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Abstract 

Position, Navigation and Timing (PNT) technologies have rapidly become an integral part of our 

everyday lives, through mobile applications, activity sharing, global navigation satellite system 

(GNSS) supported devices, real-time monitoring of consumer goods and the Internet of Things (IoT).  

Further, remote sensing data provide unique solutions for aiding PNT methods and techniques in the 

planning and assessment of active land management through the derivation of site and stand metrics 

used to develop models. Increased ease of access to a wide range of data sources has supported the 

expansion of network infrastructures and availability for data sharing and transfer at local and global 

scales. High-resolution, remotely sensed data and mobile, off-the-grid data collection and 

interpretation methods provide valuable solutions for production analysis, treatment analysis and data 

sharing in natural resource management scenarios. Precision forestry and production analytics for 

industrial forest and fire operations are rapidly transforming through the integration of global 

navigation satellite system and radio frequency (GNSS-RF) enabled devices, smartphone-based 

inertial sensors, and high resolution remotely sensed data. Consumer available technologies and data 

provide the means to collect, share and analyze spatially explicit data using multi-transponder mesh 

networks and activity recognition models. However, the application of these technologies in 

operational forest management scenarios for activity recognition and production analysis has received 

very little attention in formal research.  By evaluating operational applications of PNT technologies in 

forest management, mangers may be able to maximize their effective mobilization effort to manage 

land and improve on optimization of the operations themselves. Additionally, coupled use of high 

resolution remotely sensed data with real-time location and activity analytics may provide insight into 

management effectiveness and post-treatment stand conditions at landscape scales to assist managers 

in the strategic planning and implementation of future operations.
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Chapter 1: Technological Advancement, Innovation, and Integration in 

Forest Operations 

1.1 Introduction 

Emerging technologies and big data are transforming work processes in natural resource 

management through enhanced analytics. Interest in the rapid integration of advanced technologies 

provides unique opportunities to advance the field of precision forestry and embrace the continued 

digitalization of the forest industry. Applications for integrating these technologies and processes into 

traditional management tasks include production and cost analysis, treatment monitoring, activity 

recognition, resource mobilization and optimization, and management planning. Advances in mobile 

technologies and remotely sensed data provide new opportunities to improve the production, 

sustainability, effectiveness, and safety of forest operations. However, it is necessary to evaluate the 

specific operational applications of these technologies to ensure their efficient and effective use. 

Ultimately, the development of advanced solutions to support operational forestry using mobile 

technologies and remote sensing establishes a foundation for continued development and integration 

across natural resource management activities and beyond.  

 

1.2 Opportunities for Remotely Sensed Data in Forest and Fire Operations 

Remotely sensed data is a significant resource in the planning and implementation efforts of 

natural resource managers. To address the evolving needs of resource managers, these data provide 

opportunities to transform how the planning and assessment of management activities are handled. 

Remote sensing, specifically light detection and ranging (lidar), is currently used extensively in 

forest, range, and fire management [1]–[7]. However, as increased emphasis is placed on the 

improved planning and execution of management tasks through the application of precision forestry-

based processes, new applications of remotely sensed data must be developed.  

With increasingly challenging fire conditions and hazardous fuel loadings, increased effort 

has been placed on treating forest fuels to reduce the risk of severe wildland fire. Of these fuel 

treatment options, mechanical treatments using mastication have increased in use [8]. After 

mastication, the physical characteristics of these resultant fuels is a key driver of fire behavior if these 

areas eventually burn [8], [9]. Manual field sampling procedures exist for predicting total surface fuel 

loading but these methods are time consuming and costly, limiting their use for widespread 

implementation [1], [10]–[12]. Further, these methods depend on sampling performed post-treatment, 

limiting their utility for the planning and feasibility assessment of treatments prior to use. Previous 
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work has successfully used remotely sensed data to quantify fuel loads post-treatment, which 

provides information needed for subsequent fire behavior modelling [13]–[27]. While valuable, these 

findings are limited to areas where treatments have already occurred, and this limits their benefit 

when attempting to plan for landscape scale fire behavior modelling and fuel treatments. 

With extensive acreage requiring some level of fuel treatment to reduce the risk of severe 

wildland fire, tools are needed to assist land managers in making decisions regarding the optimal use 

of mechanical fuel treatments across the landscape prior to implementing treatments. Predicting post-

treatment fuel loads prior to treatment to enable landscape scale fire behavior modelling and 

treatment efficacy is needed. While no processes to predict post-treatment mastication fuel loading 

from pre-treatment conditions currently exist, remotely sensed data may provide opportunities to 

perform these landscape scale predictions and support the planning and assessment of mechanical fuel 

treatments to reduce the risk of severe wildfire in forested landscapes.  

The first step in this process is determining if relationships exist between pre-treatment lidar-

derived forest metrics and post-treatment surface fuel loading. If relationships exist, this will enable 

the extrapolation of these relationships at high resolution and provide fuel loading and physical 

characteristics needed for fire behavior modelling and assessment over large spatial extents. Having 

the ability to model fire behavior in higher resolution prior to treatment could help managers assess 

the efficacy of mechanical fuel treatments in management areas to determine whether fuel treatment 

costs are justified. In Chapter 2, we evaluated whether pre-treatment lidar-derived forest metrics can 

be used to predict surface fuel loads and associated fuel characteristics following mastication 

treatments. Masticated fuels were sampled and quantified across varying pre-treatment stand 

conditions to determine if relationships exist between the masticated fuel loads and lidar-derived 

forest metrics prior to treatment including trees per hectare, basal area, volume per hectare, and stand 

density index (SDI). Additionally, relationships between pre-treatment metrics and additional fuel bed 

characteristics including depth, size class distribution, and bulk density were assessed.  

 

1.3 GNSS-RF and Location Data for Forest and Fire Operations 

Along with remotely sensed data, mobile devices provide new opportunities to advance the 

field of precision forestry and forest digitalization. Global navigation satellite system (GNSS) 

equipped mobile devices have been widely incorporated into forest operations and management tasks 

to quantify the production and efficiency of work tasks of forest machines [28]–[38]. While 
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conventional GNSS devices provide valuable information to support location analytics after the fact, 

they lack the ability to transfer data in machine-to-machine (m2m) applications.  

To overcome this limitation through ad-hoc networking at remote jobsites, more recent 

studies have evaluated the potential for GNSS devices equipped with radio frequency (RF) 

communication to enable data sharing and transfer in real-time in remote, off-the-grid environments 

for logging safety and production analysis [39]–[44]. Preliminary work by Becker and Keefe [39] 

used GNSS-RF devices to characterize the swing movements of forest machines with real-time data 

sharing between two GNSS-RF transponders and a receiving unit. The sampling and modelling 

processes used to develop a basic activity recognition model for machine movements in a controlled 

setting proved effective in the initial study, but additional work was needed to evaluate and improve 

on the methodology in operational environments and under forest canopies.  

In order to build on the initial GNSS-based equipment activity recognition by Becker and 

Keefe [39], the third chapter of this dissertation examined the use of GNSS-RF devices to develop 

activity recognition models for mastication equipment implementing mechanical fuel treatments. In 

addition to assessing the effectiveness of GNSS-RF devices for modeling the productive cycle 

elements of mastication equipment, the impact of forest metrics on treatment production and model 

accuracy was also quantified. Findings from this work show the opportunities and limitations of using 

consumer-grade devices for real-time data collection, sharing, and subsequent production analysis of 

mechanical fuel treatments. As the forest industry continues to move toward digitalization, the 

importance of real-time systems that can quickly and effectively process and communicate big data in 

real time will increase. The collection, sharing and analysis of complex spatiotemporal data is 

especially relevant for forestry and fire applications for which access to internet and cellular 

connectivity is generally unavailable.  

 

1.4 Mobile Devices and Sensor-based Activity Recognition for Forest and Fire Operations 

Despite their proven success for some activity recognition applications, the accuracy of the 

positioning data from GNSS-RF devices is affected by forest canopies and topographic features [30], 

[31], [37], [45]–[49]. This limits their use in situations where GNSS-based activity recognition (AR) 

models are expected to accurately capture precise movements and activities of desired individuals or 

machinery [49]. Other mobile technologies may provide improved accuracy over GNSS-RF devices, 

specifically smart devices equipped with inertial measurements units (IMUs). Mobile phone IMUs 

and other sensors provide a high-resolution data source for classifying activities in real time. Mobile 
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smart devices including smartwatches and smartphones have been widely used in human activity 

recognition (HAR) given their ubiquity, affordability, ease of use, and powerful computing 

capabilities [50]–[52]. These activity recognition models are used in healthcare, wellness, intelligent 

environment, and commerce applications [53]–[61]. There are few examples of developing and 

evaluating activity recognition models for natural resource applications, e.g. [62]–[66]. Further, no 

current research has examined the development of a stand-alone smartphone-based activity 

recognition model for tracked forest machines.  

While many newly released forestry machines are equipped with integrated production 

monitoring systems, these are generally proprietary and specific to equipment manufacturer and 

equipment type, limiting their use in comparative analysis and synthesis of supply chain logistics 

data. The development of a stand-alone smartphone-based activity recognition model for forestry 

equipment could provide a ubiquitous, consumer-available solution. The successful development of 

initial models could provide proof-of-concept and support the subsequent creation of a library of 

activity recognition models for a variety of forest management tasks and operational systems. 

Development of an AR library specific to operational forestry could benefit equipment operators, 

researchers, and contractors monitoring supply chain and work productivity logistics using readily 

available devices. For researchers, the models would provide an automated, continuous alternative to 

traditional time and motion studies, which are time consuming, costly, and generally specific to local 

site and operator conditions.  

To advance science related to equipment activity recognition in forestry, a stand-alone 

smartphone-based activity recognition model for a tracked mastication machine was developed and 

tested in Chapter 4. We performed a time and motion study for mastication treatments while 

simultaneously collecting triaxial gyroscope (rad1sec-2), triaxial accelerometer (m1sec-2) and sound 

pressure (dB) data from smartphone-based inertial measurement units (IMU) mounted within the 

machine cab. Random forest (RF) machine learning algorithms were used to develop the AR models 

using the smartphone data. RF models were defined by three primary parameters and were examined 

to determine their impact of activity recognition modelling effectiveness. Forty unique RF algorithms 

were developed representing all combinations of selected parameters. Model parameters included 

sampling rate (Hz), sliding window size (seconds), and window overlap (%). After development, 

these AR models were validated using the time and motion study to determine the best performing 

combination of sensors, sampling rate, window size, and window overlap. Additionally, the feasibility 

of merging individual tree inventory data from lidar with these activity recognition models was 

studied in Chapter 4.  
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Lidar-derived characterization of stand- and tree-level features has a long history in forest 

health, biometrics and more recently forest operations research [3], [4], [7], [67]–[75]. Advances in 

individual tree detection and segmentation from lidar data further increases opportunities to use this 

data in forest management [17], [76]–[80]. However, these data can also support equipment 

production estimation and improved precision in supply chain analysis when individual trees and their 

associated physical characteristics are linked to individual work elements of forestry equipment 

derived from activity recognition models. This integration of smartphone-based activity recognition 

with individual-tree lidar products has not previously been studied and provides an opportunity to 

increase the resolution of production estimation for forest operations and the comparison of pre and 

post-treatment stand conditions.  
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2.1 Abstract 

Fuel reduction in forests is a high management priority in the western United States and 

mechanical mastication treatments are implemented commonly to achieve that goal. However, 

quantifying post-treatment fuel loading for use in fire behavior modeling to forecast treatment 

effectiveness is difficult due to the high cost and labor requirements of field sampling methods and 

high variability in resultant fuel loading within stands after treatment. We evaluated whether pre-

treatment lidar-derived forest stand characteristics at 20 m × 20 m resolution could be used to predict 

post-treatment surface fuel loading following mastication. Plot-based destructive sampling was 

performed immediately following mastication at three stands in the Nez Perce Clearwater National 

Forest, Idaho, USA, to correlate post-treatment surface fuel loads and characteristics with pre-

treatment lidar-derived forest metrics, specifically trees per hectare (TPH) and stand density index 

(SDI). Surface fuel loads measured in the stand post-treatment were consistent with those reported in 

previous studies. A significant relationship was found between the pre-treatment SDI and total 

resultant fuel loading (p = 0.0477), though not between TPH and fuel loading (p = 0.0527). SDI may 

more accurately predict post-treatment fuel loads by accounting for both tree number per unit area 

and stem size, while trees per hectare alone does not account for variations of tree size and 

subsequent volume within a stand. Conditions within treated stands and fuels produced during 

mastication are highly variable and may explain the lack of relationship between fuel classes and 

loading. Root-mean-square errors of 36 and 46 percent of the random forest lidar models for SDI and 

TPH may limit the ability to predict the highly variable fuel loads produced from mastication. Use of 

lidar to predict fuel loading after mastication is a useful approach for managers to understand the 

efficacy of fuel reduction treatments by providing information that may be helpful for determining 

areas where treatments can be most beneficial. 
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2.2 Introduction 

Due to the variability of species, management objectives, spatial configuration of 

management areas, regulatory restrictions, landowner funding availability, fuels characteristics, and 

other geographic and vegetative factors, developing a one-size-fits-all approach for wide-scale fire 

management is challenging [1]–[4]. However, forests with high fire risk must be actively managed 

[5]. Over the previous century, forest management practices such as fire exclusion have resulted in 

historically uncharacteristic stand attributes in many forests in the western United States, including 

dense, small-diameter stands with increased surface fuel loads [5], [6]. Fuel reduction in stands that 

have lacked prior density management is a high priority in many areas of the western United States, 

especially on federal lands. Understanding the unique challenges and selecting strategies to best suit 

the needs of each management area, typically applied through one or more treatments applied at the 

stand level, is vital to long-term management success [2]. Properly designed and implemented fuel 

treatments have been found to increase fire resilience and resistance while simultaneously changing 

the behavior of wildfires that impact treated areas [5], [7]–[9]. 

Given the variability of management factors, including forest composition, topography, 

climatic conditions, and management history, not all silvicultural and fuel reduction treatments are 

feasibly implemented. In its most basic form, creating fire resilient stands generally involves three 

objectives: reducing surface fuels, reducing ladder fuels, and reducing crown density [5]. The 

complexity of planning fuel treatments for influencing the behavior of large fires must also account 

for spatial configuration and density of treatments when determining how to effectively and 

efficiently treat landscapes [4]. Fuel treatment programs have been implemented across the Western 

United States and include prescribed burning and mechanical treatments such as regeneration harvest, 

precommercial and commercial thinning, and mastication. The risk of fire escape, smoke restrictions, 

and poor public perception may limit the feasibility of large-scale prescribed burning efforts [10]. The 

need to meet particular site and climatic conditions to successfully implement prescribed burning 

often results in limited availability of windows in prescription, unlike mechanized treatments, that are 

less dependent on these factors [2]. To mimic the changes to forest structure created by fire, 

mechanical treatments are widely used to reduce crown fire risk, particularly in the Wildland Urban 

Interface (WUI) [10]. Mechanical treatments modify the vertical distribution of fuels and reduce 

overall canopy fuels to levels that are less susceptible to crown fires and rapid fire spread, without the 

risks associated with prescribed burning.  

In many cases, stands that are at risk for severe fire are overstocked and may have high levels 

or mortality, which reduces the merchantable stand volume component and reduces the profitability 
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of commercial timber harvest in the context of salvage harvesting. Alternative mechanical fuel 

treatment options, including mastication and chipping, are used in these instances when revenue from 

timber harvest may not be a core management objective, but fuel loads nevertheless need to be 

reduced. In these operations, which occur commonly on federal lands, fuels generated are left on site, 

unlike final harvest and commercial thinning treatments, where harvested materials are most 

commonly removed, treated at the landing, or treated in piles within the unit. The size of mechanical 

fuel treatments is dependent on the overall management objectives of the area. Mastication may target 

relatively small, high fire risk areas possessing dangerous fuel loads, where harvesting is not feasible. 

Alternatively, larger mastication operations may be used to reduce canopy density and ladder fuels 

while simultaneously reducing competition, removing undesirable trees, and preparing the stand for 

future harvest. Mastication entails the grinding, shredding, chunking, or by other means reducing the 

size of both standing and downed materials via boom-mounted mulching attachments of excavators, 

skid-steers, or other machines [11]–[13]. The risk of active crown fires is reduced by altering the 

vertical distribution and continuity of forest fuels and compacting them on the forest floor as 

irregularly shaped chips, though dead surface fuel loads are increased in the process [10], [14]. 

Changes in physical properties of woody material resulting from mastication can influence fire 

behavior, including the rate of spread, flame length, and intensity [14]. According to Agee and 

Skinner [5], reducing surface fuels, increasing live crown height, retaining large, fire resistant trees, 

and decreasing crown bulk density are all important factors in producing fire-resistant stands. 

Altering the amount and condition of ladder fuels similarly influences fire intensity and burn severity 

[12]. When implemented correctly, mechanized fuel treatments address all points, excluding the 

reduction of surface fuel. 

Despite the widespread use of mastication treatments [15] and past research, the spatial 

variability of masticated fuel beds has not been previously studied [10], [11]. Studies have found 

surface fuel loadings in mulched treatments to range from 16 to 65 Mg ha-1, with woody fuels 

concentrated in the 1-h and 10-h time-lag classes, which have average diameters <2.54 cm [10], [14], 

[16]–[18]. Relative to untreated stands, mulched fuel beds with fuels concentrated in these classes 

have reduced rate of spread and flame lengths, but increased smoldering and flaming duration [10]. 

Quantifying masticated fuel loads is challenging, however, given the wide variability in masticated 

fuel physical structures and site, ecosystem, and regional fuel characteristics [15]. In masticated 

stands, fuel loads are also highly variable, leading to challenges when predicting and modeling 

loading and fire behavior. Fuel loads rely heavily on multiple factors, including vegetation type, 

pretreatment stand conditions, machinery and mastication attachment, operator and the treatment 

objectives, and desired conditions post-treatment [10], [14]–[17]. As a result, the spatial heterogeneity 
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of fuels within and across masticated stands remains unclear [15]. Several studies have successfully 

used fuel depth and/or fuel coverage in mulched areas to estimate surface fuel loads [10], [14], [17], 

[18]. These techniques provide total surface fuel estimates more easily and accurately than planar 

transect sampling, but still require visiting the site following treatments. While less labor-intensive 

than past methods, the widespread assessment of surface fuel loading following mastication still 

requires in-person site visitation and assessment, which can be time-intensive and is only possible 

post-treatment. Efficient and effective methods to map post-treatment fuel loadings using pre-

treatment conditions across stand, site, forest, and broader extents could provide valuable information 

to landowners when developing fuel management programs and evaluating their potential cost-

effectiveness. 

Fuel mapping is a difficult and often infeasible process across broad spatial and temporal 

scales due to high fuel variability, and costs and time constraints associated with field sampling [19]–

[22]. Given the additional variability of masticated fuel loads, prediction models will likely need to 

focus on relatively small geographic extents and account for various forest characteristics. Micro-site 

predictions may better address site and forest variability and result in more accurate models. To better 

understand fuel loads resulting from treatments, it is important to first determine what forest 

conditions existed prior to mastication. On large landscape and regional scales, it is infeasible to 

perform a forest inventory to determine pre-treatment conditions due to labor and cost restrictions. 

Therefore, remotely sensed data, specifically lidar, has been repeatedly shown to provide large-scale 

forest metric predictions and enable the future extrapolation of models [23]. Lidar has been used in 

part or entirely for assessing forest fuels characteristics including canopy [24]–[26], surface fuel 

loading [27]–[31], ladder fuels [32], [33] and parameters including overall loading, spatial 

distribution, composition, vertical and horizontal arrangement, bulk density, and hazard ratings [34]–

[38]. The authors were unable to find any relevant studies for lidar applications in masticated surface 

fuel loadings. Additionally, no models have currently been developed to predict post-mastication 

surface fuel loads from pre-treatment lidar-derived stand conditions. 

