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Abstract

Despite the significant advances in vehicle automation and electrification, the next-decade

aspirations for massive deployments of autonomous electric mobility on demand (AEMoD)

services in big cities are still threatened by two major bottlenecks, namely the communica-

tion/computation and charging delays. In order to target the communication/computation

delays, the thesis suggests the exploitation of fog-based architectures for localized AEMoD

system operations. These emerging architectures are soon-to-become widely used, allowing

for all localized operational decisions to be made with very low latency by fog controllers

located close to the end applications (e.g., each city zone for AEMoD systems). As for the

charging delays, an optimized multi-class charging and dispatching management model, with

partial charging option for AEMoD vehicles, is developed for each of these zones as a queuing

system. The stability conditions of this model and the optimal number of classes are then de-

rived. Decisions on the proportions of each class vehicles to partially/fully charge or directly

serve customers are optimized to minimize the maximum and average system response times.

The study of the model covered also finding the optimal vehicle dimensioning for each zone

in order to guarantee a bounded need of vehicles with a bounded response time. This study

aimed also to resolve a clear and unrealistic limitation in the first proposed model, namely

the matched charge-to-trip only service, by enabling sub-class service; i.e., allowing vehicles

to serve customer classes with trips needing less charge. A queuing model representing the

new multi-class management scheme is introduced. Its stability conditions are then derived.

Decisions on the proportions of each class’s vehicles to charge and to partially/fully charge,

or directly serve customers with sub-class service are then optimized in order to minimize

the maximum response time of the system. Both of the proposed models were simulated and

results show the merits of our proposed models and optimized decision schemes compared

to several non optimized schemes.

Keywords: Autonomous Mobility On-Demand; Electric Vehicles; Queuing Systems.
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CHAPTER 1

Introduction

This thesis includes: in the second chapter, a paper [1] that had been published in in Proc.

of IEEE Vehicular Technology Conference (VTC’17-Fall), Toronto, ON, Canada, September

2017. and in the third chapter another paper [3] that was accepted for publication in IEEE

International Communication Conference (ICC), 2018. Both of those paper were co-authored

by Mustafa Ammous, Dr. Sameh Sorour and Dr. Ahmed Abdel-Rahim.

1.1 Motivation

Urban transportation systems are experiencing tremendous challenges nowadays due to the

exploding demand on private vehicle ownership, which result in dramatic increases in road

congestion, parking demand [5], increased travel times [6], and carbon footprint [7] [8]. This

clearly calls for revolutionary solutions to sustain the future private mobility. Mobility

on-demand (MoD) services were successful in providing a partial solution to the increased

private vehicle ownership problem [9], by providing one-way vehicle sharing between dedi-

cated pick-up and drop-off locations for a monthly subscription fee, and with no worries for

vehicle insurance and maintenance costs. The electrification of such MoD vehicles can also

gradually reduce the carbon footprint problem. However, the need to make extra trips for

picking-up, after dropping-off, and occasionally for fueling /charging these MoD vehicle has

significantly affected the convenience of this solution and reduced its effect in solving urban

traffic problems.

Nonetheless, an expected game-changer for the success of these services is the signifi-

cant advances in vehicle automation and wireless connectivity. With more than 10 million

self-driving vehicles expected to be on the road by 2020 [10], and the vision of governments

and automakers to inject more wireless connectivity, and coordinated optimization on city

roads, it is strongly forecasted that private vehicle ownership will significantly decline by
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2025, as individuals’ private mobility will further depend on the concept of Autonomous

Electric MoD (AEMoD) [11] [12]. Indeed, AEMoD systems will preserve the benefits of

current MoD systems, but relieve customers from their inconveniences, including picking-up

and dropping-off vehicles at dedicated locations, parking hassle/delays, and fueling/charging

detours. Indeed, the self-driving feature in these vehicles will allow them to navigate to cus-

tomers’ locations for pick-up, locate spots for parking after customer drop-off, and self-drive

to fuel/charging stations between customer trips when needed. Moreover, it will provide

them with added time of in-vehicle work and leisure. In short, AEMoD systems will enable

customers to simply press some buttons on an app to promptly get an autonomous electric

vehicle to transport them door-to-door, with no pick-up/drop-off and driving responsibili-

ties, no dedicated parking needs, no carbon emission, no vehicle insurance and maintenance

costs, and extra in-vehicle work/leisure times. With all of these ecological, economical, and

customer-oriented qualities, AEMoD systems are highly expected to significantly prevail in

attracting millions of subscribers across the world and in providing on-demand and hassle-

free private urban mobility.

Despite the great aspirations for wide AEMoD service deployments by early-to-mid next

decade, the timeliness of such service (i.e., promptness in providing a ready vehicle to each

requesting customer with minimum or bounded delays), and thus its entire success, is threat-

ened by two major bottlenecks. First, the expected massive demand of AEMoD services will

result in excessive, if not prohibitive, computational and communication delays if cloud based

approaches are employed for the micro-operation (e.g., collecting requests, and optimizing

dispatching and charging decisions) of such systems. Moreover, the typical full-battery charg-

ing rates of electric vehicles will not be able to cope with the gigantic numbers of vehicles

involved in these systems, thus resulting in instabilities and unbounded customer delays.
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1.2 Related Work

Mobility on demand services were studied from several perspectives since the performance of

these systems depends on many factors, such as the charging resources, customers satisfac-

tion, waiting time, etc. Recent works have addressed important problems in AMoD systems

by building different operation models for them. In [14], the authors proposed two different

models: a distributed queuing model in which they spatially averaged the customers queues

into one queue, and a lumped model that exploits the theory of Jackson networks. These

models were employed to analyze the re-balancing between the stations. In [18] a lumped

spatial-queuing model was proposed. Several non-practical assumption were made in order

to treat the problem as a Jackson Network. [17] casted an AMoD system into a closed multi-

class BCMP queuing network model, and solved the routing problem for rebalancing vehicles

on congested roads. Many key factors were not considered in this work in order to simplify

the mathematical resolution. None of these papers considered the computational architec-

ture for massive demands on such services, the vehicle electrification, and the influence of

charging limitations on its stability.

In [15], the paper presents a model predictive control (MPC) approach to optimize the dis-

patching and scheduling of the vehicles in AMoD systems. It is valuable to apply the MPC

algorithms to minimize the future waiting time of customers, but the optimization of the

proposed system was done without or with very simplistic consideration of the AMoD vehi-

cle electrification. The MPC technique was also used in more recent works like [21], where

a finite-horizon dynamic programming algorithm was proposed to provide optimal sched-

ules for plug-in electric vehicles (PEV) charging given statistical information on their future

charging demands. The focus was more on reducing the algorithm complexity compared to

similar algorithms proposed in [24] and [25].

In [26] [27] [28], the authors designed an artificial neural network to predict the quality of

service of an MoD system for campus demand utilizing a small number of vehicles. Com-
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bined predictive positioning and ridesharing approaches were shown to achieve a valuable

MOD fleet management performance but this performance does not stand for a city scale.

In [19], the authors addressed the vehicle dispatching problem based on distances separating

vehicles from customers. They employed a combination of the Euclidean bipartite matching

problem and random permutation theory to minimize the trip cost, but without considering

the charging limitation.

Charging AEMoD vehicles was also studied from different perspectives. Some works [20] [22]

proposed optimization models to reduce the cost in term of power and energy. [20] provided

a valuable analysis to an approximate dynamic programming system with feedback-based

optimization for the charging process. In [22], a time variant cost optimization was proposed

for charging at Photovoltaics charging stations. In [23], the involvement of smart grids for

energy cost optimization were not only studied by closed loop and open loop methods, but

also using artificial intelligence techniques. These techniques allowed to introduce several

agents and complex models, like considering the vehicles themselves as sources of energy that

can contribute to the grid. AI might have valuable outcomes but the cost and complexity of

deploying these methods are high. Our work is different from [20] [22] [23] since it aims to

optimize the system response/waiting times for customer satisfaction.

1.3 Our Contributions

In this thesis, we target the two timeliness limitations hindering the success of AEMoD sys-

tems, namely the communication/computation delays and possible system instability due

to the charging process. To resolve the first limitation, we suggest the exploitation of the

new and trendy fog-based networking and computing architectures [36] [29] [13]. While long

propagation delays remain a key drawback for centralized Cloud Computing, MEC with the

proximate access is widely agreed to be a key technology for realizing various application for

next-generation Internet with millisecond-scale reaction time [32]. The privileges brought by

this technique will allow handling vehicular networks [37] in need for instantaneous decision
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making applications such autonomous mobility [40]. Consequently, they can also be involved

in handling AEMoD system operations in a distributed way. This approach will push the

operational decision load close to end customers in each city zone, thus reducing the com-

putational complexity and communication delays. Luckily, this architecture perfectly fits

the nature of many AEMoD fleet operations that are mostly local, such as dispatching and

charging. Indeed, AEMoD vehicles will be usually directed to pick up customers close to

their locations and charge at near-by charging stations. This thus makes the fog-based ar-

chitectures well-suited localized solutions to guarantee low communication and computation

latencies for such local management operations.

Having this component resolved by the aforementioned soon-to-be-deployed technologies,

the thesis focuses on resolving the second timeliness bottlneck by proposing a multi-class

dispatching and charging approach in each service zone. The proposed approach classifies

its incoming vehicles according to their state-of-charge (SoC) and smartly manages their

charging options according to the available charging resources in this zone. This management

is done through introducing the option of no or partial charging for vehicles with non-depleted

batteries, and enabling the full charging option only to vehicles will fully depleted batteries.

This multi-class system also allocates these vehicles to the different classes of customers

according to the suitableness of the vehicles SoC for the customer trip distance. The thesis

also proposes the enhancement of this model by introducing the ability to serve customers

of any class for which a vehicles has enough amount of charge.

Given these novel system operation architecture, the questions now becomes: What is the

optimal proportion of vehicles from each class to dispatch (i.e., no charging) or partially/fully

charge, to both maintain charging stability and minimize the maximum or average response

times of the system? What is the system dimension and vehicles in-flow that can satisfy the

demand of customers with respect to a limited average waiting time? What are the optimal

proportions of vehicles dispatching to different sub-classes that will allow having an enhanced

system? To address these questions, in the Second chapter, a queuing model representing
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the proposed fog-based multi-class charging and dispatching scheme is first introduced. An

analytical and numerical studies of the proposed system are done in order to minimize the

maximum and average system response times and show the merits of the model compared

to other non-optimized schemes. In the third chapter, an optimization of the vehicles inflow

rates is conducted analytically and simulations that shows the the performance of the system

are presented. Finally in the fourth chapter, an enhanced system model, that solves some

unrealistic boundaries of the first proposed system, is proposed. an optimization of the

maximum expected response time showed that the enhancement brought to this model allows

it to out perform the first model and other non optimized policies.
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CHAPTER 2

Fog-Based Multi-Class Dispatching and Charging for Autonomous

Electric Mobility On-Demand

[1] ”A Multi-Class Dispatching and Charging Scheme for Autonomous Electric Mobility

On-Demand,” in Proc. of IEEE Vehicular Technology Conference (VTC’17-Fall), Toronto,

ON, Canada, September 2017.

Introduction

In this chapter, We suggest the exploitation of fog-based architectures for localized AEMoD

system operations. This architecture is defined justified by multiple references that explains

the income and advantages brought by it. Later an optimized multi-class charging and dis-

patching queuing model, with partial charging option for AEMoD vehicles, is developed for

each of these zones. The stability conditions of this model and the number of classes that fit

the charging capabilities of the service zone are then derived. Decisions on the proportions

of each class vehicles to partially/fully charge, or directly serve customers are then opti-

mized to minimize the maximum and average system response times. The maximum and

average response time minimization problems are formulated as stochastic linear and convex

optimization problems, respectively, and optimal decisions are analytically derived for each

problem using Lagrangian analysis. Finally, the merits of our proposed optimized decision

scheme are tested and compared to both the always-charge and the equal split schemes. Fur-

thermore, the comparison of the maximum and average response time minimization results

shows a very low variance in performance, which suggests using the linear programming

solution for lower complexity.
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2.1 Proposed System Model

2.1.1 Fog-based Architecture

Fog-based architectures have recently emerged as novel distributed edge computing architec-

tures to both mitigate the communication and computational burdens on backhaul networks

and cloud servers, respectively, and reduce the delays for system analytics and decision mak-

ing. These architectures push computational resources close to the end entities, thus pro-

viding them with low complexity and latency analytics and optimization solutions through

local communications with these resources. The concept of MEC was firstly proposed by

the European Telecommunications Standard Institute (ETSI) in 2014, and was defined as

a new platform that ”provides IT and mobile cloud computing capabilities (MCC) within

the Radio Access Network (RAN) in close proximity to mobile subscribers” [30]. This led

to the emergence of a new research area called Fog Computing and Networking [31]. It is

widely agreed and proved that the MEC will solve the delays disadvantages in mobile cloud

computing (MCC) [32]. [29] provides a clear comparison that shows the benefits brought by

MEC compared to MCC. The supportable latency for MEC is less than ten milliseconds

while being larger than 100 milliseconds for MCC. It was also shown that the fog computing

has 102−104 times higher computation capabilities than the minimum requirement for heavy

computational complexity applications, like gaming [33], autonomous driving, and instanta-

neous decision making applications [30] [35]. Moreover, with its small distance to end users,

fog computing provides a reduced backhaul usage, thus alleviating congestions [34] [39]. In

addition to the previous previlages, fog-based architectures are highly energy efficient with

respect to supporting computation offloading, and are thus considered as green technolo-

gies [36] [40] [38].

As clearly mentioned earlier, our proposal to employ a fog-based architecture for AEMoD

systems is justified by the fact that many of the AEMoD operations (e.g., dispatching and

charging) are localized with very high demand and instantaneous decision-making needs.
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Autonomous Vehicle

Customer Origin

Customer Destination

Serving a custumer

Driving to a customer

Figure 2.1: Fog-based architecture for AEMoD system operation

Indeed, vehicles located in any city zone are the ones that can reach the customers in

that zone within a limited time frame. They will also charge in near-by charging points

within the zone. Fig.2.1 illustrates a candidate fog-based architecture that can support real-

time micro-operational decisions (e.g, dispatching and charging) for AEMoD systems with

extremely low computation and communications delays. The fog controller in each service

zone is responsible of collecting information about customer requests, vehicle in-flow to the

service zone, their state-of-charge (SoC), and the available full-battery charging rates in

the service zone. Given the collected information, it can promptly make dispatching, and

charging decisions for these vehicles in a timely manner.
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2.1.2 Multi-Class Dispatching and Charging Model

To guarantee the stability and timeliness of future AEMoD systems given the relatively

limited charging resources compared to demand volumes, it is very critical to answer two

important operational questions: (1) How to cope with the available charging capabilities of

each service zone given the large number of system vehicles? (2) How to smartly manage the

dispatching and charging options of different SoC vehicles, given the customers’ needs and

zone resources, in order to minimize the maximum and/or average system response time. By

the system response time, we mean the time elapsed between the instant when an arbitrary

customer requests a vehicle, and the instant when a vehicle starts moving from its parking

or charging spot towards this customer.

