2 ), and two medium-wavelength-sensitive (mws) opsin gene classes called

rhodopsin-like 1 (RH1 ) and rhodopsin-like 2 (RH2 ), respectively [64, 65, 66, 71]. In general, RH1 opsins

form the highly sensitive visual photopigments (rod opsins) of rod photoreceptors, which typically mediate

dim light or scotopic vision by maximally detecting wavelengths at around 500 nm [64, 65, 66], although

λmax values can shift to shorter wavelengths (e.g. 470-490 nm in some deep-sea fishes [72, 73, 74]. The re-

maining four opsin gene classes (LWS, SWS1, SWS2 and RH2 ) form the visual photopigments expressed

in cone photoreceptors that mediate bright light or photopic vision. Color vision is possible when at

least two cone photopigments with distinct λmax values and overlapping spectral absorbance profiles are

present within distinct cone populations, thus providing differential input to other retinal neurons [75].

Cone opsins of the SWS1 class typically produce photopigments with λmax values between 360 nm and

450 nm (i.e. perceived as ultraviolet (UV) to violet parts of the light spectrum), SWS2 photopigments

present with λmax values of ∼400-470 nm (perceived as blue), RH2 opsins produce photopigments with

λmax values of ∼480-530 nm (perceived as blue-green), whereas LWS photopigments have λmax values

that are largely sensitive to a range of wavelengths from 500-570 nm (perceived as red) [64, 65, 66, 71].
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These spectral ranges are based on photopigments that possess a vitamin-A1-derived chromophore (i.e.

rhodopsins); whereas for porphyropsins, the presence of a retinal chromophore based on vitamin-A2 shifts

the λmax value towards longer wavelengths (e.g. up to ∼620 nm [64, 65, 66, 70, 76], a spectral property

that is more pronounced the longer the wavelength [77].

There is a great deal of diversity within each class of vertebrate opsins, since visual photopigment

proteins are under strong natural selection [78, 79, 80]. This diversity is particularly striking within

the teleost fishes, where many of the opsin genes have been tandemly or otherwise replicated, followed

by subfunctionalization or neofunctionalization to generate new photopigments with distinct λmax values

[73, 1, 81, 82, 83]. For example, many fish genomes harbor two or three copies of the sws2 cone opsin gene

[84], the subject of the present study. In some cases, only minor changes in the amino acid sequence have

resulted in major changes in the λmax value, as was demonstrated for the A269T (Amino acid numbering

in this study is based upon bovine RH1 sequence numbering) change in the Sws2a opsin of the spotted

flounder (Verasper variegatus) that resulted in a photopigment that is sensitive to longer wavelengths

(i.e. λmax = 485 nm instead of 466 nm) [2].

There is great interest in understanding the evolutionary, as well as the molecular mechanisms, that

underlie the diversity of visual photopigments and their spectral peak absorbances. In general, there

are two main experimental techniques for defining the λmax value of visual photopigments, namely mi-

crospectrophotometry, which analyzes the spectral profile of photoreceptors directly, but only with fresh

retinas, and spectral tuning site substitutions cannot be studied in isolation [85] or in vitro regeneration

[65, 2, 86, 87, 88]. The latter is a popular, yet highly specialized and labor-intensive, approach that has

been used to deduce the spectral properties of photopigments in isolation from wildtype and inferred

ancestral protein sequences, followed by reconstitution with chromophore (usually 11-cis retinal) and

experimental measurement of absorbance from 200-800 nm [86, 89, 90, 91, 92]. This technique, when

combined with site-directed mutagenesis, has illuminated the contributions of specific amino acid sub-

stitutions to shifts in the λmax value [65, 86, 87, 91]. Although success of such studies has permitted

the accurate prediction of the spectral peak of absorbance for some opsin classes (specifically, LWS [93]

and UV-sensitive SWS1 [87] photopigments), such efforts are far from sufficient to understand pigment

function that allows prediction of the λmax value based entirely upon the amino acid sequence [69, 94];

this is particularly the case for both SWS2 and RH2 photopigments, where experimental interventions

are frequently employed. One of the long-term goals of our studies is to develop computational tools

that result in straightforward, genome-to-phenome, predictive pipelines, as is the case for the application

of spectral modeling and atomistic molecular simulations for both the Rh1 and Rh2 classes of visual

photopigments [73, 95].
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The λmax value of any functional photopigment in its inactive form is determined by the conforma-

tion adopted by the chromophore in the dark state, a function that is dependent upon the shape and

composition of the retinal binding pocket, as well as the counterions that stabilize the Schiff base linkage

of the chromophore to lysine (K) 296 of the opsin protein [96, 97, 98]. Therefore, our aim of gener-

ating genome-to-phenome pipelines for predicting the λmax values of visual photopigments from their

amino acid sequences, has been to increase an understanding of chromophore conformation via atomistic

molecular simulations and to use this structural information to generate predictive models [73, 95]. The

approach includes: 1) building homology models for classes of visual photopigments, using the solved

crystal structure of bovine rod opsin (RH1) as a template [99]; 2) carrying out atomistic molecular dy-

namics (MD) simulations using homology models of photopigments with experimentally-measured λmax

values; 3) identifying structural features of the chromophore and opsin that are correlated with a par-

ticular λmax value; and 4) using these features to generate a statistical model that can in turn be used

to predict λmax values of other photopigments. This approach was successful for predicting λmax values

of teleost Rh1 photopigments [73] and a closely-related Rh2 class of teleost cone photopigments [95].

Notably, this approach also revealed structural features of the Rh1 protein, namely the presence vs. the

absence of a C111-C188 disulfide bridge that powerfully predicts λmax values >475 nm when present vs.

λmax values <475 nm when absent [73].

In this present study, we test the hypothesis that the approach outlined above and in our previous

publications [73, 95], can also successfully predict λmax values of a class of cone photopigments that

are phylogenetically-distinct from the known bovine RH1 template, namely the teleost Sws2 class. The

SWS2 opsins are more divergent from RH1 than RH2 vs. RH1 [71, 83] and are known to be notoriously

difficult when attempting to successfully predict λmax values from the amino acid sequence alone [64, 65].

Furthermore, teleost Sws2 opsins display only ∼48-51% amino acid sequence identity to the bovine

rod opsin sequence (Table 3.1). By contrast, our previous studies tested this approach for teleost Rh1

photopigments, with ∼49-83% identity to bovine rod opsin [73], and Rh2 cone pigments, with ∼63-72%

identity to bovine rod opsin [95]. Here we also test the hypothesis that this approach will work for a class

of photopigments with a broader, and more short-wavelength-shifted range of λmax values (i.e. 397-485

nm; Table 3.1) than the Rh1 (444-519 nm) or Rh2 (467-528 nm) photopigments used in our prior studies

[73, 95].

In this study, we show that this approach was highly successful at predicting spectral peaks of ab-

sorbance values of 11 teleost Sws2 opsins for which sequences and λmax values are known (Figure 3.1,

Table 3.1). We identified three parameters of chromophore conformation that together accurately predict

the λmax value. Furthermore, we discuss these results in the context of known amino acid substitu-



28

tions that likely contribute to divergent λmax values [84]. These studies, therefore, not only provide a

valuable extension of our prior work, but also guidance and strategic directions for the improvement of

functionally-predictive photopigment modeling.

Figure 3.1: Evolutionary relationships of teleost Sws2 opsin proteins used in the simulations, as inferred
by PhyML.Red filled circle indicates the speciation event that occurred prior to the duplication (green
filled circle) of the sws2 opsin genes in teleosts [1]. The duplication generated the sws2a clade, which
encode photopigments with λmax values that are shifted to longer wavelengths, and the sws2b clade,
which encode photopigments with short-wavelength-shifted λmax values. The blue filled circle indicates
the amino acid substitution A269T (with numbering standardized to the bovine rod opsin sequence) that
is likely to be the spectral tuning site important for a further shift of the λmax value of V. variegatus
Sws2a to longer wavelengths [2]. Experimentally measured λmax values (in nm) are indicated next to the
name of each opsin and are color-coded for λmax values that are <430 nm (violet) or >430 nm (blue)
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Fish [Reference] Target Sws2

Sequences

UniProt Acces-

sion Number

Sequence Iden-

tity (%) vs.

Bovine RH1

Experimentally

Measured

Spectral Peak

of Absorbance

(nm)

Spotted flounder [2]
Sws2a A0A1L7P076 51.27 485.4

Sws2b A0A1L7P082 49.30 415.8

Slime flounder [2] Sws2a A0A1L7P074 50.70 451.9

Olive flounder [2] Sws2a D7RP09 49.86 465.6

Guppy [100] Sws2a A0A140JTJ4 48.02 438

Sws2b A0A140JTJ5 48.31 408

Medaka[82] Sws2a Q2L6A3 50.00 439

Sws2b Q2L6A2 47.75 405

Bluefin killifish [101] Sws2a Q7T2U6 50.28 448

Sws2b Q7T2U7 49.30 397

Zebrafish [64] Sws2 Q9W6A8 47.47 416

Table 3.1: Selected Sws2 opsin sequences used for homology modeling. Sequence UniProt accession
numbers, percentage sequence identity compared to the bovine RH1 protein sequence, and experimentally
measured spectral peaks of absorbance are indicated in third, fourth and fifth columns, respectively.

3.2 Results

To develop a model to predict spectral peaks of absorbance (i.e. λmax values) from a diverse set

of teleost Sws2 cone opsins, the following amino acid sequences were selected: two from V. variegatus

(spotted flounder) [2], one from Microstomus achne (slime flounder) [2], one from Paralichthys olivaceus

(olive flounder) [2], two from Poecilia reticulata (guppy) [100], two from Oryzias latipes (medaka) [82], two

from Lucania goodei (bluefin killifish) [101], and one from Danio rerio (zebrafish) [64]. These Sws2 opsin

amino acid sequences show a wide range of experimentally measured λmax values that range from 397

nm to 485 nm (Table 3.1). Such functional divergence probably evolved as primary sws2 gene sequences

mutated and were positively conserved, which likely led to distinct conformations of the Sws2-associated

chromophore, 11-cis retinal, in the dark state (Figure 3.2).

We used a similar protocol that was shown to be successful for the prediction of Rh1 and Rh2 λmax

values [73, 95], through building homology models using bovine rod opsin (RH1) as the template [102].

RH1 opsins are primarily present in vertebrate rods [71] and are the only mammalian visual pigment
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class where the protein structure has been experimentally determined [99, 102]. Therefore, this, and in

particular the bovine rod opsin protein structure, is the only template available for accurate homology

modeling of vertebrate cone opsins. The sequence identity of the bovine RH1 template compared to

teleost Rh1 rod opsins and Rh2 cone opsins ranged from 49-83% and 63-72%, respectively; which proved

to be more than sufficient for the reliable modeling and accurate prediction of λmax values [73, 95].

In the present study, we test whether this approach is also reliable for predicting λmax values of more

evolutionarily-distant Sws2 cone opsins (Figure 3.1) that have ∼48-51% sequence identity to the bovine

RH1 template (Table 3.1). Furthermore, the selected Sws2 cone photopigments display a broader range

and blue-wavelength-shifted λmax values (i.e. 397-485 nm) compared to either Rh2 cone photopigments

or rod opsins presented in prior teleost studies: 467-528 nm for Rh2 [95] and 444-519 nm for Rh1 [73]

compared to the bovine RH1 template with a λmax value at 498 nm [72]. Therefore, this present study

also tests the capacity of our prior approach of combining homology modeling and MD simulations to

accurately predict λmax values for an opsin class that is difficult to predict from just the amino acid

sequences, that are short-wavelength-shifted compared to the bovine template, and cover 88 nm of the

electromagnetic spectrum.
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Figure 3.2: A representative 3D structure of Sws2 cone opsin (λmax values <430 nm) homology structure
(violet) with the chromophore (green) bound covalently to K296 of the opsin protein. It is inserted in a
phospholipid bilayer (gray, carbon atoms; orange, phosphorus atoms) and surrounded by water molecules
(light blue). Blue and red spheres indicate positive and negative counter ions, respectively.