In this study, we evaluate whether pre-treatment lidar-derived forest metrics can be used to 

predict surface fuel loads and associated fuel characteristics following mastication treatments. 

Masticated fuels were assessed across varying pre-treatment stand conditions to determine if 

relationships exist between the masticated fuel loads and lidar-derived forest metrics prior to 

treatment. Additionally, relationships between pre-treatment metrics and additional fuel bed 

characteristics including depth, size class distribution, and bulk density were assessed. Masticated 

fuels were sorted and quantified based on time-lag classes to determine if pre-treatment stand 
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characteristics impact these distributions within sample plots. If remotely sensed forest metrics relate 

directly to mastication fuel characteristics, these models could be used to predict fuel loading and fuel 

bed characteristics for areas of similar forest composition, prior to mastication treatments. This 

information provides valuable insight to natural resources managers when selecting potential forest 

and fuel treatment options, ensuring both the economic and ecological sustainability of mechanical 

fuel treatments and other concurrent forest operations. Economically and ecologically unsustainable 

fuel treatments are financially and operationally infeasible, unsuccessful in achieving the desired 

operational, environmental and management results, and lead to the inefficient and ineffective use of 

limited financial resources. Understanding the potential impacts of mastication treatments based on 

existing forest conditions will help assess areas where this treatment option can be implemented cost-

effectively when coupled with existing fire behavior models. 

 

2.3 Methods and Materials 

2.3.1 Study Site 

The study sites were located in three stands in the Nez Perce-Clearwater National Forest, in 

north central Idaho, following fuel treatments to gather data pertaining to the resultant surface fuel 

loads. These treatments were part of the larger Orogrande timber sale and consisted of approximately 

38 hectares (95 acres) of mechanical fuel treatment. The management units were predominantly 

mixed conifer forest type with slopes averaging 25% throughout the units. Mastication was 

successfully implemented in the three stands as a management alternative to timber harvest. The three 

stands treated for this study were originally planned for timber harvest. Harvesting was found to be 

financially infeasible due to the low value of harvested products and long-haul distances to the mill. 

The prescription developed for the project was intended to release remaining trees to increase timber 

value for future harvest while simultaneously decreasing stand density and increasing canopy base 

height to reduce the risk of crown fire using mastication. According to forest personnel, the 

management approach used in this project was its first application on the Nez Perce-Clearwater 

National Forest. The machine used to perform the mechanical fuel treatment was a Takeuchi TB290 

compact excavator with a Fecon Bull Hog mastication head (Figure 2.1). The machine weighs 8685 

kg, is 2.2 m wide and 2.9 m long at the undercarriage, has a maximum reach of 7.4 m, and creates 

only 37.9 kPa of ground pressure when equipped with 450-mm-wide rubber tracks. 
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Figure 2.1. Mini-excavator with a horizontal shaft masticator head used in mastication treatments. 

The treatment prescription for the stands included a target range for post-treatment stocking 

level. For the units in this study, the operator was instructed to leave 40 to 80 trees per hectare after 

treatment while removing only stems less than 18 cm (7 inches) in diameter. Further, all dead and 

down material up to 30 cm (12 inches) were masticated [39]. Post-treatment surface fuel sampling 

occurred in the masticated portions of three replicate stands: 117 (13 hectares), 120 (15 hectares), and 

147 (10 hectares), within the management boundary. Due to many downed trees in stand 147, 

meeting the prescription specification for dead and downed material was not operationally feasible. 

Therefore, the mastication intensity for downed trees was reduced after stand 147 was partially 

treated. This prescription adjustment was used for treating the remainder of stand 147 and for the 

entirety of stands 117 and 120 [39] (Figure 2.2). 

 

Figure 2.2. Visual comparison of treated stands and a representation of surface fuels in stand 147 before (left pane) and after 

(right pane) adjustments to treatment intensity. 
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2.3.2 Lidar Processing and Sample Plot Selection 

The Orogrande timber sale and the three stands (117, 120, 147) were within the extent of the 

18,450-hectare (45,600-acre) Crooked River lidar acquisition flown in 2012 with a pulse density 

return of ≥4 points per square meter (Figure 1.3). Field sampling inventory data from 91 20 × 20-m 

(1/10 acre) plots were run through the USFS Forest Vegetation Simulator [40] to summarize stand 

composition and structure. These forest inventory data were part of a previous sampling effort and 

were collected using field methods described in Falkowski et al. (2005) [22]. Random forest models 

[41], [42] describing trees per hectare, total volume (m3ha−1), basal area (m2/ha−1), and stand density 

index (SDI) were then developed using lidar metrics encompassing identical extents to the field 

sampling plots. These methods are consistent with those described in Becker et al. [43]. All random 

forest development and metric predictions were performed in the open source statistical analysis 

program, R, using the randomForest package [42], [44]. 

 

Figure 2.3. Crooked River lidar acquisition area and Orogrande T.S. mastication stands located in the Nez Perce-Clearwater 

National Forest, Idaho, USA. 

Random forest ensemble learning algorithms were used because they provide excellent 

classification results, speed of processing, ability to reduce bias, and correlation and reduce 

overfitting compared to other classification and regression trees (CART) models, making them a 

widely used machine learning solution [45]–[48]. Random forest produces multiple decision trees 

using bagging and randomly selected subsets of training samples and variables to provide a majority 
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vote from which a prediction is made. The default number of trees (ntree = 500) and the default number 

of variables split at each node (mtry = square root of the total number of input variables) were used 

when building random forest models for each forest characteristic. 177 lidar metrics were available to 

develop each unique random forest algorithm, but only a subset of metrics were used in the final 

models, based on importance, defined using rfUtilities [49]. Random forest models were built using 

2/3 of the data and validated using the remaining 1/3 of the data. 

The entire Crooked River lidar acquisition was processed using the USDA lidar processing 

software FUSION version 3.60 to create an identical post-processed data structure as the initial 91 

sampled plots [50]. This enabled the random forest models to be applied directly to the whole area to 

develop predicted metrics in 20 × 20-m pixels. Stand metrics derived from the lidar analysis included 

trees per hectare (TPH), total cubic foot volume (m3 ha−1), total basal area (m2 ha−1), and stand density 

index. SDI has been used in even-aged monocultures, and more recently in uneven-aged, mixed 

species stands to assess stand density as a function of quadratic mean diameter and stem density [51]–

[55]. This metric was selected in addition to TPH to provide a more descriptive indication of stand 

density. The trees per hectare vector map was then stratified into four classes: 0–247; 248–494; 495–

740; 741+. These classes were used to select sample plots within the study stands. Trees per hectare 

classes were used to stratify the selection of a broad distribution of relative stocking in sampled areas 

prior to mastication. 

2.3.3 Field Sampling Procedures 

Twelve plots were sampled within each of the three stands, with three representing each of 

the four levels of pre-treatment trees per hectare derived from the lidar data. The 20 × 20-m pixels 

chosen for sampling were randomly selected from all available pixels of the trees per hectare class 

within the stand boundaries. The resulting sampled pixels amounted to 36, with nine plots 

representing each of the four classes of pre-treatment trees per hectare. Trees per hectare was selected 

as the stand metric by which to select sample plots, due to the mastication treatment prescription 

being based on a goal trees per hectare post-treatment. All mastication treatments and sampling of 

fuel loading occurred during summer 2017. 

Center points within the 20 × 20-m pixels were determined via ArcMap, and the resultant 

coordinates were used to locate the field plot centers. A simple method of plot center relocation was 

established to address situations where plot centers occur in areas that prohibited the sampling of fuel 

loading including tree stumps, roadways, rock outcroppings, and exposed mineral soil due to 

machinery movement. In these instances, plot centers were moved due north 3 m. If needed, plots 
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were moved due west from original plot centers 3 m if the movement due north did not resolve the 

issue with the obstruction. A variation on destructive plot-based sampling was used to quantify fuel 

characteristics and fuel loading following mastication treatments within the three stands at each of the 

36 plots [10], [14], [17]. 

Within each of the 36 sampled plots, fuel size classes were sampled in four quadrats. Once 

the plot center was located via GPS coordinates, 5-m vectors extending directly north, south, east, and 

west of the plot center were marked and established as the corner points for the quadrats. For 

instances in which uncharacteristic site conditions occurred within the quadrats, the frame was 

reflected over the transect. If this quadrat reflection did not resolve the issue and fuel collection 

within the quadrat was still not possible, the quadrat was excluded from sampling overall. Situations 

that would permit quadrat reflection over the transect or exclusion included buried logs, stumps, and 

rock outcroppings. In addition to the collection of fuels within the 25-cm squared quadrats, the fuel 

depth of masticated fuels was measured at two locations along the 5-m vectors (2.5 m and 5 m) and at 

the overall plot center (Figure 2.4). To measure fuel depths, a cross-section of the forest floor was 

cleared using a trowel, and the depths were manually recorded. For the depths of the 

woody/masticated material, any branch or piece of woody debris above the measurement point was 

included in the depth measurement. Where site conditions prevented the measuring of fuel depths, the 

depth was measured 0.5 m from the original measurement point moving away from the plot center 

along the transect. If the depth was still not measurable at the second location, the measurement was 

omitted. Each of the 36 plots contained four separate fuel collection quadrats and nine fuel depth 

measurements. 

 

Figure 2.4. Destructive plot-based sampling design used for surface fuel collection and field measurements. 
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Frames made of PVC pipe measuring 25 cm by 25 cm were built to establish the sampling area 

extent. Within the 25 × 25-cm collection quadrats, all fuel down to bare mineral soil was gathered, 

and any pieces extending outside the collection frame were trimmed using hand shears, and thus only 

pieces completely within the frame were collected (Figure 2.5). All fuels collected were stored in 

paper bags labeled by their collection point and were brought back to the lab for detailed fuel 

composition analysis. Within the sampling quadrats, downed trees and logs were not sampled due to 

their irregular occurrence and collection difficulty for returning to the lab. 

 

Figure 2.5. Fuel collection quadrat used in destructive fuel sampling. 

  

It was assumed that when locating sample plots in the field, there may be instances where 

mastication, though planned, does not occur. This was a result of inaccessibility, due to the steep or 

very uneven terrain where the operator chose not to treat the area for safety reasons. In these 

instances, three supplemental sample points for each classification level of trees per hectare were 

randomly selected in each of the three stands. If an originally designated sample plot was found to be 

within an un-masticated area, a randomly selected supplemental sample plot of the same TPH class 

was selected for sampling instead. These supplemental plots were randomly generated from the 

remaining available pixels not included in the initial stratification prior to field sampling, using the 

same method used in the initial plot selection. Supplemental plots were used once in unit 117, four 

times in unit 120, and four times in unit 147. The final sampled plots across stands 117, 120, and 147 

are shown in Figure 2.6. 
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Figure 2.6. Field sampling plots within masticated stands 117, 120, and 147, selected based on stand density (TPH) prior to 

treatment. 

  

2.3.4 Lab Measurements and Fuel Characterization 

After field sampling was conducted, fuel collection bags were brought back to the lab to be 

processed by drying and sorting. A total of 133 quadrats of fuel was brought from the field for 

processing. If all plots had all quadrats collected, there would have been a total of 144. However, 

some quadrats were excluded from sampling because they were located on rock outcroppings, 

stumps, or other obstructions. One complete plot of quadrat fuel collections from stand 117, trees per 

hectare class 1, was misplaced during sampling, which constituted four of the eleven missing quadrat 

samples. Due to the omitted samples, stand 117 had two plots for trees per hectare class 1, resulting in 

35 total plots rather than 36. Each collection sample was oven-dried at 105 degrees Celsius for 48 h, 

or until the sample weight stabilized, and was then weighted to the nearest gram. All fuels were then 

sorted, by quadrat, into five time-lag fuel classes: duff/litter and woody/masticated (1-h [<0.64 cm], 

10-h [0.64–2.54 cm], 100-h [2.54–7.62 cm] and 1000-h [>7.62 cm]) [56] (Figure 2.7). Sorted fuels 

were then individually weighed to the nearest gram to determine the proportion of overall mass that 

each fuel class represented. These proportions for each quadrat were averaged with corresponding 

plot quadrats to determine the fuel composition proportions by mass for the entire plot. For each of 

the 35 sample plots, the fuel bed volume was calculated by multiplying the average of the fuel depths 

at the nine measured locations within each plot by the dimensions of the collection frame. We then 

determined the bulk density of the fuels in each plot by dividing the average oven-dried weight of the 

fuel classes in the four collection quadrats by the corresponding volume. Plot level values were 

calculated using the averages of each quadrat within the plot for fuel loading (Mg ha−1) for the whole 

stand and by fuel class, fuel depth (cm), and bulk density (kg m−3). 
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Figure 2.7. Sorting of dried surface fuels based on time-lag class (1-h, 10-h, 100-h, 1000-h, litter/duff). 

To assess the correlation between pre-treatment lidar-derived forest metrics and post-

treatment fuel conditions, all statistical analyses were performed using the R statistical programming 

environment. Pearson correlation coefficients were calculated to evaluate the strength of association 

between predictors. Additionally, linear mixed effects models were used to model the relationship 

between fuel loading following mastication treatments and the trees per hectare, stand density index, 

and basal area of plots prior to mastication, using the nlme R package [57]. The general equation for 

mixed effect models is described as: 

𝑦𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑢𝑖 + 𝜀𝑖 

𝑢𝑖 ~ 𝑁(0, 𝐷) 

𝜀𝑖  ~ 𝑁(0, 𝑅𝑖) 

where β are fixed effects, u are random effects, X is the model matrix for fixed effects, Z is the model 

matrix for random effects, ε is the vector of errors, R is the variance-covariance matrix of within-

individual measurements, and D is the variance-covariance matrix of random effects [58]. In linear 

mixed effects models evaluating predictors, stand, and TPH class were treated as random effects, with 

the TPH class nested within the stand. Random intercepts were used when fitting models. Due to the 

inconsistency of the mastication treatment in stand 147, two different mixed effects models were fit for 

each of the lidar predictors. One model contained all three stands, while the second model contained 

only stand 117 and 120. This was in order to avoid potential influential data artifacts associated with the 

treatment change in stand 147. 
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2.4 Results 

Parameter estimates for the random forest models used in the pretreatment derivation of 

forest characteristics from lidar metrics for 20 × 20-m pixels are shown in Table 2.1. In this study, an 

acceptable maximum root-mean-square error (RMSE) of 50% of the prediction means was used based 

on values derived in previous studies [59], [60]. The RMSE was within the acceptable range for the 

density (TPH), basal area (m2ha−1), and stand density index models. For the random forest model 

predicting stand volume (m3ha−1), an RMSE of 166.93 was about 54% of the predicted mean and just 

outside of the desired range. Predicted volume was therefore excluded from use in subsequent 

analyses. Model accuracies for forest metrics were 71.5%, 77.4%, 74.3%, and 79% for trees per 

hectare, basal area, volume, and stand density index, respectively, which are comparable to those 

obtained by Falkowski et al. [61] and Hudak et al. [60]. These pretreatment maps of predicted stand 

characteristics provided the basis for study plot selection and the subsequent regression modeling of 

post-treatment fuel loading. 

Table 2.1. Random forest model quality assessment for pre-treatment forest metrics. 

Random Forest Prediction Mean RMSE R-Squared Accuracy (%) 

Stand Density (TPH) 468.00 217.36 0.55 71.5 

Basal Area (m2ha−1) 30.56 12.95 0.63 77.4 

Total Volume (m3ha−1) 307.99 165.35 0.57 76.3 

Stand Density Index (SDI) 299.17 110.296 0.45 79.0 

 

Table 2.2 shows the summary data of the stands for the fuel collection as averages of the 

sampled plots and quadrats within each stand. Surface fuel loadings range from 9.3–83.4 Mg ha−1, 

1.8–34.5 Mg ha−1, 5.4–80.5 Mg ha−1, 0–48.1 Mg ha−1, and 0–8.2 Mg ha−1 for litter/duff, to 1-h, 10-h, 

100-h and 1000-h fuel classes, respectively, across all plots and stands. Fuel depths ranged from 6.4–

26.3 cm and bulk densities ranged from 22.2 to 154.2 kg m−3. Across all plots, there was a significant 

(p = 0.029) moderate positive (0.369) correlation between trees per hectare and fuel loading (Mg 

m−1), found by performing a Pearson’s correlation test. Additionally, there was a positive (0.3577) 

and significant (p = 0.0349) correlation between SDI and fuel loading. No significant relationship was 

found between pre-treatment TPH and bulk density of resulting fuels (kg m−3); SDI and bulk density 

of resulting fuels; basal area (m2h−1) and loading or bulk density; nor between pre-treatment total 

volume (m3ha−1) and fuel loading or bulk density (Table 2.3). Based on the results of the correlation 

tests, the linear mixed effects model was fitted to evaluate the relationship of pre-treatment TPH and 

the resulting fuel loads as well as SDI and the resulting fuel loads. 
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Table 2.2. Stand-level summary data representing stand averages and standard errors for pre-treatment trees per hectare and 

post-treatment destructive plot-based surface fuel characteristics for stands 117, 120, and 147. 

Stand 
Pre-TPH 
Avg. (SE) 

Fuel Loading (Mg ha−1) Avg. (SE) 
Fuel Depth (cm) 

Avg. (SE) 

Bulk Density (kg m−3) 
Avg. (SE) 

Litter/ 

Duff 
1-h 10-h 100-h 1000-h Total 

117 
530 43.4 6.7 30.3 13.2 0.0 93.7 15.6 59.0 

(77) (6.7) (1.2) (4.3) (3.7) (0.0) (13.1) (1.5) (5.8) 

120 
515 31.9 5.5 25.3 13.4 0.7 76.8 16.1 48.2 

(77) (3.3) (1.0) (3.2) (2.6) (0.7) (8.8) (1.2) (4.4) 

147 
516 32.9 9.1 34.3 22.8 0.0 99.2 18.4 59.2 

(93) (3.6) (2.5) (5.9) (3.6) (0.0) (10.4) (1.5) (10.6) 

 

Table 2.3. Pearson’s correlation assessments for pre-treatment forest characteristics and surface fuel characteristics 

following mastication treatments, where T is the t-test statistic and DF is the degrees of freedom. 

Correlation T DF P-Value Coefficient 

Density (TPH)/Loading (Mg ha−1) 2.2812 33 0.0291 0.3691 

Density (TPH)/Bulk Density (kg m−3) 1.566 33 0.1269 0.2630 

Volume (m3 ha−1)/Loading (Mg ha−1) 1.8018 33 0.0807 0.2993 

Volume (m3 ha−1)/Bulk Density (kg m−3) 1.1251 33 0.2687 0.1922 

Basal Area (m2 h−1)/Loading (Mg ha−1) 1.9676 33 0.0576 0.3240 

Basal Area (m2 h−1)/Bulk Density (kg m−3) 1.3492 33 0.1865 0.2286 

Stand Density Index/Loading (Mg ha−1) 2.2004 33 0.0349 0.3577 

Stand Density Index/Bulk Density (kg m−3) 1.8702 33 0.0704 0.3096 

 

The linear mixed effects models predicting the total fuel loading of all time-lag classes from pre-

treatment TPH showed no significant relationship between the two factors (test statistic = 0.05318, df 

= 22, p-value = 0.0527) when accounting for all three stands. In the reduced model, pre-treatment 

trees per hectare and fuel loading were significant (p-value = 0.0066) (Table 2.4). The linear mixed 

effects models predicting the total fuel loading of all time-lag classes from pre-treatment SDI showed 

significant relationships between the two factors for all three units (p = 0.0477) and when assessing 

stand 117 and 120 alone (p = 0.0337) (Table 2.4). Figure 2.8 shows the associated relationships 

between SDI and the resulting fuel load for all three units. The black line represents the regression 

line of the complete data set and the individual regression line for each stand.  
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Table 2.4. Mixed effects model summary assessing pre-treatment trees per hectare (TPH) and stand density index (SDI) 

impact on fuel loading (Mg ha−1) post-mastication. The influence of stand 147 on the overall significance of the factors is 

shown. 

