
Validation of a Device for High-
Throughput Phenotyping of Wheat Stem

Flexural Rigidity

Presented in Partial Fulfillment of the Requirements for the

Degree of Masters of Science

With a Major in

Mechanical Engineering

in the

College of Graduate Studies

University of Idaho

by

Clayton Bennett

Major Professor

Daniel J. Robertson, Ph.D. , P.E.

Committee

Dan Cordon, Ph.D., P.E.

Robert Stephens, Ph.D., P.E.

Christopher J. Stubbs, Ph.D.

Department Administrator

Gabriel Potirniche, Ph.D.

December 2022

ii

Abstract
Wheat breeders develop new crop varieties each year with a goal to improve yields and to improve

farmer success. Farmer success is threatened by stalk lodging, failure of crop stems due to high

winds. Selective breeding can be used to mitigate stalk lodging by introducing varieties with

enhanced bending strength characteristics. To aid breeders in identifying structurally robust stalks, a

high-throughput device known as SOCEM (Strength of Crops Extrapolation Machine) can be used to

identify which genetic varieties of wheat are stalk lodging resistant.

Data gathered with the field-deploying SOCEM device was compared to three-point bending test

results of wheat stems conducted on a universal testing machine. SOCEM results were also

compared to historical reports of actual lodging percentages. In both cases the SOCEM produced

accurate assessments of the structural robustness of wheat varieties. A key advantage of the SOCEM

is that the data collection is faster and cheaper compared to conducting three-point bending tests or

assessing lodging percentages. Data gathered with the SOCEM device could potentially supplant

lodging percentage values published in variety trials and yield reports in the future and become the

standard by which lodging is assessed. Data from the SOCEM provides increased numerical

granularity compared to lodging percentage values and is not directly confounded by uncontrolled

weather events.

iii

Acknowledgements
This material is based upon work supported in part by the National Science Foundation under Grant
OIA- 1826715.

ii

Dedication
To the good people of Moscow, Idaho.

To my Moscow mentors, Dr. Daniel Robertson, Dr. Chris Stubbs, Suvia Judd, and T-Jay Clevenger.

To my friends.

To my family.

iii

Table of Contents
Abstract .. ii

Acknowledgements ... iii

Dedication .. ii

Table of Contents .. iii

List of Tables ... v

List of Figures ... vi

Chapter 1: Background ... 1

Global Wheat Production ... 1

Stalk Lodging ... 3

Factors Affecting Lodging Resistance ... 3

Existing Solutions and Devices to Quantify Lodging Resistance... 4

Laboratory-based Devices for Assessing Lodging Resistance ... 4

Field Devices ... 5

Using Historical Stalk Lodging Rates to Assess Lodging Resistance ... 7

Mechanics of Materials of Cereal Stems .. 8

Cantilever Beams .. 8

Defining Stem Strength .. 8

Stacking Beam Model ... 11

Chapter 2: Description and Validation of the SOCEM Device .. 12

What is the SOCEM? ... 12

Hardware .. 13

Software ... 14

Calculating Flexural Stiffness Values from SOCEM Data .. 15

Experimental Data Collection with the SOCEM .. 16

Validating SOCEM Measurements: Experimental Design Overview .. 17

Experimental Methodology .. 18

Overview ... 18

SOCEM Experimental Method .. 18

Three-Point Bending Experimental Method .. 20

Results .. 22

SOCEM vs Three-Point Bending Test Results ... 22

iv

SOCEM vs Historical Stalk Lodging Results ... 24

Discussion ... 25

Chapter 3: Improvements and Investigations .. 28

Hardware Improvements ... 28

Software Improvements ... 30

Visualization Software Development ... 32

Experimental Design Improvements, 2021 .. 33

Knowledge and Investigations .. 34

Three-Point Bending Stiffness vs Diameter Correlation ... 34

Node Choice ... 36

Force Drop Over Subsequent SOCEM Pushes .. 37

Nine-Cell Scheme .. 38

Mass Sampling .. 39

Chapter 4: Suggestions for Future Work .. 41

Hardware Suggestions .. 41

Software Development Suggestions .. 44

Experimental Design Suggestions... 45

Addressing Stem Height Variation ... 46

Python as a Standard .. 49

The SOCEM as a Combine Harvester Accessory ... 49

Appendix A: Additional Figures .. 51

Appendix B: Software ... 61

Appendix B1: StemBerry_v97.py .. 62

Appendix B2: spreadsheetsToTable_v3.m ... 141

Appendix C: Glossary of Terms ... 147

Appendix D: Table of Equations ... 148

Bibliography .. 149

v

List of Tables
Table 1: Equations for mechanics of materials of round cantilever beams in bending. 9
Table 2: Three-point bending method, numbered steps ... 20
Table 3: Equations for mechanics of materials of round beams in three-point bending. 21
Table 4: Hardware upgrades .. 29
Table 5: Questions investigated during 2020 and 2021 testing, beyond the central experiment. 34
Table 6: Ground variation analysis demonstrating that the SOCEM can accurately measure plots that
are at least 14 cm tall when the ground under a plot varies by 4 cm or less. 48

https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10082022.docx#_Toc116123568
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10082022.docx#_Toc116123568

vi

List of Figures
Figure 1: Spatial distribution of wheat crop agriculture in nations with leading contributions to global
wheat production. Figure 1a provides an overview of which nations are included. Figure 1b shows
the distribution of wheat in the Russian Federatio n and the Ukraine. Figure 1c shows the
distribution of wheat grown in the United States of America. Figure 1d shows the distribution of
wheat grown in China. Figure 1e shows the distribution of wheat grown in Australia. Figure 1f shows
the distribution of wheat grown in India. Figure 1g shows the distribution of wheat grown in
Argentina. Luo, et al, 2022 (Fig. 1, [4]). ... 1
Figure 2: Wheat production, consumption, and storage amounts. International Grains Council, 2022
[3]. .. 2
Figure 3: Every year, in the United States, about 10 million acres of wheat are planted but not
harvested. Stalk lodging contributes to these losses. USDA, 2022 [5]. .. 2
Figure 4: A lodging event in Idaho. ... 3
Figure 5: Lodging of wheat stems in Idaho. ... 3
Figure 6: Three-point bending, Helmick, 1915 (Fig. 4, [22]). .. 4
Figure 7: Three-point bending, Willis, 1925 (Fig. 1, [23]). .. 4
Figure 8: Three-point bending, Salmon, 1931 (Fig. 1, [11]).. 4
Figure 9: Various devices used for measuring the lodging resistance of crops. Erndwein, 2019 (Fig. 3,
[26]). ... 6
Figure 10: Data from the first recorded comparison between lodging percentage and three-point
bending stem performance. The slope of a linear best fit is negative, as expected, though the
correlation is numerically weak, R2 = 0.112. .. 7
Figure 11: Cross section of a hollow cylinder. Bending is enacted about the z axis. 8
Figure 12: Cantilever beam with deflection Y given a point force F applied at length L. 9
Figure 13: Load-deflection curve, applicable to both three-point bending and cantilever bending. .. 10
Figure 14: Stacking Beam Model. Bebee, 2020 (Fig. 2.1, [36])... 11
Figure 15: Small plots of wheat, for experimentation. University of Idaho, 2022 [37]. 11
Figure 16: The SOCEM, as of 2020. Bebee, 2020 (Fig.3.1, [36]). .. 12
Figure 17: A diagram showing the flow of data from the sensors to the Arduino and then finally to
the onboard computer which runs the StemBerry interface. .. 13
Figure 18: Serial connection and data flow between StemBerry program and Arduino Uno. 14
Figure 19: The data collection frame from the StemBerry interface, in a 2022 version. Start and Stop
buttons control data collection. ... 14
Figure 20: EI assessment tool, Screen 1. First, choose the range of useful data. The red lines show
the suggested range, based on edge effect. The yellow lines show the range that the user selected
for analysis. ... 15
Figure 21: EI assessment tool, Screen 2. Select force peaks that appear substantial. This is subjective,
and the user should be consistent. The calculated EI will be the average of the EI that is computed
for these discreet points. ... 15
Figure 22: A standard size experimental wheat plot for small grain yield trials, commonly referred to
as a small plot. .. 16
Figure 23: StemBerry height calculator screen, used in 2020 and 2021. Numbers are fed to the
optiH.py method. ... 19

https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647128
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647128
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647128
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647128
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647128
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647128
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647128
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647129
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647129
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647130
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647130
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647131
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647132
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647133
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647134
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647135
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647136
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647136
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647137
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647137
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647137
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647138
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647139
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647140
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647141
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647142
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647143
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647144
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647144
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647145
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647146
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647146
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647147
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647147
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647147
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647148
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647148
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647148
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647149
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647149
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647150
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647150

vii

Figure 24: Instron anvil, as used in 2021 trials, in contact with a node of a wheat stem, in the
direction of major diameter. .. 20
Figure 25: Flexural rigidity, EI, for three-point bending. Span length, L, was 8 cm for 2020 and 2021
trials. ... 20
Figure 26: Results for three-point bending tests for ten stems from the same wheat plot, shown
together in the Bluehill software interface. ... 21
Figure 27: Break types of wheat stems. Cornwall et al., 2021 (Fig. 1, [41]). .. 22
Figure 28: SOCEM vs Instron compiled flexural stiffness results for the 2020 and 2021 wheat trials.
2020 data includes 57 small plots representing 15 genetic varieties of wheat from Clearfield, Soft
White Winter, and Hard Winter classes. 2021 data includes 32 small plots representing 8 genetic
varieties of wheat from Clearfield and Soft White Winter classes. ... 23
Figure 29: Non-typical morphology of a Hard Winter wheat stem collected in 2021. This specimen is
from plot HW122, representing the MT1745 variety. This pattern has been observed in wheat that
lodged earlier in the season and then self-corrected through gravitropism. 23
Figure 30: Average performance for each variety tested in 2021 Instron and SOCEM trials, each
represented by three or four replicants. .. 24
Figure 31: Historical lodging rates from North Idaho, compared to SOCEM 2020 flexural stiffness
results. .. 25
Figure 32: The SOCEM in 2022, prepared for a side hit through a small plot. Improvements include
the wooden laser cut keyboard tray, the 3D printed nylon 7" screen housing with attached
sunshade, and the removable storage box. ... 28
Figure 33: CAD model of keyboard tray. .. 29
Figure 34: Improved design of the rotary encoder mounting hardware, with overly long mounting
slots to allow for belt tensioning. ... 29
Figure 35: Load cell protection drawer with custom foam. ... 30
Figure 36: The Arduino protoboard datashield, with soldered connections to supplant the need for
jumper wires. .. 30
Figure 37: Arduino with protoboard datashield and snap-in connections for the load cell and rotary
encoder. .. 30
Figure 38: StemBerry Initial Inputs Screen, from StemBerry_v89.py, 2022. The GUI was developed
using Tkinter. .. 31
Figure 39: A rendering of a map of 2021 flexural rigidity results in Blender. Here, results are grouped
by genetic variety, and Instron stem results are shown next to SOCEM small plot results................. 32
Figure 40: Major internode diameter measurement with calipers.. 33
Figure 41: Major node diameter measurement with calipers. .. 33
Figure 42: Box plot showing range of 2021 wheat diameter measurements. 33
Figure 43: Three-point bending stem stiffness compared to four different stem diameter
measurements for 520 wheat stems measured with the SOCEM in 2021. ... 34
Figure 44: A fourth-order best fit line was found for the major node diameter vs flexural stiffness in
three-point bending for all stems tested in the basic experiment for 2021. 35
Figure 45: Example of the Stiffness and Diameter results for all 40 stems tested from the four plots
from one genetic variety of wheat, LCS Artdeco. 2021. The different colors represent the different
plots from which stems are sourced. ... 36
Figure 46: Node comparison, node numbering. .. 36

https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647151
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647151
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647152
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647152
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647153
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647153
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647154
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647155
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647155
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647155
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647155
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647156
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647156
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647156
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647157
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647157
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647158
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647158
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647159
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647159
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647159
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647160
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647161
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647161
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647162
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647163
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647163
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647164
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647164
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647165
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647165
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647166
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647166
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647167
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647168
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647169
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647170
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647170
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647171
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647171
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647172
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647172
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647172
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647173

viii

Figure 47: Box plot showing range of 2021 wheat diameter measurements. Bennett 2022... 36
Figure 48: Force-drop has observed for subsequent SOCEM pushes. Relatively lower force bar
setting causes greater force drop. This phenomenon can be used to observe proper height setting of
the force bar. .. 37
Figure 49: SOCEM testing with a nine-cell scheme, as explored during 2022 experimentation. 38
Figure 50: Example of a nine-cell scheme. Here, the average force for each cell is shown. 39
Figure 51: Example of a ready-made height sensor that can be used to automatically measure height
between the ground and the SOCEM load cell. Roverparts.com, 2022 [51]. 41
Figure 52: Suggested future version of the SOCEM, with additional sensors. New elements include
two additional load cells, two lead screws for digital height adjustment of the floating sensor chassis,
and a height sensor that monitors the height of the load cell from the ground. The function the
second high resolution load cell is to monitor proper height setting based on the force difference
compared to the first high-resolution load cell. The function of the low-resolution load cell above
the primary load cell is to monitor for binary load, which should be no load, if the height of the
sensor chassis is appropriate for useful data collection. ... 42
Figure 53: This is the proposed tool for surveying ground height variation in small plots and for
aligning stem heights prior to SOCEM tests. Without the plumb bobs, this tool would still be useful
for identifying stem contact and protrusion, to assist with stem height leveling, prior to SOCEM
testing. The vertical support width should be slightly less than the wheels of the SOCEM, so that the
stem height alignment tool can be placed directly next to the force bar of the SOCEM for height
comparison and replication. ... 43
Figure 54: Ground variation under a small plot. .. 46
Figure 55: Three rows prepared to be side tested with the SOCEM in 2022. Notice variations in the
height of the ground at the base of stems. .. 47
Figure 56: Ground height variation parameters. If the ground variation is up to 4 centimeters
between plant bases, and stems can be contacted between 70% and 90% of their height, then the
shortest plant must be at least 14 cm from its base to the contact point with the SOCEM force bar to
overcome error... 48
Figure 57: Sales brochure for a genetic variety of wheat seed. Here, flexural rigidity (i.e., stalk
lodging resistance) is referred to as “stem strength”. Limagrain Cereal Seeds, 2020 [7]. 51
Figure 58: The first published instance in American academia of the comparison between lodging
rates of wheat alongside breaking strength results. Salmon, 1931 [11].. 52
Figure 59: Box plots for the range of stem diameters from each plot of wheat. 10 stems were
measured from each plot. Bennett 2022. .. 53
Figure 60: Box plots of three-point bending stiffness performance from each wheat plot tested in
2021. Data collected with a Instron universal testing machine and then was compiled and visualized
using MATLAB. .. 53
Figure 61: Complete data overview for four plots from the LCS Artdeco variety. Wheat 2021. 54
Figure 62: A cell of wheat gripped by the WheatSqueezer version 2, during 2022 testing. Because
clamping the cell firmly requires twisting of two nuts on two bolts, the process is slow.
Improvements can be made to make mass measurement time-effective. ... 55
Figure 63: Image generated during peak selection with the PeakClick Python module, immediately
following a SOCEM push in 2022. ... 55
Figure 64: SOCEM lined up for a side hit. Plants have been removed on each side. 55

https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647174
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647175
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647175
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647175
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647176
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647177
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647178
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647178
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647179
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647179
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647179
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647179
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647179
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647179
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647179
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647180
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647180
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647180
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647180
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647180
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647180
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647181
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647182
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647182
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647183
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647183
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647183
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647183
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647184
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647184
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647185
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647185
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647186
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647186
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647187
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647187
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647187
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647188
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647189
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647189
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647189
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647190
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647190
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647191

ix

Figure 65: Raw force results from 2021 wheat data for Soft Winter varieties, output as an FBX file,
shown in Microsoft 3D Viewer software. Soft Winter varieties in 2021 were subjected to both
forward tests and multiple side tests, and the objects shown represent the multiplication and
stitching of these force results. .. 56
Figure 66: Flexural rigidity results from 2021 wheat data, shown in three-dimensions in the Blender
software interface. ... 56
Figure 67: An example of a baked UV unwrap image. In Blender software, for 3D models to be
exported with procedural color, it is required that the procedural material texture be unwrapped in
the Cycles render engine and then recast in the Eevee render engine. .. 57
Figure 68: To achieve a 2D profile for the EI strength results from each SOCEM test, interpolation
was used in MATLAB. Interpolation is necessary because EI is only assessed for discrete points from
each test. .. 57
Figure 69: Node comparison results, showing stems with a stiffer Node 1 and a thicker Node 1. 58
Figure 70: Node comparison results, showing stems with a stiffer Node 2 and a thicker Node 2. 58
Figure 71: Node comparison results, showing stems with a stiffer Node 1 and a thicker Node 2. 59
Figure 72: Node comparison results, showing stems with a stiffer Node 2 and a thicker Node 1. 59
Figure 73: Node comparison results, showing stems with a stiffer Node 1 and equal diameter. 60
Figure 74: Node comparison results, showing stems with a stiffer Node 2 and equal diameter. 60

https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647192
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647192
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647192
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647192
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647193
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647193
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647194
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647194
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647194
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647195
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647195
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647195
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647196
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647197
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647198
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647199
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647200
https://vandalsuidaho-my.sharepoint.com/personal/benn6576_vandals_uidaho_edu/Documents/Thesis_ValidateSOCEM_Bennett_10142022.docx#_Toc116647201

 1

Chapter 1: Background
Global Wheat Production

The stability of modern civilization relies on the stability of our crop supply. Wheat (Triticum

aestivum L.) is arguably one of the world's most important crops, providing about 20% of dietary

calories and proteins worldwide [1]. In 2020, wheat was the world’s 64th most traded product [2]. An

estimated 781 million tons of wheat were produced in 2021, with a total consumption of 778 million

tons of wheat [3].

Argentina, Australia, China, India, Russia, and the United States are the world’s largest producers of

wheat [4]. Figure 1 shows the concentrations of wheat grown in each of these nations.

Global wheat production currently meets global wheat consumption (see Figure 2), while demand

for wheat continues to grow each year [3] and the cost of food continues to rise.

It is important to recognize that the amount of wheat planted each year must exceed projected

demand, to overcome losses due to crop failure. In the United States, in the last decade, roughly

Figure 1: Spatial distribution of wheat crop agriculture in nations with leading contributions to global wheat
production. Figure 1a provides an overview of which nations are included. Figure 1b shows the distribution of
wheat in the Russian Federation and the Ukraine. Figure 1c shows the distribution of wheat grown in the
United States of America. Figure 1d shows the distribution of wheat grown in China. Figure 1e shows the
distribution of wheat grown in Australia. Figure 1f shows the distribution of wheat grown in India. Figure 1g
shows the distribution of wheat grown in Argentina. Luo, et al, 2022 (Fig. 1, [4]).

 2

20% of wheat planted has not been harvested (see Figure 3 [5]). Harvest is not performed when it is

no longer economically advantageous for the grower (i.e., harvest cost outweighs selling price). Stalk

lodging, discussed in the next section, can significantly increase the cost of harvest and reduce grain

quality.

When deciding which varieties of wheat to plant each year, farmers consider many factors with the

goal of mitigating the risk of crop failure, while maximizing potential yield of high quality grain [6].

Figure 57 in the Appendix displays a sales brochure for a particular genetic variety of wheat seed [7],

and the details offered provide insight into the many considerations that farmers make when

making planting decisions.

Wheat varieties are generally

produced and marketed to be

grown in the local conditions of

specific geographic regions. Wheat

that is successful in one location

may not be appropriate in another

location. Plant breeders attempt to

produce new wheat varieties each

year that are optimized to be

successful in local conditions, and

these are marketed to farmers

based on region. For example,

William Farrer, an Australian

agriculturist, first developed disease-resistant and drought-resistant wheat cultivars through

Figure 2: Wheat production, consumption, and storage amounts. International Grains Council, 2022 [3].

Figure 3: Every year, in the United States, about 10 million acres of wheat
are planted but not harvested. Stalk lodging contributes to these losses.
USDA, 2022 [5].

 3

selective breeding in the early 1900’s to make it possible to grow the crop successfully in Australia’s

challenging climate [8]. Selective breeding continues to be a useful solution today for minimizing

the risk of crop failure and maximizing yields [9].

Stalk Lodging

Stalk lodging, which is defined as the structural

collapse of stalks, typically due to wind [10],

continues to challenge plant breeders and leads to

significant harvest losses each year. Root lodging, a

similar phenomenon which also results in the collapse

of plants, occurs when the root system pulls out of

the ground. Comparatively, root lodging is more

common in areas that receive heavy rainfall, and stalk

lodging is more prevalent in arid regions where root

wads are held firmly in dry, stable earth [10]. Figure 4

and Figure 5 show a lodging event south of Moscow,

Idaho that occurred in August of 2022. Both stalk

lodging and root lodging were present in this case.

Lodging complicates automated harvesting with a

combine harvester [11] and reduces photosynthetic

area (i.e. leaf surface area), thereby reducing plant

health, which in turn makes fields more susceptible to pest and disease.

Factors Affecting Lodging Resistance

Many factors impact stalk lodging propensity and resistance. Scientific investigations been made

into the relationship between lodging and management factors such as seeding density [12] [13],

soil composition [14], and the application of nitrogen and plant growth regulators [15]. Anatomical

factors have been widely studied, including lignin content in cell walls [16], arrangement of vascular

bundles [16] [17], microfibril angle in cell walls [18], and cellular turgor pressure [19]. Externally-

observable morphological factors, such as plant height and stem diameter, have also been shown to

be predictors of stalk lodging susceptibility [10]. For maize (zea mays L.), stem diameter has been

shown to be a more important lodging predictor than chemical composition factors [20]. The same

has been shown for wheat [21]. Perhaps the most notable achievement which has reduced stalk

Figure 4: A lodging event in Idaho.

Figure 5: Lodging of wheat stems in Idaho.

 4

lodging was the development of ’dwarf’ wheat varieties in the 1970’s which exhibit reduced plant

height [10].

Regardless of the many factors that impact a plant’s health and structural robustness, a wheat stalk

ultimately lodges when the forces applied to it exceeds the plant's structural bending strength.

Consequently, there have been numerous attempts to accurately quantify the structural bending

strength of wheat stems. One of the biggest challenges to characterizing structural bending strength

of wheat stems is the time and effort required to conduct flexural testing. The equipment and labor

cost involved in testing individual stems often prevents plant breeding programs from utilizing

structural bending strength as a target of selected breeding efforts.

Existing Solutions and Devices to Quantify Lodging Resistance
The lodging propensity of genetic varieties of crops can be compared statistically, with data that has

been sourced from lab devices, field devices, and historical lodging rates.

Laboratory-based Devices for Assessing Lodging Resistance

The first devices to measure the breaking resistance of wheat stems were developed in the first half

of the 1900’s [11] [22] [23]. These early devices, shown in Figure 6, Figure 7, and Figure 8, while

varied in their machinations, all performed three-point bending tests in a laboratory setting, with a

stem oriented horizontally, supported at two ends, and pressed downward in the center. Beginning

in 1926, S.C. Salmon at Kansas State University compared three-point bending results with observed

lodging rates of various genetic varieties of wheat [11] and found weak correlation.

In general, laboratory-based testing of wheat stems has the benefit of consistency of treatment and

the clear isolation of desired traits (e.g., bending strength). The drawback of laboratory testing is

Figure 7: Three-point bending, Willis, 1925
(Fig. 1, [23]).

Figure 6: Three-point bending,
Helmick, 1915 (Fig. 4, [22]).

Figure 8: Three-point
bending, Salmon, 1931
(Fig. 1, [11]).

 5

that specimens must be collected and then transported to the lab, and, in the case of stems,

throughput is very low and labor demand is high, because each specimen must be tested one at a

time. Modern universal testing systems provide more precise control and measurements than the

systems used in the early 1900’s to characterize stem bending strength, however, these systems still

require significant human labor to conduct tests on individual specimens.

Field Devices

Since the 1970’s, devices have been developed which can be deployed in a field setting to test the

mechanical properties of stalks. Most of these devices were primarily developed for testing of large

grain crops such as maize (Zea mays L.) and sorghum (Sorghum bicolor L.). However, field-based

devices have also been developed for cereal crops like wheat (Triticum aestivum L.), barley

(Hordeum vulgare L.), and rice (Oryza sativa L.). A primary benefit of field testing is that it does not

require harvesting and transporting of samples to a lab.

Stalk pushing devices are a common type of field device that has been developed to estimate stalk

lodging resistance in the field. Stalk pushing devices treat each stalk as a cantilever beam that

protrudes from the earth, as the earth ideally holds the stalk firmly upright.

Most existing stalk bending devices record applied force and displacement data while the plant is

deflected from its upright position. Various algorithms have been developed to use these inputs to

calculate values which correlate with stalk lodging resistance. Important values that have been used

to draw conclusions include: The energy required to displace the stalk to a certain angle [24], the

energy of the plant returning to an upright position [25], the slope of the linear region of the load-

deflection curve [26], and the ultimate breaking force at which a stalk artificially lodges due to

manual application of force [26][27].

This writing will cover four different devices, shown in Figure 9, that operate on the principle of stalk

pushing.

 6

The DARLING device has been developed

by team members from New York

University, University of Idaho, and

Brigham Young University [26], and ongoing

development continues into 2022. The

load cell of the DARLING contacts a single

maize or sorghum plant. The user pushes

the device to deflect the stalk, and the load

force and deflection angle are measured

and stored as data. The DARLING requires

that users be trained in good technique,

and testing throughput is low because one

plant is tested at a time [28].

Berry and Sterling first developed their

“Lodging Instrument” in 2000 in the United

Kingdom [24]. Berry’s device, much like the

DARLING, uses a load cell mounted on a

shaft that pivots relative to one spot on the

ground. Berry’s device differs because it is

meant to measure many cereal stems at once, rather than a single stalk of a large grain crop. While

this is higher throughput than a single plant, the push-and-return motion does not allow for a

continuous testing of an entire plot of cereal crops. Berry’s device, like all push-and-return devices,

requires good technique by the user.

The Stalker was developed at the University of Minnesota, starting in 2018 [25]. The Stalker

continues to be developed, with results published in 2022 [29]. Operation of the Stalker requires

exactly 45 degrees of deflection from the upright position, and then the difference between the

energy of displacement and the energy return to upright is calculated. The Stalker has been used to

deflect individual maize stalks, like the DARLING device, and has also been outfitted with a force bar

attachment to contact several cereal stems at once (similar to Berry’s device). The Stalker team has

pursued an open-source model, and a parts list and instruction for manufacturing a Stalker device

Figure 9: Various devices used for measuring the lodging
resistance of crops. Erndwein, 2019 (Fig. 3, [26]).

 7

are available for free online [30]. One challenge with the stalker is that plants often break prior to

being deflected by 45 degrees.

Guo’s device, presented in China in 2018, uses a load cell in tension, pulled at a specific angle by the

user [27]. This device has the smallest form factor. Proper technique is very important for accurate

results, and the throughput is low. Guo’s device has a well-made interface with colorful buttons,

though current development status is unknown.

The drawback of these existing devices is that they are not high throughput. Also, the underlying

mechanical principles, particularly canopy interactions, are different when testing an individual

maize stalk as opposed to wheat stems that are in close contact with one another.

Using Historical Stalk Lodging Rates to Assess Lodging Resistance

Agriculturists have long kept records of failed crops. Figure 58 (in Appendix A) shows an early

example of recorded historical lodging rates [11]. Figure 10 shows the results of one of the first

comparisons between breaking strength and lodging rates. Crop failure records ostensibly enables

the identification of weak and strong genetic varieties. However, numerous environmental factors

affect stalk lodging, and these factors cannot be controlled across environments, locations, or years.

This prevents a straightforward analysis of historical lodging data. In fact, the lodging percentage of

a given genetic variety grown in a specific location will often not be statistically correlated with the

lodging percentage of that same variety grown in the same location the following year.

Figure 10: Data from the first recorded comparison between lodging
percentage and three-point bending stem performance. The slope of a
linear best fit is negative, as expected, though the correlation is
numerically weak, R2 = 0.112.

 8

Mechanics of Materials of Cereal Stems

Cantilever Beams

A plant rooted in the ground and growing upward toward the sky can be modeled or approximated

as a cantilever beam. Wind forces would realistically be distributed along the exposed profile of the

plant, including its stem, leaves, and spike. However, an idealized model is often utilized when

analyzing plant biomechanics which approximates the wind load as a single point force [31]. Field

based phenotyping devices also apply a point force at a distinct location along the length of the

stalk. When loaded in this manner the bending moment induced in the plant is proportional to the

applied force multiplied by the distance between the stable base and the placement of the point-

force [32]. Therefore, when conducting field-based testing the height of the force-measuring load

cell from the ground needs to be considered when calculating a stalk’s flexural rigidity.

Defining Stem Strength

If a plant is considered a cantilever beam, then the flexural rigidity

(EI) of the plant can be solved for in terms of applied force and

displacement by rearranging the cantilever beam deflection

equation provided by Shigley [32]. Young’s modulus, E (Eq. 1), is

the slope of the elastic region of the stress-strain curve for a given

material. The area moment of inertia, I, is dependent on the

geometry and size of an object [33]. The area moment of inertia of

a solid cylinder and a hollow cylinder are defined in Eq. 2 and Eq. 3,

listed in Table 1 below, based on the dimensions and axes shown in

Figure 11. Dimensions are defined further in Table 2. Flexural

rigidity, EI (Eq. 7), also known as bending stiffness, has been

previously used as a numeric mechanical property of plant samples

[34] as well as bone [35], with the benefit of usefulness despite complex geometries. It is important

to note the length between the base of a plant and the applied point-force has a third-power impact

on the measured flexural rigidity of a cantilever beam (e.g., plant). Flexural rigidity is a useful

quantity to determine during field testing because it can be determined experimentally without

needing to determine independently the values of diameters, wall thickness, area moment of

inertia, or Young’s modulus.

Figure 11: Cross section of a hollow
cylinder. Bending is enacted about
the z axis.

 9

Table 1: Equations for mechanics of materials of round cantilever beams in bending.

𝐸𝐸 =
𝜎𝜎
𝜀𝜀

 Eq. 1:

Young’s modulus [33].

𝐼𝐼𝑧𝑧,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝜋𝜋

64
(𝐷𝐷4) Eq. 2:

Area moment of inertia, for a solid round beam deflecting

about the Z axis, according to Figure 11 [33].

𝐼𝐼𝑧𝑧,ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝜋𝜋

64
(𝐷𝐷4− 𝑑𝑑4) Eq. 3:

Area moment of inertia, for a hollow round beam deflecting

about the Z axis, according to Figure 11 [33].

𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 =
𝐹𝐹𝐿𝐿3

3𝐸𝐸𝐸𝐸

Eq. 4:

Deflection, Y, that causes maximums stress in a cantilever

beam [33]. See Figure 12.

𝐸𝐸𝐸𝐸 =
𝐹𝐹
𝑌𝑌
⋅
𝐿𝐿3

3

Eq. 5:

Flexural stiffness, cantilever beam. Reorganized from Eq. 4.

See Figure 12 and Figure 13.

Figure 12: Cantilever beam with deflection Y given a point force F applied at length L.