Using the sequence information of 11 teleost Sws2 opsins, we built homology models based on the

bovine rod photopigment (RH1 opsin + 11-cis retinal chromophore) structure as a template (Protein Data

Bank (PDB) ID: 1U19) [102]. These homology structures with the chromophore attached covalently to

K296 within the binding pocket were placed in lipid bilayers and water models (Figure 3.2). Each of
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these systems were then subjected to 100 ns classical MD [103] simulations using the protocol described

in the Methods section.

We analyzed the MD simulations for all 11 visual photopigments to understand the dynamics and to

identify structural features associated with the chromophore and attached lysine residue (Figure 3.3A)

that could potentially be used to explain differences in the λmax values of the representative Sws2 pho-

topigments used in this study. To understand the dynamics of the chromophore within the opsin binding

pocket, we visualized the conformations of the chromophore seen in violet- (λmax values <430 nm) vs.

blue-sensitive (λmax values >430 nm) photopigments (Figure 3.3B), where we observed a relatively com-

pact cluster of chromophore conformations for blue-sensitive photopigments compared to violet-sensitive

photopigments. This difference was more evident for the β-ionone ring and two methyl groups present

at positions C9 and C13. In our previous study, the area under the curve (AUC) of root mean square

fluctuations (RMSF) served as an additional feature of the chromophore that helped to predict the λmax

values of Rh2 cone visual photopigments [95]. We, therefore, first calculated RMSF values of all the

heavy atoms of the chromophore and the linked lysine residue (LYS+RET) (Figure 3.3C) for each Sws2

photopigment as follows:

RMSF(V ) =

√√√√ 1

T

T∑
t=1

(vt − v̄) (3.1)

where T is the total number of molecular dynamics trajectory frames (V) and then calculated AUC

of RMSF values (AUC RMSF(LYS+RET)) for each Sws2 photopigment. The atoms within the blue-

sensitive photopigments clearly show lower RMSF values compared to the violet-sensitive photopigments

(Figure 3.3C), suggesting that this chromophore feature may also be useful in predicting of λmax values.

Interestingly, this outcome is the opposite to what one would anticipate based upon our prior study, in

which lower values of AUC RMSF(LYS+RET) were associated with photopigments with shorter wavelength

λmax values [95].
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Figure 3.3: Conformations and fluctuations of 11-cis retinal chromophore and attached lysine in Sws2
photopigments.A) 3D orientation of 11-cis retinal linked to K296 of the opsin protein. B) Superposition of
11-cis retinal conformations from MD simulations trajectories. C) Root mean square fluctuation (RMSF)
of 11-cis retinal linked to K296 (LYS+RET). The horizontal axis represents atoms of the LYS+RET.
Blue- vs. violet-colored ball-and-stick conformations are those associated with Sws2 photopigments with
λmax values >430 nm vs. λmax values <430 nm, respectively.

The dynamic nature of the chromophore during MD simulations suggests that we may use the ge-

ometric angles, dihedrals and AUC RMSF(LYS+RET) parameters to differentiate between blue-sensitive

and violet-sensitive Sws2 photopigments. For each photopigment, we examined a total of 19 angles (15

Torsion Angles and 4 Geometric Angles) (Figure 3.3A) formed by the heavy atoms of the lysine residue

at position 296 of the opsin covalently linked to 11-cis retinal. The model parameters that showed a

reasonable correlation to experimental λmax values were the median values of Torsions 3, 9, 10, 11, 12,

as well as Geometric Angles 1 and 3, from a total of 19 examined angles. The standard model selection

procedure was then used to determine the simplest linear regression model that best fitted to the shortlist

of parameters showing a reasonable correlation to experimental λmax values. From our model selection

procedure, we found the simplest model for the 11 Sws2 photopigments examined contained three terms:
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the median values of Torsion 3 (C15–C14–C13–C20), Torsion 12 (C19–C9–C8–C7), and Angle 3 (C3–

C7–C8) (Figure 3.4). AUC RMSF(LYS+RET) values were not identified by the model selection procedure

as being predictively useful.

Figure 3.4: Frequency distribution of Angle 3, Torsion 3 and Torsion 12 observed in each opsin simulation.
Blue and violet colors correspond to Sws2 photopigments with λmax values >430 nm vs. λmax values
<430 nm, respectively.

The full model is explicitly given by:

λmax(pred.) = 2677.5348− (17.052×Angle 3) + (5.1634× Torsion 3) + (2.3642× Torsion 12) (3.2)

The larger values of Angle 3 predicted a spectral shift towards shorter wavelengths (i.e. a violet shift),

while larger values of Torsion 3 and Torsion 12 predicted a shift towards longer wavelengths (i.e. a blue

shift). Figure 3.5 shows empirically determined λmax values vs. the model predicted values for each Sws2

photopigment analyzed, where our full model highly correlates with experimental data (R2 = 0.95). The

error in prediction

(error = | pred – exp |) ranged from 1.21 nm to 8.35 nm with an average error of 5.44 nm. To further

test our statistical model, we carried out a “leave-one-out” analysis, where each Sws2 photopigment was

removed from the regression analysis to obtain the coefficients for a model using Angle 3, Torsion 3 and

Torsion 12 parameters, and then the λmax value of the removed photopigment was predicted based upon

the new linear model. The correlation of the individual predictions based upon only 10 pigments was

reduced, but it was still highly acceptable (R2 = 0.86) (Figure 3.5). The lower correlation coefficient

derived from the “leave-one-out” approach is largely explained by the less accurate prediction of the

λmax value for the zebrafish Sws2 photopigment (i.e. experimental λmax value at 416 nm vs. “leave-one-

out” predicted λmax value at 400 nm). This less accurate prediction is likely due to Torsion 3, which

has a relatively higher median value compared to Torsion 12 with a relatively lower median value for
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zebrafish compared to the median values of Torsion 3 and Torsion 12 of Sws2 pigments from other species.

Nevertheless, our results indicate that the statistical model derived from MD simulations of predicted

Sws2 visual photopigment structures has the power to predict their λmax values with reasonable accuracy.

Figure 3.5: Experimental spectral peaks of absorbance (λmax) compared to predicted λmax values by the
full model equation 1 outlined in the main text for all 11 Sws2 photopigments analyzed.Gray lines indicate
a perfect (100%) correlation. Solid black lines and black symbols represent the linear relationships between
model-predicted and the experimental λmax values, whereas dashed red lines and red symbols show
linear relationships between “leave-one-out” predictions and experimental λmax values. Corresponding
correlation coefficients for both approaches are indicated.

To further test this approach and to simulate performance at predicting unknown λmax values for

Sws2 photopigments, we performed a “leave-one-out” approach at a species level. For each species where

both Sws2a and Sws2b opsins are represented in the dataset (Table 3.1), a subset was generated where

their Sws2 chromophore parameters were removed. A new model based on the newly generated subset

was chosen using the full model selection procedure detailed in the Methods section. This new best-fit

model was then used to predict the spectral peaks of absorbance for the omitted opsins. In this study,

there are four species with both Sws2a and Sws2b photopigments (Table 3.1), namely the medaka, the
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bluefin killifish, the guppy, and the spotted flounder. For these four species, the following models were

determined:

(i) With the medaka Sws2 photopigment removed:

λmax = 2761.5524 + 2.405× Torsion 12− 17.64×Angle 3 (3.3)

(ii) With the spotted flounder Sws2 photopigment removed:

λmax = 4201.6725− 1.4975× Torsion 10− 24.7764×Angle 1− 3.2922×Angle 3 (3.4)

(iii) With the bluefin killifish Sws2 photopigment removed:

λmax = 2706.2512− 3.1214× Torsion 10− 13.8215×Angle 3 (3.5)

(iv) With the guppy Sws2 photopigment removed:

λmax = 5624.1521 + 3.6078× Torsion 9− 1.8923× Torsion 10− 11.0413× Torsion 11

+ 16.0527× Torsion 12− 20.9014×Angle 3
(3.6)

Performance of the “leave-one-species-out” models varied with R2 values of 0.84 to 0.93 for the full

model and 0.76 to 0.94 for the “leave-one-photopigment-out” approach. This indicates that our approach

generates models with good predictive power for new Sws2 sequences with unknown λmax values that

are not included in the model selection process. However, the drop in the performance when leaving

out certain members can be attributed phylogenetic relationship among the chosen sequences and to the

fact that we are leaving out two sequences from a relatively small dataset of 11 Sws2 sequences and

leaving only nine opsin sequences to build the model using the shortlisted seven structural parameters.

Angle 3 was present in all models (equations 2-5), as well as in the full model (equation 1), and had the

largest weighting within each approach, with the exception of the model where the spotted flounder Sws2

modeling experiment was omitted. In this latter model, Angle 1 was also present and had the largest

weighting. In general, these findings imply that Angle 3 (C3–C7–C8) is a significant predictor of λmax

values for Sws2 photopigments.
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To explain the mechanistic role of 11 putative spectral tuning sites at positions 41, 47, 94, 97, 99, 109,

116, 168, 183, 269, 299 revealed by comparative analyses of Sws2a vs. Sws2b sequences [84, 2] on the

conformation of the chromophore, as predicted by Cortesi et al. (2015) [84], we carried out MD trajectory

analyses using visual molecular dynamics (VMD) via visual inspection. It should be noted that except for

positions 94 and 269, the other nine putative tuning sites are located far from the chromophore binding

pocket. Specifically, position 94 is located in close proximity to the heavy atoms (CE, N+) (Figure 3.3A)

of the K296 residue that is covalently bound to the chromophore, so this site was analyzed in detail.

In teleost Sws2b photopigments, position 94 is occupied by a cysteine (C) residue and its sidechain

invades the space next to atoms (CE, N+) of K296, resulting in reduced space available for fluctuations

of dihedrals/angles of the chromophore. By contrast, position 94 in Sws2a photopigments is occupied by

threonine (T), alanine (A) or glycine (G). The T94 residue interacts with S186 and affects the atoms (CE,

N+) of the chromophore bound to K296, while A94 and G94 lack large sidechains, thus providing space

for the fluctuation of these atoms (CE, N+). To understand the influence of the spectral tuning site at

position 94 on the fluctuation of these heavy atoms, we analyzed the dihedrals and geometric bond angles

formed by (CE, N+) atoms of K296. We found Angle 2 to be clearly distinguishable for Sws2a compared

to Sws2b photopigments, such that shorter wavelength-shifted (i.e. violet) Sws2b photopigments have

wider distributions of Angle 2 compared to longer wavelength-shifted (i.e. blue) Sws2a photopigments.

The spectral tuning site at position 269, as described by Kasagi et al. (2018) [2], is occupied by

alanine in all of the Sws2 opsin proteins analyzed in this study, except for V. variegatus Sws2a, in

which this site is occupied by threonine that results in a shift of the λmax value to longer wavelengths.