Stand 117, 120, 147 

Predictor Estimate Std. Error DF P-Value 

TPH 0.05318 0.025974 22 0.0527 

SDI 0.16736 0.079809 22 0.0477 

Stand 117, 120 

Predictor Estimate Std. Error DF P-Value 

TPH 0.09524 0.029924 14 0.0066 

SDI 0.227069 0.09647 14 0.0337 

 

 

Figure 2.8. Surface fuel loading (Mg ha−1) of all sampled plots by pre-treatment stand density index (SDI). The black dotted 

line represents the regression for all data, and the colored solid lines indicate the regression lines for each stand individually.  

 

Additional linear mixed effects models were developed to further assess the impact of pre-

treatment TPH and SDI on resulting fuels loads for each of the 5 time-lag fuel classes (litter/duff, 1-h, 

10-h, 100-h, 1000-h). Only the litter/duff fuel class loading was found to be significantly correlated to 

pre-treatment trees per hectare for all three stands (Table 2.5). The litter/duff fuel class is generally 

independent of the mastication process, as most fuels in this class were present before treatment. 

However, when assessing stands 117 and 120, litter/duff (p = 0.0242), 1-h (p = 0.0232), and 100-h (p 

= 0.0059) were found to be significant. When assessing the relationship between SDI and the 

resulting fuel loading across all five time-lag cases, the model containing all three units showed that 
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both litter/duff (p = 0.0042) and 100-h (p = 0.0293) were significant, while the model describing units 

117 and 120 showed that only 100-h (p = 0.0476) was significant. The data for the SDI model are 

shown in Figure 2.9. 

Table 2.5. Mixed effects model summary assessing pre-treatment trees per hectare (TPH) and stand density index (SDI) 

impact on fuel loading (Mg ha−1) sorted by time-lag fuel class post-mastication. The influence of stand 147 on the overall 

significance of the predictors for each of the time-lag classes is shown. 

Stand 117, 120, 147 

Fuel Class Predictor Estimate Std. Error DF P-Value 

Litter/Duff TPH 0.0033284 0.0010120 22 0.0034 

1-h TPH 0.0000789 0.0003873 22 0.8405 

10-h TPH 0.0000719 0.0009999 22 0.9433 

100-h TPH 0.0015591 0.0008138 22 0.0685 

1000-h TPH −0.0000106 0.0000901 22 0.9072 

Litter/Duff SDI 0.096484 0.030246 22 0.0042 

1-h SDI 0.001137 0.012228 22 0.9267 

10-h SDI 0.004637 0.031801 22 0.8854 

100-h SDI 0.0562922 0.024141 22 0.0293 

1000-h SDI −0.0007695 0.002888 22 0.7924 

Stand 117, 120 

Fuel Class Predictor Estimate Std. Error DF P-Value 

Litter/Duff TPH 0.0038925 0.0015411 14 0.0242 

1-h TPH 0.0008194 0.0003215 14 0.0232 

10-h TPH 0.0021593 0.0010591 14 0.0608 

100-h TPH 0.0025606 0.0007890 14 0.0059 

1000-h TPH −0.0000245 0.0001527 14 0.8747 

Litter/Duff SDI 0.095805 0.046646 14 0.0592 

1-h SDI 0.019364 0.010368 14 0.0829 

10-h SDI 0.058114 0.034173 14 0.1111 

100-h SDI 0.057603 0.026532 14 0.0476 

1000-h SDI −0.002020 0.004787 14 0.6794 
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Figure 2.9. Surface fuel loading (Mg ha−1) distribution for all sample plots by pre-treatment stand density index (SDI) 

arranged by time-lag fuel class.  

Our second research objective explored whether the in-plot distribution of masticated fuels 

among the five time-lag fuel classes was impacted by the stand density of the plot prior to treatment. 

Mixed effects models were developed to assess these questions, with results being found in Table 2.6. 

10-h fuels in the sampled plots were the only fuel class found to change significantly as the pre-

treatment TPH changed (test statistic = −0.01581, p = 0.0178, df = 22). SDI was shown to have a 

significant relationship with post-mastication fuel loading for both the 10-h (p = 0.0302) and 100-h (p 

= 0.0406) fuel classes (Table 2.6).  

Table 2.6. Mixed effects model summary assessing pre-treatment stand density (TPH) and stand density index (SDI) impact 

on the percentage of total fuel load (Mg ha−1) by time-lag fuel class. 

Stand Density (TPH) 

Fuel Class Estimate Std. Error DF P-Value 

Litter/Duff 0.00560 0.009796 22 0.5736 

1-h −0.00190 0.0021351 22 0.3825 

10-h −0.01581 0.006169 22 0.0178 

100-h 0.01161 0.006380 22 0.0823 

1000-h −0.0001 0.000850 22 0.9072 

Stand Density Index (SDI) 

Fuel Class Estimate Std. Error DF P-Value 

Litter/Duff 0.00766 0.03098 22 0.8069 

1-h −0.007688 0.006679 22 0.2620 

10-h −0.04619 0.019931 22 0.0302 

100-h 0.042089 0.019346 22 0.0406 

1000-h −0.0007254 0.0027224 22 0.7924 
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The data distribution for the five time-lag classes as a percentage across the range of stand 

density indices and fuel loading are shown in Figure 2.10. Woody and mulched fuels (1-h, 10-h, 100-

h, and 1000-h) were found to be between 30–85% of the overall fuel loads across all plots, which 

shows the variability found within the stands. 1-h, 10-h, 100-h, and 1000-h fuels contained 6–27%, 

36–94%, 0–57%, and 0–13% of the woody and mulched fuels, respectively. On average, woody fuels 

made up about 58.2% of the overall surface fuel loading across all sites, with 1-h, 10-h, 100-h, and 

1000-h fuel classes averaging 7.5%, 33.2%, 17.3%, and 0.2% of the loading, respectively. 

 

Figure 2.10. Percentage of total surface fuel load for all sample plots by pre-treatment stand density index (SDI) arranged by 

time-lag fuel class.  

 

2.5 Discussion 

Total surface fuel loadings varied widely across our study plots (26.4 to 158.2 Mg ha−1), with 

woody/masticated surface fuels representing a similarly wide range (7.7 to 127.5 Mg ha−1). Across all 

stands and plots, total surface fuel loading averaged 89.8 Mg ha−1, and woody surface fuels averaged 

53.9 Mg ha−1. These total surface fuel loads were similar to those reported by Stephens and 

Moghaddas [16] in the Sierra Nevada Mountains (87.1 and 93.8 Mg ha−1), Reiner et al. [18] in the 

Sierra Nevada (81.6 Mg ha−1), Kane et al. [14] at study sites in Northern California and southwestern 

Oregon (83.6, 83.8 and 71.1 Mg ha−1), and Hood and Wu [17] in the Northern Rockies (82.0–95.9 Mg 

ha−1), but were higher than those reported by Brewer et al. [62] in mixed conifer Idaho stands (58.4 

Mg ha−1) and lower than those reported by Battaglia et al. [10] in mixed conifer stands in Colorado 

(110.4 Mg ha−1). This finding was not surprising, as masticated fuel beds and characteristics have a 
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wide variability across sites and regions. The attempt to develop the surface fuel prediction model at a 

20 x 20-m resolution in this study was meant to help address this site variability. 

Based on results reported by previous mastication studies, the average total fuel depth of 16.7 

cm recorded in the mixed conifer stands we studied was significantly higher than those in Battaglia et 

al. [10], but only slightly higher than those shown by Stephens and Moghaddas [16]: 14.6 and 14.7 

cm. All fuel sampling in this study occurred within a month of mastication treatment, so fuels were 

still green at the time of collection and had not settled to the forest floor, whereas sampling of 

masticated fuels for other studies occurred 2–6 years post-mastication [10], [14]. These temporal 

changes in masticated fuel beds make the generalization of loadings difficult, especially across broad 

geographic extents. For example, a recently masticated stand may indicate greater fuel depths than a 

stand masticated several years ago, due to the decomposition and deterioration of fuel structural 

integrity. The additional compaction of fuel beds over time as they settle may affect subsequent fire 

behavior. Therefore, the development of the model estimating surface fuel characteristics directly 

after masticating would provide a consistent expectation of fuel loads, as was done in this study. 

2.5.1. Relationship Between Pre-Treatment Stand Characteristics and Fuel Loading 

Through the analysis performed across the three stands we studied—117, 120, and 147—no 

significant relationship was found between overall fuel loading following mastication and the pre-

treatment tree per hectare we derived from lidar. However, SDI was found to be a significant 

predictor variable for post-mastication fuel loading when accounting for all management units and 

time-lag classes jointly. Initially, we expected to see an increase in the fuel loading as the pre-

treatment TPH increased. It was believed that, given a consistent prescription implementation, greater 

TPH would result in more fuel, as a greater number of standing trees were mulched to meet treatment 

objectives. The contrary findings for absolute stand density may have resulted from the inconsistency 

in the initial treatment of stand 147, which was then corrected. When excluding stand 147, increasing 

pre-treatment TPH resulted in greater loading, as expected. However, even when including data from 

stand 147, the p-value of 0.0526 was just outside the level of significance needed to reject the null. 

The significance of both mixed effects models for SDI (p = 0.0477 and p = 0.0337) indicates fuel 

loading may be more accurately predicted using a metric that accounts for both tree size and number, 

as opposed to simply using trees per hectare where only the number of stems is accounted for. 

Stand 147 was the first stand treated and was initially treated to prescription specifications. It 

was found that once treatment began, the original degree to which large downed woody debris was to 

be treated was operationally infeasible due to the increased treatment time. Further, stand 147 

contained a small pocket of lodgepole pine killed by beetle, with a significant portion of downed trees 
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which were, under the original treatment specs, to be masticated heavily. This resulted in a larger 

amount of masticated fuels in plots with relatively low stand densities. 

The decision to retain stand 147 in the analysis was made to maximize the data available for 

assessment and provide a realistic portrayal of the large variability of mastication treatments. As a 

relatively new treatment option being deployed over large areas, it is likely that similar inconsistency 

in operational treatments may occur during implementation and administration of mechanical fuel 

treatments, particularly as operators familiarize themselves with prescription requirements in new 

treatment areas. However, when the treatment prescription and execution was consistent for the entire 

stand, as seen in stands 117 and 120, a clear relationship between pre-treatment trees per hectare and 

fuel loading was seen. Given the potential for variability of mastication treatments and the 

heterogeneity of stand conditions in practice, the predictive success of SDI in a “real-world” 

management scenario is valuable for future modeling efforts. 

Given the extent of our results, it remains unclear if a relationship exists between the fuel 

loading following mastication treatments and the pre-treatment stand density based solely on TPH or 

stand basal area, but SDI is a useful predictor. In mastication, the conservation of mass must be 

considered, as materials are not removed from the stand after treatment but rearranged in different 

physical forms. A larger masticated tree will understandably produce a larger amount of masticated 

material than a tree of smaller size. For example, two stands may both have similar numbers of trees 

per unit area, but one stand may have a larger average tree diameter than the other. If both stands are 

treated to the same prescription and reduced to a defined tree per unit area, it would be expected that 

the stand with the larger average stand diameter would produce heavier masticated fuel loadings. 

Accounting for both stem number per unit area and tree size in a single pre-treatment stand metric, 

SDI addresses this issue. Therefore, alternative approaches to modeling landscape scale fuel loading 

following mastication based on pre-treatment stand conditions that incorporate both stem numbers 

and size may offer improved prediction in future research and should be the focus of future study 

design and implementation. 

When assessing the fuel loading for each time-lag class (litter/duff, 1-h, 10-h, 100-h, 1000-h), 

the litter duff class showed a significant relationship for the TPH and SDI models (Table 2.5). This 

may be a result of greater stand density, leading to higher amounts of organic material and litter on 

the forest floor. In all, minimal 1000-h fuels were collected at the plots, limiting the available data for 

the particular classes and making predictions difficult. This finding corroborates Kane et al.’s [11], 

who found that the plot-based method of surface fuel sampling does not assess a large enough area to 
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effectively capture the presence of 1000-h fuels as well as planar intersect methods. This is a result of 

1000-h fuels generally occurring less frequently than other fuel classes in fuel beds. 

2.5.2. Relationship between Pre-Treatment Stand Density and Fuel Class Distribution 

As shown above (Table 2.6), only the 10-h fuels expressed as a percentage of the overall 

surface fuel loading were found to change as the TPH increased. It is unclear why the percentage of 

10-h fuels would decrease with increasing TPH, but this may be a result of changes in treatment 

implementation. For example, the operator may spend less time masticating trees to maintain 

production in a denser stand, resulting in an increase in the proportion of larger fuel classes. It would 

be expected that, with one fuel class decreasing over increasing TPH, another fuel class would 

increase. This was seen in the SDI model, where the significant decrease in 10-h fuels (coefficient = 

−0.04616, p = 0.0302) was matched by a significant increase in 100-h fuels (coefficient = 0.042089, p 

= 0.0406). With increasing stand density, it is possible the operator attempted to maintain the desired 

operational production by decreasing the time spent masticating each tree. As a result, trees would be 

masticated less thoroughly, and there would be a larger percentage of larger fuel particles. The 10-h 

fuel class accounted for the highest fuel loads across all classes by a considerable amount in our 

study, which is consistent with other studies [10], [14]. Given the variability of the mastication as a 

whole, and the wide range of fuel loadings across 1-h, 10-h, 100-h, and 1000-h fuel classes, our 

results show that the distribution of surface fuels among time-lag fuel classes was not clearly modeled 

as a function of changes in TPH and SDI alone, apart from the 10-h and 100-h classes, in the case of 

this study. 

2.5.3. Study Limitations and Future Work 

Mastication is a highly variable operation impacted by many factors, and it is understood that 

there are some limitations to the scope of our research that should be addressed in future studies. One 

factor to consider in future applications of this methodology is the pixel size at which the lidar metrics 

were predicted. In the study development, it was believed that maximizing prediction resolution was 

the best option. Mastication, however, is a variable process, resulting in a scattered distribution of 

fuels on the forest floor. The directionality, travel distance, and particle size of comminuted materials 

may be affected by the type of mastication head (disk vs. drum), equipment type (all surface vehicle 

vs. excavator carrier), equipment horsepower, boom or attachment height, local topography within the 

stand, or other factors. While the sampling method developed by Hood and Wu [17] attempts to 

address the variability in stand and site conditions by sampling across multiple quadrats within the 

same plot, what was not accounted for in our study design was the possibility of fuels from adjoining 

pixels being distributed inter-pixel. During the observation of the treatment, fuels were clearly 
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distributed more irregularly and further than anticipated. The 20m × 20-m pixels used in the plot 

selection may have been too small to limit the influence of surrounding pixels in the resulting fuels 

found during sampling. For instance, a stand with a high stand density may have resulted in fuels 

initially in the stand as standing trees being distributed to an adjacent stand of a lower stand density, 

or to areas within the same stand that were not accounted for in our sampling design. During 

sampling, it would then appear that the pixel with the lower stand density was responsible for creating 

greater fuel loads than was possible. By decreasing the resolution and increasing the pixel size, this 

may be avoided. 

In the fuel collection process, future studies should incorporate a hybrid, plot-based, and 

planar intersect method, as suggested by Kane et al. [14]. Doing so may help to ensure a more 

accurate representation of the fuel classes, as 1-h and 10-h fuels are more accurately represented in 

plot-based sampling [14], while planar intersect methods cover greater proportions of the overall 

masticated area, properly representing the 100-h and 1000-h fuels that may be missed in plot-based 

approaches [11]. Supplemental planar intersect sampling was not performed in this study due to the 

small 20 m × 20-m pixel size and the concern that sufficiently long intersect paths would extend too 

far to sample plot edges and be impacted by the distribution of fuels from adjacent pixels. Increasing 

the pixel size used in predicting the stand characteristics from the lidar, as described above, would 

enable an easier implementation of supplemental planar intersect sampling. Additionally, due to the 

variability of fuel distribution across the forest floor, plot-based sampling in future studies should use 

larger sampling quadrats than the 25 × 25-cm ones used in this study. Alternatively, a larger number 

of 25 × 25-cm sampling quadrats may also provide a greater representation of overall fuel variability 

within the sampling plot. The goal in using a smaller sampling quadrat in this study than those 

described in previous studies [17], [63] was to create an efficient and effective sampling procedure. 

However, larger quadrats will provide a greater representation of overall surface fuel loadings and 

should be studied. 

 

2.6 Conclusions 

The ability to predict surface fuel loads resulting quickly, efficiently, and effectively from 

mastication treatments is a valuable tool, as increased implementation of this management technique 

occurs. A variety of research and management questions regarding the longevity, fuel bed 

characteristics, and fire behavior within masticated fuels exist and will increase in relevance as lidar 

data become more widespread, along with the use of mastication to reduce fuels in stands where 

commercial thinning may be infeasible or more difficult to implement administratively. Existing 
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methods for predicting surface fuel loads rely on intensive, time-consuming sampling following 

treatment. While existing methods are effective for estimating fuel loading, methods based on remote 

sensing may help managers to proactively plan and predict post-treatment fire behavior over large 

areas to optimize treatments in ways that incorporate topography and stand adjacency.  

The results from this study showed that pre-treatment stand density metrics that account only 

for tree number per unit area, such as TPH, were not good predictors of resulting surface fuel loads 

following mechanical fuel treatments with the sampling design and sample size we evaluated. TPH 

prior to treatment was not directly related to the distribution of fuel time-lag classes within the fuel 

bed, although the percentage of 10-h fuels could be predicted from pre-treatment conditions. 

However, stand density index, which accounts for both the relative stem number and DBH of the 

stand, effectively predicts post-treatment fuel loading across the whole study area. Further, SDI 

predicted that as the density of a stand increases, a greater percentage of the overall fuel load 

consisted of 100-h fuels, while 10-h fuels decreased in percentage, likely a result of operational 

adjustments. Future modeling efforts to predict post-mastication fuel loading should account for both 

the stem number and stem size, as stand density alone may not provide the necessary predictive 

ability. Attempting to predict resulting fuels from the number of trees per unit area alone does not 

account for variable volumes of materials in trees of different diameters. Stand density measures, 

such as SDI, provide greater insight into stand composition and overall stand biomass, which is 

significant when predicting fuel load volumes resulting from the physical conversion of standing 

biomass to surface-based mulched materials. Two stands with identical TPH may contain varying 

amounts of biomass as standing trees, whereas it is expected that two stands with identical SDI would 

have the same amount of overall biomass given similar forest types and species. 

