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ABSTRACT

Microbial communities are highly complex, often composed of hundreds or thousands

of different microbe types. They are found nearly everywhere; in soil, water, and in close

association with other organisms. Microbial communities are difficult to study. Many

microbes are not easily grown in laboratory conditions. Interactions between microbes

may limit the applicability of observations collected using isolated taxa. However, new

sequencing technology is allowing researchers to study microbial communities in novel

ways. Among these new techniques is 16S rRNA fingerprinting, which enables

researchers to estimate the relative abundance of most microbes in the community.

These techniques are often used to study microbial communities living on or in the

human body. These microbiomes are found at many different body sites and have been

linked to the health of their human host. In particular, the vagina microbiome has been

linked to bacterial vaginosis (BV). BV is highly prevalent with symptoms including odor,

discharge, and irritation. While no single microbe has been shown to cause BV, the

structure of the microbial community as a whole is associated with BV.

In this thesis, I explore methods that may be used to discover associations between

microbial communities and phenotypes of those communities. I focus on associations

between the vagina microbiome and BV. The first two chapters of this thesis describe

software tools used to explore and visualize ecological datasets. In the last two chapters, I

explore the use of machine learning techniques to model the relationships between the

vagina microbiome and BV. Machine learning techniques are able to produce complex

models that classify microbial communities by BV characteristics. These models may

capture interactions that simpler models miss.
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CHAPTER 1

INTRODUCTION

Microbial communities thrive in many different environments and conditions. They

are found in environments from rain forests [1] to deserts [2] and from acidic rivers [3] to

basic lakes [4]. Nearly every environment on earth is home to microbes. In addition to

their pervasiveness, microbial communities are important for a variety of reasons.

Microbes play key roles in the treatment of wastewater [5]. Microbial communities in the

soil drive nutrient cycling and influence the availability of nutrients to plants [6].

In addition to occurring throughout the environment, some microbial communities

associate closely with other organisms. These microbial communities, known as

microbiomes, are composed of microbes living on and in other organisms. Microbiomes

often play key roles in the health of their host. Gut microbiomes aid in digestion and host

energy uptake. This can be seen in cows and termites where microbes enable their hosts to

metabolize cellulous [7, 8]. Similarly, in humans and other organisms, microbes break

down complex carbohydrates to simpler forms their hosts can process [9, 10]. Microbial

communities are associated with disease in complex ways. Human gut microbiomes are

associated with obesity [11]. Microbial communities in the lungs may exacerbate diseases

such as cystic fibrosis [12]. Certain vagina microbiomes are associated with bacterial

vaginosis [13]. Other microbial communities may protect against invasions by pathogens

or interact in complex ways with the immune system [14].

Past research into microbial communities has revealed many interesting characteristics

and patterns. Many microbial communities are composed of hundreds or thousands of

different microbe types. This high richness is often spread across phylogenetically diverse

taxa [15, 16]. Gene-level views of microbial communities also show incredible levels of

diversity. Functional gene richness has been shown to vary considerably across soil

habitats [17].
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In addition to this huge amount of largely unexplored taxa and gene richness, the

ecological dynamics occurring in microbial communities are often completely unknown.

Microbial composition can be highly variable over time [18] and environmental conditions

[19]. Both microbial community richness and evenness can vary substantially [20].

Additionally the role of viruses and horizontal gene transfer in microbial communities is

unclear.

In general, we know very little about the vast majority of microbes. Many microbes

are difficult to culture on traditional media. Estimates of ’unculturable’ microbes are often

above 99% [21, 22]. While many of these microbes may have culturable relatives, it is not

clear how ecologically similar closely related microbes may be. Even when microbes are

easily grown in the lab, it is not immediately apparent what role they may play in natural

communities. Interactions with other microbes and with variable environmental conditions

may partly determine the ecological function of many microbes. The large number of

microbes in most communities makes it difficult to replicate natural conditions in a

controlled, replicable manner in the lab.

Advances in genetic sequencing have opened a new window into microbial community

structure and function. Researchers can now determine the genetic sequence of millions of

DNA fragments relatively cheaply. This has spurred the development of a variety of

techniques for analyzing microbial communities. Two of these are metagenomic

sequencing and meta-amplicon sequencing.

Metagenomic sequencing attempts to sequence a sample of all the genes in a microbial

community. This allows researchers to determine which genes are present in the samples.

In some cases, these genes can then be lumped into pathways or groups that reflect

functional characteristics. One goal of metagenomic sequencing is to predict the genetic

capabilities of the microbes present in the community.

Amplicon sequencing PCR amplifies relatively short regions of the microbial genome,

which act as identifiers or barcodes for the microbe. Based on these gene regions,

researchers can estimate the identity of the microbes present. For bacterial surveys,
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portions of the 16S rRNA gene are typically used as the barcode. This sequencing often

results in estimates of the relative abundance of the bacteria present in each microbial

community. In this thesis I focus on datasets produced using 16S rRNA sequencing.

The bioinformatic processing of large sequencing datasets is an important and ongoing

research area. In the case of 16S rRNA sequencing, processing includes removing low

quality sequencing reads, chimera detection and removal, read trimming to remove

low-quality ends, primers and barcodes, and data partitioning into projects and samples.

This processing may include a clustering step that lumps similar sequences together to

compensate for small sequencing errors. After this processing, the 16S rRNA sequences

are grouped into bins or operational taxonomic units (OTUs). This may be done by

clustering reads by sequence similarity or by comparing each read to a database of known

bacteria. The result of this processing is generally a table of bacterial abundances. This

abundance table includes the number of reads of each OTU found in every sample.

These processing steps include several choices and trade-offs. It is not immediately

clear how decisions made during dataset processing affect downstream analyses. There is

always a balance between removing sequences due to possible quality issues and keeping

sequences that may inform hypotheses. Overly conservative processing may remove real

sequence variability, while overly permissive processing may allow noise to distort or

overwhelm real patterns. It is helpful, therefore, to have a tool that allows researchers to

efficiently determine how changes in data processing may influence the results of

downstream analyses. In Chapter 1 we present OTUbase, an R package that provides a

framework for this type of data exploration. OTUbase is a tool that provides data structures

and basic functions for manipulating and analyzing microbial community data [23].

After the reduction of sequencing datasets to abundance tables, several summary

statistics may be calculated. These summary statistics may include richness and diversity

measures or presence or absence of specific taxa. While these summary statistics allow

rough comparisons between samples, researchers are often interested in exploring the

microbial community data in more complex ways. It is often helpful to use plots and
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figures to visualize microbial communities in order to find patterns and trends.

Researchers may use principal component or coordinate analyses (PCA/PCoA), clustering

dendrograms, scatterplots, and heatmaps to explore how sample data varies with the

microbial community.

These analyses and visualizations may be produced using a wide variety of software.

R is perhaps the most common of these tools, however custom pipelines and scripts are

sometimes written in Python and other programming languages. These tools are generally

command line based and require the user to have substantial programming abilities. While

the format of these tools works well for incorporation into pipelines, the non-visual

interface can hinder exploration of the data. Chapter 2 presents Seed, a visualization tool

for microbial communities. Seed provides a visual interface for exploring microbial

community structure. It includes tools that make it easy to look for patterns and trends in

microbial datasets.

Simple analysis and visualization of these datasets may often be insufficient. Complex

relationships and interactions between microbial taxa may not be readily discernible.

Visualizations may miss patterns, pairwise correlations may not capture interactions, and

richness measures may not be relevant for many questions. The huge number of taxa in

many communities means narrowing down the parts of the community associated with

environmental factors or phenotypes is difficult. This difficult problem is an important

one, however, especially when the phenotype in question is a disease.

One example of a complex association between a microbial community and disease is

the vagina microbiome and bacterial vaginosis. The vagina microbiome is often composed

of hundreds of different microbe types, although frequently only a few are at high

abundance levels. Common members of the vagina microbiome include various

Lactobacillus spp. such as L. iners, L. crispatus, and L. gasseri. Some communities

include Prevotella, Atopobium, and a variety of other genera [24].

Bacterial vaginosis (BV) is a disease associated with the vagina microbiome.

Symptoms of BV include odor, discharge, and irritation. BV prevalence is high, with
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estimates of affected women as high as nearly 30% [25]. BV has been linked to increased

rates of preterm birth [26] and increased susceptibility to some STDs [27, 28]. No single

microbe has been shown to cause BV, however, BV has been linked to the microbial

community as a whole [29]. Notably, communities with high abundances of Lactobacillus

species seem to be indicative of a healthy community [30].

