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Abstract 

Forests play a critical role in climate regulation through their ability to both store a large 

amount of long-term and persistent terrestrial carbon, and continually sequester carbon from 

the atmosphere. In addition to carbon storage and sequestration, western US forests provide 

vital ecosystem services such as wood products, wildlife habitat, recreation, and erosion 

control. The interactive effects of climate change, land management, and wildfire regimes 

influence the sustainability of forest growth and stability, biodiversity, and water availability 

Human and ecological disturbances such as climate change, wildfires, and forest 

management can significantly decrease forest carbon stocks and sequestration. There is a 

critical need to better understand and accurately predict the nature and severity of the 

interactive effects to guide forest management and policy decisions aimed at forest resilience 

and climate mitigation.  

This dissertation addresses the uncertainty associated with impacts of forest disturbances 

(wildfires and forest management) and climate change on forest carbon dynamics, using  data 

synthesis and ecosystem models. I use publicly available datasets to evaluate how past 

wildfires and forest management have influenced current forests and use ecosystem models 

to predict how climate change and future fires will impact forests across space and time. 

Improved mechanistic predictions of forest conditions will be key to developing relevant 

management plans at local and regional scales. Here, I clarify the impacts of climate change, 

wildfires, and land management on forest carbon dynamics across paleo timescales (Chapter 

1), the modern historical records (Chapter 2), and the simulated future (Chapter 3).  
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In Chapter 1, I explored the interactions between fire and carbon dynamics of 14 

subalpine forested watersheds in Colorado, USA across 2000 years. Through a modeling 

experiment, I tested the impact of varying fire frequency over a ~2000 year period on 

ecosystem productivity and carbon storage using an improved biogeochemical model 

(Snagged DayCent). The experiment included high-fire, paleo-record fire, and no fire 

scenarios. High fire frequency simulations had overall lower carbon stocks across all sites 

compared to scenarios with the paleo-record or no fire frequency scenarios, highlighting the 

importance of fire frequency and fire timing variability in determining ecosystem carbon 

storage. 

In Chapter 2, I investigated differences in western US forest fire carbon emissions, 

restoration (understory and small-diameter tree removal, and prescribed burns) and extractive 

forest management (harvest for timber sale), and fossil fuel emissions over the past decade. 

Forest fire carbon emissions are on average only 6% of anthropogenic fossil fuel emissions 

over. Restoration thinning and commercial harvest of mature trees releases a higher density 

of carbon emissions relative to wildfire (200-1300%). These results show that extractive 

forest management increases emissions rather than preventing them and suggest that 

reducing fossil fuel emissions will do more for climate mitigation potential, and subsequent 

reduction of fire, than increasing extractive harvest to prevent fire emissions. This chapter 

also discusses policy and management choices to lead to both more resilient forests, and 

better climate mitigation strategies. Management aimed at fuels reduction to moderate fire 

behavior and increase forest resilience (such as restoration thinning and prescribed burns) 

will help to balance reducing catastrophic fire near communities and leave live mature trees 

on the landscape to continue carbon uptake. 
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In Chapter 3, I modeled future fire occurrence and carbon dynamics in Northern 

Rocky forests. Despite the lack of wildfire in some these forests over the last century, it is 

unclear how fire occurrence and carbon dynamics in these forests will look in the future with 

continued warming and drying, and how future fire and future climate may impact the carbon 

balance of the region. I explore the climate-fire-ecosystem interactions in the Northern 

Rockies through ecosystem modeling. Here, we use an Earth Systems Model with dynamic 

vegetation (CLM-FATES) and fire module (SPITFIRE) to investigate the future of fire  and 

carbon dynamics in the Northern Rockies over the next century.   Future simulations (until 

2080) forced with future climate data show an increase in wildfire from the modern record 

for the wet and cold forest types, while the warm-dry forest type continues to have a shorter 

mean fire return interval (15-25 years). Fire occurrence in the wet and cold forests is 

followed by immediate, subsequent decreases in forest carbon (up to 20% loss). However, 

post-fire recovery of forest carbon stocks occurs for all forest types for the simulation range, 

with complete AGC recovery seen in as little as 10-20 years following some of the 

disturbances.  
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Chapter 1: Post-Fire Carbon Dynamics in Subalpine Forests of the Rocky Mountains 

 

Published in MDPI FIRE as: 

Bartowitz, K. J., Higuera, P. E., Shuman, B. N., McLauchlan, K. K., & Hudiburg, T. W. 

(2019). Post-Fire Carbon Dynamics in Subalpine Forests of the Rocky Mountains. Fire, 2(4), 

58. https://doi.org/10.3390/fire2040058 

 

Abstract 

Forests store a large amount of terrestrial carbon, but this storage capacity is 

vulnerable to wildfire. Combustion, and subsequent tree mortality and soil erosion, can lead 

to increased carbon release and decreased carbon uptake. Previous work has shown that non-

constant fire return intervals over the past 4000 years strongly shaped subalpine forest carbon 

trajectories. The extent to which fire-regime variability has impacted carbon trajectories in 

other subalpine forest types is unknown. Here, we explored the interactions between fire and 

carbon dynamics of 14 subalpine watersheds in Colorado, USA. We tested the impact of 

varying fire frequency over a ~2000 year period on ecosystem productivity and carbon 

storage using an improved biogeochemical model. High fire frequency simulations had 

overall lower carbon stocks across all sites compared to scenarios with lower fire 

frequencies, highlighting the importance of fire-frequency in determining ecosystem carbon 

storage. Additionally, variability in fire-free periods strongly influenced carbon trajectories 

across all the sites. Biogeochemical trajectories (e.g., increasing or decreasing total 

ecosystem carbon and carbon-to-nitrogen (C:N) ratios) did not vary among forest types but 

there were trends that they may vary by elevation. Lower-elevations sites had lower overall 

soil C:N ratios, potentially because of higher fire frequencies reducing carbon inputs more 

than nitrogen losses over time. Additional measurements of ecosystem response to fire-
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regime variability will be essential for improving estimates of carbon dynamics from Earth 

system models. 

Introduction 

Temperate coniferous forests are significant carbon sinks and are essential for 

mitigation goals aimed at keeping global warming below 1.5 degrees C (IPCC, 2014; Le 

Quéré et al., 2018). Western US forests are among the most carbon dense forests in the world 

(T. Hudiburg et al., 2009) and remain strong carbon sinks (Buotte et al., 2019) despite 

increases in drought and fire-related mortality (Schwalm et al., 2012). Fire can reduce forest 

carbon sinks through decreased carbon uptake (due to increased plant stress or mortality), 

biomass and soil combustion, and/or post-fire soil erosion, creating long-lasting legacies on 

potential ecosystem carbon storage (T. W. Hudiburg et al., 2017; Kelly et al., 2015). Thus, 

the ability of forests to continue to store and sequester carbon may decrease as wildfires and 

area burned increase (Amiro et al., 2010; Berner et al., 2017; Liang et al., 2017; Seidl et al., 

2014). These dynamics may create a positive feedback between increased fire activity and 

reduced carbon storage if the time interval between severe fire events becomes shorter than 

forest regrowth (Turner et al., 2019). Such feedbacks may be particularly important in slow 

growing subalpine forests where high-severity fire has historically played an important role 

(Schoennagel et al., 2004). 

Within a broad biome type such as coniferous forests, there is significant variation in 

plant species composition, but little is known about how species composition interacts with 

fire regimes to influence carbon and nitrogen dynamics in this region. Spatial differences in 

plant species distributions, and associated plant traits, have been shown to influence both fire 

regime characteristics (Pausas et al., 2004) and post-fire ecosystem properties (Clarke et al., 
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2015). Traditional plant functional traits such as seed size, leaf thickness, and growth rate are 

also important for determining flammability and post-fire recovery(Archibald et al., 2019; 

Keeley et al., 2011; Poulos et al., 2018). Recently, a suite of plant traits have been identified 

that indicate fire adaptations or co-evolution with fire (Archibald et al., 2019; Pausas et al., 

2004). These traits, such as bark thickness, seed dispersal distance, and serotiny, vary in 

subalpine forests of the western US. Finally, nutrient-related plant traits such as foliar N 

concentration have the potential to create feedbacks with ecosystem primary productivity 

(Leys et al., 2016; Pompeani et al., 2018) but these are difficult to quantify on decadal or 

shorter timeframes. Ultimately, regional-scale variation in carbon trajectories will also 

depend on other site characteristics, such as the local climate. For example, lodgepole pine 

forests, which comprise a major component of subalpine ecosystems in the western U.S., are 

experiencing novel climatic conditions in the post-fire recovery phase, leading to decreased 

post-fire tree regeneration (Davis et al., 2019; Stevens-Rumann et al., 2018).  

Fire frequency and area burned are increasing in western U.S. forests due to climate 

change, past fire suppression (leading to a build-up of fuels), and various other anthropogenic 

effects (Abatzoglou & Williams, 2016; Balch et al., 2017; Berner et al., 2017; Littell et al., 

2009, 2016; Miller et al., 2009; Westerling et al., 2006). Here we focused on documented 

changes in fire frequency over millennial timescales to evaluate the wide range of possible 

biogeochemical trajectories that they could produce including increasing, stabilizing, or 

decreasing carbon storage. It could be hypothesized that increases in fire frequency would 

increase tree mortality, forest floor carbon pool (e.g., downed woody debris, litter) 

combustion, and soil erosion, and lead to increased carbon release and decreased carbon 

sequestration (Berner et al., 2017; Seidl et al., 2016). Alternatively, post-fire forest recovery 
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(i.e., tree growth and regeneration) may quickly re-sequester carbon, creating a near stable 

long-term ecosystem carbon balance over millennia (Chapin III et al., 2006). A third 

possibility is that increased fire frequency could increase ecosystem carbon storage over past 

millennia if fires return a significant portion of stored carbon to soils through dead organic 

matter inputs (T. W. Hudiburg et al., 2017).  

The extent to which climate change and changing fire regimes are affecting forest 

carbon uptake now and in the future is currently unknown and difficult to predict, especially 

at spatial and temporal scales relevant to human land-use and management (Bonan & Doney, 

2018; Buotte et al., 2019; Fisher et al., 2018; B. E. Law et al., 2018). To evaluate how past 

fire regimes have influenced forest carbon storage, process-based ecosystem models can be 

used to quantify fluxes and stocks of ecosystem properties over time. Earth System Modeling 

of fire events and ecosystem properties has been identified as a research priority in fire 

ecology (Hantson et al., 2016). Many ecosystem modeling studies use modern forcing data 

(e.g., modern fire return intervals or climate inputs over approximately the last 30 years) to 

gain insights into past ecological impacts. Using this short-term, modern data may not 

accurately portray past ecosystem dynamics because it lacks the full range of potential 

variability. Recent paleo-informed ecosystem model simulations have shown large 

differences in output driven by modern vs paleo-fire records (T. W. Hudiburg et al., 2017; 

Kelly et al., 2015). 

Here, we explored how variability in fire activity in subalpine forests of the southern 

US Rocky Mountains affects carbon and nitrogen dynamics (stocks and fluxes) over 

centuries to millennia. Building on previous work (T. W. Hudiburg et al., 2017), we inform 

the biogeochemical model, DayCent, with paleo-fire records to simulate carbon and nitrogen 
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fluxes and stocks over the past ≈2000 years in subalpine forests in northern Colorado. We 

answer the following questions: (1) How do the long-term (i.e., centennial- to millennial-

scale) carbon and nitrogen dynamics of subalpine forests change with varying fire frequency? 

(2) Does forest type (e.g. species composition) affect carbon dynamics? (3) Does elevation 

(changes in local temperature and effective moisture) explain any additional regional-scale 

variation in carbon trajectories? To expand the scope of drivers of carbon trajectories, we 

examine differences across elevations, which correlate with different absolute climate 

conditions. We also considered other site-specific factors like the time since the last fire, the 

range of variation in fire-return intervals, and the mean fire frequency. 

Materials and Methods 

Using prescribed paleo-reconstructions of fire histories (Calder et al., 2015; Dunnette et 

al., 2014; Higuera et al., 2014), we simulated carbon and nitrogen dynamics using the 

biogeochemical model DayCent at 14 watershed study sites (Table 1). DayCent is the daily 

timestep version of the mechanistic and deterministic model CENTURY, which has been 

widely used to simulate the effects of climate and fire on ecosystem processes on a multitude 

of ecosystems worldwide (Bai & Houlton, 2009; Hartman et al., 2007; Savage et al., 2013). 

DayCent includes three soil carbon pools (active, slow, and passives) that span months to 

millennia, representing long-term ecosystem change to biogeochemical pools. Detailed 

DayCent documentation and publication lists can be found on the following website: 

http://www2.nrel.colostate.edu/projects/daycent-downloads.html. We used the most recent 

version of DayCent with a new standing dead wood pool (Stenzel et al., 2019). 
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Table 1. Study sites in the Southern Rocky Mountains. Sub-regions include Rocky 

Mountain National Park (RMNP) and Medicine Bow-Routt National Forest (MBR-

NF). 

 

Study 

Site 
Lat., Long. 

Sub-

Region 
Forest Type 

Elevation 

(m) 

Mean 

FRI 

(yr) 

[SD]  

Simulation  

Length 

Eileen 
40.902, 

−106.674 
MBR-NF Spruce-fir 3135 

220 

[142] 
2197 

Seven 
40.896, 

−106.682 
MBR-NF 

Upper-

treeline 

spruce-fir 

3276 
298 

[238] 
2089 

Gold 

Creek 

40.782, 

−106.678 
MBR-NF Spruce-fir 2917 

174 

[107] 
1909 

Hidden 
40.771, 

−106.827 
MBR-NF Spruce-fir 2704 

234 

[169] 
2107 

Beaver 
40.753, 

−106.687 
MBR-NF Spruce-fir 3161 

283 

[266] 
1981 

Tiago 
40.579, 

−106.613 
MBR-NF Spruce-fir 2700 

244 

[165] 
2197 

Whale 
40.556, 

−106.675 
MBR-NF Spruce-fir 3059 

240 

[141] 
2161 

Summit 
40.545, 

−106.682 
MBR-NF 

Upper-

treeline 

spruce-fir 

3149 
185 

[117] 
2035 

Round 
40.473, 

−106.663 
MBR-NF Spruce-fir 3071 134 [79] 2107 

Chickaree 
40.334, 

−105.840 
RMNP  Lodgepole 2796 136 [87] 2180 

Odessa 
40.330, 

−105.685 
RMNP Spruce-fir 3051 

281 

[218] 
2251 

Lonepine 
40.232, 

−105.730 
RMNP Spruce-fir 3016 

302 

[298] 
2416 

Thunder 
40.221, 

−105.647 
RMNP Spruce-fir 3231 

315 

[228] 
2206 

Sandbeach 
40.218, 

−105.601 
RMNP Lodgepole 3140 

243 

[152] 
2191 
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The required inputs for DayCent include vegetation cover, daily precipitation and 

temperature (daily minimum and maximum), soil texture, and disturbance history. DayCent 

calculates potential plant production as a function of water, light, and soil temperature and 

limits actual plant growth based on soil nutrient availability. The model includes three soil 

organic matter (SOM) pools, with different decomposition rates: active, slow, and passive. The 

active SOM pool (microbial) has short turnover times of 1–3 months. The slow SOM pool 

(more resistant, structural plant material) has turnover times ranging from 10 to 50 years. 

depending on the climate. The passive SOM pool includes both physically and chemically 

stabilized SOM with long turnover times ranging from 400 to 4000 years. In addition, DayCent 

also includes above and belowground litter pools, and a surface microbial pool (associated with 

decomposing surface litter). Plant material is split into structural and metabolic material as a 

function of the lignin-to-nitrogen ratio of the litter (e.g., the structural pool has a higher lignin-

to-nitrogen ratios). For this study, DayCent was parameterized to model soil organic carbon to 

a 30 cm depth using SoilGrids250 (Hengl et al., 2017). Model outputs include soil carbon and 

nitrogen stocks, live and dead biomass, above- and below-ground net primary productivity 

(NPP), heterotrophic respiration (Rh), fire emissions, and net ecosystem production.  

Disturbance occurrence, such as fire, in DayCent are prescribed. Here, fires were 

prescribed based on occurrence in the paleo-fire reconstructions (Table S1). Fires can be 

parameterized to reflect severity through associated impacts to the ecosystem (e.g., biomass 

killed, carbon and nitrogen lost, soil eroded). The fire model in DayCent is parameterized to 

include the combusted and/or mortality fraction of each carbon pool (live and dead wood, 

foliage, coarse and fine roots, etc.) that occurs with each fire event. In addition, DayCent was 
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recently developed to include a standing dead tree (i.e., “snag”) pool to more accurately 

represent forest structure (Stenzel et al., 2019). In previous versions of DayCent, dead trees 

would immediately enter the coarse woody debris pool with a different rate of decomposition 

and combustion than standing dead trees have, affecting carbon and nitrogen dynamics for 

decades to centuries. 

 

Study Sites and Data Collection: 

Fourteen subalpine forest watersheds are simulated in this study, each with a single lake-

sediment record previously used to reconstruct fire history (Calder et al., 2015; Dunnette et al., 

2014; Higuera et al., 2014; T. W. Hudiburg et al., 2017); sites are located in the Rocky 

Mountain National Park and the Medicine Bow-Routt National Forest (Figure S1, Table 1). 