We believe that revisiting these methods, while taking into account the sampling 

considerations mentioned in the discussion, is an important undertaking and could lead to the 

increased implementation and effectiveness of mastication treatments. The rapid onset of lidar-

derived models to map individual-tree locations and stem characteristics, coupled with onboard 

GNSS mapping of spatially, explicit, real-time equipment activities, offer the promise of improved 

high-resolution fuel bed prediction in the immediate future. Further expanding the scope of the field 

sampling to multiple, unique forest types, operators, and prescriptions would better capture the 

variability associated with the masticated surface fuel loads. Future work should address these factors 

more closely, though the determination of their impacts will likely require sampling at a higher 

intensity than that performed in this study, or with a sampling design that directly accounts for the 

spatial resolution at which comminuted material is scattered as a function of localized stand density, 
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treatment prescription, topography, equipment type and size, and the pattern of equipment 

movements. 
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3.1 Abstract 

Mobile technologies are rapidly advancing the field of forest operations and providing 

opportunities to quantify management tasks in new ways through increased digitalization. For 

instance, devices equipped with global navigation satellite system and radio frequency transmission 

(GNSS-RF) enable real-time data collection and sharing of positional data in remote, off-the-grid 

environments where cellular and internet availability are otherwise inaccessible. In this study, 

consumer-grade GNSS-RF data were evaluated to determine their effectiveness in developing activity 

recognition models for excavator-based mastication operations. The ability to automate the 

classification of cycle elements for operations is valuable for quickly and efficiently quantifying 

production rates for research and industry applications. The GNSS-RF-based activity recognition 

model developed successfully classified productive elements versus delay with over 95% accuracy. 

Individual cycle elements were classified with an overall model accuracy of 73.6%, with individual 

element classification accuracy ranging from 51.3% for walk/reposition to 95.6% for mastication 

elements. Reineke’s stand density index (SDI), basal area (m2ha-1) of treated areas, and the duration 

of cycle elements impacted the classification accuracy of the activity recognition model. Impacts of 

forest stand characteristics on the production rate of mastication treatments were also assessed. 

Production rates (ha·hr-1) for mastication treatments were affected by the basal area of treated areas. 

However, the degree to which this would impact operations in practice is minimal. Determining the 

proper application and capabilities of mobile technologies and remote sensing for quantifying forest 

operations is valuable in continuing the innovation and advancement of forest digitalization. 

 

3.2 Introduction 

Innovative methods for production analysis of forest stand treatments provide an alternative to 

conventional time-and-motion study methods used in forest operations. Time and motion studies 

provide important information that contractors and managers can use to quantify factors affecting 

production rates and treatment costs associated with timber harvesting, thinning, or fuel reduction 
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operations (McDonald and Fulton, 2005; George et al., 2021). Historically, these studies have been 

conducted using manual recording methods, with in-person observation and timing. These methods 

are costly, time-intensive, and expose observers to safety hazards. They are also prone to 

measurement error (Olsen and Kellogg, 1983; Strandgard and Mitchell, 2015). Direct observation of 

equipment by observers may bias results by influencing operator performance and decision making 

(Nuutinen et al., 2008). Automated methods to estimate treatment production rates and costs may help 

to improve forest operations, particularly as industry seeks to advance automation and digitalization. 

  Time and motion studies support improved efficiency and reduce operational delays through 

the definition, observation, analysis and quantification of individual work elements within productive 

cycles for equipment and work tasks (Miyata, 1980; Kellogg et al., 1996; Klepac and Rummer, 2002; 

Wang et al., 2003; Wang et al., 2004; Acuna and Kellogg, 2009; Acuna et al., 2011; Alam et al., 

2013; Strandgard et al., 2014; Talbot et al., 2014; Borz et al., 2018). Using regression, relationships 

between productive cycles and stand and site characteristics are used to develop predictive production 

models for equipment (Kellogg et al., 1996; Huyler and LeDoux, 1997; Wang et al., 2004; Adebayo 

et al., 2007; Acuna and Kellogg, 2009; Acuna et al., 2011; Bell et al., 2017). Global navigation 

satellite system (GNSS) enabled devices have been used to characterize productive work cycle 

elements and perform production analysis (McDonald, 1999; McDonald et al., 2000; Taylor et al., 

2001; Veal et al., 2001; McDonald and Fulton, 2005; de Hoop and Dupré, 2006; Gallo et al., 2013; 

Hejazian et al., 2013; Keefe et al., 2014; Strandgard and Mitchell, 2015; Olivera et al., 2016) and to 

assess ground disturbance (McMahon, 1997; McDonald et al., 1998; Carter et al., 2000; McDonald et 

al., 2002) of forestry equipment. This has been done, in part, through the development of activity 

recognition models, which use movements of machines across time and space captured by GNSS 

transponders to develop relationships with productive cycle elements (Becker et al., 2017). Once 

developed and validated, these models can replace traditional field observation techniques to predict 

production rates of forest machines and can also be used for a variety of safety applications. 

Additionally, global navigation satellite system with radio frequency (GNSS-RF) can be used to 

facilitate data sharing and transfer between devices in areas that lack cellular and internet connectivity 

(Keefe et al., 2014). With this system, data is transferred between GNSS transponders via radio 

frequency which serves as a cost-effective alternative to satellite data transfer.  This system has been 

effectively used to characterize the swing movements of forestry machines with high accuracy 

(Becker et al., 2017) and logging safety applications (Grayson et al., 2016; Wempe and Keefe, 2017; 

Zimbelman et al., 2017; Newman et al., 2018; Wempe et al., 2019). 
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Many new forest machines are outfitted with integrated data collection systems that monitor 

and record machine production, logistics and diagnostics. Unfortunately, these are often proprietary, 

manufacturer-specific systems on recently built machines which limits the sharing and integration of 

data on specific job sites where the manufacturer, model, and vintage of machines working 

commonly vary. Previous studies have evaluated automated time study systems for forestry machines 

using data collected from the machine onboard computers using controlled-area network (CAN) 

hardware as the interface for a variety of sensors (Wang et al., 2003; Palander et al., 2013). Some of 

these early studies lacked real-time positional data, which provides valuable information for 

evaluating production and jobsite hazards. As methods for sharing mobile data at remote jobsites 

becomes more common, options for real-time analyses of ground workers and equipment for 

production analysis and improved situational awareness with machines is becoming increasingly 

possible. Consumer-available GNSS-RF devices or other Internet-of-Things (IoT) methods for 

location-sharing and data collection enable activity recognition methods for machines and personnel 

that are tailored to machine type (feller-buncher, skidder, processor) or work performed (tree 

planting, felling, bucking, etc.) and independent of machine specifications. This generalized approach 

to providing real-time analysis of forest operations enables universal data collection and sharing for 

forest machines and work tasks, something previously unavailable in operational forestry.  

In a preliminary study, Becker et al. (2017) used this methodology in a controlled experiment 

to determine the effectiveness of GNSS-RF for capturing the swing movements of forestry 

machinery. Equipment productive cycle elements were accurately classified in over 90% of cases, 

with data transmission frequency and swing radius of transponders having the greatest impact on 

classification accuracy. Despite their proven effectiveness in controlled studies, use of GNSS-RF 

devices for real-time activity recognition of forest equipment during active operations has received 

little attention. Accurate classification of cycle elements using GNSS-RF devices in active operations 

would support the widespread development of activity recognition model libraries and facilitate use 

of Artificial Intelligence in operational forestry. Further, improved analytics could be developed and 

made widely available using user-friendly, affordable, and transferrable devices. In addition to the 

value to contractors, automatic production sampling and processing enables the collection of large 

amounts of data more cost effectively than physical observation, giving researchers the ability to 

collect additional pertinent information about thinning, fuel reduction, or harvesting operations 

without the need for more personnel (Palander et al., 2013). To determine the efficacy of GNSS-RF 

devices as the foundational data collection method for a universal activity recognition library for 

forest operations, research is needed to assess the accuracy with which individual cycle elements can 

be characterized using this spatially explicit data. 
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 Predicting and modeling management production rates for equipment in real-time using 

activity recognition is also valuable for management planning (Keefe et al., 2014). Production metrics 

predicted from activity recognition models, if accurate, can be coupled with stand and site 

characteristics to forecast fuel treatment costs at forest and landscape levels. Topography and stand 

characteristics, including stand density and volume, impact the production of industrial forest 

operations (Acuna and Kellogg, 2009; Alam et al., 2013; Hiesel and Benjamin, 2013). Quantifying 

the impact of local variability in landscape treatment planning is an important step in the development 

of estate-level treatment optimization. Advances in remote sensing have made it possible to perform 

landscape-scale predictions of stand and site characteristics quickly and accurately. Light detection 

and ranging (lidar), specifically, is used extensively to quantify forest structure, attributes and terrain 

morphology (Falkowski et al., 2005; Reutebuch et al., 2005; Akay et al., 2009; Falkowski et al., 2009; 

Hudak et al., 2012; Wulder et al., 2012; Man et al., 2014; Silva et al., 2017). Utilizing lidar-derived 

forest metrics coupled with positional data from GNSS-RF provides new opportunities to quantify the 

relationships between the production of mechanized operations and stand characteristics. For 

example, Becker et al. (2018) showed the significant potential for characterizing the appropriateness 

of sites for logging systems at the stand and landscape scales using lidar-derived forest and site 

metrics and equipment-specific operable thresholds. These relationships can be used to support the 

pre-planning and implementation of industrial timber harvests and fuel treatments. 

With changes in seasonal weather patterns, forest health and forest composition, interest in 

mechanical fuels management treatments to address forests at high risk for severe wildfire has 

increased. Mastication is a mechanized fuel treatment that reduces the size of both standing and 

downed woody materials through grinding, shredding, chunking or mulching (Kane et al., 2006; Jain 

et al., 2008). While increasingly used, determining the efficacy of mastication fuel treatments at 

landscape scales is challenging (Huggett Jr. et al., 2008), due in part to the difficulty of accurately 

quantifying production rates and costs of these treatments. Development of tools allowing managers 

to accurately study and forecast treatment rates and associated costs could considerably improve 

preplanning of fuel treatments prior to implementation and help optimize treatment expenditures on 

federal, state, tribal, and private lands in the western United States.  

 In this study, the effectiveness of using consumer-grade GNSS-RF multi-transponder devices 

to classify work cycle activities during mechanical fuel treatments was evaluated, building on prior 

work reported in Becker et al. (2017). Consumer-grade devices were used as a surrogate for more 

advanced multi-transponder systems that may be integrated into machines in the future. Activity 

recognition modelling success was quantified to determine the impact work cycle and stand 
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characteristics had on classification success. Additionally, production rates were modeled as a 

function of lidar-derived forest metrics to determine if these metrics could be used as predictors of 

operational efficiency and cost. This research will determine the feasibility and effectiveness of 

GNSS-RF-based activity recognition modeling and will help inform future management decisions 

regarding landscape scale use of mastication treatments. These technologies may help advance 

precision forestry and increased digitalization in forest operations. 

 

3.3 Methods and Materials 

3.3.1 Study Site and Treatment Details 

All study treatment areas are located within the Orogrande Timber Sale area, located 11 kilometers (7 

miles) southwest of Elk City, Idaho in mixed conifer forest typical of the region. The study area is 

within the 18,450 hectare (45,600 acre) Crooked River lidar acquisition flown in 2012 with a pulse 

density return of ≥4 points per square meter. These data were used to develop landscape scale forest 

vegetation metrics to quantify production rates. The areas where mastication occurred were originally 

designated to be harvest units. However, transportation logistics and low appraised value led forest 

managers to use of mastication as an alternative method to reduce stand density. The masticated 

stands encompassed 50 hectares (124 acres) with two treatment prescriptions. For the purposes of this 

study, sampling and analysis was concentrated in 38 hectares (95 acres) contained within three units 

with prescribed post-treatment stand densities of 40-80 trees per hectare. The three units treated, units 

117, 120, and 147, were 13 hectares (33 acres), 15 hectares (37 acres) and 10 hectares (25 acres), 

respectively. Trees less than 18 centimeters (7 inches) were targeted for removal, with treatment goals 

of increasing average crown base height, creating space to encourage growth and vigor of residual 

future merchantable trees, and changing the fuel distribution within the stands to reduce ladder fuels 

and crown fire potential. Further, all dead and down material up to 30 centimeters (12 inches) was 

masticated. A Takeuchi TB290 compact excavator with a Fecon Bull Hog mastication head 

completed the treatments. Observation, time sampling, and GNSS-RF data collection occurred for 

two days in each of the three stands, providing three replicate measurements in similar stand 

conditions. 

3.3.2 Time and Motion Field Sampling – GNSS-RF Data Collection and Preparation 

All GNSS-RF data collection of machine movements were conducted using Garmin Alpha GNSS 

transponders and a corresponding Garmin Alpha receiver. Two GNSS-RF transponders were placed 

on the machine boom above the masticator head and at the center of the machine cab to capture the 

movements of each throughout the workday (Figure 3.1). Transmission interval for the GNSS-RF 
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transponders was set to transmit data packets to the receiving unit at the maximum frequency one 

measurement every 2.5 seconds, in order to classify machine cycle elements with the highest possible 

resolution. Becker et al. (2017) found that the 2.5 second transmission interval provided the highest 

element classification accuracy when analyzing swing movements of log loaders when compared to 

5.0 and 10.0 second transmission rates. Similarly, the transponder was placed as far out on the boom 

of the mastication machine as possible without risk of device damage. Devices located farthest from 

the cab achieve the highest classification accuracy (Becker et al., 2017). 

 

Figure 3.1. Takeuchi TB290 with the Fecon Bull Hog mastication head and the GNSS-RF multi-transponder device 

mounting locations. 

 When developing the activity profile for the mastication equipment, elemental cycle time 

observation data corresponding directly to the GNSS-RF data was recorded. A laptop computer 

synched with the nist.gov time server (NIST Internet Time Servers, 2017) was used to determine the 

start time of each productive cycle element to ensure manually recorded elements were synced with 

the time stamps derived from the GNSS-RF transponders and receiver. Two primary elements for the 

productive cycle of the mastication machine were chosen and defined: walk; and masticate (Table 

3.1).  Time and motion sampling was conducted for a minimum of four hours per day sampled. 

Table 3.1. Cycle elements for mastication fuel treatments using a compact excavator-based masticator. 

Element Description 

Walk/Reposition 

Any lateral movement of the machine cab or boom without the mastication 

head treating standing or downed material. Begins as soon as swing or 

track movement starts and ends when standing or downed material 

mastication is contacted. 

Masticate 

The act of acquiring, clearing around and masticating target trees and 

downed woody debris and brush. Element begins once treatment of a target 

tree or downed material is initiated and ends at start of next element. 

Delay 
Periods where machine was inactive and stationary due for operational, 

mechanical, or personal factors. 
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Following field data collection, spatial data from the GNSS-RF transponders were merged by 

transponder location and date of treatment for each of the three stands sampled. This resulted in 6 

days of spatially explicit data for the mastication process with two days at each of the three treatment 

stands. Observational data from the time and motion study was transcribed and then merged with the 

GNSS-RF data sets for analysis. The remaining analysis used a process similar to that used in Becker 

et al. (2017) (Figure 3.2). 

 

Figure 3.2. Flow diagram of the progression of analysis of the spatial and observed data. 

 

3.3.3 GNSS-RF Activity Recognition Model Development 

A script was written using the R statistical programming environment (R Core Team, 2020) that 

defined a rules-based, process modeling approach to productive cycle element classification based on 

machine movement and rotation in the coordinate space based on GNSS-RF derived locations from 

the boom and cab multi-transponders. The R script classifies data collected using the GNSS-RF 

transponders so that each row corresponds to a cycle element based on previously defined rules. The 

rules used to define the model accounted for the movements of the cab and boom mounted GNSS-RF 

devices independently and in relation to each other throughout the operation. These rules were 

developed based on observations of the equipment’s movements while performing the cycle elements 

during field sampling. For example, prolonged durations where the GNSS-RF remained stationary 

would indicate delay where simultaneous movement of both devices would indicate the equipment 

was walking. Classification results were then compared to cycle elements observed during the time 
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and motion study. Evaluation of model performance was completed to determine how effectively and 

accurately spatial data from two GNSS-RF devices can classify mastication cycle elements. 

Following the development and processing of all time and motion observations using the activity 

recognition modelling scripts, the proportions of correctly classified elements within the extent of 

each treatment pixel were quantified by treatment unit and element. Correctly classified elements 

were compared to the total number of observed occurrences for each cycle element to calculate 

classification accuracy. Combined totals for all units were calculated as weighted averages due to 

varying occurrences of elements in each unit. 

Delay-free production rates for the mastication treatments were determined as hectares 

treated per hour (ha·hr-1) for the three treatment units. Overall treatment extent was derived from the 

GNSS-RF transponder tracks, as it was assumed that all ground covered by the machine cab and 

boom was treated. This enabled treatment production rate to be estimated for the entirety of each 

treatment unit (117, 120, and 147) and for each individual forest metric prediction raster. 

3.3.4 Lidar Processing and Mastication Production Rate Quantification 

Characterizing relationships between stand characteristics and mastication treatment production rates 

required deriving the forest metrics of interest. In order to quickly and efficiently quantify forest 

metrics, random forest models (Breiman, 2001; Liaw and Wiener, 2002) were used to predict trees 

per hectare, stand net volume (m3ha-1), and basal area (m2ha-1) using lidar point cloud and inventory 

data from 91 forest inventory plots for the study area. These random forest models were developed 

using methods similar to those described in Becker et al. (2018) in the open source statistical analysis 

program, R (R Core Team, 2020), using the randomForests package (Liaw and Wiener, 2002). 

Random forests ensemble learning algorithms are commonly used because they provide excellent 

performance, high speed processing, the ability to reduce bias and correlation amongst trees and they 

also reduce overfitting compared to other classification and regression trees (CART) models 

(Brosofske et al., 2014; Belgiu and Dragut, 2016). This makes them a widely used machine learning 

solution (Breiman, 2002; Brosofske et al., 2014; Belgiu and Dragut, 2016; Cinaroglu, 2016). These 

random forest models were then used to develop 20 meter x 20 meter raster layers with predicted 

forest metrics for the entire Crooked River lidar acquisition extent, and more specifically the three 

stands studied in the Orogrande Timber Sale area. 

3.3.5 Statistical Analysis – Forest Metrics Impacts on Production Rates and Activity Recognition 

Linear mixed effects regression models were used to model the relationship between mastication 

treatment production rate (ha·hr-1) and lidar-predicted trees per hectare, stand density index, basal 
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area and total cubic foot volume of treatment plots using the nlme package (Pinheiro and Bates, 2020) 

in R. The general equation for mixed effect models is described as: 

 yi = Xiβ + Ziui + εi (1)  

 

 u𝑖 ~ N(0, D),      ε𝑖 ~ N(0, R𝑖), (2)  

 

where β are fixed effects, u are random effects, X is the model matrix for fixed effects, Z is the model 

matrix for random effects, ε is the vector of errors, R is the variance-covariance matrix of within-

individual measurements and D is the variance-covariance matrix of random effects (Laird and Ware, 

1982). Treatment unit was treated as random effect and random intercepts were used when fitting 

models. 

Further, mixed effects logistic regression models were used to determine if the same forest 

metrics impacted the odds of correct classification of cycle elements from the activity recognition 

model using the R lme4 package (Bates et al., 2015). An additional model was included to determine 

if the duration of the element (seconds) impacted correct classification. A response variable of 1 

indicated correct classification, 0 indicated incorrect classification, and treatment unit was once again 

treated as the random effect. The lidar-derived forest metrics and field observed element durations 

were used in this assessment. 

