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Abstract 

Forest management has encountered fast-paced evolution integrating technologies and 

data sources which have in turn helped mold a new paradigm of forestry focused on site 

specific management strategies rather than one size fits all management. Using real-time, 

consumer-grade GNSS-RF transponders was found to successfully classify productive cycle 

elements of a forestry machine over 90% of the time, showing the effectiveness of spatially 

explicit data in defining cycle elements for production analysis. Additionally, lidar-derived 

forest metric predictions, exceeding 70% accuracy, were used to develop a harvest system 

classification model. Alternative harvest systems (shovel harvester; tethered shovel) were 

determined to be feasible alternatives to traditional harvest systems across a statistically 

significant proportion of study site stands and hectares when investigating varying harvest 

system combinations. These initial studies set groundwork for refining and expanding our 

analyses as we continue to explore integration of real-time data and high resolution spatial data 

in forest operations.  
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Chapter 1: Introduction: Improving precision forestry with new 

developments in location technology and remote sensing 

1.1 Introduction 

Logging production and costs are central to determining the feasibility of timber harvesting 

operations. With changing management regimes and innovative harvest machinery and 

techniques being introduced, the means to assess and plan for these variables must be 

developed. Advances in spatially explicit, real-time data and remotely sensed imagery provide 

valuable opportunities to augment existing decision-making tools for forest operations to aid 

land managers and harvest planners. These advancing technologies and data resources are part 

of a larger narrative and expanding field of precision forestry. Understanding the ways in which 

to incorporate these tools into management strategies will help improve the overall 

effectiveness, safety, and sustainability of land management practices and actualize the 

conceptual goals of precision forestry.    

1.2 GNSS-RF Technology and Opportunities 

Real-time GNSS-RF (global navigation satellite system with radio frequency) technology 

is a promising area of development and research for use in forest management, logging safety 

and wildland fire applications (Keefe et al. 2014). GNSS uses satellites from various systems 

(GLONASS, GPS, Galileo) to provide positional data to receiving units. However, these data 

are generally stored within the unit and must be downloaded at a later date. By incorporating 

radio frequency transponders into the GNSS units, data can be shared between units in real-

time, allowing for data sharing capabilities previously unavailable with GNSS. Radio 

frequency transmission and data sharing remains possible outside of internet or cellular 
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networks, making this technology a valuable resource in remote areas where logging 

operations regularly occur. 

  Manually recorded elemental cycle time studies have served as the basis for many time 

and production studies, using observed data to determine production and subsequent costs. 

However, GNSS-RF technology provides a promising alternative to traditional time study 

methods. For both research and operational applications, developing relationships between 

machine movements, GNSS-RF data and determining the accuracy at which machine elements 

can be classified from spatially explicit data is crucial. These activity profiles define work of 

various harvest and forest management tasks at individual cycle elements.   

 An initial step in the process of developing these activity profiles entailed determining 

the accuracy at which GNSS-RF transponders were able to record and classify the swing 

movements of a log loader. In Chapter 2 of this thesis, these primary assessments were 

performed to create a base of knowledge for future development of an activity profile that 

quantifies shovel movements based on two or more GNSS positions transmitted at high 

frequency. The activity profile developed for the swing of the log loader was a necessary initial 

step in developing a larger library of machine elements derived from GNSS-RF data.  

This study was performed using three varying transmission rates of data packets (2.5, 5.0 

and 10.0 seconds) for GNSS-RF transponders at two locations along the machine boom and 

two cycle elements when swinging to 18 pre-determined angle segments. The 2.5 second 

transmission rate was found to be the most successful in correctly classifying the productive 

cycle elements, followed closely by the 5.0 second transmission rate which was significantly 

similar. The transponders located at the end of the boom also returned higher proportions of 

correctly classified elements than the transponder located on the heel rack for the 2.5 and 5.0 
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second transmission rates. Observed swing angles were also most accurately captured by the 

2.5 second return interval as expected. Consumer-grade GNSS-RF transponders were shown 

to accurately and effectively capture the movements of a log loader and provide the data 

necessary to classify productive cycle elements. 

1.3 New Applications of Remotely Sensed Products in Forest Operations 

In addition to advancements in real-time GNSS-RF technologies and their application in 

forest operations, remotely sensed data is another avenue of innovation for precision forestry. 

Terrestrial or mobile laser scanning and airborne and space-borne point clouds provide various 

means to collect high resolution spatial data with varying degrees of data density and accuracy; 

each with their own respective scope of use (Holopainen et al. 2014). Airborne laser scanning 

(ALS), also known as lidar, allows for the derivation of three-dimensional vertical forest 

structure characterization and is capable of producing high accuracy forest attribute predictions 

and highly resolution digital elevation models (Jusoff 2009; White et al. 2013).  

High-resolution lidar has been used widely in forest inventory and biometrics research. 

Lidar products provide valuable insight into forest growth, canopy characteristics and 

vegetation dynamics (Reutebuch et al. 2005; Smith et al. 2014). However, use of lidar data in 

the context of forest operations has been limited. Road layouts using high resolution digital 

elevation models derived from lidar has been a commonly used application of these data (Akay 

et al. 2004; Aruga et al. 2005; Akay and Sessions 2005; Akay et al. 2009). Lidar has been used 

to assess the impacts of forest harvest landings on future regrowth, provide pre-harvest 

assessment into potential harvest blocks and identify areas disrupted by selective harvesting 

operations (Heinimann and Breschan 2012; d’Oliveira et al. 2012; Slesak and Kaebisch 2016; 

Ellis et al. 2016). Additionally, lidar has also been used to predict harvest production by 
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developing relationships between lidar-derived forest characteristics and time and motion 

production data (Alam et al. 2011). 

 In Chapter 3, we utilized lidar-derived forest and topographic characteristics to develop a 

decision support system for harvest system selection at the landscape scale. Spatial data were 

used to define feasible harvest systems at the stand level for varying harvest scenarios and 

combinations of equipment. Three harvest scenarios representing three varying combinations 

of harvest systems were assessed to determine the impact of introducing innovative, alternative 

harvest systems at the landscape scale. Operational thresholds were defined for each of the 

harvest systems, representing areas where the system could feasibility operate within the 

context of forwarding distance, ground slope, and merchantable volume. The two alternative 

harvest systems analyzed (shovel harvester and tethered shovel) were found to represent 

significant proportion of stands and hectares previously classified as feller-buncher and 

excaliner ground respectively.  These results will aid forest harvest managers in the decision-

making process pertaining to the selection of harvest systems based on operational thresholds 

of individual harvest systems and the correlating forest and topographic characteristics of a 

harvest area.   

 These foundational studies addressed in the following two chapters establish the basis 

for future studies that further expand on current methods and results. Activity profiles derived 

from the GNSS-RF data and the associated methods are subsequently being developed into 

algorithms that model shovel and other equipment movements during operational harvesting. 

This will aid future research as we continue to explore traditional and innovative technological 

support of harvest optimization. Additionally, these activity profiles will be incorporated into 

the decision support model for harvest system selection to further strengthen its capabilities. 
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While the model currently determines all the feasible harvest systems for a group of stands at 

the landscape scale, incorporating activity profiles into the model will introduce simulation 

and production analysis capabilities. With this, optimal harvest system selection analysis will 

be performed at the landscape scale using lidar-derived forest and topographic metrics and 

GNSS-RF derived activity profiles. 

 The use of real-time positioning systems in forestry, integrating Global Navigation 

Satellite System (GNSS) and radio frequency (RF) devices, is growing and is important for the 

advancement and development of operational precision forestry (Keefe et al. 2014; Grayson et 

al. 2016). The ability to define relevant forest management and products information and link 

them to geographic locations using advanced data and technology is advantageous to 

sustainable forest management. Precision forestry is an intensive management technique that 

emphasizes development of operational practices that incorporate technologies and processes 

to increase productivity, reduce costs, and reduce negative site impacts, especially those on 

vegetation, soil, and water resources (Veal et al. 2002; Kovacsova and Antalova 2010). This 

management process focuses on incorporating site specific spatial and attribute data through 

the application of technology for environmentally and operationally sound forest management 

operations (Eker and Ozer 2015). Veal et al. proposed separating precision forestry into two 

main categories: using GIS and spatial data to aid forest management and planning and; site 

specific silvicultural prescriptions and applications (2002). Precision forestry concepts provide 

highly repeatable measurements, actions and processes and enables sharing of information 

between resource managers and other stakeholders gathered from advanced technologies and 

data (Kovacsova and Antalova 2010). 



6 
 

Advancements in GIS, GNSS, light detection and ranging (lidar), real-time analysis, and 

most recently GNSS-RF has led to increased interest and application of precision forestry 

techniques (Kellndorfer et al. 2003; Aruga 2003; Zhang et al 2014). The innovative application 

of these new technologies and data sources opens the door for advancements in operational 

forestry by increasing efficiencies of forest management activities and providing real-time 

feedback to operators and managers (Carter et al. 1999; Hamzah 2001). As precision forestry 

and associated areas of study continue to advance and expand, steps to incorporate new 

technologies and innovative uses of remotely-sensed data will become more prevalent in 

operational settings. Forest managers and harvest planners will continue to have tools and 

resources made available to aid in the decision-making process. The ability to define the 

applications for which new data and technologies will be applied in the context of precision 

forestry is important in addressing the challenges faced in forestry and fully recognizing the 

potential of precision forestry as a management strategy (Farnum 2001). 

 

The following two chapters introduce innovative applications of high resolution remotely 

sensed data and real-time positional data for forest operations. These studies extend further 

than simply describing the value and utility of these data sources, but provide insight into their 

application in decision support products to address management challenges and the way in 

which precision forestry is incorporated into real world management scenarios.  In turn, this 

may change the way in which management decisions are made, work is defined and increase 

the production of logging operations in the Western United States and beyond. Maximizing 

logging production through improved decision making and optimal harvest system selection, 

while valuable in all forest operations, is especially so in salvage harvests from fire and insect 
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infestations where value degradation and low value products decrease harvest feasibility for 

these sites. In the Inland Northwest, mountain pine beetle has caused extensive mortality 

leading to challenges regarding harvest scheduling and selecting management strategies to 

address the millions of affected acres. Technology and high resolution spatial data integration 

through decision support tools provide a means to aid developing management strategies which 

encourage the current and future sustainability of our forest resources. 
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Chapter 2: Use of real-time GNSS-RF data to characterize the swing 

movements of forestry equipment 

Published In: 

Becker RM, Keefe RF, Anderson NM. 2017. Use of real-time GNSS-RF data to 

characterize the swing movements of forestry equipment. Forests. 8(2):44. 

 

2.1 Abstract 

The western United States faces significant forest management challenges after severe bark 

beetle infestations have led to substantial mortality. Minimizing costs is vital for increasing the 

feasibility of management operations in affected forests. Multi-transmitter Global Navigation 

Satellite System (GNSS)-radio frequencies (RF) technology has applications in the 

quantification and analysis of harvest system production efficiency and provision of real-time 

operational machine position, navigation, and timing. The aim of this study was to determine 

the accuracy with which multi-transmitter GNSS-RF captures the swinging and forwarding 

motions of ground based harvesting machines at varying transmission intervals. Assessing the 

accuracy of GNSS in capturing intricate machine movements is a first step toward development 

of a real-time production model to assist timber harvesting of beetle-killed lodgepole pine 

stands. In a complete randomized block experiment with four replicates, a log loader rotated 

to 18 predetermined angles with GNSS-RF transponders collecting and sending data at two 

points along the machine boom (grapple and heel rack) and at three transmission intervals (2.5, 

5.0, and 10.0 s). The 2.5 and 5.0 s intervals correctly identified 94% and 92% of cycles at the 

grapple and 92% and 89% of cycles at the heel, respectively. The 2.5 s interval successfully 

classified over 90% of individual cycle elements, while the 5.0 s interval returned statistically 
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similar results. Predicted swing angles obtained the highest level of similarity to observed 

angles at the 2.5 s interval. Our results show that GNSS-RF is useful for real-time, model-

based analysis of forest operations, including woody biomass production logistics. 