Each watershed was simulated for the dominant forest type (Table 1) for approximately the 

past 2000 years. 

Tree inventory, soil, and foliage samples were collected from four (Table S2) of the study 

sites in June 2018, following standardized terrestrial carbon observation protocols (B. E. Law 

et al., n.d.; Sampson & Allen, 1995). Samples were collected from three of the modeled sites 

(Chickaree, Summit, and Gold Creek lakes) and one site that was not modeled (Hinman Lake). 

Tree species data and foliage C:N ratios were used to parameterize tree characteristics in the 

model that affect tree growth and organic matter decomposition. Soil samples were analyzed 

for carbon-to-nitrogen (C:N) ratio as well as soil-texture and classification. Hinman Lake was 

not modeled because of its shorter paleo-fire history compared to the other lakes in the region. 

However, because Hinman Lake had a similar vegetation composition to several other lakes 

that we were unable to sample, Hinman Lake parameter data were used for sites with similar 

forest composition.  
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At each of the study sites, samples were collected from four, 15 m-radius circular subplots, 

located 30 meters in each cardinal direction from the edge of the lake (i.e., N, S, E, W). Tree 

inventories were taken for each subplot, including species, living or dead status, diameter at 

breast height (DBH), and height for all trees with a DBH > 10 cm. If the tree was dead, a decay 

class (1–5) was noted. Foliage samples were taken for each tree species present using a 5-m 

pruning pole, and the current year’s growth on each foliage sample was discarded. Current 

year’s growth was discarded because the C:N ratio of new foliage is usually much lower than 

the rest of the canopy (less mass, new tissue) and does not represent the bulk of the 

photosynthetic surface. Four litter and four soil samples were collected at each subplot. Litter 

was removed and stored and then a soil corer (4.5 cm diameter), was used to collect soil up to 

a 30 cm depth or to bedrock (whichever was shallower). Ancillary data were recorded at each 

site, including ground cover, tree seedling and sapling relative abundance and species present, 

herbaceous and shrub species present, and signs of human disturbance. In addition, photos of 

ground cover, tree density, and canopy cover measurements were taken at each subplot.  

Environmental analyses of C and N content of the foliage, soil, and litter samples were 

completed at the University of Idaho’s Biogeochemistry Core Facility using a Costech ECS 

4010. Sediment, plant leaf, and atropine standards were used for carbon and nitrogen analysis. 

After model parameterization and a 2000-year spin up, we compared modern modeled (end-

of-simulation), soil C with our field data to validate model output.  

Model Inputs and Parameterization: 

DayCent submodels that are associated with tree physiological parameters, site 

characteristics, soil parameters, and disturbance events were modified using available site-

specific observations from both published studies and field work. Three forest types were 
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simulated in DayCent: spruce-fir, lodgepole pine, and upper-treeline spruce-fir (Table 1). The 

soil properties for the sites that were not sampled were acquired from publicly available soil 

databases (Hengl et al., 2017). The literature reported that leaf-area-indices for lodgepole pine 

(Sampson & Allen, 1995), subalpine fir, and Engelmann spruce (Aplet et al., 1989) were used 

to further parameterize forest type definitions in the model. Climate data required include daily 

minimum and maximum temperature and precipitation, which were obtained for the 36-year 

period from 1980 to 2016 from DAYMET (Thornton, P. E., Thornton, M. M., Mayer, B. W., 

Wilhelmi, N., Wei, Y., Devarakonda, R., & Cook, 2012). All model simulations were forced 

with these modern climate data but repeated for the duration of each simulation. Thus, for all 

modeled scenarios, climate was functionally non-varying over the duration of the simulations 

(beyond the variability within the 30-year dataset). 

Model Simulation Scenarios: 

We used DayCent to run a series of experiments (hereafter “scenarios”) varying the timing 

and overall frequency of fire events at each site to evaluate the patterns and causes of variations 

in a suite of model output variables. For each watershed, five DayCent scenarios were 

completed with varying timing of fire events (Table 2): first, a paleo-fire scenario was run, 

where the timing of past fires was determined based on the site-specific paleo-fire 

reconstructions (Calder et al., 2015; Dunnette et al., 2014; Higuera et al., 2014; T. W. Hudiburg 

et al., 2017). Second, a no-disturbance scenario was run, with no fires or other disturbance over 

the duration of the simulation for each watershed. In comparison to the paleo-fire scenario, this 

scenario highlights the effects any amount of fire has on ecosystem stocks and fluxes over 

millennia. Finally, a high-fire scenario used a fire return interval that was doubled by repeating 

the paleo-record twice within the same time period (~2000 years). This in effect halved the fire 
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free intervals from the paleo scenario. We also considered an equilibrium scenario with a 

constant fire return interval determined from the paleo-record (Figure S2), but we focused our 

discussion on the paleo-fire, no-fire, and high-fire scenarios.  

Table 2. Model scenario descriptions. 

Scenario Description  Climate 

Equilibrium 
Fire prescribed using the mean fire return interval (FRI) of 

the paleo-fire record 

Modern-

recycled 

Paleo-fire Fire prescribed using site-specific paleo-fire record  Modern-

recycled 

High-fire  Fire prescribed by doubling the site-specific paleo-fire 

record; e.g., fire-history is repeated twice in the 2000-year 

record 

Modern-

recycled 

No-fire  No disturbance/fire Modern-

recycled 

 

Model Evaluation and Statistical Analyses:  

We compared model output with our soil carbon estimates calculated from the field 

samples for the four lakes. Soil carbon is not parameterized (is not an input) in DayCent; rather, 

soil carbon is an output of the model and therefore, allows for site-specific model evaluation. 

Modeled soil carbon estimates were all within one standard deviation of observed estimate 

means (Figure S3). 

Model simulations were analyzed for differences between forest type and model scenarios 

using two-sample Students t-tests and single-factor ANOVAs in R (R Core Team, 2017). The 

model outputs that were examined include soil carbon, total ecosystem (C:N) ratios, and total 

ecosystem carbon. Relationships among soil carbon, C:N ratios, fire frequencies, and elevation 

were examined using simple linear regressions in R (R Core Team, 2017).  
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Results and Discussion 

Impacts of Varying Fire Frequency on Long-Term Carbon and Nitrogen Dynamics of 

Subalpine Forests:  

In all scenarios with fire, wildfire occurrence led to immediate and subsequent depletions 

in soil carbon (Figure 1); these small declines can be seen in the paleo-fire and high-fire 

simulations. Spikes in soil C show when fires occurred, as there is immediate loss of soil C 

(decline) following fire. A portion of soil carbon and nitrogen pools were lost and subsequently 

recovered at different rates. Consequently, higher fire frequencies over centennial time scales 

(shorter fire-free intervals) led to incremental reductions in carbon and nitrogen stocks (Figures 

1, 2, and S5). Total ecosystem and soil carbon were lower at the end of the simulation period 

(i.e., in 2012) in simulations with high fire occurrence (e.g., at lakes with frequent paleo-fires 

and in high-fire scenarios compared to paleo-fire scenarios, Figures S6 and S7).  
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Figure 1. Soil carbon stocks over the simulation period for each watershed. Plots are 

ordered from low (a) to high (n) paleo-fire frequency (i.e., Beaver has the lowest fire 

frequency and Chickaree has the highest), as shown by the bar graph inset. The bar 

graph inset shows the number of paleo-record fires during the simulation length of 

each scenario for that study location. 
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Figure 2. Simulated total (all aboveground and belowground biomass and soil pools) 

C:N ratio over simulation length. The plots are ordered from low (a) to high (n) paleo-

fire frequency (i.e., Beaver has the lowest fire frequency and Chickaree has the 

highest), as shown by the bar graph inset. The bar graph inset shows the number of 

paleo-record fires during the simulation length of each scenario for that study location 

In addition to the changes in the soil carbon pool (Figure 1), the simulations also indicate 

substantial differences in ecosystem C:N among scenarios (Figure 2). Ecosystem C:N ratios 

for the no-fire scenario decline during the entire simulation period for all study sites, but fires 

substantially alter this trajectory. However, at each study site, even though soil carbon was 

lower for all high-fire scenarios than the paleo-fire scenarios, overall trajectories of ecosystem 

C:N were similar for high-fire and paleo-fire scenarios (Figure 2). The watersheds with high-



15 

 

frequency paleo-fire records (e.g., Chickaree and Round) had C:N ratios that were very similar 

for both high-fire and paleo-simulations (Figure 2).  

In all the scenarios, fewer, or no, fires for more than a century led to slow but steady 

increases in both ecosystem C and N stocks. Post-fire recovery of different carbon and nitrogen 

pools varied based on fire frequency. The high-fire scenario lead to a decline of soil carbon 

across all sites, whereas the paleo-fire scenarios showed a range of soil carbon values, either 

decreasing or staying at equilibrium values of soil carbon.  

Comparing all study watersheds, regardless of forest type, final (end-of-simulation) total 

ecosystem carbon was significantly different between the three experimental simulations 

(Figure 3). No-fire scenarios had the highest values of ecosystem C stocks, followed by the 

paleo-fire and high-fire scenarios (F = 86.64, df = 2, p < 0.01). Final ecosystem C:N ratios 

were also significantly different between the three experimental simulations. No-fire scenarios 

had the highest C:N values, followed by paleo-fire and high-fire scenarios (F = 14.97, df = 2, 

p < 0.01). 
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Figure 3. Forest-type variation in final ecosystem carbon and C:N ratios by model 

scenario. (a) Forest-type final (end of simulation) ecosystem carbon by forest types, 

lodgepole pine (LP) and spruce-fir (SF). (b) Forest type final (end of simulation) C:N 

by lodgepole pine and spruce-fir forests. The error bars represent the standard error in 

each scenario-forest type combination. 

Impacts of Forest Type on Carbon and Nitrogen Dynamics: 

 Total ecosystem carbon was significantly lower in lodgepole forests than in spruce-fir 

forests (Figure 3a, dark grey bars, t = −2.62, df = 8, p = 0.03). C:N ratios were not significantly 

different between lodgepole and spruce-fir forests (Figure 3b, t =−1.05, df = 7, p = 0.32).  

Total ecosystem carbon was significantly lower in the high-fire and paleo-fire scenarios 

compared to the no-fire scenarios in the spruce-fir forest watersheds (Figure 3a, F = 192, df = 

2 , p < 0.01), and in the lodgepole forest watersheds (Figure 3a, F = 33.18, df = 2, p < 0.01). 
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C:N ratios were not significantly different in high-fire scenarios than in paleo-fire scenarios 

for spruce-fir forests (Figure 3b, F = 7.31, df = 2, p = 0.07). High-fire total ecosystem C:N 

ratios were significantly lower than paleo-fire scenarios in lodgepole pine forests (Figure 3b, 

F = 11.38, df = 2, p < 0.02).  

Influence of Fire Frequency and Site Characteristics on C and N Dynamics: 

Influence of fire frequency (FF; number of fires over simulation length), fire return 

interval standard deviation (FRISD; the standard deviation of average time between fire events 

over simulation length), time since last fire (TSLF), and elevation (ELEV) were evaluated for 

their impact on model outputs from the paleo-fire scenario on all study sites. Total ecosystem 

and total soil carbon stocks were significantly lower in watersheds with higher paleo-fire 

occurrence than in other watersheds (Figure 4a,e, Table 3). Total C:N ratios did not 

significantly change with increase in FF, while soil C:N ratios were negatively correlated with 

fire frequency (Figure 4m, Table 3). Total ecosystem carbon, total soil carbon, and soil C:N 

ratios were highly correlated with increased FRISD (Figure 4b,f,n, Table 3). TSLF and ELEV 

were not correlated with carbon and nitrogen dynamics in the paleo-fire simulations (Figure 4, 

Table 3). There was no correlation relationship between FF and study site elevation (Figure 

S4), although there is a trend of decreasing FF with increasing elevation. 
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Table 3. Correlation coefficients comparing paleo-fire scenarios in all the study sites. 

Relationships determined between total ecosystem carbon (TEC), soil carbon (Soil 

C), total C:N ratios, and soil C:N ratios in spruce-fir forests by fire frequency (number 

of fires over the simulation period), fire return interval standard deviation, time since 

last fire, and elevation (m). The bold values denote significant linear correlations. 

  FF FRISD TSLF ELEV 

TEC r2 0.4043 0.2671 0.1696 0.0101 

Soil C  r2 0.5293 0.4259 0.0128 0.176 

Total C:N r2 0.0182 0.0033 0.0704 0.1822 

Soil C:N r2 0.2835 0.3278 0.1489 0.0779 
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Figure 4. Variation in total ecosystem carbon (Mg m-2), soil carbon (Mg m-2), total 

C:N ratios, and soil C:N ratios in by fire frequency (number of fires over the 

simulation period, FF), fire return interval standard deviation (FRISD), time since last 

fire (TSLF), and elevation (m, ELEV). Figure panels are labeled a-p to refer to panels 

in text.  
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Discussion 

Using DayCent forced with paleo-fire records, we found several new aspects of 

simulated carbon and nitrogen fluxes and stocks over the past 2000 years in subalpine 

forests. Ecosystem carbon trajectories were strongly dependent on fire frequency and timing 

of fire events. The length of fire-free intervals determined if a watershed gained or lost 

ecosystem carbon and nitrogen by the end of the simulation period. The occurrence of long 

fire-free periods led to ecosystem carbon gains whereas frequent fires led to large carbon 

losses. These results are broadly consistent with empirical work from boreal forests 

demonstrating that fire-free periods lead to substantial C sequestration in aboveground 

biomass and upper soil layers (Brown & Johnstone, 2011; Kelly et al., 2015).  

Overall, increases in fire frequency substantially decreased soil carbon across all sites 

over time (Figure 3a). These results have important biogeochemical implications for periods 

of elevated fire activity in the past (Calder et al., 2015), and in the future (Buotte et al., 2019; 

Kelly et al., 2015). In this study, the repetition (through doubling the paleo-record fire 

history) of both fire occurrence and variability in the high-fire scenarios resulted in anew 

equilibria of overall lower carbon-carrying capacity compared to the paleo-fire scenarios. For 

example, in watersheds that had a long fire-free period at the end of the simulation, soil 

carbon increased for both the paleo and high-fire scenario (e.g., Seven Lake), but this 

increase is compressed in time and smaller in magnitude for the high-fire scenario. A long-

term high-fire frequency may lower the overall carbon carrying capacity of subalpine forest, 

but this trend saturates (i.e., stops declining) as seen in a few of the watersheds with higher 
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paleo fire frequency (e.g., Chickaree and Thunder). Reductions in total ecosystem carbon and 

soil carbon that result from increases in fire frequency may be predictive of future carbon 

storage in forested ecosystems in the current era of elevated wildfire activity (B. Law et al., 

2015), although many other factors contribute to soil carbon values including vegetation type 

and elevation (Jobbágy & Jackson, 2000). 

High variability in fire return intervals (fire return interval standard deviation) 

significantly increased total and soil carbon, and raised soil C:N ratio, compared to low 

variability or no-fire scenarios. Long fire-free intervals in many high-variability simulations 

likely drove this set of results, because long fire-free periods led to a build-up of carbon and 

an increase in the soil C:N ratio. Although total ecosystem carbon stocks increased across the 

study sites in the no-fire scenario, nitrogen stocks also increased, leading to an overall 

decrease of C:N over time. In no-fire scenarios, nitrogen is being ‘locked up’ in biomass as it 

accumulates over millennia and not being lost to fire or post-fire impacts. In paleo-fire 

scenarios, soil C:N ratios decrease with increased fire frequency, which may be due to carbon 

lost during or after fires, and the return of bioavailable nitrogen to the ecosystem, thereby 

decreasing the soil C:N ratio. There have been few site-scale studies examining post-fire C:N 

ratios (Knicker, 2007); however, studies on small time scales (years to decades) and spatial 

scales (site-specific) may represent processes that differ from the drivers of patterns in our 

study, which examines C:N ratios across a study region (Southern Rockies) on a millennial 

timescale. During forest stand development, increases in total C usually occurs with increases 

in N (Yang et al., 2011). In addition, forest floor C and N losses during prescribed fires can 

be large, and N volatilization during prescribed fires can be larger than N deposition in 

forests of the Sierra Nevada (Caldwell et al., 2002). Post-fire C:N ratios can be indicative of 
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the ability of the forest to recover, or availability of N for primary production to drive post-

fire growth.  

Both plant traits, such as foliar C:N, and potentially limiting nutrients, such as nitrogen, 

were found to be influenced by fire frequency. For example, variability in fire frequency led 

to high variability in ecosystem C:N ratios (Figure 2, 3) because of variation in the allocation 

of N among soil and plant pools. Doubling fire frequency (high-fire scenarios) lowered C:N 

ratios as compared to the paleo-fire scenarios. As paleo-fire frequency increases, the 

differences in C:N ratios between paleo and high-fire scenarios decreases. This suggests that 

there is a point of saturation with the amount of fire occurring, where the C:N ratios for the 

paleo- and high-fire scenarios are nearly equal (i.e., for Round and Chickaree Lakes) there is 

already a relatively high amount of fire occurring during the paleo-fire simulation. The lower 

C:N ratio also suggests that regrowth (or carbon carrying capacity) is not being limited by 

nutrient availability (nitrogen in DayCent) and is actually being limited by disturbance 

interval. 