Motivated by the fact that different customers can be classified in ascending order of

their required trip distances (and thus the SoC needed in their allocated vehicles), this thesis

proposes to address the two above questions by introducing a multi-class dispatching and

charging scheme for AEMoD vehicles, with options of partial charging for vehicles with non-

depleted batteries. Arriving vehicles in each service zone are subdivided into different classes

in ascending order of their SoC corresponding to the different customer classes. Different

proportions of each class vehicles will be then prompted by the fog controller to either wait

(without charging) for dispatching to its corresponding customer class (i.e., customers whose

trips will require the SoC range of this class vehicles) with or partially charge to serve the

subsequent customer class. Vehicles arriving with depleted batteries will be allowed to either

partially or fully charge to serve the first or last class customers, respectively. Clearly, the

larger the number of classes, the smaller the SoC increase required for a vehicle to move from

one class to the next, the smaller the charging time needed to make this transition, the less

the burden/requirements on the zone charging resources. On the other hand, given a fixed

in-flow rate of vehicles to each city zone, more vehicle/customer classes means less available

in-flow vehicles to each customer class, which may result in longer service delays and even
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instabilities in their waiting queues.

Given this proposed multi-class system solution, the first and second above questions

can then be re-phrased as: (1) What is the minimum number of classes that can fit the

available charging resources in a given city zone? (2) What is the optimal proportion of

vehicles from each class to dispatch or partially/fully charge to both maintain the overall

system stability and minimize the maximum and/or average response time of the system? To

rigorously address these questions, we will first model our proposed multi-class charging and

dispatching solution as a queuing model and introduce its parameters in the next section.

2.1.3 Queuing Model and System Parameters

We consider one service zone controlled by a fog controller connected to: (1) the service

request apps of customers in the zone; (2) the AEMoD vehicles; (3) C rapid charging points

distributed in the service zone and designed for short-term partial charging; and (4) one

spacious rapid charging station designed for long-term full charging. AEMoD vehicles enter

the service in this zone after dropping off their latest customers in it. Their detection

as free vehicles by the zone’s controller can thus be modeled as a Poisson process with

rate λv. Customers request service from the system according to a Poisson process. Both

customers and vehicles are classified into n classes based on an ascending order of their

required trip distance and the corresponding SoC to cover this distance, respectively. From

the thinning property of Poisson processes, the arrival process of Class i customers and

vehicles, i ∈ {0, . . . , n}, are both independent Poisson processes with rates λ
(i)
c and λvpi,

where pi is the probability that the SoC of an arriving vehicle to the system belongs to Class

i. Note that p0 is the probability that a vehicle arrive with a depleted battery, and is thus

not able to serve immediately. Consequently, λ
(0)
c = 0 as no customer will request a vehicle

that cannot travel any distance. On the other hand, pn is also equal to 0, because no vehicle

can arrive to the system fully charged as it has just finished a prior trip.

Upon arrival, each vehicle of Class i, i ∈ {1, . . . , n − 1}, will park anywhere in the
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Figure 2.2: Joint dispatching and partially/fully charging model, abstracting an AEMoD
system in one service zone.

zone until it is called by the fog controller to either: (1) serve a customer from Class i

with probability qi; or (2) partially charge up to the SoC of Class i + 1 at any of the C

charging points (whenever any of them becomes free), with probability qi = 1 − qi, before

parking again in waiting to serve a customer from Class i + 1. As for Class 0 vehicles that

are incapable of serving before charging, they will be directed to either fully charge at the

central charging station with probability q0, or partially charge at one of C charging points

with probability q0 = 1 − q0. In the former and latter cases, the vehicle after charging will

wait to serve customers of Class n and 1, respectively.

The full charging time of a vehicle with a depleted battery is assumed to be exponentially

distributed with rate µc. Given uniform SoC quantization among the n vehicle classes, the

partial charging time can then be modeled as an exponential random variable with rate

nµc. Note that the larger rate of the partial charging process is not due to a speed-up in

the charging process but rather due to the reduced time of partially charging. The use of

exponentially distributed charging times for charging electric vehicles has been widely used
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Table 2.1: List of System and Decision Parameters

Variables Definition

λv Total arrival rate of vehicles
pi Probability of arrival of a vehicle from Class i
q0 Probability that a battery-depleted vehicle partially charges
q0 Probability that a battery-depleted vehicle fully charges
qi, i 6= 0 Probability that a vehicle in Class i is directly dispatched
qi, i 6= 0 Probability that a vehicle in Class i partially charges
µc Service rate of fully charging a battery-depleted vehicle

λ
(i)
v Arrival rate of vehicles of Class i

λ
(i)
c Arrival rate of customers served by Class i’s vehicles
C No. of distributed charging points in the service zone of the fog controller

in the literature [16, 17] to model the randomness in the charging duration of the different

battery sizes. The customers belonging to Class i, arriving at rate λ
(i)
c , will be served at a

rate of λ
(i)
v , which includes the arrival rate of vehicles that: (1) arrived to the zone with a

SoC belonging to Class i and were directed to wait to serve Class i customers; or (2) arrived

to the zone with a SoC belonging to Class i− 1 and were directed to partially charge to be

able to serve Class i customers.

Given the above description and modeling of variables, the entire zone dynamics can

thus be modeled by the queuing system depicted in Fig.2.2. This system includes n M/M/1

queues for the n classes of customer service, one M/M/1 queue for the charging station, and

one M/M/C queue representing the partial charging process at the C charging points.

Having defined the queuing model for the proposed multi-class dispatching and charging

system in a city zone, the rest of the chapter will focus on addressing the two questions in

Section 2.1.2. We will first determine the stability conditions of the system and minimum

number of required classes to cope with the charging resources in any arbitrary city zone in

Section 2.2. The maximum and average response time minimization problems will be then

formulated and analytically solved in Sections 2.3 and 2.4, respectively.
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2.2 System stability conditions

In this section, we first deduce the stability conditions of our proposed multi-class dispatch-

ing and charging system, using the basic laws of queuing theory. We will then derive an

expression for the lower bound on the number n of needed classes that fit the charging ca-

pabilities of any arbitrary service zone. Each of the n classes of customers are served by a

separate queue of vehicles, with λ
(i)
v being the arrival rate of the vehicles that are available

to serve the customers of the i-th class. Consequently, it is the service rate of the customers

i-th arrival queues. We can thus deduce from Fig. 2.2 and the system model in the previous

section that:

λ(i)
v = λv

(
pi−1qi−1 + piqi

)
i = 1, . . . , n− 1

λ(n)
v = λv

(
pn−1qn−1 + p0q0

) (2.1)

Since we know that qi + qi = 1, we substitute qi by 1− qi in order to have a system with n

variables

λ(i)
v = λv (pi−1 − pi−1qi−1 + piqi) i = 1, . . . , n− 1

λ(n)
v = λv (pn−1 − pn−1qn−1 + p0q0)

(2.2)

From the well-known stability condition of an M/M/1 queue [42] [43], we have:

λ(i)
v > λ(i)

c i = 1, . . . , n (2.3)

Before reaching the customer service queues, the vehicles will go through a decision step

on whether to go to these queues immediately or partially/fully charge. The stability of

the charging queues should be guaranteed in order to ensure the global stability of the

entire system at the steady state. From the model described in the previous section, and

by the well-known stability conditions of M/M/C and M/M/1 queues [42] [43], we have the

following stability constraints on the C charging points and central charging station queues,
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respectively:
n−1∑
i=0

λv (pi − piqi) < C (nµc)

λvp0q0 < µc

(2.4)

The following lemma illustrates the lower bound on the average in-flow rate of vehicles

for a given service zone given its rate of customer demands on AEMoD services.

Lemma 1. For the entire system stability, the in-flow rate of vehicles to a given service zone

should be strictly more than the total arrival rate of customers belonging to all the classes.

In other words,
n∑
i=1

λ(i)
c < λv (2.5)

Proof. The proof of Lemma 1 is in Appendix A.

Furthermore, the following lemma establishes a lower bound on the number of classes

n, given the arrival rate of the vehicles λv, the full charging rate µc, and the number C of

partial charging points.

Lemma 2. To guarantee the stability of the charging queues, the number of classes n is the

system must obey the following inequality:

n >
λv
Cµc

− 1

C
(2.6)

Proof. The proof of Lemma 2 is in Appendix B.

2.3 Maximum Response Time Optimization

The goal of this section is to minimize the maximum expected response time across all

system’s classes.
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2.3.1 Problem Formulation

The expected response time of any class is defined as the expected duration between any

customer putting a request until a vehicle is dispatched to serve him/her. From the basic

M/M/1 queue analysis of the i-th customer class, the expression of this expected response

time for the i-th class can be expressed as:

1

λ
(i)
v − λ(i)

c

i = 1, . . . , n (2.7)

Consequently, the maximum of the expected response times across all n classes of the system

can be expressed as:

max
i∈{1,...,n}

{
1

λ
(i)
v − λ(i)

c

}
(2.8)

It is obvious that the system’s class having the maximum expected response time is the one

that have the minimum expected response rate. In other words, we have:

arg max
i∈{1,...,n}

{
1

λ
(i)
v − λ(i)

c

}
= arg min

i∈{1,...,n}

{
λ(i)
v − λ(i)

c

}
(2.9)

Consequently, minimizing the maximum expected response time across all classes is equiva-

lent to maximizing their minimum expected response rate. Using the epigraph form [41] of
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the latter problem, we get the following stochastic optimization problem:

max
q0,q1,...,qn−1

R (2.10a)

s.t.

λv (pi−1 − pi−1qi−1 + piqi)− λ(i)
c ≥ R, i = 1, . . . , n− 1 (2.10b)

λv (pn−1 − pn−1qn−1 + p0q0)− λ(n)
c ≥ R (2.10c)

n−1∑
i=0

λv (pi − piqi) < C (nµc) (2.10d)

λvp0q0 < µc (2.10e)

n−1∑
i=0

pi = 1, 0 ≤ pi ≤ 1 i = 0, . . . , n− 1 (2.10f)

0 ≤ qi ≤ 1 i = 0, . . . , n− 1 (2.10g)

R > 0 (2.10h)

The n constraints in (2.10b) and (2.10c) represent the epigraph form constraints on the orig-

inal objective function in the right hand side of (2.9), after separation [41] and substituting

every λ
(i)
v by its expansion form in (2.2). The constraints in (2.10d) and (2.10e) represent

the stability conditions on charging queues. The constraints in (2.10f) and (2.10g) are the

axiomatic constraints on probabilities (i.e., values being between 0 and 1, and sum equal to

1). Finally, Constraint (2.10h) is a strict positivity constraint on the minimum expected re-

sponse rate, which also guarantees the stability of the customer queues when combined with

(2.10b) and (2.10c). Indeed, if R is strictly positive, this guarantees that that the stability

conditions in (2.3) hold with certainty. Clearly, the above problem is a linear program with

linear constraints, which can be solved analytically using Lagrangian analysis. This will be

the target of the next subsection.
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2.3.2 Optimal Dispatching and Charging Decisions

The problem in (2.10) is a convex optimization problem with second order differentiable

objective and constraint functions that satisfies Slater’s condition. Consequently, the KKT

conditions provide necessary and sufficient conditions for optimality. Therefore, applying

the KKT conditions to the constraints of the problem and the gradient of the Lagrangian

function allows us to find the analytical solution of the decisions qi. The Lagrangian function

associated with the optimization problem in (2.10) is given by the following expression:

L (q, R,α,β,γ,ω) = −R +
n−1∑
i=1

αi (λv (pi−1qi−1 − piqi) +R− λvpi−1 + λ(i)
c

)
+ αn (λv (pn−1qn−1 − p0q0) +R− λvpn−1 + λ(n)

c

)
+ β0

(
n−1∑
i=0

λv (pi − piqi)− C (nµc)

)

+ β1 (λvp0q0 − µc) +
n−1∑
i=0

γi (qi − 1)−
n−1∑
i=0

ωiqi + ωnR

(2.11)

where q is the vector of dispatching decisions (i.e. q = [q0, . . . , qn−1]), and where:

• α = [αi], such that αi is the Lagrange multiplier of the i-th customer queues inequality.

• β = [βi], such that βi is the Lagrange multiplier of the i-th charging queues inequality.

• γ = [γi], such that γi is the Lagrange multiplier of the i-th upper bound inequality.

• ω = [ωi], such that ωi is the Lagrange multiplier of the i-th lower bound inequality.

By applying the KKT conditions on the equality and inequality constraints, the following

theorem illustrates the optimal solution of the problem in (2.10).

Theorem 1. The optimal charging/dispatching decisions of the optimization problem in
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(2.10) can be expressed as follows:

q∗0 =


0 if α∗1 > α∗n

1 if α∗1 < α∗n

q∗i =


0 if α∗i+1 > α∗i

1 if α∗i+1 < α∗i

i = 1, . . . , n− 1

if α∗1 = α∗n 6= 0


q∗1 =

p0q∗0
p1
− λvp0−λ(1)c −R∗

λvp1

q∗n−1 =
p0q∗0
pn−1
− λvp0−λ(n)

c −R∗

λvpn−1

if α∗i+1 = α∗i 6= 0


q∗i =

pi−1q
∗
i−1

pi
− λvpi−1−λ

(i)
c −R∗

λvpi

q∗i+1 =
piq

∗
i

pi+1
− λvpi−λ

(i+1)
c −R∗

λvpi+1

i = 1, . . . , n− 1

(2.12)

Proof. The proof of Theorem 1 is in Appendix C.

2.3.3 Maximum Expected Response Time

Again, since the problem in (2.10) is convex with differentiable objective and constraint

functions, then strong duality holds, which implies that the solution to the primal and dual

problems are identical. By solving the dual problem, we can express the optimal value of

the maximum expected response time as the reciprocal of the minimum expected response

rate of the system. The latter is characterized by the following theorem.

Theorem 2. The minimum expected response rate R∗ of the entire system can be expressed

as:

R∗ =
n∑
i=1

(
λvpi−1 − λ(i)

c

)
α∗i +

n−1∑
i=0

γ∗i (2.13)

Proof. The proof of Theorem 2 is in Appendix D.
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2.4 Average Response Time Optimization

The goal of this section is to minimize the average expected response time of the system

over all customer classes.