3.3.6 Soil Disturbance Extent 

GNSS-RF transponder tracks were used to determine the proportion of land area within treatment 

units impacted by the machine in comparison to the overall area treated. Undisturbed ground, in the 

context of our analysis, was any ground that the machine did not traverse with the tracks. The GNSS-

RF track data for the machine cab was merged to create a record of the machine’s position throughout 

the duration of the treatments in the three stands. It was assumed, due to the placement of the 

transponder, that the cab GNSS-RF transponder accurately represented the path covered by the 

machine tracks. An additional assumption made in the analysis was that the footprint of the machine 

encompassed both the ground surface in direct contact with the machine tracks and all area directly 

beneath the machine between the tracks. The machine’s footprint on the ground surface is known to 

be 6.3 square meters. Therefore, a buffer was placed along the entirety of the cab path for the three 

stands, resulting in a total area of disturbance ground surface for the treatment in square hectares. The 

proportion of disturbed ground area was determined by dividing the estimated ground disturbance 

area by total stand area treated. 
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3.4 Results 

3.4.1 Random Forest Models for Forest Stand Characteristics 

The random forest model parameter estimates used to predict 20 x 20-meter treatment unit 

characteristics from lidar are shown in Table 3.2. Based on findings from prior studies and their 

conclusions regarding model validity, random forest models where the root mean square error 

(RMSE) exceeded 50% of the prediction mean for forest metrics were excluded from later analysis in 

this study (Hudak et al., 2016; Fekety et al., 2018). The random forest models for stem density (TPH), 

basal area (m2ha-1) and stand density index models resulted in RMSEs of 46%, 42%, and 38% of the 

prediction means respectively and therefore met the desired accuracies. For the random forest model 

predicting stand volume (m3ha-1), an RMSE of 166.93 was 54% of the predicted mean and was 

therefore excluded from use in subsequent analysis. Random forest accuracies of 71.5%, 77.4%, 

74.3%, and 79.0% for trees per hectare, basal area per hectare, volume per hectare and stand density 

index respectively, were comparable to those achieved by Falkowski et al. (2010) and Hudak et al. 

(2016). Predicted stand characteristics provided the basis for regression modeling of mastication 

treatment production rate. 

Table 3.2. Random forest model quality assessment. 

Random Forest Prediction Mean RMSE R-squared Accuracy (%) 

Stand Density (TPH) 468.00 217.36 0.55 71.5 

Basal Area (m2ha-1) 30.56 12.95 0.63 77.4 

Total Volume (m3ha-1) 307.99 165.35 0.57 76.3 

Stand Density Index (SDI) 299.17 110.296 0.45 79.0 

 

3.4.2 Stand Production Rate Summaries  

Lidar-derived forest metric summaries and treatment production rate summaries including unit slope, 

area treated, and utilization rates for the three treatment units and the averages across all treated areas 

are shown in Table 3.3. Across all units the average trees per hectare was 564, with unit 120 

containing the highest stand density at 665 trees⋅ha-1. Average stand density index across all units was 

385 and the average basal area was 39 m2ha-1. A total of approximately 4.6 hectares was treated 

during sampling with an average production rate of 0.163 h·hr-1 across all units. The values given for 

each of the forest metrics were the averages calculated within the extent of the area treated during 

time and motion sampling and not the average of the entire unit. Mastication accounted for 74.8%, 

81.9% and 65.2% of the overall sampled time for unit 117, 120, and 147, respectively. The remaining 
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sampling time in the three units was split between walking and repositioning at 15.7%, 13.7% and 

9.5%; and delay at 9.5%, 4.4% and 25.3% for unit 117, 120, and 147, respectively. 

Table 3.3. Forest metric and mechanical fuel treatment production summary for the sampled portions of the treatment units. 

 Unit  
117 120 147 All 

Forest Metric Summaries     

TPH (trees⋅ha-1) 489 665 409 564 

SDI 329 405 288 358 

BA (m2ha-1) 33 49 28 39 

Volume (m3ha-1) 319 499 293 400 

Standing Biomass (ton⋅ha-1) 238.61 373.25 219.16 299.20 

Production Rate Summaries     

Avg. Slope (%) 24.0 25.0 27.0 25.3 

Treated Area (ha) 1.532 2.330 0.712 4.574 

Production Rate (ha·hr-1) 0.161 0.203 0.125 0.163 

Utilization Rate (%) 90.5 95.6 74.7 87.3 

Disturbed Area (ha) 0.506 0.576 0.269 1.351 

Disturbed Area (%) 33 25 38 30 

 

3.4.3 Activity Recognition Model 

Modelling results from the activity recognition model can be found in Table 3.4. Across all units, 

masticate, walk/reposition, and delay were correctly classified 95.6%, 51.3%, and 80.4% of the time, 

respectively.  Combined classification accuracy of all cycle elements across all units was 73.6%. The 

confusion matrix shown in Table 3.5 shows the results from the activity recognition modelling 

indicating the occurrences of true positives, false positives, true negatives, and false negatives for 

classification across all three treatment units. 

Table 3.4. Percentage of correctly classified mechanical fuel treatment cycle elements within management units. 

Unit Mastication Walk/Reposition Delay All Elements 

117 97.6 55.9 73.3 76.8 

120 96.3 52.1 71.4 74.2 

147 90.8 41.4 87.5 67.0 

All Units 95.6 51.3 80.4 73.6 
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Table 3.5. Confusion Matrix representing the results of the activity recognition model for units 117, 120, and 147. 

 

 
Actual 

 
Delay Masticate 

Walk/ 

Reposition 

Prediction 

Delay 37 47 112 

Masticate 9 1684 740 

Walk/Reposition 0 30 895 

 

In all, 3349 productive cycle elements composed of masticate and walk/reposition actions and 

37 delay elements were correctly classified. With 3,554 overall elements sampled, this resulted in an 

overall classification accuracy of 95.3% for productive and delay elements. Attempting to 

differentiate the total productive time into individual elements exposed some potential limitations of 

using GNSS-RF data for production analysis in complex, active operations.  

Compared to the 1684 successful mastication element classifications, the 77 false negatives 

resulted in a 95.6% overall classification success for mastication. There were 749 cases of false 

positive relating to the mastication element, with a majority (740) representing an actual walk and 

reposition element. This means the model overestimated mastication time. The walk and reposition 

element had the greatest number of false negative classifications across all three elements with a total 

of 852; 112 predicted as delay and 740 predicted as mastication. This was indicated by the poor 

individual classification success of the walk and reposition element of only 51% across all units.  

3.4.4 Stand Metric Impacts on Production Rates 

The results from linear mixed effects models predicting mastication production rate (ha hr-1) from 

stand characteristics at the individual pixel level for the three treatment units are found in Table 3.6. 

There was no significant relationship between production rate and stand density index (p=0.3040, 

R2=0.225) or trees per hectare (p=0.8728, R2=0.263). However, basal area did significantly affect 

production rate (p=0.0439, R2=0.199). Coefficients of determination (R2) for these models represent 

the variance of the entire mixed model including fixed and random effects (Nakagawa and Schielzeth, 

2013).  

Results from the mixed effects logistic regression models used to quantify the relationship 

between stand metrics and classification accuracy of the recognition model are found in Table 3.7. All 

individual elements were assigned a specific stand metric pixel so all individual cycle elements, either 

correctly or incorrectly classified, were associated with the specific metrics. Of the stand metrics 
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assessed, all metrics other than trees per hectare (coefficient= -4.284e-05, odds ratio = 0.9996, 

p=0.0779) impacted classification accuracy. The relationship between correct element classification 

and stand density index (p=0.0189) showed every 1 unit increase in SDI resulted in a decrease in the 

log odds of correct classification of -1.518e-03, indicating a decrease in the model’s ability to 

successfully classify cycle elements. This is supported by the odds ratio of 0.9984 which, with a value 

less than 1, indicates the same relationship. Similar significant relationships were found with basal 

area (coefficient=-2.559e-03, odds ratio = 0.9974, p = 0.0106). In the fourth model, the duration of 

element was found to have a strong significant relationship (p=<0.001) with every one- second 

increase in element duration increasing the odds of correct element classification 1.0946 times. 

Table 3.6. Linear mixed effects regression results determining the relationship between mastication production rate (ha⋅hr-1) 

and forest metrics. 

Dependent Variable 
Independent 

Variable 

Regression 

Coefficient 
P-Value R2 

Production Rate  

(ha·hr-1) 

SDI 1.167e-04 0.3040 0.225 

TPH (trees⋅ha-1) 7.310e-06 0.8728 0.263 

BA (m2ha-1) 3.495e-04 0.0439 0.199 

 

Table 3.7. Mixed effects logistic regression models evaluating whether correct cycle element classification during activity 

recognition was impacted by changes in forest stand metrics and element duration. 

Dependent 

Variable 

Independent 

Variable 

Regression 

Coefficient 

Standard 

Error 

Odds 

Ratio 
P-Value 

Correct 

Classification 

SDI -1.518e-03 6.46e-04 0.9984 0.0189 

TPH (trees⋅ha-1) -4.284e-05 2.43e-04 0.9996 0.0779 

BA (m2ha-1) -2.559e-03 1.00e-03 0.9974 0.0106 

Element Dur. (sec) 9.043e02 4.99e-03 1.0946 <0.001 

 

3.5 Discussion 

3.5.1 GNSS-RF Activity Recognition Effectiveness and Influence of Forest Metrics 

We successfully predicted the productive cycle elements of mastication treatments using spatially 

explicit data derived from two unique GNSS-RF devices during active mastication operations. These 

devices provided a simple and transferrable option for collecting and sharing location data of the 

mastication equipment, as the two devices could easily be swapped between equipment as needed. It 

was possible to determine the extent of the equipment’s movements and quantify the area of the unit 

that was treated based on the movement of the boom transponder and the area impacted by the 

machine tracks based on the progression of the transponder on the machine cab. Further, these GNSS-
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RF devices made it possible to differentiate between extended periods of delay and productive work 

elements when neither of the transponders were in motion.  

While the applied sampling rate and transponder location data used in this study enabled 

successful classification of individual cycle elements over 90% of the time for all elements in Becker 

et al. (2017), the decreased total classification accuracy of 73.6% in this study may be a result of 

multiple factors. The GNSS-RF devices used in this study record coordinates snapped to an 

approximate 1.5 meter x 1.5 meter grid, which limits the precision of the recorded positions on the 

ground. While not a concern during study design and sampling, mastication necessitated slight and 

controlled equipment movements and slow progression through the treatment units. The equipment 

rarely made large, exaggerated swing movements with the boom fully extended. This challenge was 

compounded further due to the smaller size of the equipment used during the mastication treatments. 

The equipment used in the initial study maintained a consistent boom transponder distance from the 

cab of 9.5 meters, while the maximum possible distance between the cab and boom transponders used 

during mastication was approximately 7 meters. It was possible for the boom transponder to be as 

close as approximately 2 meters to the cab device when the boom was reaching into the canopy of the 

tree or swinging to avoid residual stems during walking and repositioning. The boom was also rarely 

at full extension during mastication due to the instability this would cause associated with the weight 

of the mastication head. Because the activity recognition model relied on movements of the GNSS-

RF transponders to predict the cycle elements, the minimal equipment movements during or between 

elements limited the element characterization accuracy.  

The GNSS-RF devices used a sampling rate of 2.5 seconds which alternated transponder 

position recording every 2 and 3 seconds for a sample every 2.5 seconds on average. Across all cycle 

elements, the average element duration was 37.7 seconds equating to approximately 15 positions 

recorded per element. However, there were 299 individual element observations with a duration less 

than 4 seconds where a maximum of 2 positions was possible. Of the 3,554 total elements observed, 

753, over 20%, had a maximum representative sample of 3 positions. Unlike equipment like rubber-

tired skidders for which cycle elements consistently last prolonged periods of time, masticators 

transitioned between elements rapidly and irregularly to improve stem access and avoid obstacles in 

the dense stands. This made capturing significant positional data per element using the 2.5 sampling 

rate challenging. The strong relation between odds of correct element classification and element 

duration (Table 3.7) suggests longer element durations were more accurately predicted because larger 

samples of positional data representing them were available during modelling. Therefore, by 

increasing the sampling rate and providing more representative data points per element, model 

classification accuracy may increase as well for elements with short durations.  
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Multipath error from forest canopies and vegetation can degrade accuracy and precision of 

GNSS signals (Sigrist et al., 1999; Taylor et al., 2001; Veal et al., 2001; Bolstad et al., 2005; 

Hasegawa and Yoshimura, 2007; Devlin and McDonnell, 2009; Strandgard and Mitchell, 2015; 

Zimbelman and Keefe, 2018). While we did not examine whether the canopy cover attenuated the 

overall GNSS signal, we assessed the degree to which varying forest metrics impacted the accuracy 

of the GNSS-based activity recognition using mixed-effects logistic regression models (Table 3.7). 

While the results indicated increases in SDI and basal area reduced correct element characterization 

from the model, the practical impact does not appear to be of concern for activity recognition. For 

instance, with an odds ratio of 0.9984, an increase in the SDI of 100 would mean the elements overall 

would be 0.16 times less likely to be correctly predicted. 

To improve future element characterization using GNSS-RF-based approaches, methods for 

differential GNSS correction should be used to improve GNSS-RF accuracy and precision. Devices 

capable of faster sampling rates may also improve prediction accuracy. Further, integrating 

supplemental inertial measurement units (IMUs) that include accelerometer and gyroscope 

measurements into activity recognition models could provide additional resolution relating to intricate 

machine movements and may capture details missed by the coarser spatial data derived from GNSS-

RF transponders alone (Palander et al., 2013). The data recorded using IMU sensors are independent 

of satellite visibility and therefore are not impacted by dense forest canopies and multipath error. 

IMUs integrated into mobile technologies have been used successfully in human activity recognition 

for fitness tracking, healthcare, smart environments, commerce, and more recently for forest 

operations applications (Khusainov et al., 2013; Bayat et al., 2014; Attal et al., 2015; Shoaib et al., 

2015; Gjoreski et al., 2016; Keefe et al., 2019; Lima et al., 2019; Zimbelman and Keefe, 2021). These 

data could be used to supplement GNSS-RF location measurements that are unable to capture 

motions such as track slew while the boom and cab remain stationary. Supplementing GNSS-RF with 

IMU sensor measurements would provide additional information valuable for individual cycle 

element classification and has not been explored widely in activity recognition modeling for natural 

resource management applications. 

3.5.1 Effect of Stand Characteristics on Mastication Production Rates and Site Impact 

Production rates for each treatment unit were determined by averaging the unique production rate of 

each lidar prediction pixel. The within-pixel production rate represented the amount of area covered 

by the GNSS-RF transponder within each lidar pixel in hectares divided by the total time the 

transponder was within the extent of that pixel.  Similarly, the stand metric summaries in Table 3.3 

were those from within the area observed during time and motion sampling. It should be noted that 

the treatment unit means for the entire treatment units (Becker and Keefe, 2020) differed from the 
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areas where sampling and treatment observations occurred for this study because only a portion of the 

units were sampled during mastication. For example, the means for trees per hectare for the treatment 

units in their entirety were 530, 515 and 516 for units 117, 120 and 147 respectively, while the mean 

tree per hectare for the areas observed during mastication were 489, 665, and 409 (Table 3.3).  

As expected, there was an increase in treatment production rates within the units as the 

utilization rate increased (Table 3.3). More time spent masticating or moving within the stand versus 

being delayed would lead to faster progression and treatment of the unit resulting in higher production 

rates. Despite having the highest production rate of 0.203 ha·hr-1, unit 120 contained the lowest 

percentage of treated area impacted by the machine at 25%, while unit 117 and 147 contained higher 

percentages of site impact at 33% and 38% respectively (Table 3.3). This may be attributed to the 

machine needing to navigate more deadfall, stumps or coarse woody debris decreasing terrain 

trafficability in units 117 and 147 than in unit 120. A previous mountain pine beetle (Dendroctonus 

ponderosae Hopkins) infestation in the lodgepole pine (Pinus contorta var. latifolia Engelm.) stands 

caused mortality and deadfall in portions of all treatment units. Figure 3.3 provides a visual 

representation of the composition of the areas masticated during the time and motion sampling. While 

all stands were impacted by beetle-kill, unit 147 was the most heavily impacted, followed by unit 117. 

The intensity of downfall in unit 120 was lower than both 117 and 147. This likely contributed to less 

time spent navigating around dead and downed trees in unit 120, and ultimately higher production 

rates and a lower percentage of impacted ground during treatment.  

 

Figure 3.3. Forest structure and treatment implementation across the three mastication units. 
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Mechanical strain placed on the mastication head while masticating downed trees in unit 147 

may have led to higher treatment delays and subsequently the lowest utilization rate of all units at 

65%. The size and quantity of the downed material treated in unit 147 caused the equipment to 

overheat during mastication and required the operator to pause treatment while the hydraulic and 

mechanical systems cooled. This time compounded throughout the workday.  Though not quantified, 

the findings of this study suggest deadfall and coarse woody debris played a significant role in the 

production rate and treatment of these mastication units. Unfortunately, due to operational constraints, 

deadfall was not quantified during sampling. Future research should include sampling procedures that 

quantify and map these materials to determine their impact on the production rate of small, tracked 

equipment similar to the masticator used in this study. 

  While representing the highest production possessing the highest rate at 0.203 ha·hr-1, unit 

120 also contained the highest values for all stand metrics. Conversely, unit 147 represented the 

lowest value for all metrics and the lowest production rate at 0.125 ha·hr-1. This was seemingly 

supported by the linear mixed effects analysis, in which a significant relationship between production 

rate and basal area was found. However, despite being statistically significant, the overall impact of 

these variables on production rate is operationally insignificant. A 1 unit increase in basal area per 

hectare would result in an increase in production rate of 0.0003495 ha·hr-1. For instance, to double the 

production rate originally determined for unit 147, the existing basal area would need to more than 

quadruple. This result is also contrary to the general expectation that increases in basal area would 

lead to reduced area treated per hour due to larger amounts of biomass per hectare requiring treatment 

to achieve the desired prescription. Additional factors including slope, site topography, and soil type 

may have influenced production rates. While not addressed in this study, future work should include 

these site factors into the analysis.  

Despite the challenges associated with the classification of individual cycle elements with 

high accuracy, GNSS-RF transponders were shown to provide a consumer-available solution for 

activity recognition for mastication treatments that effectively classified the difference between delay 

and productive elements over 95% of the time. Similar challenges with element level classification in 

GNSS-based models was found in operational settings (Wang et al., 2003; McDonald and Fulton, 

2005; de Hoop and Dupré, 2006; Strandgard and Mitchell, 2015).  While the preliminary study using 

GNSS-RF for element classification by Becker et al. (2017) justified further research consideration, 

this study exposed more challenges and limitations associated with operational implementation of 

consumer-grade GNSS-RF for individual element-level activity recognition. However, in remote, off-

the-grid environments, RF enabled components still provide reliable and real-time data collection and 
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sharing capabilities which should not be overlooked. Recent improvements to GNSS accuracy using 

real-time correction (RTK) methods, sampling rate, and the integration of inertial measurement units 

(IMUs) in some available tools address previous limitations identified in this study and these devices 

should be reconsidered for use in real-time element level activity recognition modelling.   

With advances in the accuracy and prediction capabilities of remotely sensed data, future 

modelling of production rates should incorporate individual tree detection and delineation metrics 

derived from lidar. Individual tree segmentation enables the estimation of tree metrics including 

diameter, height, and volume (Yu et al., 2010; Silva et al., 2016), which have been shown to influence 

the production rates of harvest operations (Kluender et al., 1998; Magagnotti et al., 2013; Parajuli et 

al., 2020). Each individual tree has a known location and given accurate machine location 

information, these two sets of coordinates may be matched to predict tree-level production metrics 

based on individual tree characteristics. GNSS devices have been shown to accurately record tree 

positions during harvest in previous studies, which is a promising result in the push to further advance 

precision forestry and management intensity (Kaartinen et al., 2015; Hauglin et al., 2017; 

Noordermeer et al., 2021). This would enable treatment production rate to be quantified at the 

individual tree level and regression models could be developed to predict operational productivity at 

the same scale. Tree-level production rate estimates resolve issues associated with the inability to 

sample for the entirety of an operation or to model unexpected or unsampled stand variables such as 

deadfall that can arise using area-based estimation approaches. These models could then be applied to 

any area where individual tree detection and delineation are available. This research opportunity 

should be pursued and provides opportunity to advance precision forestry and operations logistics. 