 10

Table 2: Definitions of variables
Σ Stress
ε Strain
F Force applied
Y Deflection along the primary axis
Ymax Deflection that incurs maximum stress
F/Y Slope of linear region of the load deflection curve
L Characteristic length of bending
I Area moment of inertia, based on geometry
E Young’s modulus, i.e., stiffness
EI Flexural rigidity

Figure 13: Load-deflection curve, applicable to both three-
point bending and cantilever bending.

 11

Stacking Beam Model

Stems in a canopy support one another. As each stem deflects, it makes contact with its neighbors,

transferring load to other stems. Therefore, the instantaneous force required to deflect a wheat

stalk is not necessarily a true representation of the deflection resistance of that plant because it is

being supported by neighboring plants. An algorithm was developed by Bebee to calculate the

stiffness of a beam given full-contact support from its neighbors [36]. This model will be referred to

as the Stacking Beam model herein.

Figure 14 shows an example of stacking beams which support one another in one dimension of

travel. In juxtaposition to the ideal beam geometry in Figure 14, Figure 15 shows an example of the

complexity of wheat canopy. In a plant canopy, three dimensions of interaction are at play, with

additional elements of complex

geometries of leaves and

friction between contacting

surfaces. However, the reality

of individual plant flexural

rigidity within a canopy is

bounded, with the reality being

more than no support (i.e., no

contact) and less than perfect

support from neighbors as

depicted in Figure 14.

Figure 15: Small plots of wheat, for experimentation. University of Idaho, 2022 [37].

Figure 14: Stacking Beam Model. Bebee, 2020 (Fig. 2.1, [36]).

 12

Chapter 2: Description and Validation of the SOCEM Device

Wheat breeding decisions can be informed by field testing small plots of wheat with the newly

developed Strength of Crops Extrapolation Machine (SOCEM). In particular, flexural rigidity results

from “SOCEM trials” can be used to determine the stalk lodging resistance of different genetic

varieties. Devices have previously been developed for this purpose [26] [30], but they are low-

throughput and do not consider canopy interactions between plants. In this writing, we present and

validate the SOCEM device, which is designed to perform high-throughput testing while also

considering interactions between plants.

What is the SOCEM?

The SOCEM, shown in Figure 16, is a field deploying measurement device which was originally

developed by the AgMEQ laboratory at the University of Idaho under the supervision of Dr. Daniel

Robertson. The SOCEM can be used to experimentally determine the flexural rigidity of cereal stems

in a canopy in a high throughput manner. To achieve this, the SOCEM device is pushed through a

plot of cereal crops. While in motion, a load cell and a rotary encoder are used to record data for

force and distance traveled. A rigid bar is connected to the load cell such that many stems are

Figure 16: The SOCEM, as of 2020. Bebee, 2020 (Fig.3.1, [36]).

 13

simultaneously deflected when the device moves through the canopy. All data is processed and

stored to memory by a purpose-built program called StemBerry, written in Python 3 (Python

Software Foundation, Wilmington, Delaware, USA). Analysis of the data using the PeakClick Python

module [36] enables calculation of the average flexural rigidity of the stems deflected during the

test.

Hardware

The SOCEM includes several pieces of hardware, described below and shown in Figure 17. A load cell

is mounted on a chassis that can be adjusted vertically using a pair of quick release sliders. This

enables the load cell height to be rapidly changed, based on the available height of wheat stems. A

round carbon fiber tube, referred to hereafter as the "force bar," is attached to the front of the load

cell. The bar contacts plant stems as the SOCEM is pushed through a small plot, and the resistance

force of the stems is transmitted to the load cell. In order to collect distance traveled information, a

cog is fixed to the rear wheel such that it rotates with the same angular velocity as the wheel itself.

A belt connects the cog to a rotary encoder which enables calculation of distance traveled.

Figure 17: A diagram showing the flow of data from the sensors to the Arduino and then finally to the onboard
computer which runs the StemBerry interface.

SOCEM Data Flow

 14

Software

The SOCEM device includes an onboard computer which runs the StemBerry program. The

StemBerry program is a graphical user interface (GUI) coupled with a backend component for

analysis and databasing. Through the GUI, a user can record raw force data and input important

metadata (e.g., plot number, stem height, force bar height setting, stem count, etc.). Behind the

scenes, the StemBerry backend processes the data collected and organizes it into a file system. A

Raspberry Pi onboard computer (Raspberry Pi 3 Model B+, Cambridge, England) and an Arduino

microcontroller (Arduino Uno Rev3, Arduino.cc, Turin, Italy) communicate via serial connection.

Figure 17, above, provides an overview for data software communication and sensor input. More

detail about data flow is provided below in Figure 18. Button clicks on the Pi-based user interface,

shown in Figure 19, command the Arduino when data collection should start and stop.

During data collection, three

data vectors are recorded:

Force from the load cell,

distance traveled from the

rotary encoder, and time since

the start of the test. The force,

distance, and time data from

each test are stored in a XLSX

file (Microsoft Excel Open XML

Spreadsheet, Standard ECMA-

376, ISO/IEC 29500), along

with user defined metadata. Figure 19: The data collection frame from the StemBerry interface, in a 2022
version. Start and Stop buttons control data collection.

Figure 18: Serial connection and data flow between StemBerry program and Arduino Uno.

 15

For 2020 and 2021 data, these files were ultimately compiled and analyzed using Python and

MATLAB (MathWorks, Inc., in Natick, Massachusetts, USA) scripts on a separate computer to enable

calculations of stem flexural rigidity.

Calculating Flexural Stiffness Values from SOCEM Data

A purpose-built Python script, called

SOCEM_DataAnalysis.py, was used to calculate

values of flexural rigidity given force data,

displacement data, and metadata collected with

the SOCEM. The program interface, shown in

Figure 20 and Figure 21, displays raw force and

distance data, and the user is able to choose

points of interest. From initial graph of raw data,

mouse clicks are used to define the yellow lines

shown in Figure 20, between which data is

considered useful, and rejecting data impacted

by edge effect, which is discussed later in Chapter

2. Once the useful data is identified,

characteristic force peaks are selected,

represented by the red dots in Figure 21. From

the Stacking Beam model, discussed in Chapter 1,

we know that force peaks represent points of

high interaction between stems. These points of

high force are selected, and stem flexural rigidity

is automatically calculated for each point, based

on force bar height, plant height, and plant to

plant spacing.

The stacking beam model is codified as two Python scripts, EI_Interaction_Fx.py and

EI_No_Interaction_Fx.py. These modules take inputs of peak selection data and stem height data.

Specifically, the input variables are: force bar height, plant to plant spacing, plant height at the

selected point, and the raw force at the selected point. EI_Interaction_Fx returns a low flexural

rigidity number by assuming that stems provided full support to one another, and thus are

Figure 20: EI assessment tool, Screen 1. First, choose the
range of useful data. The red lines show the suggested
range, based on edge effect. The yellow lines show the
range that the user selected for analysis.

Figure 21: EI assessment tool, Screen 2. Select force peaks
that appear substantial. This is subjective, and the user
should be consistent. The calculated EI will be the average
of the EI that is computed for these discreet points.

 16

characteristically weaker than raw force divided by stem count. EI_No_Interaction_Fx returns a high

flexural rigidity value by assuming no canopy support, with every stem standing alone. These two

outputs are averaged together to supply a flexural rigidity result that assumes a median level of

canopy interaction. The average flexural rigidity from selected points is then considered the

characteristic lodging resistance for the small plot at hand.

Experimental Data Collection with the SOCEM

Experimental plots of wheat, commonly referred to as “small plots”, can vary in size from a single

row of plants to an entire field. One of the more common sizes of experimental plots used for

genetic variety testing of wheat is shown below in Figure 22. This photograph was taken during

SOCEM trials in 2020, and the photograph represents the size and condition of small plots tested in

this study. These plots are approximately 200 inches long and about 40 inches wide. The space

between each row, referred to in this writing as the “interrow”, is approximately five inches wide.

The SOCEM was developed and optimized to characterize experimental plots of approximately this

size as opposed to large multi-acre agricultural fields.

The SOCEM can test several small plots in a short period of time. In its current form, the SOCEM is

designed to be used immediately following harvest so that data is not influenced by plant decay.

With modification, the SOCEM could test plants during the growing season, though this has yet to be

Figure 22: A standard size experimental wheat plot for small grain yield
trials, commonly referred to as a small plot.

 17

accomplished. After a combine harvester cuts a plot, stem stubble remains in the field. The SOCEM

is used to characterize the stubble left in the field after harvest. In this way, SOCEM data collection

does not interfere with other measurements a plant breeder may wish to collect (e.g., yield).

Edge effect [37] [38] [39] is an important consideration when testing small plots. Plants that are

close to the edge of a plot experience less competition for nutrients and sunlight [37]. The

mechanical properties of plants along the edge of a plot may therefore differ from the rest of the

plot. Importantly plants on the edge of the plot may not be representative of a variety’s

performance in a large agriculture-scale growing environment [39].

Due to edge effect, SOCEM data should be filtered to only include the central region of the small

plot. To accomplish this, the force bar is typically adjusted such that the rows that are on the

extreme sides of the plot do not contact the force bar. In addition, data collected from the first and

last twenty inches of the plot is typically excluded from analysis, as previously discussed and shown

in Figure 21a. Additionally, the back end of a plot is generally full of cut chaff that the harvester will

dump there before moving on to harvest the adjacent plot. Even if the plot is manually cleaned with

careful preparation, chaff is often woven between standing stems. This chaff can alter the force

deflection characteristics of the stems. Therefore, during data analysis, it is common to remove data

the last forty inches of the plot.

Validating SOCEM Measurements: Experimental Design Overview

As part of this Thesis, field trials (“SOCEM trials”) were performed for two years, at two sites in the

Palouse region of Idaho. In 2020, SOCEM data was collected for 15 hybrid varieties, with replicants

across 57 small plots. In 2021, SOCEM trials were run for 13 hybrid varieties, with replicants across

48 small plots. In total, data for the validation experiment came from 120 small plots over two years.

To validate the SOCEM, the characteristic lodging resistances of each plot (i.e., the average flexural

rigidity result from the SOCEM) were calculated. Multiple stems from each of plot were also

collected prior to SOCEM testing, packaged, and later subjected to three-point bending testing using

an Instron (trademark registered to Illinois Tool Works Inc.) universal testing machine. These tests

are hereafter referred to as “Instron trials”. Linear correlation analysis was then conducted to

compare SOCEM flexural stiffness results to flexural stiffness results obtained on the Instron. In

addition, SOCEM results were compared to historical lodging rate data that had been collected for

each of the hybrids. Specific details of these experiments are given below.

 18

Experimental Methodology

Overview

Thirty undamaged stems were collected from each small plot immediately prior to SOCEM testing.

Ten of these stems would later be tested for flexural rigidity using a universal testing machine,

specifically an Instron 6800 Series single column system (manufactured by Illinois Tool Works Inc.,

Norwood, Massachusetts, USA).

SOCEM flexural rigidity calculations require information on plant spacing and stem height. Plant

spacing data was obtained prior to SOCEM testing by counting the number of stems in a forty-inch

span in two separate rows within the test region. These counts were then averaged together to

fprovide a single count value, which would be assumed to represent homogenous count density.

Stem heights were also measured at several locations throughout the plots prior to testing. The

height of the force bar on the SOCEM was set based on the stem heights, with intent to use a force

bar height appropriate for stem height variation within the small plot. Initial stem count and height

values were plugged into the StemBerry Interface on the SOCEM onboard computer immediately

preceding each test, and then force, distance, and time data was collected. This process was

repeated for each small plot.

SOCEM Experimental Method

1. Collect stems. Gather at least thirty stems from each plot. Bundle and label with the plot

identifier (e.g., SW429).

2. Count stems to estimate stem density. In 2020 and 2021, the standard was to count stems for

two different rows within a 40-inch length, and then to average the stem counts together.

3. Measure stem heights. Once stem heights are measured, the force bar can be set properly to a

level that is between 70% and 90% of the height of the wheat stubble. In 2020 and 2021, stem

heights were recorded every 20 inches within the intended test region, generally from 20 inches

to 120 inches measured from the start of the small plot horizontally. These stem height values

were entered into a StemBerry input screen (Figure 23) that fed data into the optiH.py module,

which calculated the ideal force bar height.

 19

4. Set the height of the force bar. Set the device at the start of the plot and input necessary data

into StemBerry.

5. Start the test. Push the handlebars to roll the device through the plot. Keep an eye on the force

bar and the wheels to ensure that the device is travelling straight, so that contact is made

consistently with the desired rows. Push through to the end of the desired test region, and then

stop the test. Name the output file with a useful name, and then save the output file.

The output files for 2020 and 2021 data collection included raw data for time, force, and distance

travelled, taken at a frequency of about 90 Hz.

In 2020 and 2021, raw data was processed after-the-fact using a prototype version of PeakClick,

formerly known as SOCEM_DataAnalysis.py (see Figure 20 earlier in this chapter), along with several

other Python tools for importing and processing data. An external spreadsheet of additional data,

known as plotHeights.xlsx, was continually referenced. Python tools included fixRawDataExcess.py,

getFileCreationDate.py, and fileSort_timeBasedVsDistanceBased.py. As of 2022, these tools are all

obsolete, due to software improvements covered in Chapter 3.

Several methods, hardware, and software tools were updated for the 2022 field season. The

StemBerry software is currently at Version 98 in its development and is referred to as

StemBerry_v98.py. Appendix B1 contains the text for StemBerry_v98.py. See Chapter 3 for updates

and Chapter 4 for suggestions regarding future development.

Figure 23: StemBerry height calculator screen, used in 2020 and 2021. Numbers are
fed to the optiH.py method.

 20

Three-Point Bending Experimental Method

Ten stems from each plot were individually subjected to

three-point bending tests, to determine the stiffness and

max load of each stem.

Three-point bending tests were performed with an Instron

universal testing machine (see Figure 24). The specific

methodology for these tests is shown in Table 2. Flexural

rigidity values were calculated from three-point bending

test results, as shown in Figure 25 and in the equations in Table 3. Flexural rigidity results from all

stems from a plot were then averaged.

Table 2: Three-point bending method, numbered steps

1. Select a stem from the bundle of samples. Ensure that is unbroken, does not have any

abnormal shape features, and that its size is neither oddly large or oddly small.

2. Place the stem on the supports and then lower the anvil manually, slowly, applying

about 0.02N of force to the stem to fix it in place.

3. Start the test. The automatic Instron Bluehill method is predefined by the user.

4. Observe the test, noticing how the stem breaks.

5. Record the break type and record any notes.

Figure 24: Instron anvil, as used in 2021 trials,
in contact with a node of a wheat stem, in the
direction of major diameter.

Figure 25: Flexural rigidity, EI, for three-point bending. Span length, L, was 8 cm for 2020 and 2021 trials.

 21

During three-point bending testing, a load-displacement curve is generated for each stem, showing

the force that the stem is subjected to at the loaded node versus the vertical displacement of the

anvil as it moves to apply load. Examples of curves generated for wheat stems are shown in Figure

26.

The slope of the linear region from a given load-deflection curve (see Figure 13 in Chapter 1) is used

to calculate stiffness, E, also referred to as Young’s modulus. Max load is another key element of

each load-deflection curve. Max load, also known as breaking strength and ultimate strength, is

generally proportional to flexural stiffness. If stiffness and breaking strength are not proportional, it

could be because premature breakage is caused by a morphology issue (i.e., there is an irregular

bend angle at the tested node, and premature contact is made with the test anvil). Lastly, the type

of break (e.g., snap, splinter, or crush) is assessed [40].

Break type identification (Figure 27) is used to characterize the morphological weakness of a stem.

Crushed stems have collapsed internode walls. Snapped stems have instantaneous breaks just above

Table 3: Equations for mechanics of materials of round beams in three-point bending.

𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 =
𝐹𝐹𝐿𝐿3

48𝐸𝐸𝐸𝐸

Eq. 6:

Deflection, Y, that causes maximum stress for a beam in three-point bending [33].

𝐸𝐸𝐸𝐸 =
𝐹𝐹
𝑌𝑌
⋅
𝐿𝐿3

48

Eq. 7:

Flexural rigidity of a beam in three-point bending. See Figure 25.

Figure 26: Results for three-point bending tests for ten stems from the same wheat plot, shown
together in the Bluehill software interface.

 22

or below the node. Splintering occurs in the internode, though it was observed in less than 1% of

stems tested in this study.

Results
For 2020, SOCEM trials correlate well with observed lodging percentages across the Pacific

Northwest region. Comparing SOCEM and three-point bending test results, an R2 linear correlation

value of 0.54 was achieved in 2020 and an R2 of 0.31 was achieved in 2021.

SOCEM vs Three-Point Bending Test Results

The SOCEM device provides valid results. This is exhibited by an R2 value of 0.54 compared to three-

point bending results in the 2020 trials and an R2 value of 0.31 compared to three-point bending

results for the 2021 wheat trials. Results are shown in Figure 28.

Results from Hard Winter wheat varieties for 2021 were skewed due to non-typical morphology, and

therefore these results were not included in this report’s analysis. Non-straight stem morphology

(see Figure 29) caused skewed results for three-point bending tests, because the true length of the

specimen between the vertical supports is not in keeping with the span length assumption of the

experiment.

Figure 27: Break types of wheat stems. Cornwall et al., 2021 (Fig. 1, [41]).

 23

Figure 28: SOCEM vs Instron compiled flexural stiffness results for the 2020 and 2021 wheat trials.
2020 data includes 57 small plots representing 15 genetic varieties of wheat from Clearfield, Soft
White Winter, and Hard Winter classes. 2021 data includes 32 small plots representing 8 genetic
varieties of wheat from Clearfield and Soft White Winter classes.

Figure 29: Non-typical morphology of a Hard Winter wheat stem collected in 2021. This
specimen is from plot HW122, representing the MT1745 variety. This pattern has been
observed in wheat that lodged earlier in the season and then self-corrected through
gravitropism.

 24

Averaging the results for all replicants from each variety shows a clear linear correlation, with an R2

value of 0.93, shown in Figure 30. Averaging is necessary to overcome error and to arrive at

pervasive genetic-based performance trends. Sources of error include environmental variation

throughout a field and non-homogeneity of planting density within each plot.

SOCEM vs Historical Stalk Lodging Results

Historical lodging data is recorded as a percentage of crop area lodged for each genetic variety. High

SOCEM flexural rigidity values are expected to correlate with low percentages of observed lodging,

and vice versa. In other words, negative sloped trendlines are expected in scatter plots that

comparing flexural stiffness data versus historical lodging rates. An example of recorded lodging

rates is available in Figure 58 in Appendix A, and a scatter plot of this data is shown in Chapter 1 in

Figure 10.

Small grain performance reports are generated by researchers, typically yearly, to inform the cereals

industry about the experimental quality of common genetic varieties. For this study, reports

including lodging data were compiled from the University of Idaho Northern Idaho Small Grain and

Grain Legume Research and Extension Program [42] [43] [44] [45].

Figure 30: Average performance for each variety tested in 2021 Instron and SOCEM
trials, each represented by three or four replicants.

 25

Validation of the SOCEM device is supported by the comparison between SOCEM 2020 trials

(performed in Moscow, Idaho) and the small grain report lodging data represented in Figure 31. The

historical lodging data included in this figure represents average performance from fields in these

municipalities in Idaho: Bonners Ferry, Craigmont, Genesee, and Moscow. Due to variation over

time and location, an ideal correlation would include varieties from the same field in the same year.

However, lodging does not occur consistently enough to make lodging rate a reliable metric of

comparison. Many years, little to no lodging is observed for any variety, so no useful variation in

performance is provided by the small grain report. This is a key reason why SOCEM flexural rigidity

data could be more useful than observed lodging percentage data.

Discussion

To prove that results from the SOCEM are valid, a linear correlation should be achieved between the

results of the SOCEM and another trusted method. Linear correlation has long been considered a

useful metric for determining the validity of data, ever since 1885 when Galton first introduced the

concept of linear regression [46]. Typically, linear correlations above 0.3 are considered meaningful,

with R2 values about 0.7 being quite desirable [47] .

Figure 31: Historical lodging rates from North Idaho, compared to SOCEM 2020
flexural stiffness results.

 26

R2 values have to do with dependance, and good R2 values indicate that results from multiple

sources depend on the same underlying factors [47] [48]. SOCEM and Instron correlation in this

study may be imperfect because of error; however, results also differ because dependance differs.

If the results of both the Instron and the SOCEM are perfectly identical, the slope of the best fit line

should be m=1.0, with an R2 value of 1.0 [48]. This would mean that every result from the SOCEM is

identical to the result from the Instron. However, a perfect R2 value of 1.0 is impossible, because

flexural rigidity factors are different for each device. The SOCEM is a device that measures wholistic

lodging resistance, impacted by many possible factors, namely root lodging, whereas the Instron

device isolates the load-deflection slope of a stem, measuring only flexural stiffness of the stem.

Even without perfect correlation between the SOCEM and the Instron, the range and domain of

results is similar for both datasets taken in 2020 and 2021. Additionally, correlation is very strong, R2

= 0.93, when results from all small plot replicants for each genetic variety are averaged, as seen in

Figure 30.

In SOCEM testing, stem density has been assumed to be homogenous. In fact, stem density can vary

wildly within even a small experimental plot. The most substantial outliers from the SOCEM 2021

wheat strength results were very high flexural rigidity values which came from points of high force

performance within plots that had artificially low stem counts. Accurate stem counts can be

achieved by changing the push direction of the SOCEM to perpendicular relative the direction of

planted rows, rather than parallel. Perpendicular testing methods (i.e., “side hits”) are discussed

further in Chapter 3 and Chapter 4.

Incorrect stem height is a major source of error in SOCEM results. Stem heights vary within small

plots due to uneven cutting during harvest as well as uneven ground. Error due to ground variation

can be reduced by using an additional sensor, a height sensor to measure the distance between the

ground and the load cell. Managing stem height variation is addressed in depth in Chapter 4.

Improving the correlation between Instron results and SOCEM results should not be a goal in the

immediate future. The validation experiment has served its purpose, to prove that the SOCEM offers

useful results. The SOCEM results can be improved, but a new heuristic should be used to determine

continued goodness. In other words, the human labor cost associated with three-point bending

testing in a laboratory is no longer necessary, and it is recommended that the SOCEM process

become entirely field based in the future.

 27

Comparison to historical lodging is inexact but is still useful to show a general inverse correlation

between observed lodging percentage and flexural rigidity results from the SOCEM. Therefore,

future developers of the SOCEM should take care to test crop varieties of low, medium, and high

rates of typical lodging performance, so that comparison can be readily made.

The SOCEM device provides an objective numeric measure of stalk lodging resistance that can be

determined without relying on crop failure comparisons. It is not hard to imagine that flexural

stiffness results from SOCEM devices might soon supplant lodging rates published in small grain

reports as a useful and easily communicated measure of stalk lodging resistance.

 28

Chapter 3: Improvements and Investigations

The SOCEM device is being continuously developed for improved accuracy of results, ease of use,

and broadening of application. Recent hardware component additions include a wood laser cut

keyboard tray, a larger screen, and a detachable storage box. Software has been developed to

improve the user experience, reduce the data processing time, and to increase accuracy of results.

In terms of analysis and visualization of data, tools have been developed for SOCEM force and

flexural rigidity results to be visualized in 3D models in compact FBX files. To improve methods of

experimentation with the SOCEM, investigations have been made into ideas such as multiple passes

and passes from the side direction rather than from the front of a small plot. In addition, Instron

results have been validated by investigating the relationship in performance between the lowest

two nodes on sampled stems. Each of these improvements and areas of investigation are

highlighted in the sections below.

Hardware Improvements
Several small annoyances can add up to hard days in the field and erroneous data collection.

Hardware has been developed to minimize common problems. Solutions are listed below in Table 4

and are shown in Figure 32. A keyboard tray with cubbies has been installed, and more support in

the frame has been added to compensate for the additional weight. There is a larger 7” screen, with

Figure 32: The SOCEM in 2022, prepared for a side hit through a small plot. Improvements
include the wooden laser cut keyboard tray, the 3D printed nylon 7" screen housing with
attached sunshade, and the removable storage box.

 29

attached sunshade and damage protection. An easily accessible Arduino microcontroller storage

compartment has been developed, and a protoboard data shield is connected to the microcontroller

to improve connectivity and minimize risk of disconnection. A real-time clock module, type DS3231,

has been installed on the Raspberry Pi GPIO pins to allow for accurate file creation times. A load cell

protection compartment has been added, alongside a detachable storage box which can hold stem

samples and supplies necessary for fieldwork. The rotary encoder bracket hardware has been

modified to allow for proper belt tensioning.

Rather than dedicate the SOCEM to running only StemBerry software, launched at startup, the

onboard computer with Raspian OS launches into the standard desktop environment, offering a

familiar graphical user interface. The purpose of this is to allow for creative development in the field

if users are struck with inspiration to write new data-handling Python scripts for new experimental

Table 4: Hardware upgrades

Common Problem Solution Figure

Screen is hard to see Sunshade, screen size increase from 5” to 7” Figure 32

Supplies are difficult to manage Storage box, hinged, easily removable Figure 32

Data entry is slow with stylus Keyboard tray, wireless keyboard, and mouse Figure 33

Rotary encoder belt slips Longer mounting slot on rotary encoder

housing, for belt tensioning

Figure 34

Load cell is at risk of damage Load cell protection compartment Figure 35

Faulty Arduino wiring Soldered protoboard to replace breadboard Figure 36

File time stamps are inaccurate Real Time Clock (DS3231) on Raspberry Pi

Figure 33: CAD model of keyboard tray.

Figure 34: Improved design of the
rotary encoder mounting hardware,
with overly long mounting slots to
allow for belt tensioning.

 30

methods. As a research device, wheat breeders should be allowed the freedom to test fresh ideas,

and so the desktop environment with a keyboard may continue to be the standard beyond

laboratory development. The improved screen housing has openings for ease of access to all USB

ports and the microSD card slot on the Raspberry Pi.

Software Improvements

StemBerry software, written in Python 3 (Python Software Foundation, Wilmington, Delaware, USA),

has been developed to be easier to use, especially in terms of file naming. Immediately following

each SOCEM test, data oversight can be performed through graphical peak selection (see in Figure

63 Appendix A for a PeakClick output image), so post-processing is no longer necessary. Previously,

when using SOCEM_DataAnalysis.py, users had to type in plot heights, plot names, and variety

Figure 35: Load cell protection drawer with custom foam.

Figure 36: The Arduino protoboard datashield, with
soldered connections to supplant the need for jumper
wires.

Figure 37: Arduino with protoboard datashield and snap-in
connections for the load cell and rotary encoder.

 31

names, even though this data was already known and had been entered elsewhere. The time and

labor to type in this information caused a significant bottleneck in data processing.

Software elements have been improved to enhance the serial connection between the

microcontroller and the onboard computer, resulting in increased sampling frequency and reduction

of data loss. Time vector values are now set by the microcontroller at the time as data creation,

rather than by the StemBerry program at the time of data transfer.

For StemBerry Version 70 and beyond, multiple CSV (Standard RFC 4180) files are output from each

plot. These include a file for pretest values, a file for posttest values, files for raw data from each

push, and user oversight graphical choice data from each push. Upon completion of each plot, a

button click of the “Compile” button in the StemBerry interface triggers the compilation of data

from these multiple CSV files into a single XLSX (Microsoft Excel Open XML Spreadsheet, Standard

ECMA-376, ISO/IEC 29500) file. MATLAB (MathWorks, Inc., Natick, Massachusetts, USA) scripts have

been developed to import all columnar data from numerous multipage XLSX files in a folder into one

compiled MATLAB table, such that all data from a field of plots is available in a single table, which

can be saved as a single MAT-file (Version 7.3, MathWorks, Inc.).

Instron (trademark registered to Illinois Tool Works Inc.) testing was improved for the 2021 data by

altering the three-point bending test method (.im_ccyclic filetype, developed by Illinois Tool Works

Inc.) used by Bluehill Universal software (Version 3, trademark registered to Illinois Tool Works Inc.).

Changes in the test method dictated that each stem was automatically cycled, between 0.3 N and

0.8 N, within the linear region of deflection prior to the push-to-failure phase. This was meant to

Figure 38: StemBerry Initial Inputs Screen, from StemBerry_v89.py, 2022. The GUI was
developed using Tkinter.

 32

test for hysteresis, which is discussed later in this chapter. An added benefit of pre-cycling was that

good contact was ensured between the stem and the anvil throughout testing such that the

automatic load-deflection slope assessment performed by the Bluehill software was more accurate.

The test method was also altered to continue deflecting the sample until it failed entirely, with

deflection stopping after a 99% drop relative to an automatically identified maximum force value.

Originally, in 2020, tests were set to stop after a 15% drop in force. The longer tests had the benefit

of providing longer curves (see Figure 26 in Chapter 2), which could be used to identify characteristic

differences between break types (e.g., snap, crease, and splinter). Curve characterization eased

break assessment for the experimenter.

Visualization Software Development
MATLAB scripts convert raw data as well as interpolated flexural rigidity results into curves that are

represented by STL (developed by 3D Systems, Rock Hill, South Carolina, USA) objects. Python

scripts generate color-gradient maps of numerous labeled STL objects in Blender (Blender

Foundation, Version 3.1.2, GNU General Public License, Amsterdam, Netherlands). These maps (see

Figure 39) are output as FBX files (trademark registered to Autodesk, Inc.), which retain color and

are of emailable size (e.g., 4 mb to 20 mb).

Figure 39: A rendering of a map of 2021 flexural rigidity results in Blender. Here, results are grouped by genetic variety, and
Instron stem results are shown next to SOCEM small plot results.

 33

Experimental Design Improvements, 2021

For 2021 testing, a lower surface area Instron anvil (see Figure 24 in Chapter 2) was used, such that

premature breakage would not be induced by erroneous contact with a stem internode. As

discussed previously in this chapter, in Software Improvements, the Instron method was altered to

include an initial cycling of each stem to ensure good contact and to experiment for hysteresis.

“Hysteresis” is the disparity in mechanical behavior between loading and unloading, with the

internal area between these curves representing energy lost [49]. Little to no hysteresis was not

observed in the dry wheat stem samples.

Prior to each three-point bending test in 2021, each stem was measured for diameter, at four

different points: At the node, in the major and minor plane, and at the necked internode, in the

major and minor plane. See Figure 40 and Figure 41 for examples of diameter measurement. The

major plane is dictated by the bend

direction of the node, with the

direction of natural lay in the three-

point bending fixture due to gravity

referred to as the major plane. The

minor plane of each stem is

perpendicular to its major plane,

sharing the axis defined by the

contact points on the two vertical

supports. Cumulative results for stem

diameter measurements are shown in

Figure 42.

Figure 42: Major node diameter
measurement with calipers.

Figure 41: Major internode diameter
measurement with calipers.

Figure 40: Box plot showing range of 2021 wheat diameter
measurements.

 34

Knowledge and Investigations
During field testing with the SOCEM, additional questions were formed and investigated outside of

the prescribed experimental method. Curiosity has formed over questions shown in Table 5.

Table 5: Questions investigated during 2020 and 2021 testing, beyond the central experiment.

Can diameter sampling in the field replace three-point bending tests in the laboratory?