2.4.1 Problem Formulation

As stated earlier, the expected response time for each of the classes in the system is expressed

as in (2.7). Since our system is divided to n classes, the average expected response time

across the different classes is expressed as:

1

n

n∑
i=1

1

λ
(i)
v − λ(i)

c

(2.14)

Therefore, minimizing the average expected response time across all the classes of the system,

while obeying its stability conditions, can be formulated by the following problem.

minimize
q0,q1,...,qn−1

1

n

n∑
i=1

1

λ
(i)
v − λ(i)

c

(2.15a)

s.t.

λv (pi−1 − pi−1qi−1 + piqi)− λ(i)
c > 0, i = 1, . . . , n− 1 (2.15b)

λv (pn−1 − pn−1qn−1 + p0q0)− λ(n)
c > 0 (2.15c)

n−1∑
i=0

λv (pi − piqi) < C (nµc) (2.15d)

λvp0q0 < µc (2.15e)

n−1∑
i=0

pi = 1, 0 ≤ pi ≤ 1 i = 0, . . . , n− 1 (2.15f)

0 ≤ qi ≤ 1 i = 0, . . . , n− 1 (2.15g)
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The n constraints in (2.15b) and (2.15c) represent the stability constraints in (2.3) and

substituting every λ
(i)
v by its expansion form in (2.2). The constraints in (2.15d) and (2.15e)

represent the stability conditions on charging queues. The constraints in (2.15f) and (2.15g)

are the axiomatic constraints on probabilities (i.e., values being between 0 and 1, and sum

equal to 1).

The above constraints are all linear but the objective function is obviously not. Nonethe-

less, the following lemma proofs that the optimization problem we have is convex which

allows us to find an absolute exact solution analytically and numerically.

Lemma 3. Defining the function f as follows:

f (q0, q1, . . . , qn−1) =
1

n

n∑
i=1

1

λ
(i)
v − λ(i)

c

(2.16)

such that λ
(i)
v and λ

(i)
c are defined in (2.2) and (2.3), then the function f is convex over the

variables q0, q1, . . . , qn−1.

Proof. The proof of Lemma 3 is in Appendix E.

Consequently, the problem in (2.15) is a convex problem with linear constraints, which

can be solved analytically using Lagrangian analysis. This will be the target of the next

subsection.

2.4.2 Optimal Dispatching and Charging Decision

As proven above, the problem in (2.15) is a convex optimization problem with second order

differentiable objective function and constraints that satisfies Slater’s condition. Similar to

the approach of Section 2.3.2, we can apply the KKT conditions to the constraints of the

problem and the gradient of the Lagrangian function to find the analytical solution of the

decisions qi. The Lagrangian function associated with the optimization problem in (2.15) is
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given by the following expression:

L (q,α,β,γ,ω) =
1

n

n−1∑
i=1

1

λv (pi−1 − pi−1qi−1 + piqi)− λ(i)
c

+ β0

(
n−1∑
i=0

λv (pi − piqi)− C (nµc)

)

+
n−1∑
i=1

αi
(
λ(i)
c − λv (pi−1 − pi−1qi−1 + piqi)

)
+ αn

(
λ(n)
c − λv (pn−1 − pn−1qn−1 + p0q0)

)
+ β1 (λvp0q0 − µc) +

n−1∑
i=0

γi (qi − 1)−
n−1∑
i=0

ωiqi +
1

n
(
λv (pn−1 − pn−1qn−1 + p0q0)− λ(n)

c

)
(2.17)

where q is the vector of dispatching decisions (i.e. q = [q0, . . . , qn−1]), and where α = [αi],

β = [βi], γ = [γi], ω = [ωi] are the vectors of the Lagrange multipliers associated with

the inequalities constraints of the problem (2.15), and defined in the same way explained in

Section 2.3.2.

By applying the KKT conditions on the equality and inequality constraints, the following

theorem illustrates the optimal solution of the problem in (2.15).

Theorem 3. The optimal charging/dispatching decisions of the optimization problem in

(2.15) can be expressed as follows:

q∗i =


0 if ω∗i 6= 0

1 if γ∗i 6= 1

i = 0, . . . , n− 1 (2.18)

Otherwise, we have:

q∗0 =
λv
(
p0 + p1q

∗
1 − pn−1 + pn−1q

∗
n−1

)
− λ(1)

c + λ
(n)
c

2λvp0

q∗i =
λv
(
pi + pi+1q

∗
i1 − pi−1 + pi−1q

∗
i−1

)
− λ(i+1)

c + λ
(i)
c

2λvpi
i = 1, . . . , n− 2

q∗n−1 =
λv
(
pn−1 + p0q

∗
0 − pn−2 + pn−2q

∗
n−2

)
− λ(n)

c + λ
(n−1)
c

2λvpn−1

(2.19)
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Proof. The proof of Theorem 3 is in Appendix F.

2.5 Simulation Results

In this section, we test the merits of our proposed scheme using extensive simulations. The

metrics used to evaluate these merits are the maximum and average expected response times

of the different classes. For all the performed simulation figures, the full-charging rate of a

vehicle is set to µc = 0.033 mins−1, and the number of charging points C = 40.

For the optimized maximum and average response time solutions, Figures 2.3a and 2.3b,

respectively, illustrate both the interplay of λv and
∑n

i=1 λ
(i)
c , established in Lemma 1, and

effect of increasing the number of classes n beyond its strict lower bound introduced in

Lemma 2. They depict the maximum and average expected response times for different

values of
∑n

i=1 λ
(i)
c , while fixing λv to 15 min−1. For this setting, n = 12 is the smallest

number of classes that satisfy the stability condition in Lemma 2. It is easy to notice that

the response times for all values of n increase dramatically when the
∑n

i=1 λ
(i)
c approaches

λv thus bringing the system closer to its stability limit established in Lemma 1. As also

expected, the figures clearly shows that further increasing n beyond its stability lower bound

increases both the maximum and average response times. As explained earlier, this effect

occurs when due to the reduced number of available vehicles to each customer class as n

grows given fixed λv. We thus firmly conclude that the optimal number of classes is the

smallest value satisfying Lemma 2:

n∗ =


λv
Cµc

− 1

C
+ 1 if

λv
Cµc

− 1

C
is integer⌈

λv
Cµc

− 1

C

⌉
Otherwise

(2.20)

For the maximum and average response time optimization solutions, Figures 2.4a and

2.4b, respectively, depict the maximum and average expected response time performances for

different distributions of the vehicle SoC and customer trip distances, given λv = 8 and thus

n∗ = 7. By decreasing vehicle SoC distribution, we mean that the probability of an arriving
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vehicle to have class i SoC is lower than that of it having class i − 1 SoC ∀ i ∈ {2, . . . , n}.

We can infer from both figures that both the maximum and average response times for

Gaussian distributions of trip distances and both Gaussian or decreasing ones for SoCs are

the lowest and exhibit the least response time variance. Luckily, these are the most realistic

distributions for both variables. This is justified by the fact that vehicles arrive to the

system after trips of different distances, which makes their SoC either Gaussian or slightly

decreasing. Likewise, customers requiring mid-size distances are usually more than those

requiring very small and very long distances.

For the maximum and average response time optimization solutions, Figures 2.5a and

2.5b, respectively, compare the maximum and average expected response times performances

against
∑n

i=1 λ
(i)
c , for different decision approaches, namely our derived optimal decisions in

Section 2.3, always partially charge decisions (i.e. qi = 0 ∀ i) and equal split decisions

(i.e. qi = 0.5 ∀ i), for λv = 8 and thus n = 7. The latter two schemes represent non-

optimized policies, in which each vehicle takes its own fixed decision irrespective of the

system parameters. The figures clearly show superior maximum and average performances

for our derived optimal policies compared to the other two policies, especially as
∑n

i=1 λ
(i)
c

gets closer to λv, which are the most properly engineered scenarios (as large differences

between these two quantities results in very low utilization). Gains of 13.3% and 21.3%

in the average and maximum performances, respectively, can be noticed compared to the

always charge policy. This demonstrates the importance of our proposed scheme in achieving

lower response times and thus better customer satisfaction.

Fig. 2.6 compares the maximum and average expected response time performance given

by the maximum and average response time optimization solutions introduced in Sections

2.3 and 2.4, respectively, for different values of the
∑n

i=1 λ
(i)
c while fixing λv to 15 min−1

(i.e., n∗ = 12). We can easily notice that the maximum expected response times achieved

by both solutions are the same. On the other hand, the average expected response time

given by the average solution is slightly lower than that of the maximum solution. These
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Figure 2.3: Expected response times using the maximum response time optimization solu-
tion for different
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Figure 2.4: Effect of different customer and SoC distributions on the maximum response
time optimization solution and Effect of different customer and SoC distributions on the
average response time optimization solution.

results suggest that the variance in performance achieved by both solutions is negligible.

Consequently, the one that is obtained using less complexity should be used to almost satisfy

the minimum value for both metrics. We know from Sections 2.3 and 2.4 that the maximum
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Figure 2.5: Comparison of the maximum response time optimization solution to non-
optimized policies and Comparison of the average response time optimization solution to
non-optimized policies.

and average solutions are obtained by solving linear and convex yet non-linear optimizations,

respectively. It is well known that solving the latter requires more computations that the

former. For example, when using Interior-point methods, the maximum number of iterations

for the maximum and average solutions are 10 and 25, respectively. Thus, the use of the

maximum solution is recommended in future AEMoD sytems due to its lower complexity

and its negligible degradation in its average response time performance compared to the

average solution.

Conclusion

In this chapter, we proposed solutions to the computational and charging bottlenecks threat-

ening the success of AEMoD systems by employing a fog-based architecture to distribute

the optimization loads over different service zones, reduce communication delays. We also

proposed a multi-class dispatching and charging scheme to guarantee the fitness of the ve-

hicle charge requirements for customer trips with the available resources in each city zone.

To efficiently engineer this multi-class solution, we developed its queuing model, derived its
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Figure 2.6: Comparison between the maximum minimization and the average minimization
of the expected response time

stability conditions, and characterized the optimal number of classes to both minimize the

response time and match the zone charging resources. We then formulated the problem of

optimizing the proportions of vehicles of each class that will partially/fully charge or directly

serve customers as a stochastic linear and convex optimization problems, in order to mini-

mize the maximum and average expected system response times of the system, respectively.

The optimal decisions for both problems were analytically derived using Lagrangian analysis.

Simulation results demonstrated both the merits of our proposed optimal decision scheme

compared to typical non-optimized schemes, and its performance for different distributions

of vehicle SoC and customer trip distances. The comparison between the maximum and av-

erage problem solutions exhibited negligible variance, which favored the use of the maximum

solution due to its lower complexity.
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CHAPTER 3

Optimal Vehicle Dimensioning for Multi-Class AMODS

[3] ”Optimal Vehicle Dimensioning for Multi-Class Autonomous Electric Mobility On-

Demand Systems,” IEEE International Communication Conference (ICC), 2018.

Introduction

While the proposed architecture, multi-class, and joint dispatching and charging optimization

in the previous chapter seems very promising, the study assumed a constant vehicle in-

flow to each zone. Though this typical by the active vehicle in-flow to the system (in-flow

of vehicles dropping customers in this zone), the zone demand may require more (less)

vehicles at any time of the day, which may call for relocating excess vehicles from (to)

neighboring zones. One one hand, serving customers within bounded response times can

be guaranteed by injecting more vehicles to each zone. On the other hand, one of the key

goals of AEMoD systems is to reduce the congestion. Therefore, determining the optimal

number of needed vehicles (dimensioning) to stably serve each zone with bounded response

time guarantees is very crucial factor in the operation and key goals of AEMoD systems. In

addition, such systems need to be resilient and maintain their stability in special conditions

like low charging resources, limited vehicles availability. In this chapter, we work on the

system model proposed in the previous chapter. This chapter focuses on finding the optimal

vehicle dimensioning for each zone of these systems in order to guarantee a bounded response

time of its vehicles. We first derive the stability conditions of the system. Most of the stability

conditions are already defined and formulated in the previous chapter. We derive the number

of system classes to guarantee the response time bound. Decisions on the proportions of each

class vehicles to partially/fully charge, or directly serve customers are then optimized so as

to minimize the vehicles in-flow to any given zone. Excess waiting times of customers in rare

critical events, such as limited charging resources and/or limited vehicles availabilities, are
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also investigated. Results show the merits of our proposed model compared to other schemes

and in usual and critical scenarios.

3.1 System Stability and Response Time Limit Conditions

In this section, we first deduce the stability conditions of the proposed system using the

basic laws of queuing theory. We will also derive a lower bound on the number of classes n

that fits the customer demands, average response time limit, and charging capabilities of any

arbitrary service zone. As shown in Fig. 2.2, each of the n customer classes is served by a

separate queue of vehicles having a vehicle in-flow rate λ
(i)
v . Consequently, represents . From

the aforementioned vehicle dispatching and charging dynamics in Section 2.1, illustrated in

Fig. 2.2, the expressions of the service rate of the customer arrival in the ith queue λ
(i)
v was

given in the chapter 2 by the equation 2.2.The stability condition customers queues, was

derived in equation 2.3. Moreover, The stability constraints on the C charging points and

one central charging station queues were given by the equations 2.4.

It is also established from M/M/1 queue analysis that the average response time for any

customer in the i-th class can be expressed as:

1

λ
(i)
v − λ(i)

c

(3.1)

To guarantee customers’ satisfaction, the fog controller of each zone must impose an average

response time limit T for any class. We can thus express this average response time constraint

for the customers of the i-th class as:

1

λ
(i)
v − λ(i)

c

≤ T (3.2)

which can also be re-written as:

λ(i)
v − λ(i)

c ≥
1

T
(3.3)
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The following lemma sets a lower bound on the average vehicle in-flow rate to the entire

service zone to guarantee both its stability and the average response time limit fulfillment

for all its classes, given their demand rates.

Lemma 4. For the entire zone stability, and fulfillment of the average response time limit

for all its classes, the average vehicles in-flow rate must be lower bounded by:

λv ≥
n∑
i=1

λ(i)
c +

n

T
(3.4)

Proof. The proof of Lemma 4 is in Appendix G.

Furthermore, the following lemma establishes a lower bound on the number of classes n

that fits zone’s customer demands, average response time limit, and charging capabilities.

Lemma 5. For stablize the zone operation given its customer demands, average response

time limit, and charging capabilities, the number of classes n in the zone must obey the

following inequality:

n ≥
∑n

i=1 λ
(i)
c − µc

Cµc − 1/T
(3.5)

Proof. The proof of Lemma 5 is in Appendix H.