We found that no-fire simulations led to the highest total ecosystem carbon stocks for all 

the study sites. Some of the most carbon dense places in the world (e.g., tropical and 

temperate rainforests) (Pan et al., 2011) do not (or very rarely) naturally burn. Most tropical 

forest fires are human-caused (Juárez-Orozco et al., 2017) and these forests are not fire-

adapted. Carbon carrying capacity is higher in places with no fire, although fire occurrence in 

fire-adapted ecosystems has other benefits in these ecosystems. Current trends of increased 

fire-frequency in fire-prone areas of the US (Westerling et al., 2006) (including the Southern 

Rockies study region) may lead to lower carbon-carrying capacities, as shown by the 

decrease in total ecosystem carbon in the high-fire scenario (Figure 2). Further simulations 
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with predictive and fully coupled ecosystem models will help elucidate the potential changes 

in forest carbon sink potential.  

Forest type seems to play a role in total ecosystem carbon storage. Our distribution of 

forest types among study sites is not ideal for making broad comparisons (n = 2 for lodgepole 

pine and n = 12 for spruce-fir forests) and it would be a more robust analysis if more forest 

types had been represented equally. However, this study relied on previously collected paleo-

fire reconstructions, of which there were 12 spruce-fir forests and two lodgepole pine forests. 

We parameterized model runs based on forest type because these species are different 

physiologically. Model output for the two forest types proved to be significantly different, 

making the results important to report.  

A limitation of this study is the lack of paleoclimate forcing data in the DayCent 

simulations. Using paleoclimate forcing data would allow for the model scenarios to test the 

impact of climate, in addition to fire regime variability. However, because our fire events are 

completely prescribed, they are decoupled from climate in the model simulations. We cannot 

easily acquire the proper scale of paleoclimate data for these study locations, making these 

impacts beyond the capability of the current study. Rather than introduce the additional 

uncertainty of downscaled paleoclimate data (both temporal and spatial), we chose to use 

climate data that was more specific to each site (Daymet; nearest weather station). As fires 

are prescribed (not predicted based on climate or vegetation type), our study tested the 

impact of fire regime variability and fire occurrence variability on carbon and nitrogen 

dynamics. Paleoclimate data is at such a large timestep and coarse spatial resolutions that 

downscaling it to use in a daily-timestep model for individual study sites would mask any 

results that could be interpreted from it.  
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The biogeochemical model DayCent allowed for the exploration of how known past fire 

events affected forested watersheds in Colorado. However, DayCent is not currently coupled 

with a predictive fire, vegetation, or climate model. Because of this limitation of the model, 

DayCent cannot predict fire or vegetation changes that result from changing climate and 

disturbance regimes. The results here provide a benchmark for comparison in future research 

utilizing fully coupled ecosystem model that includes a dynamic vegetation component (e.g., 

DGVM ecosystem models) and a prognostic fire model (e.g., SPITFIRE (Lasslop et al., 

2014)). Simulating Southern Rockies forests with a DGVM coupled with a climate and fire 

model will allow for predictions of C and N dynamics in forests with altered fire regimes 

under climate change. 

Acknowledgements 

We thank the Big Burns team for valuable discussions on these topics and assistance in the 

field. We also thank J. Stenzel for valuable fieldwork assistance. 

 

 

 

 

 

 

 

 



25 

 

References 

Abatzoglou, J. T., & Williams, A. P. (2016). Impact of anthropogenic climate change on 

wildfire across western US forests. Proceedings of the National Academy of Sciences, 

113(42), 11770–11775. https://doi.org/10.1073/pnas.1607171113 

Amiro, B. D., Barr, A. G., Barr, J. G., Black, T. A., Bracho, R., Brown, M., Chen, J., Clark, 

K. L., Davis, K. J., Desai, A. R., Dore, S., Engel, V., Fuentes, J. D., Goldstein, A. H., 

Goulden, M. L., Kolb, T. E., Lavigne, M. B., Law, B. E., Margolis, H. A., … Xiao, J. 

(2010). Ecosystem carbon dioxide fluxes after disturbance in forests of North America. 

Journal of Geophysical Research: Biogeosciences, 115(4). 

https://doi.org/10.1029/2010JG001390 

Aplet, G. H., Smith, F. W., & Laven, R. D. (1989). Stemwood Biomass and Production 

During Spruce-Fir Stand Development G . H . Aplet , F . W . Smith and R . D . Laven. 

Journal of Ecology, 77(1), 70–77. 

Archibald, S., Hempson, G. P., & Lehmann, C. (2019). A unified framework for plant life‐

history strategies shaped by fire and herbivory. New Phytologist. 

https://doi.org/10.1111/nph.15986 

Bai, E., & Houlton, B. Z. (2009). Coupled isotopic and process-based modeling of gaseous 

nitrogen losses from tropical rain forests. Global Biogeochemical Cycles, 23(2), 1–10. 

https://doi.org/10.1029/2008GB003361 

 

 



26 

 

Balch, J. K., Bradley, B. A., Abatzoglou, J. T., Nagy, R. C., Fusco, E. J., & Mahood, A. L. 

(2017). Human-started wildfires expand the fire niche across the United States. 

Proceedings of the National Academy of Sciences, 114(11). 

https://doi.org/10.1073/pnas.1617394114 

Berner, L. T., Law, B. E., Meddens, A. J. . ., & Hicke, J. A. (2017). Tree mortality from fires, 

bark beetles, and timber harvest during a hot and dry decade in the western United 

States (2003–2012). Environmental Research Letters, 12(6), 065005. 

https://doi.org/10.1088/1748-9326/aa6f94 

Bonan, G. B., & Doney, S. C. (2018). Climate, ecosystems, and planetary futures: The 

challenge to predict life in Earth system models. Science, 359(6375). 

https://doi.org/10.1126/science.aam8328 

Brown, C. D., & Johnstone, J. F. (2011). How does increased fire frequency affect carbon 

loss from fire? A case study in the northern boreal forest. International Journal of 

Wildland Fire, 20(7), 829–837. https://doi.org/10.1071/WF10113 

Buotte, P. C., Levis, S., Law, B. E., Hudiburg, T. W., Rupp, D. E., & Kent, J. J. (2019). Near 

‐ future forest vulnerability to drought and fire varies across the western United States. 

July 2018, 290–303. https://doi.org/10.1111/gcb.14490 

Calder, W. J., Parker, D., Stopka, C. J., Jiménez-Moreno, G., & Shuman, B. N. (2015). 

Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky 

Mountains. Proceedings of the National Academy of Sciences, 112(43), 13261–13266. 

https://doi.org/10.1073/pnas.1500796112 

 



27 

 

Caldwell, T. G., Johnson, D. W., Miller, W. W., & Qualls, R. G. (2002). Forest floor carbon 

and nitrogen losses due to prescription fire. Soil Science Society of America Journal, 

66(1), 262–267. https://doi.org/10.2136/sssaj2002.0262 

Chapin III, F. S., Woodwell, G. M., Randerson, J. T., Rastetter, E. B., Lovett, G. M., 

Baldocchi, D. D., Clark, D. A., Harmon, M. E., Schimel, D. S., Valentini, R., Wirth, C., 

Aber, J. D., Cole, J. J., Goulden, M. L., Harden, J. W., Heimann, M., Howarth, R. W., 

Matson, P. A., McGuire, A. D., … Schulze, E.-D. D. (2006). Reconciling carbon-cycle 

concepts, terminology, and methods. Ecosystems. https://doi.org/10.1007/s10021-005-

0105-7 

Clarke, P. J., Lawes, M. J., Murphy, B. P., Russell-Smith, J., Nano, C. E. M., Bradstock, R., 

Enright, N. J., Fontaine, J. B., Gosper, C. R., Radford, I., Midgley, J. J., & Gunton, R. 

M. (2015). A synthesis of postfire recovery traits of woody plants in Australian 

ecosystems. Science of the Total Environment, 534, 31–42. 

https://doi.org/10.1016/j.scitotenv.2015.04.002 

Davis, K. T., Dobrowski, S. Z., Higuera, P. E., Holden, Z. A., Veblen, T. T., Rother, M. T., 

Parks, S. A., Sala, A., & Maneta, M. P. (2019). Wildfires and climate change push low-

elevation forests across a critical climate threshold for tree regeneration. Proceedings of 

the National Academy of Sciences, 201815107. 

https://doi.org/10.1073/pnas.1815107116 

 

 

 



28 

 

Dunnette, P. V., Higuera, P. E., Mclauchlan, K. K., Derr, K. M., Briles, C. E., & Keefe, M. 

H. (2014). Biogeochemical impacts of wildfires over four millennia in a Rocky 

Mountain subalpine watershed. New Phytologist, 203(3), 900–912. 

https://doi.org/10.1111/nph.12828 

Fisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B. O., Dietze, M. C., 

Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G., Lawrence, P. J., Lichstein, J. W., 

Longo, M., Matheny, A. M., Medvigy, D., Muller-Landau, H. C., Powell, T. L., Serbin, 

S. P., Sato, H., Shuman, J. K., … Moorcroft, P. R. (2018). Vegetation demographics in 

Earth System Models: A review of progress and priorities. Global Change Biology, 

24(1), 35–54. https://doi.org/10.1111/gcb.13910 

Hantson, S., Arneth, A., Harrison, S. P., Kelley, D. I., Colin Prentice, I., Rabin, S. S., 

Archibald, S., Mouillot, F., Arnold, S. R., Artaxo, P., Bachelet, D., Ciais, P., Forrest, 

M., Friedlingstein, P., Hickler, T., Kaplan, J. O., Kloster, S., Knorr, W., Lasslop, G., … 

Yue, C. (2016). The status and challenge of global fire modelling. Biogeosciences, 

13(11), 3359–3375. https://doi.org/10.5194/bg-13-3359-2016 

Hartman, M. D., Baron, J. S., & Ojima, D. S. (2007). Application of a coupled ecosystem-

chemical equilibrium model, DayCent-Chem, to stream and soil chemistry in a Rocky 

Mountain watershed. Ecological Modelling, 200(3–4), 493–510. 

https://doi.org/10.1016/j.ecolmodel.2006.09.001 

Hengl, T., De Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, 

A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. 

A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., 



29 

 

Wheeler, I., Mantel, S., & Kempen, B. (2017). SoilGrids250m: Global gridded soil 

information based on machine learning. PLoS ONE. 

https://doi.org/10.1371/journal.pone.0169748 

Higuera, P. E., Briles, C. E., & Whitlock, C. (2014). Fire-regime complacency and sensitivity 

to centennial through millennial-scale climate change in Rocky Mountain subalpine 

forests, Colorado, USA. Journal of Ecology, 102(6), 1429–1441. 

https://doi.org/10.1111/1365-2745.12296 

Hudiburg, T., Law, B., Turner, D. P., Campbell, J., Donato, D., & Duane, M. (2009). Carbon 

dynamics of Oregon and Northern California forests and potential land‐based carbon 

storage. Ecological Applications, 19(1), 163–180. 

Hudiburg, T. W., Higuera, P. E., & Hicke, J. A. (2017). Fire-regime variability impacts forest 

carbon dynamics for centuries to millennia. Biogeosciences, 14(17), 3873–3882. 

https://doi.org/10.5194/bg-14-3873-2017 

IPCC. (2014). Part A: Global and Sectoral Aspects. (Contribution of Working Group II to the 

Fifth Assessment Report of the Intergovernmental Panel on Climate Change). Climate 

Change 2014: Impacts, Adaptation, and Vulnerability., 1132. 

https://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-

FrontMatterA_FINAL.pdf 

Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and 

its relation to climate and vegetation. Ecological Applications, 10(2), 423–436. 

https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 

 



30 

 

Juárez-Orozco, S. M., Siebe, C., & Fernández y Fernández, D. (2017). Causes and Effects of 

Forest Fires in Tropical Rainforests: A Bibliometric Approach. Tropical Conservation 

Science, 10, 194008291773720. https://doi.org/10.1177/1940082917737207 

Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., & Bradstock, R. A. (2011). Fire as 

an evolutionary pressure shaping plant traits. Trends in Plant Science, 16(8), 406–411. 

https://doi.org/10.1016/j.tplants.2011.04.002 

Kelly, R., Genet, H., McGuire, A. D., & Hu, F. S. (2015). Palaeodata-informed modelling of 

large carbon losses from recent burning of boreal forests. Nature Climate Change, 6(1). 

https://doi.org/10.1038/nclimate2832 

Knicker, H. (2007). How does fire affect the nature and stability of soil organic nitrogen and 

carbon? A review. Biogeochemistry, 85(1), 91–118. https://doi.org/10.1007/s10533-007-

9104-4 

Lasslop, G., Thonicke, K., & Kloster, S. (2014). SPITFIRE within the MPI Earth system 

model: Model development and evaluation. Journal of Advances in Modeling Earth 

Systems, 6, 740–755. https://doi.org/10.1002/2013MS000284.Received 

Law, B. E., Arkebauer, T., Chen, J., Campbell, J. L., Sun, O., Schwartz, M., van Ingen, C., & 

Verma, S. (n.d.). Terrestrial Carbon Observations : Protocols for Vegetation Sampling 

and Data Submission. 

Law, B. E., Hudiburg, T. W., Berner, L. T., Kent, J. J., Buotte, P. C., & Harmon, M. E. 

(2018). Land use strategies to mitigate climate change in carbon dense temperate 

forests. Proceedings of the National Academy of Sciences, 12, 201720064. 

https://doi.org/10.1073/pnas.1720064115 



31 

 

Law, B., Law, B. E., & Waring, R. H. (2015). Carbon implications of current and future 

effects of drought , fire and management on Pacific Northwest forests. FOREST 

ECOLOGY AND MANAGEMENT, June. https://doi.org/10.1016/j.foreco.2014.11.023 

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. 

A., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, 

L., Bastos, A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C., … Zheng, 

B. (2018). Global Carbon Budget 2018. Earth Syst. Sci. Data, 10(4), 2141–2194. 

https://doi.org/10.5194/essd-10-2141-2018 

Leys, B., Higuera, P. E., McLauchlan, K. K., & Dunnette, P. V. (2016). Wildfires and 

geochemical change in a subalpine forest over the past six millennia. Environmental 

Research Letters, 11(12). https://doi.org/10.1088/1748-9326/11/12/125003 

Liang, S., Hurteau, M. D., & Westerling, A. L. (2017). Potential decline in carbon carrying 

capacity under projected climate-wildfire interactions in the Sierra Nevada. Scientific 

Reports, 7(1), 2420. https://doi.org/10.1038/s41598-017-02686-0 

Littell, J. S., Mckenzie, D., Peterson, D. L., & Anthony, L. (2009). Climate and Wildfire 

Area Burned in Western U . S . Ecoprovinces , 1916 — 2003 Stable URL : 

http://www.jstor.org/stable/40346247 REFERENCES Linked references are available 

on JSTOR for this article : 19(4), 1003–1021. 

Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y., & Luce, C. H. (2016). A review of the 

relationships between drought and forest fire in the United States. In Global Change 

Biology (Vol. 22, Issue 7). https://doi.org/10.1111/gcb.13275 

 



32 

 

Miller, J. D., Safford, H. D., Crimmins, M., & Thode, A. E. (2009). Quantitative evidence for 

increasing forest fire severity in the Sierra Nevada and southern Cascade Mountains, 

California and Nevada, USA. Ecosystems, 12(1), 16–32. https://doi.org/10.1007/s10021-

008-9201-9 

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., & Kurz, W. A. (2011). A 

Large and Persistent Carbon Sink in the World ’ s Forests. Science, 333(July), 988–993. 

https://doi.org/10.1126/science.1204588 

Pausas, J. G., Bradstock, R. A., Keith, D. A., Keeley, J. E., Hoffman, W., Kenny, B., Lloret, 

F., & Trabaud, L. (2004). Plant functional traits in relation to fire in crown-fire 

ecosystems. Ecology, 85(4), 1085–1100. https://doi.org/10.1890/02-4094 

Pompeani, D. P., McLauchlan, K. K., Chileen, B. V., Wolf, K. D., & Higuera, P. E. (2018). 

Variation of key elements in soils and plant tissues in subalpine forests of the northern 

Rocky Mountains, USA. Biogeosciences Discussions, November, 1–19. 

https://doi.org/10.5194/bg-2018-443 

Poulos, H., Barton, A., Slingsby, J., & Bowman, D. (2018). Do Mixed Fire Regimes Shape 

Plant Flammability and Post-Fire Recovery Strategies? Fire, 1(3), 39. 

https://doi.org/10.3390/fire1030039 

R Core Team. (2017). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing. https://www.r0project.org/. 