The apparently complex relationship between BV and the vagina microbiome makes it

an ideal system in which to study methods that may identify important parts of the

microbial community. In Chapter 3, we explore methods that use machine-learning

classifiers to identify possible links between the vagina microbiome and BV. These

methods involve two general steps. In the first step, a classification model is generated

using some machine learning method. The model accuracy is then measured to determine

how well the model sorts samples by BV characteristics. In the second step, the model is

deconstructed to determine what microbial community features are important to the

classifier accuracy. These features can reasonably be hypothesized to be associated with

BV. Chapter 3 compares the models generated using three machine-learning techniques,

genetic programming (GP), logistic regression (LR), and random forests (RF) [31].

Two key results are discussed in detail in Chapter 3. First, all three machine-learning

algorithms produce classification models with a high accuracy of between 80 and 90%.

Second, the important features identified by each method are largely unique. There is little

overlap in the top fifteen features identified using GP, LR, and RF. Additionally, the study

presented in Chapter 3 ranks features by importance, but does not calculate an effect size

for the features. Consequently, it is difficult to determine how many features are actually

important for the classification model. This feature importance ambiguity limits the

classification models’ usefulness. While it is clear from their high classification accuracy

that the models are capturing a link between the microbial community and BV, the model

features responsible for this accuracy are unknown.

Chapter 4 extends the results of Chapter 3 by looking more closely at the important

features identified by each model. It attempts to determine why each method results in
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different important features and estimates how important each feature is to the overall

accuracy. Chapter 4 uses three different types of feature subsets to answer these questions.

The first subset type selects the top N features from each feature ranking. The second

subset type selects features using a sliding window across the feature rankings. The third

subset type selects features randomly.

These subsets illustrate key classification model characteristics. First, only a few

features are necessary to obtain high classification accuracy. Second, the importance

measures for the different machine learning techniques are often not ideal. Third, there

appears to be substantial redundancy in the microbial community features. Chapter 4

explores these results in detail.

In summary, the first two chapters introduce OTUbase and Seed, respectively. These

software packages provide tools for manipulating, analyzing and visualizing microbial

community data. The third chapter explores using machine learning techniques to

generate models for classifying microbial communities by BV characteristics. It compares

the accuracy of models generated using three different types of machine learning

algorithms and the important features identified by those algorithms. The fourth chapter

extends the results of the third chapter by using feature subsets to validate the identified

important features.
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CHAPTER 2

OTUBASE: AN R INFRASTRUCTURE PACKAGE FOR

OPERATIONAL TAXONOMIC UNIT DATA

2.1 Notes

Chapter 1 describes OTUbase, an R package that provides data structures and functions

for operational taxonomic unit data manipulation and analysis. The goal of OTUbase is to

provide a framework that allows researchers to incorporate typical microbiome data into

analyses and visualizations. OTUbase organizes and links together data types that include

sequencing reads, read quality, taxonomic information, and sample metadata. OTUbase is

open source and available at

http://www.bioconductor.org/packages/release/bioc/html/OTUbase.html. OTUbase is

published in the journal Bioinformatics. The published manuscript is reprinted here.

License information and reprinting permission from Oxford Press is shown in the

appendix. Citation information is shown below.

Daniel Beck, Matt Settles, and James A. Foster (2011) OTUbase: an R infrastructure

package for operational taxonomic unit data. Bioinformatics 27(12): 1700-1701.

PMC3106189

2.2 Abstract

OTUbase is an R package designed to facilitate the analysis of operational taxonomic unit

(OTU) data and sequence classification (taxonomic) data. Currently there are programs

that will cluster sequence data into OTUs and/or classify sequence data into known

taxonomies. However, there is a need for software that can take the summarized output of

these programs and organize it into easily accessed and manipulated formats. OTUbase
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provides this structure and organization within R, to allow researchers to easily manipulate

the data with the rich library of R packages currently available for additional analysis.

Availability

OTUbase is an R package available through Bioconductor. It can be found at

http://www.bioconductor.org/packages/release/bioc/html/OTUbase.html.

2.3 Introduction

New sequencing technologies, such as Roche’s 454 pyrosequencing, have made it possible

to sequence large amounts of DNA quickly. These new capabilities are being used to

sequence portions of marker genes that allow investigators to determine which organisms

are present within a sample. This is especially useful for the study of microbes. Microbes

are often difficult to culture. Therefore, culture-independent methods are used to

determine the composition of microbial communities. 454 16s amplicon sequencing is one

such culture-independent method [1].

There are currently two primary approaches used to analyze environmental community

amplicon data. The first approach uses a database of identified sequences to train an

algorithm to classify a set of unknown sequences, such as 454 sequence reads. A widely

used example of this is the RDP classifier [2]. This type of analysis labels each sequence

with a taxonomic classification. A classification approach has the advantage of producing

taxonomic names for each amplicon. However, it is dependent on the accuracy of the

algorithm and the quality of the database used to train the algorithm.

A second approach to the analysis of amplicon data is to cluster the sequences based

on overall sequence similarity [3]. These clusters represent operational taxonomic units,

or OTUs. The OTU approach potentially decreases the biases of using an incomplete

database to classify the sequences. However, the number of OTUs may be inflated by

sequencing error and the taxonomic identity of the microbes in the sample remains

unresolved [4].

http://www.bioconductor.org/packages/release/bioc/html/OTUbase.html.
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Programs are available to perform both of these types of data analysis. In particular,

some programs or pipelines are able to both cluster and classify sequences. These include

Mothur [3], the RDP pipeline [5], QIIME [6], and PANGEA [7]. These programs are also

able to perform some limited downstream analysis of the data.

OTUbase is an R infrastructure package that imports OTU or classification files

produced by these programs along with the experiment metadata and sequence data. The

imported data is stored in a structure that is easy to access and manipulate. The researcher

is able to quickly summarize and visualize the data. More importantly, the data is

abstracted from the raw data. This abstraction allows for the development of novel

analysis techniques using the power of the R statistical programming environment. The

structure of OTUbase is general enough to be applicable to all amplicon types, including

16s, 18s and IGS regions, or other targeted genes. Additionally, OTUbase is not restricted

to any specific sequencing technique. Any data that can be clustered or classified into

OTUs may be explored using OTUbase. This may include data from older Sanger

sequencing and newer approaches such as Illumina sequencing.

2.4 Features

OTUbase is an R package available through Bioconductor (www.bioconductor.org). The

package includes two types of S4 classes, OTUset and TAXset, that organize and structure

OTU and classification (taxonomic) data respectively. S4 classes are a versatile data

structure available in R. These classes include slots, or compartments within the class that

hold distinct parts of the data. There are many types of data associated with typical

community amplicon experiments. These data may include sample metadata, sequencing

reads and quality, sequence memberships in OTUs, and sequence classifications. The

classes provided by OTUbase organize these data into arrays.

The OTUset class type in OTUbase is designed for OTU related analyses. It includes

slots for: the read identifier, the read’s DNA sequence, the DNA sequence quality of the

read, the sample identifier the read comes from, and the OTU identifier the read belongs

http://www.bioconductor.org/
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to. These slots are linked together by position. For example, the first sequence ID is linked

to the first sequence in the sequence slot and the first sample ID in the sample ID slot. In

addition to these slots, two slots hold metadata. The first metadata slot is for sample

metadata that is linked to a corresponding sample identifier. The last slot holds OTU

metadata and is linked to the OTU identifier slot. The OTU metadata slot can be used to

hold OTU classification information, for example.

The TAXset class type provided in OTUbase is designed for classification data. This

class is similar to the OTU class with the key difference being that the slot for the OTU

identifier is replaced by a slot for the classification. The OTU metadata is replaced by a

taxonomy metadata slot, which may hold additional information about specific taxonomic

categories, such as family, order, etc.

In addition to providing structure and organization for amplicon data, OTUbase makes

it easy to import data into OTUbase objects. OTUbase is able to read the output files

produced by both the RDP classifier and Mothur. In general OTUbase is able to import

large datasets quickly. Memory and computation limitations that arise in the analysis of

amplicon data are much more important during the classification or clustering of

sequences into OTUs then in the downstream analysis. Consequently, OTUbase can

handle large datasets quickly and efficiently when the optional sequence and quality data

is not included. It is expected that the majority of users will not find sequence data

necessary. This capability is included, however, due to the possible use of this data in the

development of new analysis techniques.

The key strength of OTUbase is that it interfaces easily with the rich library of

packages already available in R for data exploration, visualization and statistical analyses.

For example, OTUbase can produce abundance data that is accepted as input to packages

that provide ecological data analyses (e.g. vegan [8]). By providing a structure and

organization for amplicon data within R, OTUbase enables the efficient development of

new analyses and visualization techniques.