How does three-point bending and diameter performance differ between the lowest two nodes

on a stem?

Can useful information be gleaned from the difference between force values from repeated

SOCEM passes?

Does testing from a side direction, perpendicular to the direction of rows, offer any benefits over

testing in the standard forward direction, parallel to rows?

Can mass sampling favorably replace stem counting, with increased speed?

Three-Point Bending Stiffness vs Diameter Correlation

Three-point bending tests are labor intensive. To overcome the need for future three-point bending

tests, four diameter measurements were recorded for every stem tested in three-point bending in

2021, with the idea that useful relationships may become apparent. Both stiffness and max force

(i.e., strength) values were compared to diameter values. The best correlation between stem

stiffness and stem diameter (see Figure 43) came from node diameter rather than internode

diameter. The

correlations shown in

Figure 43 are linear,

but the relationship

between stiffness and

diameter is expected

to be a fourth-power

relationship, as shown

in Eq. 2.

Figure 43: Three-point bending stem stiffness compared to four different stem diameter
measurements for 520 wheat stems measured with the SOCEM in 2021.

 35

A single best-fit line was found to summarize the performance of all stems tested in the 2021

standard flexural rigidity correlation experiment. These results can be seen in Figure 44. To study

how stiffness and diameter performance is distrubuted for each variety, individual graphs per

variety were generated to show all stems from the four small plots from each variety, set against the

overall best fit line, as exemplified in Figure 45 for the LCD Artdeco variety.

Because the strong relationship between major node diameter and three-point bending stiffness has

been determined, future three-point bending tets in the lab are not necessary, and diameter

measurements can now occur in the field. See Chapter 4 for further information.

Figure 44: A fourth-order best fit line was found for the major node diameter vs flexural stiffness in three-point bending for
all stems tested in the basic experiment for 2021.

 36

Node Choice

During Instron testing, the lowest possible node was tested. Due to the

eight centimeter span length of the three-point bending test, or

sometimes because of damage, the lowest node could not be used, so

the next-to-bottom node up was often used. Using five additonal stems

from each small plot tested in 2021, with each stem bearing two testable

nodes (see Figure 46), a study was done to analyze whether using the

next node up would skew the data. The results shown that there is a

normal distribution of performance between the two lowest testable

nodes. This allows the conclusion that occasionally using a higher node

does not have a substantial impact on the dataset. Error! Reference

source not found. shows the flexural rigidity and node major diameter

performance for all tested two-node stems. Error! Reference source not

found. shows a normal distribution of stiffness, max breaking force

(strength), and major node diameter for nodes measured from the same

Figure 45: Example of the Stiffness and Diameter results for all 40 stems tested from the four plots from one genetic
variety of wheat, LCS Artdeco. 2021. The different colors represent the different plots from which stems are sourced.

Figure 46: Node comparison,
node numbering.

 37

stalk. More thorough data from the node comparison data is available in Appendix A, in Figure 69,

Figure 70, Figure 71, Figure 72, Figure 74, and Figure 73.

Force Drop Over Subsequent SOCEM Pushes

The force response of wheat stems is significantly impacted by the height percentage setting of the

force bar, relative to the heights of the stems within the plot. This height percentage, of force bar

height divided by stem height, can be referred to as the “force bar height ratio.” Repeated testing of

the same small plot renders a drop in force for each subsequent hit. The magnitude of the force

drop between subsequent tests is, in part, a function of the force bar height ratio. This phenomenon

has been observed through exploratory SOCEM tests in 2020, 2021, and 2022.

When bending loads are applied to plants, they deflect. Acting as springs, the stems will stand back

up once no longer loaded, but full recovery is not immediate or even inevitable. With more applied

force, stems will need more time to recover to its original stiffness. Once impacted, lower force

performance has been observed for subsequent hits at the same height setting. This could be due to

the viscoelastic nature of plants [50], though it may also be due in part to damage incurred by

SOCEM testing, causing there to be effectively less contributing stems for each repeat push.

Figure 48: Force-drop has observed for subsequent SOCEM pushes. Relatively lower force bar setting causes greater force drop.
This phenomenon can be used to observe proper height setting of the force bar.

 38

Increasing the force bar contact height to something like 90% of the average plot height results in

less force-drop effect and less damage. Cycling plants hypothetically might be useful, though cycling

should not be done aggressively at heights lower than 70% of the plot height, because this can

substantially decrease the performance of the plot. Figure 48 displays force-drop behavior in two

different wheat plots tested in August 2021. The wheat plot for which a lower percentage height

setting (70%) was used displays a noticeable strength performance decrease with each pass. In this

case, the strength performance of the plant is almost cut in half after four cycles. The wheat plot for

which a greater percentage height setting (90%) was used demonstrates the capacity of wheat to

achieve a near-steady state in terms of strength performance, with over 80% strength still displayed

after four hits.

The force-drop phenomenon can be used to provide oversight for proper force bar height setting,

due to the relationship between force drop percentage and force bar height ratio. This is discussed

further in Chapter 4.

Nine-Cell Scheme

Testing from a side direction with the SOCEM, perpendicular to the direction of rows, is referred to

as a “side hit.” Side hits are distinguishable from ”forward hits”, i.e., pushing in the standard forward

direction, parallel to rows. The outcome of a side hit is that one force peak is generated for each row

contacted.

Figure 49: SOCEM testing with a nine-cell scheme, as explored
during 2022 experimentation.

 39

Side hits provide the advantage of clear force response peaks in the raw data (see Figure 63 in

Appendix A), which can be easily converted into flexural rigidity data, especially because every stem

contacted can be acurately accounted for. If three side hits are performed in one small plot, with

three rows contacted for each push, the result is nine cells of data. A fourth hit, in the forward

direction, provides the raw data necesaary for rich three-dimensional modeling, as seen in Figure 65

in Appendix A. Figure 49 shows a pictoral guide to nine-cell testing.

Each of the nine cells can be assessed for stem count, peak force, and flexural rigidty. Figure 50

shows an example of a three-dimensional rendering of nine-cell force data, comparable to a bar

chart with nine bars.

Mass Sampling

Mass sampling could hypothetically help improve the throughput of the Stem counting process.

Useful relationships might be found between stem count, stem mass, and structural rigidity. If a

strong correlation between count and mass was discovered, the counting process in the SOCEM

experimental procedure could be replaced with a mass sampling process.

Mass sampling was attempted during the 2022 data collection season. The scale used had a

maximum weight of fifty pounds, and the measurements were shown at a granularity of 1 gram.

Wheat stems each weigh much less than 1 gram, and masses of 4 to 8 grams were recorded for

Figure 50: Example of a nine-cell scheme. Here, the average force for each cell is shown.

 40

collections of ten to thirty stems, though these numbers were not trusted due to wind and the lack

of granularity in the mass scale.

Mass sampling was labor intensive in 2022, and the current version of the WheatSqueezer hardware

(see Figure 62 in Appendix A) was slow to use. Hardware for quick release and quick compression

would both increase sampling speed.

 41

Chapter 4: Suggestions for Future Work
The SOCEM device can be further modified to improve user ergonomics and accuracy of results.

Additionally, in the future, the device should be scaled to other applications, including automation,

multi-acre agricultural testing, and testing with large grains. To accomplish this scalability,

alterations and additions can be made to the hardware, the software, and the experimental design.

Useful hardware additions can enhance the user experience, address ground height variation, and

build toward automated experimentation. Strides in software development can be made to improve

experimentation at the small plot level, specifically regarding error reduction, while also building

tools applicable to large scale experimentation with a load cell and force bar as a combine harvester

accessory. As tools are developed, modularity should be a primary concern in software development

such that tools can be scaled to multiple use cases. The experimental design for investigations in the

near future should continue to explore useful relationships between measurable factors while

providing yearly data to continuously product test and solidify hardware and software elements.

Hardware Suggestions

To achieve optimization of load cell height, the SOCEM can be equipped with additional sensors

Potentially useful sensors include an automatic distance sensor used to continuously measure the

height between the load cell and the center of a wheel that rolls on the ground underneath the load

cell. See Figure 51 for an example of a ready-made height sensor typically used for automotive

suspension [51]. Two vertical lead screws could be installed to control the height of the force bar

Figure 51: Example of a ready-made height sensor that can
be used to automatically measure height between the
ground and the SOCEM load cell. Roverparts.com, 2022 [51].

 42

digitally using the StemBerry interface. This will increase the speed and accuracy of setting the force

bar and can later result in automatic height adjustment during a test.

A second load cell would be useful, positioned behind the first load cell by approximately 20

centimeters, to monitor the force variation between the first and second load cell. As discussed in

Chapter 3, variation between subsequent testing of force can be used to monitor that the first load

cell is set at a proper height. For further monitoring of load cell height accuracy, a third load cell of

basic quality and with little or no force bar could be positioned above the primary load cell by a few

centimeters, with an ideal reading of zero load when the primary load cell is not positioned too low.

This third load cell is applicable only to combine-scale testing, where automatic height adjustment

would be useful, though product testing should occur at the small plot scale.

Figure 52, which can be compared to Figure 17 in Chapter 2, shows an overview of the theorized

additions.

Figure 52: Suggested future version of the SOCEM, with additional sensors. New elements include two additional load cells,
two lead screws for digital height adjustment of the floating sensor chassis, and a height sensor that monitors the height of
the load cell from the ground. The function the second high resolution load cell is to monitor proper height setting based on
the force difference compared to the first high-resolution load cell. The function of the low-resolution load cell above the
primary load cell is to monitor for binary load, which should be no load, if the height of the sensor chassis is appropriate for
useful data collection.

 43

A camera could be added to the SOCEM to provide video recording of contact with the force bar,

from above. A second camera may also be positioned for a side view. These cameras would enable

video capture of stem density and could possibly one day lead to the replacement of manual stem

counting with counting via a computer vision algorithm.

Beyond sensors, frame components could be improved to make the SOCEM easier to use and

transport. The handlebar stem can become more easily removable. The keyboard tray can be made

larger, with intent to support laptops. The benefit of using a laptop for SOCEM testing is that future

consumers can use StemBerry software on their own computers and thus reduce the cost of the

device by mitigating the need for an onboard computer.

Finally, additional hardware tools could be developed for ease of experimentation and to address

current problems. A drone would be ideal for overhead images of the field, such that stem density

of each plot can be easily examined alongside data during post-processing. The most useful

additional piece of purpose-built gear for field experimentation would be a ground height variation

Figure 53: This is the proposed tool for surveying ground height variation in small plots and for aligning stem heights prior
to SOCEM tests. Without the plumb bobs, this tool would still be useful for identifying stem contact and protrusion, to assist
with stem height leveling, prior to SOCEM testing. The vertical support width should be slightly less than the wheels of the
SOCEM, so that the stem height alignment tool can be placed directly next to the force bar of the SOCEM for height
comparison and replication.

 44

survey tool, with survey plumb weights and adjustable plumblines that mark distance. A simple

drawing of a hypothetical ground height variation survey tool is shown in Figure 53, and an in-depth

analysis is provided later in this chapter. The dimensions of the survey tool should mimic that of the

SOCEM force bar and wheel width. The survey tool should also have a bar of manually adjustable

height, similar to the current force bar, which can be deftly placed tangential to a row of stems prior

to SOCEM testing. This will make it easier to level plots, to choose the proper force bar height

setting, and to understand the amount of ground variation thus addressing the largest source of

error in small plot testing. The best stem leveling tool identified is manual hedge shears.

Software Development Suggestions

Load cell height values from the suggested automatic height sensor should be continually recorded

and stored at the same rate as force data. During data collection, force peaks can be automatically

assessed and identified by a high percentage drop, such as 80% less than each maximum force

value. The Bluehill Universal Instron software, discussed in Chapter 2, uses a percentage drop

assessment of this kind, which can be mimicked, resulting in the partitioning of each separate force

response and force peak from each row tested in a SOCEM side hit.

When preparing for each test, the suggested lead screws should be used to adjust the height of the

load cell by using on-screen buttons in the StemBerry GUI and also with physical buttons mounted

on the Arduino compartment near the front of the SOCEM. Furthermore, automatic height

adjustment of the force bar during testing can hypothetically be made possible in the future using

comparison between force values from the first and second load cell. This comparison relies on

distance data supplied by the rotary encoder, and the distance between the load cells must be

known. Complexity of StemBerry data collection software would need to increase with these

additional features. It is suggested that a simple version of the device be maintained while an

additional complex device is developed in parallel. For modularity, StemBerry should be converted

from a single script to a folder of modules. The scope of modularity should aim to succeed in both

small plot usage and in usage as a combine harvester accessory. In terms of computer hardware,

StemBerry software can be run on any device that supports Python, including Windows, Linux, iOS,

and Android operating systems. Android devices must be equipped with a serial connection

application and a Python IDE application, and automatic window size scaling based on screen size

should be developed.

 45

Ideally, data can be collected, assessed, and compiled all in the field. This pipeline has previously

required several months between data collection and useful visualization. A clear goal is to achieve

outputs for an entire field of plots, in terms of visualizations and compiled numerical results, as soon

as data collection is completed. Standard output files from each plot should include a raw data peak

selection graph image, a 3D object STL file, raw CSV files, a CSV file for calculated EI results, and a

XLSX file of complete numerical data sourced from the multiple CSV files for each plot. An entire

data set for a year, including all tested plots, should be represented as a color-gradient FBX file

showing all labeled STL objects and as a MATLAB table with all data compiled. Continued validation

of results should be shown using scatter plots of flexural rigidity (EI) vs sampled diameter and

flexural rigidity vs local historical lodging rates.

The current roadblock in the data compilation pipeline is flexural rigidity calculation. The Python

methods that calculate flexural rigidity (EI_Interaction_Fx.py and EI_No_Interaction_Fx.py) often fail

due to error. During 2022 data collection and processing, it was common that the inputs fed to

these Python methods would cause error, because calculations were outside of the bounds of the

codified model. Trigonometric functions were the primary point of failure. More work needs to be

done to ensure that edge cases are addressed within the scripts, so that accurate results are

calculated without causing software failure.

Experimental Design Suggestions

Side hits (i.e., pushing the SOCEM in a direction perpendicular to planted rows) should be the focus

of testing in the immediate future. In 2020, only forwards hits were used. In 2021, forward hits and

side hits were both explored. In 2022, three side hits through three rows from each plot were used

to explore a nine-cell scheme. In the future, the goal should be to assess each small plot using a

single side hit of three or four rows. Data should be collected regarding the stem count and

diameter of stems from each row contacted (see Figure 41). The mass of each “cell” (see glossary,

Appendix D) may continue to be explored, though the mass testing hardware and procedure will

need to greatly improve for speed. See Figure 62 for an analysis of the current WheatSqueezer

hardware, which is necessary for mass measurements.

When selecting plots to test, experimenters should choose genetic varieties that are represented in

local small grain reports, such that flexural rigidity results can be readily compared to lodging

percentage rates in the local area. Prior to harvest, communicate with the field manager to please

leave a minimum of 14 cm of stem stubble remaining when small plots are cut, to improve data

 46

quality. At least 20 cm of stem stubble height is preferable, to allow for minimal error reduction and

to ease the need for precision. Additionally, experimentation with the SOCEM should be attempted

prior to harvest, for full size stems with heads still attached.

Addressing Stem Height Variation

Incorrect stem height is the central confounding factor and source of noise that stands in the way of

the SOCEM providing more accurate data. Uneven ground conditions (see Figure 54) cause stem

heights to vary when measured from the point of contact with the force bar to the base of the stem.

In 2022, these ground height variations were observed to be typically 2 centimeters and up to 4

centimeters for stems that were simultaneously in contact with the force bar. Stem heights also vary

in the amount that stems protrude above the force bar, due to uneven cutting during harvest.

Excessive stem length above the force bar causes inaccurate results, because the low-angle beam

deflection assumption (see glossary) is broken and because the canopy interaction increases beyond

the bounds of the current Stacking Beam model. Accurate data can be achieved when all stems are

contacted between 70% and 90% of their length and when the length from the ground to the point

of force bar contact is known with precision.

Stem protrusion equalization above the force bar (see Figure 55) has two known solutions, which

can be used separately or in tandem. First, stem heights can be equalized to make even contact with

the force bar such that all stems protrude above the bar at a homogenous length. Second, the force

bar height and angle can be adjusted during testing to contact the stems at an ideal point of low

protrusion. These two sources of height variation occur on both the axis of travel and the axis of

force bar contact. There are multiple approaches to both stem height equalization and mid-test load

Figure 54: Ground variation under a small plot.

 47

cell adjustment, though neither of these outcomes can overcome ground height variation.

Overcoming ground unevenness can be approached in one of two ways. First, the conditions of a

SOCEM trial can be controlled such that error due to ground unevenness is overcome (i.e., through

testing stems that are at least 14 cm tall and through careful pruning of stem heights and careful

selection of each test region). Second, the ground can be mapped, and then stem height variation

can be compensated for.

Ground mapping may be worthwhile for achieving accurate results and for ultimately automating

SOCEM data collection; however, the cost of the ground mapping is increased hardware and

software complexity.

It may be acceptable that stems within a single plot are contacted at differing height ratios within

some range. Because ground variation does not typically exceed four centimeters, and because

stems should be contacted between 70% and 90% of their height, stems would need to be at least

14 centimeters tall (and 18 centimeters tall measured from the ground at low points within the plot)

for ground variation to not exceed height variation limits. See Table 6 and Figure 56.

Figure 55: Three rows prepared to be side tested with the SOCEM in 2022. Notice
variations in the height of the ground at the base of stems.

 48

Height of the load cell greatly impacts the results of calculated flexural stiffness. Due to variation in

ground level, the load cell height data from the automatic distance sensor should be considered to

represent multiple possible heights (plus 2 cm, plus 0 cm, and minus 2 cm), in the same way that

multiple levels of interaction (full interaction, intermediate interaction, and no interaction) are

currently considered in the EI calculation software. Long stems and no canopy interaction would

result in the highest possible EI. Short stems and full interaction would result in the weakest possible

EI. The average flexural rigidity value would result from average canopy interaction and the height

sourced directly from the automatic height sensor.

Shortest stem
(cm), at high

point on ground

Tallest stem
(cm), at low

point on
ground*

90% of
shortest

(cm)

70% of
tallest
(cm)

Overlap (cm)
must be
positive

10 14 9 9.8 -0.8
11 15 9.9 10.5 -0.6
12 16 10.8 11.2 -0.4
13 17 11.7 11.9 -0.2
14 18 12.6 12.6 0
15 19 13.5 13.3 0.2
16 20 14.4 14 0.4
17 21 15.3 14.7 0.6
18 22 16.2 15.4 0.8

* Assuming 4 cm maximum ground variation

Table 6: Ground variation analysis demonstrating that the SOCEM can
accurately measure plots that are at least 14 cm tall when the ground
under a plot varies by 4 cm or less.

Figure 56: Ground height variation parameters. If the ground variation is up to 4 centimeters between plant
bases, and stems can be contacted between 70% and 90% of their height, then the shortest plant must be at
least 14 cm from its base to the contact point with the SOCEM force bar to overcome error.

 49

Python as a Standard

Python and MATLAB, as of 2022, are both used in the data collection and processing for the SOCEM.

Ideally, in the future, Python could be used for all computation.

MATLAB has been used to compile data, analyze trends, and visualize trends. MATLAB has also been

used to generate STL files for the 3D visualization of SOCEM tests. MATLAB tables, which can be

imported and exported as .mat files, are ideal for handling large data sets. A great feature of

MATLAB tables is that whole arrays can be stored in a single cell. If tables are well organized, each

row can effectively be treated as an object with columnar attributes.

For 2022 experimentation, flow of data has been simplified by allowing raw data to be processed in

the field, immediately following each test. Also, the organization of output files has been improved,

with multiple CSV files generated during different portions of a SOCEM test to collectively represent

each small plot as a single data object. Once a plot has been completed, all useful data from the

multiple CSV files are saved to a multipage XLSX file, which can then easily be imported into MATLAB

as a complete unit using spreadsheetsToTable_v3.m (Appendix B2). Hypothetically, all data

compilation, analysis, and visualization can be done in Python. Quite a few MATLAB scripts have

been developed, but the migration to pure Python should be a medium-tier priority in ongoing

development of the SOCEM.

The primary advantage to Python is that the license is free and that it is easily accessible the world

over. The primary advantage of MATLAB is the ability to create, reference, and export tables. Object

oriented programming in Python could supplant the need for MATLAB tables, hypothetically using

the Python pickle module, the Python json module, through Python dictionaries, or even SQL files.

The Python pickle module is a functional and simple solution for saving Python classes [52].

The SOCEM as a Combine Harvester Accessory

SOCEM data can be useful to farmers to inform crop management decisions. A load cell and a force

bar attached to a combine during harvest, behind the cutting apparatus, is enough to provide data

about stem force response and density throughout an entire agricultural field. Raw force data can

be used to generate 3D maps of entire fields, which farmers can use to make field management

decisions. Digital maps, in the form of FBX files that retain color gradient and labels, can be easily

stored and compared from year to year. High resolution GPS data would allow for accurate spatial

distribution of force data from a single continuously recorded file.

 50

It is possible that side hits can be performed with a harvester combine accessory version of the

SOCEM. Side hits with the current SOCEM device require picking up the device, placing it to the side

of the plot, and manually pushing it through the plot over multiple rows. Travel direction for

combine harvesters typically follows row planting direction, and side hits could be performed by a

linkage, such as a load cell mounted on a wiper or on a rotating member. Automatic diameter

sampling, stem counting, and mass measurements are also possible through complex hardware and

software that could be implemented on a combine.

 51

Appendix A: Additional Figures
ff

l

Figure 57: Sales brochure for a genetic variety of wheat seed. Here, flexural rigidity (i.e., stalk lodging resistance) is referred
to as “stem strength”. Limagrain Cereal Seeds, 2020 [7].

 52

l

ll

ll

Figure 58: The first published instance in American academia of the comparison between lodging rates of wheat alongside
breaking strength results. Salmon, 1931 [11].

 53

ll

Figure 59: Box plots for the range of stem diameters from each plot of wheat. 10 stems were measured from each plot.
Bennett 2022.

Figure 60: Box plots of three-point bending stiffness performance from each wheat plot tested in 2021. Data collected with
a Instron universal testing machine and then was compiled and visualized using MATLAB.

 54

ll

Fi
gu

re
 6

1:
 C

om
pl

et
e

da
ta

 o
ve

rv
ie

w
 fo

r f
ou

r p
lo

ts
 fr

om
 th

e
LC

S
Ar

td
ec

o
va

rie
ty

. W
he

at
 2

02
1.

 55

Figure 63: Image generated during peak selection with the PeakClick Python module,
immediately following a SOCEM push in 2022.

Figure 64: SOCEM lined up for a side hit. Plants have been removed on each side.

Figure 62: A cell of wheat gripped by the WheatSqueezer version 2, during 2022 testing. Because clamping the cell firmly
requires twisting of two nuts on two bolts, the process is slow. Improvements can be made to make mass measurement
time-effective.

 56

ll

l

Figure 65: Raw force results from 2021 wheat data for Soft Winter varieties, output as an FBX file, shown in Microsoft 3D
Viewer software. Soft Winter varieties in 2021 were subjected to both forward tests and multiple side tests, and the objects
shown represent the multiplication and stitching of these force results.

Figure 66: Flexural rigidity results from 2021 wheat data, shown in three-dimensions in the Blender software interface.

 57

ll

Figure 67: An example of a baked UV unwrap image. In Blender
software, for 3D models to be exported with procedural color, it is
required that the procedural material texture be unwrapped in the
Cycles render engine and then recast in the Eevee render engine.

Figure 68: To achieve a 2D profile for the EI strength results from each SOCEM test,
interpolation was used in MATLAB. Interpolation is necessary because EI is only
assessed for discrete points from each test.

 58

ll

Figure 69: Node comparison results, showing stems with a stiffer Node 1 and a thicker Node 1.

Figure 70: Node comparison results, showing stems with a stiffer Node 2 and a thicker Node 2.

 59

llll

Figure 72: Node comparison results, showing stems with a stiffer Node 2 and a thicker Node 1.

Figure 71: Node comparison results, showing stems with a stiffer Node 1 and a thicker Node 2.

 60

llend

Figure 74: Node comparison results, showing stems with a stiffer Node 2 and equal diameter.

Figure 73: Node comparison results, showing stems with a stiffer Node 1 and equal diameter.

 61

Appendix B: Software
Shared here are two scripts that have been central SOCEM improvement and the use of SOCEM

data.

First is StemBerry_v97.py, which generates the Tkinter GUI interface for the SOCEM, collects data,

and handles data.

Second is spreasheetsToTable_v3.m, which can be used to import several multipage spreadsheets

into a single combined MATBLAB table. The column names in the generated table will reflect the

column names from the spreadsheets. If the header organization is not identical for all spreadsheets

in the target folder, additional columns will be generated in the table. There are applications for this

script beyond SOCEM output files.

 62

Appendix B1: StemBerry_v97.py
#!/usr/bin/Python3
#do not erase (needed to be executable for autostart)
'''
StemBerry V.97
Title: StemBerry_v97.py
Last updated: 9/08/2022
Dev: Clayton Bennett
OG dev: Austin Bebee
Description: SOCEM GUI. Connect RPi to Arduino, collect raw data. Save text inputs.

Contents (in order):
- Library imports
- Global Variables
- Global Functions
- GUI Class
 - Home / Initial input screen
 - Data collection (Record Force) screen
 - Runs data collection function
 - Stores data & saves data
 - Plots F v D graph
 - Load cell calibration screen
 - Error report screen
- Excute GUI command

V15
 - Change to 9 cell and 3 range count inputs
V19
 - Rip out defunct calculations
 - Clean up code, specifically by organizing statements of place for tkinter items
V37
 - Dial in functionality with pretty new GUI.
 - barbottom (not barmiddle) set to 70%-90% of stem height
V42
 - Develop top level methods
V50
 - Functional save state, save files, naming convention edge cases, and crisp appearance

V54
 - Generate CSV's, suppress XLSX's
V56
 - Retain 9-cell variables, for EI assessment upon saving counts, without reopening CSV files
V67
 - So many things.
v77
 - Serial collection functial, drinking from a waterhose, high hz
 - Tare button message.

 63

 - PeakClick popup window.

V84
 - The way peak clicks are handled and saved was moved to the inside of the choose peaks code,
becuase plt.show() won't give up.
 - Shut down plt.show after CSV file is saved.
V88
 - GUI.filename_force updated on page change to either record force frame or final inputs page
 - nameBlackBox updated to remove excess hyphen when direction ==''
 - XLSX compilation file functional, currently set to seek force and EI files
 - EI calcualtion works - only needs 1 file for all four nine-cell-scheme tests.
 - This thing is getting heavy, 2844 lines.
V90
 - Identify OS and choose filepath accordingly.

V92
 - Trigger peak selection for all tests, with the assessAllTests boolean.
 - Noticed that encoderWorked_override is poorly implemented. No reason to fix now, but, should
be alterable as opposed to needing manual suppression through commenting
 - GUI.currentdirection.get() set to "" on_frame_show RecordForce.
V94
 - Changed mass measurement from kg to gramsa
 - Fixed all time units to be (sec), not (s) or (seconds), and certainly not (ms)
V96
 - EI is now calculated in lbs*in^2, then converted to metric N*cm^2. Input is metric, conversion
happens inside, processing is SAE, then conversion to metric before output to metric.
V97
 - EI calculation betaV edge cases dealt with: if nan, set betaV to 0.
Fix:
- Change compilation to access CSV data rather than state data. This is to protect against data loss if
the computer dies.
- And, load state. Load state would be sick.
- Add more variables to state save backup text file.
- Remove auto graph button, or at least uncheck it: use it to refer to auto clicker
- Finish autoclicker by setting plt.show() into an inset tkinter gui popup, and then mainoop.
 Use: FigureCanvasTkAgg,NavigationToolbar2Tk,plt,Cursor.
- dev port is currently defined manually, given dev_manualOverride
- move header variable inputs
- make directory inputtable using dropdown menu item and textbox
- upgrade tkinter items to CustomTkinter
- PRIORITY: CREATE BASE NAME FROM VARIABLE AND PLOT: GUI.filename_force.get() is getting
dangerous.