Sampson, D. A., & Allen, H. L. (1995). Direct and indirect estimates of Leaf Area Index 

(LAI) for lodgepole and loblolly pine stands. Trees, 9(3), 119–122. 

https://doi.org/10.1007/BF02418200 



33 

 

Savage, K. E., Parton, W. J., Davidson, E. A., Trumbore, S. E., & Frey, S. D. (2013). Long-

term changes in forest carbon under temperature and nitrogen amendments in a 

temperate northern hardwood forest. Global Change Biology, 19(8), 2389–2400. 

https://doi.org/10.1111/gcb.12224 

Schoennagel, T., Veblen, T. T., & Romme, W. H. (2004). The Interaction of Fire, Fuels, and 

Climate across Rocky Mountain Forests. BioScience, 54(7), 661–676. 

https://doi.org/10.1641/0006-3568(2004)054[0661:tioffa]2.0.co;2 

Schwalm, C. R., Williams, C. A., Schaefer, K., Baldocchi, D., Black, T. A., Goldstein, A. H., 

Law, B. E., Oechel, W. C., Paw U, K. T., & Scott, R. L. (2012). Reduction in carbon 

uptake during turn of the century drought in western North America. Nature Geosci, 

5(8), 551–556. 

https://doi.org/http://www.nature.com/ngeo/journal/v5/n8/abs/ngeo1529.html#suppleme

ntary-information 

Seidl, R., Rammer, W., & Spies, T. A. (2014). Disturbance legacies increase the resilience of 

forest ecosystem structure, composition, and functioning. Ecological Applications, 

24(8), 2063–2077. https://doi.org/10.1890/14-0255.1 

Seidl, R., Spies, T. A., Peterson, D. L., Stephens, S. L., & Hicke, J. A. (2016). Searching for 

resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem 

services. Journal of Applied Ecology, 53(1). https://doi.org/10.1111/1365-2664.12511 

 

 



34 

 

Stenzel, J. E., Bartowitz, K. J., Hartman, M. D., Lutz, J. A., Kolden, C. A., Smith, A. M. S., 

Law, B. E., Swanson, M. E., Larson, A. J., Parton, W. J., & Hudiburg, T. W. (2019). 

Fixing a snag in carbon emissions estimates from wildfires. Global Change Biology, 

25(11). https://doi.org/10.1111/gcb.14716 

Stevens-Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother, M. T., Donato, 

D. C., Morgan, P., & Veblen, T. T. (2018). Evidence for declining forest resilience to 

wildfires under climate change. Ecology Letters, 21(2), 243–252. 

https://doi.org/10.1111/ele.12889 

Thornton, P. E., Thornton, M. M., Mayer, B. W., Wilhelmi, N., Wei, Y., Devarakonda, R., & 

Cook, R. (2012). Daymet: Daily surface weather on a 1 km grid for North America, 

1980-2008. Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center 

for Biogeochemical Dynamics (DAAC. 

Turner, M. G., Braziunas, K. H., Hansen, W. D., & Harvey, B. J. (2019). Short-interval 

severe fire erodes the resilience of subalpine lodgepole pine forests. Proceedings of the 

National Academy of Sciences, 201902841. https://doi.org/10.1073/pnas.1902841116 

Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and 

earlier spring increase Western U.S. forest wildfire activity. Science, 313(5789), 940–

943. https://doi.org/10.1126/science.1128834 

Yang, Y., Luo, Y., & Finzi, A. C. (2011). Carbon and nitrogen dynamics during forest stand 

development: A global synthesis. New Phytologist, 190(4), 977–989. 

https://doi.org/10.1111/j.1469-8137.2011.03645.x 

 



35 

 

Supporting Information 

 

Figure S1. Study site locations in Colorado, USA. The northern sites are in the 

Medicine Bow-Routt National Forest and the southern sites are in Rocky Mountain 

National Park. 
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Figure S2. Soil carbon stocks over simulation lengths for paleo-fire (grey) simulations and 

equilibrium (black) simulations. Equilibrium simulations were run with the average fire 

return interval. 
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. 

Figure S3. Modeled soil carbon validation. Modeled soil carbon is not significantly 

different from collected soil carbon (data). Error bars represent standard errors. 
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Figure S4. Fire frequency (number of fires over the length of the simulation period) 

by elevation (m). r2=0.1325, p= 0.20. 
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Table S1. Number of fires that were prescribed in both the paleo-fire scenario and 

high-fire scenario for each model simulation. 

Lake Paleo Fire Frequency High Fire Frequency 

Eileen 10 20 

Seven 7 14 

Gold Creek 11 22 

Hidden 9 18 

Beaver 7 14 

Tiago 9 18 

Whale 9 18 

Summit 11 22 

Round 15 30 

Chickaree 16 32 

Odessa 8 16 

Lonepine 8 16 

Thunder 7 14 

Sandbeach 9 18 
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Figure S5. Total ecosystem nitrogen over the simulation length for each scenario 

and each study site. 
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Figure S6. Difference between start and end soil C values for each study location and each 

simulation scenario.  

 

 

 



42 

 

Figure S7. Difference between start and end total ecosystem C values for each study location 

and each simulation scenario. 
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Table S2. Field collection study sites. 

Lake Forest Type Lat/Long 
Samples 

Collected 

Modeled in 

Study? 

Chickaree Lodgepole 
40.334, 

−105.840 

Soil, conifer 

foliage 
Yes 

Gold 

Creek 
Spruce-fir 

40.782, 

−106.678 

Soil, conifer 

foliage 
Yes 

Himnan Spruce-fir 
40.771, 

−106.827 

Soil, conifer 

foliage 
No 

Summit 
Upper treeline 

spruce-fir 

40.545, 

−106.682 

Soil, conifer 

foliage 
Yes 
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Chapter 2: Forest carbon emission sources are not equal: putting fire, harvest, and 

fossil fuel emissions in context 

In Revision at Frontiers in Forests and Global Change as: 

Bartowitz, K. J., Walsh, E.S., Stenzel, J.E., Kolden, C.A., & Hudiburg, T. W. Forest carbon 

emissions sources are not equal: putting fire, harvest, and fossil fuel emissions in context. 

Abstract 

Climate change has intensified the scale of global wildfire impacts in recent decades. 

In order to reduce fire impacts, management policies are being proposed in the western 

United States to lower fire risk that focus on harvesting trees, including large-diameter trees. 

Many policies already do not include diameter limits and some recent policies have proposed 

diameter increases in fuel reduction strategies. While the primary goal is fire risk reduction, 

these policies have been interpreted as strategies that can be used to save trees from being 

killed by fire, thus preventing carbon emissions and feedbacks to climate warming. This 

interpretation has already resulted in cutting down trees that likely would have survived fire, 

resulting in forest carbon losses that are greater than if a wildfire had occurred. To help 

policymakers and managers avoid these unintended carbon consequences and to present 

carbon emission sources in the same context, we calculate western US forest fire carbon 

emissions and compare them with harvest and fossil fuel emissions over the same timeframe. 

We find that forest fire carbon emissions are on average only 6% of anthropogenic fossil fuel 

emissions (FFE) over the past decade. While wildfire occurrence and area burned have 

increased over the last three decades, per area fire emissions for extreme fire events are 

relatively constant. In contrast, harvest of mature trees releases a higher density of carbon 

emissions (e.g., per unit area) relative to wildfire (150-800%) because harvest causes a higher 
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rate of tree mortality than wildfire.  Our results show that increasing harvest of mature trees 

to save them from fire increases emissions rather than preventing them. Shown in context, 

our results demonstrate that reducing FFEs will do more for climate mitigation potential (and 

subsequent reduction of fire) than increasing extractive harvest to prevent fire emissions. On 

public lands, management aimed at less-intensive fuels reduction (such as removal of 'ladder' 

fuels, i.e., shrubs and small-diameter trees) will help to balance reducing catastrophic fire and 

leave live mature trees on the landscape to continue carbon uptake. 

Introduction 

Climate change has intensified and increased the scale of global wildfire impacts in 

recent decades (Bowman et al., 2020). The western US 2020 fire season exemplified 

intensifying fire impacts (Higuera and Abatzoglou, 2020), including high loss of life and 

property, and the record area burned in the last century in California, Oregon, and Colorado 

(Higuera and Abatzoglou, 2020). Historically, similar catastrophic wildfires events (i.e., the 

1910 Big Burn) instigated development of management policies to prevent and contain 

wildfire, including a century of fire suppression. In the western United States, climate change 

is now amplifying the negative effects of these management practices, resulting in 

unprecedented catastrophic wildfire outcomes (Parks and Abatzoglou, 2020). 

Forests provide many ecosystem services such as wildlife habitat, hydrologic 

benefits, recreation opportunities, and wood harvest (Lawler et al., 2014), and also serve as a 

critical “natural climate solution”; they act as extensive and persistent carbon sinks that 

sequester large amounts of carbon from the atmosphere (Turner et al., 2011; Fargione et al., 

2018). Increases in climate change-driven wildfire events (Westerling et al., 2006) have led 

to proposals to increase extractive forest harvest (i.e., the removal of large, mature trees, 
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including altering policy to increase diameter limits to remove even larger trees; Table 1) in 

areas at high-risk of wildfire to decrease fire risk (Figure 1; Executive Order, 2018a; 

Infrastructure Investment and Jobs Act, 2021). Public opinion and policies have been shaped 

by the misconception that harvest can reduce fire risk (or save other trees), or that harvest of 

a singular tree can save that tree from “burning down” (Table 2). These beliefs are 

widespread (Table 2), but their impact on policy and subsequent impact on on-the-ground 

harvest has not been quantified. While prescribed fire has been shown to decrease fire risk 

(Kolden, 2019) and increase carbon storage (Wiedinmyer and Hurteau, 2010), removal of 

biomass through large-diameter tree thinning or logging produces mixed outcomes for fire 

risk mitigation and forest resilience (Sohn et al., 2016) and reduces forest carbon storage and 

sequestration for decades to centuries (Campbell et al., 2012; Bartowitz et al., 2019; Stenzel 

et al., 2021). The misconception that trees need to be saved from wildfire through harvest 

(Zinke, 2018; Infrastructure Investment and Jobs Act, 2021; Table 2) may lead to unintended 

consequences through increased logging. These consequences include increased fire risk, a 

decreased forest carbon sink, decreased forest resiliency, and loss of the forest as a natural 

climate solution (Hudiburg et al., 2013; Law et al., 2018; Zald and Dunn, 2018; Stephens et 

al., 2020).  

Although high intensity fire combusts less than 5% of mature, live tree biomass 

(Knorr et al., 2016), discussions of fire policy and forest management have framed tree 

biomass combustion as an undesirable outcome requiring mitigation through extractive forest 

management (i.e., harvest of mature trees for timber sales; (Mater, 2017; Zinke, 2018; Senate 

Bill 762, 2021; Newhouse, 2021). Increasing i.e., extractive forest management (Table 1),  to 

‘lock’ carbon into man-made structures, to increase forest productivity (CORRIM, 2020), or 
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reduce fire risk ignores the volume of forest fire emissions relative to the direct emissions of 

such strategies (Hudiburg et al., 2019; Stenzel et al., 2019). Previous studies have shown that 

timber harvest directly kills more trees than forest fire in the western US (Berner et al., 

2017), but it remains unclear how much fire and harvest are contributing to regional total 

carbon emissions in the western US, especially in the context of how these emissions 

compare with anthropogenic FFE (Hudiburg et al., 2019; Stenzel et al., 2019).  

Here, we calculate forest fire emissions (average for the last decade; large historical events, 

and the record 2020 fire season) and compare those to 1) average and hypothetical timber 

harvest emissions, and 2) average decadal FFE. Our comparisons clarify the relative 

contributions of extractive forest management, fire, and fossil fuels to atmospheric carbon 

dioxide concentrations and help provide clarity for future management scenarios intended to 

reduce carbon emissions and/or increase carbon uptake and the scientific observations that 

show the opposite occurs. We further show how misrepresentation of fire and management 

impacts on forest carbon cycling leads to discussions and policies that overestimates benefits 

to carbon stocks and sequestration, or downplays carbon consequences (Figure 1). Finally, 

we discuss how policy and management based on carbon cycle science and observations 

could be used to both reduce fire risk and to increase and maintain carbon storage. 

 

Materials and Methods 

Study area: Forest fires across the western US 

We calculated carbon emissions from the forest fires in the western US (Figure 1) 

between 1984-2020 and the largest fire in the continental US, the 1910 Big Burn. Here, we 

group the “western US” as the 11 states in the contiguous US West (i.e., Arizona, California, 
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Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, Wyoming). 

While there were other extreme forest fires in the 20th century (e.g., 1902 Yacoult Burn in 

Washington, 1933 Tillamook Burn), historic records of forest attributes were not available 

for analysis.  

Extreme fires have continued to occur in recent decades (Figure 2). Availability of high-

resolution fire perimeter and burn severity data allows for analysis of fires since 1984 

(Eidenshink et al., 2007) through 2020. All wildfires >526 ha (1000 acres) with >50% forest 

area within the burn perimeter were included in this analysis. In addition, we selected large, 

notable forest fires (or complexes of individual fires; referred to as “extreme” fires 

throughout the manuscript) that occurred between 1984-2020. Fires were selected based on 

how notable they were at the time for size, duration, volatile fire behavior and legacy of 

impact in the subsequent years. Wildfires included in the “extreme fires” list (Table 1) were 

chosen from the created emissions database based on high area burned (i.e., > 40,000 ha), 

and overall significance of fire event (i.e., most were record events in some way such as: 

highest area burned in that state or human impacts).  

Emissions have not been previously calculated for the Big Burn. We have calculated 

an estimate from the Big Burn not only because it is the largest known fire to have occurred 

in the continental US, but also to serve as a baseline or reference for the range of emissions 

possible in the absence of fire suppression. While the Big Burn emissions estimate is 

calculated differently from modern fires due to lack of forest data from that time, the 

comparison between modern fire emissions and the Big Burn is still useful and has been 

completed with the best possible methodology given data availability. The 1910 Big Burn 

encompassed an area throughout Washington, Montana, and Idaho (Figure 2). We calculated 
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fire-induced carbon emissions of the Big Burn using historical accounts and records (Koch, 

1942). The fire perimeters used in this study were a cross-reference between Koch’s account 

and the 1910 Fire perimeters (USFS, 1978; Gibson, 2005).  

Forest fire emissions calculations 

Direct carbon emissions for contemporary forest fires (1984-2020) were calculated 

using, fire severity and area burned from the Monitoring Trends in Burn Severity database 

(MTBS) (Eidenshink et al., 2007) for forest fires between 1984-2019, and Burned Area 

Emergency Response (BAER; Parsons, 2003) and National Interagency Fire Coordination 

(Center, 2020) data products for 2020 fires. Carbon emissions for the 1910 Big Burn were 

calculated using area burned from the Northern Rockies Fire atlas for the Big Burn (Gibson, 

2005). All carbon stock calculations were from forest type and ecoregion-specific carbon 

data (Figure S1; Buotte et al., 2019; Stenzel et al., 2019), and severity-specific combustion 

factors (Table S1; Stenzel et al., 2019). Only fires that burned >526 ha and in 50% or greater 

forested area within the burn perimeter (Ruefenacht et al., 2008) were used in this analysis. 

Aboveground carbon stocks were calculated for each forest fire area based on average carbon 

stocks for the forest type and ecoregion and area of the specific forest type within the burn 

perimeter (Table S1). Aboveground carbon stocks were multiplied by the appropriate 

combustion factor for the fire severity value of that forested area to obtain carbon losses 

(Table S1). Fires between 1984-2019 were calculated using MTBS severity classes. Smaller 

forest fires in 2020 were calculated using an average combustion factor. Big Burn carbon 

emissions were calculated using a range for the moderate-severe combustion factor which 

gives us a range (uncertainty) of emissions for this fire. Extreme 2020 forest fire emissions 

were calculated using BAER severity classes (which are precursors to MTBS severity 
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classes). While we used contemporary forest structure data to calculate emissions from the 

Big Burn, our range of carbon emissions (Table 4) from this fire are robust because we used 

stem tree biomass and demographic data from pre-1910 timber cruise inventories (Koch, 

1942) to identify FIA plots of similar structure (diameter and heights) and age classes to the 

1910 inventory.  

We calculated mean annual forest fire emissions for the western US and each western 

US state based on the 2009-2018 decade, to best represent the observed trends toward 

increased area burned under climate change (Abatzoglou and Williams, 2016). These 

calculations were completed using MTBS (Eidenshink et al., 2007) perimeter and severity 

data, carbon stock data, and combustion factors. All fire carbon losses were converted to Tg 

CO2e (i.e., tera-grams CO2 equivalent) for comparison with fossil fuel emissions. To 

normalize emissions on a per area basis, we calculated megagrams of carbon lost per hectare 

burned.  

To calculate uncertainties for contemporary forest fire emissions, we used a 

propagation of error approach. We combined uncertainty estimates of each emissions 

calculation component to calculate total uncertainty for each individual extreme fire event 

(Table 4). We used the Combining Uncertainties Propagation of Error estimates from the 

2006 IPCC Guidelines for National Greenhouse Gas Inventories (Equation 1; IPCC Good 

Practice Guidance for LULUCF, 2006).  

Equation 1: Combining Uncertainties (individual associated uncertainties)   

𝑈𝑡𝑜𝑡𝑎𝑙 =  
√(𝑈1∗ 𝑥1)2+(𝑈2 ∗ 𝑥2)2

|𝑥1+ 𝑥2|
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Where 𝑈𝑡𝑜𝑡𝑎𝑙= the percentage uncertainty in the sum of the quantities (half the 95 percent 

confidence interval divided by the total (i.e., mean and expressed as a percentage). 

𝑥𝑖and 𝑈𝑖 = the uncertain quantities and the percentage uncertainties associated with them. 𝑥𝑖 

refers to the specific fire emission calculation. 𝑈1 refers to the uncertainty in biomass 

calculations (0.05) and 𝑈2 refers to remote sensing uncertainty in area burned calculations 

(0.10).  