A detailed example workflow can be found in the vignette included with the OTUbase
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Figure 2.1: Organization of data within OTUbase. Data analysis starts by either clustering
or classifying the reads obtained from the sequencer with an external application. The
clustering or classification results are collected by OTUbase along with read and quality
data and sample metadata. OTUbase then organizes the data into an R object. The library
of R tools can then be used to analyze and visualize the data.
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package. This example uses data originally presented in Sogin et al. in 2006 [9]. A typical

workflow will include data import and the generation of an abundance table using the

functions readOTUset and abundance. This abundance table can then be used in many

analyses such as richness calculations (estimateR from the vegan package) and cluster

analyses (clusterSamples). The data may be visualized using R commands such as

heatmap. OTUbase allows an abundance table to be generated based on any column in the

metadata. This makes OTUbase a powerful tool for data exploration. OTUbase also

includes functions to manipulate OTU data. The subsetting function subOTUset is able to

quickly generate subsets of the complete dataset. This allows the user to focus analyses on

interesting subsets of the data.

2.5 Conclusion

OTUbase organizes and structures data associated with community amplicon experiments

into R classes, which allows the researcher to easily visualize and manipulate the

experimental data. OTUbase has a number of functions that allow OTUbase to import data

from the commonly used Mothur package and the RDP classifier. It also includes

functions that enable the user to easily use existing R packages to perform complex

analyses and visualizations.
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CHAPTER 3

SEED: A MICROBIAL COMMUNITY VISUALIZATION TOOL

3.1 Notes

Chapter 2 describes Seed, an R package that provides a visual user interface for exploring

ecological datasets. The goal of Seed is to remove coding and parameter adjustment

requirements from the production of plots and figures. This allows researchers to focus on

data exploration and hypothesis generation. Seed is open source and available at

https://github.com/danlbek/Seed.

An application note describing Seed is currently being prepared for publication.

3.2 Abstract

In this paper we present Seed, a data exploration tool for microbial communities. Seed is

written in R using the Shiny library. This provides users access to powerful R based

functions and libraries through a simple user interface. Seed allows users to explore

ecological datasets using principal coordinate analyses, scatter plots, bar plots, hierarchal

clustering, and heatmaps. Seed is open source and available at

https://github.com/danlbek/Seed.

3.3 Introduction

The proliferation of microbial community profiling is allowing researchers to study

microbial communities in new ways. Increasingly, researchers in diverse fields are asking

questions relating to how microbial communities vary across samples. For example,

researchers studying the human microbiome are interested in how microbial composition

changes across body sites [1] and through time [2]. Researchers studying disease look at

how microbial communities differ between samples from healthy and unhealthy
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individuals [3]. The answers to these questions are often explored using high throughput

sequencing technology that allows researchers to identify the microbial composition of a

large number of samples. This produces a wealth of data about microbial composition in

many different environments and conditions.

In conjunction with advances in sequencing resources, researchers have developed a

number of powerful software tools to analyze and visualize this wealth of data. Tools such

as mothur [4] and Qiime [5] aggregate many tools to allow researchers to quickly and

efficiently process large sequencing datasets. These programs are in a format that allows

them to be easily incorporated into analysis pipelines that can be run with minimal user

interaction. Many of these programs, notably mothur and Qiime, include many programs

that perform, among others, the following tasks:

1. Filter and trim raw sequencing reads by quality characteristics

2. Separate large datasets by projects or samples

3. Classify reads into OTUs (using clustering and/or taxonomic classification)

4. Perform statistical analyses and generate visualizations

The output of these programs generally includes a table listing the abundance of each

microbial taxon in every sample. This table is then used to calculate richness and diversity

metrics, perform PCA/PCoA analyses, and visualize differences among samples.

The focus of these currently available packages is the efficient processing of large

datasets, but they are not designed for open-ended data exploration. They excel at

performing robust, computationally intensive calculations that attempt to minimize the

effects of noise and sequencing artifacts on downstream analyses. They often use a

non-visual interface for analysis, even when they provide a GUI for their own functions,

requiring the user to know specific command and parameter combinations. While this

setup is ideal for pipeline development, it is often a hindrance for data-exploration. There

is a need for a tool that allows researchers to quickly and easily visualize and explore the

data that results from these pipelines.
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In this paper, we present Seed (Simple Exploration of Ecological Data), a software

package that focuses on data exploration and visualization of microbial community data

derived from next generation sequencing.

3.4 Seed Description

Seed is an open source application that allows researchers to visually explore microbial

community data. It is designed to allow many different analyses and visualizations

including principal component and coordinate analysis (PCA/PCoA), hierarchal

clustering, scatter plots, bar plots, and heatmaps.

Seed is written in the R programming language [6] using RStudio’s Shiny library [7].

R is open source and available for Linux, MacOS, and Windows operating systems. It is

also one of the most functionally complete tools for analyzing ecological datasets. The use

of R allows us to take advantage of the wealth of R packages available for complex

analyses and visualizations. Notably, Seed uses functions from R packages including

vegan [8], Heatplus [9], gplots [10], and WGCNA [11, 12].

The use of Shiny allows Seed to be a web-based application, which may be installed

locally or hosted on a remote server. When running Seed from a central server, users can

access it through a web browser and are not required to install it locally. This means

non-expert users can quickly and easily begin using Seed, even without local installations

of R. Additionally, updates to R, Shiny, Seed, and underlying packages can be done

seamlessly and invisibly to the end user. The use of a web browser also provides a familiar

interface to most users, allowing them to quickly and easily learn to use Seed. Figure 3.1

is an example of the user interface.

Currently Seed requires two types of data, microbial abundance data and sample

metadata. The microbial abundance data contain counts or abundances of each microbial

taxon in each sample. The sample metadata contain information about each sample. Both

files must be plain text files. Seed can accept comma, tab, or semicolon-separated values.

Seed automatically associates the microbe abundance data with the sample information
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Figure 3.1: This figure shows Seed’s user interface. The plot shown here is based on data
originally published by Ravel et al. [13].
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using the sample name. The user is also shown a subset of the imported data for

verification purposes. After the abundance data are loaded, they may be modified using a

number of common transformations including presence/absence, relative abundance, and

Hellinger transformations. Seed is not limited to microbial data, though that was our

primary research domain. It can be used to explore any data that include both feature

counts and values for response variables.

After the user imports and verifies their dataset, they may easily explore their data with

several plots. These plot options can be seen in Figure 3.1 and include histograms, scatter

plots, PCA/PCoA plots, bar plots, cluster dendrograms, heatmaps, and stacked bar plots.

All plots may be saved in either PDF or PNG formats. Examples of some of the plots

generated by Seed are shown in Figure 3.2. Many of the plots include options to

incorporate sample information by coloring points or bars according to metadata values.

This allows users to easily visualize the relationship between the sample metadata and the

structure of the microbial communities present in the samples.

The design of Seed emphasizes simplicity over exhaustive inclusion of parameters. In

many or most cases, researchers will use Seed to understand general trends in the data,

which may then inform more specialized analyses. Seed is designed to quickly explore

ecological datasets and to act as a hypothesis-generating or brainstorming tool.

Publication quality figures and polished analyses are beyond the current scope of this

project. Additionally, large dataset analysis may be too slow for a comfortable user

experience. The upper limit for dataset size will depend on a number of factors including

CPU speed, memory size, and user patience. In general, computationally intensive

analyses using large datasets are not ideal for interactive user interfaces. These types of

analyses will likely require different tools. As with any software package, not all analyses

have been implemented in Seed. We encourage users to also consider other visualization

tools including phyloseq [14] for analyses incorporating phylogenetic relationships and

EMPeror [15] for PCoA analyses of very large datasets. Additionally, Seed does not

provide guidance on which tools are appropriate for any given analyses, that still relies on
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Figure 3.2: A sample of the plots generated using Seed. Clockwise from the upper left, a
scatterplot, a cluster dendrogram, a PCoA plot, and a heatmap are shown here. The plots
are based on data originally published by Ravel et al. [13].
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user expertise.

3.5 Future Directions

Seed is freely available at https://github.com/danlbek/Seed. Development of Seed is

ongoing. We are continuing to add new visualizations and to improve existing ones.