Analysis of MD trajectories reveals that position 269 is located within the chromophore binding pocket

and directly interacts with the β-ionone ring of the chromophore. The methyl group of the A269 side

chain forms favorable hydrophobic contacts with the β-ionone ring of the chromophore, but with an

A269T substitution, the hydroxyl group of threonine results in the β-ionone ring of the chromophore

being positioned more distantly. Among all the 19 structural parameters analyzed that are associated

with the chromophore, only Torsions 11 and 12 display spatial relationships such that they could be

affected by known tuning sites. Interestingly, Torsion 12 is affected by A269T and was indeed useful for

predicting λmax values as can be seen in the combined full model.

3.3 Discussion

We have developed a new model for the prediction of the spectral peaks of absorbance for teleost

Sws2 cone photopigments, with high accuracy over a wide range of λmax values (i.e. 397-485 nm).

Our approach is based on a predictive model as described in our previous studies [73, 95]. In the
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present study, this approach required Sws2 opsin protein sequence data as input and a known template

photopigment structure to build the homology models. MD simulations were then performed on these

opsin homology models, with parameters that describe the conformational change in both opsin structure

and the covalently-bound chromophore being extracted. From this, a statistical model was built. Similar

to our previous studies, our current approach revealed that the structural features of the chromophore

and its lysine attachment site play important roles in the prediction of λmax values. In fact, the final

predictive model consisted of three terms associated with chromophore conformation. This simple first-

order regression model was found to be sufficient to estimate the λmax values of Sws2 photopigments with

high accuracy. This study further highlights the versatility of our approach in reliably predicting the λmax

values of evolutionarily more distant Sws2 cone opsin sequences, with ∼48-51% sequence identity to the

bovine RH1 template.

A number of molecular and evolutionary approaches have been used in the field of visual neuroscience

to predict visual photopigment λmax values. One common strategy is the application of site-directed

mutagenesis to opsin sequences derived directly found to be expressed in a particular extant species, where

amino acid substitutions are made followed by measuring the spectral characteristics to identify potential

contributions of specific amino acid residues to any observed spectral shifts [65, 2, 86, 87, 88, 91]. A similar

strategy is to infer the amino acid sequence of the ancestral opsin sequence within a clade, followed by the

same technique to experimentally determine λmax values [72, 86]. Whereas the latter approach generally

involves investigating multiple amino acid substitutions that may or may not be directly related to spectral

tuning, the former technique frequently only studies single residue differences. Nonetheless, these methods

are frequently used together and have complemented any comparative analyses that preliminarily identify

residues that are likely to influence the λmax value of a particular photopigment (e.g. Cortesi et al. (2015)

[84]; reviewed by Shichida and Matsuyama (2009) [104]). For example, such an approach identified that

a spectral shift of the λmax value of teleost Rh2 photopigments, specifically with sensitivity in the green

region of the visible spectrum to blue, was largely due to an E122Q substitution [85, 86]. Apart from

some vertebrate LWS photopigments [93] and UV-sensitive SWS1 photopigments [87, 94], the prediction

of other cone opsin λmax values (i.e. SWS2 and RH2 photopigment classes) by manual interrogation of

the amino acid sequences alone is extremely difficult and often inaccurate [64, 65]. Experimental spectral

analyzes by MSP and/or in vitro regeneration of photopigments are not always viable options due to

the financial limitations and the demand for specialist technical expertise. As such, alternative methods

of accurately predicting λmax values to understand photopigment function and ecological adaptation

are critical. Our alternative molecular modeling-based approach is, by contrast, simple, accurate and

efficient, and does not require site by site substitutions followed by in vitro experimentation or complex
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quantum calculations. Previously, we successfully used a similar approach presented in this study to

accurately predicted a broad range of λmax values (467-528 nm) for teleost Rh2 cone photopigments

[95] and rod (Rh1) photopigments (444-519 nm) [73]. With this current investigation, our approach now

provides accurate predictions of λmax values for Sws2 photopigments from 397-485 nm (i.e. those sensitive

to violet vs. blue wavelengths). Not only is our approach useful for accurately predicting λmax values

using known spectral tuning sites, it may be used to identify and assess the spectral effects of putative

unknown residues on the spectral properties of photopigments. It should be noted, however, that the

predictions made using our modeling approach results in λmax values that are based on rhodopsins that

utilize a vitamin-A1-derived chromophore. This is also the case for experimental approaches using in

vitro regeneration protocols [65, 2, 86, 87, 88, 91]. In some vertebrates (e.g. lampreys [92, 105, 106],

many freshwater teleosts [107], lungfishes [108, 109], the green anole lizard Anolis carolinensis [110, 111];

reviewed in [64, 65, 66, 112], the visual system is based on porphyropsins that incorporate a vitamin-

A2-derived chromophore or a combination of both rhodopsins and porphyropsins. Therefore, within the

context of biological relevance, the predicted λmax values that result using our approach may have to

be converted, where appropriate, to longer wavelengths to account for the possession of a vitamin-A2-

derived chromophore in native photopigments. This is easily conducted by using a number of rhodopsin-

to-porphyropsin transformation algorithms, such as those by Loew and Dartnell [113], Harosi [114], and

Whitmore and Bowmaker [77].

One of the key elements of our predictive model is Angle 3 (C3–C7–C8), which is the dominant

parameter in predicting the λmax values of Sws2 photopigments. In contrast, the dominant parameters

for the λmax predictive models in Rh2 and RH1 class photopigments were AUC RMSF(LYS+RET) and

presence and absence of disulfide bridge, respectively [73, 95]. This suggests that the structural features

associated with spectral tuning are visual photopigment class specific. Specifically, our results show that

larger values of Angle 3 lead to greater shorter wavelength shifts of λmax values to the violet region

of the visible spectrum. Furthermore, Angle 3 is an important parameter when the “leave-one-out”

approach was applied at a species level for predicting the spectral peaks of absorbance for unknown

opsins, suggesting this parameter is broadly predictive. Other parameters affecting the prediction of

λmax values are Torsion 3 and Torsion 12, but the magnitude of their effects is reduced in comparison

with that of Angle 3. Nonetheless, like Angle 3, larger values of Torsion 3 and Torsion 12 also short-

wavelength-shifted the λmax value. Interestingly, Torsion 12 was the only element of the “three-term”

model that is likely to be directly influenced by a known or suspected tuning site (i.e. residue 269).

These results explain the possible mechanism that causes the observed long-wavelength shift in the λmax

value of the spotted flounder Sws2a photopigment. With the exception of this specific example, other
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residues affecting Angle 3, Torsion 3, and Torsion 12 cannot be pinpointed to any one particular known

or suspected tuning site. Instead, it is likely that multiple tuning sites collectively, either directly or

indirectly, influence these chromophore structural features. This finding underscores the power of the

homology modeling/MD approach, which takes into consideration the collective influence of the entire

amino acid sequence to predict λmax values rather than the sole specific contributions of individual sites.

Although predictive and useful for explaining the influence of the known tuning sites, our genome to

phenome approach does not provide chemical-physics mechanism to explain the shift in the spectral

peaks of absorbance and identification of opsin-charge determinants affecting the chromophore. Such

questions would be best answered via thorough QM (quantum mechanics)/MM (molecular mechanics)

investigation for each Sws2 sequence [115]. Nonetheless, we believe our study can provide a reasonable

starting geometry to carry out such QM/MM simulations.

Within the chromophore of the D. rerio (zebrafish) Sws2 photopigment, Torsion 3 has a relatively

higher median value compared to the median value range of Torsion 3 of Sws2 photopigments found in

other species, while Torsion 12 has a relatively lower median value compared to the median value range

of Torsion 12 of other Sws2 photopigments. These “out-of-range” median values of Torsion 3 and Torsion

12 lead to a less accurate prediction of the λmax value for the D. rerio Sws2 photopigment. Based on the

evolutionary relationships of teleost Sws2 opsin protein sequences examined in this study, it appears that

D. rerio (and maybe other cyprinids) diverged from the main sws2 opsin clade before sws2 duplicated

into sws2a and sws2b subclasses. It is possible, therefore, that the zebrafish Sws2 opsin protein holds the

retinal chromophore in a distinct conformation vs. the other Sws2 proteins investigated in this study, but

which also results in a λmax value that is similar to that exhibited by the Sws2b photopigment subclass.

Thus, teleost Sws2 photopigments may have independently evolved more than one opsin-chromophore

conformation strategy for attaining short-wavelength shifts of the λmax value to the violet region of

the visible spectrum. Such knowledge means that the model presented here and its predictive power

might be improved in the future if a more diverse set of Sws2 photopigments is used to develop a more

all-encompassing Sws2 model and/or to develop distinctive models for some selected phylogenetic groups.

Comparative analyzes of Sws2a vs. Sws2b photopigments have revealed candidate spectral tuning sites

that could potentially explain the sensitivity to violet vs. blue wavelengths for Sws2b and Sws2s subgroup,

respectively [84]. Thus, MD simulations can serve as a valuable, complementary tool to understand the

contributions of candidate tuning sites to spectral shifts in the λmax value. From MD trajectory analysis,

Angle 2 was identified as a potential parameter that is affected by the presence of different residues at

spectral tuning site 94. However, we note that as Angle 2 did not display a significant linear correlation

with the actual λmax value, Angle 2 was not considered as a candidate for the model selection procedure;
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as such, Angle 2 did not appear in the predictive “three-term” model.

In conclusion, we have successfully tested our previously studied molecular modeling approach com-

bining homology modeling, MD simulations and structural information of chromophore conformations

and to accurately predicted the λmax of Sws2 opsins. In future studies, we plan to consider additional

features of each parameter (e.g. narrow vs. broad distribution) other than simple linear correlations,

and other structural features such as distance between certain atoms and the functional group of the

chromophore or the opsin tuning sites, which may further improve the predictive power of the resulting

models. We will also expand our approach to extensively study the more phylogenetically distant classes

of opsins, with large number of opsins included in the dataset. Finally, we aim to develop model(s)

using a dataset of individual distinct classes of opsins to generate an online web platform for accurately

predicting the λmax values for any unknown vertebrate photopigment.

3.4 Methods

3.4.1 Phylogenetic analysis

The alignment and phylogenetic reconstructions were performed using the function ”build” of ETE3

v3.1.1 [116] as implemented on the GenomeNet (https://www.genome.jp/tools/ete/). The multiple se-

quence alignment was provided as input file. ML tree was inferred using PhyML v20160115 ran with

model and parameters: --alpha e --pinv e -f m -o tlr --bootstrap -2 --nclasses 4 [117]. Branch supports

are the Chi2-based parametric values return by the approximate likelihood ratio test.

3.4.2 Homology modeling

Eleven teleost Sws2 cone opsin amino acid sequences (Table 3.1), namely V. variegatus (spotted

flounder) [2], M. achne (slime flounder) [2], P. olivaceus (olive flounder) [2], P. reticulata (guppy) [100],

O. latipes (Japanese rice fish; medaka) [82], L. goodei (bluefin killifish) [101], and D. rerio (zebrafish) [64],

were downloaded from the UniProt database (https://www.uniprot.org/). These were selected because

the corresponding spectral peaks of absorbance for their Sws2 photopigments (when reconstituted with

a 11-cis retinal chromophore) have been experimentally measured. Collectively, these photopigments

exhibit a wide range of λmax values from 397-485 nm. An experimental 3D structure of a Sws2 cone

photopigment is not available; hence, to build a homology model of 11 Sws2 photopigments, a template

search was carried out using SWISS-MODEL (https://swissmodel.expasy.org/). The closest homologue

(∼50% sequence identity) with a high-quality 3D structure was found to be that of the bovine rod opsin

(RH1). A high-resolution crystallographic structure of the bovine RH1 photopigment (PDB ID 1U19, 2.2

Å) [99], which lacks mutations and has an 11-cis retinal chromophore covalently bound within its binding



42

pocket, was downloaded from the Protein Data Bank. 3D coordinates of the bovine rod opsin structure

were then used to build the homology models of 11 teleost Sws2 cone opsin sequences. The structure

prediction wizard from the PRIME module of the Schrödinger suite was used for building a homology

model for each protein sequence [118, 119]. The non-templated loops were refined using the refine loops

module of PRIME and a generated model structure was validated by generating a Ramachandran plot

by analyzing acceptable phi-psi regions of residues. The final homology model was modified to remove

the intracellular unstructured coil (∼25 residues) region towards the carboxyl-terminus to prevent it from

crossing the periodic boundaries during the molecular dynamics (MD) simulation.