Notes:
- exec() is your friend. Use is to run multiple lines of code which you can copy and paste into a shell,
using triple ' commenting
- save as separate CSV files, then as one combined XLSX file with multiple pages
'''

 64

''' Libraries '''
import serial
from serial import Serial
from serial import *
import serial.tools.list_ports # need this
import tkinter as tk
from tkinter import * # tk.Label == Label, tk.Button == Button, tk.Entry == Entry
import threading
from multiprocessing import Process
import csv

import matplotlib
from matplotlib import style
matplotlib.use("TkAgg")
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk
from matplotlib.figure import Figure
#import matplotlib.animation as animation
import matplotlib.pyplot as plt
from matplotlib.widgets import Cursor
import itertools
from itertools import zip_longest
import subprocess
import sys
import os
import platform
from os import path
import numpy as np
import pandas as pd
#import peakutils
#from PeakUtils.Plot import plot as pplot
import math
import struct
from PIL import ImageTk,Image
import datetime
from datetime import date
import time

''' Global Variables '''
operator = 'Clayton Bennett'
location = 'Kambitsch Farm'
coordinates = '46.592516,-116.946268'
script = os.path.basename(__file__)
directory = os.path.dirname(__file__)
operatingsystem = platform.system() #determine OS
use or sys.plaform instead of platform.system, to avoid importing platform
print("operatingsystem =",operatingsystem)
print("os.getlogin() =",os.getlogin())

 65

print("operator =",operator)
print("location =",location)
today = date.today()
datestring = today.strftime("%b-%d-%Y")
ignoreserial = False # True
#ignoreserial = True # delete this # if RecordForce.ser.isOpen() == False:
barlength = 76 # cm. this shouldn't ever change, unless the bar is replaced. i.e. the width of a side hit
cell.
#dev_manual = 'COM7' # manual override
dev_manual = '/dev/ttyACM0' # manual override
dev_manualOverride = True
useInitialPlot_PeackClick = False
disReferenced_PeakClick = False
barradius = .8 # 1 cm = 0.32 inches
#barradius = 1 # 1 cm = 0.32 inches
default_stemheight = 10.0 # cm
initial_barbottomOverStemheight_coeff = 0.8
convert_KgToLbs = 2.20462262 #kg to lbs
convert_KgToN = 1/9.81 #kg to N # CHECK FOR ACCURACY CB 8/9/2022
convert_NToLbs = 4.44822
#calibrationFactor = 199750 # 23.4 N > 5 lbs; 5 lbs = 22.2411
calibrationFactor = 204200 # 22.24 N = 5 lbs

inchonvert = (((math.pi*(0.764))*31.4136)/359) # converts displacement to inches, wheel diameter
= 31.4136
visualizeDatastream = False #True #set to live graph for data display
sleepSend = 0.5
encoderWorked_override = False # False means encoder will be trated as not working. this is poor
code and should be improved.
assessAllTests = True
refreshAllAuto = False
#visualizeDatastream = True
visualizeDatastream (search: "def datafeed(") is broken right now. Refer to earlier versions (pre
v65)for reference of how Bebee left it.

vis = 's' # legacy
vis = 'nope' #

if operatingsystem == 'Windows':
 if os.getlogin() == 'clayt':
 address = r'C:\Users\clayton\OneDrive - University of Idaho\AqMEQ\SOCEM\Data - Instron and
SOCEM - 2020, 2021\SOCEM_DATA_2021'
 dev_guess = 'COM3' # manual override, windows 10 OS
 else:
 dev_manualOverride = False
 address = directory + '/SOCEM_data'
 if not os.path.exists(address):
 os.makedirs(address)

 66

elif operatingsystem == 'Linux':
 dev_guess = '/dev/ttyACM0' # manual override raspian OS
 address = '/home/pi/Desktop/SOCEM_data_2022'
else:
 address = directory + '/SOCEM_data'
 dev_guess = dev_manual
 dev_manualOverride = False
 if not os.path.exists(address):
 os.makedirs(address)

''' matplotlib Graph Settings '''
'''
style.use("ggplot")
f = Figure(figsize=(4.85,3.9), dpi=75)
a = f.add_subplot(111)
a.set_ylim(0, 25)
'''

''' Methods'''
Determine Arduino serial port address
def SerConnect():
 #try:
 ports = serial.tools.list_ports.comports()
 try:
 dev = ports[0].device
 except:
 #dev = '/dev/ttyACM0' # only works on pi
 dev = dev_guess # based on operating system
 if dev_manualOverride == True:
 dev = dev_manual # manual override
 try:
 ser = serial.Serial(dev, 115200, timeout=4,writeTimeout = 2,) # 1 second timeout
 #print(type(ser))
 print("dev = "+dev)
 ser.reset_input_buffer()
 #ser.isOpen()
 #GUI.ignoreserial = False
 return ser # this is the only spot it should be called ser, not RecordForce.ser

 except:
 GUI.ignoreserial = True
 error = 'serial connection never established'
 eCode = 'e1' # eCode = e1
 GUI.errors.append(error) # append error label
 GUI.errorCodes.append(eCode) # append error code
 #popup('serial connection')
 print("eCode = "+eCode)

 67

if serial disconnect (unplugged) reconnect - NOTE: doesn't properly work currently.
def SerReconnect():
 print("SerReconnect()")
 try:
 #if GUI.ignoreserial == False:
 GUI.ignoreserial = False
 try:
 RecordForce.ser.close()
 GUI.ignoreserial = False
 except:
 GUI.ignoreserial = True
 RecordForce.ser = SerConnect()

 except:
 #else:
 GUI.ignoreserial = True
 print("\nYou hit the 'SerReconnect' dropdown menu item while GUI.ignoreserial ==
True.\nSerial cannot be reconnected because\neither an arduino is not connected to your
computer\nor the arduino is not sought by StemBerry.")
 RecordForce.message_connectArduino()

def overwriteGuard(filename):# prevents overwriting by checking if filename already exists in saving
folder
 return path.exists(filename) # True = already exits, False = doesn't exist

def overwriteGuardPage(filename):# prevents overwriting by checking if filename already exists in
saving folder
 #return path.exists(filename) # True = already exits, False = doesn't exist
 return False # don't mess up!

def data_display(visual): #changes display method #DELETE?
 global visualizeDatastream
 visualizeDatastream = visual
 return visualizeDatastream

#if any error occurs, display popup error msg
def popup(error):
 popup = tk.Tk()
 popup.wm_title("Error")
 E_label = Label(popup, text="A {} error occurred.".format(error), font=("arial", 12, "bold"))
 E_label.pack(side="top", fill="x", pady=10)
 popup.mainloop()

def popup_chooseFolder():
 popup_chooseFolder = tk.Tk()
 popup_chooseFolder.wm_title("Choose Folder")
 E_label = Label(popup_chooseFolder, text="Paste file output directory here.", font=("arial", 12,
"bold"))

 68

 #E_label.pack(side="top", fill="x", pady=10)
 E_label.grid(row=0, column=1)
 #GUI.addressInput.set("")
 folder_entry = Entry(popup_chooseFolder, textvariable=GUI.addressInput, font = ("arial", 11,
"bold"), width= 70, bg="white", fg="gray1")
 folder_entry.grid(row=1, column=1)
 save_button = Button(popup_chooseFolder,text = "Save", font = ("arial", 14, "bold"), height = 1,
width = 6, fg = "ghost white", bg = "dodgerblue3",command=lambda:updateAdress())
 save_button.grid(row=2, column=1)
 popup_chooseFolder.mainloop()

 ''' Frame: Folder Input Field''
 barset_frame = tk.LabelFrame(self, text='Bar Bottom Quickset',font = ("arial", 14, "bold"), width=
10, bg="white", fg="gray1")
 barset_frame.place(x = 340, y = 230)
 ''' ''

def updateAdress():
 print("updateAddress is broken. Please develop.")
 print("GUI.addressInput.get() = ",GUI.addressInput.get())
 print("GUI.address = ",GUI.address)
 #GUI.address = GUI.addressInput.get() # broken right now
 #print("GUI.address = ",GUI.address)

def showErrors():
 GUI.show_frame(ErrorReport) # show Error Report page
 ErrorReport.showErrors2(GUI.frames[ErrorReport]) # display errors in lists

def update_filename_preTest():
 filename_preTest = nameBlackBox("preTest",GUI.filename_preTest.get())
 GUI.filename_preTest.set(filename_preTest)
 filename_all = filename_preTest.replace("preTest","all")
 GUI.filename_all.set(filename_all)

def testForNineCellFilename(): # used to identify when nine-cell force, distance, and time data
exists, and passes it to state data.
 # the purpose of this is to avoid reopening CSV files in order to assess nine-cell data
 # because, we have to wait for counts after to assess EI
 # it would be easier to test right away to get peaks
 # have a check box for nine cell test
 # EI cannot be assessed for non-nine cell, because counts don't exist
 # if box not checked, post test frame goes to single input for stem count, one number, with
another number for range distance of count
 # # Assessment is trigged at save state button push
 #ninecellfilename = GUI.varietyname.get()+","+GUI.plotname.get()+"_"
 ninecellfilename = GUI.varietyname.get()+","+GUI.plotname.get()
 ninecellfilename_side1 = ninecellfilename+"_side1"
 ninecellfilename_side2 = ninecellfilename+"_side2"

 69

 ninecellfilename_side3 = ninecellfilename+"_side3"
 ninecellfilename_forward = ninecellfilename+"_foward"
 currentFilename_force = GUI.filename_force.get()
 # create GUI variable, for handling without reopening CSV's
 #if (currentFilename_force == ninecellfilename_side1):
 if (GUI.currentdirection.get() == "side1"):
 GUI.forcePushed_side1 = GUI.forcePushed
 GUI.distanceTraveled_side1 = GUI.distanceTraveled
 GUI.timeElapsed_side1 = GUI.timeElapsed
 #if (currentFilename_force == ninecellfilename_side2):
 if (GUI.currentdirection.get() == "side2"):
 GUI.forcePushed_side2 = GUI.forcePushed
 GUI.distanceTraveled_side2 = GUI.distanceTraveled
 GUI.timeElapsed_side2 = GUI.timeElapsed
 #if (currentFilename_force == ninecellfilename_side3):
 if (GUI.currentdirection.get() == "side3"):
 GUI.forcePushed_side3 = GUI.forcePushed
 GUI.distanceTraveled_side3 = GUI.distanceTraveled
 GUI.timeElapsed_side3 = GUI.timeElapsed
 #if (currentFilename_force == ninecellfilename_forward):
 if (GUI.currentdirection.get() == "forward"):
 GUI.forcePushed_forward = GUI.forcePushed
 GUI.distanceTraveled_forward = GUI.distanceTraveled
 GUI.timeElapsed_forward = GUI.timeElapsed

def createBackupFile():
 ''' Create a temp text file, with a list of all variables and variable names, that would be awesome '''
 '''update_filename_preTest()
 update_filename_postTest()
 sniff_filename_force()
 update_filename_postTest()
 saveState_update_filenames()'''
 now = datetime.datetime.now()
 unix_now = time.mktime(now.timetuple())
 unix_now_int = int(unix_now) # still gets seconds # the purpose of this is to append to filenames
 str(unix_now_int)
 filename_savestate = "backup_stemberry_"+str(unix_now_int)+".txt"
 filename_savestate_full = GUI.address+"/"+filename_savestate
 print("State saved at "+str(datetime.datetime.fromtimestamp(unix_now_int))+":
"+filename_savestate)
 # list all GUI vars, add them to a txt file

GUI.masslist=[GUI.cell1Mass.get(),GUI.cell2Mass.get(),GUI.cell3Mass.get(),GUI.cell4Mass.get(),GUI.c
ell5Mass.get(),GUI.cell6Mass.get(),GUI.cell7Mass.get(),GUI.cell8Mass.get(),GUI.cell9Mass.get()]

GUI.stemcounts=[GUI.cell1Count.get(),GUI.cell2Count.get(),GUI.cell3Count.get(),GUI.cell4Count.get(
),GUI.cell5Count.get(),GUI.cell6Count.get(),GUI.cell7Count.get(),GUI.cell8Count.get(),GUI.cell9Count
.get()]

 70

 GUI.diameters_cell1 =
[GUI.cell1Diameter1.get(),GUI.cell1Diameter2.get(),GUI.cell1Diameter3.get(),GUI.cell1Diameter4.ge
t()]
 GUI.diameters_cell2 =
[GUI.cell2Diameter1.get(),GUI.cell2Diameter2.get(),GUI.cell2Diameter3.get(),GUI.cell2Diameter4.ge
t()]
 GUI.diameters_cell3 =
[GUI.cell3Diameter1.get(),GUI.cell3Diameter2.get(),GUI.cell3Diameter3.get(),GUI.cell3Diameter4.ge
t()]
 GUI.diameters_cell4 =
[GUI.cell4Diameter1.get(),GUI.cell4Diameter2.get(),GUI.cell4Diameter3.get(),GUI.cell4Diameter4.ge
t()]
 GUI.diameters_cell5 =
[GUI.cell5Diameter1.get(),GUI.cell5Diameter2.get(),GUI.cell5Diameter3.get(),GUI.cell5Diameter4.ge
t()]
 GUI.diameters_cell6 =
[GUI.cell6Diameter1.get(),GUI.cell6Diameter2.get(),GUI.cell6Diameter3.get(),GUI.cell6Diameter4.ge
t()]
 GUI.diameters_cell7 =
[GUI.cell7Diameter1.get(),GUI.cell7Diameter2.get(),GUI.cell7Diameter3.get(),GUI.cell7Diameter4.ge
t()]
 GUI.diameters_cell8 =
[GUI.cell8Diameter1.get(),GUI.cell8Diameter2.get(),GUI.cell8Diameter3.get(),GUI.cell8Diameter4.ge
t()]
 GUI.diameters_cell9 =
[GUI.cell9Diameter1.get(),GUI.cell9Diameter2.get(),GUI.cell9Diameter3.get(),GUI.cell9Diameter4.ge
t()]

 lines = [
 'Units: diameter (mm), height (cm), range (cm), length (cm), mass (g), time (sec), force (N) \n',
 'script = '+script,
 'directory = '+directory+'/',
 'operatingsystem = '+operatingsystem,
 'os.getlogin() = '+os.getlogin(),
 'operator = '+operator,
 'location = '+location,
 'coordinates = '+coordinates,
 'GUI.ignoreserial = '+str(GUI.ignoreserial),
 'default_stemheight = '+str(default_stemheight),
 'calibrationFactor = '+str(calibrationFactor),
 'encoderWorked_override = '+str(encoderWorked_override),
 'assessAllTests = '+str(assessAllTests),
 'barlength = '+str(barlength),
 'datestring = '+datestring,
 'today = '+str(today),
 'now = '+str(now),
 'unix_now '+str(unix_now),
 'unix_now_int = '+str(unix_now_int),

 71

 'backup filename unix_now_int decoded: '+
str(datetime.datetime.fromtimestamp(unix_now_int))+'\n',
 'GUI.timestring.get() = '+GUI.timestring.get(),
 'GUI.errors = '+makeDataString(GUI.errors),
 'GUI.errorCodes = '+makeDataString(GUI.errorCodes),
 'GUI.varietyname.get() = '+GUI.varietyname.get(),
 'GUI.plotname.get() = '+GUI.plotname.get(),
 'GUI.currentdirection.get() = '+GUI.currentdirection.get(),
 'GUI.filename_force.get() = '+GUI.filename_force.get(),
 'GUI.filename_preTest.get() = '+GUI.filename_preTest.get(),
 'GUI.filename_postTest.get() = '+GUI.filename_postTest.get(),
 'GUI.stemheight.get() = '+str(GUI.stemheight.get()),
 'GUI.barmiddle.get() = '+str(GUI.barmiddle.get()),
 'GUI.barbottom.get() = '+str(GUI.barbottom.get()),
 'GUI.passfillednames_checkbox.get() = '+str(GUI.passfillednames_checkbox.get()),
 'GUI.startRange1.get() = '+str(GUI.startRange1.get()),
 'GUI.startRange2.get() = '+str(GUI.startRange2.get()),
 'GUI.startRange3.get() = '+str(GUI.startRange3.get()),
 'GUI.travelvelocity = '+str(GUI.travelvelocity),
 'GUI.samplingrate = '+str(GUI.samplingrate),
 'GUI.masslist = '+makeDataString(GUI.masslist),
 'GUI.stemcounts = '+makeDataString(GUI.stemcounts),
 'GUI.diameters_cell1 = '+makeDataString(GUI.diameters_cell1),
 'GUI.diameters_cell2 = '+makeDataString(GUI.diameters_cell2),
 'GUI.diameters_cell3 = '+makeDataString(GUI.diameters_cell3),
 'GUI.diameters_cell4 = '+makeDataString(GUI.diameters_cell4),
 'GUI.diameters_cell5 = '+makeDataString(GUI.diameters_cell5),
 'GUI.diameters_cell6 = '+makeDataString(GUI.diameters_cell6),
 'GUI.diameters_cell7 = '+makeDataString(GUI.diameters_cell7),
 'GUI.diameters_cell8 = '+makeDataString(GUI.diameters_cell8),
 'GUI.diameters_cell9 = '+makeDataString(GUI.diameters_cell9),
 'GUI.EI_fullcontact = '+makeDataString(GUI.EI_fullcontact),
 'GUI.EI_intermediatecontact = '+makeDataString(GUI.EI_intermediatecontact),
 'GUI.EI_nocontact = '+makeDataString(GUI.EI_nocontact),
 'GUI.AvgEI_intermediatecontact = '+makeDataString(GUI.AvgEI_intermediatecontact),
 str(datetime.datetime.now())+'\n']

 evenmorelines = [
 'GUI.filename_all.get() = '+GUI.filename_all.get(), # no longer exists, compilation XLSX
 'GUI.distanceTraveled = '+makeDataString(GUI.distanceTraveled),
 'GUI.forcePushed = '+makeDataString(GUI.forcePushed),
 'GUI.timeElapsed = '+makeDataString(GUI.timeElapsed)+'\n',
 'Collected data, nine cell scheme:',
 'GUI.forcePushed_side1 = '+makeDataString(GUI.forcePushed_side1),
 'GUI.distanceTraveled_side1 = '+makeDataString(GUI.distanceTraveled_side1),
 'GUI.timeElapsed_side1 = '+makeDataString(GUI.timeElapsed_side1),
 'GUI.forcePushed_side2 = '+makeDataString(GUI.forcePushed_side2),
 'GUI.distanceTraveled_side2 = '+makeDataString(GUI.distanceTraveled_side2),

 72

 'GUI.timeElapsed_side2 = '+makeDataString(GUI.timeElapsed_side2),
 'GUI.forcePushed_side3 = '+makeDataString(GUI.forcePushed_side3),
 'GUI.distanceTraveled_side3 = '+makeDataString(GUI.distanceTraveled_side3),
 'GUI.timeElapsed_side3 = '+makeDataString(GUI.timeElapsed_side3),
 'GUI.forcePushed_forward = '+makeDataString(GUI.forcePushed_forward),
 'GUI.distanceTraveled_forward = '+makeDataString(GUI.distanceTraveled_forward),
 'GUI.timeElapsed_forward = '+makeDataString(GUI.timeElapsed_forward),
 str(datetime.datetime.now())]

 try:
 morelines = [
 '\n',
 'RecordForce.ser = '+str(RecordForce.ser),
 str(datetime.datetime.now())]
 except:
 morelines = [
 '\n',
 'RecordForce.ser = '+'error',
 str(datetime.datetime.now())]

 with open(filename_savestate_full, 'w') as f:
 f.write('\n'.join(lines))
 f.write('\n'.join(morelines))
 try:
 f.write('\n'.join(evenmorelines))
 except:
 pass

def makeDataString(dataVector):
 #timeElapsed_string = ' '.join(str(e) for e in GUI.timeElapsed)
 dataString = ' '.join(str(e) for e in dataVector)
 return dataString

def restoreState():
 print("Please develop.")
 # choose txt file (example: backup_stemberry_1660192559.txt
 # trigger GUI directory and file selection would be sick.
 # only restore postTest fields? start there.

def rename(filename): #if filename already exists - prompt user to rename
 popup = tk.Tk()
 popup.wm_title('Prompt Rename')
 renameIt = Label(popup, text = 'Filename\n"{}"\nalready exists in the saving location.\nPlease
rename and press Save.'.format(filename), font = ('arial', 10, 'bold'))
 increment_button = Button(popup,text = "Auto Modify", font = ("arial", 14, "bold"), height = 2,
width = 6, fg = "ghost white", bg = "dodgerblue3",command=lambda:incrementRename(filename))
 overwrite_button = Button(popup, text = "Overwrite", font = ("arial", 14, "bold"), height = 2, width
= 6, fg = "ghost white", bg = "red4",command=lambda:overwrite(filename))

 73

 renameIt.pack(side='top', fill='x', ipadx=10, ipady=10)
 increment_button.pack(side='top', fill='both', ipadx=10, ipady=1)
 overwrite_button.pack(side='top', fill='both', ipadx=10,ipady=1)

 popup.mainloop()
def renamePage(filename):
 print("Please develop, prevent pages from being overwritten in the filename_all spreadsheet")

def incrementRename(filename):
 print("please develop, auto modify filename")

def overwrite(filename):
 print("please develop, overwrite filename")

#closes GUI (from file menubar)
def close():
 createBackupFile()
 Python = sys.executable
 os.execl(Python, Python, * sys.argv)

def datafeed():
 #frame = tk.Frame.RecordForce
 frame = RecordForce.container
 RecordForce.datafeed_frame
 print("frame = ",frame)
 if visualizeDatastream == True:# data displayed in scrollbars (default)
 # Displays incoming data
 # scroll = Scrollbar(RecordForce.datafeed_frame)
 scroll = Scrollbar(frame)# what is this? TK!
 print("scroll = ",scroll)
 #scroll = Scrollbar(self)# what is this? TK!
 ''
 RecordForce.time_label = Label(RecordForce.datafeed_frame, text = "Time (sec)",font = ("arial",
14, "bold"), fg = "dodgerblue3", bg = "ghost white")
 RecordForce.Timelist = Listbox(RecordForce.datafeed_frame, yscrollcommand = scroll.set, bg =
"ghost white",highlightbackground = "gray2", width = 7, height = 1, font = ("arial", 14, "bold"), fg =
"dodgerblue3")
 RecordForce.dis_label = Label(RecordForce.datafeed_frame, text = "Distance (cm)",font =
("arial", 14, "bold"), fg = "dodgerblue3", bg = "ghost white")
 RecordForce.Dislist = Listbox(RecordForce.datafeed_frame, yscrollcommand = scroll.set, bg =
"ghost white",highlightbackground = "gray2", width = 7, height = 1, font = ("arial", 14, "bold"), fg =
"dodgerblue3")
 RecordForce.force_label = Label(RecordForce.datafeed_frame, text = "Force (N)",font = ("arial",
14, "bold"), fg = "dodgerblue3", bg = "ghost white")

 74

 RecordForce.Forcelist = Listbox(RecordForce.datafeed_frame, yscrollcommand = scroll.set, bg =
"ghost white",highlightbackground = "gray2", width = 7, height = 5, font = ("arial", 14, "bold"), fg =
"dodgerblue3")
 '''
 RecordForce.time_label = Label(frame, text = "Time (sec)",font = ("arial", 14, "bold"), fg =
"dodgerblue3", bg = "ghost white")
 RecordForce.Timelist = Listbox(frame, yscrollcommand = scroll.set, bg = "ghost
white",highlightbackground = "gray2", width = 7, height = 1, font = ("arial", 14, "bold"), fg =
"dodgerblue3")
 RecordForce.dis_label = Label(frame, text = "Distance (cm)",font = ("arial", 14, "bold"), fg =
"dodgerblue3", bg = "ghost white")
 RecordForce.Dislist = Listbox(frame, yscrollcommand = scroll.set, bg = "ghost
white",highlightbackground = "gray2", width = 7, height = 1, font = ("arial", 14, "bold"), fg =
"dodgerblue3")
 RecordForce.force_label = Label(frame, text = "Force (N)",font = ("arial", 14, "bold"), fg =
"dodgerblue3", bg = "ghost white")
 RecordForce.Forcelist = Listbox(frame, yscrollcommand = scroll.set, bg = "ghost
white",highlightbackground = "gray2", width = 7, height = 5, font = ("arial", 14, "bold"), fg =
"dodgerblue3")
 '''
 RecordForce.time_label.place(x = 180, y = 110)

 RecordForce.Timelist.place(x = 180, y = 140)
 RecordForce.dis_label.place(x = 280, y = 110)
 RecordForce.Dislist.place(x = 280, y = 140)
 RecordForce.force_label.place(x = 420, y = 110)
 RecordForce.Forcelist.place(x = 420, y = 140)

 else:# user decided for no data display
 try:#clear scrollbars if they were there
 RecordForce.Dislist.place_forget()
 RecordForce.Forcelist.place_forget()
 RecordForce.Timelist.place_forget()
 RecordForce.dis_label.place_forget()
 RecordForce.force_label.place_forget()
 RecordForce.time_label.place_forget()
 except:# no scrollbars
 pass

def passData():

 '''Scrollbars Options'''
 # if scrollbars option = on:
 if visualizeDatastream == True:
 try: # puts data on GUI display by default (user can turn off)

 RecordForce.Dislist.insert(END, str(GUI.distanceTraveled[i]))# inserts at end of listbox to
actually display

 75

 RecordForce.Dislist.see(END)# makes sure listbox is at end so it displays live data
 RecordForce.Forcelist.insert(END, str('%.2f' % GUI.forcePushed[i]))
 RecordForce.Forcelist.see(END)
 RecordForce.Timelist.insert(END, str('%.2f' % GUI.timeElapsed[i]))
 RecordForce.Timelist.see(END)

 #scrollbars options = off
 '''
 except:
 pass
 '''
 except:
 GUI.errors.append('data append') # label
 eCode = 'e4'
 GUI.errorCodes.append(eCode)
 print("eCode = "+eCode) # eCode = e4

* # DATA COLLECTION FUNCTION - Acquires live data from Arduino # * #
def collectData():
 hang=0
 j=0
 nothingToRead=0 # controls timeout
 blankline = "b'\n"
 lasttimetick = -1
 while RecordForce.hasStarted==True and RecordForce.hasSentStop==False:
 time.sleep(0.02)
 bytecount = RecordForce.ser.in_waiting
 #print("RecordForce.ser.in_waiting = ",bytecount)
 if bytecount > 5 and RecordForce.hasSentStop==False: # this does happen
 #print("datachunk...") # stopping after this

 try:
 time.sleep(0.2) # no luck
 ser_bytes = RecordForce.ser.read(bytecount)
 if blankline in str(ser_bytes):
 print("blankline")
 continue
 except:
 print("Failed: ser_bytes = RecordForce.ser.readline()")
 continue
 hang = 0
 nothingToRead=0
 #print("ser_bytes = ",ser_bytes)
 line = ser_bytes.decode('utf-8').rstrip()
 datapacket = line.splitlines()
 # parse datapacket
 for i in datapacket:

 76

 split = i.split("|")
 if RecordForce.hasSentStop == False:
 try:
 #print("split = ",split, float(split[0]),float(split[1]),float(split[2]))
 if round(j/10,0) == float(j/10):
 print("j, split = ",j, ",",split)
 distance = round(float(split[0]),3)
 force = round(float(split[1]),3)
 timetick = round(float(split[2]),3)/1000 # convert milliseconds to seconds
 if timetick > lasttimetick:
 GUI.timeElapsed.append(timetick)# list of GUI.distanceTraveled time
 else:
 timetick = lasttimetick # good enough.
 GUI.timeElapsed.append(timetick)# list of GUI.distanceTraveled time
 GUI.distanceTraveled.append(distance)# list of inches traveled @ does this happen
with the whole list, or one element at a time?
 GUI.forcePushed.append(force)# list of force traveled
 lasttimetick = timetick
 except:
 print("missed a line, list index out of range.")
 pass

 j+=1
 if line =="Stopped!":
 RecordForce.sendStop()

 # the purpose of this elif is to allow the while loop to iterate if there's nothing to read.
 # But also, it has primarily been entered if the serial connection has already timed out
 elif bytecount < 6 and bytecount > 0 :
 ser_bytes = RecordForce.ser.read(bytecount)
 #print("ser_bytes = ",ser_bytes)
 nothingToRead +=1
 if nothingToRead>5: # if the while loop goes through five iterations, without seeing anything
worth recording, give up.
 RecordForce.sendStop()
 print("Hung up.")
 SerReconnect()
 GUI.show_frame(InitialInputs)
 else:
 hang +=1
 print("go back to top of while loop")
 if hang>10: # if the while loop goes through ten iterations of radio silence, give up. The serial
connection probably timed out. search 'timeout = '
 RecordForce.sendStop()
 print("Hung up, timeout.")
 SerReconnect()
 GUI.show_frame(InitialInputs)

 77

def runDataCollect():
 try:
 RecordForce.sendStart()
 except:
 print("run fail")
 GUI.errors.append('serial com. (start data)') # label
 eCode = 'e2' # eCode = e2
 GUI.errorCodes.append(eCode)
 print("eCode = "+eCode)
 popup('start data collect')

 RecordForce.thread2_collectData = threading.Thread(target = collectData)
 RecordForce.thread2_collectData.start()

def incrementName(filename):
 hyphen = "_"
 # determine last few characters from a filename
 def incrementvars(filename):
 lastchar = filename[len(filename)-1]
 secondtolastchar = filename[len(filename)-2]
 thirdtolastchar = filename[len(filename)-3]
 lastcharandsecondtolastchar = str(secondtolastchar+lastchar)
 return lastchar, secondtolastchar, thirdtolastchar, lastcharandsecondtolastchar

 #check if the last two are hyphens. if there is more than one hypthen, remove the last character
until there is only one hyphen.
 def hyphencheck(filename,hyphen,lastchar, secondtolastchar, thirdtolastchar,
lastcharandsecondtolastchar):
 while lastchar == hyphen and secondtolastchar == hyphen: # if two hyphens at the end
 filename = filename[:-1] # remove last character
 incrementvars()
 return filename, lastchar, secondtolastchar, thirdtolastchar, lastcharandsecondtolastchar

 if filename == "": # default, if user tried to increment without inputting any varietyname,
plotname, or filename
 filename = datestring+","+GUI.timestring.get()

 lastchar, secondtolastchar, thirdtolastchar, lastcharandsecondtolastchar =
incrementvars(filename)
 filename, lastchar, secondtolastchar, thirdtolastchar, lastcharandsecondtolastchar =
hyphencheck(filename,hyphen,lastchar, secondtolastchar, thirdtolastchar,
lastcharandsecondtolastchar)

 if lastchar == hyphen: # if last character is a hyphen
 newName = str(filename+str("1"))
 elif secondtolastchar == hyphen and lastchar.isnumeric: # if single digit preceded by a hyphen
 #newName = str(filename+str(int(lastchar)+1))
 filename = filename[:-1] # remove last character

 78

 newName = str(filename+str(int(lastchar)+1))
 elif thirdtolastchar == hyphen and lastcharandsecondtolastchar.isnumeric: # if double digits
preceded by a hyphen
 filename = filename[:-1] # remove last character
 filename = filename[:-1] # remove last character
 newName = str(filename+str(int(lastcharandsecondtolastchar)+1))
 elif filename == "":
 newName = date
 else:
 newName = str(filename+"_1")
 return newName
 #GUI.filename_force.set(newName)

''' Edge cases: Filenaming '''
def nameDirectionScrub(filename):
 if ("_side1" in filename):
 filename=filename.replace("_side1","")
 print(filename)
 if ("_side2" in filename):
 filename=filename.replace("_side2","")
 if ("_side3" in filename):
 filename=filename.replace("_side3","")
 if ("_forward" in filename):
 filename=filename.replace("_forward","")
 if ("_postTest" in filename):
 filename=filename.replace("_postTest","")
 return filename

def nameMissing(varietyname,plotname):
 if varietyname == "":
 varietyname = datestring
 if plotname == "":
 plotname = GUI.timestring.get() # plotname = GUI.timestring.get() # if you want the timestring
(serving at plotname) to not change...but then it will never change
 return varietyname, plotname

def nameBlackBox(direction,filename):
 varietyname = GUI.varietyname.get()
 plotname = GUI.plotname.get()
 check=GUI.passfillednames_checkbox.get()
 if GUI.filename_force.get()=="" and check==1 and direction=='':
 varietyname, plotname = nameMissing(varietyname, plotname)
 #print(varietyname, plotname)
 filename = str(varietyname+str(",")+plotname)
 elif GUI.filename_force.get()=="" and check==1 and direction!='':
 varietyname, plotname = nameMissing(varietyname, plotname)
 filename = str(varietyname+str(",")+plotname+"_"+direction)
 elif GUI.filename_force.get()=="" and check==0 and direction !='':

 79

 filename = datestring+","+time.strftime("%H%M")+"_"+direction
 elif GUI.filename_force.get()!="" and check==1 and direction !='':
 varietyname, plotname = nameMissing(varietyname, plotname)
 filename = str(varietyname+str(",")+plotname+str("_")+direction)
 elif GUI.filename_force.get()!="" and check==0 and direction !='':
 if ("side1" in filename) or ("side2" in filename) or ("side3" in filename) or ("forward" in
filename) or ("postTest" in filename):
 filename = nameDirectionScrub(GUI.filename_force.get())
 filename = filename+"_"+direction
 else:
 filename = filename+"_"+direction
 elif GUI.filename_force.get()=="" and check==0 and direction =='':
 filename = datestring+","+time.strftime("%H%M")
 elif GUI.filename_force.get()!="" and check==1 and direction =='':
 varietyname, plotname = nameMissing(varietyname, plotname)
 filename = str(varietyname+str(",")+plotname)
 elif GUI.filename_force.get()!="" and check==0 and direction =='':
 if ("side1" in filename) or ("side2" in filename) or ("side3" in filename) or ("forward" in
filename) or ("postTest" in filename):
 filename = nameDirectionScrub(GUI.filename_force.get())
 filename = filename
 else:
 filename = filename
 #GUI.filename_postTest.set(filename_postTest)
 return filename
''' end: Edge cases: Filenaming '''