Future development will focus on adding phylogenetic and taxonomic data structures,

which will allow for analyses that take microbial relationships into account. We welcome

user contributions to the project and encourage labs to copy and modify the code to suit

their own needs.
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CHAPTER 4

MACHINE LEARNING TECHNIQUES ACCURATELY CLASSIFY

MICROBIAL COMMUNITIES BY BACTERIAL VAGINOSIS

CHARACTERISTICS

4.1 Notes

Chapter 3 describes using machine learning techniques to generate BV classification

models. We compare models generated using genetic programming, random forests, and

logistic regression. This study had two primary goals. The first goal was to determine if

these methods could generate accurate models classifying microbial communities by BV

characteristics. The second goal was to determine which microbial community features

contributed to the high classification accuracy. This study has been published in PLoS

ONE and is available under the terms of the Creative Commons Attribution License. The

published manuscript is reprinted here. Citation information is shown below.

Daniel Beck and James A. Foster (2014) Machine learning techniques accurately classify

microbial communities by bacterial vaginosis characteristics. PLoS ONE 9(2): e87830.

PMC3912131

4.2 Abstract

Microbial communities are important to human health. Bacterial vaginosis (BV) is a

disease associated with the vagina microbiome. While the causes of BV are unknown, the

microbial community in the vagina appears to play a role. We use three different

machine-learning techniques to classify microbial communities into BV categories. These

three techniques include genetic programming (GP), random forests (RF), and logistic

regression (LR). We evaluate the classification accuracy of each of these techniques on

two different datasets. We then deconstruct the classification models to identify important
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features of the microbial community. We found that the classification models produced by

the machine learning techniques obtained accuracies above 90% for Nugent score BV and

above 80% for Amsel criteria BV. While the classification models identify largely

different sets of important features, the shared features often agree with past research.

4.3 Introduction

4.3.1 Microbial communities and disease

Microbial communities play critical roles in human health and disease. For example, gut

microbial communities have been linked to obesity [1, 2], lung communities to pulmonary

infections [3], and vaginal communities to bacterial vaginosis [4, 5, 6]. The complexity of

these communities, however, makes determining specific causes of disease difficult.

In many natural environments, next-generation 16S rRNA sequencing unveils

hundreds to thousands of microbe types. Everything from the physiology to the ecological

roles of most of these microbes remains unknown. These microbes are difficult to study,

both due to their large numbers and our inability to culture many of them in the lab [7].

The composition of these communities may fluctuate widely with environmental factors or

as a result of microbial interactions.

4.3.2 Vaginal microbiome and bacterial vaginosis

The vagina microbiome is complex, with microbial composition varying between women

and over time. This variation may be caused by immune factors, environmental variables,

or dynamic microbial interactions. In some women the microbial community includes

hundreds of microbe types, while in other women, the microbial community is dominated

by a single species, often in the Lactobacillus genus [8, 9, 10]. Across women, the

communities appear to cluster into distinct community types.

Bacterial vaginosis (BV) is a common condition, affecting up to 29% of all women

[11]. BV is associated with increased risk for some STDs and preterm birth. Researchers

have defined BV in two common ways. In clinical settings, Amsel criteria are often used.
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Amsel criteria include the presence of discharge, a positive whiff test, the presence of clue

cells, and a pH greater than 4.5. Amsel criteria BV is defined by the presence of at least

three of these criteria [12]. Nugent score is a second way to define BV. The Nugent score

relies primarily on counting gram-positive cells with morphologies similar to some

Lactobacillus sp. (large rods) [13]. Nugent scores range from 0 to 10, with BV defined as

a score greater than or equal to 7. The two definitions for BV lead to some interesting

results. Using Nugent score BV definitions, up to 30% of all BV diagnoses are

"asymptomatic", meaning that the woman in question has no symptoms though her

microbiome elicits a high Nugent score, perhaps because her "normal" microbiome

happens to contain more species with large rods than most other women. The significance

of this phenomenon is uncertain.

It is difficult to identify a single cause of BV, even though the microbial community

and BV are correlated. The number of microbe types found within the vagina microbiome

is very large and the number of possible interactions between these microbes is even larger.

In addition, noise in the data may obscure relationships between the microbial community

and BV. Different bacterial consortia may also provide very similar functionality.

4.3.3 Machine learning and models

These difficulties are analogous to a problem faced by genetic epistasis researchers, where

there are so many possible genetic interactions that may be linked to disease that it is

difficult to determine the few that really matter. In this study, we applied three machine

learning algorithms that have successfully discovered genetic interactions associated with

disease to uncover possible microbial interactions associated with BV. In particular, we

build models of BV diagnosis in the form of classifiers that were discovered with genetic

programming (GP) [14, 15], random forests (RF) [16, 17], and logistic regression (LR)

[17].

Genetic programming uses computational analogs of evolutionary processes to search

for highly fit models. In our case, these models are decision trees where the leaves are
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features that may be relevant to diagnosing BV, and where internal nodes are functions

that operate on data passed on from their dependent nodes. GP transforms a population of

candidate models by combining substructures from multiple "parent" models, modifying

individual models randomly, and retaining only those models that are better at classifying

BV from our input datasets for the next iteration. When the algorithm is stopped, the best

model in the final population tends to be a very good predictor of BV. To determine which

microbial populations or patient behaviors were most closely associated with BV, we

analyzed which features were in the best GP classifiers and how they were used.

GP is very flexible and allows nearly unlimited model complexity. However, it

searches for models stochastically and does not exhaustively search all possible models. In

addition, the models produced by GP can be very large, and are often difficult to interpret.

Also, computation costs tend to be high.

Random forests is an ensemble technique that builds a population of tree classifiers,

where the final classification of a given set of features is its most frequent classification by

the team members. RF is computationally efficient but may not be as flexible as GP. It is

easier to extract important model features from RF models than from GP models, but not

as easy as with logistic regression.

Logistic regression fits a linear model to the data, producing a linear combination of

features and regression coefficients whose value for a given set of microbial communities

and patient behaviors (in our case) quantifies the likelihood that the patient had BV. There

are many ways to build the LR model. We use a maximum likelihood method

implemented in the R package glmnet [18], in which the final model was parameterized in

such as way as to maximize the probability that this set of features was associated with

BV. Features were selected for inclusion in the model by glmnet using the lasso [19]. It

was then straightforward to determine which features were most useful in BV diagnosis:

the magnitudes of the regression coefficients indicate the weight given to the

corresponding feature.

LR is computationally very efficient. And the fitted model is easy to interpret.
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However, the structure of the final model is dependent on how terms are added to the

regression equation, and LR may not be appropriate for non-linear phenomena. LR

models are the easiest to interpret of the three in this study.

4.3.4 BV diagnosis as a classification problem

In this paper we apply these machine learning methods to classifying microbial

communities into BV+ and BV- categories. We show that the methods accurately classify

women by BV status based on their vagina microbiome and associated environmental

factors. Additionally, we identify the parts of the microbial community that seem to play

important roles in determining BV status.

We are interested in two aspects of the classification models, classification accuracy

and feature usage. The accuracy of the models is a measure of how well they partition

samples into diseased and non-diseased categories. We measure accuracy as the

percentage of correctly classified samples. Different machine learning algorithms have

different ways of selecting and weighting features, so our analysis of feature usage was

algorithm specific.

4.4 Results

Before generating classification models, we first collapsed many of the microbes into

groups based on correlations. We did this to both reduce the number of factors and to

increase the interpretability of the classification models. The groups of correlated

microbes are shown in Figure 4.1. We used two different datasets to train and evaluate the

models, one from Srinivasan et al. [9] and one from Ravel et al. [8]. The two datasets

produced different correlated microbe groups. There is some similarity in the groups, for

example CG1 in the Srinivasan et al. dataset shares many microbes with CG4 in the Ravel

et al. dataset.

After obtaining classification models using GP, LR, and RF, we evaluated the accuracy

of the models with receiver operator curves (ROCs). ROCs show the performance of the
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Figure 4.1: This figure shows the correlated microbe groups. We converted the sparCC
correlations between microbial taxa to distances by subtracting the absolute value of the
correlation from one. We then clustered the taxa and defined correlated groups using a
dynamic tree-pruning algorithm (from the R library dynamicTreeCut). Microbial taxa not
falling into these groups are not shown.
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Figure 4.2: This figures shows the accuracy of different classifiers at classifying microbial
communities into BV categories. The red and blue lines show the accuracy of random
forest and logistic regression classifiers respectively. The black dots are different genetic
programming models. Panel A shows the results using the Srinivasan et al. dataset and
Amsel BV. Panel B uses the Srinivasan et al. dataset and Nugent score BV. Panel C uses
the Ravel et al. dataset and Nugent score BV.
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model at classifying both BV+ and BV- samples. This allows us to simultaneously

compare the type 1 and type 2 errors for each model. Figure 4.2 shows the ROCs for each

of the analyses. A perfect model would have a curve that forms a right angle in the upper

left of the ROC. More accurate models have a true positive rate closer to 1 and a false

positive rate closer to 0.