3.4.3 Molecular dynamics (MD) simulation

All 11 Sws2 photopigment homology models were subjected to atomistic MD simulations using our

protocol for input file generation and the system setup for MD simulations reported in our previous

studies [73, 95]. Briefly, the homology models of each Sws2 opsin sequence with the chromophore bound

covalently to the lysine residue in the binding pocket (K296) were uploaded to the CHARMM-GUI

webserver (http://charmm-gui.org). Each system was placed in lipid bilayers and hydrated using a

hexagonal solvent box with a 15 Å TIP3P water layer. The charge of the system was neutralized with

150 mM NaCl. The CHARMM36m forcefield [93] parameters were selected for all the components of the

systems. After minimization and short equilibration simulations with harmonic restraints, the systems

were subjected to 100 ns atomistic MD simulations. The production simulations were performed under an

NPT ensemble for 100 ns using a Parrinello-Rahman barostat [120] with semi-isotropic pressure coupling

and a Nosé-Hoover thermostat [121]. During the production MD simulations, snapshots were saved every

10 ps. GROMACS-2018.3 [122] was used for all 11 MD simulations. The visualization and analysis of

MD trajectories were carried out using Visual Molecular Dynamics package [123]. GROMACS trajectory

analysis tools were used to analyze Root Mean Square Fluctuations (RMSF) and 19 different internal

degrees of freedom of the chromophore (i.e. torsion angles and geometric bond angles).

3.4.4 Quantification and statistical analysis

To determine the best linear regression model for predicting Sws2 λmax values, and to avoid overfitting

(i.e. a model with the same number of terms as the number of datapoints it is being fit to) we chose a

shortlist of parameters to use in model selection based on the linear correlation of each of the 19 median

angles and the experimental λmax. These were then ranked by r2 (i.e. coefficient of determination) values

and the top seven performing angles were used, exception being taken with angles which did not show

true linear correlation through visual inspection. The resulting model selection parameters included the
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median values of Torsions 3, 9, 10, 11, 12, and Geometric Angles 1 and 3. From our list of 19 parameters,

a shortlist was generated that composed of the medians of Torsion 3, Torsion 9, Torsion 10, Torsion 11,

Torsion 12, and geometric Angles 1 and 3. A model selection procedure was then performed using the

regsubsets function of the “leaps” R library (https://cran.r-project.org/web/packages/leaps/leaps.pdf).

This evaluated all possible model subsets using the shortlisted angles and ranked them according to their

Bayesian Information Criterion (BIC) value [124], which quantifies the explanatory power of a model

with a penalty for the number of terms included. The resulting best-fit model was further evaluated

via a “leave-one-out” procedure by reweighting the parameters of the best-fit model after removing

each photopigment iteratively. For each Sws2 photopigment stimulation, the parameters of the best-fit

model were reweighted with the given Sws2 photopigment data removed. This reweighted model was

subsequently used to predict the spectral peak of absorbance for the omitted Sws2 opsin sequence.

Additionally, to further validate our approach and to simulate performance at predicting the spectral

peaks of absorbance for Sws2 photopigments with unknown λmax values, a systemic “leave-one-species-

out” process was also performed. For a given species, both Sws2a and Sws2b opsin sequences were

removed from the dataset. A new model was chosen using the full model selection procedure detailed

above. Since removing two opsins results in a smaller sample of data, overfitting (i.e. a model with the

same number of terms as the number of datapoints it is being fit to) is a possible risk factor. To mitigate

this, the generated model space was explored within +2 BIC value of the best BIC ranked value. The

resulting model was then used to predict the spectral peak of absorbance for the removed Sws2a and

Sws2b photopigments.
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4.1 Introduction

Protein-protein binding is an essential physiological event that governs a large number of biological

processes in the cell [125]. Amino acid mutations of these proteins can introduce diversity into genomes,

and disrupt or modulate protein-protein interactions by changing the underlying binding free energy

(∆G, i.e. binding affinity), the amount of energy required to form protein complexes [126]. The binding

free energy associated with a protein-protein complex determines the stability of the complex formation

and the conditions for protein-protein association. Accurate prediction of binding free energies allows us

to understand how these affinities can be modified, and leads to a more comprehensive understanding of

protein interactions in living organisms [127].
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Experimental biophysical methods can quantitatively measure change in the protein-protein binding

free energy due to a mutation (i.e. relative binding affinity, ∆∆G), but these methods are typically costly,

laborious, and time-consuming since all mutant proteins must be expressed and purified. Many researchers

have developed and utilized computational methods to predict ∆∆G values for single- or multiple-amino

acid mutations (see e.g. [128, 129, 130]). Historically, the most promising in terms of accuracy are

rigorous methods based on statistical mechanics that use molecular dynamics (MD) simulations and thus

automatically address conformational flexibility and entropic effects [131, 132]. However, these methods

are computationally expensive since they employ rigorous sampling and utilize classical mechanics [133]

or quantum mechanics [134] approximations of intermolecular interactions, and require a large number

of calculations per time-step. Because of the expense, rigorous methods are not well-suited to studying

large sets of mutations or large proteins thus necessitating less expensive, non-rigorous methods.

Non-rigorous high-throughput methods attempt to lower the computational cost, as compared to

rigorous methods, while still providing accurate ∆∆G predictions. They accomplish this by including

precalculated physico-chemical structural information in combination with predictive algorithms. The

core mechanics that drive these methods fall under numerous classification umbrellas which have been

covered by review articles [135, 136]. These review articles provide a broad overview but do not provide an

unbiased, rigorous, comparative analysis outside of what the original developers provide. The developers

of any given method tend to provide comparisons with other methods of the same general class to define

where their method fits in the current landscape. BindProfX, for example, is available as a web server and

standalone and utilizes structure-based interface profiles with pseudo counts. Upon release, it was most

notably compared to FoldX (a semi-empirical trained method [137]) and DCOMPLEX (a physics-based

method [138]) [139, 140]. iSEE, a statistically trained method based on 31 structure, evolution, and

energy-based terms was tested against FoldX, BindProfX, and BeAtMuSiC (a machine learning-based

approach [141]). Mutabind [142] and some other methods not explored in this work follow a similar

testing methodology [143, 144, 145]. While these comparisons are beneficial in providing context for

how a given model fits in the existing research landscape, they are not very robust, since only a narrow

subset of methodologies are included. Conversely for folding stability, Kroncke et al. compared a large

number of available software methods on a small dataset of transmembrane proteins providing a general

overview of performance [130]. Despite the narrow dataset, this study provides a diverse, useful collection

of evaluation metrics between multiple classes of methods. Our intent in this study is to provide a similar

robust comparison of methods for non-rigorous binding affinity estimation.

In this work, we evaluate the ability of eight non-rigorous methods to predict relative binding affinities

due to single amino acid mutations. We restrict our study to cases where both an experimental structure
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of the complex, and experimentally determined binding affinity values are available. To investigate

the trade-off between speed and accuracy, we chose 16 protein-protein test complexes with empirical

∆∆G values for observed mutations. We calculated the ∆∆G values for each mutation using all eight

methods and compared the results against empirical ∆∆G values. The goal of this study was to determine

whether software methods that use (most costly) energy functions with a wider variety of physico-chemical

structural features would provide more accurate binding affinity and interface destabilization predictions

compared to those that rely on a single descriptive (less costly) energy function. We have determined

scenarios in which some of these methods may be better or worse than traditional computational methods

in predicting ∆∆G values.

4.2 Methods

4.2.1 Compilation of Experimental ∆∆G Values

To assess the performance of a range of protein-protein binding affinity prediction methods, we first

assembled a dataset containing single amino acid mutations with known experimental ∆∆G values.

This list was assembled from Structural Kinetic and Energetic database of Mutant Protein Interaction

(SKEMPI) version 2.0 [146]. SKEMPI uses data from a variety of different biophysical measurement

techniques; these are converted to ∆∆G values if not explicitly reported. Overall, the error associated

with experimental ∆∆G values reported in the SKEMPI dataset is thought to range from 0.25 to 1

kcal/mol [146]. While generating this list, we considered four aspects: (i) type of protein-protein com-

plex; (ii) availability of quality 3-D structural information; (iii) range of experimental ∆∆G values; and

(iv) the type of mutations at differing sites on the complex. Our final dataset contained 654 mutations

from 16 protein-protein complexes and their respective experimental ∆∆G values. We further catego-

rized these 16 complexes as either non-antibody-antigen (non-Ab) or antibody-antigen (Ab). Table 4.1

shows the complexes in our dataset with their respective non-Ab and Ab categories and the number of

mutations associated with each complex. The dataset contains a total of 401 non-Ab mutations and 253

Ab mutations.

4.2.2 Selection of Protein-Protein Binding Affinity Methods

Binding affinity prediction methods were chosen to have both a distinct approach to binding affinity

calculation that utilized 3-D structural information and had functional standalone software in September

2020, available either online or upon request to the author. Table 4.2 summarizes the methods selected

in this study, their approaches, and their type of scoring functions. For simplicity, we categorized scoring

functions (mathematical functions to calculate ∆∆G values) as semi-empirical, statistical, or physics-
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Non-Ab Ab
PDB # Mutations # Residues PDB # Mutations # Residues

1a4y [147] 32 [148, 149, 150,
151, 152, 153]

583 1bj1 [154] 10 [155, 156] 547

1brs[157] 30 [158, 159, 160,
161]

199 1jrh [162] 42 [163, 164] 540

1cbw [165] 31 [166, 167] 299 1mlc[168] 11 [169] 561
1iar [170] 36 [171] 336 1vfb [172] 48 [169, 173, 174] 352
1jtg [175] 37 [176, 177, 178,

179, 180]
428 1yy9 [181] 16 [169, 182] 1058

1lfd [183] 19 [184, 185] 254 2jel [186] 43 [187] 520
1ppf [188] 190 [189, 190] 274 3hfm [191] 71 [192, 193, 194,

195, 196]
558

2wpt [197] 26 [198, 199, 200] 220 4i77 [201] 12 [202] 549

Table 4.1: Dataset used in our study containing 16 protein complexes. For both non-Ab (left) and
Ab (right) categories, columns show PDB IDs, total number of residues in a complex, and number of
experimental mutants per complex.

based. Semi-empirical methods replace as many calculations as possible with pre-calculated data and are

trained using existing crystal structures and known binding affinity measurements for mutations [203].

Statistical methods use pre-calculated data and consider changes in coarse structural features such as the

change in overall volume [204]. Physics-based methods use molecular mechanics based-energy functions to

estimate enthalpic binding contributions [138]. In general, statistical or semi-empirical scoring functions

involve a training step where existing datasets are leveraged to determine the weight of input parameters.

MD, JayZ, and EasyE were not developed by training the methods against experimental data designed

to improve predictive power while all other methods utilized this step.