''' Single XLSX workbook created from all expected CSV files for 9-cell study'''
def generateXSLXcombinedFile():
 writer = pd.ExcelWriter('default.xlsx')
 for csvfilename in sys.ar[1:]:
 df = pd.read.csv(csvfilename)
 #FIX df.to_excel(writer.sheet_names=os.path.splitext(csvfilename)[0]) # "keyword cannot be an
expression"
 writer.save()
def peakClickRunAndSave(filename):
 PeakClick() # you cannot put in counts first....because they haven't been collected yet!
 #ergo, run clicks after triggered XLSX workbook creation
''' trigger with button, on Initial Inputs page. Button also clears all data from stemberry, wait it dods
not triggers PeakClick.py, which saves to a separate CSV before all CSV's are wrapped into a xlsx
workbook.
'''

#Bebee legacy
* # DATA COLLECTION FUNCTION - Acquires live data from Arduino # * #
def run(self, ser):
 try:
 started = 's'

 80

 ser.write(started.encode()) #sends 's' to arduino, telling it to start
 print('send s to arduino, legacy')
 except:
 errors.append('serial com. (start data)') # label
 eCode = 'e2'
 errorCodes.append(eCode)
 popup('start data collect')

 ser.flush()
 time.sleep(.1)
 #Don't need this:
 #try:
 #ser_bytes = ser.readline()
 #decoded_bytes.insert(0,(ser_bytes[0:len(ser_bytes)-2].decode("utf-8")))#translates bytes to
string, inserts incoming data in decoded_bytes list
 #except:
 # popup("communication")

 #DATA COLLECTION CODE

 if vis == 's':# data displayed in scrollbars (default)
 # Displays incoming data
 scroll = Scrollbar(self)

 RecordForce.timeLabel = tk.Label(self, text = "s",font = ("arial", 14, "bold"), fg = "dodgerblue2",
bg = "ghost white")
 RecordForce.timeLabel.place(x = 274, y = 70)
 RecordForce.Timelist = Listbox(self, yscrollcommand = scroll.set, bg = "ghost
white",highlightbackground = "gray2", width = 7, height = 1, font = ("arial", 14, "bold"), fg =
"dodgerblue2")
 RecordForce.Timelist.place(x = 240, y = 100)

 RecordForce.disLabel = tk.Label(self, text = "in.",font = ("arial", 14, "bold"), fg = "dodgerblue2",
bg = "ghost white")
 RecordForce.disLabel.place(x = 357, y = 70)
 RecordForce.Dislist = Listbox(self, yscrollcommand = scroll.set, bg = "ghost
white",highlightbackground = "gray2", width = 7, height = 1, font = ("arial", 14, "bold"), fg =
"dodgerblue2")
 RecordForce.Dislist.place(x = 330, y = 100)

 RecordForce.forceLabel = tk.Label(self, text = "lbs.",font = ("arial", 14, "bold"), fg =
"dodgerblue2", bg = "ghost white")
 RecordForce.forceLabel.place(x = 444, y = 70)
 RecordForce.Forcelist = Listbox(self, yscrollcommand = scroll.set, bg = "ghost
white",highlightbackground = "gray2", width = 7, height = 11, font = ("arial", 14, "bold"), fg =
"dodgerblue2")
 RecordForce.Forcelist.place(x = 420, y = 100)

 81

 else:# user decided for no data display
 try:#clear scrollbars if they were there
 RecordForce.Dislist.place_forget()
 RecordForce.Forcelist.place_forget()
 RecordForce.Timelist.place_forget()
 RecordForce.disLabel.place_forget()
 RecordForce.forceLabel.place_forget()
 RecordForce.timeLabel.place_forget()
 except:# no scrollbars
 print("no scrollbars")
 pass

 i = 0
 print("i = 0")
 RecordForce.elapsed = []
 RecordForce.dis = []
 RecordForce.force = []
 string = list()

 #try:

 while RecordForce.collect == True: # GUI in fSerConnect()rontend controls value of collect to
start/stop loop
 if ser.inWaiting() > 0: #checks to see if Serial is available

 try: #make sure serial data can be read/is there
 ser_bytes = ser.readline()
 except:
 errors.append('serial read') # label
 eCode = 'e3'
 errorCodes.append(eCode)
 popup("serial read")

 if i == 0:
 start = time.time() #stopwatch starts

 #DELETE?
 #decoded_bytes.insert(i,(ser_bytes[0:len(ser_bytes)-2].decode("utf-8"))) # acquires &
decodes bytes (incoming Arduino data)
 #string.insert(i,str(decoded_bytes[i])) # inserts decoded bytes into string

 bytesDecoded = (ser_bytes[0:len(ser_bytes)-2].decode("utf-8"))
 #print("bytesDecoded = ",bytesDecoded)
 string.insert(i,str(bytesDecoded)) # inserts decoded bytes into string
 #print(' run ser read ', string[i]) # useful debugging tool
 split = string[i].split("|") # splits data at | (1st = distance, 2nd = force)
 print("split = ",split)

 82

 if len(split) >= 2 and split[0] != "" and split[1] != "": #makes sure data is in proper formatting
before processing (else pair: A)
 inches = split[0]
 pounds = split[1]

 try:
 RecordForce.elapsed.insert(i, time.time() - start)# list of elapsed time
 RecordForce.dis.insert(i, float(inches))# list of inches traveled
 RecordForce.force.insert(i, float(pounds))# list of force traveled

 except:
 errors.append('data append') # label
 eCode = 'e4'
 errorCodes.append(eCode)
 # popup("Arduino data error")
 # print(string[i])

 '''Scrollbars Options'''
 '''
 # if scrollbars option = on:
 try: # puts data on GUI display by default (user can turn off)
 self.Dislist.insert(END, str(dis[i]))# inserts at end of listbox to actually display
 self.Dislist.see(END)# makes sure listbox is at end so it displays live data
 self.Forcelist.insert(END, str('%.2f' % force[i]))
 self.Forcelist.see(END)
 self.Timelist.insert(END, str('%.2f' % elapsed[i]))
 self.Timelist.see(END)

 #scrollbars options = off
 except:
 pass

 i = i+1

 '''
 else: # skips incoming data if not in right format (if pair: A
 errors.append('data skip (incorrect format)') # label
 eCode = 'e5'
 errorCodes.append(eCode)
 '''
 except:
 if RecordForce.collect == True:
 errors.append('serial disconnect')
 eCode = 'e6'
 errorCodes.append(eCode)
 else:
 pass
 '''

 83

'''Classes, Tkinter GUI'''
GUI overarching class
class GUI(tk.Tk):
 def __init__(self, *args, **kwargs):# automatically runs

 tk.Tk.__init__(self, *args, **kwargs)

 GUI.initializeVarsGUI()
 GUI.refreshAll()

 container = tk.Frame(self)
 container.pack(side='top', fill='both',expand = True)
 container.grid_rowconfigure(0, weight=1)
 container.grid_columnconfigure(0, weight=1)

 # top menu configuration
 menubar = Menu(container)
 filemenu = Menu(menubar, tearoff=0)
 datamenu = Menu(menubar, tearoff=0)
 pagemenu = Menu(menubar, tearoff=0)

 filemenu.add_command(label='Serial Reconnect', command = lambda:SerReconnect())
 filemenu.add_command(label='Choose Output Folder', command =
lambda:popup_chooseFolder())
 filemenu.add_command(label='Errors', command = lambda:showErrors())
 filemenu.add_command(label='Save State', command = lambda:createBackupFile())
 filemenu.add_command(label="Exit", command = lambda:close())
 pagemenu.add_command(label="Guide", command=lambda:GUI.show_frame(Guide))
 pagemenu.add_command(label="Initial Inputs",
command=lambda:GUI.show_frame(InitialInputs))
 pagemenu.add_command(label="Record Force",
command=lambda:GUI.show_frame(RecordForce))
 pagemenu.add_command(label="Post Test Inputs",
command=lambda:GUI.show_frame(FinalInputs))
 pagemenu.add_command(label="Calibrate", command=lambda:GUI.show_frame(Calibrate))
 pagemenu.add_command(label="Stem Count PreTest, Classic",
command=lambda:GUI.show_frame(StemCountClassic))
 datamenu.add_command(label="Data Feed Display, On", command =
lambda:data_display(True))
 datamenu.add_command(label="Data Feed Display, Off", command =
lambda:data_display(False))

 menubar.add_cascade(label='File', menu=filemenu)
 menubar.add_cascade(label="Pages", menu=pagemenu)
 menubar.add_cascade(label="Livestream Data Recording", menu=datamenu)

 84

 tk.Tk.config(self, menu=menubar)
 GUI.frames = {}# empty dictionary

 for F in (InitialInputs, RecordForce, FinalInputs, Calibrate, Guide, ErrorReport,
StemCountClassic):# must put all pages in here
 frame = F(container, self)
 self.frames[F] = frame
 frame.grid(row=0, column=0, sticky='nsew')
 frame.configure(background = 'ghost white')

 GUI.show_frame(InitialInputs)

 def initializeVarsGUI():
 GUI.filename_force = StringVar()
 GUI.filename_preTest = StringVar()
 GUI.filename_postTest = StringVar()
 GUI.filename_all = StringVar()
 GUI.varietyname = StringVar()
 GUI.plotname = StringVar()
 GUI.stemheight = DoubleVar()
 GUI.currentdirection = StringVar()#
 GUI.barmiddle = DoubleVar() #
 GUI.barbottom = DoubleVar() #
 GUI.passfillednames_checkbox = IntVar() # revert
 GUI.timestring = StringVar()
 GUI.startRange1, GUI.startRange2, GUI.startRange3 = DoubleVar(), DoubleVar(), DoubleVar() #
cm = StringVar()
 GUI.addressInput = StringVar()

GUI.cell1Mass,GUI.cell2Mass,GUI.cell3Mass,GUI.cell4Mass,GUI.cell5Mass,GUI.cell6Mass,GUI.cell7M
ass,GUI.cell8Mass,GUI.cell9Mass = DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(),
DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar()

GUI.cell1Count,GUI.cell2Count,GUI.cell3Count,GUI.cell4Count,GUI.cell5Count,GUI.cell6Count,GUI.ce
ll7Count,GUI.cell8Count,GUI.cell9Count = DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(),
DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar()

GUI.cell1Diameter1,GUI.cell2Diameter1,GUI.cell3Diameter1,GUI.cell4Diameter1,GUI.cell5Diameter1
,GUI.cell6Diameter1,GUI.cell7Diameter1,GUI.cell8Diameter1,GUI.cell9Diameter1 = DoubleVar(),
DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(),
DoubleVar()

GUI.cell1Diameter2,GUI.cell2Diameter2,GUI.cell3Diameter2,GUI.cell4Diameter2,GUI.cell5Diameter2
,GUI.cell6Diameter2,GUI.cell7Diameter2,GUI.cell8Diameter2,GUI.cell9Diameter2 = DoubleVar(),
DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(),
DoubleVar()

 85

GUI.cell1Diameter3,GUI.cell2Diameter3,GUI.cell3Diameter3,GUI.cell4Diameter3,GUI.cell5Diameter3
,GUI.cell6Diameter3,GUI.cell7Diameter3,GUI.cell8Diameter3,GUI.cell9Diameter3 = DoubleVar(),
DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(),
DoubleVar()

GUI.cell1Diameter4,GUI.cell2Diameter4,GUI.cell3Diameter4,GUI.cell4Diameter4,GUI.cell5Diameter4
,GUI.cell6Diameter4,GUI.cell7Diameter4,GUI.cell8Diameter4,GUI.cell9Diameter4 = DoubleVar(),
DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(), DoubleVar(),
DoubleVar()

 ''' Non-tkinter GUI vars, initialize ''' # for nine cell assessment, save state
 # may as well keep everything here, for fun
 GUI.errors = [] # for tracking errors
 GUI.errorCodes = [] # for tracking errors
 GUI.ignoreserial = ignoreserial
 GUI.address = address

 GUI.forcePushed = []
 GUI.distanceTraveled = []
 GUI.timeElapsed = []
 GUI.travelvelocity = []
 GUI.samplingrate = []

 GUI.forcePushed_side1 = []
 GUI.forcePushed_side2 = []
 GUI.forcePushed_side3 = []
 GUI.forcePushed_forward = []
 GUI.distanceTraveled_side1 = []
 GUI.distanceTraveled_side2 = []
 GUI.distanceTraveled_side3 = []
 GUI.distanceTraveled_forward = []
 GUI.timeElapsed_side1 = []
 GUI.timeElapsed_side2 = []
 GUI.timeElapsed_side3 = []
 GUI.timeElapsed_forward = []
 GUI.peaks_force_side1 = []
 GUI.peaks_force_side2 = []
 GUI.peaks_force_side3 = []
 GUI.peaks_force_forward = []
 GUI.peaks_distance_side1 = []
 GUI.peaks_distance_side2 = []
 GUI.peaks_distance_side3 = []
 GUI.peaks_distance_forward = []
 GUI.peaks_time_side1 = []
 GUI.peaks_time_side2 = []
 GUI.peaks_time_side3 = []
 GUI.peaks_time_forward = []

 86

 GUI.peaks_force = []
 GUI.peaks_distance = []
 GUI.peaks_time = []

 peakclick.peaks_force = []
 peakclick.peaks_distance = []
 peakclick.peaks_time = []

 GUI.stemcounts = []

 GUI.peak_force_cell1, GUI.peak_force_cell2, GUI.peak_force_cell3, GUI.peak_force_cell4,
GUI.peak_force_cell5, GUI.peak_force_cell6, GUI.peak_force_cell7, GUI.peak_force_cell8,
GUI.peak_force_cell9 = 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
 GUI.peak_distance_cell1, GUI.peak_distance_cell2, GUI.peak_distance_cell3,
GUI.peak_distance_cell4, GUI.peak_distance_cell5, GUI.peak_distance_cell6,
GUI.peak_distance_cell7, GUI.peak_distance_cell8, GUI.peak_distance_cell9 =
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
 GUI.peak_time_cell1, GUI.peak_time_cell2, GUI.peak_time_cell3, GUI.peak_time_cell4,
GUI.peak_time_cell5, GUI.peak_time_cell6, GUI.peak_time_cell7, GUI.peak_time_cell8,
GUI.peak_time_cell9 = 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

 GUI.data_preTest,GUI.data_recordForce,GUI.data_postTest,GUI.data_peaks,GUI.data_EI =
[],[],[],[],[]

 def refreshAll(): #clearall(self)?

 GUI.filename_force.set("")
 GUI.filename_preTest.set("")
 GUI.filename_postTest.set("")
 GUI.filename_all.set("")
 GUI.varietyname.set("")
 GUI.plotname.set("")
 GUI.startRange1.set(50)
 GUI.startRange2.set(150)
 GUI.startRange3.set(250) # centimeters
 GUI.stemheight.set(default_stemheight) # cm
 GUI.barbottom.set(round(GUI.stemheight.get()*initial_barbottomOverStemheight_coeff,3)) #
cm
 GUI.barmiddle.set(round(GUI.barbottom.get()+barradius,3)) # cm
 GUI.passfillednames_checkbox.set(1)
 GUI.timestring.set(time.strftime("%H%M"))
 GUI.currentdirection.set("")
 GUI.addressInput.set("")

 ''' Set post test variables for mass, count, and diameter'''

 87

GUI.cell1Mass.set(0),GUI.cell2Mass.set(0),GUI.cell3Mass.set(0),GUI.cell4Mass.set(0),GUI.cell5Mass.s
et(0),GUI.cell6Mass.set(0),GUI.cell7Mass.set(0),GUI.cell8Mass.set(0),GUI.cell9Mass.set(0)

GUI.cell1Count.set(0),GUI.cell2Count.set(0),GUI.cell3Count.set(0),GUI.cell4Count.set(0),GUI.cell5Co
unt.set(0),GUI.cell6Count.set(0),GUI.cell7Count.set(0),GUI.cell8Count.set(0),GUI.cell9Count.set(0)

GUI.cell1Diameter1.set(0),GUI.cell2Diameter1.set(0),GUI.cell3Diameter1.set(0),GUI.cell4Diameter1.
set(0),GUI.cell5Diameter1.set(0),GUI.cell6Diameter1.set(0),GUI.cell7Diameter1.set(0),GUI.cell8Diam
eter1.set(0),GUI.cell9Diameter1.set(0)

GUI.cell1Diameter2.set(0),GUI.cell2Diameter2.set(0),GUI.cell3Diameter2.set(0),GUI.cell4Diameter2.
set(0),GUI.cell5Diameter2.set(0),GUI.cell6Diameter2.set(0),GUI.cell7Diameter2.set(0),GUI.cell8Diam
eter2.set(0),GUI.cell9Diameter2.set(0)

GUI.cell1Diameter3.set(0),GUI.cell2Diameter3.set(0),GUI.cell3Diameter3.set(0),GUI.cell4Diameter3.
set(0),GUI.cell5Diameter3.set(0),GUI.cell6Diameter3.set(0),GUI.cell7Diameter3.set(0),GUI.cell8Diam
eter3.set(0),GUI.cell9Diameter3.set(0)

GUI.cell1Diameter4.set(0),GUI.cell2Diameter4.set(0),GUI.cell3Diameter4.set(0),GUI.cell4Diameter4.
set(0),GUI.cell5Diameter4.set(0),GUI.cell6Diameter4.set(0),GUI.cell7Diameter4.set(0),GUI.cell8Diam
eter4.set(0),GUI.cell9Diameter4.set(0)
 ''' end '''

 ''' Non-tkinter GUI vars, initialize ''' # for nine cell assessment, save state
 # may as well keep everything here, for fun
 GUI.errors = [] # for tracking errors
 GUI.errorCodes = [] # for tracking errors

 GUI.forcePushed = []
 GUI.distanceTraveled = []
 GUI.timeElapsed = []

 GUI.forcePushed_side1 = []
 GUI.forcePushed_side2 = []
 GUI.forcePushed_side3 = []
 GUI.forcePushed_forward = []
 GUI.distanceTraveled_side1 = []
 GUI.distanceTraveled_side2 = []
 GUI.distanceTraveled_side3 = []
 GUI.distanceTraveled_forward = []
 GUI.timeElapsed_side1 = []
 GUI.timeElapsed_side2 = []
 GUI.timeElapsed_side3 = []
 GUI.timeElapsed_forward = []
 GUI.peaks_force_side1 = []
 GUI.peaks_force_side2 = []
 GUI.peaks_force_side3 = []

 88

 GUI.peaks_force_forward = []
 GUI.peaks_distance_side1 = []
 GUI.peaks_distance_side2 = []
 GUI.peaks_distance_side3 = []
 GUI.peaks_distance_forward = []
 GUI.peaks_time_side1 = []
 GUI.peaks_time_side2 = []
 GUI.peaks_time_side3 = []

 GUI.peaks_force = []
 GUI.peaks_distance = []
 GUI.peaks_time = []

 GUI.stemcounts = []

 GUI.peak_force_cell1, GUI.peak_force_cell2, GUI.peak_force_cell3, GUI.peak_force_cell4,
GUI.peak_force_cell5, GUI.peak_force_cell6, GUI.peak_force_cell7, GUI.peak_force_cell8,
GUI.peak_force_cell9 = 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
 GUI.peak_distance_cell1, GUI.peak_distance_cell2, GUI.peak_distance_cell3,
GUI.peak_distance_cell4, GUI.peak_distance_cell5, GUI.peak_distance_cell6,
GUI.peak_distance_cell7, GUI.peak_distance_cell8, GUI.peak_distance_cell9 =
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
 GUI.peak_time_cell1, GUI.peak_time_cell2, GUI.peak_time_cell3, GUI.peak_time_cell4,
GUI.peak_time_cell5, GUI.peak_time_cell6, GUI.peak_time_cell7, GUI.peak_time_cell8,
GUI.peak_time_cell9 = 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

 GUI.peak_EI_fullcontact_cell1, GUI.peak_EI_fullcontact_cell2, GUI.peak_EI_fullcontact_cell3,
GUI.peak_EI_fullcontact_cell4, GUI.peak_EI_fullcontact_cell5, GUI.peak_EI_fullcontact_cell6,
GUI.peak_EI_fullcontact_cell7, GUI.peak_EI_fullcontact_cell8, GUI.peak_EI_fullcontact_cell9 =
[],[],[],[],[],[],[],[],[]
 GUI.peak_EI_intermediatecontact_cell1, GUI.peak_EI_intermediatecontact_cell2,
GUI.peak_EI_intermediatecontact_cell3, GUI.peak_EI_intermediatecontact_cell4,
GUI.peak_EI_intermediatecontact_cell5, GUI.peak_EI_intermediatecontact_cell6,
GUI.peak_EI_intermediatecontact_cell7, GUI.peak_EI_intermediatecontact_cell8,
GUI.peak_EI_intermediatecontact_cell9 = [],[],[],[],[],[],[],[],[]
 GUI.peak_EI_nocontact_cell1, GUI.peak_EI_nocontact_cell2, GUI.peak_EI_nocontact_cell3,
GUI.peak_EI_nocontact_cell4, GUI.peak_EI_nocontact_cell5, GUI.peak_EI_nocontact_cell6,
GUI.peak_EI_nocontact_cell7, GUI.peak_EI_nocontact_cell8, GUI.peak_EI_nocontact_cell9 =
[],[],[],[],[],[],[],[],[]

 GUI.peaks_time_forward = []
 GUI.EI_fullcontact = []
 GUI.EI_intermediatecontact = []
 GUI.EI_nocontact = []
 GUI.AvgEI_intermediatecontact = []

 GUI.data_preTest,GUI.data_recordForce,GUI.data_postTest,GUI.data_peaks,GUI.data_EI =
[],[],[],[],[]

 89

 def show_frame(cont):
 frame = GUI.frames[cont]
 frame.tkraise()
 frame.event_generate("<<ShowFrame>>") # event

buttons that are the same for each page
#'''
class repeatPageButtons:
 def __init__(self, parent, controller): # automatically runs
 filler=1
 def showButtons(self, parent, controller):
 guide_button = Button(self, text = "Guide", font = ("arial", 14, "bold"), height = 2, width = 8, fg =
"ghost white", bg = "gray2",command=lambda:GUI.show_frame(Guide))
 initialInputs_button = Button(self, text = "Initial\nInputs", font = ("arial", 14, "bold"), height = 2,
width = 8, fg = "ghost white", bg = "gray2",command=lambda:GUI.show_frame(InitialInputs))
 recordForce_button = Button(self, text = "Record\nForce", font = ("arial", 14, "bold"), height =
2, width = 8, fg = "ghost white", bg = "gray2",command=lambda:GUI.show_frame(RecordForce))
 postInputs_button = Button(self, text = "Post Test\nInputs", font = ("arial", 14, "bold"), height =
2, width = 8, fg = "ghost white", bg = "gray2",command=lambda:GUI.show_frame(FinalInputs))

 guide_button.place(x = 0, y = 340)
 initialInputs_button.place(x = 375/3*1, y = 340)
 recordForce_button.place(x = 375/3*2, y = 340)
 postInputs_button.place(x = 375/3*3, y = 340)
 #'''
#Home page
class InitialInputs(tk.Frame):
 def __init__(self, parent, controller): # automatically runs
 # Once the program launches, the InitialInput screen will be shown for the first time, prompting
serial connection
 try:
 RecordForce.ser = SerConnect()
 except:
 GUI.ignoreserial = True
 print("Serial not connected.")

 tk.Frame.__init__(self, parent)

 ''' GUI design, non-frame '''
 pageButtons = repeatPageButtons.showButtons(self, parent, controller)
 homeheader = Label(self, text = "INITIAL INPUTS", font = ("arial", 17, "bold"), fg = "gray3",
bg="ghost white")
 unit_label = Label(self, text=str("Distance and height are in centimeters."), font = ("arial", 12,
"italic"), fg = "red4", bg="ghost white")
 savePreTestInputs_button = Button(self, text ="Save Initial Inputs", font = ("arial", 16, "bold"),
height = 1, width = 20, fg = "ghost white", bg = "dodgerblue3",
command=lambda:self.savePreTestInputs())

 90

 variety_label = Label(self, text = "Variety: ", font = ("arial", 14, "bold"), fg = "gray3", bg="ghost
white")
 varietyname_entryBox = Entry(self, textvariable=GUI.varietyname, font = ("arial", 14, "bold"),
width="20", bg="white", fg="gray1")
 plotname_label = Label(self, text = "Plot: ", font = ("arial", 14, "bold"), fg = "gray3", bg="ghost
white")
 plotname_entryBox = Entry(self, textvariable=GUI.plotname, font = ("arial", 14, "bold"),
width="10", bg="white", fg="gray1")
 passfillednames_checkbox = Checkbutton(self, text = "Use variety & plot names", variable =
GUI.passfillednames_checkbox, width=23, height=2, font = ("arial", 12), bg='ghost white')
 stemHeight_label = Label(self, text = "Avg. Stem Height (cm):", font = ("arial", 14, "bold"), fg =
"gray3", bg="ghost white")
 stemHeight_entry = Entry(self, textvariable=GUI.stemheight, font = ("arial", 14, "bold"), width=
6, bg="white", fg="gray1")
 barHeight_label = Label(self, text = "Bar Middle Height (cm):", font = ("arial", 14, "bold"), fg =
"gray3", bg="ghost white")
 barHeight_entry = Entry(self, textvariable=GUI.barmiddle, font = ("arial", 14, "bold"), width= 6,
bg="white", fg="gray1")

 homeheader.place(x=275,y=0)
 unit_label.place(x=500,y=0)
 savePreTestInputs_button.place(x = 510, y = 340)
 variety_label.place(x=0,y=35)
 varietyname_entryBox.place(x = 80, y = 35)
 plotname_label.place(x=310,y=35)
 plotname_entryBox.place(x = 360, y = 35)
 passfillednames_checkbox.place(x = 540 , y = 25)
 stemHeight_label.place(x=0,y=240)
 stemHeight_entry.place(x = 220, y = 240)
 barHeight_label.place(x=0,y=280)
 barHeight_entry.place(x = 220, y = 280)

 ''' Frame: Range'''
 range_frame = tk.LabelFrame(self, text='Side Hit Ranges',font = ("arial", 14, "bold"), width= 10,
bg="white", fg="gray1")
 range_frame.place(x = 20, y = 80)
 startRange1Dis_label = Label(range_frame, text = "Range 1 start (cm):", font = ("arial", 14,
"bold"), fg = "gray3", bg="ghost white").grid(row=2, column=0)
 startRange2Dis_label = Label(range_frame, text = "Range 2 start (cm):", font = ("arial", 14,
"bold"), fg = "gray3", bg="ghost white").grid(row=1, column=0)
 startRange3Dis_label = Label(range_frame, text = "Range 3 start (cm):", font = ("arial", 14,
"bold"), fg = "gray3", bg="ghost white").grid(row=0, column=0)
 startRange1_entry = Entry(range_frame, textvariable=GUI.startRange1,font = ("arial", 14,
"bold"), width= 4, bg="white", fg="gray1").grid(row=2, column=1)
 startRange2_entry = Entry(range_frame, textvariable=GUI.startRange2,font = ("arial", 14,
"bold"), width= 4, bg="white", fg="gray1").grid(row=1, column=1)
 startRange3_entry = Entry(range_frame, textvariable=GUI.startRange3, font = ("arial", 14,
"bold"), width= 4, bg="white", fg="gray1").grid(row=0, column=1)

 91

 ''' end '''

 ''' Frame: Force Bar Quickset buttons'''
 barset_frame = tk.LabelFrame(self, text='Bar Bottom Quickset',font = ("arial", 14, "bold"),
width= 10, bg="white", fg="gray1")
 barset_frame.place(x = 340, y = 230)
 #button that calculates optimized force bar height
 height70percent_button = Button(barset_frame, text ="70%", font=("arial",14,"bold"),
height=1, width=6, fg="ghost white",
bg="red4",command=lambda:self.height70percent(GUI.stemheight.get()))
 height80percent_button = Button(barset_frame, text ="80%", font=("arial",14,"bold"),
height=1, width=6, fg="ghost white",
bg="red4",command=lambda:self.height80percent(GUI.stemheight.get()))
 height90percent_button = Button(barset_frame, text ="90%", font=("arial",14,"bold"),
height=1, width=6, fg="ghost white",
bg="red4",command=lambda:self.height90percent(GUI.stemheight.get()))
 height70percent_button.grid(row=0, column=0)
 height80percent_button.grid(row=0, column=1)
 height90percent_button.grid(row=0, column=2)
 ''' end '''

 ''' Frame: PreCount Buttons '' # Hide, access via menu
 precount_frame = tk.LabelFrame(self, text='Count First',font = ("arial", 10, "bold"), width= 4,
bg="white", fg="gray1")
 precount_frame.place(x = 650, y = 100)
 precount_button = tk.Button(precount_frame, text ="Don't", font=("arial",10,"bol;d"), height=1,
width=10, fg="ghost white",
bg="purple3",command=lambda:self.height70percent(GUI.stemheight.get()))
 precount_button.grid(row=0, column=4)
 '' end '''

 self.bind("<<ShowFrame>>", self.on_show_frame_InitialInputs) # why is this really here

 def height70percent(self, stemheight):
 coeff = 0.7
 GUI.barbottom.set(round(coeff*stemheight,3))
 GUI.barmiddle.set(round(GUI.barbottom.get()+barradius,3))
 print("70%: stemheight",GUI.stemheight.get(),"cm, barheight = ",GUI.barmiddle.get(),"cm,
barbottom = ",GUI.barbottom.get(),"cm")
 def height80percent(self, stemheight):
 coeff = 0.8
 GUI.barbottom.set(round(coeff*stemheight,3))
 GUI.barmiddle.set(round(GUI.barbottom.get()+barradius,3))
 print("80%: stemheight",GUI.stemheight.get(),"cm, barheight = ",GUI.barmiddle.get(),"cm,
barbottom = ",GUI.barbottom.get(),"cm")
 def height90percent(self, stemheight):
 coeff = 0.9
 GUI.barbottom.set(round(coeff*stemheight,3))

 92

 GUI.barmiddle.set(round(GUI.barbottom.get()+barradius,3))
 print("90%: stemheight",GUI.stemheight.get(),"cm, barheight = ",GUI.barmiddle.get(),"cm,
barbottom = ",GUI.barbottom.get(),"cm")

 def savePreTestInputs(self):
 GUI.barbottom.set(round(GUI.barmiddle.get()-barradius,3)) # cm
 print(str(int(GUI.barbottom.get()/GUI.stemheight.get()*100)),"%:
stemheight",GUI.stemheight.get(),"cm, barheight = ",GUI.barmiddle.get(),"cm, barbottom =
",GUI.barbottom.get(),"cm")

 variety, plot, stemheight, barbottom, barmiddle, startRange1, startRange2, startRange3 =
['variety'], ['plot'], ['stemheight(cm)'], ['barbottom(cm)'], ['barmiddle(cm)'], ['startRange1(cm)'],
['startRange2(cm)'], ['startRange3(cm)']
 variety.append(GUI.varietyname.get())
 plot.append(GUI.plotname.get())
 stemheight.append(GUI.stemheight.get())
 barbottom.append(GUI.barbottom.get())
 barmiddle.append(GUI.barmiddle.get())
 startRange1.append(GUI.startRange1.get())
 startRange2.append(GUI.startRange2.get())
 startRange3.append(GUI.startRange3.get())

 update_filename_preTest()
 filename_preTest_csv = GUI.address + '/' + GUI.filename_preTest.get() + '.csv'

 if overwriteGuard(filename_preTest_csv) == True: # filename already exists, needs to be
renamed
 rename(GUI.filename_preTest.get()) # prompt user to rename file
 ''' write CSV'''
 GUI.data_preTest = [variety, plot, stemheight, barbottom, barmiddle, startRange1, startRange2,
startRange3]
 columns_data_preTest = zip_longest(*GUI.data_preTest)
 with open(filename_preTest_csv,'w',newline='') as f:
 writer = csv.writer(f)
 writer.writerows(columns_data_preTest)
 ''' end: write CSV '''
 print("filename_preTest_csv = "+filename_preTest_csv)

 def on_show_frame_InitialInputs(self, event):
 filler=1
 #print("show Initial Inputs screen")