Calculations and spatial analyses were conducted using R (R Core Team, 2017) and 

ESRI software (ESRI, 2020).  

Timber harvest and wood product emissions: Hypothetical harvest carbon losses 

Hypothetical harvest carbon losses were calculated for all states for burned areas 

between 2009-2019; these are the exact burned areas and pre-fire carbon stocks used to 

calculate forest fire emissions for this study. This hypothetical calculation allows us to 

directly compare fire carbon losses to harvest carbon losses on a per area basis. Here, we 

calculated three scenarios for standing tree carbon (both live trees and snags): 30% harvest, 

50% harvest, and 100% harvest. Both 30% and 50% harvests are meant to represent different 

levels of thinning (thinning-from-below and commercial, respectively), while 100% harvest 

is akin to a clear-cut harvest (Table 1). For these scenarios, the fraction (30%, 50%, or 100%) 

of aboveground carbon for standing live and dead trees was calculated and counted as carbon 

loss, and then converted to a per area basis. For the hypothetical thinning scenarios we did 

not include carbon stored in wood products because very little to no long-term wood products 

would be created from the smaller-diameter trees removed from these types of thinning. 

These smaller-diameter trees will most likely be used in short-term wood products such as 
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paper (Hudiburg et al., 2019). The hypothetical clear-cut used a static 60% emission from 

aboveground tree carbon stocks, with 40% remaining in long-term wood products pools. To 

normalize harvest carbon losses on a per area basis, we calculated megagrams of carbon lost 

per hectare harvested. 

Timber harvest and wood product emissions: Actual timber harvest carbon losses 

Actual timber harvest calculations were aggregated from publicly-available state and 

federal historical harvest sources (Hudiburg et al., 2019), including privately-owned lands. 

Detailed methodology can be found in Hudiburg et al. 2019. We calculated a mean annual 

harvest loss for the most recent available harvest data for each state (2007-2016) as well as 

an annual average for the entire western US. Reported harvest volumes (merchantable) were 

converted to grams carbon using board feet to cubic volume estimates from Keegan (Keegan 

et al., 2010). Our calculations include the carbon stored (and released from at end of life) in 

wood products for the years of this analysis. Wood was assumed to enter short-term (1 to 10 

years before emissions return to the atmosphere; includes wood waste at the mills) and long-

term (50-year half-life) product pools at rates of 60% and 40%, respectively (Heath et al., 

2010; Hudiburg et al., 2019). All timber harvest carbon losses were converted to Tg CO2e for 

comparison with fossil fuel emissions.  

Fossil fuel emissions 

Carbon emissions from forest fires and fossil fuel emissions were normalized on a 

state-by-state basis by normalizing both average fossil fuel emissions (2009-2018) and record 

year fire emissions (1984-2020) with average fire emissions (2009-2018). A factor of both 
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average fossil fuel emissions and record year fire emissions over the average fire emissions 

was calculated for each state.  

 

Results 

Forest fire carbon emissions 

Carbon emissions from 1984-2020 wildfire events varied considerably by fire 

severity (Figure S1), forest type (e.g.,, varied carbon density), and size (Figure 2). As forest 

fire carbon emissions are a product of forest type (pre-fire aboveground carbon density per 

area, Figure 3) and fire severity (Table 4), it is notable that Colorado fires generally exhibit 

higher emissions per unit area (27.60 Mg C ha-1) compared to other 2020 fire events in 

Oregon and California, although the 2020 Creek Fire in California had the highest emissions 

per unit area for a single contemporary fire (Table 4). This highlights how severely Colorado 

wildfires have burned in recent decades, given their lower pre-fire carbon density.  By 

contrast, Oregon forests have much higher pre-fire carbon density and slightly lower area-

normalized emissions compared to other western fires because they burned, on average, at a 

lower severity (Figure 3). When normalized by area burned to control for size, there is 

notable variation amongst the contemporary extreme fires in emissions per hectare (Table 4). 

For example, the 2020 Creek Fire in California had the highest emissions per hectare (29.7 

Mg C ha-1), and fires in Colorado all exceed the Idaho, Montana, and Wyoming fires, and 

many in the carbon-dense forests of Oregon when normalized by area. In addition, >90% of 

the burn area of extreme forest fires in 2020 were in low-to-moderate severity classes (Figure 

S1)  
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Harvest carbon losses 

Total average annual western US total harvest emissions were lower than  total 

average forest fire emissions (Table 4), however, actual harvest area is much lower than area 

burned (Berner et al., 2017). Actual harvest carbon losses vary greatly by state, with carbon-

dense Oregon and Washington having the highest biomass harvest removals (Table 4). 

However, on a per unit area basis, hypothetical 100% harvest is 2-8 times greater than fire for 

the same perimeters across the entire region (Figure 4). We calculated hypothetical harvest 

carbon losses for the exact burn areas in each state to compare per area harvest losses. We 

found that for all states a 50-100% harvest would have led to greater carbon losses than fire 

for those burned areas, and even a 30% harvest led to greater carbon losses than fire for all 

but four of the western US states. Hypothetical harvest carbon losses continue to outpace fire 

carbon losses on a per unit area basis for most scenarios (Figure 4).  

Anthropogenic fossil fuel emissions  

Anthropogenic fossil fuel emissions (AFFE) for each western US state and for the 

total western US substantially exceed forest fire carbon emissions (mean annual and 2020), 

and average actual timber harvest (Figure 5, Table 4). Mean annual AFFE in the western US 

were over 15x higher than mean annual forest fire emissions and mean annual AFFE were 

420% higher than forest fire emissions from the 2020 record fires across the west (Figure 5). 

Emissions vary widely by state, primarily due to population size (i.e., population and fossil 

fuel emissions are positively correlated) and large-scale, high-emissions industries within the 

state. Total western US 2020 fire emissions were higher than the mean annual fire emissions 

(2009-2018), driven by large fire events in California, Oregon, and Colorado (Table 4). 
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California, Oregon, Colorado, and New Mexico all had record-high forest fire emissions in 

2020.  

 

Discussion 

Forest fire, harvest, and fossils fuels: putting emissions in context   

Public perception and existing overestimates of forest mortality and carbon emissions 

from wildfire feeds into the misconception that wildfire kills all live forest cover and 

combusts all forest carbon (Wiedinmyer and Neff, 2007; Mater, 2017; Zinke, 2018). The 

reality of actual fire emissions calculated from mixed-severity combustion rather than 

overestimates calculated from the false high-severity narrative highlights the need to 

disentangle ecological impacts of wildfire from societal impacts (i.e., loss of lives and 

houses). This will help to ensure that risk-reduction solutions can decrease wildfire disasters 

while still maintaining ecosystem services, such as live tree carbon uptake and wildlife 

habitat (Kolden, 2020).  

As wildfire policy discussions increasingly include extractive forest harvest to 

mitigate forest fires (Executive Order, 2018b; Senate Bill 762, 2021; Newhouse, 2021), a 

comparison of emissions from forest fire, timber harvest, and fossil fuels provides a more 

complete understanding of the relative contributions of emissions sources to anthropogenic 

climate change. Despite increasing area burned trends across the western US (Parks and 

Abatzoglou, 2020), fossil fuel emissions still greatly outpace forest fire emissions in the last 

decade, including 2020. Fossil fuel emissions are also significantly higher than intensive and 

large-scale land management operations like timber harvest in many US states (i.e., 

California).  
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Policy implications and ways forward 

Much of US fire management and policy has been shaped by specific, previously 

unprecedented wildfire events. The Big Burn of 1910 was the first massive fire event for the 

fledgling US Forest Service (Koch, 1942), and is still the largest wildfire complex that has 

occurred in the contiguous US.  Fire suppression as the main form of fire control persisted 

until the late 20th century, when ecological restoration efforts began seeking to reduce 

hazardous fuels and increase ecologically beneficial fire effects (Parsons, D.J., D.M. Graber, 

J.K. Agee, 1986). However, these efforts have not yet altered the fire suppression culture 

instilled by 1910 (Stephens and Ruth, 2005; Kolden, 2019; McWethy et al., 2019). 

Like past extreme fire events, the 2020 and 2021 fire seasons have accelerated fire 

policy and forest management discussions at all levels of government – federal, state, and 

local – including recent bills introduced in the US Senate (S.4625, S.4331). Many new policy 

discussions on fire and forest management are being based upon the misconception that 

harvest will protect forests from mortality and carbon loss (Executive Order, 2018b; 

Infrastructure Investment and Jobs Act, 2021; Zinke, 2018; Newhouse, 2021), and decrease 

fire risk (Forest Climate Action Team, 2018) (Figure 1) despite substantial uncertainty over 

long-term impacts to forest climate resilience (i.e., forest treatments may decrease forest 

resilience in the era of climate change). Our results and the majority of full-carbon 

accounting studies conclude that any type of harvest (logging or commercial thinning) 

decreases forest carbon storage (Law et al., 2013), and this research shows harvest emits 

more carbon per unit area than fire at all scales (Figure 5).  

To mitigate climate change, it is key we understand exactly where emissions are 

originating. While increased intensity and size of fires are increasing overall fire emissions, 
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these emissions are still substantially less than fossil fuel emissions. This is true even in 

record forest fire years (Figure 5). While the 2020 fire season was unprecedented in many 

ways (record forest area burned in California, Oregon, and Colorado; societal devastation 

including fatalities, thousands of homes consumed, dramatic evacuations, and regional 

hazardous air quality events), ecologically, most of the forested area burned in extreme fires 

was in a low-to-moderate severity class (>90%, Figure S1). Moreover, while there is 

assumed high tree mortality in these forest fire perimeters, many of these burns were mixed-

severity fires (Figure S1, 3) meaning many live trees will persist across most of the low-to-

moderate severity burned areas. Locations with high-harvest rates and carbon-dense forests, 

such as the Pacific Northwest US, see higher carbon losses from harvest than fire compared 

to areas in the Southwest US with low harvest rates and carbon-sparse forests (e.g., Oregon 

versus Arizona).  Forest management needs to be specific to forest type and region; old-

growth and wet forests in the Northwest are best left preserved while dry, fire-prone forests 

or areas in the Wildland Urban Interface benefit from fire risk-reduction strategies like small-

diameter thinning and prescribed fires (Law et al., 2018; Case et al., 2021). Inclusion of 

specific diameter limits in policy for public lands could help prevent large-diameter tree 

removal and subsequent unintended consequences.   

Forest management strategies that are site-specific and balance the immediate 

protection of life and property with long-term preservation of existing and potential carbon 

stocks in forests are critical to mitigating the negative impacts of climate change. The most 

effective forest management strategy to protect forest carbon stocks on public lands is to 

preserve forests through decreased harvest and thinning, lengthened harvest rotations, 

increased proportion of long-term wood products, reduced harvest and mill waste, and 
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working towards afforestation and reforestation (Law et al., 2018; Buotte et al., 2020; 

Hudiburg et al., 2013; Figure 1). Prescribed burns reduce fire risk while minimizing carbon 

losses and amplify tree growth and carbon sequestration in large-diameter trees in fire-

adapted forests (Hurteau and North, 2009). In western US forests, 33 to 46% of aboveground 

live biomass is stored in the large diameter trees (> 60cm; Lutz et al., 2018; Mildrexler et al., 

2020). Carbon-smart treatments on public lands need to be specific about diameter limits to 

avoid large-diameter tree removal.  

Here, we have shown that fossil fuel emissions for the western US are 7 times greater 

than emissions associated with timber harvest and fire (Figure 5, Table 4). As more forest-fire 

policy and management plans are expanded, written, and discussed following extreme fires of 

the recent decades, and especially the extreme forest fires of 2020 (DNR, 2020), it is crucial 

that these policy changes focus on the largest driving factor of these fires – anthropogenic 

climate change. In practice, large-scale extractive forest management efforts will hamper 

climate mitigation and may be futile for decreasing fire risk. To be most effective, policy will 

need to focus on fire-wise adaptations for homes and property and disentangle ecologically-

good fire from destructive fires (Kolden, 2020). Protecting forests with ecologically sound 

principles, rather than increasing extractive management, may be the best scenario for the 

mitigation of climate change (Law et al., 2018), and protecting humans, biodiversity, and 

forests (Walsh et al., 2019; Buotte et al., 2020; Law et al., 2021). The continued escalation of 

fires throughout the 21st century is evidence of climate change-mediated intensification of fire 

regimes in the US (Williams et al., 2019). Fire catastrophes will continue to occur and worsen 

if we do not focus on decreasing fossil fuel emissions, the primary driver of climate change 

(IPCC, 2018).  
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Figures 

 

Figure 1. Conceptual figure describing the misconception about extractive forest 

management (Column 1) and how it can lead to unintended and unwanted consequences with 

forest resilience and the forest carbon sink. Column 2 describes how we can correct that 

misconception and develop policies that enhance forest resilience and the forest carbon sink.  
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Figure 2. Extreme forest wildfires in the western US. a) Perimeters of forest fires in 2020, a 

selection of extreme forest fire events 1984-2018, and of the 1910 Big Burn fires. b)  Fire 

statistics of the 1910 Big Burn and contemporary fires (1984 – 2020) within the Western 

United States.  
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Figure 3. Fire perimeters and forest carbon density losses (Mg C ha-1) from 2020 extreme, 

large forest fires in CA, CO, and OR (>100,000 acres). Green background indicates 

aboveground carbon forest layer, where darker green forest cover denotes higher density of 

aboveground carbon. Detailed maps display both fire severity (multicolored fire area), and 

per area carbon losses (red fire area).  

 

 

 

 

 



62 

 

 

Figure 4. Comparison of per area (Mg C ha -1) hypothetical harvest scenario carbon losses to 

actual fire emissions. Harvest scenarios were calculated for the exact burn area in these states 

for 2009-2018. Harvest scenarios are based on 30%, 50%, and 100% aboveground tree 

removal rates. Here, a 30% is showing a thin-from-below, 50% harvest is akin to a 

commercial thin, while 100% would be representative of a clear-cut removal. Fire emissions 

are based on the fire perimeters of forest fires used in this study. Error bars represent 

standard error.  
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Figure 5.  Fossil fuel and record-year forest fire emissions as a factor of mean annual forest 

fire emissions for the baseline decade 2009-2018. This comparison shows (a) mean annual 

fire emissions (Tg CO2e) calculated per state for a baseline 10-year (2009-2018) period, and 

factors from mean annual forest fire emissions (i.e., the number of times higher, or the 

proportion of those emissions relative to mean annual forest fire emissions) for (b) record-

year forest fire year emissions (i.e., the year with the highest forest fire emissions for that 

state, Table 4), and (c) mean annual fossil fuel emissions. 
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Tables 

Table 1. Common management scenario types in western US forests. Tree removal scenarios 

(thins and clear-cut) were used in the hypothetical harvest carbon loss calculations (Figure 4). 

Extractive management (i.e., if there is also a financial sale from the management rather than 

just for restoration or fuels reduction) is noted for each scenario.  

Management 

scenario 

Description  Calculation 

scenario (Fig. 4)  

Extractive 

management? 

Thin-from-below  Removal of understory 

brush and small-

diameter trees. No tree 

sales. 

30% harvest No 

Commercial Thin  Removal of understory 

brush, small-diameter 

trees, and some larger, 

mature trees for sale.  

50% harvest Yes 

Clear-cut Removal Removal of all trees 

(small and mature) for 

sale. 

100% harvest Yes 

Prescribed Burn Intentionally set fire to 

remove ground fuels. 

Often coupled with a 

restoration or 

commercial thin.  

Not included in 

calculations  
No 
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Table 2. Examples of recent public opinions surrounding the logging-forest-carbon 

misconceptions and how they lead to policy that increases harvest.  

Source Year Author Quote or summary Description 

Public  2020 Logging and 

grazing 

organizations 

(Radke, 2020)  

"Log it, graze it, or 

watch it burn it" 

Logging and grazing orgs 

believe logging and grazing 

will solve the fire problem   

Public 2020 Consortium for 

Research on 

Renewable 

Industrial Materials 

(CORRIM, 2020) 

 

“Sustainably 

harvesting forest 

carbon not only 

provides significant 

opportunities for 

carbon storage” 

 

Logging industry promotion 

trying to show “reducing 

carbon emissions by using 

wood products”  

Public  2018 Former US Cabinet 

Member Ryan 

Zinke (Zinke, 

2018) 

"When an entire forest 

burns to the ground" 

Advocates for logging to 

prevent wildfires, boost the 

economy, and to save lives. 

  
Public  2017 Catherine Mater 

(Mater, 2017) 

“Half of those 

emissions are due to 

tree mortality” 

Misconception that tree 

mortality equals direct 

emissions 

  
Policy 2021 US Government -  

Infrastructure 

Investment and 

Jobs Act 

(Infrastructure 

Investment and 

Jobs Act, 2021) 

  

Significant increase in 

project funds to 

increase logging and 

commercial thinning  

on public lands for fire 

risk reduction 

$3.3 billion allocated to 

hazard fuels reduction with 

no diameter limits set. 12 

million ha opened to logging 

on public lands.   