As can be seen in Figure 4.2, both LR and RF tend to outperform GP. However, the

accuracy of all the machine-learning techniques was remarkably similar. RF and LR

models obtained accuracies consistently between 90% and 95% when classifying on

Nugent score BV. GP models often classified samples with similar accuracies, but high

variation between GP models reduced the average GP accuracy. The models perform

slightly worse when classifying on Amsel criteria BV. However, all three techniques

obtained accuracies above 80%.

After determining the accuracy of the models, we deconstructed the models to

determine which features were most useful. We ranked the features by their apparent

importance to each model. The top fifteen features for each classification technique are

shown in Table 4.1. There is little overlap between the important factors used by the

classification models. For the Srinivasan et al. dataset, when classifying by Amsel criteria

BV, the Nugent score is the only important feature shared by all classification techniques.

Four other features are shared between GP and either RF or LR. The results are similar

when classifying by Nugent score BV. For the Srinivasan et al. dataset, CG2 and the whiff

test results are identified by all three techniques. For the Ravel et al. dataset, all

techniques identify CG4.

The different classification techniques varied widely in computational time. LR and

RF were relatively quick, usually completing in less than an hour on a single laptop. GP,

on the other hand, took several hours longer.
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4.5 Discussion

This study demonstrates the feasibility of using classification models to identify important

microbial community features related to BV. However, the results of this study also show

many complications that must be taken into account when designing future studies.

First, we can look at the results of the classification techniques within a single dataset.

Classifier accuracy is similar between the three techniques. The accuracy obtained by each

classification method is high, often exceeding 80% regardless of the dataset or

classification technique. The strength of the classification accuracy indicates the presence

of some signal of BV in the dataset. A better than random classification accuracy indicates

the presence of some feature in the dataset that is associated with BV.

The GP results show wider variation between models when the classification

phenotype is Nugent score BV. This variation is not seen when classifying based on Amsel

criteria BV. While the cause of this variation is unclear, there are a number of possible

explanations. GP can theoretically explore a much larger set of possible models than RF

and LR. This wider exploration, in combination with a large stochastic component, may

increase the variation in the GP model accuracy. Additionally, the specific GP

implementation we use may not efficiently avoid local optima. Further optimization of GP

methods may increase overall accuracy and decrease its variation between models.

The high accuracy of the classification techniques indicates the presence of some

association between some dataset features and BV. The top fifteen important features for

each technique are shown in Table 4.1. These results are interesting for many reasons. The

few features that overlap differ between the three analyses. In the Srinivasan et al. dataset,

when classifying on Amsel criteria BV, Nugent score is the only important feature shared

by all classification techniques. When classifying on Nugent score BV, the whiff test and

CG2 were important to all three techniques. Similarly, the Ravel et al. dataset resulted in

CG4 and pH selected by all three techniques. These factors have often been identified by

previous studies as correlates with BV [4, 5]. BV defined by Nugent score overlaps with

BV defined by Amsel criteria. This may explain the apparent importance of Nugent score
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when classifying by Amsel criteria BV. Similarly, the presence of Amsel criteria such as

vaginal discharge and odor, clue cells, and pH when classifying by Nugent score BV

likely reflects the overlap between Amsel criteria BV and Nugent score BV. Ravel et al.

identified a group of microbes that overlaps substantially with CG4, which all three

techniques identified as important. This group includes Megasphaera, Eggerthella,

Sneathia, Prevotella, and Dialister, among others.

While the important features identified by all classification techniques seem to agree

with previous research, there are many features that are shared by only two techniques, or

are unique to a single technique. In fact, the majority of the first fifteen important features

are unique to a single classification technique. This lack of overlap has many possible

explanations. Using the first fifteen most important features identified by each technique is

an arbitrary choice. Our analysis doesn’t determine how each feature affects the overall

classification accuracy. Additionally, the use of one feature may change the relative

importance of the remaining features. This may amplify small differences in the

classification techniques, resulting in very different sets of important features.

Our analysis highlights an important aspect of using classification models to detect

parts of the microbial community that are associated with BV. The features included in the

analysis are likely important to the outcome. This can be seen in the important features

identified by the techniques. Amsel criteria are found to be important when classifying by

Nugent score BV and Nugent score is identified as important when classifying by Amsel

criteria BV. These findings may be unsurprising, as both the Amsel criteria and Nugent

score attempt to diagnose BV. It may be more informative to remove these features from

the dataset before applying the classification techniques.

While each technique obtained similar classification accuracy, technical characteristics

of the techniques differentiate them in important ways. A key consideration for these

techniques is the easy extraction of important parameters. This is a difficult problem for

large and complex GP models. The approach we take in this study is to determine how

varying the value of each feature independently affects the overall model accuracy.
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Additionally, we count the number of replicate GP models that include the feature. We

combined these two measures to produce an overall importance measure for each feature.

However, it is unknown whether this is optimal. We may be missing important parts of the

GP models. This problem is somewhat alleviated for RF and LR models. Extensions to

this study may include using machine learning techniques designed for easy identification

of important features. Computational time may also be important to some researchers.

The RF and LR analyses were relatively quick, completing in less than an hour on a single

computer. The GP analysis, however, took several hours longer.

While we applied these classification techniques to two different datasets, these results

are not comparable for a variety of reasons. Similar considerations will often apply to

comparisons of techniques for classification-based diagnostics using multiple datasets.

First, the types of samples collected in the two studies differed. The Srinivasan et al. study

included women with and without a BV diagnosis. The Ravel et al. study included only

asymptomatic participants. While both studies use Roche’s 454 FLX sequencing platform,

they amplify different regions of the 16S rRNA sequence. Srinivasan et al. use the V3-V4

region while Ravel et al. use the V1-V2 region. Additionally, the studies use different

methods for classifying reads into taxonomic groups (the RDP classifier [20] in the Ravel

et al. study and pplacer [21] in the Srinivasan et al. study).

In our study, we analyzed the results for each study individually, using the same read

identification used in the original study. This allowed us to compare our results with the

previous ones. However, this approach has the consequence of making it difficult to

compare the results for the two datasets. This difficulty is shown clearly in the

identification of different correlated groups. The correlated groups often include different

microbial taxa. An additional difficulty is the comparison of a species level identification

in the Srinivasan et al. study with genus level identification in the Ravel et al. study.

In spite of these dataset differences, a few patterns in the results may motivate future

work. The ROC plots in Figure 2 show accuracies for the Nugent score BV classifiers that

are remarkably similar between datasets. It seems possible that this similarity reflects a
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consistent property of the dataset. Application of these classification techniques on

different microbial community phenotypes (such as obesity or pH) may determine if these

patterns are significant.

In this study we have shown that GP, RF, and LR generate models that classify

samples by Amsel criteria BV with accuracies above 80%. These same techniques classify

samples by Nugent score BV with accuracies above 90%. This study demonstrates the

feasibility of using classification models to identify populations in a microbial community

that are associated with BV. Determining the effect size of the important features may

extend these results. Additionally, applying these techniques to different datasets and

classifying on a variety of microbial community characteristics will determine how well

these methods work for samples that may be very different from the vagina microbiome.

4.6 Materials and Methods

4.6.1 Dataset details

We use two different datasets drawn from studies published by Ravel et al. in 2011 [8] and

Srinivasan et al. in 2012 [9]. The Ravel et al. study sampled the microbiome of 396

asymptomatic women. The study amplified and sequenced the V1-V2 variable regions of

the 16S rRNA gene using Roche’s 454 FLX sequencer. Reads were classified at the genus

level using the RDP classifier [20]. The reads identified as Lactobacillus were further

classified to the species level using a hidden Markov model based algorithm. The study

identified a total of 282 microbial taxa across all samples. Out of 396 samples, 97 were

BV+ using a Nugent score definition.

The Srinivasan et al. study sampled the microbiome of 220 women, 97 of whom were

BV+ using Amsel criteria BV. Similarly, using Nugent score BV, 117 women were BV+.

The study amplified and sequenced the V3-V4 variable regions of the 16S rRNA gene

using Roche’s 454 FLX sequencer. Reads were classified at the species or genus level

using pplacer [21]. The study identified a total of 155 unique microbial taxa.
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4.6.2 Classifier details

We implemented a GP classifier in C++. Table 4.2 shows many of the parameters used by

the genetic program. We used tournament selection with the worst model in the

tournament group replaced by the child of the best. The GP created the child by either

mutating the best model or crossing over the best model with the second best model in the

tournament group. Due to high variability in the results of GP, we repeated the analysis ten

times. The model with the highest training fitness was then selected for evaluation with

the testing dataset.