4.2.3 Calculation and Comparison of Computational Speed

The methods in Table 4.2 were used to predict ∆∆G values for each mutation on our experimental

list shown in Table 4.1. Runtimes were determined by using a representative protein complex from each

category: 1ppf, a non-Ab complex with 274 total amino acids, and 1yy9, an Ab complex with 1058

total amino acids (see Table 4.2). These runtimes are estimates provided to give a point of comparison

between the speeds of different methods. Specific runtimes will be determined by hardware specifications,

method parameters, the number of mutations being computed, and overall protein size. For MD+FoldX,

computational runtime was the length of time of the MD simulation plus the FoldX runtime for a single

mutation. Reporting runtime in this fashion highlights the large CPUh requirement needed in order

to add the sampling of MD into FoldX calculations. We note that, in contrast to the other methods

tested here, the MD simulations that must be performed for MD+FoldX can be completed very quickly

on modern GPUs, significantly offsetting the high initial cost of the MD+FoldX method. For all other
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Name Brief Description Scoring Function
Runtime

(CPU hours)

BindProfX [139, 140] Interface profile score
based on conservation of
homologous interfaces

Semi-Empirical
1ppf = 0.57 CPUh
1yy9 = 0.73 CPUh

BindProfX(BPX) +
FoldX v4 [139, 140]

Profile score weighted and
combined with FoldX en-
ergy potential

Semi-Empirical
1ppf = 0.62 CPUh
1yy9 = 0.71 CPUh

iSEE [205] Random forest model us-
ing structural, evolution-
ary, and energy-based fea-
tures

Statistical
1ppf < 0.01 CPUh
1yy9 < 0.01 CPUh

DCOMPLEX v2 [138] Structural ideal-gas refer-
ence state potential

Physics-Based
1ppf = 0.013 CPUh
1yy9 = 0.001 CPUh

EasyE v1.0 [204, 206] GMEC-based method uti-
lizing the Rosetta [207,
208] energy function

Statistical
1ppf = 0.48 CPUh
1yy9 = 0.09 CPUh

JayZ v1.0 [204, 206] Partition-function method
utilizing Rosetta energy
function

Statistical
1ppf = 0.14 CPUh
1yy9 = 0.21 CPUh

FoldX v4 [137, 203] Empirical energy score
based on various energy
parameters (e.g. van der
Waals, solvation, electro-
statics, hydrogen bond-
ing)

Semi-Empirical
1ppf = 0.42 CPUh
1yy9 = 0.16 CPUh

MD+FoldX v4 [209, 210,
211]

Molecular dynamics used
to explore conformation
space and generate snap-
shots; FoldX score calcu-
lated for each snapshot
and averaged

Semi-Empirical
1ppf = 941 CPUh

1yy9 = 4093 CPUh

Table 4.2: Methods used for comparison in study with a short summary of their approach and scoring
function. Columns (left to right) indicate the method, a brief description of the method, the type of
scoring function used, and runtimes. Runtimes are the amount of CPU hours for estimating the ∆∆G
for a representative protein complex for Ab (1yy9, 1058 residues) and Non-Ab (1ppf, 274 residues)
categories. Although 1yy9 is roughly four times bigger than 1ppf, the total runtime may or may not be
affected depending on the method used.



49

Correlation Brief Description Type
Concordance The concordance correlation coefficient (ρc) measures the degree

to which the predicted ∆∆G value equals the actual experimental
value (0 indicates no agreement and 1 perfect agreement).

Linear

Pearson The Pearson correlation coefficient (r) measures the degree to
which a uniform linear transformation of the predicted ∆∆G val-
ues (i.e., a shift and scale change) would yield the actual exper-
imental values (0 indicates no agreement after transformation, 1
perfect agreement, and -1 perfect inverse agreement).

Linear

Kendall and Spearman The rank correlation coefficient measures the degree to which the
rank ordering of the predicted ∆∆G values matches the rank or-
dering of the actual experimental values (0 indicates no agreement
after transformation, 1 perfect agreement, and -1 perfect inverse
agreement). In a normal case, the Kendall correlation (τ) is con-
sidered more robust than the Spearman correlation (ρ) because of
a smaller gross error sensitivity and more efficient due to a smaller
asymptotic variance [212].

Rank

AUC and ROC The receiver operating characteristic (ROC) curve tests several
cutoff values for binning mutations as neutral or destabilizing be-
tween the most negative calculated ∆∆G value and the most pos-
itive calculated ∆∆G value, with true positive rates (sensitivity)
calculated at each point. As the true positive rate is calculated,
the classifier is moved to less extreme values; this yields the ROC
curve. The area under curve (AUC) is a summary statistic that
approximates how well the predictor actually discriminates be-
tween the two classifications.

N/A

Table 4.3: Statistical measures used to test the performance of each method in predicting ∆∆G values

methods, the algorithms rely either on various pre-calculated data or limited conformational sampling to

calculate ∆∆G values rapidly.

4.2.4 Comparing Experimental and Predicted ∆∆G Values

To carry out statistical analysis of our results we built an in-house Python script (see S2 File) that

uses a combination of libraries including matplotlib, numpy, pandas, statistics, scipy, and sklearn. Using

this script, we compared predicted values to experimental ∆∆G values for each method.

To evaluate the predictive ability of each method tested, we compared the following correlation coef-

ficients using our script: concordance (ρc), Pearson (r), Kendall (τ), and Spearman (ρ) (see Table 4.3).

We distinguish between methods that were trained to predict ∆∆G values from methods that compute

metrics that are expected to linearly correlate with ∆∆G values. This distinction is important since

for optimal performance we expect a regression line that passes through the coordinate origin and has a

slope of 1, leading to a correlation coefficient equal to 1.
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To compare the discriminating power of the methods, we generated receiver operating characteristic

(ROC) curves (see Table 4.3). These curves quantify the ability of a method to correctly classify point

mutations as destabilizing (∆∆G < -0.5 kcal/mol) or neutral/stabilizing (∆∆G > -0.5 kcal/mol). ROC

curves that are skewed toward a higher true positive rate (sensitivity) classify mutations more accurately,

as quantified by area under curve (AUC, ranging between 1.0 and 0.5 for perfect and chance classification,

respectively).

We also used our script to parse the results on the basis of several physico-chemical and structural

features to allow us to evaluate the methods based on these characteristics: wild type amino acid type,

mutant amino acid type, protein-protein interacting versus antibody-antigen, secondary structure clas-

sification of the mutation [213, 214], coordination number [215], Sneath index [216], mostly α-helical

proteins versus mostly β-sheet proteins versus a mix of both α-helical and β-sheet proteins, percent ex-

posure, location of the mutation, change in charge, change in polarity, change in volume, and whether or

not the mutation location is predicted as an active or passive residue [217, 218, 219]. The script uses data

from S3 File as an input and outputs scatter plots, correlation plots, receiver operating characteristic

(ROC) curves, and box plots to visualize the data, as well as correlations and standard deviations for

each method. All plots in this manuscript were generated using this script.

4.3 Results

The purpose of our study was to assess the ability of eight different relative binding affinity calculation

methods (see Table 4.2) to estimate ∆∆G values. We selected 16 different protein complexes (eight Ab,

eight non-Ab, see Table 4.1) with a total of 654 single amino acid mutations. Each method was then

used to estimate ∆∆G values of 654 mutations and a variety of statistical measures were employed to

assess their predictive ability. We also examined the computational speed of each method in the context

of accuracy to determine its efficiency.

4.3.1 Non-Antibody-Antigen (non-Ab) Results

Our dataset of eight non-Ab test protein complexes contains 401 total mutations and are mainly

classified as protein-protein systems formed by inhibitors and receptors that range from 199 to 583

residues in size. The distribution and our classification of experimental ∆∆G values for all non-Ab

test complexes is as follows: 13% of point mutations resulted in ∆∆G values less than -0.5 kcal/mol

(classified as destabilizing); 31% between -0.5 and 0.5 kcal/mol (neutral); and 56% greater than 0.5

kcal/mol (stabilizing).
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Figures 4.1 (blue data points and values) and 4.2 show various performance metrics for each method

to assess their ability to predict the non-Ab ∆∆G values. Overall, EasyE has the highest correlation

coefficient, r = 0.62, and iSEE has the lowest, r = 0.17 (see Figures 4.1 and 4.2). JayZ and EasyE,

both of which utilize Rosetta’s conformational sampling algorithms, consistently have the best r values

for non-Ab mutations.
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Figure 4.1: Calculated ∆∆G values (x-axis) compared to experimental ∆∆G values (y-axis) for each
method tested in this study.Black, red, and blue lines are simple linear regressions from which r are
derived. The red points are a scatter for Ab complexes and the blue points are for non-Ab complexes.
The dashed line is the y = x line measuring perfect agreement between predicted and experimental
∆∆G values. The solid black, red, and blue lines indicate a linear relationship between calculated and
experimental observations for all data points, Ab complexes, and non-Ab complexes respectively. The
top values in black, red, and blue match the root-mean-square error and the bottom values indicate r for
all values, Ab values, and non-Ab values respectively.
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Figure 4.2: Performance of each method for non-Ab complexes (401 total mutations) in predicting true
∆∆G values (ρc), linearly correlated ∆∆G values (r), and rank order (ρ and τ). The error for each
method is reported under the correlation points.

Figure 4.3 shows the ROC plot for all the tested methods. These ROC plots highlight how well a

method can discriminate between stabilizing and destabilizing mutations. JayZ (0.84), EasyE (0.83),

DCOMPLEX (0.82), FoldX (0.79), and MD+FoldX (0.76) have the highest AUC. Combined with the

results from Figures 4.1 and 4.2, for the systems studied here, JayZ and EasyE methods are the best

overall performers in terms of accuracy, discriminating stabilizing mutations from destabilizing, and

ranking mutations based on their experimental ∆∆G values.



54

Figure 4.3: Receiver operating characteristic (ROC) curves for non-Ab complexes of the classification of
variants as stabilizing (∆∆G < -0.5 kcal/mol) or destabilizing (∆∆G > 0.5 kcal/mol). The values in the
legend represent the area-under-curve (AUC). The higher the value, the better method is at discriminating
between destabilizing and destabilizing mutations.

Table 4.2 reports CPUh required (i.e. runtimes) for each method to calculate ∆∆G for the entire list

of mutations for a representative non-Ab protein complex. BindProfX, BindProfX(BPX)+FoldX, JayZ,

and EasyE allow users to specify a list of mutations that the method is then able to calculate in one

setting. This list can be optimized based on the available hardware to achieve efficiency. iSEE requires

significant preparatory work (see File S1) prior to calculation, but once completed, it calculates the ∆∆G

values for the entire list of mutations nearly instantly. DCOMPLEX is not as flexible out of the box but

can handle large numbers of mutations through an automated script. For MD+FoldX, 1yy9 (roughly

four times larger than 1ppf) requires considerably more CPUh to calculate. All other methods calculate

1yy9 in a shorter time frame than 1ppf. This may seem counterintuitive. However, MD must statistically

sample the conformational energy of the entire complex, while all other methods use algorithms that

are likely impacted more by the number of residues involved in the interaction rather than the protein
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size. Overall, DCOMPLEX has a much faster runtime compared to other methods, and if the goal is to

determine stabilizing and destabilizing non-Ab mutations, it offers similar discriminating power to JayZ

and EasyE, at a fraction of the computational cost. JayZ estimates ∆∆G value of one mutation in ∼2.7

s, EasyE in ∼9.1 s, but DCOMPLEX requires just ∼0.25 s. Overall, EasyE appears to be the best option

for balancing accuracy and speed and DCOMPLEX is recommended for discriminating between stability

and destabilizing mutations.