Policy 2020 US Government -  

Twisp River 

Restoration 

Project(USFS, 

2020) 

Increase diameter 

limits on trees harvest 

to cut down larger trees 

for fire risk reduction 

and restoration 

>30,000 ha forest 

management project in fire-

prone forest in Washington 

state 
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Table 3. Carbon emissions from 1910 Big Burn and extreme contemporary (1984-2020) 

forest fires in the western United States. 

Complex Year Area burned (ha) Tg C Mg C ha-1  Tg CO2e 

Big Burn 1910 966,564-

1,257,690* 

29.79-

49.87** 

23.69-

39.65** 

94.60-

158.51** 

Siege of '87 1987 151,339 3.58±0.20 23.70±1.32 13.10±0.73 

Yellowstone 1988 672,509 16.3±0.91 24.30±1.36 59.90±3.35 

Big Bar 1999 57,158 1.40±0.08 24.60±1.38 5.10±0.29 

Biscuit 2002 200,444 4.40±0.25 22.0±1.23 16.10±0.90 

Hayman 2002 52,373 1.53±0.09 29.20±1.63 5.60±0.31 

Tripod 2006 70,753 1.31±0.07 18.60±1.04 4.80±0.27 

Central Idaho 2007 298,821 5.96±0.33 20.0±1.12 21.90±1.22 

Klamath 

Theater 

2008 86,795 
2.16±0.12 25.0±1.40 7.90±0.44 

Wallow 2011 228,106 3.39±0.19 14.90±0.83 12.40±0.69 

August 2020 417,891 9.02±0.50 24.60±1.38 33.10±1.85 

Creek*** 2020 153,700 4.56±0.25 29.70±1.66 16.70±0.93 

North 2020 126,220 2.35±0.13 18.60±1.04 8.60±0.48 

Oregon**** 2020 340,702 8.18±0.46 24.0±1.34 30.0±1.68 

Colorado**** 2020 153,294 4.23±0.24 27.60±1.54 16.90±0.94 

* The area estimates are from (Koch, 1942) and (Gibson, 2005). 

** The emissions from Big Burn were calculated using present day USFS Forest Inventory 

and Analysis data. Here we provide a range of carbon emissions values, rather than 

uncertainty ranges, because we use a range of combustion factors as we do not have detailed 

severity data.   

*** Prior to the 2020 Creek Fire, this forest had a proportion killed by the 2012-2017 

drought and was subsequently salvaged logged. Our emissions calculation is likely an 

overestimate due to the large amount of biomass already removed from salvage logging, and 

slash left behind from salvage logging driving higher fire severity.  

**** Oregon and Colorado forest fire area and emissions are aggregated for the 2020 

extreme forest fires. 
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Table 4. Average fossil fuel emissions, forest fire emissions, and harvest emissions, 2020 

fire emissions, and record year fire emissions (2008-2020) for all western US states and for 

the entire western US region.   

State 

10-yr average 

fossil fuel 

emissions 

(TgCO2e) 

10-yr average 

forest fire 

emissions 

(TgCO2e) 

10-yr average 

harvest 

emissions 

(TgCO2e) 

2020 forest fire 

emissions 

(TgCO2e) 

Record year 

forest fire 

emissions 

(TgCO2e) 

Record 

Year 

Arizona 92.76±1.57 7.02±0.79 0.41±0.07 8.28±0.93 21.34±2.39 2011 

California 370.71±4.98 14.09±1.58 7.38±1.27 121.92±13.63 121.92±13.63 2020 

Colorado 91.84±1.04 4.92±0.55 0.36±0.06 33.35±3.73 33.35±1.91 2020 

Idaho 17.66±0.32 9.81±1.09 5.03±0.86 5.06±0.56 31.37±3.51 2012 

Montana 32.86±0.71 8.95±1.00 2.03±0.35 2.20±0.25 35.30±3.95 2017 

Nevada 37.24±1.46 0.64±0.07 0.03±0.01 0.59±0.07 2.46±0.28 2018 

New Mexico 52.68±1.06 0.16±0.02 0.17±0.03 1.33±0.15 1.33±0.15 2020 

Oregon 39.58±0.60 7.36±0.82 19.38±3.33 35.78±4.00 35.78±4.00 2020 

Utah 63.01±0.89 1.85±0.21 0.14±0.03 3.21±0.36 7.01±0.78 2018 

Washington 77.70±1.21 4.10±0.45 14.72±2.53 2.11±0.24 18.68±2.09 2015 

Wyoming 64.91±0.60 0.94±0.01 0.18±0.03 10.25±1.15 10.25±1.15 2020 

Total WUS 941.00±10.74 59.95±6.70 49.88±8.56 224.09±25.05 224.09±25.05 2020 
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Supporting Information 

Table S1. The combustion coefficients all for carbon pools, used to estimate direct fire 

carbon emissions from contemporary fires based on fire severity.  

Severity 

Code Foliage Live-wood FWD CWD Litter Snag Duff Shrub 

4 0.69 0.05 0.95 0.6 1 0.12 0.99 0.86 

3 0.27 0.01 0.9 0.55 0.9 0.04 0.9 0.66 

2 0.08 0 0.7 0.35 0.75 0.02 0.65 0.42 

1 0.02 0 0.5 0.05 0.5 0.02 0.45 0 
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Figure S1: Proportion by state of 2020 forest fire area burned by severity class in California, 

Colorado, and Oregon.  
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Chapter 3: Playing with fire: Investigating the future of fire and carbon dynamics in 

Northern Rockies forests using CLM-FATES-SPITFIRE   

Abstract 

 

Climate change is intensifying fire regimes across the globe. Wildfires across western 

North America have been increasing in frequency and area burned over the past several 

decades – potentially leading to increased carbon emissions and decreased carbon uptake, 

loss of forest area, and other negative effects on ecosystem services and communities. Under 

continued climate change, fire regimes and forest recovery may differ from the past. The 

Northern Rocky Mountain forests (Northern Rockies) are unique in the western US – these 

forests have been relatively untouched by wildfire over the past 100 years. Since the 1910 

Big Burn, many of the most productive Northern Rockies forests have experienced few and 

small-scale forest fires. Northern Rockies forests are wetter and more productive compared 

to other dry forests of the Inland West, including the adjacent forests of Central Idaho. 

Central Idaho forests are significantly drier and have had high fire occurrence in the past 

century. Despite the lack of wildfire in Northern Rockies forests over the last century, future 

fire occurrence and carbon dynamics in these forests under continued warming and drying 

are unclear.  

Here, we use a state-of-the-art Earth System model (ESM; CLM-FATES) coupled to 

a prognostic fire model (SPITFIRE) to investigate the future of fire and carbon dynamics in 

Northern Rockies forests over the 21st century (2000-2080).  Forest types were split into 

three plant functional types: warm-dry (P. ponderosa, 5% of modeled domain), wet (P. 

menziesii, A. grandis, 47% of modeled domain), and subalpine (P. engelmannii, A. 

lasiocarpa, 17% of modeled domain). These forest types vary by species composition, 
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carbon density, climate (temperature and precipitation), and historic fire return intervals 

(FRI). We calibrated the model using present-day biomass stock, fire occurrence, mortality, 

and NPP data, and validated output using linear regressions. The dry, P. ponderosa forests 

have a low FRI of 21-25 years, wet forests 71-80 years, and the subalpine forests 151-200 

years. Average total aboveground carbon (AGC) for the Northern Rockies domain was 

lowest for warm-dry forests (82.51±52.87 Mg C ha-1), followed by subalpine forest 

(137.74±38.88 Mg C ha-1), with the wet forests having the highest carbon stocks 

(139.70±46.21 Mg C ha-1). Future simulations (until 2080) forced with future climate data 

show an increase in wildfire from the modern record for the wet and cold forest types, while 

the warm-dry forest type continues to have a shorter mean fire return interval (15-25 years). 

Fire occurrence in the wet and cold forests is followed by immediate, subsequent decreases 

in forest carbon (up to 20% loss). However, post-fire recovery of forest carbon stocks occurs 

for all forest types for the simulation range, with complete AGC recovery seen in as little as 

10-20 years following some of the disturbances.  

Introduction 

 

Western US forests provide critical ecosystem services such as wood products, climate 

regulation, carbon storage and sequestration, wildlife habitat, and erosion control (Lawler et 

al., 2014), but also experience widespread disturbance such as drought, insect outbreaks, 

wildfire, and anthropogenic land management (Law et al., 2018; Seidl et al., 2016). Western 

forests are also facing extensive climatic changes that are amplifying drought, insect 

outbreaks, and wildfire (Berner et al., 2017; Higuera & Abatzoglou, 2020; Westerling et al., 

2006; Williams et al., 2020). As climate change continues to intensify, these forest 

disturbances are occurring more often and are becoming more widespread (Bowman, David; 



82 

 

Kolden, Crystal A.; Abatzoglou, John T.; Johnston, Fay H.; van der Werf, Guido R.; 

Flannigan, 2020; Law & Waring, 2015; Seidl et al., 2014). The interactive effects of climate 

change, land use, and disturbance regimes influence the sustainability of forest growth and 

stability, and subsequently, forest cover and ecosystem services (Lawler et al., 2014; 

Stevens-Rumann et al., 2018). There is a need to better understand and accurately predict the 

nature and severity of the impacts of climate change and disturbances to guide forest 

management and policy decisions aimed at sustaining forest ecosystem resilience and carbon 

stocks. Due to unknown impacts of novel, climate change driven disturbance regimes such as 

increasing fire events and size (Berner et al., 2017; Bowman, David; Kolden, Crystal A.; 

Abatzoglou, John T.; Johnston, Fay H.; van der Werf, Guido R.; Flannigan, 2020; Westerling 

et al., 2006), resilience of the forest carbon sink is unclear.  

In the 21st century, the intensification of fire activity in the western US has caused an 

increase in fire occurrence and area burned (Abatzoglou et al., 2021; Halofsky et al., 2020; 

Williams et al., 2019). This intensification is increasing uncertainty surrounding forest 

resilience and future successional trajectories (Anderson-Teixeira et al., 2013; Buotte et al., 

2019a; Harvey et al., 2016a). Forest resilience (i.e., the ability of forests to recover following 

a disturbance to the original forest type) depends on favorable post-fire conditions including 

sufficient precipitation, normal temperatures, and seed sources (Stevens-Rumann & Morgan, 

2019). Post-fire recovery depends on many factors, such as pre- and post-fire climate, and 

burn extent and severity (Hansen et al., 2018; Harvey et al., 2016b). Failure of post-fire 

recovery due to intensification of fire regimes and unfavorable climatic changes may lead to 

phase-shifts of forests to non-forest land cover types (Coop et al., 2020). Loss of forest cover 

could lead to declines in forest ecosystem services, such as wood products, erosion control, 
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wildlife habitat, watershed services, recreation, and carbon storage and sequestration (Law et 

al., 2018; Lawler et al., 2014).  Increases in fire occurrence over decades to centuries may 

also lead to overall declines in total ecosystem carbon (Bartowitz et al., 2019). Uncertainty 

associated with post-fire forest successional trajectories (Gill et al., 2017; Seidl et al., 2014) 

makes recovery of these systems difficult to predict, compounding the difficulty of using 

management tools effectively and efficiently (Schoennagel et al., 2004).  

The Northern Rocky Mountain forests (Northern Rockies, Figure 1) of Idaho and 

Montana are unique in the western US – these forests have been relatively low amounts of 

wildfire over the past century (E.S. Walsh & Hudiburg, 2021). This is especially true for the 

northern part of the region (i.e., the Idaho panhandle)(Higuera et al., 2015), which is known 

by local managers as “asbestos forests”. Since the 1910 Big Burn (Koch, 1942), Northern 

Rockies forests have experienced few and relatively small-scale forest fires (Eidenshink et 

al., 2007). Northern Rockies forests have higher precipitation and are more productive 

compared to other dry forests of the Inland Northwest, including the adjacent forests of 

Central Idaho. Central Idaho forests are significantly drier and warmer and have had high fire 

occurrence in the past century. Despite the lack of wildfire in Northern Rockies forests over 

the last century, future fire occurrence and carbon dynamics in these forests under continued 

warming and drying are unclear. This region is underrepresented carbon cycle science 

studies; there have been relatively few experimental (Jeffrey E Stenzel, 2021) and 

mechanistic modeling studies completed for this region (Buotte et al., 2019b; Eric S. Walsh 

& Hudiburg, 2021). Western US simulations have shown Northern Rockies forest may be 

less vulnerable to drought and wildfire than other forests across the west (Buotte et al., 

2019b), and protection of these forests will have significant carbon sequestration and 
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biodiversity co-benefits (Buotte et al., 2020; Law et al., 2021). It’s still unclear how future 

fire and climate change will impact this understudied, but potentially very important from a 

climate and biodiversity perspective, forested region in the future.  

ESMs are necessary to answer climate impact questions on forested ecosystems comes 

closer each year. The Community Land Model (CLM) is the land model component of 

Community Earth System Model – a state-of-the-art ESM that unlike many other forest 

ecosystem models regularly used to answer forest dynamic questions in the western US 

(Creutzburg et al., 2017; Kim et al., 2018; E.S. Walsh & Hudiburg, 2021), is almost 

completely mechanistic (Lawrence et al., 2019). CLM has recently been coupled with the 

Functionally Assembled Terrestrial Ecosystem Simulator (FATES) (Buotte et al., 2021; 

Rosie A. Fisher et al., 2018). FATES is a cutting-edge dynamic global vegetation model 

(DGVM) that allows for structural modeling of forests, rather than the common “big leaf” 

modeling approach (R. A. Fisher et al., 2015). Providing an avenue for simulating forest 

structure and age classes within the model allows for more accurate representation of forest 

function and forest carbon cycling, including carbon pool shifts, plant functional types, 

competition, and more precise fire modeling. With the inclusion of forest structure in the 

model, FATES now allows for forest modeling that is relevant to on-the-ground forest 

disturbances and forest management than ever before. In addition to the FATES module, 

CLM is also coupled to a state-of-the-art prognostic fire model, SPITFIRE. SPITFIRE 

improvements from previous CLM fire modules by incorporating stand structure (from 

FATES, plant functional types (PFTs), fuel load, and fuel class sizes into fire spread (Kirsten 

Thonicke et al., 2010). The fires that occur in a CLM-FATES-SPITFIRE simulation feed 

back into FATES. The modeling improvements from FATES (i.e., detailed forest structure 
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and age cohorts) and SPITFIRE (variable fire rate of spread, fire feedbacks to FATES, PFT 

composition, vegetation dynamics, carbon pools, fuel size classes) allow for exploration of 

the future of fire and forest dynamics in the Northern Rockies forests.  

Here, for the first time, we have parameterized and evaluated CLM-FATES-SPITFIRE to 

the Northern Rockies forests. Forested area in the modeled domain was split into three plant 

functional types (PFT) that describe the dominant forests (and climate types) of the region: 

warm-dry (P. ponderosa), wet (P. menziesii, A. grandis), and subalpine (P. engelmannii, A. 

lasiocarpa). This study 1) evaluates FATES-SPITFIRE performance in the under-modeled 

Northern Rockies forests and 2) examines how fire regimes may shift over the 21st century 

with continued climate change in this region, and 3) examines regional 21st century carbon 

dynamics and storage.  

Materials and Methods 

 

Study region 

The study region focuses on the Northern Rockies forests of Idaho and Montana 

(Figure 1, Table 1). The modeled domain is 10,372,542 ha which includes the entire Idaho 

panhandle and parts of northwestern Montana. Forest types range from low elevation dry, 

Pinus ponderosa forests with short fire return intervals, to wetter low-to-mid elevation mixed 

conifer forests (Abies grandis and Pseudotsuga menziesii), to wetter and colder subalpine 

forests (dominated by Picea engelmannii  and Abies lasiocarpa), (Figure 2, Figure 3). While 

there are several other forest types throughout the domain, these are the three dominant forest 

types (>90% of forested area in domain) and PFTs in this study will be limited to these forest 

types to simplify parameterizations.  
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Figure 1. Northern Rockies domain (thick black outline). Labeled, red points denote 

parameterization points of each modeled PFT (i.e., wet, subalpine, warm-dry). Background 

colors show extent of each PFT, no color (white) implies no forest cover for that area. Blue 

outline represents boundary of the Nez Perce-Clearwater National Forest.  
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Figure 2. Examples of the three dominant forest types modeled in this study. a) Ponderosa 

pine forest (post-fire), b) wet, mixed conifer forest (Douglas-fir and grand fir), and c) 

subalpine, cold forest (Engelmann spruce and subalpine fir).  

Parameterization point site selection was completed by aggregating 30-year climatic 

data (mean annual temperature and mean annual precipitation) (Abatzoglou et al., 2018) for 

each pixel throughout the domain (Figure 3).  
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Figure 3. Average annual temperature and precipitation for all pixel points within the 

domain. Black points are the parameterization points. Yellow denotes warm-dry, blue 

subalpine, green wet forests. 
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Table 1. Forest plant functional types used in modeling domain.  