3.2 Optimal Vehicle Dimensioning

3.2.1 Problem Formulation

As previously mentioned, this chapter aims to minimize the average vehicle in-flow rate λv to

the entire zone, given its charging capacity and customer demand rates, while guaranteeing

an average response time limit for each class customers. Given the described system dynamics

in Section 2.1 and the derived conditions in Section 3.1, the above problem can be formulated
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as a stochastic optimization problem as follows:

minimize
q0,q1,...,qn−1

λv (3.6a)

s.t

λ(i)
c − λv(pi−1 − pi−1qi−1 + piqi) +

1

T
≤ 0, i = 1, . . . , n− 1 (3.6b)

λ(n)
c − λv(pn−1 − pn−1qn−1 + p0q0) +

1

T
≤ 0 (3.6c)

n−1∑
i=0

λv(pi − piqi)− C(nµc) < 0 (3.6d)

λvp0q0 − µc < 0 (3.6e)

n−1∑
i=0

pi = 1, 0 ≤ pi ≤ 1, i = 0, . . . , n− 1 (3.6f)

0 ≤ qi ≤ 1, i = 0, . . . , n− 1 (3.6g)

λv ≥
n∑
i=1

λ(i)
c +

n

T
(3.6h)

The n constraints in (3.6b) and (3.6c) represent the stability and response time limit condi-

tions of the system introduced in (3.3), after substituting every λ
(i)
v by its expansion form in

(2.2). The constraints in (3.6d) and (3.6e) represent the stability conditions for the charging

queues. The constraints in (3.6f) and (3.6g) are the axiomatic constraints on probabilities

(i.e., values being between 0 and 1, and sum equal to 1). Finally, Constraint (3.6h) is the

lower bound on λv introduced by Lemma (4).

The above optimization problem is a quadratic non-convex problem with second order dif-

ferentiable objective and constraint functions. Usually, the solution obtained by using the

Lagrangian and KKT analysis for such non-convex problems provides a lower bound on the

actual optimal solution. Consequently, we propose to solve the above problem by first find-

ing the solution derived through Lagrangian and KKT analysis, then, if needed, iteratively

tightening this solution to the feasibility set of the original problem.
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3.2.2 Lower Bound Solution

The Lagrangian function associated with the optimization problem in (3.6) is given by the

following expression:

L(q, λv,α,β,γ,ω) = λv + αn(λv(pn−1qn−1 − p0q0 − pn−1) + λ(n)
c +

1

T
)

+
n−1∑
i=1

αi(λv(pi−1qi−1 − piqi − pi−1) + λ(i)
c +

1

T
) + β0(

n−1∑
i=0

λv(pi − piqi)− Cnµc + ε0)

+ β1(λvp0q0 − µc + ε1) +
n−1∑
i=0

γi(qi − 1)−
n−1∑
i=0

ωiqi − ωn(λv −
n∑
i=1

λ(i)
c −

n

T
)

(3.7)

where q is the vector of dispatching decisions (i.e. q = [q0, . . . , qn−1]), and where α = [αi],

β = [βi], γ = [γi] and ω = [ωi] are the Lagrange multipliers of the system inequalities as

defined in section 2.3.2. For more accurate resolutions, two small positive constants ε0 and

ε1 are added to the stability conditions on the charging queues to make them non strict

inequalities.

Solving the equations given by the KKT conditions on the problem equality and inequal-

ity constraints, the following theorem illustrates the optimal lower bound solutions of the

problem in (3.6)

Theorem 4. The lower bound solution of the optimization problem in (3.6), obtained from
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Lagrangian and KKT analysis can be expressed as follows:

λ∗v =


∑n

i=1 λ
(i)
c + n

T
ω∗n 6= 0∑n

i=1 α
∗
i (λ

(i)
c + 1

T
)− β∗0(Cnµc − ε0)− β∗1(µc − ε1) ω∗n = 0

q∗0 =



0 α∗1 − α∗n − β∗0 + β∗1 > 0

1 α∗1 − α∗n − β∗0 + β∗1 < 0

pn−1q∗n−1−pn−1

p0
+

λ
(n)
c + 1

T

λvp0
α∗n 6= 0

µc
λ∗vp0

β∗1 6= 0

ζ0(α∗, β∗, γ∗, λ∗v, q
∗) Otherwise

q∗i =



0 α∗i+1 − α∗i − β∗0 > 0

1 α∗i+1 − α∗i − β∗0 < 0

pi−1q
∗
i−1−pi−1

pi
+

λ
(i)
c + 1

T

λvpi
α∗i 6= 0

ζi(α
∗, β∗, γ∗, λ∗v, q

∗) Otherwise

i = 1, . . . , n− 1.

(3.8)

where ζi(α
∗, β∗, γ∗, λ∗v, q

∗) is the solution that that maximize inf
q
L(q, α∗, β∗, γ∗, λ∗v)

Proof. The proof of Theorem 4 is in Appendix I.

3.2.3 Solution Tightening

As stated earlier, the closed-form solution derived in the previous section from analyzing

the constraints’ KKT conditions does not always match with the optimal solution of the

original optimization problem, and is sometimes a non-feasible lower bound on our problem.

Unfortunately, there is no method to find the exact closed-from solution of non-convex opti-

mization. However, starting from the derived lower bound, we can numerically tighten this

solution by toward the feasibility set of the original problem. There are several algorithms

to iteratively tighten lower bound solutions, one of which is the Suggest-and-Improve algo-
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rithm algorithm proposed in [44] to tighten non-convex quadratic problems. We will thus

propose to employ this method whenever the KKT conditions based solution is not feasible

and tightening is required.

3.3 Simulation Results

In this section, we test both the performance and merits of the proposed dimensioning so-

lution for the considered multi-class AEMoD system. The metric of interest in this study

is the optimal vehicle in-flow rate to an arbitrary zone of interest. The performance of the

proposed dimensioning solution is tested for two possible SoC distributions for in-flow ve-

hicles, namely the decreasing and Gaussian distributions. The former distribution better

models the more probable active-vehicle-dominant in-flow scenarios, as such vehicles typi-

cally exhibit higher chances of having lower battery charge. The latter distribution models

the rarer relocated-vehicle-dominant in-flow scenarios, as such vehicles typically charge for

random amounts of times before relocating to the zone of interest. Customers trip distances

are always assumed to follow a Gaussian distribution because customers requiring mid-size

distances are usually more than those requiring very small and very long distances. For

all the performed simulation studies, the full-charging rate of a vehicle is set to µc = 0.033

mins−1. Moreover, for Figures 3.1a, 3.1b, and 3.2a, the number of charging poles C is set to

40.

The first important finding of this study is that the obtained solutions using the closed-

form expressions in Theorem 1 (i.e., the one derived by applying the KKT conditions) were

always feasible solutions to the original problem in (3.6), for the entire broad range of system

parameters employed in our simulations. Thus, the derived closed-form solution is in fact

the optimal dimensioning solution for a broad range of system settings, and no tightening is

needed.

Fig. 3.1a shows the trade-off relation between the average response time limit, total

customer demand rate, and the optimal vehicle in-flow rate, for both vehicle SoC distribu-
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tions. This curve can be used by the fog controller to get a rough estimate (without exact

demand information per class nor optimization of the dispatching and charging dynamics)

on its required in-flow rate (and thus whether it needs extra vehicles or have excess vehicles

to relocate) for any given customer demand rate and desired response time limit.

Fig. 3.1b illustrates the effect of increasing the number of classes n beyond its lower

bound introduced in Lemma 5 for both variable total customer demand rate (while fixing

the average response time limits to 5 mins) and variable average response time limits (while

fixing the total customer demand rate to 5 min−1) in the left and right sub figures, respec-

tively. Both decreasing and Gaussian SoC distributions are considered. In both sub-figure,

the lower bound on the number of classes vary depending on the values of the average re-

sponse time and the total customer demand rate (as shown in Lemma 2), with maximum

values of 14 and 11 for the employed values in the left and right sub-figures, respectively.

The results in both figures clearly show that increasing n beyond its lower bound increases

the required vehicle in-flow to the zone. We thus conclude that the optimal number of classes

is the smallest integer value satisfying Lemma 5.

Fig. 3.2a compares the performance of our proposed optimal vehicle dimensioning scheme

with other non-optimized approaches (in which vehicles follow a fixed dispatching/charging

policy irrespective of the system parameters) for different values of total customer demand

rate (with T = 5) and average response time limit (with
∑n

i=1 λ
(i)
c = 5). The two non-

optimized approaches are the always-charge approach (i.e. qi = 0 ∀ i) and the equal-split

approach (i.e. qi = 0.5 ∀ i). The figure clearly shows the superior performance of our de-

rived optimal policy compared to the two non-optimized policies, especially for large total

customer demand rates and lower average response time limits. For
∑n

i=1 λ
(i)
c = 10 min−1

in the left subfigure, 36% and 44.4% less vehicle in-flow rates are required compared to

always-charge and equal-split policies, respectively, for the more typical decreasing SoC dis-
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Figure 3.1: Effect of varying the average response time limit and total customer demand
rate and Effect of increasing the number of classes

tribution. These reductions reach 57.6% and 42.5%, respectively for T = 10 min in the right

subfigure. The always-charge policy is exhibiting less increase in the required vehicle in-flow

rate when the SoC follows a Gaussian distribution. However, some considerable gains can

still be achieved using our proposed optimized approach in this less frequent SoC distribu-

tion setting. Noting that these gains can be higher in more critical scenarios, the results

demonstrate the importance of our proposed scheme in establishing a better engineered and

more stable system with less vehicles.

Finally, we studied the resilience requirements for our considered model in the critical

scenarios of sudden reduction in the number of charging sources within the zone. This

reduction may occur due to either natural (e.g., typical failures of one or more stations) or

intentional (e.g., a malicious attack on the fog controller blocking its access to these sources).

The resilience measures that the fog controller can take in these scenarios is to both notify its

customers of a transient increase in the vehicles’ response times given the available vehicles

in the zone, and request a higher vehicle in-flow rate to gradually restore its original response
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Figure 3.2: Comparison to non-optimized policies and Effect of varying the charging point
availability

time limit.

Our developed optimization framework in [1] and this chapter can easily provide proper

numbers for both the above two needed actions by the fog controller in charging station

outage events. The problem of computing the maximum transient response time of the

system given the fixed vehicle in-flow rate at failure time was already solved in our previous

related work [1]. The left subfigure of Fig. 3.2b depicts the maximum response time values

of the system for different numbers of available charging poles for a vehicle in-flow rate

λv = 8 min−1 and a total customer demand rate of 5 min−1. For a Gaussian distribution of

vehicles’ SoC, the response time increases dramatically when the number of charging poles

drops below 20. On the other hand, the degradation in response time was much less severe

when the SoC of vehicles follows the decreasing distribution. Luckily, the decreasing SoC

distribution is the one that is more probable especially at the time just preceding the failure

(where most vehicles arriving to the zone are active vehicles).

As for the recovery from this critical scenario and restoration of the original response time

limit, the proposed dimensioning framework in this chapter can be employed to determine
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the new optimal value of vehicle in-flow rate. The right sub-figure in Fig. 3.2b depicts

the optimal vehicles in-flow λ∗v for different values of available charging poles C. In this

simulation, the total customer demand rate is set to
∑n

i=1 λ
(i)
c = 8 min−1 and the average

response time limit is restored back to T = 10 mins. The figure shows that the Gaussian SoC

distribution case, which would be luckily the dominant case in this zone after failure time

(due to the domination of relocated vehicles called in by the fog controller to recover from the

failure event), exhibit lower need of vehicle in-flow rate to restore the system conventional

operation.

Conclusion

This chapter aimed to formally characterize the optimal vehicle dimensioning for fog-based

multi-class AEMoD systems given a system-wide average response time limit. Using the

system’s queuing model and its stability/response-time constraints, we formulated the opti-

mal vehicle dimensioning problem as a non-convex quadratic program over the multi-class

dispatching and charging proportions. The lower bound solution corresponding to the La-

grangian and KKT-conditions analysis of the problem were analytically derived, and were

shown to match the optimal solution of the original problem for a broad range of system

parameters using extensive simulations. The optimal number of classes to minimize the

required vehicle in-flow rate was also characterized. Simulation results demonstrated the

merits of our proposed optimal decision scheme compared to other schemes. They also il-

lustrated the resilience requirements calculated using our proposed solutions to recover from

sudden reductions in charging resources.
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CHAPTER 4

Multi-Class Management with Sub-Class Service for Autonomous

Electric Mobility On-Demand Systems

Introduction

Despite the valuable results given by deriving the optimal split proportions for the previously

introduced model (compared to typical non-optimized splitting approaches), its dispatching

process is not realistic. Indeed, vehicles in this model only sever trips fitting their SoC

(before or after partially charging), ignoring the fact that they can also serve all customer

classes requesting smaller trips (and thus less charge). This is not only impractical, but can

also result in battery depletion of all vehicles by the end of the service, which can cause

instabilities to the entire system. In this Chapter, we aim to address this clear limitation of

the previous model, by enabling sub-class dispatching; i.e., allowing proportions of each class

vehicles to serve to customers from its class as well as all classes requesting shorter trips).

The question now is: What are the optimal charging and sub-classes dispatching proportions

to maintain charging stability and minimize the maximum response time of the system? To

address this question, a queuing model representing the proposed multi-class management

with sub-class service scheme is first introduced. The stability conditions of this model.

Decisions on both the proportions of each class’s vehicles to partially/fully charge vs directly

dispatch and their proportions of serving own vs sub-classes are then jointly optimized.

Finally, the merits of our proposed optimized decision scheme are tested and compared to

the proposed work in [1] [3] as well as several non optimized schemes.

4.1 System Model

We consider one service zone controlled by a fog controller connected to: (1) the service

request apps of customers in the zone; (2) the AEMoD vehicles; (3) C rapid charging points
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distributed in the service zone and designed for short-term partial charging; and (4) one

spacious rapid charging station designed for long-term full charging. AEMoD vehicles enter

the service in this zone after dropping off their latest customers in it. Their detection

as free vehicles by the zone’s controller can thus be modeled as a Poisson process with

rate λv. Customers request service from the system according to a Poisson process. Both

customers and vehicles are classified into n classes based on an ascending order of their

required trip distance and the corresponding SoC to cover this distance, respectively. From

the thinning property of Poisson processes, the arrival process of Class i customers and

vehicles, i ∈ {0, . . . , n}, are both independent Poisson processes with rates λ
(i)
c and λvpi,

where pi is the probability that the SoC of an arriving vehicle to the system belongs to Class

i. Note that p0 is the probability that a vehicle arrive with a depleted battery, and is thus

not able to serve immediately. Consequently, λ
(0)
c = 0 as no customer will request a vehicle

that cannot travel any distance. On the other hand, pn is also equal to 0, because no vehicle

can arrive to the system fully charged as it has just finished a prior trip.