Data collection page
class RecordForce(tk.Frame):
 def __init__(self, parent, controller):# automatically runs

 RecordForce.peaks_force = []
 RecordForce.peaks_distance = []

 93

 RecordForce.peaks_time = []

 self.legends = []

 tk.Frame.__init__(self, parent)
 self.controller = controller #

 RecordForce.container = tk.Frame(self)

 ''' GUI design, non-frame '''
 pageButtons = repeatPageButtons.showButtons(self, parent, controller)
 title = Label(self, text ="RECORD FORCE", font = ("arial", 17, "bold"), fg = "gray3", bg="ghost
white")
 filename_label = Label(self, text = "Filename: ", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white")
 filename_entryBox = Entry(self, textvariable=GUI.filename_force, font = ("arial", 14, "bold"),
width="32", bg="white", fg="gray1")
 self.checkAutoGraph = IntVar() # on/off control of auto graph after stopping & saving data
 #self.checkAutoGraph.set(1)
 self.checkAutoGraph.set(0)
 graph_checkbox = Checkbutton(self, text = "Auto graph", variable = self.checkAutoGraph, width
= 13, height = 2, bg = 'ghost white')

 title.place(x=275,y=0)
 filename_label.place(x=0,y=80)
 filename_entryBox.place(x = 110, y = 80)
 graph_checkbox.place(x = 675 , y = 0)

 RecordForce.datafeed_frame = tk.LabelFrame(self, text='Data Feed',font = ("arial", 14, "bold"),
width= 10, bg="white", fg="gray1")
 RecordForce.datafeed_frame.place(x = 20, y = 0)
 clear_button = Button(RecordForce.datafeed_frame,text = "Clear",font = ("arial", 16, "bold"),
height = 1, width = 6, fg = "ghost white", bg = "red4",command=lambda:RecordForce.clearDisplay())
 clear_button.grid(row=0, column=0)
 RecordForce.msgbox = tk.LabelFrame(self, text='',font = ("arial", 14, "bold"), width= 10,
bg="white", fg="gray1")

 RecordForce.msgbox.place(x = 5, y = 120)
 #forceSaved_label.place(x=5, y = 120)

 ''' Frame: Filename Quickset buttons'''
 nameset_frame = tk.LabelFrame(self, text='Filename\nQuickset',font = ("arial", 14, "bold"),
width= 10, bg="white", fg="gray1")
 nameset_frame.place(x = 570, y = 40)
 #button that calculates optimized force bar height
 side1TestButton = Button(nameset_frame, text = "Side 1", font = ("arial", 16, "bold"), height = 1,
width = 6, fg = "ghost white", bg = "red4",command=lambda:self.nameSide1())

 94

 side2TestButton = Button(nameset_frame, text = "Side 2", font = ("arial", 16, "bold"), height = 1,
width = 6, fg = "ghost white", bg = "red4",command=lambda:self.nameSide2())
 side3TestButton = Button(nameset_frame, text = "Side 3", font = ("arial", 16, "bold"), height = 1,
width = 6,fg = "ghost white", bg = "red4",command=lambda:self.nameSide3())
 forwardTestButton = Button(nameset_frame, text = "Forward", font = ("arial", 16, "bold"),
height = 1, width = 6, fg = "ghost white", bg = "red4",command=lambda:self.nameForward())
 increment_button = Button(nameset_frame, text = "+1", font = ("arial", 16, "bold"), height = 1,
width = 6, fg = "ghost white", bg =
"purple4",command=lambda:self.incrementName_Force(GUI.filename_force.get()))

 side1TestButton.grid(row=0, column=0)
 side2TestButton.grid(row=1, column=0)
 side3TestButton.grid(row=2, column=0)
 forwardTestButton.grid(row=3, column=0)
 increment_button.grid(row=4, column=0)
 ''' end '''

 ''' Record Data Frame'''
 dataButtons_frame = tk.LabelFrame(self, text='',font = ("arial", 14, "bold"), width= 10,
bg="white", fg="gray1")
 dataButtons_frame.place(x = 675, y = 40)
 #tells Arduino to start collecting data
 start_button = Button(dataButtons_frame, text = "Start", font = ("arial", 16, "bold"), height = 3,
width = 8, fg = "ghost white", bg = "dodgerblue3",command=lambda:RecordForce.startCollect())
 #tells Arduino to stop collecting data & saves the data (calls filename function)
 stop_button = Button(dataButtons_frame, text = "Stop\n&\nSave", font = ("arial", 16, "bold"),
height = 3, width = 8, fg = "ghost white", bg =
"dodgerblue3",command=lambda:RecordForce.stopAndSave())
 #LEGACY, NOPE: stop_button = Button(dataButtons_frame, text = "Stop\n&\nSave", font =
("arial", 16, "bold"), height = 3, width = 8, fg = "ghost white", bg =
"dodgerblue3",command=lambda:RecordForce.stop())
 #tares/zeros load cell
 tare_button = Button(dataButtons_frame, text = "Tare", font = ("arial", 16, "bold"), height = 3,
width = 8, fg = "ghost white", bg = "dodgerblue3",command=lambda:RecordForce.tare())

 start_button.grid(row = 1, column = 0)
 stop_button.grid(row = 2, column = 0)
 tare_button.grid(row = 3, column = 0)
 ''' end frame'''

 self.bind("<<ShowFrame>>", self.on_show_frame_RecordForce)

 def nameForward(self):
 direction = "forward"
 filename_force = nameBlackBox(direction,GUI.filename_force.get())
 GUI.filename_force.set(filename_force)
 GUI.currentdirection.set(direction)
 def nameSide1(self):

 95

 direction = "side1"
 filename_force = nameBlackBox(direction,GUI.filename_force.get())
 GUI.filename_force.set(filename_force)
 GUI.currentdirection.set(direction)
 def nameSide2(self):
 direction = "side2"
 filename_force = nameBlackBox(direction,GUI.filename_force.get())
 GUI.filename_force.set(filename_force)
 GUI.currentdirection.set(direction)
 def nameSide3(self):
 direction = "side3"
 filename_force = nameBlackBox(direction,GUI.filename_force.get())
 GUI.filename_force.set(filename_force)
 GUI.currentdirection.set(direction)
 def nameFresh(varietyname,plotname):
 direction = ""
 filename_force = nameBlackBox(direction,GUI.filename_force.get())
 GUI.filename_force.set(filename_force)
 set(direction)

 def clearDisplay():
 time.sleep(0.3)
 print('You hit the "Clear" button. Please develop clearDisplay().')
 GUI.refreshAll()
 '''
 try:
 RecordForce.Forcelist.delete(0, 'end')
 RecordForce.Dislist.delete(0, 'end')
 RecordForce.Timelist.delete(0, 'end')
 print('You hit the "Clear" button and deleted recorded data. This was not useful.')
 except:
 pass
 '''

 def incrementName_Force(self,filename):
 newName = incrementName(filename)
 GUI.filename_force.set(newName)

 # calls run function (for collecting Arduino data) to run in backend while GUI runs in frontend
 def startCollect():
 now = datetime.datetime.now()
 unix_now = time.mktime(now.timetuple())
 time.sleep(0.4) # for visual effect
 #threading run function (simultaneously performs run function in backend)
 if GUI.ignoreserial == False:
 if RecordForce.ser.isOpen() == False:
 RecordForce.ser.open()

 96

 RecordForce.legacy = False # bebee frankserial, lez go, 08/31/2022
 print("RecordForce.legacy = ",RecordForce.legacy)
 if RecordForce.legacy == False:
 runDataCollect()
 elif RecordForce.legacy == True:
 RecordForce.start()
 if visualizeDatastream == True:
 thread2_visualizeData = threading.Thread(target = datafeed,args=(RecordForce.container))
 thread2_visualizeData.start()
 else:
 print("Data collection not run, because GUI.ignoreserial ==",str(GUI.ignoreserial),"...")

 # saves raw force data # Bebee legacy method
 def start():
 RecordForce.collect = True
 if RecordForce.ser.isOpen() == False:
 RecordForce.ser.open()
 #threading run function (simultaneously performs run function in backend)
 t1 = threading.Thread(target = run,args=(RecordForce, RecordForce.ser))
 t1.start()

 #bebee Legacy
 def stop():
 RecordForce.ser.flushInput()# wait until all data is written
 RecordForce.collect = False

 try:
 stopped = 'x'
 RecordForce.ser.write(stopped.encode())# sends 'x' to Arduino to stop reading sensors
 time.sleep(.5)# for potential error protection?
 #ser.close()
 except:
 errors.append('serial com. (stopping data)') # error label
 eCode = 'e7'
 errorCodes.append(eCode)
 finally:

 GUI.timeElapsed = RecordForce.elapsed
 GUI.distanceTraveled = RecordForce.dis
 GUI.forcePushed = RecordForce.force
 RecordForce.saveForce()# run the Save Raw Data function

 def sendStart():
 if RecordForce.ser.isOpen() == False:
 RecordForce.ser.open()

 started = 's'

 97

 print("\nPython sent "+started+".")
 RecordForce.hasStarted = False
 RecordForce.hasSentStop = False
 RecordForce.hasStopped = False
 # wipe vars
 GUI.forcePushed = []
 GUI.distanceTraveled = []
 GUI.timeElapsed = []
 RecordForce.datastream = []
 #thread2_count_stop.start()
 while RecordForce.hasStarted == False: # len(line)==0
 RecordForce.ser.write(started.encode())
 time.sleep(sleepSend) # if this is on, it takes another two seconds to start, but the arduino
yells less.
 if RecordForce.ser.in_waiting > 0: # this does happen
 ser_bytes = RecordForce.ser.readline()
 line = ser_bytes.decode('utf-8').rstrip()
 if line =="Started!": #if line == started:
 RecordForce.hasStarted = True
 RecordForce.startTime = time.time() #stopwatch starts
 RecordForce.i = 0
 print(started+" received by arduino.")

 def sendStop():
 stopped = 'x'
 RecordForce.hasSentStop = True
 print("Python sent "+stopped+".")

 while RecordForce.hasStopped == False: # len(line)==0
 print("brake", end =" ")
 RecordForce.ser.write(stopped.encode())
 RecordForce.ser.flush()
 time.sleep(sleepSend)
 if RecordForce.ser.in_waiting > 0: # this does happen
 bytecount = RecordForce.ser.in_waiting
 ser_bytes = RecordForce.ser.read(bytecount)
 line = ser_bytes.decode('utf-8').rstrip()
 datapacket = line.splitlines()
 #print(line)
 if line =="Stopped!" or ("Stopped!" in datapacket): #if line == stopped:
 #if ("Stopped!" in ser_bytes): #if line == stopped:
 RecordForce.hasStopped = True
 print(stopped+" received by arduino.")
 #RecordForce.ser.close()
 #print(RecordForce.dataStream)
 '''
 RecordForce.allocateNineCellData() # what is this for, nine cell stuff?
 '''

 98

 RecordForce.ser.close()
 print("Test runtime: ",max(GUI.timeElapsed)," seconds.") # /1000

 def stopAndSave():
 if RecordForce.legacy == True:
 RecordForce.stop()
 else:
 time.sleep(.1)
 if GUI.ignoreserial == False:

 testForNineCellFilename()
 if RecordForce.ser.isOpen():
 try:
 RecordForce.ser.flushInput()# wait until all data is written
 #print("Not flushing input.")
 except:
 print("failed RecordForce.ser.flushInput()")
 RecordForce.sendStop()

 RecordForce.saveForce()
 else:
 print("File not saved. GUI.ignoreserial == True.")

 def saveForce():
 createBackupFile()
 # force data filename
 filename_force = GUI.filename_force.get()
 filename_force_csv = GUI.address + '/' + (GUI.filename_force.get()) + '.csv'
 if overwriteGuard(filename_force_csv) == True: # filename already exists, needs to be renamed
 rename(filename_force) # prompt user to rename file

 #ave. SOCEM velocity
 avelocity = ["AvgTravelVelocity(cm/s)"]
 try:
 travelvelocity = max(GUI.distanceTraveled)/(max(GUI.timeElapsed)) #cm/s # /1000
 avelocity.append(travelvelocity)
 except:
 travelvelocity=0
 avelocity.append(travelvelocity)

 #Sampling Rate
 sampling=["SamplingRate(Hz)"]
 hz = list()
 try:
 for i in range(len(GUI.distanceTraveled)-1):
 change = GUI.timeElapsed[i+1] - GUI.timeElapsed[i] # ms
 hz.append(change)
 rate = sum(hz)/len(hz) # why flip?

 99

 sampling.append(1/rate) # why flip?
 except:
 rate = 0
 sampling.append(0)

 GUI.travelvelocity = travelvelocity
 GUI.samplingrate = 1/rate # changed from 1/rate, to avoid a divide by zero error

 RecordForce.sidehitPeakClick()

 if GUI.ignoreserial == False and len(GUI.forcePushed)>0:
 GUI.distanceTraveled.insert(0, "Distance(cm)")
 GUI.forcePushed.insert(0, "Force(N)")
 GUI.timeElapsed.insert(0 , "Time(sec)")

 ''' write CSV'''
 GUI.data_recordForce = [GUI.timeElapsed,GUI.distanceTraveled, GUI.forcePushed, avelocity,
sampling,RecordForce.peaks_force,RecordForce.peaks_distance,RecordForce.peaks_time]
 columns_data_recordForce = zip_longest(*GUI.data_recordForce)
 with open(filename_force_csv,'w',newline='') as f:
 writer = csv.writer(f)
 writer.writerows(columns_data_recordForce)
 ''' end: write CSV '''
 print("filename_force_csv = "+filename_force_csv)

 # tell user raw data was saved
 #print("File saved: "+GUI.filename_force.get()+".csv\n")
 try:
 forceSaved_label = Label(RecordForce.msgbox, text = "Force data saved.", font = ("arial",
14, "bold"), fg = "dodgerblue3", bg = "ghost white")
 #forceSaved_label = Label(RecordForce.msgbox, text = "Force data saved.", font = ("arial",
14, "bold"), fg = "dodgerblue3", bg = "ghost white").grid(row=0, column=0)
 except:
 print("attempt to generate in-window forceSaved_label messsage. fail, dave.")
 else:
 print("Force data not saved. GUI.ignoreserial = "+str(GUI.ignoreserial)+".
len(GUI.forcePushed) = ",len(GUI.forcePushed))

 #RecordForce.clearDisplay()
 '''
 self.instantGraph()
 '''
 '''
 Why clear?
 GUI.timeElapsed.clear()
 GUI.forcePushed.clear()
 GUI.distanceTraveled.clear()
 avelocity.clear()

 100

 hz.clear()
 sampling.clear()
 '''

 '''
 def overwriteGuard(self, filename):# prevents overwriting by checking if filename already exists in
saving folder
 return path.exists(filename) # True = already exits, False = doesn't exist
 '''
 '''
 #auto graph feature
 def instantGraph(self):
 try:
 #if self.dataset-1 <= 1:
 self.legends = []
 except:
 pass

 if not plt.get_fignums():#if graph figure was closed, reset legend
 self.legends.clear()
 #print("new fig who dis")
 self.legends.append(GUI.filename_force.get())#add current filename to legend
 #fig = plt.figure(figsize=(8,4.8)) #fig size control
 #plots force displacement graph
 print("len(GUI.distanceTraveled) = ",len(GUI.distanceTraveled))
 if self.checkAutoGraph.get() == 1 and len(GUI.distanceTraveled)>5 and GUI.ignoreserial ==
False:
 plt.plot(GUI.distanceTraveled, GUI,forcePushed)
 plt.xlabel("Distance (cm)")
 plt.ylabel("Force (N)")
 plt.title(filename.get())
 plt.legend(self.legends)
 plt.axis = ([min(distance), max(distance), min(force), max(force)])
 plt.show()
 else:
 print("There is no data to graph. Try GUI.ignoreserial = False, in StemBerry.")
 '''
 def sidehitPeakClick():
 RecordForce.peaks_force,RecordForce.peaks_distance,RecordForce.peaks_time= [],[],[]
 # currently only lauches click assessment for side1, side2, side3
 #print("GUI.currentdirection = ",GUI.currentdirection.get())
 #print("len(GUI.forcePushed) = ",len(GUI.forcePushed))
 if (assessAllTests == True) or (GUI.currentdirection.get() == "side1") or
(GUI.currentdirection.get() == "side2") or (GUI.currentdirection.get() == "side3"):
 #if True:
 if len(GUI.forcePushed)>0:
 varietyAndPlotnameAndDetail = GUI.filename_force.get()
 RecordForce.plotshown = True

 101

 RecordForce.closedplt = False
 RecordForce.thread3_plotchecker = threading.Thread(target = RecordForce.plotchecker)
 RecordForce.thread3_plotchecker.start()

peakclick.peakclick(GUI.forcePushed,GUI.distanceTraveled,GUI.timeElapsed,GUI.filename_force.get(
),GUI.address,GUI.travelvelocity)
 #RecordForce.peaks_force,RecordForce.peaks_distance,RecordForce.peaks_time =
peakclick.peaks_force,peakclick.peaks_distance,peakclick.peaks_time

 #
RecordForce.sortClicks(RecordForce.peaks_force,RecordForce.peaks_distance,RecordForce.peaks_ti
me)
 print("Delete this note about side hit completing")
 else:
 print("PeaksClick figure not triggered because len(GUI.forcePushed) = 0.")
 def plotchecker():
 while RecordForce.plotshown == True:
 time.sleep(.1)
 if RecordForce.closedplt == True:
 time.sleep(.1)
 RecordForce.sortClicks()
 RecordForce.plotshown = False
 '''
 else:
 print("loop while")
 '''
 def allocateNineCellData():
 print("allocate")

 def sortClicks():
 if GUI.currentdirection.get() == "side1":
 if len(RecordForce.peaks_force) == 3:
 GUI.peak_force_cell1, GUI.peak_force_cell2, GUI.peak_force_cell3 =
RecordForce.peaks_force[0],RecordForce.peaks_force[1],RecordForce.peaks_force[2]
 elif len(RecordForce.peaks_force) == 4:
 GUI.peak_force_cell1, GUI.peak_force_cell2, GUI.peak_force_cell3 =
RecordForce.peaks_force[1],RecordForce.peaks_force[2],RecordForce.peaks_force[3]
 if len(RecordForce.peaks_distance) == 3:
 GUI.peak_distance_cell1, GUI.peak_distance_cell2, GUI.peak_distance_cell3 =
RecordForce.peaks_distance[0],RecordForce.peaks_distance[1],RecordForce.peaks_distance[2]
 elif len(RecordForce.peaks_distance) == 4:
 GUI.peak_distance_cell1, GUI.peak_distance_cell2, GUI.peak_distance_cell3 =
RecordForce.peaks_distance[1],RecordForce.peaks_distance[2],RecordForce.peaks_distance[3]
 if len(RecordForce.peaks_time) == 3:
 GUI.peak_time_cell1, GUI.peak_time_cell2,
GUI.peak_time_cell3=RecordForce.peaks_time[0],RecordForce.peaks_time[1],RecordForce.peaks_ti
me[2]
 elif len(RecordForce.peaks_time) == 4:

 102

 GUI.peak_time_cell1, GUI.peak_time_cell2,
GUI.peak_time_cell3=RecordForce.peaks_time[1],RecordForce.peaks_time[2],RecordForce.peaks_ti
me[3]

 elif GUI.currentdirection.get() == "side2":
 if len(RecordForce.peaks_force) == 3:
 GUI.peak_force_cell4, GUI.peak_force_cell5, GUI.peak_force_cell6 =
RecordForce.peaks_force[0],RecordForce.peaks_force[1],RecordForce.peaks_force[2]
 elif len(RecordForce.peaks_force) == 4:
 GUI.peak_force_cell4, GUI.peak_force_cell5, GUI.peak_force_cell6 =
RecordForce.peaks_force[1],RecordForce.peaks_force[2],RecordForce.peaks_force[3]
 if len(RecordForce.peaks_distance) == 3:
 GUI.peak_distance_cell4, GUI.peak_distance_cell5, GUI.peak_distance_cell6 =
RecordForce.peaks_distance[0],RecordForce.peaks_distance[1],RecordForce.peaks_distance[2]
 elif len(RecordForce.peaks_distance) == 4:
 GUI.peak_distance_cell4, GUI.peak_distance_cell5, GUI.peak_distance_cell6 =
RecordForce.peaks_distance[1],RecordForce.peaks_distance[2],RecordForce.peaks_distance[3]
 if len(RecordForce.peaks_time) == 3:
 GUI.peak_time_cell4, GUI.peak_time_cell5,
GUI.peak_time_cell6=RecordForce.peaks_time[0],RecordForce.peaks_time[1],RecordForce.peaks_ti
me[2]
 elif len(RecordForce.peaks_time) == 4:
 GUI.peak_time_cell4, GUI.peak_time_cell5,
GUI.peak_time_cell6=RecordForce.peaks_time[1],RecordForce.peaks_time[2],RecordForce.peaks_ti
me[3]
 #GUI.peak_distance_cell4, GUI.peak_distance_cell5, GUI.peak_distance_cell6 =
RecordForce.peaks_distance[0],RecordForce.peaks_distance[1],RecordForce.peaks_distance[2]
 #GUI.peak_time_cell4, GUI.peak_time_cell5,
GUI.peak_time_cell6=RecordForce.peaks_time[0],RecordForce.peaks_time[1],RecordForce.peaks_ti
me[2]
 elif GUI.currentdirection.get() == "side3":
 if len(RecordForce.peaks_force) == 3:
 GUI.peak_force_cell7, GUI.peak_force_cell8, GUI.peak_force_cell9 =
RecordForce.peaks_force[0],RecordForce.peaks_force[1],RecordForce.peaks_force[2]
 elif len(RecordForce.peaks_force) == 4:
 GUI.peak_force_cell7, GUI.peak_force_cell8, GUI.peak_force_cell9 =
RecordForce.peaks_force[1],RecordForce.peaks_force[2],RecordForce.peaks_force[3]
 if len(RecordForce.peaks_distance) == 3:
 GUI.peak_distance_cell7, GUI.peak_distance_cell8, GUI.peak_distance_cell9 =
RecordForce.peaks_distance[0],RecordForce.peaks_distance[1],RecordForce.peaks_distance[2]
 elif len(RecordForce.peaks_distance) == 4:
 GUI.peak_distance_cell7, GUI.peak_distance_cell8, GUI.peak_distance_cell9 =
RecordForce.peaks_distance[1],RecordForce.peaks_distance[2],RecordForce.peaks_distance[3]
 if len(RecordForce.peaks_time) == 3:
 GUI.peak_time_cell7, GUI.peak_time_cell8,
GUI.peak_time_cell9=RecordForce.peaks_time[0],RecordForce.peaks_time[1],RecordForce.peaks_ti
me[2]
 elif len(RecordForce.peaks_time) == 4:

 103

 GUI.peak_time_cell7, GUI.peak_time_cell8,
GUI.peak_time_cell9=RecordForce.peaks_time[1],RecordForce.peaks_time[2],RecordForce.peaks_ti
me[3]
 #GUI.peak_distance_cell7, GUI.peak_distance_cell8, GUI.peak_distance_cell9 =
RecordForce.peaks_distance[0],RecordForce.peaks_distance[1],RecordForce.peaks_distance[2]
 #GUI.peak_time_cell7, GUI.peak_time_cell8,
GUI.peak_time_cell9=RecordForce.peaks_time[0],RecordForce.peaks_time[1],RecordForce.peaks_ti
me[2]

 #zeroes load cell measurement

 def tare():
 if GUI.ignoreserial == False:
 print("Tare")
 RecordForce.ser.flush()#wait until all data is written

 tare = 't'
 RecordForce.ser.write(tare.encode()) #sends 't' to arduino, telling it to tare
 time.sleep(0.3)#wait x seconds for Arduino to tare load cell (for smoothing)
 else:
 print("\nYou hit the 'tare' button while GUI.ignoreserial == True.\nLoadcell cannot be tared
because it is neither connected nor sought.")
 RecordForce.message_connectArduino()

 def message_connectArduino():
 #print("\nYou hit the 'tare' button while GUI.ignoreserial == True.\nLoadcell cannot be tared
because it is neither connected nor sought.\n\nConnect an arduino.\nFlash Ardunio with
serialConnection_v11.ino(&+).\n\nIn StemBerry header variables:\nGUI.ignoreserial =
False.\nMatch dev_manual port ID with ID on Arduino IDE.\n\nSigned, Clayton Bennett, August 25,
2022.")
 print("\n\nConnect an arduino.\nFlash Ardunio with serialConnection_v11.ino(&+).\n\nIn
StemBerry header variables:\nGUI.ignoreserial = False.\nMatch dev_manual port ID with ID on
Arduino IDE.\n\nSigned, Clayton Bennett, August 25, 2022.")

 def on_show_frame_RecordForce(self, event):
 #Flip to data collection screen, GUI variables
 if (GUI.varietyname.get()!="" or GUI.plotname.get()!="") and
(GUI.passfillednames_checkbox.get()==1): # checks if a varietyname or plotname has been given
 RecordForce.nameFresh(GUI.varietyname.get(),GUI.plotname.get()) # if so, autopopulate the
basic filestructure
 filename_force = nameBlackBox("",GUI.filename_force.get())
 GUI.filename_force.set(filename_force)
 GUI.currentdirection.set("") # so that sortClicks will funtion properly, if a new name is assigned
this is non-deal coding

class StemCountClassic(tk.Frame):
 def __init__(self, parent, controller): # automatically runs

 104

 tk.Frame.__init__(self, parent)

 header_label = Label(self, text = "STEM COUNT INITIAL INPUT", font = ("arial", 17, "bold"), fg =
"gray3", bg="ghost white")
 construction_label = Label(self, text = "Under Construction.\nWill allow user to input sample
density data before pushing SOCEM,\nrather than use the nine-cell post test count input fields.",
font = ("arial", 17, "bold"), fg = "red4", bg="ghost white")
 header_label.place(x=235,y=0)
 construction_label.place(x=10,y=100)

 pageButtons = repeatPageButtons.showButtons(self, parent, controller)

Load cell calibration page
class Calibrate(tk.Frame):

 def __init__(self, parent, controller): # automatically runs

 tk.Frame.__init__(self, parent)

 ''' GUI design, non-frame '''
 pageButtons = repeatPageButtons.showButtons(self, parent, controller)
 header_label = Label(self, text = "FORCE SENSOR CALIBRATION", font = ("arial", 17, "bold"), fg =
"gray3", bg="ghost white")
 tareIt_label = Label(self, text = "1. Tare w/ no weight", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white")
 inputWeight_label = Label(self, text = "2. Input weight (kg)", font = ("arial", 14, "bold"), fg =
"gray3", bg="ghost white")
 caliIt_label = Label(self, text = '3. Place weight', font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white")
 caliIt4_label = Label(self, text = '4. Optimize so Diff. = 0', font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white")
 testWeight_label = Label(self, text = "Weight:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white")

 header_label.place(x=235,y=0)
 tareIt_label.place(x=5,y=43)
 inputWeight_label.place(x=5,y=73)
 caliIt_label.place(x=5,y=103)
 caliIt4_label.place(x=5,y=133)
 testWeight_label.place(x=5,y=183)

 self.knownWeight = DoubleVar() # know weight textvariable
 self.knownWeight.set(0.0) # initially = 1.0 kg (assuming 1.0 kg will be used)
 knownW_entry = Entry(self, textvariable=self.knownWeight, font = ("arial", 14, "bold"), width=
5, bg="white", fg="gray1").place(x = 80, y =183)

 105

 kg = Label(self, text = "kg", font = ("arial", 14, "bold"), fg = "gray3", bg="ghost
white").place(x=140,y=183)

 self.force = self.knownWeight.get() * convert_KgToN # convert known weight kg to N
 self.strWeight = str('%.3f' % self.force) # store as string
 self.strForce = StringVar() # for displaying & updating on GUI
 self.strForce.set(self.strWeight) # initial value = self.knownWeight

 eq_label = Label(self, text = '= ', font = ("arial", 14, "bold"), fg = "gray3", bg="ghost white")
 force_label = Label(self, textvariable = self.strForce, font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white")
 unit_label = Label(self, text = " N", font = ("arial", 14, "bold"), fg = "gray3", bg="ghost white")
 cali_label = Label(self, text = "Cali. Factor:", font = ("arial", 14, "bold"), fg = "gray3", bg="ghost
white")

 eq_label.place(x=170,y=183)
 force_label.place(x=187,y=183)
 unit_label.place(x=249,y=183)
 cali_label.place(x=5,y=223)

 self.calibra = DoubleVar()
 #self.calibra.set(199750) # initial calibration num. Has been working well. AB.
 self.calibra.set(calibrationFactor) # initial calibration num. Has been working well. AB.
 #self.calibra.set(1997500) # death to the infidels. CB.
 self.factor = self.calibra.get()
 self.calibra_entry = Entry(self, textvariable=self.calibra, font = ("arial", 14, "bold"), width= 10,
bg="white", fg="gray1")

 #tares/zeros load cell
 tare_button = Button(self, text = "Tare", font = ("arial", 16, "bold"), height = 3, width = 8, fg =
"ghost white", bg = "gray2",command=lambda:RecordForce.tare) # confirm this works
 # updates cali factor & starts/continues cali. process
 cali_button = Button(self, text ="Update\nCali.\nFactor", font = ("arial", 16, "bold"), height = 3,
width = 8, fg = "ghost white", bg = "gray2", command=lambda:self.caliThread())
 # stops cali. process
 done_button = Button(self, text ="Done", font = ("arial", 16, "bold"), height = 3, width = 8, fg =
"ghost white", bg = "gray2", command=lambda:self.doneCali())
 # + 1000 to calibra
 p1000_button = Button(self, text ="+1000", font = ("arial", 16, "bold"), height = 1, width = 8, fg =
"ghost white", bg = "gray2", command=lambda:self.updateCali(1000))
 # - 1000 to calibra
 n1000_button = Button(self, text ="-1000", font = ("arial", 16, "bold"), height = 1, width = 8, fg =
"ghost white", bg = "gray2", command=lambda:self.updateCali(-1000))
 # + 100
 p100_button = Button(self, text ="+100", font = ("arial", 16, "bold"), height = 1, width = 8, fg =
"ghost white", bg = "gray2", command=lambda:self.updateCali(100))
 # - 100