A method might not be a good overall performer in predicting ∆∆G values but could still perform

well for mutations with certain physico-chemical and structural features. Therefore, we calculated various

statistical measures to assess each method on unique subsets of mutations (see Table 4.4. This table shows

eight different data subsets with two r per method. EasyE has the highest r for non-Ab for five out of

eight subsets (wild type non-gly or non-pro, alpha helix, beta sheet, surface exposure, and large volume

changes). Where this method did not have the highest r, it had either the second or third highest r.

JayZ mirrors the performance of EasyE in all the same categories and performs better than Easy in the

neutral charge subset. These results further highlight the versatility of EasyE’s and JayZ’s performance

in estimating the effects of non-Ab mutations compared to the other methods tested in this study. All

methods apart from iSEE and BindProfX perform surprisingly well in the WT Gly or Pro subset. iSEE’s

performance in this subset, while still mediocre compared to the other tested methods, is substantially

better than in all other subsets.

4.3.2 Antibody-Antigen (Ab) Results

Our dataset of eight Ab test protein complexes contains 253 mutations and the proteins range in size

from 352 to 1058 residues. The distribution and our classification of experimental ∆∆G values for all

Ab test complexes is as follows: 5% of point mutations resulted in ∆∆G values less than -0.5 kcal/mol

(classified as destabilizing); 40% between -0.5 and 0.5 kcal/mol (neutral); and 55% greater than 0.5

kcal/mol (stabilizing).

Figures 4.1 (data points and values in red), 4.4, and 4.5 show the performance of each method in

predicting the ∆∆G values of Ab mutations. Overall, the highest correlation is for MD+FoldX with r

= 0.39 and the lowest is iSEE with r = -0.09 (see Figures 4.1 and 4.4). An interesting trend is that the

methods with the highest r values for non-Ab complexes do not have the highest r for Ab complexes.

Figure 4.5 shows the ROC plot for all the tested Ab methods. These ROC plots highlight how well

a method is actually able to discriminate between stabilizing and destabilizing mutations. Compared to

non-Ab complexes, all methods performed better for antibody-antigen complexes except for FoldX and

DCOMPLEX which were marginally worse. JayZ (0.97), EasyE (0.98), FoldX (0.85), and MD+FoldX
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Table 4.4: All methods r with respect to certain subsets. “WT Gly or Pro” are wild type amino acids
that are either glycine or proline. “WT Non-Gly or Non-Pro” are wild type amino acids that are neither
glycine nor proline. “Alpha Helix” are mutations that occur in a helix structure. “Beta Sheet” are
mutations that occur in a beta structure. “Surface Exposure” are mutations that occur in an amino
acid that have relative solvent accessibility values between 0 and 10%. “Neutral Charge” is a neutrally
charged wild type amino acid mutating to a neutrally charged mutant amino acid. “Hydrophobic to
Polar” is a hydrophobic or polar wild type amino acid mutating to a polar or hydrophobic mutant amino
acid, respectively. “Larger Vol Changes” is a mutant amino acid that is greater than 40% larger than
the wild type amino acid. Values that are bolded are the highest r for each method and protein type.
Values that are red or blue are the highest r for each subset, blue for non-Ab and red for Ab.

Figure 4.4: Performance of each evaluated method for Ab complexes (253 total mutations) in predicting
true ∆∆G values (ρc), linearly correlated ∆∆G values (r), and rank order (ρ and τ). The error for each
method is reported under the correlation points.



57

Figure 4.5: Receiver operating characteristic curves of the classification of variants that are more desta-
bilized or less destabilized than 0.5 kcal/mol. The values in the legend represent the area-under-curve
(AUC). The higher the value, the better the prediction capability of the method.

(0.82) had the highest AUC values. Combined with the results from Figures 4.1 and 4.4, at least for the

systems studied here, it appears that the MD+FoldX method is the best overall performer in terms of

accuracy, discriminating stabilizing mutations from destabilizing, and ranking mutations based on their

experimental ∆∆G values.

Compared to other methods, EasyE has a much faster runtime and is recommended if the goal is to

discriminate between stabilizing and destabilizing (∆∆G for one mutation takes ∼21 s, see Table 4.2).

By comparison, MD+FoldX cost ∼941 CPUh for one mutation of 1yy9. DCOMPLEX provides a slightly

lower r (0.31) and computational cost (∼0.35 s) for one mutation of 1yy9. Overall, MD+FoldX appears

to be the best option for accuracy and EasyE or JayZ are the best options for discriminating between

destabilizing and stabilizing mutations.

Table 4.4 summarizes the ability of each method to predict ∆∆G values for subsets of Ab muta-

tions. Most methods had mediocre r values less than 0.60. The exceptions to this are MD+FoldX and

DCOMPLEX within the WT Gly or Pro subset with r = 0.71 and 0.89, respectively. BPX+FoldX has

the highest r for Ab complexes for five of the eight subsets (WT nonGly or nonPro, beta sheet, surface

exposure, neutral charge, hydrophobic to polar, and large volume changes) and performs equally well for

the neutral charge subset as DCOMPLEX, which also has the highest r for WT Gly or Pro subset. For the

beta sheet subset, MD+FoldX had the second highest r. In the surface exposure subset, JayZ and EasyE
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both had nearly identical r (0.36 and 0.35 respectively), the highest for this subset, but substantially

worse than they did for non-Ab complexes.

4.4 Discussion

We assessed the performance of eight distinct protein-protein binding affinity calculation methods

that use 3-D structural information. To test the performance of these methods, we selected 16 different

protein complexes (see Table 4.1) with a total of 654 single amino acid mutations: eight antigen-antibody

complexes (Ab, 253 mutations) and eight non-antigen-antibody (Non-Ab, 401 mutations) complexes.

Each method was used to estimate ∆∆G values of the 654 mutations, a variety of statistical measures,

CPU cost, and physico-chemical structural features to assess the performance. Our results suggest each

method has both strengths and weaknesses depending on the properties of the protein system. Most

methods did not perform well when applied to mutations in Ab complexes compared to non-Ab complexes.

Rosetta-based JayZ and EasyE were able to classify mutations as destabilizing (∆∆G < -0.5 kcal/mol)

with high (83-98%) accuracy at relatively low computational cost. Some of the best results for Ab

systems came from combining MD simulations with FoldX with a r coefficient of 0.39, but at the highest

computational cost of all the tested methods.

Figure 4.1 summarizes the performance of each method in terms of its ability to estimate ∆∆G values

for all (non-Ab + Ab) single mutations. None of the test methods show a very high r between experimental

and predicted ∆∆G values. Two of the best performing methods, JayZ and EasyE, both have an r of

0.49 for all mutations, with a higher r of 0.61 and 0.62 respectively for non-Ab complexes. These results

agree with published results from the authors of JayZ and EasyE. Our results agree moderately with

published results from iSEE (they obtained r = 0.25, we obtained r = 0.17) and BindProfX (they

used a much larger dataset). Published results for DCOMPLEX show a very good correlation of r =

0.87; much larger than what we obtained here. This difference is very likely due to the dataset size

and compilation; DCOMPLEX was originally tested against 69 experimental data points, compared

to the 654 values used here. MD+FoldX has an r of 0.39 for Ab complexes and appears to perform

well for larger systems, which could indicate the importance of conformational sampling for antibody-

antigen systems. Other methods used in this study have little to no conformational sampling which

could explain their poor performance on Ab complexes. By contrast, these same methods perform well

for non-Ab complexes, suggesting that conformational sampling is not the limiting factor to achieve

accurate results for these protein complexes. For example, FoldX has a trained scoring function derived

using a dataset of mostly non-Ab complexes and performs poorly for Ab complexes when using a single

structure (see Table 4.2). However, when used with snapshots from an MD simulation, this same method
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outperforms all other methods selected in this study. This highlights the need for conformational sampling

for reliable and efficient predictions of binding affinity for some systems. In our previous study, we

combined coarse-grained forcefield with umbrella sampling to calculate ∆∆G values for eight mutations

of 3hfm Ab complex (one of the test systems in this study) and obtained better predictions than FoldX

and MD+FoldX [95]. This study further emphasizes the need for better conformational strategies for

some systems. A rigorous endpoint free energy method could potentially be employed to overcome the

conformational sampling problem. Endpoint methods typically use molecular mechanics force fields to

generate conformational ensembles at the two states of interest. These ensembles are then evaluated

with implicit solvent models such as molecular mechanics generalized Born surface area (MM/GBSA)

and molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) [220, 221, 222]. These methods

are computationally less expensive than other rigorous approaches since simulations are only performed

for two states, however their accuracy is system-dependent and sensitive to simulation protocols such as

sampling strategy and entropy calculation. MM/PBSA and MM/GBSA have been successfully used by

several groups to estimate ∆∆G values for a small number of protein complexes and recently reviewed by

Wang E et al [221] and Wang C et al [222]. These studies obtained consistently higher overall correlation

to experimental ∆∆G values, albeit for a small subset of mutations, compared to the methods tested in

our study, but at the expense of significantly higher computational costs.

Statistical measures used to analyze performance are listed and defined in Table 4.3. For Ab,

BPX+FoldX, MD+FoldX, and DCOMPLEX have the highest r values of the methods in our study

(see Figure 4.4). MD+FoldX appears to be the most accurate method for Ab complexes. BindProfX,

FoldX, JayZ, EasyE, and iSEE have low r and ρc indicating that affinities estimated using these methods

do not correlate well with experimental ∆∆G values using a linear transformation. Also, the τ and ρ

were lower compared to MD+FoldX, indicating these methods do poorly at calculating a rank order that

matches experimental data.

The ROC curves allow us to determine each method’s ability to classify mutations as either destabi-

lizing or neutral/stabilizing (Figures 4.3 and 4.5). For non-Ab complexes, JayZ (0.84 AUC) and EasyE

(0.83 AUC) have the best true positive rate followed by DCOMPLEX (0.82 AUC). For Ab complexes,

JayZ (0.97 AUC) and EasyE (0.98 AUC) have better true positive rates than MD+FoldX, the method

with the highest r value. If classification of destabilizing vs stabilizing is the primary need, then JayZ

or EasyE are both recommended over the other methods tested here due to their high accuracy and fast

runtime.

While accuracy is generally the main reason for choosing a particular method, computational efficiency

is also an important consideration, especially when predicting the effects of a large number of mutations.
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Here, we discuss the performance of each method in terms of its trade-off between speed and accuracy

for predicting ∆∆G values. For all single mutations and our non-Ab subset, EasyE and JayZ performed

well; JayZ is the faster method of the two with EasyE at a similar speed to FoldX. DCOMPLEX is more

accurate than FoldX for all single mutations and has similar accuracy as FoldX for non-Ab mutations, but

at much lower cost. MD+FoldX has similar accuracy to DCOMPLEX for all single mutations and has

similar accuracy to FoldX in non-Ab mutations but is by far the most computationally expensive method

we tested. Although a synergistic combination of BPX+FoldX implements several structural and physico-

chemical interaction terms in its algorithm, computation time was longer than all but MD+FoldX without

a concomitant improvement in r. We note that this method is perhaps the most accessible of those tested,

due to the easy-to-use online server interface and accuracy that is similar to FoldX for most systems.