Upon arrival, each vehicle of Class i, i ∈ {1, . . . , n − 1}, will park anywhere in the zone

until it is called by the fog controller to either: (1) join vehicles that will serve customer

with their current state of charge with probability qi (The served customer can be from any

Sub-class j with j ≤ i); or (2) partially charge up to the SoC of class i + 1 at any of the C

charging points (whenever any of them becomes free), with probability qi = 1 − qi, before

parking again in waiting to serve a customer from any Sub-class j with j ≤ i + 1. As for

Class 0 vehicles that are incapable of serving before charging, they will be directed to either

fully charge at the central charging station with probability q0, or partially charge at one of

C charging points with probability q0 = 1 − q0. In the former and latter cases, the vehicle

after charging will wait to serve customers of any Sub-class j ≤ n and 1, respectively.

Considering the above explanation, Each vehicle, whether decided to serve immediately or

decided to charge before serving, will be able to serve: (1) customers from same class with

probability Πii; or (2) customers with a trip distance from any Sub-class with probability
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Figure 4.1: Joint dispatching and partially/fully charging model, abstracting an AEMoD
system in one service zone.

Πij.

As widely used in the literature (e.g., [16,17]), the full charging time of a vehicle with a

depleted battery is assumed to be exponentially distributed with rate µc. Given uniform SoC

quantization among the n vehicle classes, the partial charging time can then be modeled as an

exponential random variable with rate nµc. Note that the larger rate of the partial charging

process is not due to a speed-up in the charging process but rather due to the reduced time

of partially charging. The customers belonging to Class i, arriving at rate λ
(i)
c , will be served

at a rate of λ
(i)
vs , which includes summation of proportions of arrival rates of vehicles that:

(1) arrived to the zone with a SoC belonging to Class j ∀j ≥ i and were directed to wait to

serve Class i ∀i ≤ j customers; or (2) arrived to the zone with a SoC belonging to Class j−1

and were directed to partially charge to be able to serve a Sub-Class i ∀i ≤ j customers.

Given the above description and modeling of variables, the entire zone dynamics can thus be

modeled by the queuing system . This system includes n M/M/1 queues for the n classes of

customer service, one M/M/1 queue for the central charging station, and one M/M/C queue
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representing the partial charging process at the C charging points.

Our goal in this chapter is to minimize the maximum expected response time of the

entire system. By response time, we mean the time needed that vehicle starts moving from

its parking or charging spot towards this customer.

4.2 System stability conditions

In this section, we first deduce the stability conditions of our proposed joint dispatching and

charging system, using the basic laws of queuing theory. Each class of vehicles with an arrival

rate λ
(i)
v will be characterized by its SoC when it is ready to serve customers. Each of the

n classes of customers are served by a separate queue of vehicles, with λ
(i)
vs being the arrival

rate of the vehicles that are available to serve the customers of the ith class. Consequently, it

is the service rate of the customers ith arrival queues. We can thus deduce from the system

model in the previous section the rate of vehicles with SoC that allows to serve a class i or

any sub-class j ≤ i that requires lower SoC to serve its customers:

λ(i)
v = λv(pi−1qi−1 + piqi), i = 1, . . . , n− 1.

λ(n)
v = λv(pn−1qn−1 + p0q0)

(4.1)

Since we know that qi + qi = 1 Then we substitute qi by 1 − qi in order to have a system

with n variables

λ(i)
v = λv(pi−1 − pi−1qi−1 + piqi), i = 1, . . . , n− 1

λ(n)
v = λv(pn−1 − pn−1qn−1 + p0q0)

(4.2)

We can also deduce the expression of the rate of vehicles that will actually serve a class of

customers i:

λ(i)
vs =

n∑
k=i

λ(k)
v Πki, i = 1, . . . , n (4.3)
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By injecting the expression of λkv in (4.2) in (4.3), we find:

λ(i)
vs = λv

n−1∑
k=i

(pk−1 − pk−1qk−1 + pkqk)Πki + λv(pn−1 − pn−1qn−1 + p0q0)Πni, i = 1, . . . , n− 1

λ(n)
vs = λv(pn−1 − pn−1qn−1 + p0q0)Πnn

(4.4)

From the well-known stability condition of an M/M/1 queue:

λ(i)
vs > λ(i)

c , i = 1, . . . , n (4.5)

To guarantee customers’ satisfaction, the fog controller of each zone must impose an average

response time limit T for any class. We can thus express this average response time constraint

for the customers of the i-th class as:

1

λ
(i)
vs − λ(i)

c

≤ T or λ(i)
vs − λ(i)

c ≥ R, with R =
1

T
(4.6)

Before reaching the customer service queues, the vehicles will go through a decision step

of either to go to these queues immediately or partially charge. From the system model, we

have the following stability constraints on the C charging points and central charging station

queues, respectively:
n−1∑
i=0

λv(pi − piqi) < C(nµc)

λvp0q0 < µc

(4.7)

The following lemma allows the estimation of the average needed vehicles arrival for a given

service zone.

Lemma 6. For the entire zone stability, and fulfillment of the average response time limit

for all its classes, the average vehicles arrival rate must be lower bounded by:

λv ≥
n∑
i=1

λ(i)
c + nR (4.8)
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Proof. The proof of Lemma 6 is in Appendix J

4.3 Joint Charging and Dispatching optimization

4.3.1 Problem Formulation

The goal of this chapter is to minimize the maximum expected response time of the system’s

classes. The response time of any class is defined as the average of the duration from any

customer request until a vehicle is dispatched to serve him/her. The maximum expected

response time is expressed as:

max
i∈{1,...,n}

{
1

λ
(i)
vs − λ(i)

c

}
(4.9)

It is obvious that the system’s class having the maximum expected response time is the one

that have the minimum expected response rate. In other words, we have:

arg max
i∈{1,...,n}

{
1

λ
(i)
vs − λ(i)

c

}
= arg min

i∈{1,...,n}

{
λ(i)
vs − λ(i)

c

}
(4.10)

Consequently, minimizing the maximum expected response time is equivalent to maximizing

the minimum expected response rate. Using the epigraph form [41] of the latter problem,
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we get the following stochastic optimization problem:

maximize
q0,...,qn−1,Π11,...,Πnn

R (4.11a)

s.t

λv

n−1∑
k=i

(pk−1 − pk−1qk−1 + pkqk)Πki (4.11b)

+ λv(pn−1 − pn−1qn−1 + p0q0)Πni − λ(i)
c ≥ R i = 1, . . . , n− 1 (4.11c)

λv(pn−1 − pn−1qn−1 + p0q0)Πnn − λ(n)
c ≥ R (4.11d)

n−1∑
i=0

λv(pi − piqi) < C(nµc) (4.11e)

λvp0q0 < µc (4.11f)

i∑
j=1

Πij = 1, i = 1, . . . , n (4.11g)

0 ≤ Πij ≤ 1, i = 1, . . . , n, j = 1, . . . , i (4.11h)

0 ≤ qi ≤ 1, i = 0, . . . , n− 1 (4.11i)

n−1∑
i=0

pi = 1, 0 ≤ pi ≤ 1, i = 0, . . . , n− 1 (4.11j)

0 < R ≤ λv −
∑n

i=1 λ
(i)
c

n
(4.11k)

(4.11l)

The n constraints in (4.11c) and (4.11d) represent the epigraph form’s constraints on the

original objective function in the right hand side of (4.10), after separation [41] and substitut-

ing every λ
(i)
vs by its expansion form in (4.4). The constraints in (4.11e) and (4.11f) represent

the stability conditions on charging queues. The constraints in (4.11g), (4.11h), (4.11i) and

(4.11j) are the axiomatic constraints on the probabilities (i.e., values being between 0 and

1, and sum equal to 1). The Finally, Constraint (4.11k) is a positivity constraint on the

minimum expected response rate. Finally, Constraint (4.11k) is is a positivity constraint
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and the upper bound on R introduced by Lemma (6).

4.3.2 Lower Bound Analytical Solutions

The optimization problem in (4.11) is a quadratic non-convex problem with second order

differentiable objective and constraint functions. Usually, the solution obtained by using the

Lagrangian and KKT analysis for such non-convex problems provides a lower bound on the

actual optimal solution. Consequently, we propose to solve the above problem by first finding

the solution derived through Lagrangian and KKT analysis, then, if needed, iteratively

tightening this solution to the feasibility set of the original problem. The Lagrangian function

associated with the optimization problem in (4.11) is given by the following expression:

L(R,q,Π,α,β,γ,ω,µ,ν, δ) = −R−
n−1∑
i=0

ωiqi − ωn(R− ε2) +
n∑
i=1

δi(
i∑

k=1

Πik − 1)

+
n−1∑
i=1

αi[λ
(i)
c − λv

n−1∑
k=i

(pk−1 − pk−1qk−1 + pkqk)Πki − λv(pn−1 − pn−1qn−1 + p0q0)Πni +R]

+ αn(λ(n)
c − λv(pn−1 − pn−1qn−1 + p0q0)Πni +R) + β0(

n−1∑
i=0

λv(pi − piqi)− C(nµc))

+
n−1∑
i=0

γi(qi − 1) + γn(R− λv −
∑n

i=1 λ
(i)
c

n
) +

n∑
i=1

i∑
j=1

νij(Πij − 1)− µijΠij + β1(λvp0q0 − µc)

(4.12)

where:

• q = [q0, . . . , qn−1] is the vector of charing decisions.

• Π = [Πij] is the vector of dispatching decisions to serve customers.

• α = [αi], such that αi is the associated Lagrange multiplier to the i-th customer queues

inequality.
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• β = [βi], such that βi is the associated Lagrange multiplier to the i-th charging queues

inequality.

• δ = [δi], such that δi is the associated Lagrange multiplier to the i-th equality constraint

on the dispatching decision.

• γ = [γi], such that γi is the associated Lagrange multiplier to the i-th upper bound

inequality on the charging decisions and the expected response time.

• ω = [ωi], such that ωi is the associated Lagrange multiplier to the i-th lower bound

inequality on the charging decisions and the expected response time.

• µ = [µij], such that µij is the associated Lagrange multiplier to the j-th lower bound

inequality on the dispatching decision Πij.

• ν = [νij], such that νij is the associated Lagrange multiplier to the j-th upper bound

inequality on the dispatching decision Πij.

For more accurate resolutions, Three small positive constants ε0, ε1 and ε2 are added to the

stability conditions on the charging queues and the positivity condition on the maximum

expected waiting time to make them non strict inequalities.

Solving the equations given by the KKT conditions on the problem equality and inequal-

ity constraints, the following theorem illustrates the optimal lower bound solutions of the

problem in (4.11).

Theorem 5. The lower bound solution of the optimization problem in (4.11), obtained from

Lagrangian and KKT analysis can be expressed as follows:
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R∗ =



λv−
∑n

i=1 λ
(i)
c

n γ∗n 6= 0

ε2 ω∗n 6= 0∑n−1
i=1 α

∗
i (λv

∑n−1
k=i (pk−1 − pk−1q

∗
k−1 + pkq

∗
k)Π

∗
ki + λv(pn−1 − pn−1q

∗
n−1 + p0q

∗
0)Π∗ni − λ

(i)
c )

+α∗n(λv(pn−1 − pn−1q
∗
n−1 + p0q

∗
0)Π∗nn − λ

(n)
c ) Otherwise

q∗0 =



0 α∗1Π∗11 −
∑n

i=1 α
∗
iΠ
∗
ni − β∗0 + β∗1 > 0

1 α∗1Π∗11 −
∑n

i=1 α
∗
iΠ
∗
ni − β∗0 + β∗1 < 0

λ
(n)
c +λvpn−1q∗n−1Π∗

nn−λvpn−1Π∗
nn+R∗

λvp0Πnn∗ α∗n 6= 0

µc
λ∗vp0

β∗1 6= 0

ζ0(R∗, q∗,Π∗, α∗, β∗, γ∗, ω∗, µ∗, ν∗, δ∗) Otherwise

q∗i =



0 α∗i+1 − α∗i − β∗0 > 0

1 α∗i+1 − α∗i − β∗0 < 0 i = 1, . . . , n− 1.

R∗+λ
(i)
c +λv[

∑n−1
k=i+2(pk−1q

∗
k−1−pkq

∗
k)Πki+(pn−1q∗n−1−p0q∗0)Πni−

∑n
k=i pk−1Πki+pi−1q

∗
i−1Π∗

ii−pi+1qi+1Πi+1i+1]
λvpi(Πii−Πi+1i+1) α∗i 6= 0

ζi(R
∗, q∗,Π∗, α∗, β∗, γ∗, ω∗, µ∗, ν∗, δ∗) Otherwise

Π∗ij =



0 α∗jλv(pi−1qi−1∗ − pi−1 − piq∗i ) + δ∗i > 0

1 α∗jλv(pi−1qi−1∗ − pi−1 − piq∗i ) + δ∗i < 0

ζij(R
∗, q∗,Π∗, α∗, β∗, γ∗, ω∗, µ∗, ν∗, δ∗) Otherwise

i = 1, . . . , n− 1.

(4.13)

where ζi and ζij are the solution that that maximize inf
q,Π

L(q,Π∗, R∗, α∗, β∗, γ∗, ω∗, µ∗, ν∗, δ∗)

Proof. The proof of Theorem 5 is in Appendix K.

4.3.3 Solution Tightening

As stated earlier, the closed-form solution derived in the previous section from analyzing

the constraints’ KKT conditions does not always match with the optimal solution of the



49

original optimization problem, and is sometimes a non-feasible lower bound on our problem.

Unfortunately, there is no method to find the exact closed-from solution of non-convex

optimization. However, starting from the derived lower bound, we can numerically tighten

this solution by iterating toward the feasible set of the original problem. There are several

algorithms to iteratively tighten lower bound solutions, one of which is the Suggest-and-

Improve algorithm algorithm proposed in [44] to tighten non-convex quadratic problems.

We will thus propose to employ this method whenever the KKT conditions based solution

is not feasible and tightening is required.

4.4 Simulation Results

In this section, we test the merits of our proposed scheme using extensive simulations. The

metric used to evaluate these merits is the maximum expected response times of the different

classes. For all the performed simulation figures, the full-charging rate of a vehicle is set to

µc = 0.033 mins−1, and the number of charging points C = 40.