2.2 Introduction 

Real-time data analysis using Global Navigation Satellite System (GNSS) positioning 

coupled with data communication over radio frequencies (RF), or GNSS-RF, is an area of 

increasing interest in harvest operations as this new technology creates opportunities for 

innovation in operational forestry. Real-time data analysis and decision support may also be 

useful in the context of woody biomass logistics as new markets for forest residues and salvage 

wood develop. Increased interest in emerging and existing bioenergy markets is closely linked 

with reducing the risks that forested lands face from fire, insects, and pathogens (Wells et al. 

2015). It has been estimated that 15 western states in the US contain over 11 million hectares 

of forested land that could benefit from treatments to improve resilience and health by initiating 

active forest management on the landscape (Rummer and Prestemon 2003). In order to return 

stands to historic stand dynamics and improve forest health, silvicultural treatments need to be 

performed, even in stands where such treatments generate large amounts of residues and 

primarily yield low value products (Brown et al. 2004).  

Despite increased interest and developing markets, and because biomass products from 

forest residues are generally low in value, landowners and contractors must develop efficient, 

effective, and sustainable methods for harvesting and gathering forest residues and beetle-

killed timber or the long-term feasibility of supporting new wood-based bioenergy markets 

will be limited (Anderson et al. 2012). By 2022, it is estimated that 12.4 million dry tons of 

forest residues will be available annually to be utilized for bio-energy (Jacobson et al. 2016). 
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Higher production rates and lower costs associated with logging systems used in silvicultural 

systems for salvage and forest restoration operations, including the gathering and processing 

of other forest residues, will allow forest managers to treat more forest land at lower costs and 

access a higher proportion of this available biomass feedstock. Not only could this result in 

healthier forests, but the increased feedstock supply for bioenergy and bio-based product 

manufacturing could help bolster the economies in communities that rely heavily on the forest 

products industry. Historically in the US, forest residues have been the primary fuel for 

bioenergy production, with industrial process heat and power production from forest biomass 

representing a large portion of overall renewable energy production. Epidemic outbreaks of 

the mountain pine beetle (Dendroctonus ponderosae Hopkins) and subsequent mortality of 

millions of hectares of lodgepole pine (Pinus contorta var. latifolia Engelm.) in the northern 

Rocky Mountains has led to an increased interest in utilizing associated biomass as a bioenergy 

feedstock option (Anderson and Mitchell, 2016). Identifying harvesting and processing 

methods that increase production efficiency and reduce costs through real-time positional 

analysis of operational equipment and workers may increase the feasibility of using forest 

residues from treatments in beetle-killed timber, as well as improve overall operational 

efficiency. Harvesting these degraded beetle-killed stands helps promote the reintroduction of 

healthy, sustainable forests. The ability to accurately define specific machine elements from 

spatial data acquired from GNSS-RF transponders is a necessary and first step for the 

development of real-time production analysis and operator decision-support models that would 

help achieve these goals. 

In the western US, a major potential supply of biomass is thinning residues and other 

materials removed from fuel treatment operations that occur on US national forests (Keefe et 
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al. 2014b). Incorporating GNSS-RF technologies in innovative ways in the forest industry may 

assist operations foresters and contractors in determining the best processes and methods for 

timber harvesting through real-time positioning and production logistic modeling, especially 

in beetle-kill. For example, real-time analysis can help to optimize on-the-fly skid trail layout, 

the order of harvesting, skidding, and processing, and placement of intermediate feedstock 

preprocessing depot locations.  

The on-board data loggers that are standard equipment in many modern forest machines 

record several types of data that may be useful for real-time analysis of production, such as log 

piece size and numbers of stems processed (Palander et al. 2013; Strandgard et al. 2013). The 

addition of discrete equipment position, navigation, and timing (PNT) information to the 

standard data stream would make it possible for operators to account for and adapt to 

unforeseen delays in machine cycles or site conditions. Experienced operators do this naturally 

over short time steps on the fly, but computer-aided analysis can help expose patterns in 

operation that are not always apparent, even to the most experienced personnel. Utilization of 

real-time position data for individual pieces of equipment and among multiple pieces of 

equipment in a system could make it possible for higher resolution and higher order complexity 

operational models that monitor individual equipment cycle elements and suggest efficiency 

improvements based on variables like terrain, timber quality, and other site characteristics 

(Palander et al. 2013; Strandgard et al. 2013).  

GNSS technology has been studied and in some cases employed in operational forestry 

contexts including thinning stands, tracking movements of site preparation machinery, aligning 

logging roads, and positioning and dispatching log trucks along haulage routes in real-time, as 

well as characterizing soil disturbances related to harvest operations (Devlin and McDonnell 
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2009; Carter et al. 1999; Danskin et al. 2009; Hamzah 2001). Recently, the use of real-time 

positioning systems in forestry that employ integrated Global Navigation Satellite System 

(GNSS) and radio frequency (RF) devices is growing, and is important for the advancement 

and development of operational precision forestry (Keefe et al. 2014a; Grayson et al. 2016). 

Precision forestry is an intensive management technique that emphasizes development of 

operational practices that incorporate technologies and processes to increase productivity, 

reduce costs, and reduce negative site impacts, especially those on vegetation, soil, and water 

resources. Advancements in GIS, GNSS, light detection and ranging (LiDAR), real-time 

analysis, and most recently GNSS-RF has led to increased interest and application of precision 

forestry techniques. The innovative application of these new technologies opens the door for 

advancements in operational forestry by increasing efficiencies of forest management activities 

(Carter et al. 1999; Hamzah 2001). GNSS uses satellites from the U.S. Global Positioning 

System (GPS), the Russian global navigation satellite system (GLONASS), and possibly other 

satellite systems to offer spatial reference data to GNSS receivers around the world. 

Positioning relies on GNSS receiver ability to communicate with satellite systems to provide 

location data and is used widely across the globe in consumer, military, and industrial 

applications. RF are electromagnetic wave frequencies in the range commonly used for 

communication and radar signals. When GNSS is paired with RF (GNSS-RF) the resultant 

system has the capability to utilize multiple GNSS-RF transponders that receive positional data 

through GNSS signals and then instantaneously relay information through RF devices to a 

receiver. Additionally, communication between transponders and receivers is not reliant on 

cellular networks nor internet connectivity (Keefe et al. 2014a). This is especially important 
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for real-time positioning applications in forest operations, which often occur in remote areas 

with limited cellular network coverage.  

Earlier work has primarily focused on GNSS positioning technologies that relay the location 

of equipment to a distant computer, as with dispatch systems deployed in transportation 

(Devlin and McDonnell 2009) and service monitoring applications included on modern 

machinery. Real-time systems that communicate equipment and ground-worker locations 

among one another locally at remote logging sites are an important advancement because the 

technology opens the door to integrated, simultaneous analysis of data from multiple machines 

and ground workers interacting with one another within the framework of computer-

augmented decision processes, with the objective of improving production logistics and safety 

(Keefe et al. 2014a; Grayson et al. 2016).  

Past research has returned promising results related to the ability of GNSS receivers to 

monitor forestry equipment movements, though dense forest canopies are known to increase 

GNSS error and reduce the ability to collect precise and accurate measurements in dense stands 

(Devlin and McDonnell 2009; Sigrist et al. 1999; Hasegawa and Yoshimura 2007; Taylor et 

al. 2001; Veal et al. 2001; Yoshimura and Hasegawa 2003). Even when accuracy is reduced 

due to canopy closure, GNSS can be successful when high accuracy in monitoring object 

movements is not required (Devlin and McDonnell 2009). For example, position accuracy to 

10 meters may be insufficient for safety applications, but acceptable for transportation routing. 

Landscape topography has also been an obstacle in the use of GNSS in forestry applications 

due to line of sight obstructions (Wing et al. 2005). McDonald and Fulton (2005) used GNSS 

for elemental analysis of skidder cycles and found that GNSS locations could successfully be 

used to predict cycle durations and distinguish between different elements within those cycles 
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(e.g., grapple, positioning, and travel), though the system was subject to large errors when 

compared to clock studies (i.e., manual timing by an observer) with regard to specific element 

durations. Operational cycles measured with GNSS agreed with direct observation times 90% 

of the overall time studied (McDonald and Fulton 2005). Similar accuracies were found when 

using GNSS transponders to analyze the cycle times of forwarders and when using vibration 

sensors to assist in the determination of cycle times (Strandgard and Mitchell 2015). 

While GNSS data have been effective for capturing the location, movements, and overall 

cycle times of some forest machinery, researchers have encountered problems when attempting 

to acquire high levels of accuracy in the analysis of specific productive cycle elements 

(McDonald and Fulton 2005; Strandgard and Mitchell 2015; Wang et al. 2003; De Hoop and 

Duprè 2006). Additionally, there has been limited prior research evaluating the quality of 

productive cycle element characterization using positional information derived from GNSS-

RF data. Understanding the accuracies and capabilities of commercially available, consumer-

grade GNSS-RF transponders will facilitate development of their application in beetle-killed 

harvest logistics and in production analysis in forest operations more broadly.  

The objective of this study was to determine the effectiveness of multi-transmitter GNSS-

RF units for characterizing the cycle elements of a log loader at three intervals of GNSS-RF 

signal transmission and two locations along the machine boom, using time and positional data 

sent by the transponders. GNSS-RF positional data were compared statistically to manually 

recorded time intervals for the same cycle elements. Our goals in determining the accuracy of 

the technology were two-fold: (1) to foster innovation in operations research, especially in the 

safe, efficient characterization of cycle elements and continued development of accurate, real-

time model-assisted decision support and analysis; and (2) to facilitate the development and 
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deployment of these technologies in the forest sector to improve productive efficiency and 

reduce costs. These goals are of particular interest and application in improving harvest 

logistics of beetle-killed timber harvests for biomass when product values are low, potential 

profit margins are narrow, and cost-minimization, even by small margins, can have large 

impacts on the financial viability of supply chains. 

 

2.3 Materials and Methods 

We used Garmin Alpha multi-transmitter GNSS-RF units to record the swing movements 

of a stationary log loader, also called a “shovel”, in order to characterize the swinging and slew 

of the boom. This study was conducted on one research site with four replicated trials, with 

each trial consisting of 18 cycles. The full swing extent of the machine (360 degrees) was 

broken into 18 equal arc segments of 20 degrees each (Figure 1). Separation of the swing extent 

into smaller components made it possible to time the machine movements at varying swing 

angles to determine if GNSS-RF transponders were able to capture the machine movements 

accurately at different distances of motion. This was done for three transmission frequency 

refresh intervals: 2.5, 5.0, and 10.0 s. These three refresh intervals translate into transmission 

intervals of 24, 12, and 6 transmissions per minute for the 2.5, 5.0, and 10.0 intervals 

respectively. GNSS-RF transponders were placed in three locations on the machine: one in the 

right-rear of the cab (close to the center of the machine), one at the full boom extent near the 

grapple, and one at the heel rack, which is halfway down the most forward boom segment 

(Figure 2.1).  

To lay out the experiment, a circle with a radius of 12.2 m was delineated in a flat, open 

area. The open area was chosen purposefully to avoid attenuated GNSS signals and resulting 
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multipath error. The center point was chosen and a fiberglass tape was extended to the chosen 

radius or 12.2 m. As the individual at the center point rotated around the axis, a field technician 

on the end of the tape marked the outside edge with paint. Wooden stakes were placed along 

the circumference of the circle to mark the 18 different angle segments of 20 degrees each. To 

determine the location of these points, we determined the side length of an octdecagon (18-

sided regular polygon) using the circumradius of 12.2 meters and the formula side = 2 r sin 

(180/n), where “r” is the circumradius, and “n” is the number of sides. Each side of the polygon 

measured 4.23 m. A starting point stake labeled “0” was placed on the circumference of the 

circle. The location of stake 1 was determined by measuring 4.2 m from stake 18 and finding 

where along this circumference of the circle this landed. This process was repeated for the 

remaining stakes (2–17) until there were 18 unique 20-degree angle segments within the full 

swing extent as shown in Figure 2.1. 

 
Figure 2.1 Study layout, consisting of eighteen, twenty-degree shovel swing angle segments. 