 

3.6 Conclusion 

The GNSS-RF based activity recognition model developed in this study successfully classified 

productive elements versus delay with over 95% accuracy. The three cycle elements defined were 

correctly classified 73.5% of the time which is a promising result for activity recognition using 

consumer-available GNSS-RF devices. The duration of the elements was the largest factor impacting 

cycle element classification success, with increases in element duration leading to increases in model 

performance. Increases in SDI and basal area per hectare were found to decrease the classification 

success of the activity recognition model though the impact on activity recognition was insignificant. 

When analyzing production rates of the mastication treatments, increases in basal area were shown to 

increase the production rate. However, this weak relationship is unlikely to be operationally 

significant. 
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Continued advances in remote sensing, mobile and GNSS-capable technologies is 

encouraging a paradigm shift from a stand level, area-based management to a precision forestry and 

individual tree-centric approach to forest management and operational digitalization. Applying these 

resources into the planning, implementation and assessment of forest management practices will 

enable the innovation, growth, and improvements necessary to address current and future challenges 

of sustainable forest management. Developing consumer-accessible and flexible technological 

solutions, like the one assessed in this study, may increase the application and utilization of these 

resources, and provide greater opportunity for contractors, researchers, and land managers to advance 

their fields and ensure their continued and increased effectiveness. 
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4.1 Abstract 

Activity recognition modelling using smartphone Inertial Measurement Units (IMUs) is an 

underutilized resource defining and assessing work efficiency for a wide range of natural resource 

management tasks. This study focused on the initial development and validation of a smartphone-

based activity recognition system for excavator-based mastication equipment working in Ponderosa 

pine (Pinus ponderosa) plantations in North Idaho. During mastication treatments, sensor data from 

smartphone-based gyroscopes, accelerometers, and sound pressure meters (decibel meters) were 

collected at three sampling frequencies (10, 20, and 50 hertz (Hz)). These data were then separated 

into 9 time domain features using 4 sliding window widths (1, 5, 7.5 and 10 seconds) and two 

window overlaps (50% and 90%). Random forest machine learning algorithms were trained and 

evaluated for 40 combinations of model parameters to determine the best combination of parameters 

assessed. 5 work elements (masticate, clear, move, travel, and delay) were classified with the 

performance metrics for individual elements of the best model (50 Hz, 10 second window, 90% 

window overlap) falling within the following ranges: area under the curve (AUC) (95.01% - 99.90%); 

sensitivity (74.90% - 95.58%); specificity (90.83% - 99.93%); precision (81.12% - 98.27%); F1-score 

(81.87% - 96.91%); balanced accuracy (87.41% - 97.70%). Smartphone sensors effectively 

characterized individual work elements of mechanical fuel treatments. This study is the first example 

of developing a smartphone-based activity recognition solution for ground-based forest equipment. 

The continued development and dissemination of smartphone-based activity recognition models may 

assist land managers and operators with ubiquitous, manufacturer-independent systems for continuous 

and automated time study and production analysis for mechanized forest operations. 

 

4.2 Introduction 

Time and motion studies are used widely in forest operations and provide insight for 

improving efficiency and reducing delays in forest operations through the observation, analysis, and 

quantification of productive cycles and work elements [1–11]. Traditionally, harvest cycle times and 
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individual elements are estimated using stopwatches, video recorders and handheld data loggers [12]. 

These studies are often labor intensive and cost prohibitive due to the manual, observational sampling 

they require. The application of production functions and treatment cost simulation models developed 

from time and motion studies with associated machine rate estimates is often limited in scope due 

these constraints [13,14]. The methods by which productive work is defined in forestry and natural 

resource management are rapidly evolving, where traditional sampling techniques are increasingly 

replaced by less labor-intensive methods resulting from advances in real-time spatial data collection, 

activity recognition, remote sensing, and wearable and mobile technologies [15].  

 In forest operations, global navigation satellite systems (GNSS) have been successfully used 

in various forestry applications to automate the sampling of machinery, aid in production analysis, 

monitor the movements of ground workers and assess machinery and ground-worker interactions for 

both safety and production purposes in lieu of  or in support of traditional time and motion methods 

[16,17]. GNSS-supported approaches for production analysis have been developed for timber 

harvesting equipment including skidders [18–22], forwarders [14], and cable logging carriages [23]. 

Use of GNSS in forest operations research works particularly well for equipment such as forwarders 

and skidders due to the large distances they cover and the relationship of their movements, speed and 

location with their productive activities [14]. In most harvester studies, Standard for Forest Data 

(StandForD) and CAN bus data have been used in combination with GNSS devices to perform 

production analysis [12,24–26]. Further, Carter et al. successfully used GNSS to monitor traffic 

intensity and soil impacts resulting from timber harvesting [27].  

 One limitation of many basic GNSS devices is the inability to share and process data in real-

time independently of additional hardware, limiting their usefulness for production analysis where 

immediate feedback and processing may be desired.  GNSS-RF uses radio frequency to transmit and 

share data in real-time independent of cellular and satellite infrastructures, enabling data sharing in 

remote work environments and off-the-grid scenarios. The use of these technologies for improving 

safety and situational awareness in forest management and logging scenarios has received significant 

interest [28–31]. Further, real-time communication between multiple GNSS-RF devices has 

successfully been used to assess independently moving components of a single machine to 

characterize productive work elements [32]. Unfortunately, quantifying GNSS-RF-derived productive 

cycles classification of component work elements has been shown in certain instances to be limited 

by the spatial resolution and accuracy at which data can be recorded [32]. GNSS accuracy 

degradation due to multipath error from dense forest canopies or topography further limits the extent 



73 

 

 

spatially explicit data can be used for production analysis in forest operations [14,16,19,33]. This may 

prohibit the exclusive use of GNSS-based devices for data collection and production representation 

where high-accuracy position, navigation, and timing (PNT) data are required to ensure worker safety 

and effective work assessment [34]. In response, additional data inputs may be necessary to increase 

the robustness of production models and ensure their improved accuracy and utility across varying 

sites and applications. Sensor-based data, including those derived from triaxial accelerometers and 

gyroscopes, provide a rich, high resolution, and highly descriptive data source for characterizing 

equipment activities. Wearable and mobile devices, including smartphones and smartwatches, are 

regularly equipped with inertial measurement units (IMUs), GNSS chipsets, and other sensors 

providing valuable information regarding the environment in which the device is located [35,36]. 

Inertial measurement units (IMU) contain both a triaxial accelerometer and gyroscope and enables the 

measurement of acceleration and angular velocity along three orthogonal axes and are regularly used 

in activity recognition modelling [37]. 

 Activity recognition refers to the prediction of an individual’s actions based on sensor-

derived data capturing their movements or other biophysical characteristics and was first deployed in 

the lifecare and wellness industries in the 1980’s [38]. The ubiquity of smartphones and smartwatches 

has led to rapid expansion in their use for human activity recognition modeling techniques 

characterizing physical activities. Data collected from smart device-based accelerometers, gyroscopes 

and sound pressure meters have been widely used successfully in various human activity recognition 

applications [35,36,39,40]. This includes uses in healthcare, behavior modelling, commerce, traffic 

condition monitoring, transportation identification, intelligent environments, fall detection, and to 

assess the wellness and fitness of athletes [36,40–48]. Zhang et al. [49] and Akhavian and Behzadan 

[50] studied the use of smartphones for activity recognition and classification in the construction 

industry, showing the ability of smartphones to detect and define various human-performed work 

activities. While sensor-based activity recognition has proven effective, model development and 

evaluation in the natural resource management field provides new opportunities to quantify and log 

both human and equipment-based work activities simultaneously within a common framework. 

Research on the development of mobile, consumer accessible activity recognition solutions based on 

smartphones and smartwatches is lacking.  

 Previous work in activity recognition modelling using accelerometers, GNSS devices, and 

gyroscopes in natural resource industries has examined applications for motor-manual felling, motor-

manual willow coppice operations, bandsaw mills, and carriages in cable logging operations [11,51–
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54]. Pierzchala et al. [55] used a combination of smartphone derived IMU and GNSS data, video 

recording and real-time data transfer using tethered onboard computers and a wireless local area 

network (WLAN) to perform automatic work phase recognition and subsequent quantification for a 

cable logging carriage with activity segmentation success of 78%.  Keefe et al. [39] was the first 

successful use of stand-alone smartphone-based data collection for the development of human activity 

recognition models in forestry by assessing manual fallers in industrial forest operations. Using a 

single smartphone secured to the belt of a timber faller, the activity recognition model characterized 

manual felling work elements and delay with accuracies between 65.9% and 99.6%.  More recently, 

smartwatch sensors were successfully used to develop activity recognition models for rigging crew 

workers setting and disconnecting log chokers on active cable logging operations [56]. These new 

smart device-based activity recognition applications show promise for further integration into the 

forest industries, and there is a significant need for continued development of models for real-time 

production analysis and logistics. For new automated technologies to be used for time study research 

purposes, McDonald and Fulton [20] suggested several requirements need to be met: 1.) It must be 

unobtrusive, simple, and easy to implement; 2.) It must be applicable for a wide range of machinery 

and site conditions without need for major reconfiguring; 3.) It must be durable and robust; and 4.) It 

must produce data of comparable accuracies to that collected by a skilled field crew. Smartphones 

and smartwatches have been shown to provide a technological solution capable of addressing and 

fulfilling these evaluation metrics. 

 There is no currently published research on the development of stand-alone smartphone-

based activity recognition models for predicting work cycle elements and production rates of forestry 

equipment. Smartphones are an attractive choice for activity recognition model development due to 

their ubiquity, unobtrusiveness, ease of use, portability, high storage capacity, powerful computing, 

powerful embedded sensors, low energy consumption, extensive developer support and 

programmable capabilities [57–59]. Production and logistic monitoring systems for collecting and 

processing data regarding machine and operator condition and performance are now integrated into 

new forest equipment from the manufacturer and exist for harvesters, forwarders, and other 

equipment [24,25,55]. However, in most instances in the United States, these are typically machine 

specific, proprietary hardware and software systems that are limited to a single machine, application, 

and manufacturer. Mobile activity recognition tools using smartphone-based IMUs present a 

standalone, mobile solution enabling integration, utilization, and customization for a wide range of 

mechanized equipment and work activities through a single device, similar to fitness tracking 

applications. Forest equipment movements entail unique, but significant, actions including lateral 
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movements, swings, hydraulic boom manipulation and hydraulic cutting or processing head 

operations. The distinct work elements and the cycles they comprise may enable the development of 

activity recognition-based applications based on equipment movements within their environments. 

Accurately capturing, recording, and characterizing the elements of equipment is key to 

successful activity recognition development and opens the door to correlating equipment productivity 

analysis to environmental and site characteristics. However, the production and costs of mechanized 

felling, skidding and processing equipment are directly impacted by forest stand metrics (tree size, 

stand density, undergrowth) and geophysical attributes (slope, rocks, debris, soils) [6,8,60]. 

Representing geographic and forest characteristics and their resulting impacts on equipment 

trafficability, tractability and production is also important for developing accurate, reliable, and robust 

activity recognition models for automating work activity characterization.  

Remotely sensed data may be used support activity recognition model development by 

providing descriptive information related to site and stand conditions within the work environment. 

Light detection and ranging (lidar) is widely used across land management disciplines including 

forest, range, and fire management for quantifying vertical forest structure, succession and other 

forest attributes and terrain morphology [61–69]. Accurate inventories of existing geophysical and 

ecological conditions across various temporal and spatial scales from lidar has great economic and 

ecological implications for land management agencies and forest industries [70].  In forest operations, 

lidar has been used to locate skid roads, log landings [64], detect disturbance related to harvest [71–

73], quantify harvesting productivity [8], delineate harvest units and cable corridors [74,75] and 

perform harvest system classification [76]. Additionally, Maltamo et al. (2019) assessed the accuracy 

of stand stem distributions derived using single-tree data from a harvester with an integrated 

positioning system and lidar metrics [77].  

Area-based and individual tree-based approaches for deriving forest information from lidar 

data have both been widely studied and compared [78–82]. With improvements in lidar technologies 

and increased pulse densities, individual tree-based methods for analysis of lidar have increased 

rapidly [83]. Pulse densities of 5-10 per square meter enable the efficient detection and segmentation 

of individual trees, and many current lidar acquisitions are easily within or exceed this pulse density 

[78]. Single tree detection and delineation is not becoming a common tool for forestry applications 

including individual tree demography, growth modelling, wildlife habitat classification, ecosystem 

modelling, fire behavior modelling, growth and yield modelling, and precise biomass measurements 

for inventory and operational applications [84–86]. Individual tree metrics including height, diameter 
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at breast height (DBH), canopy base height, crown condition, crown area, biomass, stem volume and 

species can be derived from segmented tree data [63,70,78,87]. However, to effectively use these 

high-resolution, remotely sensed data for forest operations application, it is necessary to accurately 

position equipment in the forests during operations. Lidar-derived products, when properly processed, 

have high geographic precision and accuracy, while positional data derived from GNSS-based 

devices can return high positional error. The inaccurate positioning of equipment in relation to 

remotely sensed products may lead to invalid assumptions regarding relationship between these two 

data types and ultimately limit the utility of these powerful data. The efficacy of integrating these two 

data sources for work and management assessment needs to be examined.  

The combined use of smart devices and lidar-derived products for data collection and 

interpretation will progress precision forestry and its applications in forest operations. Precision 

forestry, which commonly utilizes remotely sensed data sources and analysis, is the forest 

management technique emphasizing data-intensive and innovative practices, technologies, and 

processes to increase productivity, reduce costs, reduce negative site impacts resulting from 

management, and increase overall forest management success [88,89]. These concepts are used in 

many applications including forest inventory and forest planning and have many opportunities for 

advancing industrial forest operations, as described above, while also allowing forest management 

planning and implementation at microsite levels [18]. Advances in precision forestry will provide 

greater insight into operational trends, processes, production, and machine interactions during logging 

operations for both production and safety analysis. In turn, this may lead to more sustainable, 

efficient, and safe forest operations.  The expansion of smartphone and mobile-based internet of 

things (IoT) in forested environments through activity recognition will help evolve the definition, 

monitoring, and assessment of work in the woods.  

This study focuses on the development and validation of a smartphone-based activity 

recognition modelling framework for forestry equipment. These initial efforts in developing 

equipment specific, smartphone-based activity recognition models will be conducted for an 

excavator-based masticator. Random forest machine learning algorithms will serve as the foundation 

for these activity recognition models and variable model parameters (sliding window, window 

overlap, and sampling rate) will be examined to determine their impact on model performance. 

Additionally, this study will evaluate the efficacy of matching equipment locations derived from 

consumer-grade GNSS-RF devices to lidar-derived individual tree locations to identify treated stem 
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locations. Success in identifying treated stems would enable the quantification of relationships 

between individual tree characteristics and productive cycle elements for mastication.  

The development, validation and future dissemination of the smartphone-based activity 

recognition models will assist land managers and operators by providing a ubiquitous system for 

continuous and unattended time study and analysis of mastication fuel treatments. Additionally, 

successful integration of lidar-derived single tree inventories and location-enabled activity 

recognition may enable the enhanced evaluation of forest and operational factors affecting production 

and costs in real-time while simultaneously providing data which can be used in planning and 

implementation of future forest operations and management.  Identifying masticated trees within a 

stem map also allows for accurate predictions of residual stand stocking and conditions which is 

valuable for long-term management and planning. 

 

4.3 Methods 

4.3.1 Study Site 

Three replicated stands on the University of Idaho Experimental Forest (UIEF) were sampled 

as part of a larger fuels management operation with treatment units located in three of the main UIEF 

management units: Flat Creek; West Hatter; and East Hatter. The UIEF is located approximately 20 

kilometers northeast of Moscow, Idaho in the Palouse Range. All sampled stands were approximately 

25-year-old ponderosa pine (Pinus ponderosa) plantations established following a clearcut timber 

harvest and subsequent prescribed burn. The primary treatment objective was the reduction of stand 

density to a tree spacing of 5 x 5 meters using mastication. This pre-commercial treatment focused on 

reduction of stand density, treatment of western pine beetle damage, and hazardous fuels reduction 

for the residual stand. 

4.3.2 Mastication Sampling and Field Procedures 

A time and motion study was performed within the three stands to facilitate the observation 

of mastication work cycles with corresponding and simultaneously collected smartphone sensor data. 

Treatments were with a tracked excavator (Kobelco ED150) running a hydraulic disk mastication 

head (Promac Brush Cutter). Due to hazardous conditions for observers during mastication and the 

density of the stands, traditional time and motion observational sampling was supplemented with 

video recording captured by two Garmin Dash Cam 45 devices placed within the cab of the machine. 

These devices provided time-stamped video and audio recordings, enabling productive work cycle 
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classification while increasing observer safety and reducing sampling errors associated with poor 

visibility, observer inattentiveness, or element misclassification. GNSS-RF multi-transponder devices 

with sampling intervals of 2.5 seconds were secured outside the cab of the equipment to record 

equipment movements and treatment progression throughout sampling. Data recorded from these 

devices was shared in real-time via radio transmission to a handheld receiver. 

 Google Pixel smartphones were used to collect the sensor data necessary for activity 

recognition modelling. These devices were placed within the cab of the machine oriented with the 

rear of the phones facing the front windshield. The AndroSensor application [90] was used to record 

the IMU and other smartphone sensor measurements. Within the AndroSensor application, the data 

sampling rate was set to three frequencies on the phones used: 10, 20, and 50 hertz (Hz). The 10, 20, 

and 50 Hz sampling rates recorded information every 0.1, 0.05, and 0.02 seconds respectively. 

Placement of all devices on the equipment used in field sampling is shown in Figure 4.1.  

 

Figure 4.1.  Smartphone, camera, and GNSS-RF transponder device locations on the masticator 

In human activity recognition, sampling frequencies vary greatly from 1 Hz [91] to 200 Hz 

[92,93]. 50 Hz is used widely for capturing dynamic activities [57,94], though 20 Hz has been shown 

to provide acceptable recognition accuracy while also preserving smartphone battery life 

[36,44,45,95]. While decreasing sampling rate can increase the battery life of devices, reducing 

frequencies too drastically can limit the potential for achieving accurate activity recognition [91]. 

Collecting data at a high sampling rate (50 Hz) enables the data to be downsampled to lower 

frequencies allowing for additional analysis [59,96,97]. Therefore, the 50 Hz sensor data was 

downsampled to 20 Hz and 10 Hz to determine if downsampled data returned similar activity 

recognition classification results as natively sampled signals of the same frequencies.  
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 Sensor data for acceleration, linear acceleration, orientation, and sound level was measured 

during field sampling using the Google Pixel. The IMU in the smartphone is a combination 

accelerometer and gyroscope that detects triaxial acceleration measurements in the x, y and z 

directions in meters per second squared (m s-2), triaxial linear acceleration measurements in the x, y 

and z directions in meters per second squared (m s-2), and triaxial orientation or tilt using the 

gyroscope in radians per second (rad s-1). Sound pressure levels were measured in decibels (dB) using 

an integrated sensor. Each recorded data point is assigned a date and time stamp recording the year, 

month and day and the associated hour, minute, second and millisecond (Y-M-D h:m:s:SSS).  

 Productive work cycles and cycle elements were defined using the audio and video 

recordings obtained from the dash cameras used during sampling and were subsequently merged with 

smartphone-derived sensor data. Cycle elements for the masticator are described in Table 4.1 below.  