Table 4.2: This table lists the parameter values used by the GP classifier.

Parameter Value
Population size 15000
Tournament group size 4
Cross-over probability 0.2
Total generations 300
Mutation probability 1
Available node functions addition, subtraction, protected division, mul-

tiplication, if/then/else, sine, cosine, logical
AND, logical OR, maximum, minimum, log

The fitness of each model was calculated using two steps. The first step calculated a

cutoff value for the classifier results. To calculate this value the classifier results were

averaged for BV+ and BV- training cases separately. The cutoff value is the average of

these two numbers. Values from the model that fell on or above this cutoff were

considered BV+ classifications and values below this cutoff were considered BV-

classifications. In order to generate the ROC plots shown in Figure 2, the fitness value of

the BV+ training cases was multiplied by a constant that varied between 0 and 20. This

constant allowed us to vary the value of classifying BV+ vs. BV- samples. In the second

step, the total number of incorrectly classified samples was added to the size of the
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classification model multiplied by a small constant. This constant penalized larger models.

The fitness was then minimized over the course of the program.

In order to identify features important to the GP models, we varied the values for each

feature individually in every sample. We then determined whether varying the feature

value changed the classification of the sample. This resulted in two summary values for

each feature; the number of GP models in which varying the feature resulted in a different

classification for at least one sample, and the number of samples in each model which

changed classification due to changing the value of the feature. We rescaled these

summary values to between 0 and 1 and added them together in order to obtain a single

value describing the importance of each feature.

In order to implement the random forest classifiers we used the R package

randomForest [22]. We used the randomForest function with default parameters to

generate the classification model. To determine feature importance, we ranked the features

by the increase in node purity. This is a measure of how much each feature increases the

separation of the samples into BV+ and BV- categories for each classification tree. The

increase in node purity was then averaged over all trees in the forest to obtain the total

importance of each feature to the classification model.

To build a logistic model with linear regression, we used a maximum likelihood

method implemented in the R package glmnet [18]. We ran the analysis using default

parameters with a binomial response type. To determine feature importance, we ranked

the features by the magnitude of the mean coefficient across the cross validation replicates

divided by the standard deviation.

4.6.3 Microbial correlation reduction

In order to reduce the number of parameters and to increase the interpretability of our

results, we collapsed highly correlated microbes into groups. We calculated pairwise

correlations on microbial relative abundances using sparCC [23]. We converted the

correlations into dissimilarities by subtracting the magnitude of the correlation from one.
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We then used average hierarchical clustering and a dynamic tree-cutting algorithm to

break the microbes into correlation groups. To do this we used the function

cutreeDynamic from the R package dynamicTreeCut [24] with a 0.9 cut height and a three

taxa minimum group size. This cut height was chosen to account for nearly all of the

correlation present between microbes (Figure 4.3). Further analysis of the correlated

groups is shown in Figure 4.4, which shows the mean cluster silhouette widths for varying

cut heights. Uncorrelated microbes were left as individuals. A single feature in the dataset

represented each correlated microbe group.

4.6.4 Cross-validation and accuracy determination

In order to avoid model over-fitting, we used ten-fold cross validation [25]. Cross

validation detects over fitting and indicates how well the model is expected to perform

with new data. We randomly broke the data into ten different parts. We used nine of these

parts to train the model and the remaining part to test the performance of the model. We

repeated this nine other times, using each of the ten parts as the testing data. We then

averaged the accuracy of the model in classifying the testing samples over each of the 10

datasets to obtain a measure for the accuracy of each machine-learning technique.
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Figure 4.3: This figure shows the complete dendrogram resulting from average hierarchal
clustering of microbial correlations. The vertical red line shows the 0.9 cutoff used to define
correlated microbe groups. As can be seen, this cutoff accounts for most of the correlation
between microbes.
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Figure 4.4: This figure shows the mean silhouette width for correlated microbe groups
at varying cutoff levels. We converted the sparCC correlations between microbial taxa to
distances by subtracting the absolute value of the correlation from one. We then clustered
the taxa using average hierarchal clustering. For each cutoff level, we defined correlated
groups using the cutreeDynamic tree-pruning algorithm.
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CHAPTER 5

MACHINE LEARNING CLASSIFIERS PROVIDE INSIGHT INTO

THE RELATIONSHIP BETWEEN MICROBIAL COMMUNITIES

AND BACTERIAL VAGINOSIS

5.1 Notes

Chapter 4 describes using feature subsets to validate the important features of BV

classification models generated using random forests and logistic regression. This study

had two main goals. The first goal was to determine how many features were necessary for

the models to obtain high classification accuracy. The second goal was to determine how

much each feature contributed to the overall classification accuracy.

This study is currently being prepared for publication.

5.2 Abstract

Bacterial vaginosis (BV) is a disease associated with the vagina microbiome. It is highly

prevalent and is characterized by symptoms including odor, discharge and irritation. No

single microbe has been found to cause BV. In this paper we use random forests and

logistic regression classifiers to model the relationship between the microbial community

and BV. We use subsets of the microbial community features in order to determine which

features are important to the classification models. We find that models generated using

logistic regression and random forests perform nearly identically. Additionally, they

identify largely similar important features. These results are in contrast to a previous study

in which the important features identified by the classifiers were dissimilar. This

difference appears to be the result of using different feature importance measures.
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5.3 Introduction

Advances in sequencing technology allow researchers to study microbial communities in

new ways. Researchers use 16S rRNA sequencing to identify the bacteria present in

microbial communities. These studies have found highly complex communities composed

of hundreds or thousands of different bacteria types. Some microbial communities are

found in or on other organisms. Known as microbiomes, these communities have been

shown to play important rolls in host health and disease. For example, in humans, gut

microbiomes are important parts of digestion [1] and have been associated with obesity

[2]. Microbial communities in the lungs may exacerbate cystic fibrosis [3].

The vagina microbiome is often composed of hundreds of different bacteria types,

although only a few taxa may be at high abundance [4]. The composition of the vagina

microbiome can be highly variable, both between women and through time [5].

Additionally the microbiome is associated with bacterial vaginosis (BV).

BV is a disease characterized by an overgrowth of certain microbe types in the vagina.

It is highly prevalent, with estimates of affected women as high as almost 30% [6].

Symptoms of BV include odor, discharge, and irritation. It is also associated with

increased rates of preterm birth [7] and increased susceptibility to some STDs [8]. While

no single microbial cause of BV has been found, the microbial community as a whole is

associated with BV [9].

Researchers often use two main BV diagnostics. The Nugent score is a measure based

on cell morphology that can range from 0 to 10, with a score of 7 or greater indicating BV

[10]. The Amsel criteria include a vaginal pH greater than 4.5, a positive whiff test, the

presence of clue cells, and the presence of discharge. The presence of three of these four

criteria indicates BV [11].

Determining which parts of the microbial community are associated with BV is

difficult. This is partly due to the large number of taxa found in the community and the

even larger number of potential interactions between taxa. Variation in the microbial

community between women and over time adds to the difficulty of the problem.
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Computational tools, however, may provide methods for studying these highly complex

communities. Machine learning methods may allow us to model complex relationships in

the microbial community related to BV.

Machine learning methods are able to generate complex models describing the

relationship between the microbial community and BV. Every machine learning method

has a different technique for generating a classification model. However, the end result for

each method is a model that classifies samples into BV categories. Two model

characteristics are interesting. First, the model accuracy describes how well the model fits

the data. Second, the important features of the model are those features that the model

uses to classify the samples. These features allow the researcher to generate hypotheses

about the underlying biology.

Previous research has found that classification models generated using genetic

programming, random forests, and logistic regression classify microbial communities into

BV categories with between 80 and 90% accuracy [12]. This research has identified two

challenges to using machine learning classifiers to study microbial communities. First,

when the classification models are deconstructed to determine which features are

important to the model accuracy, each machine learning technique results in different

identified features. This makes it difficult to determine if the identified features are

actually important, or if they are the result of technical artifacts. Additionally, it is difficult

to distinguish between features that are critical to the accuracy of the classifier and

features that are only marginally helpful. While an importance measure is calculated for

each feature, this measure is often only effective in ranking features, rather than

determining how much each feature adds to the overall accuracy.

In this study, we use subsets of the full feature set in order to address these problems.