Forest/PFT Dominant 

species 

Parameterization 

points 

Historic 

climate 

description 

(domain 

wide) 

Fire 

Regime 

(domain 

wide) 

Warm/dry P. ponderosa 

(PIPO) 

46.02, -114.81 MAP: 410 

mm 

MAT: 0 C 

21-25 years 

Wet P. menziesii 

(PSME), Abies 

grandis 

(ABGR) 

46.31,-115.72 MAP: 900 

mm 

MAT: -1 C 

71-80 years 

Cold/Subalp

ine 

P. engelmannii 

(PIEN),  

A. lasiocarpa 

(ABLA) 

46.39, -114.76 MAP: 450 

mm 

MAT: -5 C 

151-200 

years 

 

 Parameterization points chosen were limited to within the boundaries of the Nez 

Perce Clearwater National Forest (Figure 1) in northcentral Idaho, as management plans 

written for this administrative unit will be used in future simulations of the domain. These 

plans include management strategies to alter tree species composition throughout the national 

forest based on perceived resilience of different species. In addition, the southernmost part of 

the Northern Rockies domain has experienced the most fire within the study domain, making 

it the best location to begin parameterizing SPITFIRE (Figure S6).  

Model description 

The Community Land Model (CLM) simulates biogeochemical cycles (Lawrence et 

al., 2019) and is coupled with the Functionally Assembled Terrestrial Ecosystem Simulator 

(FATES) to simulate age and height classes (forest structure) (Buotte et al., 2021; Rosie A. 
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Fisher et al., 2018; Koven et al., 2019). CLM-FATES uses a state-of-the-art prognostic fire 

model (SPITFIRE, (K. Thonicke et al., 2010)) to simulate wildfire. Point-scale simulations 

allow site-specific analysis in a diagnostic, calibration environment to evaluate forest 

dynamics that can be compared with observations, followed by future regional-scale runs. 

Future simulations using regional-scale fire and vegetation were run prognostically to allow 

for future predictions of forest dynamics and disturbance interactions and evaluate how 

forests react to novel fire regimes and climate. 

CLM requires climatic inputs at a 3-hourly, 4km scale include air temperature, 

humidity, precipitation, solar radiation, and windspeed. Climatic inputs for these simulations 

were generated from the MIROC5 General Circulation Model for both historical (1979-2005) 

and future experiments in the RCP 8.5 concentration pathway (2006-2080, (Taylor et al., 

2012)). These inputs were downscaled as descripted in Taylor et al. 2012.  CLM also uses 

surface datasets as required inputs which include land cover types (e.g., vegetation, lake, 

glacier, crop, or urban), slope, soil depth, soil depth, soil texture, soil color, and elevation. 

The surface dataset used in this study was acquired from Buotte et al. 2021.  

The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) is a dynamic 

global vegetation model that has been recently coupled to CLM (Figure S1 and S2). FATES 

is designed to represent forest structure through age classes (time since disturbance) and 

height classification through forest stand cohorts (Figure S2). This is an improvement over 

the CLM big leaf model, which used a PFT-based tiling scheme where all modeled trees 

within a PFT are the same age and height (Figure S2 and S3), rather than a time-since-

disturbance tiling scheme (Figure S4). Although, the change from the big-leaf organization to 

time-since-disturbance cohorts greatly increases the computational power and the amount of 
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time needed to run CLM-FATES, as each disturbance creates a new patch, sub-grid cell 

heterogeneity is allowed for different aged and height cohorts (Figure S3). Sub-grid cell 

heterogeneity allows for height structured vegetation, age classes, heterogeneity in light 

availability (including competition for light), dynamic recovery after fire (or other 

disturbances),  and arbitrary PFT definitions (Team, 2019). Another benefit of FATES is that 

plant success or mortality is not driven by set climate envelopes. Rather, plant success or 

mortality is based on mechanisms rather than climate tolerances, which is important for 

climate change studies. There are many additional input parameters (>200) used in the 

FATES module that impact both fire dynamics (and feedback to the SPITFIRE fire module), 

and plant physiology. The base PFT used in this study was a Pinus-PFT from a parameter 

assessment project obtained from Buotte et al. 2021 and Stenzel 2021 (Table S1). Specific 

parameters changed from this base PFT for the warm-dry, wet, and subalpine PFTs used in 

this study can also be found in Table S1. 

 We used the CLM-FATES-SPITFIRE configuration for the simulations in this study 

(Figure S5). SPITFIRE is a process-based, rate-of-spread fire model (Drüke et al., 2019; G. 

Lasslop et al., 2014; K. Thonicke et al., 2010). SPITFIRE allows for variable fire intensity 

and fuel combustion is separated by PFTs. Tree mortality from ground fires is via crown 

scorching and cambial damage. Flame height determines crown scorch. Trees with thicker 

bark have greater fire survival rates. Combustion completeness is a dynamic process which 

depends on fire characteristics (fire intensity, flame height), fuel class moisture content. 

Combustion is PFT and fuel-type specific. The SPITFIRE prognostic module is a vast 

improvement over the CLM 4.5 fire module (Lawrence et al., 2019; Li et al., 2014) (the 

predecessor fire module for any CLM fire modeling). Coupling a fire module to SPITFIRE 
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allows for fire to interact with forests in an age and size class manner. This is a crucial 

improvement as fire can now be represented more realistically: fires can burn solely in the 

understory (an example of low-severity fire that may happen in the warm-dry PFT of our 

modeling experiments) or in the understory and overstory (a high-severity fire). In addition, 

coupling SPITFIRE to FATES allows the user to track fire impacts across cohorts and see 

impacts on different age-PFT-height class stands, compared to fire area-average 

methodology used in previous fire models (Figure S5).  

Model parameterization and validation 

National databases were synthesized for baseline parameterization and validation data 

for CLM-FATES, along with foliage samples from the region(J. E. Stenzel et al., 2021)  , 

values from literature (Berner & Law, 2016; J. E. Stenzel et al., 2021), and national databases 

(Table 2). CLM-FATES was parameterized with dynamic mortality rates, biological nitrogen 

fixation, physiological traits (e.g., foliar C:N, specific leaf area), and tree allometry. There 

are many additional input parameters (>200) used in the FATES module that impact both fire 

dynamics (and feedback to the SPITFIRE fire module), and plant physiology. The base PFT 

used in this study was a Pinus-PFT from a parameter assessment project obtained from 

Buotte et al. 2021. Specific FATES parameters changed from this base PFT for the warm-

dry, wet, and subalpine PFTs used in this study can be found in Table S1. Descriptions of 

specific SPITFIRE parameters changed from this base PFT for the warm-dry, wet, and 

subalpine PFTs used in this study can be found in Table S1, and values swapped can be 

found in Table S2. Site parameterization was completed with observations from observations 

and remotely sensed data from national databases (Table 2.) These include live and dead 

carbon stocks, net primary productivity, fire occurrence, and fire area burned.  
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Table 2. Data sources used for parameterization and validation 

Data type Data source Description  

Live and dead 

biomass stocks 

USFS Forest Inventory and 

Analysis (Shaw et al., 2005) 

Continuous tree inventory plots 

across the US 

Net primary 

productivity 

MODIS (Hicke et al., 2007), 

Stenzel et al. 2021 

Remotely sensed NPP data; 

observation based NPP data 

Mean fire return 

interval 

Landfire   Average period between fires under 

presumed historical fire regime  

Area burned, fire 

occurrence, mean 

fire return interval 

Monitoring Trends in Burn 

Severity (Eidenshink et al., 

2007; Rollins et al., 2007) 

Remotely sensed burn area  

 

Model experiments 

Model experiments focused on evaluating the impacts of SPITFIRE based on two 

FATES structural variables (Bark Thickness and Crown Depth, Table 3), and the subsequent 

impacts on carbon dynamics and wildfire. Model sensitivity was specifically focused on fire, 

for both FATES and SPITFIRE specific variables. PFT-specific parameterization values can 

be found in Tables S1 and S2. Several SPITFIRE and FATES parameters were tested to 

parameterize fire. 

Model experiments included two types of exploration: 1) model sensitivity for fire 

using specific SPITFIRE variables of importance (Table 3), and 2) simulation of future fire 

and carbon dynamics across the three tested PFTs. Model sensitivity tests were run at all 

PFTs and included simulations with default SPITFIRE parameters and simulations where the 
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SPITFIRE module was turned off (“No Fire”). All model scenarios were run with the 

SPITFIRE module on and off to test how fire impacts the forest dynamics across time (Table 

4, Table S3). Model experiments included altering two forest structure parameters for each 

PFT to see how they would impact fire over the 100-year simulations. The parameters altered 

were bark thickness (Pausas, 2015) and crown depth (Tang et al., 1999). The two model 

experiments (bark thickness and crown depth) were run with Buotte et al. 2021 SPITFIRE 

parameters rather than default to ensure a realistic amount of fire would occur (Table S3).  

Table 3. SPITFIRE Variables of importance tested for model sensitivity (Buotte et al., 2021). 

SPITFIRE 

Parameters of 

importance 

Long name Description 

Drying ratio fates_fire_drying_ratio 

 

Fire drying ratio for fuel moisture 

Cloud-to-

ground 

fates_fire_Cg_strikes 

 
Fraction of c-g lightning strikes 

Bark thickness 

(scaler) 

fates_fire_bark_scaler 

 

Scaler to calculate bark thickness from DBH 

 

Crown Depth 

(scaler) 

fates_fire_crown_depth_frac Scaler to calculate depth of crown in meters = 

fates_fire_crowth_depth_frac * height 
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Table 4. Model simulations for future fire across forest types in the Northern Rockies 

domain.  

# Model 

Simulations 

PFT Years SPITFIRE Future 

Climate  

Type 

1 SPITFIRE- 

warm-dry 

(default) 

Warm-dry 100 On MIROC5 Sensitivity 

2 SPITFIRE- 

warm-dry 

(Bark 

Thickness) 

Warm-dry 100 On MIROC5 Experiment 

3 SPITFIRE- 

warm-dry 

(Crown Depth) 

Warm-dry 100 On MIROC5 Experiment 

4 No fire – 

warm-dry 

Warm-dry 100 Off MIROC5 Sensitivity 

5 SPITFIRE – 

wet (default) 

Wet 100 On MIROC5 Sensitivity 

6 SPITFIRE – 

wet (Bark 

Thickness) 

Wet 100 On MIROC5 Experiment 

7 SPITFIRE – 

wet (Crown 

Depth) 

Wet 100 On MIROC5 Experiment 

8 No fire – wet  Wet 100 Off MIROC5 Sensitivity 

9 SPITFIRE – 

subalpine 

(default) 

Cold/Subalpine 100 On MIROC5 Sensitivity 

10 SPITFIRE – 

subalpine 

(Bark 

Thickness) 

Cold/Subalpine 100 On MIROC5 Experiment 

11 SPITFIRE – 

subalpine 

(Crown Depth) 

Cold/Subalpine 100 On MIROC5 Experiment 

12 No fire – 

subalpine  

Cold/Subalpine 100 Off MIROC5 Sensitivity 
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Model evaluation 

Model sensitivity tests focused on getting SPITFIRE to produce wildfire results 

because default SPITFIRE parameterizations showed very little fire activity at the Northern 

Rockies sites. Model sensitivity was specifically focused on fire, for both FATES and 

SPITFIRE specific variables. PFT-specific parameterization values can be found in Tables 

S1 and S2. Several SPITFIRE and FATES parameters were tested to parameterize fire. All 

simulations were from a cold-start, they were not pre-initialized with stand conditions. Model 

spin-up (equivalent to NPP reaching equilibrium) took approximately 20-30 years for all 

simulations. Simulations begin in 1980, to allow for several years of spin-up of the forest 

stands before future years are simulated.  

Model output was evaluated against independent observations from databases, 

literature, and field data for net primary productivity, aboveground biomass, and mean fire 

return intervals (Table 5). To validate model performance, outputs were compared with data 

from plots and sites not used in development or calibration (Table 5). Fire occurrence was 

validated with LANDFIRE (Rollins et al., 2007) and MTBS data (Eidenshink et al., 2007) 

(Figure S6).  

 

Results 

 

Model sensitivity and evaluation 

With default SPITFIRE parameters run for each of the 3 PFTs, we found the Cold 

PFT had the highest NPP, total live biomass, and fine root biomass, followed by warm-dry 

and wet PFTs (Figure 4) Total fuel consumed over the course of the simulation was highest 

in the Warm-dry PFT, followed by Wet and Cold PFTs (Figure 4).  
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Figure 4. Carbon and fire output variables over the course of the 100-year simulation (1980-

2080) for simulations run with the same fire parameters for each PFT (Warm-dry, Wet, 

Cold).  
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With the SPITFIRE module turned off (“No Fire”) run for each of the three PFTs, we 

found the Cold PFT simulation had the highest NPP, total live biomass, total aboveground 

coarse woody debris, and total fine root biomass, followed by warm-dry and wet (Figure 5). 

Total fuel consumed over the course of the simulation was highest in the Warm-dry PFT, 

followed by the Wet and Cold PFTs (Figure 5).  
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Figure 5. Carbon and fire output variables over the course of the 100-year simulation (1980-

2080) for simulations run with the SPITFIRE module turned off (“No Fire” for each PFT 

(Warm-dry, Wet, Cold). 
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  Because default fire parameters did not produce much of a fire effect, as shown by 

similarities in carbon dynamics from “default fire” and “no fire” simulations (Figures 9, 10). 

SPITFIRE was then further parameterized to develop PFT-specific fire effects (see Model 

Experiments).  

Table 5.  Model evaluation for biomass (Wilson et al., 2013), fire (Eidenshink et al., 2007), 

and NPP (Hicke et al., 2007; J. E. Stenzel et al., 2021) outputs.  

Output variable PFT Model output  Validation output  

Biomass: Mg C ha-1    

 Warm-dry 58.02 ±4.54 82.51±52.87 

 Wet 116.15±2.49 139.70±46.21 

 Cold 115.38±5.61 137.74±38.88 

Fire: MFRI (years)    

 Warm-dry 11.82 21-25 

 Wet 45.50 71-80 

 Cold 119.05 151-200 

NPP: Kg C m-2    

 Warm-dry 66.35±24.52 79.5 

 Wet 53.51±22.96 135.45 

 Cold 74.69±28.44 120.25 
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Model experiments 

 The simulated future of fire in these forest types is impacted by bark thickness and 

crown depth. In these simulations, fire is driven by differences in bark thickness and crown 

depth (forest structure), climatic differences in sites, and forest type differences in 

parameterization (Table S2).   

 When bark thickness is adjusted based on species types of the PFT (Table S2), we 

found successful ignitions are higher overall in the Warm-dry PFT, followed by the Cold and 

Wet PFTs (Figure 6). Cumulative carbon loss followed the same pattern, while fuels 

consumed had a tighter pattern with less differences between the PFTs (Figure 6).  

 

 

 

 

 

 

 



102 

 

Figure 6. Fire dynamics over the 100-year simulation for each PFT, for the Bark Thickness 

experiment (“BT Fire”). 

When crown depth is adjusted based on species types of the PFT (Table S2), we 

found successful ignitions are higher overall in the Warm-dry PFT, followed by the Wet 

PFT, with very few ignitions for the Cold PFT (Figure 7). Cumulative carbon loss followed 

the same pattern, while fuels consumed had a tighter pattern with less differences between 

the PFTs, except for the Cold PFT (Figure 7).  
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Figure 7. Fire dynamics over the 100-year simulation for each PFT, for the Crown Depth 

experiment (“CD Fire”).  
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When bark thickness is adjusted based on species types of the PFT (Table S2), we 

found total live biomass, NPP, and fine root biomass were are higher overall in the Cold 

PFT, followed by the Warm-dry and Wet PFTs (Figure 8). Total understory biomass did not 

follow the same pattern and was relatively varied across the simulation for the Cold and 

Warm-dry PFTs, with much less understory development throughout the simulation for the 

Wet PFT (Figure 8).   

 

Figure 8. Carbon dynamics over the 100-year simulation for each PFT, for the Bark 

Thickness experiment (“BT Fire”). 
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When crown depth is adjusted based on species types of the PFT (Table SX), we 

found total live biomass and NPP were higher overall in the Cold PFT, followed by the 

Warm-dry and  Wet PFTs (Figure 9). Fine root biomass was more consistent for all three 

PFT types. Total understory biomass did not follow the same pattern, with the Cold PFT 

having the highest understory live biomass, followed by the Wet PFT and Warm-dry PFT 

(Figure 9).   

 

Figure 9. Carbon dynamics over the 100-year simulation for each PFT, for the Crown Depth 

experiment (“CD Fire”). 
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Discussion 

 

There is critical need to understand forest resilience to intensifying fire regimes 

(Johnstone et al., 2016). Here, we use CLM-FATES-SPITFIRE to investigate the future of 

fire and forest dynamics in Northern Rockies forests over the 21st (2000-2080).  We 

calibrated the model using present-day biomass stock, fire occurrence, mortality, and NPP 

data. Future simulations (until 2080) forced with future climate data show an increase in 

wildfire ignitions and fuel consumed, especially for the warm-dry PFT which is where we 

would expect the most fire activity. The comparisons show fire increases from the modern 

record for Wet and Cold forest types, while the Warm-dry forest type continues to have a 

shorter mean fire return interval (20-40 years). Fire increase for wet and cold forests is 

followed by immediate, subsequent decreases in forest carbon (up to 20% losses). However, 

post-fire recovery of forest carbon stocks occurs for all forest types for the simulation range, 

with complete AGC recovery seen in as little 10-20 years following some of the 

disturbances.  

Running FATES without SPITFIRE compared with simulations run with default 

SPITFIRE parameters show limited differences in carbon dynamics. Here, climate and land 

surface variables are driving the differences seen in carbon dynamics and fire dynamics. 