 

The machine was then driven to the center of the plot and operated in this location for the 

duration of the study. Keeping the machine in a stationary position removed any possible error 

or variation that lateral movements would introduce to the GNSS data. The signal sent to the 
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hand-held receiver relies on satellite communication to transmit GNSS locations. The number 

of satellites with which the receiver can communicate at any point in time alters the accuracy 

of the measurement at that time, meaning accuracy is variable in time depending on how many 

satellites are in range. We were not able to record the number of satellites in range for each 

measurement to quantify this source of error. Therefore, a completely randomized design was 

used in the data collection process, which is described below. A total of seven (7) Alpha multi-

transmitter GNSS units were used for the experiment and two (2) handheld receivers were used 

in data collection. Three Alpha transponders were utilized in measuring the boom movements 

at the grapple head and were labeled Boom 1, Boom 2, and Boom 3. Boom 1, 2, and 3 were 

assigned transmission intervals 2.5, 5.0, and 10.0 s, respectively. Three additional Alpha 

transponders were used in the data collection for the heel rack and labeled Heel 1, Heel 2, and 

Heel 3 with transmission intervals 2.5, 5.0, and 10.0 s, respectively. One Alpha transponder 

was labeled as Cab and was used for both the boom and heel trials. The main hypothesis being 

tested is that shorter transmission intervals result in better accuracy when classifying cycle 

elements. Additionally, we hypothesized that shorter intervals would also result in more 

accurate estimates of the angle of machine swing. 

The three Alpha transponders attached to grapple and the cab transponder were synched to 

one handheld receiver. The additional three transponders for the heel and the cab transponder 

were synched to the second handheld receiver. Two handheld receivers (full and heel) were 

used as opposed to one receiver to ensure data would not overlap and be compromised. During 

the swinging experiment, the boom was extended to 9.5 m from the center axis of the log loader 

and the heel rack was kept a constant 6.7 m from the center axis of the log loader. After each 

replicated trial, these distances were checked to ensure consistency throughout the experiment. 
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The transponders were easily attached to the heel rack and grapple of the loader with zip-ties, 

meaning no modifications had to be done to the machinery and the operator could perform 

tasks normally, with no changes in operation attributable to the addition of the transponders or 

any other experimental condition. 

In each of the four trials, the shovel covered all 18 of the angle segments in separate cycles 

in random order predetermined by a random number generator. Through each of the 18 cycles 

per trial, the start time, stop time at the randomly selected angle, and the return time to the start 

position was recorded both manually and through the data packets received by the GNSS-RF 

receiver. Manual timing was conducted on a laptop computer using the Sys.time() command 

in the R statistical programming environment. The internal clock of the laptop used to conduct 

the manual timing was synched to the time on the GNSS-RF receiver by synchronizing with 

the nist.gov time server (NIST Internet Time Servers 2016). Synching the time of the GNSS-

RF receivers and the laptop assisted in matching the GNSS-RF data with the manually recorded 

cycle times ensuring error when merging manually and remotely collected data was minimized.  

Three 4.9 m, beetle-killed lodgepole pine logs were used in the experiment to simulate real 

world use of the loader on a harvest site. For each of the 18 cycles for each of the four 

replications, the same sequence was followed. This resulted in 72 unique cycles for both the 

grapple and heel rack GNSS placements. The logs and log loader boom began at the 0 degree 

marker to start each cycle. Once the operator swung to the required angle, the logs were 

dropped and the loaded swing time was recorded. The operator would then swing back to the 

starting position empty, following the same path. The ending time was recorded when the 

grapple was placed on the ground back at position 0. At this time the operator would then 

gather the logs and return them to the 0 degree marker to reset for the next cycle, which always 
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started at position 0. Two cycle elements were defined to represent the movements of the log 

loader: “Swing/Unload” and “Return”. “Swing/Unload” is described as the time from the start 

of the swing for each cycle with a loaded grapple starting at angle 0 until the loader drops the 

logs at the ending angle measure and starts the swing back to the starting point. At this point, 

the time from the start of the return swing to the moment the grapple touches the ground back 

at angle 0 is defined as “Return”. The loading element of the cycle, which consists of an 

unloaded grapple leaving the stop position and collecting logs before the start of the loaded 

swing element was not included in measurement because it was expected to be identical for 

each cycle, was not required to test transponder accuracy, and would have introduced 

additional variation into the timing. Motorola two-way radios were used to communicate with 

the operator during the experiment, including directions about the selected angle for each cycle.  

The resulting data from the field observation data sheets and the data received from the 

Garmin GNSS-RF receivers were entered into a spreadsheet and imported into the statistical 

analysis environment “R”. The data were then processed, analyzed, and interpreted following 

the flow diagram represented in Figure 2.2.  

 
Figure 2.2 Flow diagram showing the progression of analysis of the spatial and observed data. 

A chi-squared ANOVA test was performed to determine the significance of each individual 

parameter on the proportion of correct classifications. The parameters tested included 

transmission interval, swing angle, transponder location, cycle element, and the interaction of 

transmission interval and swing angle. Additionally, a binomial logistic regression was used 

to determine the influence of the predictor variables on cycle element classification of the 
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GNSS data when compared to the field observations. A regression based two-one sided t-test 

(TOST) equivalence test was performed to analyze whether the predicted angles of the model 

derived from GNSS-RF data were statistically similar to the observed angle measures. To 

further analyze the relationship between observed and predicted angle measures derived from 

the GNSS-RF data, a linear regression based adapted two-one sided t-test (TOST) was 

performed with bootstrapping in order to determine whether the null hypothesis of dissimilarity 

could be rejected for the observed angle measures and predicted values. Unlike traditional 

hypothesis testing where a failure to reject null results in a conclusion of indifference, an 

equivalence test starts with the assumption of dissimilarity, meaning that a rejection of null 

indicates similarity. This analysis process then shifts the burden of proof onto the model’s 

ability to derive accurate predictions. Equivalence testing was originally derived from 

bioequivalence testing used in the development of pharmaceutical drugs, and has been 

successfully adapted and utilized in tree physiology and biometrics research (Robinson and 

Froese 2004; Robinson et al. 2005). While TOST tests for population-wide agreement, the 

regression based adaptation discussed by Robinson et al. also addressed point to point 

agreement between observed and predicted values (Robinson et al. 2005). This adapted 

analysis is able to test how well the distributions of the observed angles match the distribution 

of the predicted angles. Additionally, the ability to use bootstrap resampling makes this 

statistical approach favorable. Resampling was not done to provide an estimate of the 

distribution of the predicted values. The data retrieved from the GNSS-RF data packets and 

subsequent derivations provided us with the predicted value distribution. Rather, the bootstrap 

resampling is included to provide an estimate of the sampling distribution within the range of 

predicted angle measures; providing a larger sample size than could feasibly be obtained in 
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fieldwork alone. The ability to increase sample size can strengthen the evidence for similarity 

in equivalence-based tests (Robinson et al. 2005).  

All statistical analysis was performed in R (R Core Team 2016). The equiv.boot function in 

the “equivalence” package was used to evaluate equivalence tests (Robinson 2016). A total of 

12 equivalence tests were conducted using 95% confidence intervals. These represented all 

combinations of the three transmission intervals (3), GNSS-RF transponder locations (2), and 

cycle elements (2). The equiv.boot function analyzes whether the slope and intercept of the 

regression of predicted angles fall within the desired region of equivalence, determining 

similarity or dissimilarity to observed angles. The region of equivalence for the regression was 

tested at +/−10% for both the slope and the intercept and 10,000 bootstrap replications were 

performed (Robinson et al. 2005). Equivalence testing shifts the burden of proof to difference. 

 
2.4 Results 

2.4.1 - Summary 

Transmission interval (p < 0.001), transponder location (p < 0.001), and swing angle (p < 

0.001) all affected the correct classification of cycle elements (Table 2.1 Chi-squared ANOVA 

table for parameter significance on correct classification proportion.). At the grapple, the 

proportion of verified correct classifications was greater for the 2.5 and 5.0 s transmission 

intervals than at the heel (Table 2.2). However, the proportion of correct classification for the 

10.0 s interval was slightly higher at the heel than the associated grapple proportion. In all 

instances, the 2.5 s interval returned higher proportions of success than the other intervals, 

apart from the 5.0 s interval return element at the heel location. The proportion of correct 

classifications was least reliable overall for the 10.0 s interval, as expected, followed by the 

5.0 s interval.  
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Table 2.1 Chi-squared ANOVA table for parameter significance on correct classification 
proportion. 

Variable Df 1 Deviance Resid. Df 2 Resid. Dev. 3 Pr (>Chi) 4 

NULL   2680 2054  
Interval 2 74.18 2678 1980 <0.001 

Swing Angle 1 42.38 2677 1937 <0.001 
Location 1 37.62 2676 1900 <0.001 

Cycle Element 1 0.04 2675 1900 0.8421 
Interval: Swing Angle 2 1.00 2673 1899 0.6043 

1 Degrees of freedom  2 Degrees of freedom of the residuals  3 Deviance of the residuals  4 P-value 
for the level of significance on correct classification 

 
Only the 2.5 s interval was able to achieve greater than 90% classification success for a 

complete cycle and achieved 99% classification success for the Swing Unload element at the 

grapple location. The 5.0 s interval achieved 90% successful classification at the grapple 

location. The total swing angles for the duration of the trials captured by the transponders were 

underestimated. In this instance, the 2.5 s transponder returned the total angle for all 72 trials, 

and thereby best represented the actual swing totals.  

Table 2.2 Summary data table. 

Location Interval Element Data 
Points 

Total Angle 
(Degrees) 

Observed (GPS) 

Proportion 
Correct 

Grapple   1339  0.84 1 
 2.5  769 27,360 (23,882) 0.94 

  
Swing 

Unload 451 13,680 (12,950) 0.99 

  Return 318 13,680 (10,932) 0.88 
 5.0  382 27,360 (21,442) 0.90 

  
Swing 

Unload 219 13,680 (11,698) 0.89 

  Return 163 13,680 (9744) 0.91 
 10.0  188 27,360 (14,918) 0.68 

  Swing 
Unload 

113 13,680 (8751) 0.71 

  Return 75 13,680 (6167) 0.66 
Heel   1342  0.791 

 2.5  773 27,360 (24,455) 0.82 

  Swing 
Unload 

443 13,680 (12,495) 0.84 

  Return 330 13,680 (11,960) 0.80 
 5.0  376 27,360 (22,740) 0.86 

  
Swing 

Unload 
227 13,680 (12,609) 0.84 
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  Return 149 13,680 (10,131) 0.87 
 10.0  193 27,360 (15,558) 0.69 

  Swing 
Unload 

110 13,680 (9195) 0.71 

  Return 83 13,680 (6363) 0.68 
1 Mean proportion of correctly classified elements across all treatments for Heel or Grapple location. 

 

2.4.2 - Binomial Logistic Regression- Element Characterization 

The odds of correctly classifying an element at the 10.0 s transmission interval was 

decreased 0.262 times when compared to the 2.5 s transmission interval, and was significant 

at a 95% confidence interval (CI) (Table 2.3). 

Table 2.3 Logistic regression coefficients associated with model describing variable impact on 
whether GPS returned correct element classification as represented by field observations. 

Variable Estimate SE 1 p-Value Odds Ratio 
95% 

Confidence 
Intercept 1.748 0.212 <0.001 5.741 3.813–8.772 

Rate 5 0.144 0.320 0.6525 1.155 0.621–2.182 
Rate 10 −1.339 0.328 <0.001 0.262 0.138–0.499 

Swing Angle 0.004 0.001 <0.001 1.004 1.003–1.006 
Location Heel −0.744 0.124 <0.001 0.476 0.372–0.605 
Cycle Element 0.025 0.122 0.8374 1.025 0.807–1.300 

Rate 5: Swing Angle −0.001 0.002 0.3789 0.999 0.996–1.002 
Rate 10: Swing Angle 0.000 0.002 0.8781 1.000 0.999–1.003 

1 Standard error of the variable estimate 

The 5.0 s interval odds of correct classification was not significantly different than the 2.5 

s interval. At each of the 18 observed angle intervals between 20 and 360, the odds of correct 

classification increased 1.004 times for each increasing interval with a CI exceeding 95%. In 

practice, this means that larger arcs have a higher incidence of correct classification. The 

location of the GPS transponders was also found to be a significant predictor (95% CI) of 

correct classification, with the odds of correct classification decreasing 0.476 times when 

moving from the grapple to the heel location. In practice, connected to arc distance, for the 

same arc in degrees, the heel moves a shorter distance than the grapple, resulting in more 
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frequent misclassification. Observed element (Swing/Unload or Return) was not found to 

create differences in the odds of correct classification of cycle element.  