Fig. 4.2a depicts the maximum expected response time for different values of
∑n

i=1 λ
(i)
c ,

while fixing λv to 8 min−1. For this setting, n = 7 is the smallest number of classes that

satisfy the stability condition in Lemma 2 in [1]. From queuing theory rules [42] [43] the

more serving queues a system have, the higher the waiting time will be. Moreover, in previ-

ous related work [1] [3], we showed that increasing the number of classes n beyond its strict

lower bound introduced in Lemma 2 in [1] will damage the system performance and increase

the maximum response time.

Fig. 4.2a compare the maximum expected response time performances against
∑n

i=1 λ
(i)
c ,

for different decision approaches namely our derived optimal decisions to the following deci-

sions sets:

1. Optimized charging decisions (i.e. qi ∀ i) with same class dispatching (i.e. Πii = 1 ∀ i

and Πij = 0 ∀ i, j 6= i)
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2. Always partially charge decisions (i.e. qi = 0 ∀ i) with same class dispatching (i.e.

Πii = 1 ∀ i and Πij = 0 ∀ i, j 6= i)

3. Equal split charging decisions (i.e. qi = 0.5 ∀ i) with same class dispatching (i.e.

Πii = 1 ∀ i and Πij = 0 ∀ i, j 6= i)

4. Always partially charge decisions (i.e. qi = 0 ∀ i) with proportional sub-classes dis-

patching decisions (i.e. Πij proportional to the customers sub-classes needs)

5. Equal split charge decisions (i.e. qi = 0 ∀ i) with proportional sub-classes dispatching

decisions (i.e. Πij proportional to the customers sub-classes needs)

These five schemes represent the possible non-optimized policies, in which each vehicle takes

its own fixed decision irrespective of the system parameters. These schemes are possible in

case of a non connected and optimized system.

Fig. 4.2a compares these approaches with a decreasing SoC distribution. The figure

clearly show superior performances for our derived optimal policy compared to the other

policies, especially as
∑n

i=1 λ
(i)
c gets closer to λv, which are the most properly engineers

scenarios (as large differences between these two quantities results in very low utilization),

This approves the expression found in lemma 6. A Gains of 49.3%, 69.8%, 93.22%, 86.7%

and 94.4% in the performances, can be noticed compared to the previously stated policies

respectively.

Fig. 4.2b shows the study of the resilience requirements for our considered model in

the critical scenarios of sudden reduction in the number of charging sources within the

zone. This reduction may occur due to either natural (e.g., typical failures of one or more

stations) or intentional (e.g., a malicious attack on the fog controller blocking its access to

these sources). The resilience measure that the fog controller can take in these scenarios

is to notify its customers of a transient increase in the vehicles’ response times given the

available vehicles in the zone. For this, we are only comparing the new proposed model

to our previously proposed model. The figures shows clearly the advantage brought by
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Figure 4.2: Comparison to non-optimized policies for Decreasing SoC distribution and Effect
of varying charging points availability

the sub-class dispatching model. The gain gets higher in critical scenarios and reaches up

to 65% with very acceptable maximum response time even is very low energy resources.

This demonstrates the importance of our proposed scheme in achieving better customer

satisfaction.

Conclusion

In this chapter we proposed a multi-class dispatching and charging scheme and developed its

queuing model and stability conditions. We then formulated the problem of optimizing the

proportions of vehicles of each class that will partially/fully charge or directly serve customers

of same class or any lower sub-class as an optimization problem, in order to minimize the

maximum expected system response time while respecting the system stability constraints.

The optimal decisions and corresponding maximum response time were analytically derived.

Simulation results demonstrated both the merits of our proposed optimal decision scheme

compared to typical non-optimized schemes and previously optimized scheme, and its per-

formance for different distributions of vehicle SoC and customer trip distances.
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CHAPTER 5

Conclusion

5.1 Summary

In this Thesis, we proposed solutions to the computational and charging bottlenecks threat-

ening the success of AEMoD systems in attracting a large number of customers and solving

private urban transportation problems. The computational bottleneck can be resolved by

employing a fog-based architecture to distribute the optimization loads over different service

zones, reduce communication delays, while which matching the nature of dispatching/charg-

ing processes of AEMoD vehicles. We also proposed a multi-class dispatching and charging

scheme to guarantee the fitness of the vehicle charge requirements for customer trips with

the available resources in each city zone. To efficiently engineer this multi-class solution,

we developed its queuing model, derived its stability conditions, and characterized the op-

timal number of classes to both minimize the response time and match the zone charging

resources. We then formulated the problem of optimizing the proportions of vehicles of each

class that will partially/fully charge or directly serve customers as a stochastic linear and

convex optimization problems, in order to minimize the maximum and average expected sys-

tem response times of the system, respectively. The optimal decisions for both problems were

analytically derived using Lagrangian analysis. Simulation results demonstrated both the

merits of our proposed optimal decision scheme compared to typical non-optimized schemes,

and its performance for different distributions of vehicle SoC and customer trip distances.

The comparison between the maximum and average problem solutions exhibited negligible

variance, which favored the use of the maximum solution due to its lower complexity.

The third chapter aimed to formally characterize the optimal vehicle dimensioning for fog-

based multi-class AEMoD systems given a system-wide average response time limit. Using

the system’s queuing model and its stability/response-time constraints, we formulated the

optimal vehicle dimensioning problem as a non-convex quadratic program over the multi-
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class dispatching and charging proportions. The lower bound solution corresponding to the

Lagrangian and KKT-conditions analysis of the problem were analytically derived, and were

shown to match the optimal solution of the original problem for a broad range of system

parameters using extensive simulations. The optimal number of classes to minimize the

required vehicle in-flow rate was also characterized. Simulation results demonstrated the

merits of our proposed optimal decision scheme compared to other schemes. They also il-

lustrated the resilience requirements calculated using our proposed solutions to recover from

sudden reductions in charging resources.

In the fourth chapter,proposed an enhance multi-class dispatching and charging scheme and

developed its queuing model and stability conditions. We then formulated the problem of

optimizing the proportions of vehicles of each class that will partially/fully charge or directly

serve customers of same class or any lower sub-class as an optimization problem, in order

to minimize the maximum expected system response time while respecting the system sta-

bility constraints. The optimal decisions and corresponding maximum response time were

analytically derived. Simulation results demonstrated both the merits of our proposed opti-

mal decision scheme compared to typical non-optimized schemes and previously optimized

scheme, and its performance for different distributions of vehicle SoC and customer trip

distances.

5.2 Future Directions

For the future work, we will study the problem of maximizing the system utilization (i.e.,

minimizing the required in-flow vehicle rate to each city zone) while satisfying a maximum

response time constraint for the new proposed model in the chapter four. We will also study

scenarios where the charging process of the vehicles is more sophisticated. Most importantly

we will study the inter-fog communication and rebalancing processes.
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Appendix A: Proof of Lemma 1

From (2.2) and (2.3) we have:

λ(i)
c < λv

(
pi−1qi−1 + piqi

)
i = 1, . . . , n− 1

λ(n)
c < λv

(
pn−1qn−1 + p0q0

)
i = n

(5.1)

The summation of all the inequalities in (5.1) gives a new inequality

n∑
i=1

λ(i)
c < λv

[
n−1∑
i=1

(
pi−1qi−1 + piqi

)
+
(
pn−1qn−1 + p0q0

)]
(5.2)

n∑
i=1

λ(i)
c < λv

[
p0q0 + p1q1 + p1q1 + ...+ pn−1qn−1 + p0q0

]
(5.3)

We have qi + qi so piqi + piqi = pi

n∑
i=1

λ(i)
c < λv (p0 + p1 + p2 + ...+ pn−1) (5.4)

We have
∑n−1

i=0 pi = 1 so
∑n

i=1 λ
(i)
c < λv
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Appendix B: Proof of Lemma 2

The summation of the inequalities given by (2.4)

∀ i = {0, . . . , n} gives the following inequality:

λv

n−1∑
i=0

pi − λv
n−1∑
i=0

piqi + λvp0q0 < C (nµc) + µc (5.5)

Since
∑n−1

i=0 pi = 1 (because pn = 0 as described in Section 2), we get:

λv − λv
n−1∑
i=1

piqi < µc (Cn+ 1) (5.6)

In the worst case, all the vehicles will be directed to partially charge before serving, which

means that always qi = 0. Therefore, we get:

Cn >
λv
µc
− 1 (5.7)

which can be re-arranged to be:

n >
λv
Cµc

− 1

C
(5.8)
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Appendix C: Proof of Theorem 1

Applying the KKT conditions to the inequalities constraints of (2.10), we get:

α∗i
(
λv
(
pi−1q

∗
i−1 − piq∗i

)
+R∗ − λvpi−1 + λ(i)

c

)
= 0 i = 1, . . . , n− 1

α∗n
(
λv
(
pn−1q

∗
n−1 − p0q

∗
0

)
+R∗ − λvpn−1 + λ(n)

c

)
= 0

β∗0

(
n−1∑
i=0

λv (pi − piq∗i )− C (nµc)

)
= 0

β∗1 (λvp0q
∗
0 − µc) = 0

γ∗i (q∗i − 1) = 0 i = 0, . . . , n− 1

ω∗i q
∗
i = 0 i = 0, . . . , n− 1

ω∗nR
∗ = 0

(5.9)

Likewise, applying the KKT conditions to the Lagrangian function in (2.11), and knowing

that the gradient of the Lagrangian function goes to 0 at the optimal solution, we get the

following set of equalities:

λvpi
(
α∗i+1 − α∗i

)
= ω∗i − γ∗i i = 1, . . . , n− 1

λvp0 (α∗1 − α∗n) = ω∗0 − γ∗0
n−1∑
i=1

α∗i = 1

(5.10)

From Burke’s theorem on the stability condition of the queues, the constraints on the charg-

ing queues are strict inequalities and the constraints on R should also be strictly larger than

0. Combining the Burke’s theorem and the equations on (5.9), we find that β∗0 = β∗1 = 0

and ω∗n = 0.

Knowing that the gradient of the Lagrangian goes to 0 at the optimal solutions, we get

the system of equalities given by (5.10). The fact that β∗i = 0 and ω∗n = 0 explains the

absence of β∗i and ω∗n in (2.12) The result given by multiplying the first equality in (5.10) by
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q∗i and the second equality by q∗0 combined with the last three equalities given by (5.9) gives:

λvpi
(
α∗i+1 − α∗i

)
q∗i = −γ∗i i = 1, . . . , n− 1

λvp0 (α∗1 − α∗n) q∗0 = −γ∗0
n−1∑
i=1

α∗i = 1

(5.11)

(5.11) Inserted in the fifth equality in (5.9) gives:

λvpi
(
α∗i+1 − α∗i

)
(q∗i − 1) q∗i = 0 i = 1, . . . , n− 1

λvp0 (α∗1 − α∗n) (q∗0 − 1) q∗0 = 0

n−1∑
i=1

α∗i = 1

(5.12)

From (5.12) we have 0 < q∗0 < 1 only if α∗1 = α∗n And 0 < q∗i < 1 only if α∗i+1 = α∗i Since

0 ≤ q∗i ≤ 1 then these equalities may not always be true

if α∗1 > α∗n and we know that γ∗0 ≥ 0 then γ∗0 = 0 which gives q∗0 6= 1 and q∗0 = 0

if α∗i+1 > α∗i and we know that γ∗i ≥ 0 then γ∗i = 0 which gives q∗i 6= 1 and q∗i = 0

if α∗1 < α∗n then γ∗0 > 0 (it cannot be 0 because this will contradict with the value of qi),

which implies that q∗0 = 1

if α∗i+1 < α∗i then γ∗i > 0 (it cannot be 0 because this contradicts with the value of qi),

which implies that q∗i = 1

Otherwise, if α∗1 = α∗n 6= 0 (they cannot be equal to 0 at the same time, which means

that q0 = 1, and we know in advance that this cannot be the case here), we have q∗1 =

p0q∗0
p1
− λvp0−λ(1)c −R∗

λvp1
and q∗n−1 =

p0q∗0
pn−1
− λvp0−λ(n)

c −R∗

λvpn−1

Finally, if α∗i+1 = α∗i 6= 0 (they cannot be equal to 0 at the same time, which means

that qi = 1, and we know in advance that this cannot be the case here), we have q∗i =

pi−1q
∗
i−1

pi
− λvpi−1−λ

(i)
c −R∗

λvpi
and q∗i+1 =

piq
∗
i

pi+1
− λvpi−λ

(i+1)
c −R∗

λvpi+1
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Appendix D: Proof of Theorem 2

To prove this theorem, we first start by putting the problem on the standard linear program-

ming form as follows:

minimize
q0,q1,...,qn−1

−R

subject to

λv (pi−1qi−1 − piqi) +R ≤ λvpi−1 − λ(i)
c , i = 1, . . . , n− 1

λv (pn−1qn−1 − p0q0) +R ≤ λvpn−1 − λ(n)
c

− λv
n−1∑
i=0

piq
∗
i < C (nµc)− λv

λvp0q0 < µc

qi ≤ 1 i = 0, . . . , n− 1

− qi ≤ 0 i = 0, . . . , n− 1

−R < 0

n−1∑
i=0

pi = 1 0 < pi < 1 i = 0, . . . , n− 1

(5.13)

Writing the problem on its matrix form, we get:

minimize
X

cTx

subject to Ax � b

(5.14)
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where:

x(n+1×1) =



q0

q1

...

qn−1

R


c(n+1×1) =



0

0

0

...

−1


b(3n+4×1) =



λvp0 − λ(1)
c

...

λvpn−1 − λ(n)
c

C (nµc)− λv

µc

1

...

1

∞

0

...

0



(5.15)

A(3n+4×n+1) =



λvp0 −λvp1 0 . . . 0 1

0 λvp1 −λvp2 . . . 0 1

...
. . . . . . . . . . . .

...

0 . . . 0 λvpn−2 −λvpn−1 1

−λvp0 0 . . . . . . λvpn−1 1

−λvp0 −λvp1 . . . . . . −λvpn−1 0

λvp0 0 . . . . . . . . . 0

In+1

−In+1



(5.16)

The matrix form of the Lagrangian function can be thus expressed as: Lagrangian:
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L (x,ν) = cTx + νT (Ax− b) = −bT +
(
ATν + c

)T
x (5.17)

where ν is the vector of the dual variables or Lagrange multipliers vector associated with

the problem 5.14. Each element νi of ν is the Lagrange multiplier associated with the i-th

inequality constraint aix− bi ≤ 0, where ai and bi are the the i-th row and and i-th element

of matrix A and vector b, respectively. In fact ν is the vector that includes all the vectors

α, β, γ, ω as follows:

νT(1×3n+4) =

(
α1 . . . αn β0 β1 γ0 . . . γn ω0 . . . ωn

)
(5.18)

We will used this combined notation for ease and clarity of notation.