These results vary from other studies showing carbon dynamics are significant impacted by 

fire frequency and timing (Bartowitz et al., 2019; Hudiburg et al., 2017; Kelly et al., 2015).  

However, these results may be a relic of the default SPITFIRE parameterization used for this 

sensitivity test. Default SPITFIRE parameters lead to limited fire occurrence – drying ratio 
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and lightning strike scale (Table S2 and (Buotte et al., 2021)) needed to be altered in order to 

have more realistic fire effects (as shown in the crown depth and bark thickness experiments, 

discussed below).  

Altering bark thickness and crown depth did lead to some PFT-specific differences in 

fire dynamics and impacts on forest carbon. Patterns were similar for successful ignitions and 

carbon loss, with differences between the PFTs exaggerated more in the crown depth 

simulations, i.e., there were bigger differences in ignitions and carbon loss for crown depth 

simulations than for bark thickness simulations. One thing to note is that for the Cold PFT, 

crown depth seems cause fires to stop occurring early in the simulation. This is surprising as 

fires did occur later in the simulation in the Cold PFT for the bark thickness simulation. This 

may be because crown depth (horizontally) was set too low for the cold PFT (crown depth 

was lowest for the Cold PFT, followed by the Wet PFT, with the Warm-dry PFT having the 

largest crown depth, Table S2), which may have impacted fire spread. The Cold PFT had the 

lowest crown depth, which may have led to starvation and subsequent impacts on fire 

dynamics.  

Despite having very little fire occur, the Cold PFT for the crown depth experiment 

still had the highest total biomass of the three PFTs, which may be due to the fact that the 

cold forest was not losing carbon to fire (Bartowitz et al., 2019). Successful ignitions were 

the highest in the warm-dry forest, which follows modern patterns where warm-dry forests 

have high fire return intervals (Rollins et al., 2007). Carbon loss from fire was higher for the 

warm-dry and wet forests in the bark thickness simulation than in the crown depth 

simulation, showing that altering crown depth led to lower losses of carbon from fire. The 

simulated future of carbon dynamics in these forest types is impacted by bark thickness and 
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crown depth. In these simulations, carbon dynamics are driven by differences in bark 

thickness and crown depth (forest structure), climatic differences in sites, and forest type 

differences in parameterization (Table S1).   

Future simulations also showed PFT-specific differences in carbon dynamics. Despite 

immediate losses of total aboveground biomass following fire events, in nearly every fire 

simulation there is a recovery of carbon stocks in the following decades. This follows other 

modeling and observational studies of post-fire carbon dynamics (Dunnette et al., 2014; 

Harris et al., 2019; Hudiburg et al., 2017; Meigs et al., 2009; Smithwick et al., 2009). 

Understory live biomass is highly impacted by fire, in many of the fire simulations it is 

completely depleted, but recharges quickly. Total live biomass in the bark thickness 

experiment was highest for the cold PFT starting at mid-century and going towards the end 

of the simulation (2080). This may be because the cold, subalpine forests may see an increase 

in the growing season with climate change towards the end of the century, including warmer 

spring and fall seasons allowing for increased growth for this forest type. In contrast, the 

warm-dry PFT sees less recovery of carbon stocks after fire events compared to the other 

PFT types, which may be due to the increase in fire and less favorable growing conditions in 

lower elevation forests (including hotter and drier growing seasons). While P. ponderosa is a 

very resilient tree species (Restaino et al., 2019; Savage & Mast, 2005; J. E. Stenzel et al., 

2021) and is able to survive seasonal drought by going dormant, an increase in the duration 

of seasonal drought coupled with even hotter temperatures may lead to less overall growth in 

this forest type in the future (Skov et al., 2004).  

There are several limitations to this study. We only simulated three PFTs, which are 

based on three forest types (although these three forest types make up >90% of the forested 
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area of the domain). Most DGVM models use low-resolution PFTs to simply the model and 

the PFTs we use are more resolute than what is used in many DGVM simulations (Buotte et 

al., 2019a). One of the highlights of FATES is the perfect plasticity approach to capture 

canopy spread and fill (Team, 2019), however, we did not use this function because it was 

causing carbon starvation and high tree mortality as a relic of how the PPA is coded in the 

model (not mechanistic forest dynamics). The FATES community is not yet using the 

dynamic spread function. There are also many difficulties with spread when the FATES 

harvest/management module is on, so we did not use harvest scenarios in this study (canopy 

spread does not work post-harvest). Finally, competition between trees and non-tree species 

is challenging to incorporate in FATES, and is still in the beginning phases for the FATES 

community. We did not incorporate a non-tree understory in our simulations, but this will be 

important to incorporate once competition between PFT types (i.e., forest, shrubland, 

grassland) is resolved.  

Future research focusing on modeling the fire and carbon dynamics in the Northern 

Rockies region can now be accomplished because of this study. This is important because a 

range of forest-fire-carbon scenarios can now be run for the Northern Rockies region with a 

state-of-the-art ESM and prognostic fire model.  Prescribed fire has never been attempted 

with CLM-FATES-SPITFIRE; in simulated prescribed fire scenarios, a prescribed fire 

SPITFIRE parameterization would need to be developed to explore scenarios with this type 

of management strategy. Alternatively, a modified harvest module parameterization could be 

used to create a prescribed fire scenario. As prescribed fire becomes a more popular 

treatment method (Schoennagel et al., 2017) due to studies showing how effective it is for 

returning fire to the land (Kolden, 2019), that will have more funding availability, being able 
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to use a mechanistic DGVM (Buotte et al., 2021; Koven et al., 2019) with a state-of-the-art 

fire mechanism (Gitta Lasslop et al., 2014; K. Thonicke et al., 2010) will be crucial to 

understand long and short-term impacts of this management strategy.  

The future of fire and carbon dynamics is understudied in Northern Rockies forests. 

For the first time, we have parameterized a state-of-the-art dynamic global vegetation model 

(FATES) coupled with a mechanistic fire model (SPITFIRE) in an important, forested 

region. Prior to this effort, this model has only been used to simulate a handful of locations 

on the planet (Buotte et al., 2021; Huang et al., 2020; Koven et al., 2019) – the Northern 

Rockies (Figure 1) is only the second temperate forest location where CLM-FATES has been 

run (Buotte et al., 2021; Jeffrey E Stenzel, 2021). The Northern Rockies are a unique forested 

region in the inland west – they are wetter and more productive than neighboring northern 

inland forests and much more productive than forests in the southern inland part of the 

country. In addition, they have had limited fire occurrence in the last several decades 

compared to other inland forests. Despite how unique these forests are, and their importance 

in acting as a natural climate solution due to their carbon-dense nature, it’s unclear how 

future climate change will impact both carbon dynamics and wildfire occurrence in the 

region. Parameterizing the most common forest types and SPITFIRE to this region is a 

tremendous first step towards understanding future fire and carbon dynamics in the region 

and opens the door to many other explorations regarding forest management.  
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Supporting Information 

 

Table S1. FATES parameters used for PFT-specific parameterization (Buotte et al. 2021, 

Stenzel 2021).  

Fates Parameter PFT Value 

fates_leaf_long 

WET & 

COLD 7 

fates_smpsc 

WET & 

COLD 250000 

fates_leaf_stomatal_slope_medlyn 

WET & 

COLD 2.3 

fates_leaf_vcmax25top 

WET & 

COLD 45 

fates_mort_freezetol 

WET & 

COLD -55 

fates_alloc_storage_cushion 

WET & 

COLD 1.2 

fates_mort_scalar_cstarvation 

WET & 

COLD 0.6 

fates_recruit_initd 

WET & 

COLD 0.1 

fates_allom_d2h1 

WET & 

COLD 0.64 

fates_allom_d2h2 

WET & 

COLD 0.37 

fates_recruit_hgt_min 

WET & 

COLD 1.3 

fates_allom_d2ca_coefficient_max 

WET & 

COLD 0.23 

fates_allom_d2ca_coefficient_min 

WET & 

COLD 0.23 

fates_leaf_slatop 

WET & 

COLD 0.0087 

fates_leaf_slamax 

WET & 

COLD 0.009 

fates_allom_d2bl1 

WET & 

COLD 0.35 

fates_allom_d2bl2 

WET & 

COLD 1.4 

fates_allom_d2bl3 

WET & 

COLD 0.85 
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fates_allom_agb1 WET & 

COLD 

0.06896 

fates_allom_agb2 

WET & 

COLD 0.572 

fates_allom_agb3 

WET & 

COLD 1.94 

fates_allom_agb4 

WET & 

COLD 0.931 

fates_allom_l2fr 

WET & 

COLD 1 

fates_allom_agb_frac 

WET & 

COLD 0.7 

fates_mort_bmort 

WET & 

COLD 0.0025 

fates_fnrt_prof_a 

WET & 

COLD 5 

fates_fnrt_prof_b 

WET & 

COLD 4 

fates_wood_density 

WET & 

COLD 0.35 

fates_seed_alloc 

WET & 

COLD 0 

fates_seed_alloc_mature 

WET & 

COLD 0.05 

fates_seed_dbh_repro_threshold 

WET & 

COLD 15 

fates_fire_bark_scaler 

WET & 

COLD 0.07 

fates_prt_nitr_stoich_p1 

WET & 

COLD 0.017 

fates_allom_dbh_maxheight 

WET & 

COLD 90 

fates_comp_excln 

WET & 

COLD 3 

fates_mort_cstarvetol 

WARM-

DRY 0.5 

fates_leaf_long 

WARM-

DRY 4 

fates_smpsc 

WARM-

DRY 

-

250000 

fates_leaf_stomatal_slope_medlyn 

WARM-

DRY 2.3 

fates_leaf_vcmax25top 

WARM-

DRY 63 

fates_mort_freezetol 

WARM-

DRY -55 
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fates_alloc_storage_cushion 

WARM-

DRY 1.2 

fates_mort_scalar_cstarvation 

WARM-

DRY 0.6 

fates_recruit_initd 

WARM-

DRY 0.1 

fates_allom_d2h1 

WARM-

DRY 0.64 

fates_allom_d2h2 

WARM-

DRY 0.37 

fates_recruit_hgt_min 

WARM-

DRY 1.3 

fates_allom_d2ca_coefficient_max 

WARM-

DRY 0.23 

fates_allom_d2ca_coefficient_min 

WARM-

DRY 0.23 

fates_leaf_slatop 

WARM-

DRY 0.0069 

fates_leaf_slamax 

WARM-

DRY 0.0072 

fates_allom_d2bl1 

WARM-

DRY 0.2 

fates_allom_d2bl2 

WARM-

DRY 1.4 

fates_allom_d2bl3 

WARM-

DRY 0.85 

fates_allom_agb1 

WARM-

DRY 0.06896 

fates_allom_agb2 

WARM-

DRY 0.572 

fates_allom_agb3 

WARM-

DRY 1.94 

fates_allom_agb4 

WARM-

DRY 0.931 

fates_allom_l2fr 

WARM-

DRY 1 

fates_allom_agb_frac 

WARM-

DRY 0.7 

fates_mort_bmort 

WARM-

DRY 0.0025 

fates_fnrt_prof_a 

WARM-

DRY 5 

fates_fnrt_prof_b 

WARM-

DRY 4 

fates_wood_density 

WARM-

DRY 0.38 
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fates_seed_alloc 

WARM-

DRY 0 

fates_seed_alloc_mature 

WARM-

DRY 0.05 

fates_seed_dbh_repro_threshold 

WARM-

DRY 15 

fates_fire_bark_scaler 

WARM-

DRY 0.07 

fates_prt_nitr_stoich_p1 

WARM-

DRY 0.022 

fates_allom_dbh_maxheight 

WARM-

DRY 90 

fates_comp_excln 

WARM-

DRY 3 
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Table S2. FATES-SPITFIRE parameters swapped from default values (Buotte et al. 2021). 

FATES-SPITFIRE 

Parameter PFT Value 

fates_fire_cg_strikes WET 0.5 

fates_fire_drying_ratio WET 13000 

fates_fire_bark_scaler WET 0.12 

fates_fire_crown_depth_frac WET 0.5 

fates_fire_cg_strikes 

WARM-

DRY 0.5 

fates_fire_drying_ratio 

WARM-

DRY 13000 

fates_fire_bark_scaler 

WARM-

DRY 0.15 

fates_fire_crown_depth_frac 

WARM-

DRY 0.7 

fates_fire_cg_strikes SUBALPINE 0.5 

fates_fire_drying_ratio SUBALPINE 13000 

fates_fire_bark_scaler SUBALPINE 0.08 

fates_fire_crown_depth_frac SUBALPINE 0.3 

 

 

 

 

 

 

 

 

 

 



130 

 

Table S3. Selection of simulation runs completed to test default fire (drying ratio, cloud-to-

ground strikes), no fire, bark thickness, and crown depth impacts on carbon dynamics and 

fire dynamics.  

Run name Simulation testing Length 

fire_fut_pipo Default Fire 71 

fire_fut_wet Default Fire 71 

fut_cold Default Fire 71 

_fire_fut_pipo Default Fire 50 

_fire_fut_wet Default Fire 50 

_dryratio_fut_cold Default Fire 50 

pipo_fire_fut Default Fire 100 

wet_fire_fut Default Fire 100 

sub_cold_fire_fut Default Fire 100 

19jan2022_fire_fut Drying ratio 71 

26jan2021_fire_fut Drying ratio 50 

26jan_dryratio_fut Drying ratio 50 

pipo_NO_FIRE No fire 100 

abgr_wet_NO_FIRE No fire 100 

sub_cold_NO_FIRE No Fire 100 

cg_1 

Crown-ground 

strikes 70 

cg_1_sf2 

Crown-ground 

strikes 70 

cg_dr_sf2 

Crown-ground 

strikes 70 

cg2 

Crown-ground 

strikes 100 

pipo_cg2 

Crown-ground 

strikes 119 

abgr_wet_cg2 

Crown-ground 

strikes 119 

abgr_sub_cg2 

Crown-ground 

strikes 119 

pipo_cg2_BT Bark Thickness 119 

abgr_wet_cg2_BT Bark Thickness 119 

sub_cold_cg2_BT Bark Thickness 119 

pipo_cg2_BT Bark Thickness 100 

abgr_wet_cg2_BT Bark Thickness 100 

sub_cold_cg2_BT Bark Thickness 100 

pipo_cg2_BT Bark Thickness 100 

abgr_wet_cg2_BT Bark Thickness 100 
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sub_cold_cg2_BT Bark Thickness 100 

pipo_cg2_BT Bark Thickness 100 

abgr_wet_cg2_BT Bark Thickness 100 

sub_cold_cg2_BT Bark Thickness 100 

pipo_cg2_CD Crown Depth 119 

abgr_wet_cg2_CD Crown Depth 119 

sub_cold_cg2_CD Crown Depth 119 

pipo_cg2_CD Crown Depth 100 

abgr_wet_cg2_CD Crown Depth 100 

sub_cold_cg2_CD Crown Depth 100 

pipo_cg2_CD Crown Depth 100 

abgr_wet_cg2_CD Crown Depth 100 

sub_cold_cg2_CD Crown Depth 100 

pipo_cg2_CD Crown Depth 100 

abgr_wet_cg2_CD Crown Depth 100 

sub_cold_cg2_CD Crown Depth 100 
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Figure S1. Conceptual figure of all modules of the Community Land Model, adapted from 

NCAR. Red boxes indicate processes of importance for this study: biogeochemical cycling 

(carbon), vegetation dynamics, and land use change. Figure adapted from CLM 

documentation and NCAR (Lawrence et al., 2019; Team, 2019).  
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Figure S2. Connections between the Host Land Model ( HLM, e.g., CLM) and FATES. The 

HLM runs hydrology, energy balance, soil carbon, soil biogeochemistry, while FATES runs 

canopy radiation, water stress, photosynthesis and respiration, growth and allocation, and 

mortality and recruitment. Figure adapted from FATES documentation and NCAR (Team, 

2019).  
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Figure S3. Conceptual model showing organization differences between CLM and CLM 

coupled with FATES. a) Complexity comparison between a Big Leaf Model (e.g., CLM), 

Cohort Model (e.g., FATES), and Individual Based Model (e.g., LPJ, Landis). b) 

Organizational structure of CLM with the FATES module. In CLM, columns would be 

directly broken down into PFT components (not shown), while in FATES columns are 

broken down into patches (age since disturbance) and cohorts (PFT and heigh classes), which 

allows for forest age and structure differences within a grid cell. Figure adapted from NCAR 

and FATES Documentation (Team, 2019).  
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Figure S4. Tiling scheme used in CLM 5.0 and CLM-FATES. a) CLM 5.0 uses a plant 

functional type tiling scheme (left), FATES has moved to a time-since-disturbance (TSD) 

tiling scheme (right). b) Description of the time-since-disturbance tiling organization. Each 

TSD tile is made up of one or more PFTs, which can have multiple height classes. Figure 

adapted from FATES documentation and NCAR (Team, 2019). 
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Figure S5. Conceptual figure showing SPITFIRE processes and integration to CLM-FATES 

processes. Figure adapted from Thonicke et al. 2010 (Kirsten Thonicke et al., 2010) 
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Figure S6. Acres burned by severity class (1-4, unburned to high severity) within the study 

domain (1984-2018) (Eidenshink et al., 2007).  

 

 

 