 
Figure 2.3 Bar chart representing the proportion of correct classifications of the Swing Unload 

cycle element at the grapple and heel locations at 18 angle intervals. 

 
Figure 2.4 Bar chart representing the proportion of correct classifications of the Return cycle 

elements at the grapple and heel locations at 18 angle intervals. 

2.4.3 - Swing Angle Analysis 

Figure 2.5 shows a graphical comparison between the observed angle interval for each trial 

and the angles derived from GNSS-RF data packets for each transmission interval at both 
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locations and for both elements. It is evident in the figure that the 2.5 and 5.0 s intervals most 

accurately capture overall angle measures at the grapple location, and that the heel location 

introduces greater error at both intervals. The solid black line in the figures represents a 1:1 

relationship between the observed and the predicted values derived from the GNSS-RF 

recorded data packets. A clear trend of under prediction of swing angle can be seen in the 

figure for all transmission intervals, transponder locations, and machine elements. The most 

severe under-predictions are associated with the 10.0 s transmission interval, however. Both 

2.5 and 5.0 s transmission intervals appeared to follow similar trends of underestimation in the 

predicted angles.  

 

Figure 2.5 These figures represent the relationship between GNSS-RF derived angle 
measurements and observed angle intervals at the Grapple and Heel locations for the (a) Swing 

Unload and (b) Return elements. 

Equivalence-based regression analysis showed that the only combination of GNSS-RF 

derived angles for which both the intercept and slope were statistically similar to the observed 

values was the transponder located at the grapple with a 2.5 s interval capturing the swing 

unload cycle element (Table 2.4). In all other instances the intercept was dissimilar for the 
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predicted angle values when compared to the observed values. Only the 5.0 s interval swing 

unload element at the grapple and the 2.5 s interval at the grapple for the return element were 

found to be similar in regards to the slope of the regression line.  

Table 2.4 Summary of equivalence-based regression results. The model represents the various 
combinations of transmission interval (2.5,5,10); transponder location, grapple (G) or heel (H); and 
cycle element, swing unload (SU), and return (R). Sample size is denoted by n, and the approximate 

joint two one-sided 95% confidence intervals for the slope and intercept are: (𝐶𝐶−𝛽𝛽1, 𝐶𝐶+𝛽𝛽1) and (𝐶𝐶−𝛽𝛽0, 
𝐶𝐶+𝛽𝛽0), respectively. The former should be contained by the intercept interval of equivalence, (𝐼𝐼−𝛽𝛽0, 

𝐼𝐼+𝛽𝛽0) = 𝑦𝑦� ± 25%, and the latter by the slope interval of equivalence (𝐼𝐼−𝛽𝛽1, 𝐼𝐼+𝛽𝛽1) = 1 ± 0.25. 

Model n 𝑪𝑪−𝜷𝜷𝟎𝟎  𝑪𝑪+𝜷𝜷𝟎𝟎  𝑰𝑰−𝜷𝜷𝟎𝟎 𝑰𝑰+𝜷𝜷𝟎𝟎 𝜷𝜷𝟎𝟎 
Result 

𝑪𝑪−𝜷𝜷𝟏𝟏  𝑪𝑪+𝜷𝜷𝟏𝟏  𝑰𝑰−𝜷𝜷𝟏𝟏 𝑰𝑰+𝜷𝜷𝟏𝟏 𝜷𝜷𝟏𝟏 
Result 

G.SU.2.5 72 186.29 194.13 161.88 197.85 Reject 0.988 1.057 0.9 1.1 Reject 
G.SU.5 72 184.46 195.91 146.23 178.72 Fail 0.934 1.042 0.9 1.1 Reject 

G.SU.10 65 188.92 221.63 141.74 173.23 Fail 0.539 0.876 0.9 1.1 Fail 
H.SU.2.5 72 175.16 205.88 156.19 190.90 Fail 0.533 0.779 0.9 1.1 Fail 
H.SU.5 72 177.62 203.34 157.62 192.64 Fail 0.717 0.972 0.9 1.1 Fail 

H.SU.10 64 192.70 220.46 129.30 158.04 Fail 0.625 0.893 0.9 1.1 Fail 
G.R.2.5 68 195.02 205.03 144.68 176.83 Fail 0.946 1.035 0.9 1.1 Reject 
G.R.5 66 196.55 212.46 132.87 162.40 Fail 0.886 1.044 0.9 1.1 Fail 

G.R.10 44 229.89 263.50 95.75 117.03 Fail 0.468 0.902 0.9 1.1 Fail 
H.R.2.5 67 187.15 218.16 160.66 196.36 Fail 0.603 0.920 0.9 1.1 Fail 
H.R.5 63 199.18 221.60 144.72 176.88 Fail 0.864 1.097 0.9 1.1 Fail 

H.R.10 48 216.13 245.22 119.30 145.81 Fail 0.699 1.022 0.9 1.1 Fail 
 

The extent to which swing movements associated with each GNSS-RF transponder could 

be discerned visually varied with transmission interval (Figure 2.6). Visual interpretation of 

the tracks indicated that the 2.5 s transmission interval more accurately represented swing 

movements compared to 5.0 and 10.0 s transmission intervals. The data support this 

interpretation in that the angle totals best represented the actual swing angle totals for the 2.5 

s interval. Higher frequency of data point collection creates a comparably smoother swing track 

than the 5.0 and 10.0 s transmission intervals. The movements of the cab during the experiment 

were also captured by an additional transponder located on the rear corner of the cab. The 

transponders located at the grapple and heel remained equidistance from the cab transponder 

throughout the duration of the experiment.  
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Figure 2.6 The GNSS-RF transponders create a movement progression track between data points 

through the duration of the trials which are shown for the two (2) transponder locations and three (3) 
transmission intervals used in the experiment in addition to the cab location. 

2.5 Discussion 

Analysis of the field data returned both expected and surprising results. As anticipated, the 

2.5 s transmission interval data returned the highest proportion of correct element 

classifications. However, the 5.0 s transmission interval returned comparable correctly 

classified proportions. With 2.5 and 5.0 s transmission intervals capturing 94.4% and 91.7% 

of the respective overall cycles with at least one correct element for both Swing Unload and 

Return at the Grapple, accuracy exceeding that described by McDonald and Fulton (2005) and 

similar to that described by Hejazian et al. (2013) was obtained when classifying machine 

cycles using GNSS data. The ability to correctly classify at least one observation of each 

element within each trial was reduced when analyzing the Heel data. The associated 

percentages of success for the 2.5, 5.0, and 10.0 s intervals at the Heel were 91.7%, 88.9%, 

and 58.3%, respectively. Even so, if, for some operational reason, the transponders were placed 

at the heel rather than the grapple, a transmission interval of 2.5 or even 5.0 s would provide 

useful data, depending on accuracy requirements.  
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When addressing the potential for GNSS-RF transponders to accurately capture angle 

measurements, a consistent trend of angle underestimation was found across all angles 

exceeding 180 degrees, though at the smaller angle measures this underestimation is decreased 

and in some cases there is predicted angle overestimation (Figure 2.5). The reason for this 

underestimation at the larger observed angle measures is likely due to transponder data packets 

representing the machine swing not capturing the full extent of the swing arc. For the GNSS 

location to represent the true arc angle, the transponder has to record a data packet the exact 

moment the full swing extent is reached or during any pause at the full extent. The time of a 

pause at full extent is a greater proportion of the overall time at shorter arcs, resulting in a 

higher inclusion probability of a data packet representing full swing extent. Therefore, the full 

extent would be represented more often for smaller swing angles and would result in lower 

underestimation of swing angles. As seen in Figure 2.5, any intersection of the 1:1 line and the 

time interval trend line represents a location where the predicted angles derived from the 

GNSS-RF data match observed angles. Additionally, Figure 2.5 and Table 2.4 indicate overall 

that the 2.5 s interval is most successful in capturing data to derive accurate angle measures.  

In our analysis, there was a trend of decreased GNSS measurement accuracy at the Heel 

location when compared to the Grapple location. The movement of the transponders around a 

smaller swing circumference means the transponders are less likely to be able to accurately 

and concisely plot varying points because the range of the movements is shorter. This is due 

to the inherent accuracy of GNSS. For example, GNSS accuracy of +/− 1 m will have a greater 

impact on accurately capturing movements when the overall distance traveled 5 m as opposed 

to 15 m or 20 m. One possible solution to help account for this error when the swing arc is 

smaller is to incorporate additional sensors and mechanisms to capture grapple and other 
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intricate movements to assist in defining elements (Palander et al. 2013). These would augment 

GNSS data in ways that get around constraints related to GNSS accuracy. At the longer GNSS-

RF transmission intervals, minute machine boom movements are not as accurately captured. 

This is seen by observing both the positional data itself, as well as the successful classification 

proportions. This is especially clear for the 10.0 s interval data. As suggested by Devlin and 

McDonnell, the 10.0 s interval may be beneficial for analysis of general machine movements 

across the landscape (Devlin and McDonnell 2009). However, precise and intricate machine 

movements are best captured and analyzed using higher frequency data transmission of 

locations. Importantly, transmission intervals should be tested and tailored to meet the needs 

of particular equipment movements rather than relying on a general rule of thumb.  

From a visual representation standpoint, it is evident in Figure 2.6 that the 2.5 s transmission 

interval results in a plotted machine movement track that has smoother curves and higher 

accuracy representation of precise machine movements and machine component locations to 

meet operational analysis objectives. Correct classification of elements and overall cycles 

exceeding 90% for the 2.5 s interval further support this observation, as does the results of the 

regression based equivalence test. However, higher frequency transponder transmission rates 

are also more data intensive, requiring twice the data flow and storage capacity. This intensity 

could be difficult to manage for large projects with many pieces of equipment, both in terms 

of data collection and storage, but also real-time analysis, validation, and model optimization. 

When addressing the ability of the transponder to accurately characterize machine cycles, cycle 

elements, and angles of swing, the 5.0 s interval was shown to return comparable accuracies 

to those obtained by the 2.5 s interval transponders, at half the data intensity.  
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In this particular study, the overall sampled time represented only a small portion of what a 

full productive work day would entail in a commercial logging operation in beetle-killed 

timber. With the 2.5 s interval, the available storage space needed for each data file will be 

utilized twice as fast as the 5.0 s interval. Each file saved can consist of up to 9999 data points, 

after which the device overwrites existing data by default. Therefore, a new file needs to be 

saved on the handheld receiver every 6.9 h when working with the 2.5 s transmission interval 

to avoid overwriting and every 13.8 h when working with the 5.0 s transmission interval with 

three transponders. If additional transponders are used on multiple pieces of equipment, then 

available storage space will be used up more quickly. This can present problems with data 

being overwritten during average work days if the file is not saved, e.g., mid-way through the 

day. Additionally, it was found that the large data pools associated with the 2.5 s interval made 

analysis and interpretation of the data more cumbersome and time intensive than the longer 

intervals, an observation also made by de Hoop and Duprè (2006). Depending on the specific 

application, machines, and desired level of accuracy, incorporating the 5.0 s interval could 

return acceptable, though slightly lower, accuracies than the 2.5 s interval. In turn, longer work 

cycles could be sampled without concern for overwriting data and analysis and interpretation 

of those data would prove quicker and easier than with the 2.5 s interval if available memory 

storage and analytical capacity is a concern. When interest is focused on positioning and 

analysis of precise machine movements where rapid machine movements may be missed by 

long transmission intervals, the 2.5 s interval likely provides the best option for transmission 

frequency, or perhaps the study requires more traditional work study methods that relies on 

direct rather than passive observation.  
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An important consideration with our study is that the Garmin Alpha receiver and positioning 

transponders were located in open line-of-sight conditions, which may not be typical of many 

forest stands. No transmissions were obstructed by vegetation, topography, or inter-machine 

positioning. One hundred percent of the time-stamped positional coordinates were received. 