 106

 n100_button = Button(self, text ="-100", font = ("arial", 16, "bold"), height = 1, width = 8, fg =
"ghost white", bg = "gray2", command=lambda:self.updateCali(-100))

 scroll = Scrollbar(self)

 self.LC_label = Label(self, text = "N",font = ("arial", 14, "bold"), fg = "dodgerblue3", bg = "ghost
white")
 self.LClist = Listbox(self, yscrollcommand = scroll.set, bg = "ghost white",highlightbackground =
"gray2", width = 7, height = 10, font = ("arial", 14, "bold"), fg = "dodgerblue3")
 self.Diff_label = Label(self, text = "Diff.",font = ("arial", 14, "bold"), fg = "dodgerblue3", bg =
"ghost white")
 self.Difflist = Listbox(self, yscrollcommand = scroll.set, bg = "ghost white",highlightbackground =
"gray2", width = 7, height = 10, font = ("arial", 14, "bold"), fg = "dodgerblue3")

 self.calibra_entry.place(x = 125, y = 223)
 tare_button.place(x = 559, y = 44)
 cali_button.place(x = 675, y = 44)
 done_button.place(x = 675, y = 224)
 p1000_button.place(x = 559, y = 136)
 n1000_button.place(x = 559, y = 136+44)
 p100_button.place(x = 675, y = 136)
 n100_button.place(x = 675, y = 136+44)

 self.LC_label.place(x = 330, y = 43)
 self.LClist.place(x = 310, y = 73)
 self.Diff_label.place(x = 420, y = 43)
 self.Difflist.place(x = 400, y = 73)

 def updateCali(self, cali): # update calibration factor
 self.factor = self.calibra.get() + cali
 self.calibra_entry.delete(0, 'end')
 self.calibra_entry.insert(0, self.factor)
 return self.factor

 def tare(self):
 RecordForce.ser.flush()#wait until all data is written
 tare = 't'
 RecordForce.ser.write(tare.encode()) #sends 't' to arduino, telling it to tare
 print("Tare.")
 time.sleep(0.3)#wait x seconds for Arduino to tare load cell (for smoothing)

 def caliFactor(self):
 self.force = self.knownWeight.get() * convert_KgToN # convert known weight kg to N
 self.strW = str('%.3f' % self.force) # store as string
 self.strForce.set(self.strW) # update GUI text

 scroll = Scrollbar(self)
 self.factor = self.calibra.get() # get user input calibration factor

 107

 self.doneCali() # if Arduino sending force data, this will momentarily stop it

 strFactor = str(self.factor) # cali factor as string
 RecordForce.ser.write(strFactor.encode()) # send cali factor to Arduino
 RecordForce.ser.flush() # make sure it gets it before proceeding

 global caliLoop
 caliLoop = True

 while caliLoop == True: # loop to continuously print Arduino force readings

 if RecordForce.ser.inWaiting() > 0: #checks to see if Serial is available

 try: #make sure serial data can be read/is there
 ser_bytes = RecordForce.ser.readline()
 except:
 GUI.errors.append('serial read')
 eCode = 'e8'
 GUI.errorCodes.append(eCode)
 print("eCode = "+eCode)
 #popup("serial read")

 bytesDecoded = (ser_bytes[0:len(ser_bytes)-2].decode("utf-8")) # force reading bytes
 try:
 reading = float(bytesDecoded) # convert bytes to float
 diff = self.force - reading # difference between reading & known weight
 self.LClist.insert(END, str('%.2f' % reading)) # scrollbar list for force readings
 self.Difflist.see(END)
 self.Difflist.insert(END, str('%.1f' % diff)) # scrollbar list for forcebar - known weight
 self.LClist.see(END)
 except:
 pass

 def caliThread(self): #threading calibrate function (simultaneously performs caliFactor function in
backend)
 thread = threading.Thread(target = Calibrate.caliFactor,args=(self,))
 thread.start()

 def doneCali(self): # stops calibration process
 # RecordForce.ser.reset_input_buffer()# clear the input buffer # suppressed 9/6/22 CB
 global caliLoop
 caliLoop = False # stop loop asking for data

 send = 'd' # stop Arduino sending
 RecordForce.ser.write(send.encode()) # send 'd' to stop Arduino sending data

error page for displaying errors

 108

class ErrorReport(tk.Frame):

 def __init__(self, parent, controller): # automatically runs
 tk.Frame.__init__(self, parent)

 # button that returns to Geo. Inputs page
 initialInputs_button = Button(self, text ="Initial\nInputs", font = ("arial", 16, "bold"), height = 3,
width = 8, fg = "ghost white", bg = "gray2",command=lambda:GUI.show_frame(InitialInputs))
 initialInputs_button.place(x = 675, y = 316)
 # button that returns to RecordForce page
 recordForce_button = Button(self, text = "Record\nForce",font = ("arial", 16, "bold"), height = 3,
width = 8, fg = "ghost white", bg = "gray2",command=lambda:GUI.show_frame(RecordForce))
 recordForce_button.place(x = 675, y = 225)

 scroll = Scrollbar(self)

 self.ErrorCode_label = Label(self, text = "Error Code\n(Location)",font = ("arial", 14, "bold"), fg =
"gray3", bg = "ghost white").place(x = 179, y = 50)
 self.ErrorCodeList = Listbox(self, yscrollcommand = scroll.set, bg = "ghost
white",highlightbackground = "gray2", width = 10, height = 13, font = ("arial", 14, "bold"), fg =
"dodgerblue3")
 self.ErrorCodeList.place(x = 175, y = 100)

 self.Error_label = Label(self, text = "Description",font = ("arial", 14, "bold"), fg = "gray3", bg =
"ghost white")
 self.Error_label.place(x = 400, y = 75)
 self.ErrorDesc = Listbox(self, yscrollcommand = scroll.set, bg = "ghost
white",highlightbackground = "gray2", width = 30, height = 13, font = ("arial", 14, "bold"), fg =
"dodgerblue3")
 self.ErrorDesc.place(x = 289, y = 100)

 def showErrors2(self):

 self.ErrorCodeList.delete(0, 'end')
 self.ErrorDesc.delete(0, 'end')

 for e in range(len(GUI.errorCodes)):
 self.ErrorCodeList.insert(END, GUI.errorCodes[e])# inserts at end of listbox to actually display
 self.ErrorCodeList.see(END)# makes sure listbox is at end so it displays live data
 self.ErrorDesc.insert(END, GUI.errors[e])
 self.ErrorDesc.see(END)
'''
class Heights(tk.Frame):
 destroyed. see StemBerry_v13.
'''
 # Guide page
class Guide(tk.Frame):
 def __init__(self, parent, controller): # automatically runs

 109

 tk.Frame.__init__(self, parent)

 pageButtons = repeatPageButtons.showButtons(self, parent, controller)

 # button that enters Calibrate page/class
 calibrate_button = Button(self, text = "Calibrate\nForce\nSensor", font = ("arial", 16, "bold"),
height = 3, width = 8, fg = "ghost white", bg = "gray2",
command=lambda:GUI.show_frame(Calibrate)) #tares/zeros load cell
 calibrate_button.place(x = 510, y = 340)

 # instruction steps:
 '''
 Nine-cell scheme design:
 '''
 guide_frame = tk.LabelFrame(self, text='Nine-Cell Scheme',font = ("arial", 14, "bold"), width=
10, bg="white", fg="gray1")
 guide_frame.place(x = 0, y = 20)
 #guideHeader = Label(self, text = "Nine-cell scheme design", font = ("arial", 17, "bold"), fg =
"gray3", bg="ghost white").place(x=350,y=0)
 one = Label(guide_frame, text = '1. Equalize stem heights', font = ("arial", 14, "bold"), fg =
"gray3", bg="ghost white").grid(row=0, column=0)
 two = Label(guide_frame, text = '2. Record Variety and Plot names', font = ("arial", 14, "bold"),
fg = "gray3", bg="ghost white").grid(row=1, column=0)
 three = Label(guide_frame, text = '3. Enter stem height and cell location data', font = ("arial",
14, "bold"), fg = "gray3", bg="ghost white").grid(row=2, column=0)
 four = Label(guide_frame, text = '4. Perform four SOCEM tests (3 side hits, 1 forward hit)', font
= ("arial", 14, "bold"), fg = "gray3", bg="ghost white").grid(row=3, column=0)
 five = Label(guide_frame, text = '5. Collect stems for mass, count, and diameters.', font =
("arial", 14, "bold"), fg = "gray3", bg="ghost white").grid(row=4, column=0)
 six = Label(guide_frame, text = '6. Press compile to complete nine-cell data object.\nGo on to
the next small plot!', font = ("arial", 14, "bold"), fg = "gray3", bg="ghost white").grid(row=5,
column=0)

 try:
 # SOCEM diagram of use #
 load = Image.open(directory+'/'+'GuideSOCEM_2022.png')
 load = load.resize((275,275))
 render = ImageTk.PhotoImage(load)
 img = Label(self, image=render)
 img.image = render
 img.place(x = 520, y = 35)
 except:
 print("Guide image not found.")

class FinalInputs(tk.Frame):

 def __init__(self, parent, controller): # automatically runs

 110

 FinalInputs.mass1 = [] # TypeError: 'float' object is not iterable
 FinalInputs.mass2 = []
 FinalInputs.mass3 = []
 FinalInputs.mass4 = []
 FinalInputs.mass5 = []
 FinalInputs.mass6 = []
 FinalInputs.mass7 = []
 FinalInputs.mass8 = []
 FinalInputs.mass9 = []
 FinalInputs.count1 = []
 FinalInputs.count2 = []
 FinalInputs.count3 = []
 FinalInputs.count4 = []
 FinalInputs.count5 = []
 FinalInputs.count6 = []
 FinalInputs.count7 = []
 FinalInputs.count8 = []
 FinalInputs.count9 = []

 FinalInputs.diam1 = []
 FinalInputs.diam2 = []
 FinalInputs.diam3 = []
 FinalInputs.diam4 = []
 FinalInputs.diam5 = []
 FinalInputs.diam6 = []
 FinalInputs.diam7 = []
 FinalInputs.diam8 = []
 FinalInputs.diam9 = []

 tk.Frame.__init__(self, parent)

 ''' GUI design, non-frame '''
 pageButtons = repeatPageButtons.showButtons(self, parent, controller)
 unit_label = Label(self, text=str("Mass unit is grams, diameter unit is millimeters."), font =
("arial", 12, "italic"), fg = "red4", bg="ghost white")
 #backupFinalInputs_button = Button(self, text ="Create Backup File", font = ("arial", 14, "bold"),
height = 1, width = 20, fg = "ghost white", bg = "dodgerblue3",
command=lambda:createBackupFile())
 savePostTestInputs_button = Button(self, text ="Save Post Test Inputs", font = ("arial", 14,
"bold"), height = 1, width = 20, fg = "ghost white", bg = "dodgerblue3",
command=lambda:self.savePostTestInputs())
 compileNineCellData_button = Button(self, text ="Compile Nine-Cell Data", font = ("arial", 14,
"bold"), height = 1, width = 20, fg = "ghost white", bg = "dodgerblue3",
command=lambda:self.compileNineCellData())

 unit_label.place(x=400+30,y=0)
 #backupFinalInputs_button.place(x = 510, y = 340+38)
 compileNineCellData_button.place(x = 510, y = 340+38)

 111

 savePostTestInputs_button.place(x = 510, y = 340)

 ''' Frame: Cell 1 '''
 cell1_frame = tk.LabelFrame(self, text='Cell 1',font = ("arial", 14, "bold"), width= 10, bg="white",
fg="gray1")
 cell1_frame.place(x = 0, y = 230)
 cell1Mass_label = Label(cell1_frame, text = "Mass:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=0, column=0)
 cell1Count_label = Label(cell1_frame, text = "Count:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=1, column=0)
 cell1Diameters_label = Label(cell1_frame, text = "Diam:", font = ("arial", 14, "bold"), fg =
"gray3", bg="ghost white").grid(row=2, column=0)
 cell1Mass_entry = Entry(cell1_frame, textvariable=GUI.cell1Mass, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=0, column=1)
 cell1Count_entry = Entry(cell1_frame, textvariable=GUI.cell1Count, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=1, column=1)
 cell1Diameter1_entry = Entry(cell1_frame, textvariable=GUI.cell1Diameter1, font = ("arial", 14,
"bold"), width=4, bg="white", fg="gray1").grid(row=2, column=1)
 cell1Diameter2_entry = Entry(cell1_frame, textvariable=GUI.cell1Diameter2, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=2)
 cell1Diameter3_entry = Entry(cell1_frame, textvariable=GUI.cell1Diameter3, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=3)
 cell1Diameter4_entry = Entry(cell1_frame, textvariable=GUI.cell1Diameter4, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=4)
 ''' end '''

 ''' Frame: Cell 2 '''
 cell2_frame = tk.LabelFrame(self, text='Cell 2',font = ("arial", 14, "bold"), width= 10, bg="white",
fg="gray1")
 #cell2_frame.place(x = 250, y = 230)
 cell2_frame.place(x = 0, y = 125)
 cell2Mass_label = Label(cell2_frame, text = "Mass:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=0, column=0)
 cell2Count_label = Label(cell2_frame, text = "Count:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=1, column=0)
 cell2Diameters_label = Label(cell2_frame, text = "Diam:", font = ("arial", 14, "bold"), fg =
"gray3", bg="ghost white").grid(row=2, column=0)
 cell2Mass_entry = Entry(cell2_frame, textvariable=GUI.cell2Mass, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=0, column=1)
 cell2Count_entry = Entry(cell2_frame, textvariable=GUI.cell2Count, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=1, column=1)
 cell2Diameter1_entry = Entry(cell2_frame, textvariable=GUI.cell2Diameter1, font = ("arial", 14,
"bold"), width=4, bg="white", fg="gray1").grid(row=2, column=1)
 cell2Diameter2_entry = Entry(cell2_frame, textvariable=GUI.cell2Diameter2, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=2)
 cell2Diameter3_entry = Entry(cell2_frame, textvariable=GUI.cell2Diameter3, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=3)

 112

 cell2Diameter4_entry = Entry(cell2_frame, textvariable=GUI.cell2Diameter4, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=4)
 ''' end '''

 ''' Frame: Cell 3 '''
 cell3_frame = tk.LabelFrame(self, text='Cell 3',font = ("arial", 14, "bold"), width= 10, bg="white",
fg="gray1")
 #cell3_frame.place(x = 500, y = 230)
 cell3_frame.place(x = 0, y = 20)
 cell3Mass_label = Label(cell3_frame, text = "Mass:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=0, column=0)
 cell3Count_label = Label(cell3_frame, text = "Count:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=1, column=0)
 cell3Diameters_label = Label(cell3_frame, text = "Diam:", font = ("arial", 14, "bold"), fg =
"gray3", bg="ghost white").grid(row=2, column=0)
 cell3Mass_entry = Entry(cell3_frame, textvariable=GUI.cell3Mass, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=0, column=1)
 cell3Count_entry = Entry(cell3_frame, textvariable=GUI.cell3Count, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=1, column=1)
 cell3Diameter1_entry = Entry(cell3_frame, textvariable=GUI.cell3Diameter1, font = ("arial", 14,
"bold"), width=4, bg="white", fg="gray1").grid(row=2, column=1)
 cell3Diameter2_entry = Entry(cell3_frame, textvariable=GUI.cell3Diameter2, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=2)
 cell3Diameter3_entry = Entry(cell3_frame, textvariable=GUI.cell3Diameter3, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=3)
 cell3Diameter4_entry = Entry(cell3_frame, textvariable=GUI.cell3Diameter4, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=4)
 ''' end '''

 ''' Frame: Cell 4 '''
 cell4_frame = tk.LabelFrame(self, text='Cell 4',font = ("arial", 14, "bold"), width= 10, bg="white",
fg="gray1")
 #cell4_frame.place(x = 0, y = 125)
 cell4_frame.place(x = 250, y = 230)
 cell4Mass_label = Label(cell4_frame, text = "Mass:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=0, column=0)
 cell4Count_label = Label(cell4_frame, text = "Count:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=1, column=0)
 cell4Diameters_label = Label(cell4_frame, text = "Diam:", font = ("arial", 14, "bold"), fg =
"gray3", bg="ghost white").grid(row=2, column=0)
 cell4Mass_entry = Entry(cell4_frame, textvariable=GUI.cell4Mass, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=0, column=1)
 cell4Count_entry = Entry(cell4_frame, textvariable=GUI.cell4Count, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=1, column=1)
 cell4Diameter1_entry = Entry(cell4_frame, textvariable=GUI.cell4Diameter1, font = ("arial", 14,
"bold"), width=4, bg="white", fg="gray1").grid(row=2, column=1)
 cell4Diameter2_entry = Entry(cell4_frame, textvariable=GUI.cell4Diameter2, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=2)

 113

 cell4Diameter3_entry = Entry(cell4_frame, textvariable=GUI.cell4Diameter3, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=3)
 cell4Diameter4_entry = Entry(cell4_frame, textvariable=GUI.cell4Diameter4, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=4)
 ''' end '''

 ''' Frame: Cell 5 '''
 cell5_frame = tk.LabelFrame(self, text='Cell 5',font = ("arial", 14, "bold"), width= 10, bg="white",
fg="gray1")
 cell5_frame.place(x = 250, y = 125)
 cell5Mass_label = Label(cell5_frame, text = "Mass:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=0, column=0)
 cell5Count_label = Label(cell5_frame, text = "Count:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=1, column=0)
 cell5Diameters_label = Label(cell5_frame, text = "Diam:", font = ("arial", 14, "bold"), fg =
"gray3", bg="ghost white").grid(row=2, column=0)
 cell5Mass_entry = Entry(cell5_frame, textvariable=GUI.cell5Mass, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=0, column=1)
 cell5Count_entry = Entry(cell5_frame, textvariable=GUI.cell5Count, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=1, column=1)
 cell5Diameter1_entry = Entry(cell5_frame, textvariable=GUI.cell5Diameter1, font = ("arial", 14,
"bold"), width=4, bg="white", fg="gray1").grid(row=2, column=1)
 cell5Diameter2_entry = Entry(cell5_frame, textvariable=GUI.cell5Diameter2, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=2)
 cell5Diameter3_entry = Entry(cell5_frame, textvariable=GUI.cell5Diameter3, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=3)
 cell5Diameter4_entry = Entry(cell5_frame, textvariable=GUI.cell5Diameter4, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=4)
 ''' end '''

 ''' Frame: Cell 6 '''
 cell6_frame = tk.LabelFrame(self, text='Cell 6',font = ("arial", 14, "bold"), width= 10, bg="white",
fg="gray1")
 #cell6_frame.place(x = 500, y = 125)
 cell6_frame.place(x = 250, y = 20)
 cell6Mass_label = Label(cell6_frame, text = "Mass:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=0, column=0)
 cell6Count_label = Label(cell6_frame, text = "Count:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=1, column=0)
 cell6Diameters_label = Label(cell6_frame, text = "Diam:", font = ("arial", 14, "bold"), fg =
"gray3", bg="ghost white").grid(row=2, column=0)
 cell6Mass_entry = Entry(cell6_frame, textvariable=GUI.cell6Mass, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=0, column=1)
 cell6Count_entry = Entry(cell6_frame, textvariable=GUI.cell6Count, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=1, column=1)
 cell6Diameter1_entry = Entry(cell6_frame, textvariable=GUI.cell6Diameter1, font = ("arial", 14,
"bold"), width=4, bg="white", fg="gray1").grid(row=2, column=1)

 114

 cell6Diameter2_entry = Entry(cell6_frame, textvariable=GUI.cell6Diameter2, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=2)
 cell6Diameter3_entry = Entry(cell6_frame, textvariable=GUI.cell6Diameter3, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=3)
 cell6Diameter4_entry = Entry(cell6_frame, textvariable=GUI.cell6Diameter4, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=4)
 ''' end '''

 ''' Frame: Cell 7 '''
 cell7_frame = tk.LabelFrame(self, text='Cell 7',font = ("arial", 14, "bold"), width= 10, bg="white",
fg="gray1")
 #cell7_frame.place(x = 0, y = 20)
 cell7_frame.place(x = 500, y = 230)
 cell7Mass_label = Label(cell7_frame, text = "Mass:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=0, column=0)
 cell7Count_label = Label(cell7_frame, text = "Count:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=1, column=0)
 cell7Diameters_label = Label(cell7_frame, text = "Diam:", font = ("arial", 14, "bold"), fg =
"gray3", bg="ghost white").grid(row=2, column=0)
 cell7Mass_entry = Entry(cell7_frame, textvariable=GUI.cell7Mass, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=0, column=1)
 cell7Count_entry = Entry(cell7_frame, textvariable=GUI.cell7Count, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=1, column=1)
 cell7Diameter1_entry = Entry(cell7_frame, textvariable=GUI.cell7Diameter1, font = ("arial", 14,
"bold"), width=4, bg="white", fg="gray1").grid(row=2, column=1)
 cell7Diameter2_entry = Entry(cell7_frame, textvariable=GUI.cell7Diameter2, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=2)
 cell7Diameter3_entry = Entry(cell7_frame, textvariable=GUI.cell7Diameter3, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=3)
 cell7Diameter4_entry = Entry(cell7_frame, textvariable=GUI.cell7Diameter4, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=4)
 ''' end '''

 ''' Frame: Cell 8 '''
 cell8_frame = tk.LabelFrame(self, text='Cell 8',font = ("arial", 14, "bold"), width= 10, bg="white",
fg="gray1")
 #cell8_frame.place(x = 250, y = 20)
 cell8_frame.place(x = 500, y = 125)
 cell8Mass_label = Label(cell8_frame, text = "Mass:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=0, column=0)
 cell8Count_label = Label(cell8_frame, text = "Count:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=1, column=0)
 cell8Diameters_label = Label(cell8_frame, text = "Diam:", font = ("arial", 14, "bold"), fg =
"gray3", bg="ghost white").grid(row=2, column=0)
 cell8Mass_entry = Entry(cell8_frame, textvariable=GUI.cell8Mass, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=0, column=1)
 cell8Count_entry = Entry(cell8_frame, textvariable=GUI.cell8Count, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=1, column=1)

 115

 cell8Diameter1_entry = Entry(cell8_frame, textvariable=GUI.cell8Diameter1, font = ("arial", 14,
"bold"), width=4, bg="white", fg="gray1").grid(row=2, column=1)
 cell8Diameter2_entry = Entry(cell8_frame, textvariable=GUI.cell8Diameter2, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=2)
 cell8Diameter3_entry = Entry(cell8_frame, textvariable=GUI.cell8Diameter3, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=3)
 cell8Diameter4_entry = Entry(cell8_frame, textvariable=GUI.cell8Diameter4, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=4)
 ''' end '''

 ''' Frame: Cell 9 '''
 cell9_frame = tk.LabelFrame(self, text='Cell 9',font = ("arial", 14, "bold"), width= 10, bg="white",
fg="gray1")
 cell9_frame.place(x = 500, y = 20)
 cell9Mass_label = Label(cell9_frame, text = "Mass:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=0, column=0)
 cell9Count_label = Label(cell9_frame, text = "Count:", font = ("arial", 14, "bold"), fg = "gray3",
bg="ghost white").grid(row=1, column=0)
 cell9Diameters_label = Label(cell9_frame, text = "Diam:", font = ("arial", 14, "bold"), fg =
"gray3", bg="ghost white").grid(row=2, column=0)
 cell9Mass_entry = Entry(cell9_frame, textvariable=GUI.cell9Mass, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=0, column=1)
 cell9Count_entry = Entry(cell9_frame, textvariable=GUI.cell9Count, font = ("arial", 14, "bold"),
width=4, bg="white", fg="gray1").grid(row=1, column=1)
 cell9Diameter1_entry = Entry(cell9_frame, textvariable=GUI.cell9Diameter1, font = ("arial", 14,
"bold"), width=4, bg="white", fg="gray1").grid(row=2, column=1)
 cell9Diameter2_entry = Entry(cell9_frame, textvariable=GUI.cell9Diameter2, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=2)
 cell9Diameter3_entry = Entry(cell9_frame, textvariable=GUI.cell9Diameter3, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=3)
 cell9Diameter4_entry = Entry(cell9_frame, textvariable=GUI.cell9Diameter4, font = ("arial", 14,
"bold"), width=3, bg="white", fg="gray1").grid(row=2, column=4)
 ''' end '''

 self.bind("<<ShowFrame>>", self.on_show_frame_FinalInputs) # need this?

 def savePostTestInputs(self):

 filename_postTest_csv = GUI.address + '/' + (GUI.filename_postTest.get()) + '.csv'

 FinalInputs.mass1 = [GUI.cell1Mass.get()] # TypeError: 'float' object is not iterable
 FinalInputs.mass2 = [GUI.cell2Mass.get()]
 FinalInputs.mass3 = [GUI.cell3Mass.get()]
 FinalInputs.mass4 = [GUI.cell4Mass.get()]
 FinalInputs.mass5 = [GUI.cell5Mass.get()]
 FinalInputs.mass6 = [GUI.cell6Mass.get()]
 FinalInputs.mass7 = [GUI.cell7Mass.get()]
 FinalInputs.mass8 = [GUI.cell8Mass.get()]

 116

 FinalInputs.mass9 = [GUI.cell9Mass.get()]
 FinalInputs.count1 = [GUI.cell1Count.get()] # TypeError: 'float' object is not iterable
 FinalInputs.count2 = [GUI.cell2Count.get()]
 FinalInputs.count3 = [GUI.cell3Count.get()]
 FinalInputs.count4 = [GUI.cell4Count.get()]
 FinalInputs.count5 = [GUI.cell5Count.get()]
 FinalInputs.count6 = [GUI.cell6Count.get()]
 FinalInputs.count7 = [GUI.cell7Count.get()]
 FinalInputs.count8 = [GUI.cell8Count.get()]
 FinalInputs.count9 = [GUI.cell9Count.get()]

 FinalInputs.diam1 =
[GUI.cell1Diameter1.get(),GUI.cell1Diameter2.get(),GUI.cell1Diameter3.get(),GUI.cell1Diameter4.ge
t()]
 FinalInputs.diam2 =
[GUI.cell2Diameter1.get(),GUI.cell2Diameter2.get(),GUI.cell2Diameter3.get(),GUI.cell2Diameter4.ge
t()]
 FinalInputs.diam3 =
[GUI.cell3Diameter1.get(),GUI.cell3Diameter2.get(),GUI.cell3Diameter3.get(),GUI.cell3Diameter4.ge
t()]
 FinalInputs.diam4 =
[GUI.cell4Diameter1.get(),GUI.cell4Diameter2.get(),GUI.cell4Diameter3.get(),GUI.cell4Diameter4.ge
t()]
 FinalInputs.diam5 =
[GUI.cell5Diameter1.get(),GUI.cell5Diameter2.get(),GUI.cell5Diameter3.get(),GUI.cell5Diameter4.ge
t()]
 FinalInputs.diam6 =
[GUI.cell6Diameter1.get(),GUI.cell6Diameter2.get(),GUI.cell6Diameter3.get(),GUI.cell6Diameter4.ge
t()]
 FinalInputs.diam7 =
[GUI.cell7Diameter1.get(),GUI.cell7Diameter2.get(),GUI.cell7Diameter3.get(),GUI.cell7Diameter4.ge
t()]
 FinalInputs.diam8 =
[GUI.cell8Diameter1.get(),GUI.cell8Diameter2.get(),GUI.cell8Diameter3.get(),GUI.cell8Diameter4.ge
t()]
 FinalInputs.diam9 =
[GUI.cell9Diameter1.get(),GUI.cell9Diameter2.get(),GUI.cell9Diameter3.get(),GUI.cell9Diameter4.ge
t()]

 # Labels for Excel
 FinalInputs.diam1.insert(0,"diameters_cell1(mm)")
 FinalInputs.diam2.insert(0,"diameters_cell2(mm)")
 FinalInputs.diam3.insert(0,"diameters_cell3(mm)")
 FinalInputs.diam4.insert(0,"diameters_cell4(mm)")
 FinalInputs.diam5.insert(0,"diameters_cell5(mm)")
 FinalInputs.diam6.insert(0,"diameters_cell6(mm)")
 FinalInputs.diam7.insert(0,"diameters_cell7(mm)")
 FinalInputs.diam8.insert(0,"diameters_cell8(mm)")

 117

 FinalInputs.diam9.insert(0,"diameters_cell9(mm)")
 FinalInputs.mass1.insert(0,"mass_cell1(g)")
 FinalInputs.mass2.insert(0,"mass_cell2(g)")
 FinalInputs.mass3.insert(0,"mass_cell3(g)")
 FinalInputs.mass4.insert(0,"mass_cell4(g)")
 FinalInputs.mass5.insert(0,"mass_cell5(g)")
 FinalInputs.mass6.insert(0,"mass_cell6(g)")
 FinalInputs.mass7.insert(0,"mass_cell7(g)")
 FinalInputs.mass8.insert(0,"mass_cell8(g)")
 FinalInputs.mass9.insert(0,"mass_cell9(g)")
 FinalInputs.count1.insert(0,"count_cell1")
 FinalInputs.count2.insert(0,"count_cell2")
 FinalInputs.count3.insert(0,"count_cell3")
 FinalInputs.count4.insert(0,"count_cell4")
 FinalInputs.count5.insert(0,"count_cell5")
 FinalInputs.count6.insert(0,"count_cell6")
 FinalInputs.count7.insert(0,"count_cell7")
 FinalInputs.count8.insert(0,"count_cell8")
 FinalInputs.count9.insert(0,"count_cell9")

 if overwriteGuardPage(filename_postTest_csv) == True: # filename already exists, needs to be
renamed
 renamePage(GUI.filename_postTest.get()) # prompt user to rename file
 ''' write CSV'''

 GUI.data_postTest =
[FinalInputs.diam1,FinalInputs.diam2,FinalInputs.diam3,FinalInputs.diam4,FinalInputs.diam5,FinalIn
puts.diam6,FinalInputs.diam7,FinalInputs.diam8,FinalInputs.diam9,FinalInputs.mass1,FinalInputs.m
ass2,FinalInputs.mass3,FinalInputs.mass4,FinalInputs.mass5,FinalInputs.mass6,FinalInputs.mass7,Fi
nalInputs.mass8,FinalInputs.mass9,FinalInputs.count1,FinalInputs.count2,FinalInputs.count3,FinalIn
puts.count4,FinalInputs.count5,FinalInputs.count6,FinalInputs.count7,FinalInputs.count8,FinalInputs
.count9]
 columns_data_postTest = zip_longest(*GUI.data_postTest)

 with open(filename_postTest_csv,'w',newline='') as f:
 writer = csv.writer(f)
 writer.writerows(columns_data_postTest)
 ''' end: write CSV '''
 print("filename_postTest_csv = "+filename_postTest_csv)

 def saveEIs():
 GUI.EI_fullcontact.insert(0 , "EI_fullcontact(N*cm^2)")
 GUI.EI_intermediatecontact.insert(0 , "EI_intermediatecontact(N*cm^2)")
 GUI.EI_nocontact.insert(0 , "EI_nocontact(N*cm^2")
 GUI.AvgEI_intermediatecontact.insert(0 , "AvgEI_intermediatecontact(N*cm^2)")
 ''' write CSV'''
 filename_EI_csv = GUI.address + '/' + GUI.filename_force.get() + '_EI.csv'