 

Table 4.1. Cycle elements used for the mastication time and motion sampling. 

Element Description 

Move 
Starts when machine begins track or boom movement to successive masticating 

or clearing element and ends once head contacts material 

Masticate 
Starts when mulching head contacts standing tree and ends when tree bole is 

fully masticated. 

Clearing 
Starts when machine initiates mulching or moving downed trees, shrubs, etc. and 

ends when machine starts subsequent element 

Travel 
Prolonged machine walking within previously masticated area from one 

mastication location to the next 

Delay 
Any interruption to the productive cycle that falls outside previously described 

elements 

 

4.3.3 Activity Recognition Modelling and Assessment 

4.3.3.1 Smartphone-derived Sensor Data Processing 

Activity recognition modelling using Random Forests and other shallow learning algorithms 

primarily consist of four main phases: data collection; segmentation; feature extraction and selection; 

and classification [36,58,98]. Once data is collected, extracted from the smartphones, and work 

elements for the entirety of the data set are manually added to the data based on corresponding time 

stamps, data was imported into the R statistical programming environment where all remaining 

analysis and modelling occurred [99]. The segmentation phase of activity recognition entailed 

dividing the full data set into smaller time segments to simplify data retrieval and consisted of two 

steps; signal preprocessing and windowing [36,58]. The Google Pixel accelerometer and gyroscope 
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recorded raw data across three axes (x,y,z) enabling the detection of orientation changes. To reduce 

the impact of influence on activity recognition performance, the vector magnitudes of the three-axis 

sensors were calculated using equation 1 [98,100,101]. This resulted in single orientation independent 

measures for acceleration, linear acceleration, and orientation/tilt. 

𝑎 =  √𝑎𝑥2 + 𝑎𝑦2 + 𝑎𝑧2      (1) 

In activity recognition, sliding windows are often used to segment data into set time series 

where defined time domain features are calculated [36,37,42,44,45,94,102]. Studies have examined 

and compared model accuracies using multiple window sizes ranging from 1 to 13 seconds 

[39,42,44,56,91,94,102–109]. Activity recognition accuracy is greatly influenced by window size, 

with windows that are too short not covering the extent of the activity being classified and windows 

that are too long overlapping multiple unrelated activities [45]. Based on past research and our study 

objectives, four different windows (1, 5, 7.5 and 10 seconds) were assessed in an attempt to balance 

the ability of short windows to recognize simple activities and the ability of longer windows to 

capture less repetitive activities effectively [36,39,110]. The assigned window size is passed through 

the entire data set incrementally, with either overlapping or non-overlapping windows [111]. The 

strength of the impact that window size has on classification is dependent on how much subsequent 

windows overlap [45]. While overlap enables the classification of activities in smaller time intervals 

than the window, it does require greater computational capacity than non-overlapping windows [103]. 

50% window overlap is commonly used in activity recognition modelling [37,42,50,94,109,110], 

though other window overlaps, including 90%, have been used successfully [39,56,104,108]. Both 

50% and 90% overlapping windows were selected for this study. 

Within each sliding window, time domain features were derived using mathematical and 

statistical techniques [112]. The nine time domain features calculated included mean, maximum, 

minimum, kurtosis, variance, standard deviation, skewness, root mean square (RMS) and signal 

vector magnitude, comparable with those used in Zhang et al. [49], Keefe et al. [39], Shoaib et al. 

[110], and Zimbelman & Keefe [56]. Mean is a versatile metric for various types of sensors for 

discriminating between rest and activity in multi-activity recognition and assists in preprocessing data 

by removing random spikes and noise [45,112]. Similarly, RMS, signal vector magnitude and 

standard deviation are all effective statistics for activity classification and distinguishing between 

periods of rest and activity [45]. Skewness is used to measure “the degree of asymmetry of a 

probability density curve compared to the average” [49]. The overall purpose of sampling and data 
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collection of various sensors is not to restore the raw signals of activities, but to detect different 

activities according to their statistical properties through use of the aforementioned time domain 

features [91]. That is why selection of appropriate time domain features for activity recognition is 

important.  

4.3.3.2 Random Forest 

Following windowing, data was separated into training and testing sets with a 70/30 split, 

respectively, to provide an unseen partition of data for final model assessment. Stratified random 

sampling was applied to each cycle element class to preserve element distribution ratios between 

testing and training data. Random forest (RF) was selected to develop machine learning algorithms 

for the productive cycle element classification. RF is an ensemble classifier that produces multiple 

decision trees using bagging and randomly selected subsets of training samples and variables to 

provide a majority vote from which a prediction is made [113–117]. Excellent classification results, 

speed of processing, and the ability to reduce bias, correlation, and overfitting compared to other 

classification and regression trees (CART) models make RF one of the most widely used machine 

learning methods available [117–120]. In activity recognition modelling, random forest has been 

widely tested with high levels of resulting classification success [39,42,46,49,56,101,102,104,107]. 

Performance was found to exceed 90% in instances when using multiple smartphone-based sensors 

and RF classifiers [35,49].  

Forty unique RF algorithms were developed to account for all combinations of sampling rate 

(10 Hz, 20 Hz, 50 Hz, 10 Hz downsampled, 20 Hz downsampled), window overlap (50% and 90%), 

and sliding window length (1 second, 5 seconds, 7.5 seconds, 10 seconds). The workflow for all data 

processing and model development is found in Figure 4.2. The R package caret (version 6.0-88) was 

used for all random forest training and development [121]. Hyperparameters, specifically mtry and 

ntree, are adjustable components of random forest which can increase the performance of algorithms 

when properly tuned. The mtry parameter determines the number of variables split at each node of the 

decision trees and ntree is the number of trees used in the forest [117]. Repeated k-fold cross 

validation with 10 folds and 3 repeats was used on training datasets to train and validate mtry and 

ntree values for the machine learning algorithms. Mtry values (1-25) and ntree values (1-550) were 

assessed during this process. The final selected value for mtry was chosen based on the maximum 

accuracy achieved. For ntree, it is understood that prediction accuracy increases at a decreasing rate 

as trees are added and larger values for ntree increase computational demands [113]. To balance 

processing time and model performance, ntree was selected by determining the point at which out of 
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box error (OOB) and accuracy (%) of the model stabilized [122]. These hyperparameter values were 

then applied to the final training of the random forest algorithms which were then used to predict the 

test data.  

 

Figure 4.2. Activity recognition modelling data inputs and workflow. 

 

The multiclass area under the curve (AUC) of the receiver characteristic operator (ROC) was 

used to evaluate the individual element characterization and overall activity recognition algorithm 

performance using the multiclass.roc function of the R pROC package (version 1.17.0.1) [123]. This 

measure of performance is commonly used for binary and multiclass classification algorithms [124–

127] and performs well when working with imbalanced datasets [56,125,128–130]. The AUC for 

ROC represents the probability of a classifier ranking a randomly drawn positive before a randomly 

drawn negative [131]. In general, AUC provides an aggregate measure of classifier performance 

across all thresholds. This value falls between 0 and 1, with higher values indicating better 

performance [132]. AUC’s between 0.5 and 0.7 are considered low accuracy; 0.7 and 0.9 are 

moderate accuracy; and accuracy is considered high when AUC exceeds 0.9 [124]. These values were 

converted to percentages. The AUC of all 40 trained random forest models were compared to 

determine which combination of window size, window overlap, and sampling frequency returned the 

highest AUC. The highest value indicated the best performing model overall. 

 Final model performance was also assessed using the confusionMatrix function in the caret 

package [121]. Five metrics quantifying the classification success of the activity recognition models 

per cycle element were provided by this function: sensitivity, specificity, precision, F1, and balanced 
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accuracy. These accuracy metrics were used to determine the impact of sliding window, window 

overlap, and sampling frequency on activity recognition performance. Sensitivity, also referred to as 

recall, is the true positive rate and represents the percentage of instances where an element was 

correctly classified [125]. This metric is calculated by dividing the number of true positives by the 

sum of the true positives and false negatives. Specificity is the true negative rate and is the percentage 

of negative instances correctly classified [125]. To calculate specificity, the number of true negatives 

is divided by the sum of the true negatives and false positives. Precision is used to capture the 

percentage of classified elements that represent an actual occurrence of that element and is calculated 

by dividing the number of true positives by the sum of the true positives and false positives [125]. In 

a basic sense, precision represents how sure one can be of their true positives, while sensitivity 

represents how sure one can be that no positive classifications are missed for a particular class. F1-

score, or F-measure, combines the sensitivity and precision into a single performance metric and 

represents the harmonic mean of these two metrics [132–134]. This is the most common performance 

metric used in unbalanced classification problems [135–137]. The value of the F1-score ranges from 

0 to 1, with values close to one indicating high classification performance [132], though they can 

easily be converted to a percentage scale and were in this study. Finally, the balanced accuracy was 

found for each model which combines the sensitivity and specificity metrics to find their average and 

works well with balanced and imbalanced data [132]. The equations for F1-score and balanced 

accuracy are found in equations 2 and 3 where F1 is the F1-score, and BA is the balanced accuracy. 

 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
    (2) 

𝐵𝐴 =  
1

2
 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) (3) 

 

4.3.4 Lidar Point Cloud Processing Procedures 

Airborne laser scanning (ALS) is a commonly used lidar acquisition method for natural 

resource applications and derived products include terrain elevation, vegetation heights, stand 

volume, tree density, and tree species identification [67,68]. The ALS data used in this study were 

collected using an Optech Galaxy Prime Lidar system mounted on a fixed-wing aircraft. This was 

part of a 9,363 km2 (3,615 mile2), multi-agency, state-wide, lidar acquisition performed by Atlantic 

LLC in October 2019. Nominal point spacing of 0.33 meters and an average nominal pulse density of 



84 

 

 

9.11 pulses m-2 was achieved. Individual tree detection and segmentation derived from the lidar point 

cloud was performed by Northwest Management Incorporated (NMI) using a proprietary software 

and processing workflow associated with NMI’s ForestView™ software [138]. This point-based lidar 

processing resulted in a full coverage stem map for the four main University of Idaho Experimental 

Forest (UIEF) management units. In addition to individual stem coordinates, each segmentation 

provides species, height (m), crown height (m), diameter (cm), crown diameter (m), and gross volume 

(MBF). It should be noted the 9.11 pulses m-2 point cloud density used to develop the individual stem 

map using NMI’s ForestView™ software was a trial using lower resolution pulse densities. Standard 

applications of this software use point densities of 16-20 pulses m-2 on average but were unavailable 

for the study area at the time of sampling. 

4.3.5 Cycle Element and Individual Stem Location Matching 

Quantifying intensive equipment production that accounts for individual tree characteristics 

requires matching individual mastication events and tree locations. The machine’s location for each 

mastication element was determined by aligning the time series data for the GNSS-RF transponders 

and observed time and motion data. Once the equipment location for each mastication element was 

determined, it was then necessary to locate feasibly treated stems within the treatment zone of the 

masticator at that point in time. The equipment used had a maximum boom reach of approximately 9 

meters. A circular buffer of 7 meters placed around the cab’s locations for each mastication element 

enabled the filtering of trees to include only those within the equipment’s reach. 7 meters was used 

because the mastication of standing trees does not enable the full boom extension, thus limiting the 

overall reach of the machine. 

Potential target trees were further filtered by accounting for the orientation of the machine 

cab within the stand in relation to the stems within the treatment zone. The cab and boom GNSS-RF 

devices enabled the derivation of the cab’s orientation as an azimuth. The azimuths between the cab 

of the equipment and each target tree within the associated buffer was then quantified. Cab-to-boom 

and cab-to-tree azimuths were compared, and it was assumed cab-to-tree azimuths within +/- 10 

degrees of cab-to-boom within the treatment zone indicated a feasibly masticated tree. All spatial 

analysis was performed using the sf packages in R [139]. A visual representation of the process used 

for identifying potentially treated trees using the stem map and GNSS-RF positions is shown in 

Figure 4.3.  
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Figure 4.3. Identifying target trees. Process for identifying potential targeted trees for mastication using GNSS-RF-based 

equipment locations, equipment orientation, equipment to tree orientation, and individual tree locations. 

 

4.4 Results 

4.4.1 Work Sampling and Cycle Analysis 

Summarized results from the mastication work sampling data are found in Table 4.2. A total 

of 88,829 seconds (~24.67 hours) of mechanical fuel treatments were observed across the three 

treatment units, with units 1, 2, and 3 accounting for approximately 41%, 29%, and 30% of the 

sampling time, respectively. The equipment performed the move element most often during work 

sampling, accounting for 32.2% of the overall sampling time, which corresponds directly with the 

most individual occurrences of a single element, 1,348. Delay and travel occurred significantly fewer 

times than the other elements, accounted for the smallest percentages of total duration of sampled 

time, but also had the highest mean element duration, largest range of element durations, and the 

largest standard deviations in element durations. The delay element had the largest coefficient of 

variation (223.8%) indicating a large variation of values around the mean. This is, in part, a direct 

result of the large range of observed element durations with a total of 2,244 seconds (37.4 minutes) 

separating the longest and shortest elements. Total sampling duration for the clear, masticate and 

move elements were relatively equal and accounted for 26.0, 28.7 and 32.2% of the total work 

sampling time respectively. 
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Table 4.2. Work sampling summary statistics for mastication equipment by element for the full field sampling period. 

Element n 
Total 

Duration (s) 

Total 

Duration 

(%) 

Mean 

(s) 

Range 

(s) 

SD 

(s) 
CV (%) 

Clear 932 23132 26.0 25.7 2.0 – 202.0 24.6 95.7 

Delay 53 8417 9.5 211.5 14.0 – 2258.0 473.4 223.8 

Masticate 921 25499 28.7 23.7 2.0 – 139.0 18.6 78.3 

Move 1348 28626 32.2 20.2 2.0 – 207.0 17.7 87.7 

Travel 33 3155 3.6 96.6 10.0 – 298.0 55.8 59.8 

Total 3287 88829 100.0 27.0 2.0 – 2258.0 56.1 207.7 

 

4.4.2 Random Forest and Activity Recognition 

Following the repeated 10-fold cross validation training and evaluation for the machine 

learning algorithms, 40 final random forest algorithms were assessed for the varying combinations of 

data sampling rate (Hz), sliding window size (seconds), and sliding window overlap (%). An ntree 

value of 150 was used for all random forests, with model training indicating a stabilization of error 

and accuracy at this number. This was found across all models, with training results for the 50% and 

90% window overlap models for 50 Hz sampling rate and 10 second sliding window algorithms 

shown in Figure 4.4. While larger ntree values provided slight increases in model performance, the 

added benefits were outweighed by the significant increases in processing time which poses concerns 

with the feasibility of real-time model applications. Therefore, ntree values of 150 provided an 

acceptable balance between model performance and processing time. 

 

Figure 4.4. Repeated 10-fold cross validation ntree training results for the 50 Hz sampling rate and 10 second sliding 

window for both the 50 and 90% window overlaps. 
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Overall activity recognition performance was quantified using the area under the curve 

(AUC) with results for all models (5 sampling rates, 4 window sizes, 2 window overlaps) displayed in 

Figure 4.5. In every instance, models with 90% window overlaps significantly outperformed the 

models with identical sampling rates and window sizes but 50% window overlaps. Increasing 

sampling rate led to increases in AUC in most cases and similar trends were found when accounting 

for sliding window size. These trends were far more exaggerated in models with 50% sliding window 

overlaps. Final model selection was based on overall model AUC, with the best overall performance 

resulting from the 50 Hz sampling rate, 10 second sliding window, and 90% sliding window overlap 

combination with an AUC of 97.82%. AUC values for individual elements are found in Table 4.3. 

 

Figure 4.5. AUC results for activity recognition models. Comparison of activity recognition model area under the curve 

(AUC) percentages for 50% and 90% sliding window overlaps across the four sliding window lengths (1, 5, 7.5, 10 seconds) 

for each work element (clear, delay, masticate, move, travel) and for full models (All). 

 

Table 4.3. Activity recognition performance metrics for the best performing classification model (50 Hz sampling rate, 10 

second window, 90% widow overlap). 

Element 
AUC 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-score 

(%) 

Balanced 

Accuracy (%) 

Clear 95.96 82.23 93.52 81.51 81.87 87.88 

Delay 99.90 95.58 99.83 98.27 96.91 97.70 

Masticate 96.88 86.01 94.49 86.12 86.06 90.25 

Move 95.01 84.17 90.83 81.12 82.62 87.50 

Travel 99.16 74.90 99.93 98.08 84.94 87.41 
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The influence of sampling rate, window overlap and window size on activity recognition 

sensitivity, specificity, precision, F1-score, and balanced accuracy are found in Figures 4.6, 4.7, 4.8, 

4.9, and 4.10, respectively. Like AUC, window overlap had the greatest impact on model 

performance for all metrics, with 90% models performing better than 50% overlap models. Increases 

in sampling rate provided marginal increases in model performance, with 10 and 20 Hz data 

downsampled from the 50 Hz data performing better than the natively sampled 10 and 20 Hz data for 

classification. Positive trends between increasing model performance and increasing sliding window 

size were also seen, with 10 second windows returning the highest performance metrics in most 

instances. Select work elements in some models returned higher performance metrics at 7.5 second 

windows than 10 second windows, but this was not consistent for all elements in these classification 

algorithms. Performance metrics for the best performing activity recognition model (50 Hz sampling 

rate, 10 second sliding window, 90% sliding window overlap) are found in Table 4.3. 

 

Figure 4.6. Sensitivity results for activity recognition models. Comparison of activity recognition model sensitivity 

percentages for 50% and 90% sliding window overlaps across the four sliding window lengths (1, 5, 7.5, 10 seconds) for 

each work element (clear, delay, masticate, move, travel). 
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Figure 4.7. Specificity results for activity recognition models. Comparison of activity recognition model specificity 

percentages for 50% and 90% sliding window overlaps across the four sliding window lengths (1, 5, 7.5, 10 seconds) for 

each work element (clear, delay, masticate, move, travel). 

 

 

Figure 4.8. Precision results for activity recognition models. Comparison of activity recognition model precision percentages 

for 50% and 90% sliding window overlaps across the four sliding window lengths (1, 5, 7.5, 10 seconds) for each work 

element (clear, delay, masticate, move, travel). 

 

 



90 

 

 

 

Figure 4.9. F1-score results for activity recognition models. Comparison of activity recognition model F1-score percentages 

for 50% and 90% sliding window overlaps across the four sliding window lengths (1, 5, 7.5, 10 seconds) for each work 

element (clear, delay, masticate, move, travel). 

 

 

Figure 4.10. Balanced accuracy results for activity recognition models. Comparison of activity recognition model balanced 

accuracy percentages for 50% and 90% sliding window overlaps across the four sliding window lengths (1, 5, 7.5, 10 

seconds) for each work element (clear, delay, masticate, move, travel). 
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The ranges of performance metrics used to assess the classification of the 5 work elements 

(masticate, move, clear, delay, travel) for the best model are as follows: AUC (95.01 - 99.90%); 

sensitivity (74.90 - 95.58%); specificity (90.83 - 99.93%); precision (81.12 - 98.27%); F1-score 

(81.87 - 96.91%); and balanced accuracy (87.41 - 97.70%). The delay element was correctly 

classified with the highest percentage of all elements and had sensitivity of 95.58%. Travel had the 

lowest sensitivity at 74.90%, but also achieved the highest specificity at 99.93%. The very high 

specificity means other work elements were rarely incorrectly classified as travel, though lower 

sensitivity shows actual travel events were incorrectly predicted as other elements relatively often, 

approximately 25% of the time. Travel element misclassification was most often associated with the 

move element, with 250 travel events incorrectly classified as move (Table 4.4). The move element 

had the lowest specificity at 90.83%, with 787 clear, 66 delay, 574 masticate, and 250 travel elements 

incorrectly classified as move. This shows the activity recognition model had the lowest ability to 

discern between false positives and true negatives with the move element.  