The Lagrange dual function is expressed as:

g (ν) = inf
x
L (x,ν) = −bTν + inf

x

(
ATν + c

)T
x (5.19)

The solution for this function is easily determined analytically, since a linear function is

bounded below only when it is identically zero. Thus, g (ν) = −∞ except when ATν+c = 0,

where 0 is the all zero vector. Consequently, we have:

g (ν) =


−bTν ATν + c = 0

−∞ ortherwise

(5.20)

For each ν � 0 (i.e., νi ≥ 0 ∀ i), the Lagrange dual function gives us a lower bound on

the optimal value of the original optimization problem. This leads to a new equivalent
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optimization problem, which is the dual problem:

max
ν

g (ν) = −bTν

subject to ATν + c = 0

ν � 0

(5.21)

Applying Slater’s Theorem for duality qualification, and since strong duality holds for the

considered optimization problem, then solving the dual problem gives the exact optimal

solution for the primal problem. This is described by the equality:

g (ν∗) = −bTν∗ = cTx∗ = −R∗ (5.22)

By expanding on the values of b and ν in the above equation, the optimal value of R∗ can

be expressed as:

R∗ =
n∑
i=1

(
λvpi−1 − λ(i)

c

)
α∗i +

n−1∑
i=0

γ∗i (5.23)
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Appendix E: Proof of Lemma 3

After performing the suggested substitutions in the lemma statement, the function f can be

expressed as:

f (q0, q1, . . . , qn−1) =
1

n

n∑
i=1

1

λ
(i)
v − λ(i)

c

=
1

n

n−1∑
i=1

1

λv (pi−1 − pi−1qi−1 + piqi)− λ(i)
c

+
1

n
(
λv (pn−1 − pn−1qn−1 + p0q0)− λ(n)

c

) (5.24)

In order to prove that the function f is a convex, we need to first show that it is continu-

ous and second order differentiable which is the case of our function because it is a sum of

continuous and second order differentiable functions. Moreover, since f is a multi-variable

function, we need to show that its Hessian matrix is positive semi-definite. Let H be the

Hessian matrix of f such that:

Hi,j =
∂2f

∂qi∂qj
i, j = 0, . . . , n− 1 (5.25)

We notice that the Hessian matrix is a symmetric matrix because

∂2f

∂qj∂qi
=

∂2f

∂qi∂qj
∀ i, j (5.26)

which means that:

Hi,j = Hj,i ∀ i, j (5.27)
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The calculation of the terms in the Hessian matrix leads to the following results:

∂2f

∂2q0

=
2λ2

vp
2
0(

λv (p0 − p0q0 + p1q1)− λ(1)
c

)3 +
2λ2

vp
2
0(

λv (pn−1 − pn−1qn−1 + p0q0)− λ(n)
c

)3

∂2f

∂2qi
=

2λ2
vp

2
i(

λv (pi−1 − pi−1qi−1 + piqi)− λ(i)
c

)3 +
2λ2

vp
2
i(

λv (pi − piqi + pi+1qi+1)− λ(i+1)
c

)3 i = 1, . . . , n− 2

∂2f

∂2qn−1

=
2λ2

vp
2
n−1(

λv (pn−2 − pn−2qn−2 + pn−1qn−1)− λ(n−1)
c

)3 +
2λ2

vp
2
n−1(

λv (pn−1 − pn−1qn−1 + p0q0)− λ(n)
c

)3

∂2f

∂2qi−1qi
=

−2λ2
vpi−1pi(

λv (pi−1 − pi−1qi−1 + piqi)− λ(i)
c

)3 i = 1, . . . , n− 1

∂2f

∂2qiqj
= 0 j > i+ 1, i, j = 0, . . . , n− 1

∂2f

∂2qn−1q0

=
−2λ2

vp0pn−1(
λv (pn−1 − pn−1qn−1 + p0q0)− λ(n)

c

)3

(5.28)

Let x = [xi] be an n× 1 vector such that 0 ≤ xi ≤ 1 ∀ i since our variables qi which on the

function depends are varies that range qi ∈ [0, 1]. To prove that H is positive semi-definite,

it should satisfy the following condition:

xTHx ≥ 0 (5.29)

xTH =



x0
∂2f
∂2q0

+ x1
∂2f
∂2q0q1

+ xn−1
∂2f

∂2q0qn−1

xi−1
∂2f

∂2qi−1qi
+ xi

∂2f
∂2qi

+ xi+1
∂2f

∂2qi+1qi

i = 1 . . . n− 2

x0
∂2f

∂2q0qn−1
+ xn−2

∂2f
∂2qn−1qn−2

+ xn−1
∂2f

∂2qn−1

(5.30)
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Multiplying (5.30) by the vector x gives:

xTHx = x0

(
x0
∂2f

∂2q0

+ x1
∂2f

∂2q0q1

+ xn−1
∂2f

∂2q0qn−1

)
+

n−2∑
i=1

xi

(
xi−1

∂2f

∂2qi−1qi
+ xi

∂2f

∂2qi
+ xi+1

∂2f

∂2qi+1qi

)
+ xn−1

(
x0

∂2f

∂2q0qn−1

+ xn−2
∂2f

∂2qn−1qn−2

+ xn−1
∂2f

∂2qn−1

)
(5.31)

Simplifying (5.31) gives:

xTHx =
n−1∑
i=0

x2
i

∂2f

∂2qi
+ 2

n−1∑
i=1

xixi−1
∂2f

∂2qi−1qi
+ 2x0xn−1

∂2f

∂2qn−1q0

(5.32)

Substitute (5.28) in (5.32), we get:

xTHx =
n−1∑
i=1

2λ2
v (pixi − pi−1xi−1)2(

λv (pi−1 − pi−1qi−1 + piqi)− λ(i)
c

)3 +
2λ2

v (p0x0 − pn−1xn−1)2(
λv (pn−1 − pn−1qn−1 + p0q0)− λ(n)

c

)3

(5.33)

We can see clearly that xTHx ≥ 0 because it is a sum of positive terms. Consequently, H is

positive semi-definite, thus making f a convex function.
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Appendix F: Proof of Theorem 3

Applying the KKT conditions to the inequalities constraints of the problem (2.15), we get:

α∗i
(
λ(i)
c − λv

(
pi−1 − pi−1q

∗
i−1 + piq

∗
i

))
= 0 i = 1, . . . , n− 1

α∗n
(
λ(n)
c − λv

(
pn−1 − pn−1q

∗
n−1 + p0q

∗
0

))
= 0

β∗0

(
n−1∑
i=0

λv (pi − piq∗i )− C (nµc)

)
= 0

β∗1 (λvp0q
∗
0 − µc) = 0

γ∗i (q∗i − 1) = 0 i = 0, . . . , n− 1

ω∗i q
∗
i = 0 i = 0, . . . , n− 1

(5.34)

From Burke’s theorem on the stability condition of queues, the constraints on the customers’

queues and the charging queues are strict inequalities. Combining Burke’s theorem with the

equations in (5.34), we find that β∗0 = β∗1 = 0 and α∗i = 0 ∀ i. Applying the KKT conditions

to the Lagrangian function in (2.17), and knowing that the gradient of the Lagrangian func-

tion goes to 0 at the optimal solution, we get the following set of equalities:

λvp0

n

 1(
λv
(
pn−1 − pn−1q∗n−1 + p0q∗0

)
− λ(n)

c

)2 −
1(

λv (p0 − p0q∗0 + p1q∗1)− λ(1)
c

)2

+ γ∗0 − ω∗0 = 0

λvpi
n

 1(
λv
(
pi−1 − pi−1q∗i−1 + piq∗i

)
− λ(i)

c

)2 −
1(

λv
(
pi − piq∗i + pi+1q∗i+1

)
− λ(i+1)

c

)2

+ γ∗i − ω∗i = 0

i = 1 . . . n− 2

λvpn−1

n

 1(
λv
(
pn−2 − pn−2q∗n−2 + pn−1q∗n−1

)
− λ(n−1)

c

)2 −
1(

λv
(
pn−1 − pn−1q∗n−1 + p0q∗0

)
− λ(n)

c

)2


+ γ∗n−1 − ω∗n−1 = 0

(5.35)
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The fact that β∗i = 0 and ω∗i = 0 explains the absence of β∗i and ω∗i in (5.35). Multiplying

the first equality in (5.35) by q∗0, the second by q∗i , and the third by q∗n−1 gives:

γ∗0 =
λvp0

n
q∗0

 1(
λv (p0 − p0q∗0 + p1q∗1)− λ(1)

c

)2 −
1(

λv
(
pn−1 − pn−1q∗n−1 + p0q∗0

)
− λ(n)

c

)2


γ∗i =

λvpi
n
qi∗

 1(
λv
(
pi − piq∗i + pi+1q∗i+1

)
− λ(i+1)

c

)2 −
1(

λv
(
pi−1 − pi−1q∗i−1 + piq∗i

)
− λ(i)

c

)2

 i = 1 . . . n− 2

γ∗n−1 =
λvpn−1

n
q∗n−1

 1(
λv
(
pn−1 − pn−1q∗n−1 + p0q∗0

)
− λ(n)

c

)2 −
1(

λv
(
pn−2 − pn−2q∗n−2 + pn−1q∗n−1

)
− λ(n−1)

c

)2


(5.36)

Inserting (5.36) in the fifth equality of (5.35) gives:

(q∗0 − 1) q∗0

 1(
λv (p0 − p0q∗0 + p1q∗1)− λ(1)

c

)2 −
1(

λv
(
pn−1 − pn−1q∗n−1 + p0q∗0

)
− λ(n)

c

)2

 = 0

(q∗i − 1) qi∗

 1(
λv
(
pi − piq∗i + pi+1q∗i+1

)
− λ(i+1)

c

)2 −
1(

λv
(
pi−1 − pi−1q∗i−1 + piq∗i

)
− λ(i)

c

)2

 = 0

i = 1 . . . n− 2

(
q∗n−1 − 1

)
q∗n−1

 1(
λv
(
pn−1 − pn−1q∗n−1 + p0q∗0

)
− λ(n)

c

)2 −
1(

λv
(
pn−2 − pn−2q∗n−2 + pn−1q∗n−1

)
− λ(n−1)

c

)2

 = 0

(5.37)

From (5.34), we have 0 < q∗i < 1 ∀ i only if γ∗i = 0 and ω∗i = 0. Since 0 ≤ q∗i ≤ 1, the above

result may not always be true. From (5.34) and (5.37), we finally get:
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q∗i =


0 if ω∗i 6= 0

1 if γ∗i 6= 1

i = 0, . . . , n− 1

Otherwise, we have:

q∗0 =
λv
(
p0 + p1q

∗
1 − pn−1 + pn−1q

∗
n−1

)
− λ(1)

c + λ
(n)
c

2λvp0

q∗i =
λv
(
pi + pi+1q

∗
i+1 − pi−1 + pi−1q

∗
i−1

)
− λ(i+1)

c + λ
(i)
c

2λvpi
i = 1, . . . , n− 2

q∗n−1 =
λv
(
pn−1 + p0q

∗
0 − pn−2 + pn−2q

∗
n−2

)
− λ(n)

c + λ
(n−1)
c

2λvpn−1

(5.38)
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Proof of Lemma 4

From (2.2) and (3.3) we have

λ(i)
c +

1

T
≤ λv(pi−1qi−1 + piqi), i = 1, . . . , n− 1.

λ(n)
c +

1

T
≤ λv(pn−1qn−1 + p0q0), i = n

(5.39)

The summation of all the inequalities in (5.39) gives a new inequality

n∑
i=1

λ(i)
c +

n

T
≤ λv[

n−1∑
i=1

(pi−1qi−1 + piqi) + (pn−1qn−1 + p0q0)] (5.40)

n∑
i=1

λ(i)
c +

n

T
≤ λv[p0q0 + p1q1 + p1q1 + ...+ pn−1qn−1 + p0q0] (5.41)

We have qi + qi so piqi + piqi = pi

n∑
i=1

λ(i)
c +

n

T
≤ λv(p0 + p1 + p2 + ...+ pn−1) (5.42)

We have
∑n−1

i=0 pi = 1 so
∑n

i=1 λ
(i)
c + n

T
≤ λv
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Proof of Lemma 5

The summation of the inequalities given by (2.4) ∀ i = {0, . . . , n} gives the following in-

equality :

λv

n−1∑
i=0

pi − λv
n−1∑
i=0

piqi + λvp0q0 < C(nµc) + µc (5.43)

Since
∑n−1

i=0 pi = 1 (because pn = 0 as described in Section 2), we get:

λv − λv
n−1∑
i=1

piqi < µc(Cn+ 1) (5.44)

In the worst case, all the vehicles will be directed to partially charge before serving, which

means that always qi = 0. Therefore, we get:

Cn >
λv
µc
− 1 , (5.45)

which can be re-arranged to be:

n >
λv
Cµc

− 1

C
(5.46)

From equation (5.46) and equation (3.4) we have

n >
λv
Cµc

− 1

C
≥
∑n

i=1 λ
(i)
c + n

T

Cµc
− 1

C
(5.47)

By simplifying equation (5.47) we get

n ≥ T

∑n
i=1 λ

(i)
c − µc

TCµc − 1
(5.48)
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Proof of Theorem 4

Applying the KKT conditions to the inequalities constraints of (3.5), we get:

α∗i (λ
∗
v(pi−1q

∗
i−1 − piq∗i − pi−1) +

1

T
+ λ(i)

c ) = 0

i = 1, . . . , n− 1.

α∗n(λ∗v(pn−1q
∗
n−1 − p0q

∗
0 − pn−1) +

1

T
+ λ(n)

c ) = 0.

β∗0(
n−1∑
i=0

λv(pi − piq∗i )− C(nµc) + ε0) = 0.

β∗1(λvp0q
∗
0 − µc + ε1) = 0

γ∗i (q
∗
i − 1) = 0, i = 0, . . . , n− 1.

ω∗i q
∗
i = 0, i = 0, . . . , n− 1.

ω∗n(λ∗v − (
n∑
i=1

λ(i)
c +

n

T
)) = 0.

(5.49)

Likewise, applying the KKT conditions to the Lagrangian function in (3.6), and knowing

that the gradient of the Lagrangian function goes to 0 at the optimal solution, we get the

following set of equalities:

λ∗vpi(α
∗
i+1 − α∗i − β∗0) = ω∗i − γ∗i , i = 1, . . . , n− 1.