BindProfX utilizes the same scoring profile as BPX+FoldX without the FoldX calculations. In this case,

accuracy decreased while calculation speed remained similar to BPX+FoldX. iSEE, the least correlating

method, employs the widest variety of information to obtain relative binding affinity predictions and is the

fastest of all methods (not including the non-trivial preparation time). For Ab complexes, MD+FoldX,

the slowest of all the methods, had the highest accuracy, followed by DCOMPLEX. iSEE is again the

fastest of all methods but also the least accurate. BindProfX utilizes several pre-calculated physico-

chemical structural data in its scoring function while, JayZ and EasyE each layer an additional predictive

calculating feature on top of Rosetta’s backbone sampling, adding complexity to the predictive algorithms.

However, all three have similar r yet they do not achieve the accuracy of MD+FoldX. Overall, for non-Ab

complexes, EasyE and JayZ appear to have the best balance between speed and accuracy of the methods

we tested. For Ab complexes, DCOMPLEX appears to have the best balance.

We have demonstrated that all the tested methods have specific strengths and weaknesses; some

perform better in specific contexts (Table 4.4), and some have longer runtimes to obtain similar predictive

power to comparably faster methods. This highlights the complexity of the physico-chemical properties

and structural features that drive, and limit, these predictive models. Moreover, our study highlights the

need to separately evaluate the performance of future ∆∆G predictors for both Ab and non-Ab complexes.

There is also a need for a much larger training dataset of experimentally measured binding affinities for

both types of complexes. New binding affinity calculation approaches are also needed to properly account

for the contribution of bridging water molecules that are often present at the protein-protein interface.

Our results can be used to make informed decisions for methods that may be preferable for a particular

study or system. Table 4.4 suggests that if the goal is to estimate only the order of magnitude or sign of

relative binding affinities, then the preferred method will likely be very different than if the goal is to obtain

the best possible accuracy for antibody-antigen systems. To improve accessibility, we have generated an
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in-house Python script that can be used to parse any of the parameters used in this study and provide

tailored information. This information in combination with the runtime and other details provided in

this study can be used to inform users on methods that can provide the best accuracy and efficiency for

a given protein-protein complex type, set of physico-chemical features or structural parameters, and set

of mutations. Additionally, the script can be extended to other methods and feature-sets, potentially

elucidating specific problems or areas of improvement to existing and future methods.

4.5 Conclusions

In this study, we have assessed the accuracy and efficiency of eight computational methods on pre-

dicting binding affinity changes due to single amino acid mutations. Methods were tested on 16 different

protein complexes: eight antigen-antibody (Ab) and eight non-antigen-antibody (Non-Ab) complexes.

While some methods perform consistently better than others, how well each performs depends on the

physico-chemical and structural components of each complex. EasyE was the most accurate for non-Ab

complexes, and MD+FoldX was most accurate for Ab complexes. JayZ and EasyE were better able

to distinguish between destabilizing (∆∆G > 0.5 kcal/mol) and stabilizing (∆∆G < -0.5 kcal/mol) as

compared to any other method. Future work could include more systems or different methods, includ-

ing those that are solely web server-based in order to expand and better refine our conclusions on their

predictive capability.
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Chapter 5: Work In Progress

5.1 The Effect of Mutations on Binding Interactions Between

the SARS-CoV-2 Receptor Binding Domain and Neutral-

izing Antibodies

Jonathan E. Barnes,1,2 Peik K. Lund,2 Jagdish S. Patel,2 F. Marty Ytreberg,1,2

1Department of Physics, University of Idaho, 2Institute for Modeling Complex Interactions, University

of Idaho

This work is currently in progress and expected to be submitted by September 2021. As first author, I

contributed the following:

• Molecular dynamics simulations for all tested complexes.

• Performed FoldX analysis for relevant mutations on all complexes.

• Generated all figures.

• Currently writing manuscript.

5.1.1 Introduction

First discovered in 2019, SARS-CoV-2 is a beta-genus coronavirus responsible for COVID-19 and the

current pandemic. Despite sharing similarities to SARS-CoV-1, responsible for an epidemic in 2003, the

2019 variant is far more infectious and deadly. The severity of COVID-19 necessitates an understanding

of how it could evolve to escape potential treatments as well as ways to strengthen treatments against

it. While there has been work devoted to understanding the impact of possible mutations in the spike

S protein and its ability to bind to angiotensin-converting enzyme 2 (first step in infection process),

there has not been such an effort to study interactions with antibodies. Here, we used a computational

pipeline that was previously designed in our lab and applied it to the SARS-CoV-2 S protein receptor

binding domain (RBD) bound to two neutralizing antibodies(Ab). Molecular dynamics simulations were

used to generate trajectory snapshots. These snapshots were used as inputs for FoldX, a fast semi-

empirical method for estimating folding and binding free energies. These free energy calculations were

then averaged to get final estimates. We mutated sites within both Ab and the RBD that were within

10Å of the RBD-Ab binding interface. We found a large number of potential antibody escape mutations
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in the RBD (i.e., those predicted to destabilize RBD-Ab interactions), some of which agree with other

studies. We also found a smaller number of potential antibody strengthening mutations in Ab (i.e., those

predicted to stabilize RBD-Ab interactions) that could be used to improve the therapeutic value of Ab.

These results provide a basis for further studies on the effects of mutations in the RBD and antibodies

and provide a starting point for building a list of potential escape mutations for antibodies.

5.1.2 Methods

To predict the effects of a large number of mutations we utilized our previously developed process

[209] that consists of molecular dynamics simulations on the wildtype structure to generate conformations

to then use as inputs for methods that can quickly perform mutations and predict their effect on folding

stability and binding affinity. We performed 100 ns molecular dynamics simulations on the wildtype

structure of two Ab-RBD complexes . We then analyzed the energy minimized structure to determine

sites on the RBD that are 10 Å away from any other atom of the antibody chains and vice versa to

perform a deep mutational scan. We then used the resulting snapshots as inputs for both FoldX and

Rosetta. All possible mutations to the other 19 amino acids were performed on these sites and free

energies of folding and binding were calculated. Since we are interested in antibody escape mutations, we

evaluated them on the following criteria. A mutation was considered destabilizing if the binding affinity

change was greater than 2.0 kcal/mol:

∆∆Gbind ≥ 2.0 kcal/mol (5.1)

and functional, as-in the chain in question would fold, if the folding stability change was between -3.0

and +3.0 kcal/mol:

− 3.0 kcal/mol ≤ ∆∆Gfold ≤ +3.0 kcal/mol (5.2)

The resulting sites and mutations were then compared across both methods and further evaluated.

5.1.3 Results

Our preliminary results indicate a small number of sites, for example in the case of antibody B38

(PDBID 7BZ5) there are only 8 sites (with 63 total mutations) that meet this criteria (Figure 5.1). More

detailed comparison shows a small subset of mutations that meet the criteria for both FoldX and Rosetta

predictions leading to three mutations at one site that are relevant for antibody CB6 (PDBID 7C01) as

shown by Table 5.1.
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Figure 5.1: Structure of antibody B38 (green and blue chains) bound to the SARS-CoV-2-S RBD (black).
Sites indicated as escape mutation sites by FoldX are indicated in green on the right. The red circle is
the approximate region of interest where mutations were applied.
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Table 5.1: Overlapping results for mutations in the RBD between FoldX and Rosetta. These are mutations
that both methods flagged as meeting the aforementioned criteria (Equations 5.1 and 5.2)

5.1.4 Conclusions

This work builds a watchlist of potential antibody escape mutations for SARS-CoV-2 for two anti-

bodies, with overlapping sites that could apply to other antibodies not tested here. Our results could

also help inform better treatments and help design more effective antibodies for treating infection.
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5.2 An EvoDevo study of visual opsin dynamics and spectral

modeling in salmonids
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States of America 5 Department of Physics, University of Idaho, Moscow, ID, United States of America 6
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This work is currently in progress and expected to be submitted by September 2021. As a contributing

author, I performed the following:

• Statistical analysis for spectral peak prediction of two species.

• Currently assisting with manuscript preparation.

5.2.1 abstract

Salmonids are interesting models for visual neuroscientists as many species follow a distinct develop-

mental program from demersal eggs and a large yolk sac to hatching at an advanced developmental stage.

Furthermore, these economically important teleost fishes inhabit both marine and freshwater habitats,

and, as such, experience diverse light environments during their prolonged life histories. At a genome

level, salmonids have undergone a species-specific whole genome duplication event(i.e. Ss4R) compared to

other teleosts that are themselves already far more genetically diverse compared to many non-teleost ver-

tebrates. Thus, salmonids display phenotypically plastic visual systems that appear to be closely related

to their river-marine-river migration patterns. This is most likely due to a complex interplay between

their larger, more gene-rich genomes and broad spectrally-enriched habitats; however, the molecular basis

(and functional consequences) for such diversity is not fully understood. This detailed study used recent
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genome sequencing advances to identify the complete repertoire and genome organization of visual opsin

genes from seven different salmonid species, namely the Atlantic salmon (Salmo salar), the Arctic char

(Salvelinus alpinus), the brown trout (Salmo trutta), the Chinook salmon (Oncorhynchus tshawytcha),

the Coho salmon (Oncorhynchus kisutch), the rainbow trout (Oncorhynchus mykiss) and the sockeye

salmon (Oncorhynchus nerka), compared to those of the northern pike (Esox lucius), a closely-related

non-salmonid species. Results showed that several opsin genes were not retained after the Ss4R genome

duplication event, which is consistent with the concept of salmonid rediploidization. Developmentally, in-

depth transcriptomic analyses of S. salar revealed differential expression within each opsin class, with two

of the long-wavelength-sensitive (lws) opsins not being expressed before the start of feeding. Also, early

opsin expression in the retina was located centrally, expanding dorsally and ventrally as eye development

progressed, with rod opsin (rh1 ) being the dominant visual opsin post-hatching. Of the visual photopig-

ment genes that are conserved across salmonids, molecular modeling predicted the greatest variation in

spectral sensitivity to be within the rh2 class, with a 40 nm difference in the λmax values between these

four medium-wavelength-sensitive photopigments. Overall, it appears that opsin duplication and expres-

sion, and their respective spectral tuning profiles, evolved to maximize specialist color vision throughout

an anadromous lifecycle, with some visual opsin genes being lost to tailor marine-based vision.
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Chapter 6: Conclusion

6.1 Summary

In our study on epistasis (Chapter 2), we showed that statistical modeling can be used to detemrine

mechanisms involved in protein interactions. We demonstrated that while we are working with small

datasets and simple static features we can still show with statistical likelihood that some biophysical

features are more important, and more significant contributors to the phenomenon than others.

In our study on Short Wavelength Sensitive 2 (Sws2 ) opsins (Chapter 3), we showed that molecular

modeling can be used to as a reference to build statistical models to predict phenotypes, in this case color

vision, with high accuracy. Molecular dynamics were performed on the dark state of the opsin proteins

for 11 species of opsin in deep sea fish. The resulting trajectories were used to inform linear statistical

models with a resulting 3-term model which could predict the spectral sensitivity of Sws2 opsins with an

R2 of 0.95.

In our study of binding affinity software (see Chapter 4), we showed the accuracy of eight different

methods at predicting the effects of mutations on the binding affinity for 16 protein-protein complexes.

While we don’t have a be-all end-all best method our results indicate the some methods are better than

others for given contexts and demonstrates there are still gaps in our ability to predict mutational affects.