We add features sequentially to the classification models and observe how the accuracy

changes. This allows us to determine how many features are necessary to obtain high

classification accuracy. Additionally, we generate models using random feature subsets in

order to obtain a feature importance measure that is consistent across machine learning
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techniques. We find that random forests and logistic regression classifiers identify largely

similar microbial community features. Nugent score BV appears to be closely associated

with more features of the microbial community than Amsel BV.

5.4 Materials and Methods

We use datasets from studies published by Ravel et al. [4] and Srinivasan et al. [13]. The

Srinivasan et al. dataset includes both Amsel BV and Nugent score BV, while the Ravel et

al. dataset includes only Nugent score BV. The Ravel et al. dataset includes 396

asymptomatic women of whom 97 were BV+ using a Nugent score definition (Nugent

score >=7). The Srinivasan et al. dataset includes 220 women, of whom 97 were BV+

using Amsel criteria and 117 were BV+ using Nugent score.

For this study, we processed the datasets using methods described in detail in our

previous paper [12]. The key part of these methods is the reduction of the bacterial

abundance data to correlated groups. Many bacteria in these datasets have correlated

abundances. We used sparCC [14] correlations along with the R package dynamicTreeCut

[15] in order to cluster the correlated taxa into groups. These groups were then reduced to

single features in the dataset. The correlated groups are shown in Figure 5.1, which has

been reprinted from [12].

We use two different machine learning algorithms to generate classification models,

random forests (RF) and logistic regression (LR). The RF classifiers were implemented

using the randomForest function in the R package randomForest [16]. We implemented

LR classifiers using the glmnet function in the R package glmnet [17]. To identify

important features of RF models, features were ranked according to their increase in node

purity (INP). INP is a measure of how much each feature increases the classification

accuracy of each decision tree, averaged across all trees in the ensemble. For LR, features

were ranked by their mean coefficient magnitude in all cross-validation datasets divided

by their standard deviation.



53

0.8 0.6 0.4 0.2 0.0

Srinivasan et al.

� Prevotella melaninogenica
� Prevotella

� Lactobacillus
� Lactobacillus iners

� Megasphaera sp. type 2
� Porphyromonas

� BVAB3
� BVAB1
� Prevotella genogroup 3

� Mycoplasma hominis
� Gemella haemolysans

� Dialister micraerophilus
� Prevotella bivia

� Porphyromonas asaccharolytica
� Prevotella disiens

� Lactobacillus vaginalis
� Lactobacillus gasseri
� Aerococcus christensenii

� Prevotella buccalis
� Lactobacillus crispatus
� Lactobacillus jensenii
� Prevotella amnii

� Dialister sp. type 2
� BVAB2
� Megasphaera sp. type 1
� Parvimonas micra

� Leptotrichia amnionii
� Sneathia sanguinegens

� Prevotella timonensis
� Eggerthella sp. type 1

� Atopobium vaginae
� Gardnerella vaginalis

CG1
CG2
CG3
CG4
CG5

0.8 0.6 0.4 0.2 0.0

Ravel et al.

� Dorea
� Lachnospiraceae_6

� Bacteroides
� Lachnospiraceae_Incertae_Sedis
� Lachnospiraceae_9

� Lachnospiraceae_4
� Lachnospiraceae_8

� Proteobacteria_2
� Proteobacteria_1
� Proteobacteria_12

� Prevotellaceae_1
� Ruminococcaceae_4

� Anaeroglobus
� L..vaginalis

� L..crispatus
� Lactobacillales_6

� Gemella
� Ruminococcaceae_Incertae_Sedis
� L..jensenii

� Mobiluncus
� Prevotellaceae_2

� Peptoniphilus
� Dialister
� Prevotella

� Parvimonas
� Ruminococcaceae_3

� Atopobium
� Sneathia

� Eggerthella
� Megasphaera

� Aerococcus
� Gardnerella

� Bacteroidetes_8
� Mycoplasmataceae_1

� Segniliparus
� Actinomyces
� Lachnospiraceae_7

� Fusobacterium
� Lactobacillales_5

� L..iners
� Lactobacillales_2

� Campylobacter
� Clostridiales_17
� Porphyromonas

� Peptostreptococcus
� Streptococcus

� Corynebacterium
� Anaerococcus
� Finegoldia

CG1
CG2
CG3
CG4
CG5
CG6
CG7

Figure 5.1: Reprinted from [12]. This figure shows the correlated microbe groups. Each of
these groups is represented in the dataset as a single feature.
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In addition to the RF and LR classifiers, we also calculated reliefF rankings and

pairwise correlations for the features. ReliefF is a feature selection algorithm that

estimates the relevance of each feature by how well it separates similar samples into

classes [18]. To calculate the reliefF rankings, we used the attrEval function in the R

package CORElearn [19]. The Pearson correlation between each feature and BV was

calculated using R’s cor function.

To prevent over fitting, we used ten fold cross validation. Each dataset was split

randomly into ten parts. Nine of the parts were used to train the classification models. The

remaining part was used to measure the model accuracy. This was repeated using each of

the ten parts as the test dataset.

In the first step of the analysis, RF and LR models were generated using the full

feature set of the training data. The importance of each feature to these models was then

determined. ReliefF was used to generate a third feature ranking. These rankings were

then used to select feature subsets in three different ways.

The first analysis selected the top N features from each of the feature rankings, where

N ranged between 2 and 25. The second analysis used a five-feature sliding window across

each of the rankings. The third analysis selected the top 25 features from each ranking and

combined them into a single list. One thousand five-feature subsets were selected at

random from this list of features. RF and LR classifiers were trained on each subset using

the training data. The accuracy of each classifier was determined using the testing data.

The classification accuracy for each model was measured using the area under the

receiver-operator curve (AUC). The receiver-operator curve (ROC) is a curve that

describes the classifier accuracy in both positive and negative samples, thus representing

both type 1 and type 2 error. The area under the ROC is often used as a summary of the

model accuracy [20].
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5.5 Results

Top N feature subsets help determine how accuracy improves with each feature addition.

The features are added in order of perceived importance. If several features contribute

additively and equally, a linear increase in accuracy would be expected. If only the top few

features contribute substantially, the accuracy would reach its maximum quickly and then

level off. More complex patterns may emerge if there are important interactions between

features. Figure 5.2 shows the classification accuracy for RF and LR models as more

features are added to the model. In every case, both RF and LR models classify samples

with high accuracy after the inclusion of only a few features. Except for the LR feature

rankings, high accuracy is obtained with five or fewer features.

Sliding window subsets may show patterns that the top N features miss. For example,

the first two features may individually be sufficient to obtain a high accuracy. The first

feature in the top N subsets masks the relevance of the second feature. A sliding window

makes it possible to determine how the features affect classification accuracy without the

influence of the more important features of higher rank. Each successive window replaces

the highest ranked feature in the previous window with the next lowest ranked feature.

Figure 5.3 shows the accuracy of RF and LR models using a five-feature subset of the data.

The sliding window subsets for Nugent score BV and the reliefF and RF rankings

show substantial stability in classification accuracy as lower ranked features replace high

ranked ones. This pattern is reduced in both the LR rankings and for all Amsel BV

classifiers. Additionally, the LR rankings appear to decrease with less consistency than

reliefF and RF rankings. This may reflect inconsistency in the LR rankings.

Random subsets extend the sliding window analysis by removing its dependency on

the initial feature ranking. This allows us to determine how each feature affects the model

accuracy when combined with four other features. The size of the random group was

chosen based on the top N analysis results. The inclusion of five features was sufficient to

produce models with accuracy as good as the full model. Table 5.1 shows the top fifteen

features for RF and LR. The features identified using the mean accuracy across random
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Figure 5.2: This figure shows how the classification models perform as the number of fea-
tures available to the models increases. Features are added according to their performance
ranking using reliefF (top row), logistic regression (middle row), and random forests (bot-
tom row). The model performance is measured using the area under the ROC (AUC). As
can be seen, the top five features are often sufficient to obtain high classification accuracy.
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Figure 5.3: This figure shows the accuracy of models using a sliding window of five fea-
tures chosen consecutively from the ranked feature lists. Features are added according to
their performance ranking using reliefF (top row), logistic regression (middle row), and
random forests (bottom row). The model performance is measured using the area under the
ROC (AUC).
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subsets appear to be very similar between classification methods.
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The features ranked highly by each importance measure appear to be very different.

There is some agreement between the important measures, especially in the top five

features. However, there are many features ranked highly by only a single measure. These

results can be seen in Figure 5.4.