Prior experience with GNSS-RF data in operational forestry has shown that GNSS position 

and radio signal propagation quality (RSSI) can interact in complex ways. In operational 

forestry, there are many situations in which positioning transponders may receive a GNSS 

signal (Keefe et al. 2014a; Grayson et al. 2016), but radio propagation of coordinates to other 

devices elsewhere on the jobsite is blocked topographically by dense vegetation or interference 

from other radio systems (Keefe et al. 2014a; Grayson et al. 2016). If a portion of data packets 

are missing due to radio signal interference, the classification of machine elements may be 

affected in more complex ways not evident in our controlled experiment. With the quantities 

of data collected in this way, post-hoc manual and visual inspections of outlier points is almost 

impossible, so automated data quality control procedures are especially critical in such an 

environment.  

In order to further develop real-time modeling of machine movements on active logging 

operations, further studies exploring the impacts of forest canopy on GNSS-RF accuracy in 

particular applications should be explored. For example, in stands with high mortality due to 

beetle-kill with many trees that have dropped most of their foliage, this may not be a problem, 

but that remains to be evaluated. Past studies exploring canopy impact in GNSS accuracy have 

shown large decreases in accuracy depending on canopy cover (Sigrist et al. 1999; Taylor et 

al. 2001; Veal et al. 2001; Yoshimura and Hasegawa 2003; Bolstad et al. 2005; Hasegawa and 

Yoshimura 2007; Devlin and McDonnell 2009). However, these studies were for GNSS only 
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and did not study dual effects of canopy on GNSS and RF, or the interaction of these two 

signals. Because canopy density tends to be low in beetle impacted stands due to high levels 

of mortality, for example, canopy impacts on GNSS multipath error may be less of a concern 

than in healthy stands. Additionally, developing a methodology for similar element and cycle 

classification when the machine is traversing the landscape on steep slopes in beetle impacted 

stands in biomass utilization operations as opposed to sitting in a fixed location on flat ground 

will be necessary. Introducing machine movements on slopes into the analysis will add an 

additional level of complexity but is important for development of subsequent applications to 

improve the efficiency of harvesting in beetle impacted and unaffected forests alike. 

 
2.6 Conclusions 

Both 2.5 and 5.0 s transmission intervals correctly characterized cycles and cycle elements 

in the rotation movements of log loaders. However, the 2.5 s interval was the most successful 

in allowing for the prediction of accurate swing angle measures. Additional studies should be 

conducted to further refine the methodology and analysis techniques to foster use of this 

approach in real-time analysis of equipment movements on active beetle-killed harvesting 

operations. Accurate characterization of machine movements from spatially explicit data 

through the use of simple, non-intrusive multi-transmitter GNSS-RF allows for an increased 

level of situational awareness for improved streamlined operational production in the woods 

where obstructed views from topography or other site features may limit the ability to visually 

identify the actions of forest machinery at all times. The consumer-grade transponders 

incorporated into this study returned promising results in this preliminary study as to their 

accuracy and use in real-time production analysis and support models. The designed and 

controlled experiment performed in this study provided valuable information which will be 
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used to further develop the real-time analysis model in subsequent studies. Executing these 

focused studies will allow various machine processes to be analyzed individually, resulting in 

strong model components representing the various cycle elements of associated harvest 

machinery. As previously mentioned, once activity profiles for harvest systems are completed, 

the model will be applied at a landscape scale, providing valuable information to operations 

foresters and contractors regarding harvest site selection and real-time decision support during 

harvest. 

Further, connecting machine movements to the onboard computers of multiple machines 

interacting with one another opens new possibilities for real-time decision-support and 

logistics analysis in beetle-killed harvests and forest operations in general. For example, the 

movements of a shovel can be paired with subsequent processing activities of additional 

machinery and personnel working within the harvest boundaries. Incorporation of real-time 

machine production analysis and model-assisted decision-making will prove a valuable 

development in the continued advancement of precision forestry. These technologies will 

allow for streamlined real-time production analysis and feedstock logistics in not only beetle-

killed harvests, but more broadly in a wide range of forest operations. 
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Chapter 3: Use of LiDAR-derived landscape parameters to characterize 

alternative harvest system options in the Inland Northwest 

3.1 Abstract 

As new, innovative harvest options become available, it’s often unclear to forest managers 

how much area may potentially be available for those alternative harvest system options.  

Spatial decision support models can aid contractors and forest planners in choosing appropriate 

harvest systems based on topography and stand characteristics. In this study, high resolution, 

remotely sensed LiDAR data and inventoried stands characteristics from 91 sample plots were 

used to model landscape scale stand characteristics for the Slate Creek drainage on the Nez 

Perce Clearwater National Forest in North-Central Idaho. Raster layers for stand density and 

volume were overlaid onto high resolution digital elevation model and then integrated into a 

decision support model to compare harvest system selection within three scenarios composed 

of five harvest systems. In each subsequent scenario, shovel harvester based harvest systems 

were included to determine potential sites where integration of new harvest systems may be 

beneficial. Harvest system classification using LiDAR-derived products when introducing 

alternative harvest systems allows contractors and managers to better evaluate the operable 

capabilities of alternative harvest system options on landscape scales. This may additionally 

encourage the utilization of innovative machinery not currently widely integrated into logging 

operations. 

3.2 Introduction 

Harvesting system selection in forest operations is an integral component of applied forest 

management. Forest stands vary greatly in tree height, diameter, volume and topographic 

characteristics, resulting in a need for forest managers to effectively and efficiently select 
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harvest systems best equipped to handle these varying conditions (Wang et al. 1998; Adams et 

al. 2003). Decades of forest operations research and industrial timber harvesting experience 

has led to general understanding of the capabilities and operational thresholds of existing 

logging systems. However, as technology advances and equipment evolves over time, the tool 

box of available harvest systems from which to choose continues to grow, making it necessary 

for managers and contractors to stay informed about innovation in harvest systems (Kuhmaier 

and Stampfer 2010) and to better understand the trade-offs among conventional and emerging 

options, and the potential landscape area for which newer options may be preferable. The 

choice of harvesting system has large impacts on costs, and machine and workforce capacity 

(Matthews 1942; Kuhmaier and Stampfer 2010). Incorporating this knowledge and 

understanding into the context of precision forestry, aimed at site-specific forest management 

decision making and operations, provides a valuable resource for long-term sustainability, 

improved logging production and environmental quality protection. 

Broken or irregular topography creates unique challenges in harvest system selection and 

planning that are largely driven by fine-resolution spatial patterns (Saralecos et al. 2014; 

Saralecos et al. 2015). These factors make operations in sensitive and steep terrain more 

complex than gentle terrain operations (Abbas et al. 2017). In addition, natural resource 

management is facing greater demand to meet sustainability certification standards 

(Laukkanen et al. 2005).  This is especially relevant in the Inland Northwest where lower bulk 

densities, high porosity, weaker structural development and lower cohesion of an ash-cap layer 

makes soils highly susceptible to compaction and disturbance that can limit future site growth 

potential (Page-Dumroese 1993; Johnson et al. 2005).  The US Forest service restricts skidding 

on ground exceeding 35% to reduce soil disturbance, with other landowners across Idaho and 
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US employing similar restrictions (Greulich et al. 2001; D. Hollenkamp, personal 

communication, 2014; Barkley et al. 2015). However, low-impact, self-leveling machines may 

result in exceptions to existing restrictions if they are shown to operate below desired soil 

disturbance criteria. 

Working on steep slopes presents challenges associated with worker safety and logging 

production due to challenging terrain and less than ideal working conditions (Amishev and 

Evanson 2010). Ground based systems are generally associated with higher production and 

lower costs, as compared to cable systems (Andersson and Young 1998; Strandgard et al. 

2014). This makes tethered, or cable-assist steep slope harvesting systems an appealing 

alternative to cable systems within feasible operational thresholds. Tethered systems may 

improve logging safety by reducing the number of ground workers and allowing workers to 

operate from the safety of a protected machine cab (Abbas et al. 2017).  For example, the 

hazards associated with motor-manual felling can be mitigated by performing felling 

operations, where feasible, with a fully-mechanized option. Additionally, self-leveling chassis 

of harvesting machines designed for steep slopes increases the safety, comfort of operation, 

and sustained high efficiencies on steep terrain when compared to fixed cab ground based 

machines (Gellerstedt 1998, MacDonald 1999; Acuna et al. 2011). Self-leveling shovel 

harvesters both fell and forward trees to the roadside, fulfilling the harvest tasks of two separate 

machines and decreasing the number of machines on the job site. Areas traditionally harvested 

using a feller-buncher and grapple skidder system can be harvested and forwarded to the 

roadside using a single machine. Even though it is unlikely that the single shovel harvester 

would be able to match the production of two machines working simultaneously, lower delay 

and idle times for a single machine may result in lower unit production costs.  
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Along with increased use of self-leveling shovel logging units in the Inland Northwest, 

contractors have also started incorporating tethered harvest systems into steep slope operations. 

With early work exploring tethered systems beginning in the early 1970’s, tethered forestry 

equipment has since become commercially available and has been so in Europe for over 15 

years (McKenzie and Richardson 1978; Visser and Stampfer 2015; Sessions et al. 2017). Over 

the past 5 years, New Zealand has seen a huge increase in the popularity of winch-assist 

technology, with over 50 units actively operating (Abbas 2017). There are now over 45 winch-

assisted machines operating in North America as well; 23 of which are in the Pacific Northwest 

(Amishev 2017). These include systems incorporating either a dedicated winch machine or an 

integrated winch mechanism on the harvester (Amishev and Evanson 2010; Visser and 

Stampfer 2015; Sessions et al. 2017). As use of tethered logging systems increases, so does the 

importance of efficiently and effectively characterizing feasible logging system alternatives at 

the harvest unit and landscape scales.  

Decision support systems are defined as any means or tools used to aid in decision making 

processes (Acosta and Corral 2017). In forest operations research, decision support is often 

utilized to define machine activity and harvest system classification. Past research has resulted 

in the development of various decision support systems for harvesting type selection based on 

terrain and site characteristics (Reisinger and Davis 1986; Davis and Reisinger 1990; 

Hartsough et al. 2001; Suvien 2006; Kuhmaier and Stampfer 2010). In the context of steep, 

mountainous operations, various tools have been developed and have been applied 

operationally in varying levels (Heinmann 1998; Stampfer et al. 2001; Chung et al. 2004; 

Largo et al. 2004; Acuna et al. 2011; Bell and Keefe 2014; Barger et al. 2015; Bell et al. 2017).  
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Development of a harvest system selection and decision support model that effectively 

facilitates alternative logging system analysis on the broken topography of the Inland 

Northwest region is challenging (Moye et al. 1988). Increased application of self-leveling 

shovel systems and tether-matched harvest systems creates a need for a descriptive harvesting 

classification. Quantifying trade-offs among alternative, feasible harvest system options based 

on site and stand characteristics could aid land managers in decision making processes and 

help improve the operational efficiency of operational planning. Quantifying topographic and 

forest metrics for management areas is an important first step in this process. 

Remotely sensed data, including lidar (light detection and ranging), has been used widely 

in forest management and research (Akay et al. 2009). Advancements in the availability of 

lidar and associated data processing capabilities provides opportunities to further develop 

decision support tools with high spatial resolution. Stand metrics and topographic products 

derived from lidar also facilitate the extrapolation of such models to a landscape scale 

(Reutebuch et al. 2005). Inventoried forest plots and the subsequent development of predictive 

models using random forest classification and regression methods with lidar data allows stand 

metrics including trees per acre, merchantable volume and basal area to be processed for 

landscape scale analyses (Breiman 2001; Rodriguez-Galiano et al. 2012; Gan et al. 2015; 

Hudak et al. 2016). Topographic and site variables can be predicted and processed at 

resolutions as fine as 1 meter (Reutebuch et al. 2005). The resultant products from lidar 

provides unique opportunities to further advance the field of precision forestry and the degree 

to which decision support models influence land management strategies.  