The confusion matrix in Table 4.4 provides a detailed breakdown of activity recognition 

classification, with green shaded cells indicating correctly classified instances for each element. It is 

clear from the confusion matrix that the greatest misclassification occurred between the move, 

masticate and clear elements. The precision measures for all elements exceeded 80%, meaning over 

80% of all elements predicted as a particular element were correctly classified. In all instances, the 

balanced accuracy exceeded 85%, showing the model’s ability to account for both positive and 

negative classification outcomes for elements as an average of specificity and sensitivity. Areas under 

the curve (AUC) exceeding 95% for all elements shows excellent overall classification accuracy and 

activity recognition performance for this model. Each individual event shown in the confusion matrix 

represents a single 10 second window used for activity classification. As a result, models with smaller 

window sizes would contain larger numbers of instances within each cell because more windows 

were necessary to elapse the entire sampling period. The importance of the top-20 time domain 

features used in the final model are described by mean decrease in Gini and are found in Figure 4.11. 

Features from the gyroscope and sound derived features were consistently some of the most 

influential features in the models for all combinations of factors, consistent with the findings of Keefe 

et al. [39]. 
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Table 4.4. Confusion matrix. Confusion matrix for the best performing activity recognition model (50 Hz sampling rate, 10 

second window, 90% window overlap) indicating true positives (TP), true negatives (TN), false positives (FP), and false 

negatives (FN). 

  Actual 

  Clear Delay Masticate Move Travel 

Predicted 

Clear 5692 26 486 726 53 

Delay 1 2333 7 29 4 

Masticate 440 13 6570 588 18 

Move 787 66 574 7207 250 

Travel 2 3 2 12 970 

 

 

 

Figure 4.11. Time domain feature variable importance. Variable importance of the top 20 time domain features used during 

model development for the best performing activity recognition algorithm in terms of mean decrease in Gini. 

 

4.4.3 Stem and Cycle Element Matching 

A total of 11,758 individual trees were detected within the treatment units, though work 

sampling did not encompass the entirety of the planned treatment area due to time constraints (Table 

4.5). Throughout the entirety of the work sampling period, 1,140 individual trees fell within the 7m 

buffer of the equipment cab during mastication elements. However, only 221 of these trees were 

within a range of azimuths from the cab to constitute a feasibly treated tree based on the GNSS-RF 

coordinates derived from the cab and boom transponders. In all, 921 mastication elements were 

observed during work sampling, though only 890 of these elements occurred with a lidar detected tree 

falling within the 7m cab buffer. 315 masticate elements could also be matched with an individual 
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tree based on machine orientation at the time of mastication. A larger number of masticate elements 

(315) were matched with an individual tree than there were feasible unique trees (221) because 

masticate elements were matched with the same unique tree on multiple occasions. It can be assumed 

that once a tree is masticated, it can no longer be masticated again. Therefore, a maximum of 24% of 

all masticate elements could be matched with a unique individual tree based on the data derived from 

the lidar-based individual tree locations and GNSS-RF-derived machine locations. 

Table 4.5. Machine and individual stem location matching. This table displays the number of lidar-derived individual trees 

based on the ForestView™ software: within the overall treatment units; within the 7m treatment buffer of the machine cab 

during mastication elements; and within the cab buffer while corresponding with the machine orientation. The total number 

of mastication elements and the number of elements where an individual tree fell within the machine buffer and matched the 

machine orientation are also shown. 

Lidar-derived Individual Trees Mastication Elements 

Total Buffer  
Buffer + 

Azimuth  
Total Buffer Buffer + Azimuth  

11758 1140 221 921 890 315 

 

4.5 Discussion 

Class imbalance has been shown to impact and bias classification results, specifically towards 

the majority classes [140]. The most common sampling methods to fix imbalanced data are over and 

under sampling [141]. Over sampling approaches resolve data imbalance by duplicating cases of the 

minority class but at the expense of computational intensity required for machine learning, and 

increased risk of model overfitting [141–143]. This can lead to models that are very computationally 

demanding. Under sampling entails the reduction of majority classes to meet minority class sample 

sizes, but can lead to a loss of valuable data trends and information necessary for effective 

classification and was therefore not used in this study [136,142]. A third approach, synthetic minority 

oversampling technique (SMOTE), generates synthetic examples as opposed to data replication used 

in traditional oversampling methods, but are limited to binary classification models [142]. Ultimately, 

the data imbalanced did not appear to have significant impacts on activity recognition model 

performance, even in the delay and travel minority classes, as seen in the performance metrics found 

in Table 4.3. Therefore, sampling procedures to address class imbalance in the data were forgone. 

This decision was further supported by Kamei et al. who found sampling techniques provided no 

performance benefit for classification tree models which encompasses random forest algorithms [144] 

and Dittman et al. [145] who concluded sampling procedures are not always a necessary step for 

classification because random forest classifiers’ robustness to imbalanced data. 
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While this imbalance likely contributed to the slightly lower sensitivity of the travel element, 

this was not a concern, as the F1-score and balanced accuracy remained relatively high at 84.94 and 

87.41%, respectively. The travel element is operationally similar in function to the move element, 

apart from element duration. These similarities in the move and travel elements may account for the 

comparatively poor sensitivity of the travel element. Here, data imbalance may have favored the 

majority class (move) over the minority class (travel) during classification. During classification, 

travel was misclassified as move more than any other element. The confusion matrix (Table 4.4) 

showed actual travel elements misclassified as move 250 times, which account for approximately 

20% of the actual travel element occurrences and 77% of the total travel element misclassifications. 

In future work, the travel and move elements could be combined into a single element to simplify the 

classification process given their operational similarities. Primary productive cycle elements: 

masticate, clear, and move, returned sensitivities exceeding 80% and balanced accuracies exceeding 

85% showing the strength of the model in classifying these work elements (Table 4.3). 

Despite being a minority class, delay returned the highest performance metrics for AUC, 

sensitivity, precision, F1-score and balanced accuracy among all work elements and the second 

highest specificity only behind the travel element. The machine was predominantly stationary during 

delay which simplified the classification of this element and attributed to the comparatively high 

performance metrics. The limited impact of data imbalance identified in this study may vary with 

other datasets and should be examined further in future studies. The sensitivity (74.90-95.58%), 

specificity (90.83-99.93%), precision (81.12-98.27%), F1-score (81.87-96.91%) and balanced 

accuracy (87.41-97.70%) for element classification of the best performing activity recognition model 

were similar to those in other studies using random forest algorithms, though all other studies focused 

on human activity recognition [40,46]. 

During modelling, all time domain features were retained for the four sensors. To improve 

processing time for future iterations, the number of time domain features could be reduced, only 

including the more influential variables. The limited presence of linear acceleration in the top tier of 

time domain feature importance suggests this sensor data may be excluded in future work without 

significant impacts to overall model performance to decrease overall processing complexity. The five 

time domain features with the lowest importance were all derived from linear acceleration. The high 

importance ranking of the sound pressure meter derived time domain features is consistent with the 

findings of Keefe et al. [39]. Sound is a valuable measure for activity recognition for equipment as 
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delay, lateral machine movements, clearing of light materials and the mastication of standing stems 

all expectedly produce distinct levels of sound and should be included in future modelling efforts. 

Window overlap percentage was the largest factor associated with improved model 

performance for all combinations of sliding window length and sampling rate. The 50% window 

overlap was outperformed by the 90% window overlap by significant margins in all instances. This is 

consistent with findings from other studies [56,108].  For example, the 50 Hz, 10-second sliding 

window model returned an overall model accuracy of 68.81% for the 50% window overlap and 

84.78% for the 90% window overlap. This trend was consistent for all other model combinations as 

well. One disadvantage of a greater window overlap is the added computational load of the model, 

with 90% overlap models taking longer to process than 50% overlap models. However, the increased 

performance metrics for activity recognition necessitates this computational cost to ensure effective 

and accurate models. Despite longer processing times, 90% window overlap can support real-time 

activity recognition by increasing the frequency by which predictions are made on the data and users 

receive activity characterizations [104]. 

Marginal improvements in performance metrics were obtained by moving between 1, 5, 7.5, 

and 10 second sliding windows for the 90% window overlap models. For example, the overall model 

AUC for 50 Hz, 90% window overlap models for the 1, 5, 7.5, and 10 second windows were 97.07, 

97.73, 97.76, and 97.82, respectively (Figure 4.5). Window size impacted model performance more 

significantly for 50% overlap models than the 90% overlap models which is supported by Khusainov 

et al. [45]. Overall AUCs for 50 Hz, 50% window overlap models for 1, 5, 7.5, and 10 second 

windows were 86.43, 89.58, 90.57, and 91.19, respectively. While 1, 5, 7.5, and 10 second windows 

can be used with similar effectiveness when using 90% window overlaps, the increased processing 

time required by the shorter window sizes should also be considered. Shorter sliding windows require 

high computational overhead because the recognition algorithm is required to classify a larger number 

of windows over a set period of time than a larger window would require [111]. The 10 second 

window provides strong model performance while minimizing this computational cost which is an 

important consideration in real-time activity recognition. Increasing window length has also been 

shown to improve the performance of activity recognition models [39,104,110,137]. This is contrary 

to findings of Zimbelman and Keefe who found better model performance with shorter window sizes 

when modeling work activities for rigging-crew workers on cable logging operations [56]. These 

findings may differ for other forest equipment where work element duration may favor shorter 
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window lengths due to faster transitions between subsequent elements and the inability of longer 

window lengths to differentiate between short actions. 

While limited, there were model performance improvements when comparing the 10 Hz and 

20 Hz sampling rates to the 50 Hz rate. Highly active or “agitated” movements have been shown to be 

more accurately represented by higher sampling rates [36]. These improvements were more 

significant with the 50% window overlap models compared to the models with 90% overlap, similar 

to findings associate with sliding window length. When accounting for only the models using a 90% 

window overlap, all models regardless of sampling rate returned strong values for AUC exceeding 

90%, indicating strong classification success. However, the strongest classification models resulted 

from the 50 Hz rates. The increased performance of downsampled 10 and 20 Hz models over natively 

sampled 10 and 20 Hz models was likely a direct result of these data being a subsample of the 50 Hz 

data. The performance trends in relation to cycle element, window overlap, and window size 

mimicked those seen with the 50 Hz models, albeit with slight performance reductions.  

Reduced battery consumption associated with sampling at lower frequencies [44,95] was not 

found to be a necessary consideration in this study and computational resources needed for modelling 

were not impacted by sampling rate. During field sampling, all smartphones experienced similar 

battery draw when removed from auxiliary power, though longer periods of sampling and additional 

computational requirements associated with real-time activity recognition may show greater 

discrepancies. The use of equipment auxiliary electricity to power devices while sampling removes 

any concerns about sensor sampling frequency or other factors impacting battery life of devices 

during use. This is a distinguishing consideration when using smart devices for activity recognition 

on equipment versus human activity recognition where auxiliary power may be unavailable or 

cumbersome.  

Integrating GNSS-RF derived machine positions and lidar-derived individual tree detection 

and segmentation to provide a simple approach for equipment positioning in addition to the 

smartphone activity recognition model was ultimately ineffective for our data. The ~25% success rate 

achieved matching mastication elements and individual stems is not operationally useful. This low 

percentage of matching limits confidence in the stems which were matched, and further work should 

explore more effective and accurate means for this process. While the exact reason for this poor 

performance is unclear, a combination of multiple factors may have led to the outcomes encountered. 

First, the accuracy of the tree detection and segmentation processes used in developing the singe tree 

stem map have not been assessed. The lidar used for segmentation is approximately half the pulse 
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density of lidar normally acquired to develop the ForestView™ single tree product and was being 

evaluated simultaneously in a separate study. It is possible that suppressed or intermediate trees were 

occluded or omitted during lidar-processing which would have reduced the number of detected stems, 

especially in areas of high stand density [146–149]. The mastication treatments primary focused on 

stand density reduction and stand improvement. Stems that were masticated were often smaller than 

those left in the residual stand. The use of terrestrial-based lidar may prove a more effective means of 

producing precise and accurate stems maps used for this application in future work. Mobile terrestrial 

laser scanning systems help reduce the problem of occlusion, omission and enable easier acquisition 

of multi-temporal lidar data sets [150,151].  

Increasing the precision and accuracy of the GNSS positioning of the equipment during the 

operation is another area for improvement in future work. Improving the positioning of equipment 

relative to individual stems detected from lidar would likely increase the accuracy of detecting 

removed stems. It is well established that forest canopies impact the accuracy of GNSS devices. 

However, the increased availability of consumer technologies to improve the GNSS accuracy of 

mobile devices provide new opportunities to enhance real-time positioning and logistics in forested 

environments. External smartphone antennas, raw GNSS data collection, availability of consumer-

grade devices with differential correction and improved dual-frequency GNSS chipsets available for 

the newest generations of smartphones provide new opportunities to greatly increase GNSS accuracy 

[152–158]. These technological advances may enable the exclusion of separate GNSS-RF devices 

from data collection and analysis, streamline activity recognition and positioning integration, and 

remove the potential for variability caused when fusing sensor data from multiple devices.  

 

4.6 Conclusion 

We have shown that models developed from the sensors on smart phones placed in machine 

cabs can recognize activities of mechanical fuel treatments in forested stands with balanced 

accuracies for elements between 87.41% and 97.70%. As the first known smartphone-based activity 

recognition study for mechanical forestry equipment, it was necessary to examine multiple factors 

impacting recognition accuracy and set the foundation for future equipment activity recognition 

modeling research. By demonstrating the application of this technology time studies and production 

analysis, we have advanced research supporting ubiquitous smartphone-based activity recognition 

solution for forestry equipment. This work can be improved by further refining field sampling 

procedures, model processing and integration of new mobile technologies to enable the collection of 
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sensor and accurate positional data from a single device. Additional field sampling with varying 

topographic and stand conditions, operators, and equipment types should also be completed to help 

quantify the extent to which these factors may impact activity recognition performance given the 

limited scope of conditions encountered in this study.  

Activity recognition of forest equipment and common management practices using 

ubiquitous, consumer available devices is an important advancement in the field of precision forestry 

and forest operations management. By identifying effective sampling and modelling processes, future 

work can focus on refining and optimizing data processing and model development and continue 

advancing toward real-time data support in smartphone applications. As the era of forest digitalization 

and smart and precision operational forestry continues to advance, it is necessary land managers, 

operators, and researchers alike are equipped with the latest resources and technologies needed to 

successfully address the complex forest resource management challenges we face. Accurate and 

efficient assessment of equipment productivity and work practices through activity recognition is 

valuable for advancing safer, more cost effective, and sustainable operational forestry supply chains. 
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Conclusion 

The results from the study in Chapter 2 showed pre-treatment stand density metrics only 

accounting for tree number per unit area, such as trees per hectare (TPH), were poor predictors of 

resulting surface fuel loads following mechanical fuel treatments with the sampling design and 

sample size evaluated. TPH prior to treatment was not directly related to the distribution of fuel time-

lag classes within the fuel bed, although the percentage of 10-h fuels could be predicted from pre-

treatment conditions. However, stand density index (SDI), which accounts for both the relative stem 

number and DBH of the stand, could be used to predict post-treatment fuel loading across the study 

area. Further, SDI predicted that as the density of stands increase, a greater percentage of the overall 

fuel load consisted of 100-h fuels, while 10-h fuels decreased in percentage. Future modeling efforts 

should continue accounting for stem number and stem size, as stand density alone may not provide 

the necessary predictive ability. Stand density measures, such as SDI, provide greater insight into 

stand composition and overall stand biomass, which is significant when predicting fuel load volumes 

resulting from the physical conversion of standing biomass to mulched surface fuels. 

Revisiting the methods discussed in Chapter 2, while taking into account the sampling 

considerations mentioned, is an important future research opportunity. The growth of LiDAR-derived 

models to map individual-tree locations and stem characteristics, coupled with onboard GNSS 

modeling of spatially, explicit, real-time equipment activities, offer the promise of improved high-

resolution fuel bed prediction in the immediate future. Future work should address these factors more 

closely, though the determination of their impacts will likely require sampling at a higher intensity 

than that performed in this study, or with a sampling design that directly accounts for the spatial 

resolution at which comminuted material is scattered as a function of localized stand density, 

treatment prescription, topography, equipment type and size, and the pattern of equipment 

movements. 

The definition of work in forest operations using global navigation satellite system with radio 

frequency (GNSS-RF) based data and inertial measurement units (IMUs) is becoming increasingly 

possible. The development of activity recognition models using mobile technologies is an important 

advancement for digitalization of the forest supply chain. Further, the increasing availability of high 

resolution products from lidar and other remotely sensed data may further advance the robustness and 

utility of activity recognition models for research and operational uses.  

In Chapter 3, we identified the challenges and limitations of classifying individual cycle 

elements with high accuracy using spatially explicit data from GNSS-RF devices. However, GNSS-
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RF transponders were shown to provide a consumer-available solution for activity recognition for 

mastication treatments that effectively classified the difference between delay and productive 

elements over 95% of the time. Despite exposing some challenges and limitations associated with use 

of consumer-grade GNSS-RF for individual element-level activity recognition, RF enabled 

components still provide reliable and real-time data sharing capabilities. Recent improvements to 

GNSS accuracy using real-time correction (RTK) methods, increased sampling rates, and the 

integration of inertial measurement units (IMUs) address limitations identified in this study. 

Therefore, GNSS-RF devices should be reconsidered for use in real-time element level activity 

recognition modelling, particularly models with these improvements.   

Continued advances in remote sensing, mobile and GNSS-capable technologies is 

encouraging a paradigm shift from a stand level, area-based management to a precision forestry and 

individual tree-centric approach to forest management and operational digitalization. Applying these 

resources into the planning, implementation and assessment of forest management practices will 

enable the innovation, growth, and improvements necessary to address current and future challenges 

of sustainable forest management. Developing consumer-accessible and flexible technological 

solutions, like the one assessed in chapter 3, may increase the application and utilization of these 

resources, and provide greater opportunity for contractors, researchers, and land managers to advance 

their fields and ensure their continued and increased effectiveness.  

In Chapter 4, we showed that activity recognition models developed from the sensors on 

smartphones placed in machine cabs can recognize activities of mechanical fuel treatments in forested 

stands with balanced accuracies for elements between 87.41% and 97.70%. This is the first known 

smartphone-based activity recognition study for mechanical forestry equipment. By demonstrating the 

application of this technology to elemental time studies and production analysis, we have advanced 

research supporting a ubiquitous smartphone-based activity recognition solution for forestry 

equipment. Further refining field sampling procedures, model processing and integration of new 

mobile technologies to enable the collection of sensor and accurate positional data from a single 

device should be studied in the future. Additional field sampling with varying topographic and stand 

conditions, operators, and equipment types should also be completed to help quantify the extent to 

which these factors may impact activity recognition performance.  

Forest digitalization and precision forestry is increasingly shaping the future trajectory of 

natural resource management and forest operations. Increased innovation and adaptation of mobile 

technologies, remote sensing, and machine learning provide unique opportunities to advance the 
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processes and resources used to manage forestlands. The research presented in this dissertation 

provides insight into opportunities to advance the planning, implementation, and assessment of forest 

operations through the integration of mobile technologies and remotely sensed data. Successful 

development and deployment of technological solutions to management challenges in forest 

operations provide the means to improve the efficiency, effectiveness, safety, and sustainability of 

forest management practices and ensures land managers are equipped with the most advanced 

resources necessary to meet the needs of forestry in the future. 