This body of work is built on the common theme of using modeling, both statistical and molecular,

to map protein genotype to resulting phenotypes. In the case of epistasis (Chapter 2), we studied how

physical attributes of the protein can explain the non-additive nature of multiple missense mutations on

protein folding and binding. In the case of SWS2 opsins (Chapter 3), we used aspects of protein and

chromophore structure to predict the color vision sensitivity phenotype. For the binding affinity methods

analysis of Chapter 4, we investigated the performance of fast methods for predicting the effects of protein

genotype on their binding affinity phenotype, determining the contexts they each perform best.

6.2 Future Research

Our study on epistasis (Chapter 2) demonstrated that we can explain some (∼30%) of the observed

epistasis in the available binding and folding data. The larger question is what could account for the

remaining 70%? Using molecular dynamics and more broad statistical methods could add in dynamical

properties and more complex paramaters to attempt at building a more complete picture of epistasis.

Future work for the Sws2 Opsin project (Chapter 3) could include building models for other classes of

opsins to further prove the capabilities of the approach. Additionally, with a complete set of structures
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and models for the full gamut of opsin proteins could allow for the development of a singular model or

mapping to go directly from sequence to spectral sensitivity, negating the need for the molecular dynamics

step for novel opsins.

Our work on binding affinity software (Chapter 4) can be readily expanded on. More methods could

be tested to further build a more complete library of methods and their strengths and weaknesses. More

data can be used to improve on our existing recommendations. Additionally, by investigating the contexts

no method performed well at making predictions better models could potentially be developed.
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[26] Rafael Sanjuán, José M. Cuevas, Andrés Moya, and Santiago F. Elena. Epistasis and the Adapt-

ability of an RNA Virus. Genetics, 170(3):1001–1008, July 2005.

[27] Christina L. Burch and Lin Chao. Epistasis and Its Relationship to Canalization in the RNA Virus

6. Genetics, 167(2):559–567, June 2004.

[28] Y. Michalakis. EVOLUTION: Epistasis in RNA Viruses. Science, 306(5701):1492–1493, November

2004.

[29] Jack da Silva, Mia Coetzer, Rebecca Nedellec, Cristina Pastore, and Donald E. Mosier. Fitness

Epistasis and Constraints on Adaptation in a Human Immunodeficiency Virus Type 1 Protein

Region. Genetics, 185(1):293–303, May 2010.

[30] R. Sanjuan, A. Moya, and S. F. Elena. The contribution of epistasis to the architecture of fitness

in an RNA virus. Proceedings of the National Academy of Sciences, 101(43):15376–15379, October

2004.

[31] S. Bonhoeffer. Evidence for Positive Epistasis in HIV-1. Science, 306(5701):1547–1550, November

2004.

[32] Sandra Trindade, Ana Sousa, Karina Bivar Xavier, Francisco Dionisio, Miguel Godinho Ferreira,

and Isabel Gordo. Positive Epistasis Drives the Acquisition of Multidrug Resistance. PLoS Genetics,

5(7):e1000578, July 2009.

[33] Jason H. Moore. The Ubiquitous Nature of Epistasis in Determining Susceptibility to Common

Human Diseases. Human Heredity, 56(1-3):73–82, 2003.

[34] Liskin Swint-Kruse. Using Evolution to Guide Protein Engineering: The Devil IS in the Details.

Biophysical Journal, 111(1):10–18, July 2016.

[35] C. Melero, N. Ollikainen, I. Harwood, J. Karpiak, and T. Kortemme. Quantification of the transfer-

ability of a designed protein specificity switch reveals extensive epistasis in molecular recognition.

Proceedings of the National Academy of Sciences, 111(43):15426–15431, October 2014.



73

[36] Charlotte M. Miton and Nobuhiko Tokuriki. How mutational epistasis impairs predictability in

protein evolution and design: How Epistasis Impairs Predictability in Enzyme Evolution. Protein

Science, 25(7):1260–1272, July 2016.

[37] Manfred T. Reetz. The Importance of Additive and Non-Additive Mutational Effects in Protein

Engineering. Angewandte Chemie International Edition, 52(10):2658–2666, March 2013.

[38] James A. Wells. Additivity of mutational effects in proteins. Biochemistry, 29(37):8509–8517,

September 1990.

[39] Eynat Dellus-Gur, Mikael Elias, Emilia Caselli, Fabio Prati, Merijn L.M. Salverda, J. Arjan G.M.

de Visser, James S. Fraser, and Dan S. Tawfik. Negative Epistasis and Evolvability in TEM-1 β-

Lactamase—The Thin Line between an Enzyme’s Conformational Freedom and Disorder. Journal

of Molecular Biology, 427(14):2396–2409, July 2015.

[40] Courtney E. Gonzalez and Marc Ostermeier. Pervasive Pairwise Intragenic Epistasis among Se-

quential Mutations in TEM-1 β-Lactamase. Journal of Molecular Biology, 431(10):1981–1992, May

2019.

[41] C. Anders Olson, Nicholas C. Wu, and Ren Sun. A Comprehensive Biophysical Description of Pair-

wise Epistasis throughout an Entire Protein Domain. Current Biology, 24(22):2643–2651, November

2014.

[42] Andrei Y. Istomin, M. Michael Gromiha, Oleg K. Vorov, Donald J. Jacobs, and Dennis R. Livesay.

New insight into long-range nonadditivity within protein double-mutant cycles. Proteins: Structure,

Function, and Bioinformatics, 70(3):915–924, February 2008.

[43] Haoran Yu and Paul A. Dalby. Coupled molecular dynamics mediate long- and short-range epis-

tasis between mutations that affect stability and aggregation kinetics. Proceedings of the National

Academy of Sciences, 115(47):E11043–E11052, November 2018.

[44] Sherlyn Jemimah and M. Michael Gromiha. Exploring additivity effects of double mutations on the

binding affinity of protein-protein complexes. Proteins: Structure, Function, and Bioinformatics,

86(5):536–547, May 2018.
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[84] F Cortesi, Z Musilová, SM Stieb, NS Hart, UE Siebeck, and et al Malmstrøm, M. Ancestral

duplications and highly dynamic opsin gene evolution in percomorph fishes. Proc Natl Acad Sci

USA, 112:1493–1498, 2015.

[85] Lychakov Govardovskii, VI and D.V. Some quantitative characteristics of the frog retinal rod outer

segments. Tsitologiia, 27:524–529, 1975.

[86] A. Chinen, Y. Matsumoto, and S. Kawamura. Reconstitution of ancestral green visual pigments of

zebrafish and molecular mechanism of their spectral differentiation. Mol Biol Evol, 22:1001–1010,

2005.

[87] J.A. Cowing, S. Poopalasundaram, S.E. Wilkie, P.R. Robinson, J.K. Bowmaker, and D.M. Hunt.

The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive

cone visual pigments. Biochem J, 367:129–135, 2002.

[88] Y. Matsumoto, C. Hiramatsu, Y. Matsushita, N. Ozawa, R. Ashino, and M. Nakata. Evolutionary

renovation of L/M opsin polymorphism confers a fruit discrimination advantage to ateline new

world monkeys. Molecular Ecology, 23:1799–1812, 2014.

[89] W.L. Davies, J.A. Cowing, J.K. Bowmaker, L.S. Carvalho, D.J. Gower, and D.M. Hunt. Shedding

light on serpent sight: The visual pigments of henophidian snakes. J Neurosci, 29:7519–7525, 2009.

[90] W.L. Davies, L.S. Carvalho, J.A. Cowing, L.D. Beazley, D.M. Hunt, and C.A. Arrese. Visual

pigments of the platypus: A novel route to mammalian colour vision. Current Biology, 17:161– 163,

2007.

[91] W.L. Davies, L.S. Carvalho, B.-H. Tay, S. Brenner, D.M. Hunt, and B. Venkatesh. Into the blue:

Gene duplication and loss underlie color vision adaptations in a deep-sea chimaera, the elephant

shark callorhinchus milii. Genome Res, 2009-07-16.



78

[92] W.L. Davies, J.A. Cowing, L.S. Carvalho, I.C. Potter, A.E.O. Trezise, and D.M. Hunt. Func-

tional characterization, tuning, and regulation of visual pigment gene expression in an anadromous

lamprey. The FASEB Journal, 21:2713–2724, 2007.

[93] S. Yokoyama and F.B. Radlwimmer. The molecular genetics and evolution of red and green color

vision in vertebrates. Genetics, 158:1697–1710, 2001.

[94] S. Yokoyama, F.B. Radlwimmer, and S. Kawamura. Regeneration of ultraviolet pigments of verte-

brates. FEBS Lett, 423:155–158, 1998.

[95] J.S. Patel, C.J. Brown, F.M. Ytreberg, and D.L. Stenkamp. Predicting peak spectral sensitivities

of vertebrate cone visual pigments using atomistic molecular simulations. PLOS Computational

Biology, 14:1005974, 2018.

[96] J. Rajput, D.B. Rahbek, L.H. Andersen, A. Hirshfeld, M. Sheves, and P. Altoè. Probing and mod-
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[134] P. Pokorná, H. Kruse, M. Krepl, and J. Šponer. QM/MM calculations on protein–rna complexes:

Understanding limitations of classical md simulations and search for reliable cost-effective qm meth-

ods. J Chem Theory Comput, 14(10):5419–33, 2018.

[135] C. Geng, L.C. Xue, J. Roel-Touris, and A.M.J.J. Bonvin. Finding the δδg spot: Are predictors

of binding affinity changes upon mutations in protein–protein interactions ready for it? WIREs

Computational Molecular Science, 9(5), 2019.

[136] M.M. Gromiha, K. Yugandhar, and S. Jemimah. Protein-protein interactions: scoring schemes and

binding affinity. Curr Opin Struct Biol, 44(31-8):27866112, 2016.

[137] J. Schymkowitz, J. Borg, F. Stricher, R. Nys, F. Rousseau, and L. Serrano. The foldx web server:

an online force field. Nucleic Acids Res, 33(Web Server issue), 2005.

[138] S. Liu, C. Zhang, H. Zhou, and Y. Zhou. A physical reference state unifies the structure-derived

potential of mean force for protein folding and binding. Proteins: Structure, Function, and Bioin-

formatics, 56(1):93–101, 2004.



82

[139] P. Xiong, C. Zhang, W. Zheng, and Y. Zhang. Bindprofx: Assessing mutation-induced binding

affinity change by protein interface profiles with pseudo-counts. J Mol Biol, 429(3):426–34, 2017.

[140] Zhang Brender, JR and Y. Predicting the effect of mutations on protein-protein binding interactions

through structure-based interface profiles. PLoS Comp Biol, 11(10), 2015.

[141] Y. Dehouck, J.M. Kwasigroch, M. Rooman, and Gilis D. BeAtMuSiC. Prediction of changes in

protein-protein binding affinity on mutations. Nucleic Acids Res, 41(Web Server issue), 2013.

[142] M. Li, F.L. Simonetti, A. Goncearenco, and A.R. Panchenko. Mutabind estimates and interprets

the effects of sequence variants on protein–protein interactions. Nucleic Acids Res, 44(W1), 2016.

[143] T. Vreven, H. Hwang, B.G. Pierce, and Z. Weng. Prediction of protein–protein binding free energies.

Protein Sci, 21(3):396–404, 2012.

[144] C.H.M. Rodrigues, Y. Myung, D.E.V. Pires, and D.B. Ascher. mcsm-ppi2: predicting the effects

of mutations on protein–protein interactions. Nucleic Acids Res, 47(W1), 2019.

[145] S. Jemimah, M. Sekijima, and M.M. Gromiha. Proaffimuseq: sequence-based method to predict

the binding free energy change of protein–protein complexes upon mutation using functional clas-

sification. Bioinformatics, 36(6):1725–30, 2019.
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