While lidar has been widely used in forest inventory analysis, the utilization of these data 

in the context of forest operations has not be widely explored. In forest operations, research 
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utilizing lidar has focused primarily on its use for developing high resolution digital elevation 

models (DEMs) for forest road layout (Akay et al. 2004; Aruga et al. 2005; Akay and Sessions 

2005; Akay et al. 2009; Alam et al. 2013). For example, Alam et al. (2013) incorporated lidar-

derived slope data for a simulation model of a self-leveling feller-buncher. Our goal in this 

paper was to develop a simple decision support model using lidar-derived forest and 

topographic metrics for broad-level harvest system selection at the landscape scale, to 

determine where innovative, alternative harvest systems such as self-leveling shovel logging 

and tether-matched steep slope harvest systems are feasible alternatives to conventional 

logging systems.   

We determined the impact that introducing alternative ground-based harvest systems using 

shovel logging and tether-matched systems had on the classification of stands when compared 

to other commonly used ground and cable based operations. This was done by testing three 

harvest system scenarios, with each subsequent scenario introducing an additional harvest 

system to the previous scenarios. The first scenario explored the use of three harvest systems, 

followed by four and five systems in the following two scenarios. We hypothesized that the 

area of land classified as feller-buncher and skidder would change significantly when 

introducing the ground based shovel harvester as an alternative logging system moving from 

the first to second harvest system classification. Additionally, we hypothesized that the 

introduction of a tethered shovel harvester system would have a significant impact on the land 

previously classified as excaliner and hand fell in our harvest system classification across the 

study area in classifications 2 and 3. For all three scenarios we included a variant A and B to 

explore the impact of increasing operable slope for ground-based systems on overall harvest 

system classification. We expected lidar-derived products to provide the needed forest and 
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topographic metrics to perform landscape scale harvest system classification and provide the 

foundational data necessary for subsequent production and cost analyses in the future. 

3.3 Methods 

3.3.1 - Methods Overview and Study Site 

We developed a process for harvest system site classification based upon forest and 

topographic characteristics for 5 harvest systems within three varying harvest scenarios.  This 

provides an opportunity for operations managers and harvest planners to be able to perform 

direct comparisons between the harvest systems to aid in the selection of feasible harvest 

systems based on the stand characteristics, terrain and machine parameters. The model 

classifies stands within the management area based on forest and topographic characteristics 

including stand stocking, merchantable volume, site slope, aspect and harvest unit dimensions. 

The study area is northeast of Riggins, Idaho in the Nez Perce Clearwater National Forest and 

consists of over 30,000 hectares (74,000 acres) with 2,627 delineated stands of mixed-conifer 

over story. Stands were previously delineated by the USDA Nez-Perce Clearwater National 

forest and the spatial data was provided upon request to assist in analysis. Mountain pine beetle 

(Dendroctonus ponderosae) has resulted in mortality across the management area, resulting in 

salvage focused harvests in addition to other active harvests and fuel treatments. In most cases, 

these harvests consisted of clearcut salvage harvests, though mastication has been used in some 

instances to change fuel composition and structure in affected stands. 

3.3.2 - Lidar-derived Stand Metrics 

To quickly generate stand stocking reports for vast areas, traditional inventory methods for 

collecting stand data was replaced with analysis using lidar data. Data from 91, 405 square 

meter inventory plots were input into the forest vegetation simulator (FVS) to develop 
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inventory summary tables for stand composition and structure. Only trees greater than and 

equal to the 15-centimeter diameter class were considered for further use in data processing to 

represent only potentially merchantable trees. Lidar metrics encompassing the same extent as 

the inventory plots were also acquired. This data allowed the development of random forest 

models aimed at determining the relationship between the inventory metrics in question (trees 

per hectare, basal area, and merchantable volume) and the corresponding lidar metrics for the 

plots.  

A random forest is an ensemble learning technique that combines multiple decision trees 

into an overall ensemble to provide a much stronger approximation of the underlying data. 

This process is comparable to a form of nearest neighbor approximation which incorporates a 

bootstrapping algorithm with decision trees. While predictions from a random forest are 

limited to the range of the training data in regression, they are run quickly and are very capable 

of dealing with unbalanced and missing data (Breiman 2001). The rapid processing capabilities 

and robustness of the ensemble learning method, despite potential missing values, were the 

primary factors in choosing random forests. Three separate random forest models were built 

using the randomForest package (Liaw and Wiener 2002) in the data processing environment, 

R version 3.3.3 (R Core Team 2016). Additionally, the rfUtilities package (Evans 2017) was 

used to optimize predictor variable selection during model development.  

After random forest models were built for trees per hectare, merchantable volume and basal 

area, they were then applied to the overall Slate Creek study area. Lidar data were acquired 

through the Idaho Lidar Consortium and represented 217 separate .las point cloud files from a 

single 2006 lidar flight acquisition. These files were processed using the USDA lidar 

processing and analysis software, FUSION version 3.60. An identical lidar post-processed data 
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structure to those of the 91 existing training plots were developed to allow the random forest 

models built from the 2/3rd training data and later validated using the remaining 1/3rd test data 

set to be applied directly to the entire study area. Basal area, merchantable volume and trees 

per hectare rasters in 405 square meter resolution were predicted.  

Shapefiles representing the delineated stands for the entire study area were used to create 

boundaries for the application of the harvest system selection model. The raster files for the 

complete study area where then split and delineated to the extent of each of the 2,627 stand 

shapefiles. Average values for stand slope, trees per hectare, basal area (m2/ha), and 

merchantable volume (m3/ha) were determined for each of the 2,627 stands using the lidar 

derived 405 square meter stand and slope metrics. Stands level averages for the forest and site 

metrics (merchantable volume, stocking density, basal area, slope, and aspect) were then 

determined across the study area. All lidar-derived and additional spatial data sources 

incorporated into the study analysis and interpretation are referenced in Figure 1. 
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Figure 3.1 Multi-tiered spatial data sources for harvest system selection model 

3.3.3 - Harvest System Classifications and Forest and Topographic Metric 

Classifications 

Three landscape scale harvest system scenarios were addressed through the analysis 

process, representing the implementation of 5 varying harvest systems across the Slate Creek 

study area in different combinations (Figure 2).  

 

Figure 3.2 Harvest system options for stand classification: feller-buncher/grapple skidder; shovel 
harvester; tethered-shovel; excaliner/ hand fell; swing yarder/ hand fell 
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Performing landscape scale queries of stand and site characteristics for various 

combinations of harvest equipment provided insight into the way in which new harvest system 

introduction across the landscape impacted the distribution and area of feasible harvestable 

land for each system described. Three harvest systems remained constant in the three scenarios: 

feller-buncher with wheeled skidder; hand felling with excaliner skid; and hand felling with 

swing yarder skid. In the second scenario, a shovel harvester system, which includes felling 

and forwarding with a single machine, was included in the analysis. The operational threshold 

of the shovel harvester overlapped with that of the feller-buncher and wheeled skidder system. 

However, the shovel harvester was the preferred system when performing the harvest system 

selection query across the 2,627study area stands. The ability to operate one machine, the 

shovel harvester, as opposed to the skidder and feller-buncher, may lead have some operational 

and cost benefits. Therefore, giving classification priority to the shovel harvester gives insight 

into area where these benefits have the potential to be captured.  

In the third scenario, the four harvest systems previously referenced in the second scenario 

were incorporated once again. Additionally, a tethered shovel harvester system was included 

in the analysis. Any instances where the operational threshold of the tethered shovel harvester 

system overlapped existing harvest systems’ operational thresholds, the tethered system was 

used as the preferred system. Again, this classification priority given to the tethered shovel was 

to determine the areas where the tethered shovel is a feasible alternative to the excaliner and 

where incorporating the ground based system may yield beneficial returns. Higher production 

and lower costs of ground based harvesting systems as opposed to cable counterparts is the 

justification behind this analysis process. 
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Analysing harvest systems and identifying limiting parameters within harvest systems has 

previously been successfully described by decision support models using systems analysis 

(Talbot et al. 2003). To delineate the stands in each scenario by each harvest system, 

operational thresholds were defined for each of the systems and were the foundation for the 

classification process. Operational thresholds for slope, forwarding/skid distance and 

minimum merchantable volume were defined for all systems (Table 1). The shovel harvester 

harvest system independent of other machinery is limited to forwarding distances not 

exceeding 180 meters (Krume, personal communication 2015; Fisher 1999). Forwarding 

distance for the manual felling with excaliner yarding systems is restricted to distances not 

exceeding 250 meters. Any stand with a slope exceeding 35 percent and forwarding distance 

exceeding 250 meters in variant A was consistently classified across all three scenarios as hand 

fell and swing yarder skid. This slope was increased to 45 percent in variant B. In all three 

scenarios, stands not exceeding 35 percent slope and exceeding 180-meter 

forwarding/skidding distance were classified as feller-buncher and wheeled skidder in variant 

A. This lower slope limit was increased to 45 percent in variant B. This was similarly the case 

in scenario 1 for stands below 180-meter forwarding/skidding distance.  

The tethered shovel-harvester system was bound by the same operational thresholds has the 

untethered shovel harvester apart from the allowable operable slope. In this instance, the 

operable slope began at 35 percent in variant A and 45 percent in variant B and was restricted 

to a maximum of 85 percent (Cavalli 2015). For each of the previously described harvest 

system scenarios, operational thresholds for slope and maximum skidding/forwarding distance 

are shown in Table 1. In all instances, the minimum merchantable volume for classified stands 

exceeded 29 m3/ha (5,000 BF/acre). Any stand with mean volume below this minimum bound 
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was excluded from harvest system classification due to the infeasibility of performing a harvest 

in a stand with such low merchantable volume. These operational threshold benchmarks 

defined are flexible estimates and are used to present the methodology used in this paper. Any 

limiting parameters desired can be substituted into the analysis performed, depending on 

agency best management practices, management objectives or other factors and allows for 

customization of the harvest system classification. 

Table 3.1 Harvest system scenarios for varying management situations 

Scenario 1 

Harvest System Variant Operable 
Slope 

Forwarding/ 
Skidding Distance 

Minimum Merch. 
Volume 

Buncher/Skidder A 0 – 35% < / > 180 m 29 m3/ha 
 B 0 – 45% < / > 180 m 29 m3/ha 
Excaliner/ Hand Fell A > 35% < 250 m 29 m3/ha 
 B > 45% < 250 m 29 m3/ha 
Swing Yarder/ Hand Fell A > 35% > 250 m 29 m3/ha 
 B > 45% > 250 m 29 m3/ha 
Scenario 2 

Harvest System Variant Operable 
Slope 

Forwarding/ 
Skidding Distance 

Minimum Merch. 
Volume 

Buncher/Skidder A 0 – 35% > 180 m 29 m3/ha 
 B 0 – 45% > 180 m  29 m3/ha 
Shovel Harvester A 0 – 35% < 180 m 29 m3/ha 
 B 0 – 45% < 180 m 29 m3/ha 
Excaliner/ Hand Fell A > 35% < 250 m 29 m3/ha 
 B > 45% < 250 m 29 m3/ha 
Swing Yarder/ Hand Fell A > 35% > 250 m 29 m3/ha 
 B > 45% > 250 m 29 m3/ha 
Scenario 3     

Harvest System Variant Operable 
Slope 

Forwarding/ 
Skidding Distance 

Minimum Merch. 
Volume 

Buncher/Skidder A 0 – 35% > 180 m 29 m3/ha 
 B 0 – 45% > 180 m 29 m3/ha 
Shovel Harvester A 0 – 35% < 180 m 29 m3/ha 
 B 0 – 45% < 180 m 29 m3/ha 
Tethered Shovel A 35 – 80% < 180 m 29 m3/ha 
 B 45 – 80% < 180 m 29 m3/ha 
Excaliner/ Hand Fell A > 35% < 250 m 29 m3/ha 
 B > 45% < 250 m 29 m3/ha 
Swing Yarder/ Hand Fell A > 35% > 250 m 29 m3/ha 
 B > 45% > 250 m 29 m3/ha 
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For the purposes of this study, it was assumed that all skidding and forwarding for all harvest 

systems would occur directly parallel to the average azimuth aspect of the stand. Therefore, all 

skidding and forwarding occurred either directly up or downslope. To facilitate rapid and 

efficient measurements of all stands, an R script was developed that calculated all max 

forwarding or skidding distances. All code development was completed in the statistical 

programming environment R. With the aspect of each stand known, the script performed a 

sweep perpendicular to the aspect at 50 points along the width of the stand polygon measuring 

distance. The max forwarding/skidding distance within the polygon shapefile was then 

determined. With all necessary forest and site metric data available for the harvest system 

classification for the three scenarios, classification queries were developed and executed in 

ArcMap. Maps and resulting attributes were collected from the analysis providing both visual 

and quantifiable results from the harvest system classifications.  