5.6 Discussion

The RF and LR classifiers identify very similar features using the random subset

importance measure. This is in contrast to the previous results that found dissimilar

rankings of important features [12]. Figure 5.3 may indicate problems with the LR

importance measure. The sliding window subsets for reliefF and RF rankings generally

show a consistent decrease in classification accuracy as the feature ranking decreases. The

LR ranking, however, shows a more uneven decrease in accuracy with feature ranking.

Similar patterns would be expected if the initial rankings were incorrect. While the reason

for the poor performance of the LR rankings is unknown, it may be partially due to

sensitivity of the importance measure to sparse data.

The important feature rankings appear highly dependent on the importance measure

used. This can be seen in Figure 5.4. While there is some overlap in the top five to ten

features identified by each importance measure, there are many features ranked highly by

one importance measure and not others. It is not clear whether the ranking differences are

due to noise or whether they may reflect some biological pattern.

A key advantage of using classification models to study microbial communities is the

classification accuracy measure. The subset analysis allows for several interesting patterns

and comparisons. It appears that the first few features are sufficient for classifying samples

by BV. This can be seen in Figure 5.3. This is true for both Amsel BV and Nugent score

BV.

Differences in Amsel BV and Nugent score BV are apparent from these results. The

classification accuracy is higher for Nugent score BV, indicating a better model fit. This

may result from a closer link between Nugent score BV and the microbial community. It
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Figure 5.4: This figure compares the feature importance measures. The black line is the
Pearson correlation between the feature and BV. Two importance measures are shown for
LR; the mean classification accuracy of random five-feature subsets and the mean coeffi-
cient magnitude across validation datasets divided by the standard deviation. Two impor-
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feature subsets and the increase in node purity (INP). All measure have been scaled to
between 0 and 1 for comparison purposes except for the Pearson correlations. The datasets
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may also indicate that the relationship between Nugent score BV and the microbial

community is more easily captured by the classification models. In other words, there may

be a strong link between the microbial community and Amsel BV, but that link is complex

and not fully exploited by the models. Alternatively, the Amsel BV classification may

simply include more noise or error.

In addition to the overall accuracy magnitude, patterns in the accuracy decline shown

in Figure 5.3 may reflect important differences in Amsel BV and Nugent score BV. In the

case of Nugent score BV, it appears that the first few features are highly redundant. In

many cases, the accuracy of the sliding window feature subsets only begins to decline

substantially after five to ten top features have been excluded from the model. This is in

contrast to the Amsel BV results. The decline in accuracy for the Amsel BV classifiers is

nearly immediate, or only after the removal of a few high-ranking features. Many parts of

the microbial community may be linked to Nugent score BV, while only a few are

important indicators of Amsel BV.

The important features identified by the subset analysis are largely unsurprising. The

correlated microbe groups that contribute substantially to the classification accuracy are

composed of taxa that have been linked to BV in previous studies [21, 13, 22]. These taxa

include Gardnerella, Atopobium, and Eggerthella. Correlated groups including various

Lactobacillus species also rank highly. However, the grouping of many taxa into single

features limits the interpretation of these results.

It is not clear if these classifiers find patterns that are any different from simple

correlations. However, machine learning methods provide important accuracy measures

that may help determine the number of features that are important. They may also indicate

whether interaction terms are necessary to describe the system. Feature subset analysis

illuminates many patterns and characteristics of the relationships between the microbial

community and community characteristics such as BV. These methods may be generally

useful for studying a wide range of microbial community related diseases and phenotypes.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Software Development

In the first two chapters of this dissertation, I presented software tools for analyzing

microbial community datasets. These tools include OTUbase, which provides data

structures and basic functions for analyzing OTU data in R, and Seed, which provides a

simple visual interface for exploring microbial community data. Tools such as these are

important for making complex analytical methods available to a broader audience. They

increase research efficiency by eliminating the need for every lab to design and develop

functionally similar software.

In general, software tools present many challenges over the course of their

development and use. Previously unknown coding errors may become apparent and input

file formats may change, requiring corresponding modifications to underlying functions.

Similarly, new analysis techniques may reduce the usefulness of parts of the original tool,

and require updates and modifications to maintain the software’s relevance.

OTUbase has not been actively maintained. This has resulted in functions becoming

obsolete, largely due to changing input file format and structure. Additionally, a lack of

further development means key strengths of OTUbase are still unexploited. Improvements

to OTUbase, such as expanding data input options, streamlining figure generation, and

incorporating phylogenetic information remain unaccomplished.

OTUbase is also awkwardly positioned in the microbial community data processing

pipeline. It requires either expert knowledge of R or external programs such as mothur to

obtain relevant input files. After the data is in OTUbase, other R functions may be used to

perform analyses and generate visualizations. This, however, requires that users are

familiar with many other R packages in addition to OTUbase.

Seed appears somewhat better positioned than OTUbase. Seed uses a visual interface,

which requires no programming skill or knowledge of R. The input files are simpler and
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less likely to change in the near future. Overall, more users should be able to use Seed.

However, it remains to be seen whether substantial numbers of users will find it helpful.

Improvements, including user guidance on appropriate analyses or visualizations, may

increase Seed’s potential user base.

Future challenges facing Seed include maintenance and support. New analysis

techniques and visualizations will be developed to study microbial communities. These

techniques must be incorporated into Seed. Additionally, as microbial datasets increase in

size, computational constraints may become important. Seed may require substantial

increases in efficiency in order to continue to be an effective tool. As with any software,

Seed will require an active group of developers in order to remain relevant.

6.2 Machine Learning Classification Models

The last two chapters of this dissertation demonstrate the potential of using machine

learning classifiers to study microbial communities. Models generated using genetic

programming, random forests, and logistic regression all classified samples by BV with

high accuracy. Additionally, the subset analysis highlighted features of the microbial

community that associate with BV.

There are many unanswered questions and future directions. In the case of BV and the

vagina microbiome, while the classification models highlight potential associations, the

specific relationship between the important features and BV remains to be determined. In

addition, while the classification accuracy of the models was high, roughly 10% of the

samples were misclassified. It is unclear whether more data or different classification

models can account for these samples.

Un-sampled information about the microbial community may be important. This

information may include fine-scaled microbial taxonomy, the presence or absence of

specific microbial genes, or aspects of the woman’s genetics. Additionally, the presence of

bacteriophage or other viruses may be important parts of the microbiome. The

incorporation of this information may help increase the classification accuracy.
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The applicability of classification models to different microbial communities and

phenotypes remains to be explored. These methods may be applied to other diseases such

as inflammatory bowel disease or to other community characteristics such as pH. The

performance of the classification models in these different situations may help determine

the usefulness of machine learning approaches to microbial communities in general.

There are many limitations to using machine learning classifiers. In particular,

complex models may capture intricate relationships in the microbial community; however,

interpreting these models may be difficult. Mirroring the complexity of the interactions in

the microbial community with computational models is only useful if the models can be

used to generate hypotheses. The results shown in Chapter 4 seem to indicate that

interactions between components of the microbial community are relatively unimportant

to the classification accuracy. Alternatively, the interactions present in the community may

be masked by the reduction of correlated taxa into groups. Small subsets of the total

feature set result in classification accuracies as high as those using all features. If the

classification models are capturing microbial interactions, the classification accuracy may

not be maintained when only a few features are used. Simulated datasets may help

determine how well the classifiers account for interactions and what the signatures of

these interactions are in the subset analysis results.

Extensions to these methods may include using new data types and looking at

microbial community characteristics more broadly. Datasets that include metagenomic

information, or the abundances of viruses, fungi and other organisms, may help describe a

more complete picture of the microbial community. Training classification models on

several microbial community characteristics will yield multiple lists of important features.

These important feature lists may show patterns reflecting the underlying microbial

community structure.

With decreasing costs for genetic sequencing and computational processing, microbial

community datasets are increasing in resolution and in scale. More samples can be

collected and those samples can be analyzed at greater depth. Researchers now have the
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opportunity to determine how microbial communities work, their structure and temporal

dynamics. Ecological theories and models originally developed for macroscopic

organisms can be tested and refined. The study of microbial communities may lead to

greater understanding of evolutionary patterns. Using machine learning methods to

generate classification models may contribute to the study of these complex ecosystems.
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APPENDIX A

This appendix includes a license permitting the reprinting of the article "OTUbase: an R

infrastructure package for operational taxonomic unit data". This article was originally

published in the Journal Bioinformatics. It is included as Chapter 2 of this dissertation.

The full citation for this article is shown below.

Daniel Beck, Matt Settles, and James A. Foster (2011) OTUbase: an R infrastructure

package for operational taxonomic unit data. Bioinformatics 27(12): 1700-1701.

PMC3106189
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