λ∗vp0(α∗1 − α∗n − β∗0 + β∗1) = ω∗0 − γ∗0
n−1∑
i=1

α∗i (pi−1q
∗
i−1 − piq∗i − pi−1) + α∗n(pn−1q

∗
n−1

− p0q
∗
0 − pn−1) + β∗0(

n−1∑
i=0

(pi − piq∗i )) + β∗1p0q
∗
0 − ω∗n + 1 = 0

(5.50)

Knowing that the gradient of the Lagrangian goes to 0 at the optimal solutions, we get the

system of equalities given by (5.50). multiplying the first equality in (5.50) by q∗i and the

second equality by q∗0 and the third equality by λ∗vcombined with the equalities given by
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(5.49) gives :

λ∗vpiq
∗
i (α

∗
i+1 − α∗i − β∗0) = −γ∗i , i = 1, . . . , n− 1.

λ∗vp0q
∗
0(α∗1 − α∗n − β∗0 + β∗1) = −γ∗0

λ∗v −
n∑
i=1

α∗i (λ
(i)
c +

1

T
) + β∗0(Cnµc − ε0) + β∗1(µc − ε1)

− ω∗n(
n∑
i=1

λ(i)
c +

n

T
) = 0

(5.51)

(5.51) Inserted in the fifth equality in (5.49) gives :

λ∗vpi(α
∗
i+1 − α∗i − β∗0)(q∗i − 1)q∗i = 0, i = 1, . . . , n− 1.

λ∗vp0(α∗1 − α∗n − β∗0 + β∗1)(q∗0 − 1)q∗0 = 0

λ∗v =
n∑
i=1

α∗i (λ
(i)
c +

1

T
)− β∗0(Cnµc − ε0)− β∗1(µc − ε1)

+ ω∗n(
n∑
i=1

λ(i)
c +

n

T
)

(5.52)

From (5.52) we have 0 < q∗0 < 1 only if α∗i+1 − α∗i − β∗0 = 0 And 0 < q∗i < 1 only if

α∗1 − α∗n − β∗0 + β∗1 = 0 Since 0 ≤ q∗i ≤ 1 then these equalities may not always be true

if α∗1 − α∗n − β∗0 + β∗1 > 0 and we know that γ∗0 ≥ 0 then γ∗0 = 0 which gives q∗0 6= 1 and

q∗0 = 0.

if α∗i+1−α∗i −β∗0 > 0 and we know that γ∗i ≥ 0 then γ∗i = 0 which gives q∗i 6= 1 and q∗i = 0

if α∗1 − α∗n − β∗0 + β∗1 < 0 then γ∗0 > 0 (it cannot be 0 because this will contradict with

the value of qi), which implies that q∗0 = 1.

if α∗i+1− α∗i − β∗0 < 0 then γ∗i > 0 (it cannot be 0 because this contradicts with the value

of qi), which implies that q∗i = 1

We have also from the KKT conditions given by equation in in (5.49) that says either

the Lagrangian coefficient is 0 or its the associated inequality is an equality:

if β∗1 6= 0 we have q∗0 = µc
λ∗vp0

if α∗n 6= 0 we have q∗0 =
pn−1q∗n−1−pn−1

p0
+

λ
(n)
c + 1

T

λvp0
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if α∗i 6= 0 , we have q∗i =
pi−1q

∗
i−1−pi−1

pi
+

λ
(i)
c + 1

T

λvpi

for i = 1, . . . , n− 1

Otherwise by the Lagrangian relaxation:

q∗i = ζi(α
∗, β∗, γ∗, λ∗v, q

∗) for i = 1, . . . , n− 1

Where ζi(α
∗, β∗, γ∗, λ∗v, q

∗) is the solution that that maximize the function inf
q
L(q, α∗, β∗, γ∗, λ∗v)

Now in order to find the expression of λ∗v we first look at the last equation in (5.49).

From there we can say that if ω∗n 6= 0 then λ∗v =
∑n

i=1 λ
(i)
c + n

T

Otherwise from the third equation in (5.52) if ω∗n = 0 then λ∗v =
∑n

i=1 α
∗
i (λ

(i)
c + 1

T
) −

β∗0(Cnµc − ε0)− β∗1(µc − ε1)



78

Proof of Lemma 6

From (4.4) and (4.6) we have :

λ(i)
c +R ≤ λv

n−1∑
k=i

(pk−1 − pk−1qk−1 + pkqk)Πki + λv(pn−1 − pn−1qn−1 + p0q0)Πni, i = 1, . . . , n− 1

λ(n)
c +R ≤ λv(pn−1 − pn−1qn−1 + p0q0)Πnn

(5.53)

The summation of all the inequalities in (5.53) gives a new inequality

n∑
i=1

λ(i)
c + nR ≤

n∑
i=1

n∑
k=1

λ(k)
v Πki (5.54)

Which is equivalent to:
n∑
i=1

λ(i)
c + nR ≤

n∑
i=1

λ(i)
v

i∑
k=1

Πik (5.55)

Since We have
∑i

j=1 Πij = 1, i = 1, . . . , n then:

n∑
i=1

λ(i)
c + nR ≤

n∑
i=1

λ(i)
v (5.56)

From (4.1) and (4.2)

n∑
i=1

λ(i)
v =

n−1∑
i=1

(pi−1qi−1 + piqi) + (pn−1qn−1 + p0q0) (5.57)

Since qi + qi = 1 and we have
∑n−1

i=0 pi = 1 then:

n∑
i=1

λ(i)
c + nR ≤ λv (5.58)
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Proof of Theorem 5

Applying the KKT conditions to the inequalities constraints of (4.11), we get:

α∗i (λ
(i)
c +R∗ − λv

n−1∑
k=i

(pk−1 − pk−1q
∗
k−1 + pkq

∗
k)Π

∗
ki − λv(pn−1 − pn−1q

∗
n−1 + p0q

∗
0)Π∗ni) = 0 i = 1, . . . , n− 1

α∗n(λ(n)
c +R∗ − λv(pn−1 − pn−1q

∗
n−1 + p0q

∗
0)Π∗nn) = 0.

β∗0(
n−1∑
i=0

λv(pi − piq∗i )− C(nµc)) = 0.

β∗1(λvp0q
∗
0 − µc) = 0

γ∗i (q
∗
i − 1) = 0, i = 0, . . . , n− 1.

γ∗n(R∗ − λv −
∑n

i=1 λ
(i)
c

n
) = 0.

ω∗i q
∗
i = 0, i = 0, . . . , n− 1.

ω∗n(R∗ − ε2) = 0.

ν∗ij(Π
∗
ij − 1) = 0, i = 1, . . . , n, j = 1, . . . i.

µ∗ijΠ
∗
ij = 0, i = 1, . . . , n, j = 1, . . . i.

δ∗i (
i∑

j=1

Π∗ij − 1) = 0, i = 1, . . . , n.

(5.59)

Likewise, applying the KKT conditions to the Lagrangian function in (4.12), and knowing

that the gradient of the Lagrangian function goes to 0 at the lower bound solution, we get
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the following set of equalities:

∂L

∂qi
= λvpi

(
i∑

j=1

α∗j (Π
∗
i+1j − Π∗ij) + α∗i+1Π∗i+1i+1 − β∗0

)
− ω∗i + γ∗i = 0, i = 1, . . . , n− 1.

∂L

∂q0

= λvp0

(
α∗1Π∗11 −

n∑
j=1

α∗jΠ
∗
nj − β∗0 + β∗1

)
− ω∗0 + γ∗0 = 0

∂L

∂Πij

= α∗jλv (pi−1qi−1
∗ − pi−1 − piq∗i ) + δ∗i + ν∗ij − µ∗ij = 0

∂L

∂Πnj

= α∗jλv (pn−1qn−1
∗ − pn−1 − p0q

∗
0) + δ∗n + ν∗nj − µ∗nj = 0

∂L

∂R
= −1 +

n∑
i=1

α∗i − ω∗n + γ∗n = 0

(5.60)

Multiplying the each of the partial derivatives in (5.60) by the derivation variable itself

combined with the KKT conditions of the variables lower bounds inequalities given by (5.59)

gives :

∂L

∂qi
× qi = q∗i λvpi

(
i∑

j=1

α∗j (Π
∗
i+1j − Π∗ij) + α∗i+1Π∗i+1i+1 − β∗0

)
+ γ∗i = 0, i = 1, . . . , n− 1.

∂L

∂q0

× q0 = q∗0λvp0

(
α∗1Π∗11 −

n∑
j=1

α∗jΠ
∗
nj − β∗0 + β∗1

)
+ γ∗0 = 0

∂L

∂Πij

× Πij = Π∗ij
(
α∗jλv (pi−1qi−1

∗ − pi−1 − piq∗i ) + δ∗i
)

+ ν∗ij = 0

∂L

∂Πnj

× Πnj = Π∗nj
(
α∗jλv (pn−1qn−1

∗ − pn−1 − p0q
∗
0) + δ∗n

)
+ ν∗nj = 0

∂L

∂R
×R = −R +R

n∑
i=1

α∗i − ω∗nε2 + γ∗n(
λv −

∑n
i=1 λ

(i)
c

n
) = 0

(5.61)
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When we inject the result of the first four equations in (5.61) in the KKT conditions on the

upper bound conditions of the variables qi and Πij we find:

q∗i (q
∗
i − 1)

(
i∑

j=1

α∗j (Π
∗
i+1j − Π∗ij) + α∗i+1Π∗i+1i+1 − β∗0

)
= 0, i = 1, . . . , n− 1.

q∗0(q∗0 − 1)

(
α∗1Π∗11 −

n∑
j=1

α∗jΠ
∗
nj − β∗0 + β∗1

)
= 0

Π∗ij(Π
∗
ij − 1)

(
α∗jλv (pi−1qi−1

∗ − pi−1 − piq∗i ) + δ∗i
)

= 0

Π∗nj(Π
∗
nj − 1)

(
α∗jλv (pn−1qn−1

∗ − pn−1 − p0q
∗
0) + δ∗n

)
= 0

(5.62)

From (5.62) we have :

0 < q∗0 < 1 only if α∗1Π∗11 −
∑n

j=1 α
∗
jΠ
∗
nj − β∗0 + β∗1 = 0

0 < q∗i < 1 only if
∑i

j=1 α
∗
j (Π

∗
i+1j − Π∗ij) + α∗i+1Π∗i+1i+1 − β∗0 = 0

0 < Π∗ij < 1 only if α∗jλv (pi−1qi−1
∗ − pi−1 − piq∗i ) + δ∗i = 0

0 < Π∗nj < 1 only if α∗jλv (pn−1qn−1
∗ − pn−1 − p0q

∗
0) + δ∗n = 0

Since 0 ≤ q∗i ≤ 1 and 0 ≤ Π∗ij ≤ 1 then these equalities may not always be true

if α∗1Π∗11 −
∑n

j=1 α
∗
jΠ
∗
nj − β∗0 + β∗1 > 0 and we know that γ∗0 ≥ 0 then γ∗0 = 0 which gives

q∗0 6= 1 and q∗0 = 0.

if
∑i

j=1 α
∗
j (Π

∗
i+1j − Π∗ij) + α∗i+1Π∗i+1i+1 − β∗0 > 0 which gives q∗i 6= 1 and q∗i = 0

if α∗1Π∗11−
∑n

j=1 α
∗
jΠ
∗
nj−β∗0 +β∗1 < 0 then γ∗0 > 0 (it cannot be 0 because this will contradict

with the value of qi), which implies that q∗0 = 1.

if
∑i

j=1 α
∗
j (Π

∗
i+1j − Π∗ij) + α∗i+1Π∗i+1i+1 − β∗0 < 0 then γ∗i > 0 (it cannot be 0 because this

contradicts with the value of qi), which implies that q∗i = 1

if α∗jλv (pi−1qi−1
∗ − pi−1 − piq∗i ) + δ∗i > 0 and we know that ν∗ij ≥ 0 then ν∗ij = 0 which

gives Π∗ij 6= 1 and Π∗ij = 0.

if α∗jλv (pn−1qn−1
∗ − pn−1 − p0q

∗
0) + δ∗n > 0 which gives Π∗nj 6= 1 and Π∗nj = 0
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if α∗jλv (pi−1qi−1
∗ − pi−1 − piq∗i ) + δ∗i < 0 then ν∗ij > 0 (it cannot be 0 because this will con-

tradict with the value of Πij), which implies that Πij = 1.

if α∗jλv (pn−1qn−1
∗ − pn−1 − p0q

∗
0) + δ∗n < 0 then ν∗nj > 0 (it cannot be 0 because this will

contradict with the value of Πnj), which implies that Πnj = 1.

We have also from the KKT conditions given by equation in in (5.59) that says either

the Lagrangian coefficient is 0 or its the associated inequality is an equality:

if β∗1 6= 0 we have q∗0 = µc
λ∗vp0

if α∗n 6= 0 we have
λ
(n)
c +λvpn−1q∗n−1Π∗

nn−λvpn−1Π∗
nn+R∗

λvp0Πnn∗

if α∗i 6= 0, we have q∗i =
R∗+λ

(i)
c +λv[

∑n−1
k=i+2(pk−1q

∗
k−1−pkq

∗
k)Πki+(pn−1q∗n−1−p0q∗0)Πni−

∑n
k=i pk−1Πki+pi−1q

∗
i−1Π∗

ii−pi+1qi+1Πi+1i+1]
λvpi(Πii−Πi+1i+1)

for i = 1, . . . , n− 1

Otherwise by the Lagrangian relaxation:

q∗i = ζi(R
∗, q∗,Π∗, α∗, β∗, γ∗, ω∗, µ∗, ν∗, δ∗) for i = 1, . . . , n−1 and Π∗ij = ζij(R

∗, q∗,Π∗, α∗, β∗, γ∗, ω∗, µ∗, ν∗, δ∗)

where ζi and ζij are the solution that that maximize inf
q,Π

L(q,Π∗, R∗, α∗, β∗, γ∗, ω∗, µ∗, ν∗, δ∗)

Now in order to find the expression of R∗ we first look at its upper bound associated

condition in (5.59). From there we can say that if ω∗n 6= 0 then R∗ = ε2 and if γ∗n 6= 0 then

R∗ =
λv−

∑n
i=1 λ

(i)
c

n

Otherwise, from the last equation in (5.61), if ω∗n = 0 and γ∗n = 0 then

R∗ =
n−1∑
i=1

α∗i (λv

n−1∑
k=i

(pk−1 − pk−1q
∗
k−1 + pkq

∗
k)Π

∗
ki + λv(pn−1 − pn−1q

∗
n−1 + p0q

∗
0)Π∗ni − λ(i)

c )

+ α∗n(λv(pn−1 − pn−1q
∗
n−1 + p0q

∗
0)Π∗nn − λ(n)

c )

(5.63)
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