Moving through subsequent scenarios within the two variants and introducing new 

innovative harvest systems is showing areas where these systems may prove effective 

alternatives, resulting in more efficient operations and lower costs as compared to the 

traditional systems. The analysis will show where these innovative systems are potential 

alternatives and if they However, more analysis outside the scope of this project will need to 

be performed to determine the optimal harvest system per stand. 

3.4 Results 

The stand level predictions across the 2627 study site stands for trees per hectare, basal area 

and merchantable volume are shown in Figure 3. These stand level estimates are resultant of 

the random forest models’ predictions derived from the 405 square meter resolution rasters for 

each of the forest metrics and average slope topographic metric.  
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Figure 3.3 Stand-level averages for lidar-derived forest and topographic metrics for Slate Creek 
study area. Errors (RMSE) associated with map B) are 200.08 trees per hectare, map C) are 78.66 

m3/ha and map C) are 12.71 m2/ha.  

Table 2 shows quality estimates for the random forest models developed for basal area, trees 

per hectare and merchantable volume in terms of model accuracy, RMSE, mean estimate value 

and R-squared. 
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Table 3.2 Random forest model quality assessment 

Random Forest Prediction Mean RMSE R-Squared Accuracy (%) 
Trees Per Hectare 405.57 tph 200.08 0.54 70.3 
Basal Area 36.57 m2/ha 12.71 0.65 75.6 
Merchantable Volume 180.69 m3/ha 78.66  0.56 71.9 

 

For all random forest models, the root mean square error was less than 50% of the prediction 

means for the forest metrics, within the range considered acceptable for our analysis. 

Additionally, the model accuracies of 70.3%, 75.6% and 71.9% for the trees per hectare, basal 

area, and merchantable volume forests respectively were captured.  

 Spatial analysis and querying of the forest and topographic metrics derived from lidar 

analysis produced maps of the three harvest system scenarios (Figure 4).  From the maps, it is 

clear the introduction of additional harvest systems in Scenario 2 and Scenario 3 results in a 

recognizable difference in the classification of harvest systems across the 2,627 stand, 30,042 

hectare (74,232 acre) study area in both variant situations (Figure 4). Overall, the introduction 

of the shovel harvester system in Scenario 2 resulted in a change of areas classified as feller-

buncher and skidder of 31 percent and 46 percent of the overall area for variant A and B 

respectively. In the case of both variants, the area lost to the feller-buncher and skidder system 

was alternatively classified shovel harvester (Table 3). 

Between Scenario 2 and Scenario 3, the tethered shovel system was introduced as an 

alternative to the excaliner and hand fell system resulting in a decrease of area classified as 

excaliner and hand fell system of 34 and 19 percent of the overall study area for variant A and 

B respectively (Table 3 ). A change of classification of 10,260 hectares (25,359 acres) for 
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variant A and 5,830 hectares (14,405 acres) for variant B from excaliner/ hand-fell to tethered 

shovel was shown. 
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Figure 3.4 Harvest system selection maps for two variations of three harvest scenarios 
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In all instances, the swing yarder and hand-fell system remained constant for stand and area 

classification. This is because the swing yarder and hand-fell system represents stands that 

exceed the maximum forwarding distance for all other harvest systems in this study, resulting 

in no feasible alternative. Additionally, the number of stands and resultant hectares classified 

as no harvest remained constant through all scenarios. 

Table 3.3 Harvest system classification summary table for two variants of three scenarios 

Scenario 1 
Harvest System Stands Hectares (Acres) Area 

Proportion 
Variant A B A B A B 
No Harvest 91 91 1,109 (2,740) 1,109 (2,740) 0.04 0.04 
Feller-Buncher/ Skidder 1,201 1,726 12,811 (31,657) 18,940 (46,801) 0.42 0.63 
Excaliner/ Hand Fell 1,278 767 14,049 (34,716) 8,422 (20,810) 0.47 0.28 
Swing Yarder/ Hand Fell 57 43 2,073 (5,119) 1,571 (3,881) 0.07 0.05 
 2,627 2,627 30,042 (74,232) 30,042 (74,232) 1.00 1.00 
Scenario 2 
Harvest System Stands Hectares (Acres) Area 

Proportion 
Variant A B A B A B 
No Harvest 91 91 1,109 (2,740) 1,109 (2,740) 0.04 0.04 
Feller-Buncher/ Skidder 139 218 3,425 (8,463) 5,222 (12,904) 0.11 0.17 
Shovel Harvester 1,062 1,508 9,386 (23,194) 13,718 (33,897) 0.31 0.46 
Excaliner/ Hand Fell 1,278 767 14,049 (34,716) 8,422 (20,810) 0.47 0.28 
Swing Yarder/ Hand Fell 57 43 2,073 (5,119) 1,571 (3,881) 0.07 0.05 
 2,627 2,627 30,042 (74,232) 30,042 (74,232) 1.00 1.00 
Scenario 3 
Harvest System Stands Hectares (Acres) Area 

Proportion 
Variant A B A B A B 
No Harvest 91 91 1,109 (2,740) 1,109 (2,740) 0.04 0.04 
Feller-Buncher/ Skidder 139 218 3,425 (8,463) 5,222 (12,904) 0.11 0.17 
Shovel Harvester 1,062 1,508 9,386 (23,194) 13,718 (33,897) 0.31 0.46 
Tethered Shovel 1,064 618 10,262 (25,359) 5,830 (14,405) 0.34 0.19 
Excaliner/ Hand Fell 214 149 3,787 (9,357) 2,592 (6,405) 0.13 0.09 
Swing Yarder/ Hand Fell 57 43 2,073 (5,119) 1,571 (3,881) 0.07 0.05 
 2,627 2,627 30,042 (74,232) 30,042 (74,232) 1.00 1.00 

 

It was found that adding 10 percent slope to the operable slope limit in variant B resulted in 

an increase of land classified as ground-based logging systems (feller-buncher/ skidder) of 
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6,132 hectares (15,144 acres) or 21 percent for Scenario 1. In Scenario 2, there were 4,334 

hectares (10,703 acres) more classified as shovel harvester in variant B than A. In Scenario 3, 

there were 4,430 hectares (10,954 acres) more classified as tethered shovel in variant A than 

in variant B due to the higher area initially characterized as steep slope, cable ground. 

Variant A resulted in an initial ground-based harvest system classification of 42 percent of 

the overall study area, with 54 percent classified as cable harvest and the remaining 4 percent 

defined as no harvest. These percentages remained consistent through all 3 scenarios when 

comparing ground based and cable or cable assisted systems. In variant B harvest system 

classification, the additional 10 percent slope added to the upper bounds of the operable slope 

of the ground-based systems resulted in an overall ground-based system classification of 63 

percent and 33 percent cable system classification.   

3.5 Discussion 

Our method of using LiDAR to characterize operational stand characteristics to pre-plan 

forest operations and comparative analysis of alternative harvest options prior to field layout 

and implementation proved effective. The random forest models developed to predict forest 

metrics across the study area returned accuracies exceeding 70% which was deemed acceptable 

for the subsequent analysis performed using the model predictions. In variant A of the harvest 

system classification analysis, we found that the ground-based shovel logging was a feasible 

alternative to the feller-buncher system in 1,062 stands. Comparatively, ground-based shovel 

logging systems provided a significant alternative to the feller-buncher and grapple skidder in 

variant B on 1508 individual stands. Similarly, the tethered shovel harvester system was found 

to be a significant alternative to the excaliner in 1,064 stands for variant A and 618 stands for 

variant B. From an operational standpoint, the potential implementation of the shovel harvester 
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in lieu of the feller-buncher and grapple skidder system means that one machine could be used 

to harvest these stands rather than two. This may lead to lower fuel, labor and maintenance 

costs, resulting in lower total logging costs. The ability to match an appropriate harvest system 

with operability constraints of forest and topographic conditions is the first step in increasing 

productivity and reducing costs. However, stand-level logging costs for the two systems should 

be estimated and compared prior to decision-making about preferred options. The high 

production and cost effectiveness of shovel logging increases its feasibility, even in 

mountainous terrain (Fisher 1999). Site impacts caused by shovel logging are inherently less 

than other ground based systems, making shovel logging a favorable alternative for sensitive 

sites (Fisher 1999). Self-leveling capabilities of new shovels increase the safe, effective 

operating capabilities of the machines, making the use of shovel logging more feasible across 

a wider range of sites, especially in the Inland Northwest. 

Increasing the slopes on which ground-based harvest machinery are allowed to operate, 

especially within the National Forest system, is an important consideration when attempting to 

maximize operational production and safety. Increasing the upper bounds of the operable slope 

for the ground-based systems by 10 percent slope resulted in an increase in overall operable 

ground of 21 percent of our study area. This equated to over 6,300 ha. Increased safety 

associated with mechanized felling using tethered and untethered shovel harvesters is an 

important benefit when considering increasing the allowable slopes of ground-based systems. 

This is especially relevant in the context of the Slate Creek study area, where beetle killed 

stands present hazardous working conditions for ground workers. Classifying feasible stands 

to incorporate these alternative harvest systems means fewer workers outside the protection of 

enclosed machine cabs. Logging costs for ground based shovel logging have been found to be 
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40% less than some cable alternatives as well, further supporting their implementation (Fisher 

1999).  

The ground-based shovel harvester systems, both tethered and untethered, are gaining 

traction as popular harvest methods in the inland northwest. Delineating areas where harvest 

systems can be incorporated into management practices may in turn promote effective forest 

management by creating safer working conditions, and increasing harvest production. This is 

done by providing the tools necessary for decisions to be made that result in the incorporation 

of the most effective and appropriate management strategies considering forest and 

topographic features as well as innovative technologies and processes.  

Accuracy with which forest and topographic metrics can be derived and predicted from lidar 

data for use in resource management is increasing (Reutebuch et al. 2005). The development 

of automated algorithms for detecting and delineating individual tree crowns has made the 

application of this data in precision forestry applications more feasible (Zhen et al. 2016). 

Research delineating individual tree locations and individual tree volume estimation continues 

to advance our understanding and utilization of remotely sensed lidar data and provide 

opportunities to advance precision forestry in new ways (Falkowski et al. 2006; Chen et al. 

2007; Akay et al. 2009; Gupta et al. 2013; Zhen et al. 2016; Barnes et al. 2017). Methods to 

develop these predictions, however, still need to be developed and current applications are 

limited.  At this point in time, lidar provides a valuable data resource for predictions and 

depictions of forest and topographic characteristics useful for stand- and landscape scale 

harvest system classification, as shown in this study.  

It is understood that when applying this methodology for harvest system classification in 

additional areas that the large number of plots used to train and test the random forest models 
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for forest metrics may not be available. To address this concern, random forest models were 

developed for trees per hectare, basal area and merchantable volume following the same 

methodology previously used, but exploring the affect that sample size had on model accuracy 

and strength. Random forest models were developed using varying sample plots, from 10 up 

to 91 plots. The results from the additional random forest model quality assessments are shown 

in Figures 3.5 for the trees per hectare random forests model, 3.6 for the merchantable volume 

random forests model, 3.7 for the basal area random forests model and as summary tables 

assessing model accuracies for all three forest metrics in Appendix A.  
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Figure 3.5 Root mean squared error, R-squared, Accuracy and Prediction Mean plots for Trees per 
Hectares representing sample plots of 10 up to 90 
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Figure 3.6 Root mean squared error, R-squared, Accuracy and Prediction Mean plots for 
Merchantable Volume representing sample plots of 10 up to 90  
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Figure 3.7 Root mean squared error, R-squared, Accuracy and Prediction Mean plots for Basal 
Area representing sample plots of 10 up to 90 
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From the figures, it is evident that for all three models, the RMSE decreases and the R-

squared values increase which is indicative of an improving model. In several instances where 

the R-squared value is a negative value represents very poor models. These cases were only 

found to exist in small sample sizes. As the number of sample plots increased, the variation 

between the prediction means for all forest metrics between subsequent plots became more 

consistent. With a larger number of sample plots, the overall variability of the study area was 

better represented and random samples of predominantly high or low values were less likely 

to skew the data. Accuracies of the models stayed relatively consistent for all sample sizes, 

though less variability was found between subsequent numbers of sample plots once the sample 

sizes increased. This indicates that larger sample sizes produce more consistent random forests 

models for forest metric predictions. For all accuracy assessment values for all three forest 

metrics, it appears that values became more consistent and improved when the sample plot 

number exceeded approximately 40 plots. Therefore, it can be assumed that comparable 

random forests models and resulting prediction accuracies can be achieved with access to fewer 

training and testing plots. However, accuracies of predictions may be adversely impacted once 

the number of sample plots drops below a threshold. It is unclear from our analysis what factors 

may affect this threshold.  

Efficiently performing harvest system classifications at the landscape scale using lidar-

derived metrics will lead to continuing work further utilizing these data in an operational 

context (Figure 5). Combining these classifications with stand-level logging cost estimates in 

future work provides the basis for determining the optimal harvest system at the stand-level in 

subsequent analysis. Additionally, stand-level production and logging cost estimates will 
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provide the foundation for performing estate-level harvest scheduling analysis with stand-

specific logging cost estimates, rather than assumed values.  

Lidar-derived harvest system classifications can also be integrated with individual tree-level 

harvest simulation and real-time decision support, further building on the foundational work 

developed in this study. Keefe et al. (2014) outlined the use of GNSS-RF (geographic 

navigation satellite system with radio frequency) as a method to support real-time analysis and 

model-based decision support in forest operations. Becker et al. (2017), Grayson et al. (2016) 

and Zimbelman et al. (2017) all explored the application of GNSS-RF technologies in 

operational forestry and logging safety applications. The use of lidar-derived forest and 

topographic metrics for harvest system selection described in this study will further advance 

this work and other facets of forest operations.   

  

Figure 3.8 Future work addressing operational applications from LiDAR-derived harvest system 
classifications 

 

As technologies and equipment continue to advance in the future, operations foresters and 

forest planners can increasingly utilize and incorporate lidar analysis into current practices to 

increase harvest production, minimize costs, and encourage long-term sustainable forest 

management practices. Our results showed the significant potential for characterizing the 
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appropriateness of new and logging systems at the stand and landscape scale, and should be 

further explored in future studies. 
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Chapter 4: Thesis Conclusions 

As technology continues to advance in the coming years, it is likely that we will 

continue to see increased application in natural resource management and precision 

forestry contexts. The ability to define work in forestry using spatially explicit data and 

corresponding data gathered from additional sensors in becoming increasingly possible as 

research into and development into innovative applications increases. We successfully 

defined and characterized the work elements of a shovel using exclusively GNSS-RF 

recorded data at 90% plus success rates. Using consumer grade GNSS-RF transponders, 

we accurately determined not only what work task the machine was performing, but also 

the location of various machine components in space at given times. These promising 

results set the foundation of future studies further exploring similar methods to define 

work and production of forestry machines using not only GNSS-RF transponders but 

additional sensors as well. 

Developing a library of activity profiles for forestry machinery and personnel tasks will 

change the way in which we determine production and interactions of machinery and 

personnel in the forests. Sharing of these data in real-time provides greater insight into 

interactions between machinery and ways in which production can be increased while 

potentially decreasing subsequent costs. Additionally, increasing the connectivity and data 

sharing capabilities in the forest will increase the situational awareness of all components 

of an operation. In time, this may lead to increased safety on logging operations and insight 

into ways to maximize tactical harvest planning.  

As access to affordable, user friendly technologies and methods to collect and analyze 

these data continue to develop, their application in forestry and land management practices 
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is likely to increase. Precision forestry; planning and conducting management on a 

microsite, stand level; will likely increase as greater insight into operations gathered from 

GNSS-RF and real-time technologies becomes more available. This will be encouraged 

further by access to high resolution, remotely sensed data and the derivation and 

application of spatial data products into management planning. 

Using lidar derivation and analysis techniques, we were able to predict forest metrics 

for trees per hectare, cubic meters per hectare volume, and basal area for our 34,000 

hectare Slate Creek study area. Our prediction models returned metrics predictions of at 

least 70% in all cases which were then used to develop the stand level harvest system 

selection model. The combination of our lidar derived forest and topographic metrics 

provided a rich data set which was used in the selection process to determine if innovative, 

alternative harvest systems were feasible options over traditional harvest systems. In the 

case of both the shovel harvester and the tethered shovel harvester, we determined that 

they were feasible alternatives to feller buncher/ grapple skidder systems and excaliner/ 

hand fell systems respectively across a significant proportion of the area originally 

classified as the traditional system.  

The next step in further refining this model will be to develop production and cost 

components of the model to predict logging cost estimates for each harvest system across 

their feasible stands. Doing so will develop a decision support model which shows the 

optimal system at the stand level based on forest and topographic metrics as well as 

logging costs. This stand level analysis refined from high resolution data can further be 

strengthened by coupling it with real-time GNSS-RF data to paint an increasingly detailed 

picture as to how machinery work across not only the landscape, but within the stand. 
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Understanding of how forest and topographic metrics affect machine productivity and 

interactions can be addressed as well. The availability of high resolution spatial data and 

the collection of subsequent data regarding machine activities in real-time will change the 

way in which we plan and execute forestry tasks in the future.  

This detailed understanding of production and the factors affecting it will provide 

valuable information to contractors and harvest planners regarding the processes and 

harvest systems necessary to maximize production and minimize costs across the 

landscape. This is especially relevant when developing management strategies for beetle-

killed and other salvage harvest operations where degraded timber value decreases the 

feasibility of harvests due to low value. Selecting the optimal harvest system based on 

forest and topographic metrics will help to reduce overall costs and ensure these necessary 

harvests are able to be completed across the landscape for future forest health and severe 

fire threat reduction. 

The studies described in this thesis provide foundational methods and results for future 

work to be built from. As follow-up research occurs and methods and end products are 

refined, the goal is to develop a library of production models that can be used by operations 

foresters and contractors to predict logging costs and define work across management 

areas. Combined with high resolution spatial products and lidar-derived forest metrics, 

stand level tactical planning for harvests and other management tasks is becoming more 

of a reality. What many once left the woods to escape is becoming a familiar resource, as 

technology integration into natural resource management and forest operations continually 

expands. In time, the way in which data is shared, production is determined, and the scale 

at which harvest planning and operations are addressed will be starkly different than what 
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was even though possible by previous generations. A clear understanding of not only the 

capabilities that real-time positional data and remotely sensed possess, but ways to 

effectively incorporate these into real world management scenarios is integral to capturing 

the potential benefits these data sources provide for decision support and management 

execution in forest operations and natural resource management. Precision forestry has 

long been a novel concept with little application and execution in forest management. 

However, the methods and products developed in the previous two chapters combine an 

understanding of real-time and remotely sensed data capabilities to address management 

challenges and actualize the concept of precision forestry.  
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Appendix A: Random Forests Extended Sample Tables 

Trees per Hectare 
# of Plots Prediction Mean (TPH) RMSE R-Squared Accuracy (%) 

10 434.66 143.12 0.01 41.5 
13 309.45 65.40 -0.31 83.1 
16 502.09 80.26 0.50 75.7 
19 469.76 135.57 -0.25 47.4 
22 346.51 126.49 0.22 52.6 
25 415.73 124.90 0.12 58.7 
28 386.10 81.11 0.17 64.1 
31 320.60 85.30 0.27 58.2 
34 450.46 119.18 0.43 64.6 
37 423.08 108.79 0.21 71.2 
40 330.50 81.71 0.48 61.2 
43 410.42 81.14 0.29 74.4 
46 427.06 95.65 0.31 65.3 
49 421.04 103.86 0.43 71.1 
52 411.67 97.37 0.31 70.0 
55 391.50 104.74 0.36 67.3 
58 408.40 76.56 0.42 73.8 
61 410.68 88.57 0.48 68.0 
64 433.55 107.46 0.35 69.6 
67 368.15 81.10 0.43 61.5 
70 403.80 95.04 0.40 73.9 
73 417.54 105.70 0.31 62.3 
76 410.81 87.97 0.54 67.5 
79 420.17 94.02 0.37 64.6 
82 415.68 97.26 0.37 70.2 
85 418.04 83.96 0.57 73.1 
88 413.31 103.47 0.23 69.2 
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Merchantable Volume 
# of Plots Prediction Mean (m3/ha) RMSE R-Squared Accuracy (%) 

10 200.88 9445.09 -1.12 68.1 
13 198.89 13172.34 0.49 70.4 
16 166.69 20320.02 -0.02 57.5 
19 172.65 13417.14 0.43 68.2 
22 186.14 21107.85 0.43 56.2 
25 203.73 14459.57 0.38 77.0 
28 199.73 17134.96 0.40 71.8 
31 187.25 15913.17 0.01 70.5 
34 200.77 17305.82 0.32 69.3 
37 202.84 13015.36 0.24 80.3 
40 195.71 15628.44 0.39 81.8 
43 196.40 11838.27 0.59 72.8 
46 197.12 11526.40 0.64 81.0 
49 175.84 17156.31 0.38 74.1 
52 180.60 16113.71 0.51 78.0 
55 168.16 12201.89 0.55 76.5 
58 155.08 12810.11 0.61 77.7 
61 196.22 11106.97 0.68 81.7 
64 176.07 10561.98 0.65 81.0 
67 190.35 15200.83 0.47 78.9 
70 174.64 14179.61 0.49 72.2 
73 179.24 14521.21 0.49 76.2 
76 180.64 12411.02 0.61 76.6 
79 175.37 12437.44 0.58 76.9 
82 179.69 15161.06 0.51 82.0 
85 181.57 12547.38 0.51 72.4 
88 181.46 15808.01 0.47 68.9 
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Basal Area 
# of Plots Prediction Mean (m2/ha) RMSE R-Squared Accuracy (%) 

10 43.03 68.06 -0.24 81.6 
13 33.86 61.01 -0.13 70.8 
16 33.22 63.70 0.26 77.4 
19 42.71 86.10 -0.01 83.7 
22 39.94 69.85 0.12 80.2 
25 39.86 72.36 0.26 75.2 
28 38.30 73.05 0.27 80.1 
31 31.14 57.97 0.52 71.1 
34 37.55 44.07 0.71 80.3 
37 41.85 68.27 0.44 77.5 
40 38.78 55.90 0.38 84.6 
43 38.03 61.87 0.47 78.0 
46 35.08 62.60 0.55 77.6 
49 38.39 58.24 0.51 81.5 
52 36.67 62.28 0.50 76.6 
55 35.20 55.84 0.56 78.5 
58 35.77 60.47 0.59 82.3 
61 35.07 44.08 0.67 77.3 
64 36.32 56.32 0.63 77.4 
67 38.40 55.23 0.62 78.2 
70 36.86 49.11 0.66 82.9 
73 36.48 54.50 0.61 79.4 
76 35.95 50.42 0.69 78.8 
79 36.79 51.45 0.56 82.1 
82 36.48 57.55 0.57 81.4 
85 37.38 52.54 0.66 74.6 
88 36.84 60.76 0.49 75.3 
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