 118

 GUI.data_EI =
[GUI.EI_fullcontact,GUI.EI_intermediatecontact,GUI.EI_nocontact,GUI.AvgEI_intermediatecontact]
 columns_data_EI = zip_longest(*GUI.data_EI)
 with open(filename_EI_csv,'w',newline='') as f:
 writer = csv.writer(f)
 writer.writerows(columns_data_EI)
 ''' end: write CSV '''
 print("filename_EI_csv = "+filename_EI_csv)
 #print("saved:", filename_EI_csv)

 def compileNineCellData(self):
 createBackupFile() # fix below # numbers are for lbs, not newtons
 GUI.peaks_force = [GUI.peak_force_cell1, GUI.peak_force_cell2, GUI.peak_force_cell3,
GUI.peak_force_cell4, GUI.peak_force_cell5, GUI.peak_force_cell6, GUI.peak_force_cell7,
GUI.peak_force_cell8, GUI.peak_force_cell9]
 GUI.peaks_distance = [GUI.peak_distance_cell1, GUI.peak_distance_cell2,
GUI.peak_distance_cell3, GUI.peak_distance_cell4, GUI.peak_distance_cell5,
GUI.peak_distance_cell6, GUI.peak_distance_cell7, GUI.peak_distance_cell8,
GUI.peak_distance_cell9]
 GUI.peaks_time = [GUI.peak_time_cell1, GUI.peak_time_cell2, GUI.peak_time_cell3,
GUI.peak_time_cell4, GUI.peak_time_cell5, GUI.peak_time_cell6, GUI.peak_time_cell7,
GUI.peak_time_cell8, GUI.peak_time_cell9]

GUI.stemcounts=[GUI.cell1Count.get(),GUI.cell2Count.get(),GUI.cell3Count.get(),GUI.cell4Count.get(
),GUI.cell5Count.get(),GUI.cell6Count.get(),GUI.cell7Count.get(),GUI.cell8Count.get(),GUI.cell9Count
.get()]

 # changed from 10 units long to 9 units long, troubleshoot, CB 9/8/22
 #GUI.stemspacing_average, GUI.EI_fullcontact, GUI.EI_nocontact, GUI.EI_intermediatecontact =
[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0
,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]
 GUI.stemspacing_average, GUI.EI_fullcontact, GUI.EI_nocontact, GUI.EI_intermediatecontact =
[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
,0.0],[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]
 print("GUI.stemcounts = ",GUI.stemcounts)
 #for i in range(0,9): #1,10
 for i in range(0,8): #1,10 # FIX THIS AFTER DAQ, for EI post processing
 try:
 GUI.stemspacing_average[i], GUI.EI_fullcontact[i], GUI.EI_nocontact[i] =
FinalInputs.calculateEI(float(GUI.peaks_force[i]), GUI.stemheight.get(), GUI.barbottom.get(),
GUI.stemcounts[i])
 except:
 GUI.stemspacing_average[i], GUI.EI_fullcontact[i], GUI.EI_nocontact[i] = 0,0,0
 GUI.AvgEI_intermediatecontact = [0.0]
 GUI.AvgEI_intermediatecontact[0] =
round(sum(GUI.EI_intermediatecontact)/len(GUI.EI_intermediatecontact),3)
 FinalInputs.saveEIs()
 FinalInputs.saveCompiled()

 119

 time.sleep(1) # pause x seconds
 if refreshAllAuto == True:
 GUI.refreshAll() # refresh all variables
 #except:
 #else:
 # print("The nine cell scheme requires exactly 9 clips, 3 from each side hit.")

 def calculateEI(peak_force, stemheight, barbottom, stemcount):
 #try:
 stemspacing_average = 1/(stemcount/barlength)
 EI_fullcontact = EI_Interaction_Fx.EI_Interaction(peak_force, stemheight,
barbottom,stemspacing_average) # uses clicked forces (Y axis), force bar height, horizontal plot
heights, and count density
 EI_nocontact = EI_No_Interaction_Fx.EI_NoInteraction(peak_force, stemheight, barbottom,
stemspacing_average) # the x value of the click does nothing other than find the nearest height from
horz. It is not factored in to the number of beams or the character of the beams.
 EI_intermediatecontact = (EI_fullcontact + EI_nocontact)/2
 EI_Interaction_Fx.clearAll()
 EI_No_Interaction_Fx.clearAll()
 #except:
 '''
 stemspacing_average = 0 # if count is zero
 EI_fullcontact = 0
 EI_nocontact = 0
 EI_intermediatecontact = 0
 '''

 return stemspacing_average, EI_fullcontact, EI_nocontact, EI_intermediatecontact;

 def saveCompiled():
 #print("Compiled Data button does not currently work correctly. Please develop.")
 # ned to change the way I handle filename_force : we need a base name, that is variety and plot
 # same for the peakcliclk setion.
 ''' write XSLX'''
 filename_compiled_xlsx = GUI.address + '/' + GUI.filename_force.get() + '_compiled.xlsx'

 filename_preTest_csv = GUI.address + '/' + GUI.filename_preTest.get() + '.csv'
 filename_forceSide1_csv = GUI.address + '/' + (GUI.filename_force.get()) + '_side1.csv'
 filename_forceSide2_csv = GUI.address + '/' + (GUI.filename_force.get()) + '_side2.csv'
 filename_forceSide3_csv = GUI.address + '/' + (GUI.filename_force.get()) + '_side3.csv'
 filename_forceForward_csv = GUI.address + '/' + (GUI.filename_force.get()) + '_forward.csv'
 filename_EI_csv = GUI.address + '/' + GUI.filename_force.get() + '_EI.csv'
 filename_postTest_csv = GUI.address + '/' + (GUI.filename_postTest.get()) + '.csv'

 120

 filenames_CSV_all =
[filename_preTest_csv,filename_postTest_csv,filename_EI_csv,filename_forceSide1_csv,filename_f
orceSide2_csv,filename_forceSide3_csv,filename_forceForward_csv]
 sheetnames_XLSX_all =
['preTest','postTest','EI','force_side1','force_side2','force_side3','force_forward']
 sheetnames_XLSX_most = ['preTest','postTest','EI','force_side1','force_side2','force_side3']

 ''' test names, sans arduino'''
 filenames_CSV_some = [filename_preTest_csv,filename_postTest_csv,filename_EI_csv]
 sheetnames_XLSX_some = ['preTest','postTest','EI']

 writer = pd.ExcelWriter(filename_compiled_xlsx, engine='xlsxwriter')

 try:
 i=0
 for csvfilename in filenames_CSV_all:
 df = pd.read_csv(csvfilename)
 df.to_excel(writer,sheet_name=sheetnames_XLSX_all[i])
 i+=1
 writer.save()
 print("filename_compiled_xlsx = "+filename_compiled_xlsx)
 except:
 try:
 i=0
 for csvfilename in filenames_CSV_some:
 df = pd.read_csv(csvfilename)
 df.to_excel(writer,sheet_name=sheetnames_XLSX_most[i])
 i+=1
 writer.save()
 print("filename_compiled_xlsx = "+filename_compiled_xlsx)
 print("Forward hit data not included in compilation file.")
 except:
 try:
 i=0
 for csvfilename in filenames_CSV_some:
 df = pd.read_csv(csvfilename)
 df.to_excel(writer,sheet_name=sheetnames_XLSX_some[i])
 i+=1
 writer.save()
 print("filename_compiled_xlsx = "+filename_compiled_xlsx)
 print("Raw force data not included in compilation file.")
 except:
 print("Generate at least a pre-test and post-test CSV file before trying to compile data.")

 def on_show_frame_FinalInputs(self, event):
 #print("Flip to FinalInputs screen.")

 121

 background_box = Label(self, text="This is hidden text meant to cover up old text.", font =
("arial", 14, "bold"), fg = "ghost white", bg="ghost white")
 background_box.place(x=0,y=0)
 # Update stringname of postTest file, based on filename_force, if it exists.
 filename_postTest = nameBlackBox("postTest",GUI.filename_postTest.get())
 GUI.filename_postTest.set(filename_postTest)

 # update filename text field, even if force page is never activated
 if (GUI.varietyname.get()!="" or GUI.plotname.get()!="") and
(GUI.passfillednames_checkbox.get()==1): # checks if a varietyname or plotname has been given
 RecordForce.nameFresh(GUI.varietyname.get(),GUI.plotname.get()) # if so, autopopulate the
basic filestructure
 filename_force = nameBlackBox("",GUI.filename_force.get())
 GUI.filename_force.set(filename_force)

 filename_label = Label(self, text="Filename:"+filename_postTest, font = ("arial", 14, "bold"), fg
= "dodgerblue3", bg="ghost white")
 filename_label.place(x=0,y=0)

''' Figure Interation classes '''

class SnaptoCursor(object):
 '''
 Cursor crossshair snaps to nearest x, y point.
 '''
 def __init__(self, ax, x, y):
 self.ax = ax
 #self.lx = ax.axhline(color='gold') # horizontal line
 self.ly = ax.axvline(color='orange', linewidth=1, linestyle="--") # vertical line
 self.x = x
 self.y = y
 # text location in axes coords
 self.txt = ax.text(0.7, 0.9, '', transform=ax.transAxes)

 def mouse_move(self, event):
 if not event.inaxes:
 return

 x, y = event.xdata, event.ydata
 indx = min(np.searchsorted(self.x, x), len(self.x)-1)
 x = self.x[indx]
 y = self.y[indx]
 # update the line positions
 #self.lx.set_ydata(y) # why is this commented out
 self.ly.set_xdata(x)

 self.txt.set_text('x=%1.2f, y=%1.2f' % (x, y))

 122

 #print('x=%1.2f, y=%1.2f' % (x, y))
 self.ax.figure.canvas.draw()

class Cursor(object):
 '''
 Cursor crosshair that follows mouse
 '''

 def __init__(self, ax):
 self.ax = ax
 self.lx = ax.axhline(color='orange', linewidth=1, linestyle="--")
 self.ly = ax.axvline(color='orange', linewidth=1, linestyle="--")
 #text location in axes coords
 self.txt = ax.text(0.7, 0.9, '',transform=ax.transAxes)

 def mouse_move(self, event):
 if not event.inaxes:
 return
 x, y = event.xdata, event.ydata
 #update line positions
 self.lx.set_ydata(y)
 self.ly.set_xdata(x)

 self.txt.set_text('x=%1.2f, y=%1.2f' % (x, y))
 self.ax.figure.canvas.draw()

''' Peak click plotter methods'''
def initialPlot(distanceTraveled, forcePushed, timeElapsed, encoderWorked,
varietyAndPlotnameAndDetail, documentationFolder,averageVelocity):
 fig, ax = plt.subplots()
 encoderWorked = encoderWorked_override
 ''' vertical lines, for suggesting edge effect regions for forward tests '''
 if encoderWorked == True:
 start = 50 # cm , cut off 1st 50cm = 20" usually #
 end = 305 # cm, cut off after 120 inches = 305 cm usually
 else:
 startDis = 50 # cut off 1st 50cm = 20" usually
 try:
 speed = averageVelocity # assume cm/ms . would need encode to work.....
 start = startDis/speed # CB edit # 20/speed # find t where SOCEM ~ 20" into plot
 except:
 speed = 50 # assume 50 cm/s
 start = startDis/speed # CB edit # 20/speed # find t where SOCEM ~ 20" into plot
 endDis = 305 # cut of after 120" usually
 end = endDis/speed # CB edit # time[-1] - (20/speed) # find t where SOCME ~ 20" before end of
plot

 disReferenced_input = str(input('Would you like to type in known distance points (y/n)? '))

 123

 if disReferenced_input == 'y':
 disReferenced_PeakClick = True
 elif disReferenced_input == 'n':
 disReferenced_PeakClick = False
 else: # just in case
 disReferenced_PeakClick = False

 if disReferenced_PeakClick == True:
 startDisRef = (int(input('Start point x (in): ')))
 endDisRef = (int(input('End point x (in): ')))

 ''' '''
 maxPt = max(forcePushed)
 # draw cut off lines
 cutStart = [start, start]
 cutEnd = [end, end]
 cutLine = [0, maxPt]
 ax.plot(cutStart,cutLine, color = 'red') # start cut off line
 ax.plot(cutEnd, cutLine, color = 'red') # end cut off line

 # plot dis vs forcePushed
 if encoderWorked == True:
 ax.plot(distanceTraveled, forcePushed, color='midnightblue')
 ax.set_xlabel('Distance (cm)')
 snap_cursor = SnaptoCursor(ax, distanceTraveled, forcePushed) # create snap cursor object
 # plot time vs forcePushed
 else:
 ax.plot(timeElapsed, forcePushed, color='midnightblue')
 ax.set_xlabel('Time (sec)')
 snap_cursor = SnaptoCursor(ax, timeElapsed, forcePushed) # create snap cursor object

 title3 = '\n*click outside plot if red lines good*'
 fig.suptitle(GUI.filename_force.get() + '\nCut off edges: click start x pt, then end x pt.' + title3)
 #ax.set_title('*click outside plot if red lines good*')
 ax.set_ylabel('Force (N)')

 snap = fig.canvas.mpl_connect('motion_notify_event', snap_cursor.mouse_move) # update snap
cursor upon mouse movement

 xCut = [] # stores where to cut off ends of plot (eliminate edge effects)
 def click(event): # get x coord once mouse is pressed
 x = event.xdata
 if x is None:
 print('red lines')
 xCut.append((start))
 xCut.append((end))
 else:

 124

 print('x clicked = %1.2f' % x)
 xCut.append((x))
 # self.fig.canvas.mpl_disconnect(cid)
 if len(xCut) >= 2:
 fig.canvas.mpl_disconnect(cid)
 fig.canvas.mpl_disconnect(snap)
 fig.canvas.set_window_title('InitialPlot')
 if encoderWorked == True:
 savename = GUI.filename_force.get() + '_' + str(round(xCut[0],1)) + '-' +
str(round(xCut[1],1)) + '_raw.PNG'
 elif encoderWorked == False and disReferenced_PeakClick == True:
 savename = GUI.filename_force.get() + '_' + str(round(xCut[0],1)) + '-' +
str(round(xCut[1],1)) + '_disref' + '_raw.PNG'
 elif encoderWorked == False and disReferenced_PeakClick == False:
 savename = GUI.filename_force.get() + '_' + str(round(xCut[0],1)) + '-' +
str(round(xCut[1],1)) + '_timebased' + '_raw.PNG'
 else:
 savename = GUI.filename_force.get() + '_' + str(round(xCut[0],1)) + '-' +
str(round(xCut[1],1)) + '_else' + '_raw.PNG'
 ax.plot([xCut[0],xCut[0]],cutLine, color = 'orange', linewidth=1, linestyle="--") # start cut off
line
 ax.plot([xCut[1],xCut[1]], cutLine, color = 'orange', linewidth=1, linestyle="--") # end cut off
line
 #print("Initial plot show...")
 #plt.show()
 #print("Initial plot shown.")
 if not os.path.exists(documentationFolder):
 os.makedirs(documentationFolder) # Create documentationFolder because it does not exist
 print("did")
 plt.savefig(documentationFolder + '/' + savename)
 print("did2")
 plt.close(block)
 print("xCut = ",xCut)
 return xCut # return start & end x (dis. or time) pts

 cid = fig.canvas.mpl_connect('button_press_event', click) # connects click event
 print("cid")

 #clicked = snap_cursor.click()
 #print('clicked', snap_cursor.click.coords)
 plt.draw()
 plt.ion()
 plt.show() # never getting past this
 #plt.show(block=False) # never getting past this
 print("did4")
 print("encoderWorked = ",encoderWorked)
 print("disReferenced_PeakClick = ",disReferenced)
 if encoderWorked == True:

 125

 return xCut
 elif encoderWorked == False and disReferenced_PeakClick == True:
 return xCut, disReferenced, disNew, i, j
 elif disReferenced_PeakClick == False:
 disNew = []
 return xCut, disReferenced, disNew, i, j
 print("Complete initial plot.")
 print("xCut, disReferenced, disNew,i,j = ", xCut, disReferenced, disNew,i,j)

def choosePeaks(xData, forcePushed, xCut, varietyAndPlotnameAndDetail, encoderWorked,
disReferenced, documentationFolder):
 #please: EMBED THE MATPLOTLIB PLOT INTO A TKINTER WINDOW< WHICH CAB BE A POPUP<
LEADING TO POPUP.MAINLOOP()
 encoderWorked = encoderWorked_override
 def nearest_pt(pt): # get nearest dis index to starting pt in disCut
 idx = (np.abs(np.asarray(xData)- pt)).argmin()
 #print('idx ', idx)
 return idx
 peakclick.peaks_force = [] # force peaks
 peakclick.peaks_xaxis = [] # x (distance) pt of force peak

 startIdx = nearest_pt(xCut[0]) # starting index
 print('startIdx = ',startIdx) # , dis[startIdx])
 endIdx = nearest_pt(xCut[1])
 print('Closest distance pts: ', [xData[startIdx] , xData[endIdx]])
 xCenter = xData[startIdx:endIdx]
 fCenter = forcePushed[startIdx:endIdx]

 fig, ax = plt.subplots()
 fig.canvas.set_window_title('ChoosePeaks')
 fig.suptitle(GUI.filename_force.get() + '\nSelect Force Peaks, *click outside when done*')
 #fig.suptitle(GUI.filename_force.get() + '\nCut off edges: click start x pt, then end x pt.' + title3)
 #ax.set_title('*click outside when done*')
 ax.plot(xCenter, fCenter) # needed?
 maxPt = max(forcePushed)
 ax.set_xlim(min(xCenter)-5, max(xCenter)+5)
 ax.set_ylabel('Force (Newtons)')
 ''' # set secondary vertical axis
 xold = np.asarray(xCenter)
 xnew = xold*convert_NToLbs
 def forward(x):
 return np.interp(x, xold, xnew)
 def inverse(x):
 return np.interp(x, xnew, xold)
 axis_pounds = ax.secondary_yaxis('right', functions=(forward,inverse))

 126

 axis_pounds.set_ylabel('Force (pounds)')
 '''
 if encoderWorked == True or disReferenced_PeakClick == True:
 ax.set_xlabel('Distance (cm)')
 else:
 ax.set_xlabel('Time (sec)')

 cursor = Cursor(ax) # create snap cursor object
 cursorMove = fig.canvas.mpl_connect('motion_notify_event', cursor.mouse_move) # update snap
cursor upon mouse movement

 closeplt = False
 def click(event): # get x coord once mouse is pressed
 y, x = event.ydata, event.xdata
 #if y is None and len(peakclick.peaks_force)>2: # requires 3 clicks, or the window wont close
 #if y is None and len(peakclick.peaks_force)>0: # requires 1 click, or the window wont close
 if y is None: # window will close whenever you click out of the axes frame.
 cursorMove = fig.canvas.mpl_connect('motion_notify_event', cursor.mouse_move) # update
snap cursor upon mouse movement
 fig.canvas.mpl_disconnect(cid)
 fig.canvas.mpl_disconnect(cursorMove)
 # auto save file
 # example: CF452_24hr_4_23-156_disref_clicks.PNG
 if encoderWorked == True:
 savename = GUI.filename_force.get() + '_' + str(round(xCut[0],1)) + '-' +
str(round(xCut[1],1)) + '_clicks.PNG'
 elif encoderWorked == False and disReferenced_PeakClick == True:
 savename = GUI.filename_force.get() + '_' + str(round(xCut[0],1)) + '-' +
str(round(xCut[1],1)) + '_disref' + '_clicks.PNG'
 elif encoderWorked == False and disReferenced_PeakClick == False:
 savename = GUI.filename_force.get() + '_' + str(round(xCut[0],1)) + '-' +
str(round(xCut[1],1)) + '_timebased' + '_clicks.PNG'
 plt.savefig(documentationFolder + '/' + savename)
 print("choosePeaks: ",savename)

 print('peaks_xaxis = ', peakclick.peaks_xaxis)

 # lists of numbers, from analysis choice
 xCutL = ['xCut(in)'] # Distance, analysis range
 tCutL = ['tCut(sec)']# Time, analysis range
 print("test")
 plt.close()

 if encoderWorked == True:
 peakclick.peaks_distance = peakclick.peaks_xaxis
 peakclick.peaks_time =
peakclick.findmatchtime(forcePushed,distanceTraveled,timeElapsed,peaks_distance)
 print("peaks_force =",peakclick.peaks_force)

 127

 elif encoderWorked == False and disReferenced_PeakClick == True:
 peakclick.peaks_distance = peakclick.peaks_xaxis
 peakclick.peaks_time =
peakclick.findmatchtime(forcePushed,distanceTraveled,timeElapsed,peaks_distance)
 print("peaks_force =",peakclick.peaks_force)
 else: #elif encoderWorked == False and disReferenced_PeakClick == False: # possible issue
 peakclick.peaks_time = peakclick.peaks_xaxis
 peakclick.peaks_distance = [0, 0, 0] # might error, if there are not three clicks
 print("peaks_force =",peakclick.peaks_force)

 peakclick.saveCSV(GUI.filename_force.get(),GUI.address)
 RecordForce.closedplt = True
 else:
 # print('Force clicked = %1.2f at %1.2f' % (y, x)) # hide, CB
 peakclick.peaks_force.append((y))
 peakclick.peaks_xaxis.append((x))
 '''
 peaks_force.append((y))
 peaks_xaxis.append((x))
 '''
 ax.scatter(x, y, color='red')
 cursorMove = fig.canvas.mpl_connect('motion_notify_event', cursor.mouse_move) # update
snap cursor upon mouse movement
 fig.canvas.draw()

 if peakclick.peaks_force == []:
 quit()

 #plt.draw() # the magic ingredient
 plt.ion()
 #fig.canvas.draw()
 cid = fig.canvas.mpl_connect('button_press_event', click) # connects click event
 #fig.canvas.draw()
 plt.show()

MAIN
class peakclick:
 '''
 - Finish autoclicker by setting plt.show() into an inset tkinter gui popup, and then mainloop.
 Use: FigureCanvasTkAgg,NavigationToolbar2Tk,plt,Cursor.
 '''
 def __init__():
 peakclick.peaks_force = []
 peakclick.peaks_distance = []
 peakclick.peaks_time = []

 def findmatchtime(forcePushed,distanceTraveled,timeElapsed,peaks_distance):
 i=0

 128

 for peaks_distance_i in peaks_distance:
 peaks_time = timeElapsed[distanceTraveled.find(peaks_axis_i)]
 i+=1
 return peaks_time

 # peaks_force,peaks_distance,peaks_time =
peakclick.input(GUI.forcePushed,GUI.distanceTraveled,GUI.timeElapsed,GUI.filename_force.get(),G
UI.address)
 def
peakclick(forcePushed,distanceTraveled,timeElapsed,varietyAndPlotnameAndDetail,address,averag
eVelocity):

 #documentationFolder = GUI.address + '/' + 'documentation'
 documentationFolder = GUI.address # for PNG and raw data to go to the same place.
 if max(distanceTraveled) > 10: # Assess if the encoder worked or not. Assuems that if it worked,
the max value would exceeed 1 inch.
 encoderWorked = True #
 else: encoderWorked = False
 encoderWorked = encoderWorked_override # leaving this here means all graphs will be shown
in force vs time

 print('Encoder? ', encoderWorked)
 print('max(distanceTraveled) = ', str(max(distanceTraveled)))
 print(GUI.filename_force.get())

 if useInitialPlot_PeackClick == True:
 if encoderWorked == False:
 xCut, disReferenced, disNew,i,j = initialPlot(distanceTraveled, forcePushed, timeElapsed,
encoderWorked, GUI.filename_force.get(), documentationFolder,averageVelocity)
 elif encoderWorked == True:
 xCut = initialPlot(distanceTraveled, forcePushed, timeElapsed,
encoderWorked,GUI.filename_force.get(), documentationFolder,averageVelocity)
 disReferenced_PeakClick = False
 else:
 xCut = [min(distanceTraveled),max(distanceTraveled)]
 tCut = [min(timeElapsed),max(timeElapsed)]
 disReferenced_PeakClick = False

 if encoderWorked == True:
 print('Distance cut at: ', xCut) # cut forcePushed and horz!!!
 #peakclick.peaks_force,peakclick.peaks_xaxis = choosePeaks(distanceTraveled, forcePushed,
xCut,GUI.filename_force.get(),encoderWorked, disReferenced_PeakClick,documentationFolder)
 choosePeaks(distanceTraveled, forcePushed, xCut,GUI.filename_force.get(),encoderWorked,
disReferenced_PeakClick,documentationFolder)
 elif encoderWorked == False and disReferenced_PeakClick == True:
 print('troubleshoot702')
 print('Distance cut at: ', xCut)

 129

 #peakclick.peaks_force,peakclick.peaks_xaxis = choosePeaks(disNew, forcePushed,
xCut,GUI.filename_force.get(),encoderWorked, disReferenced_PeakClick, documentationFolder)
 choosePeaks(disNew, forcePushed, xCut,GUI.filename_force.get(),encoderWorked,
disReferenced_PeakClick, documentationFolder)
 else: #elif encoderWorked == False and disReferenced_PeakClick == False: # possible issue dave
 xCut=tCut
 print('Time cut at: ', xCut)
 #peakclick.peaks_force,peakclick.peaks_xaxis = choosePeaks(timeElapsed, forcePushed,
xCut,GUI.filename_force.get(),encoderWorked, disReferenced_PeakClick, documentationFolder)
 choosePeaks(timeElapsed, forcePushed, xCut,GUI.filename_force.get(),encoderWorked,
disReferenced_PeakClick, documentationFolder)

 #peakclick.saveCSV(GUI.filename_force.get(),GUI.address)
 #return peakclick.peaks_force,peakclick.peaks_distance,peakclick.peaks_time

 def saveCSV(varietyAndPlotnameAndDetail,address):
 #print("not yet saved. develop.")
 filename_peaks_csv = GUI.address + "/" + GUI.filename_force.get() + "_peaks.csv"
 ''' write CSV'''
 GUI.data_peaks = [peakclick.peaks_force,peakclick.peaks_distance,peakclick.peaks_time]
 RecordForce.peaks_force = peakclick.peaks_force
 RecordForce.peaks_distance = peakclick.peaks_distance
 RecordForce.peaks_time = peakclick.peaks_time
 RecordForce.peaks_distance.insert(0, "PeaksDistance(cm)")
 RecordForce.peaks_force.insert(0, "PeaksForce(N)")
 RecordForce.peaks_time.insert(0 , "PeaksTime(sec)")
 columns_data_peaks = zip_longest(*GUI.data_peaks)
 with open(filename_peaks_csv,'w',newline='') as f:
 writer = csv.writer(f)
 writer.writerows(columns_data_peaks)
 ''' end: write CSV '''
 print("filename_peaks_csv = "+filename_peaks_csv)
 RecordForce.peaks_force = peakclick.peaks_force
 RecordForce.peaks_distance = peakclick.peaks_distance
 RecordForce.peaks_time = peakclick.peaks_time

class EI_Interaction_Fx:
 '''
 Closed-form solution for calculating EI via the Multiple Inline Interacting Cantilever Beam Model
 Author: Austin Bebee
 Last updated: 7/6/2020
 Require input values for peak force (f), force bar height (h), beam length (l), beam-to-beam
spacing (s).
 Assumes the system contains the full/max number of beams (full interaction) at the first beam's
max deflection.
 If this is not the case, set the variable "finite_beam_num" to True and set the variable "beam-
num" to the number
 of beams in a row.

 130

 Additional assumptions:
 - beams deflect linearly inline
 - force bar force always perpendicular to 1st beam's end angle
 - each beam has same K & KO
 '''
 # INPUT PARAMETERS. EI will be calculated in units of f*(l^2)
 # example
 #f = 5 # peak force
 #h = 8 # force bar height
 #l = 10 # beam length
 #s = 1 # beam-to-beam spacing
 global definite_beam_num, beams
 definite_beam_num = False # if False, assumes max number of beams (full interaction) at the first
beam's max deflection
 beams = 8 # num. of beams in a row (only used if "definite_beam_num" set to True)

 # Model lists/arrays - each index is a beam's attribute (0 index = 1st beam, last index = last beam)
 global EI_Interaction_Fx_theta
 global EI_Interaction_Fx_betaA
 global EI_Interaction_Fx_x_deflection
 global EI_Interaction_Fx_dist_horz
 global EI_Interaction_Fx_phi
 global EI_Interaction_Fx_forces
 global EI_Interaction_Fx_q_len
 global EI_Interaction_Fx_KO
 global EI_Interaction_Fx_gamma_length

 EI_Interaction_Fx_theta = list() # PRBM angle (radians)
 EI_Interaction_Fx_betaA = list() # math.pi/2 - theta (radians)
 EI_Interaction_Fx_x_deflection = list() # x deflection
 EI_Interaction_Fx_dist_horz = list() # horizontal distance a beam extends past the next (x - s)
 EI_Interaction_Fx_phi = list() # force vector angle w/ respect to undeflected axis (vertical axis in
this case)
 EI_Interaction_Fx_forces = list() # individual reaction forces
 EI_Interaction_Fx_q_len = list() # effective beam lengths
 EI_Interaction_Fx_KO = list() # stiffness coefficient
 EI_Interaction_Fx_gamma_length = list() # gamma*l (longer rigid link length)

 def clearAll(): # Clears variables for new simulation
 EI_Interaction_Fx_betaA.clear()
 EI_Interaction_Fx_x_deflection.clear()
 d.clear()
 EI_Interaction_Fx_phi.clear()
 EI_Interaction_Fx_forces.clear()
 EI_Interaction_Fx_q_len.clear()
 EI_Interaction_Fx_KO.clear()
 EI_Interaction_Fx_gamma_length.clear()

 131

 def MultiPhiCor(h, l, s, phi): # Phi correctoin for multiple beams (exp. developed) used when h/l <
0.7
 if h/l < 0.7:
 mphi = 244.7802*(s/l) - 683.4973*((s/l)**2) - 165.1557*((s/l)*(h/l)) + 43.4227*((h/l)**2)
 mphi = mphi * ((math.pi) / 180)
 else:
 mphi = phi

 return mphi

 def Parametric_angle_coefficient(n): # returns c (parametric angle coefficient) when given n
 if -4 < n <= -1.5:
 c = 1.238945 + 0.012035*n + 0.00454*(n**2)
 elif -0.5 < n: # <= 10: # some conditions yield n = 10.25, which is just beyond the defined limits
of n. Can either remove n <= 10 boundary or set n = 10 if n > 10.
 c = 1.238845 + 0.009113*n - 0.001929*(n**2) + 0.000191*(n**3) - 0.000007*(n**4)
 else:
 c = 1.238845 + 0.009113*n - 0.001929*(n**2) + 0.000191*(n**3) - 0.000007*(n**4) # added
8/9/2022
 return c

 def gammaUpdate(n):# returns gamma value when give n
 if n > 10:
 n = 10
 if n > .5: # <= 10: # some conditions yield n = 10.25, which is just beyond the defined limits of n.
Can either remove n <= 10 boundary or set n = 10 if n > 10.
 gamma = .841655 - 0.0067807 * n + .000438 * (n ** 2)
 elif n > -1.8316 and n < 0.5:
 gamma = .852144 - 0.0182867 * n
 elif n > -5 and n < -1.8316:
 gamma = .912364 + .0145928 * n # added 9/8/2022
 else: # added 9/8/2022
 gamma = .912364 + .0145928 * n # added 9/8/2022

 return gamma

 def KOupdate(n):# returns Ko (stiffness coefficient) when given n
 if n > -5 and n <= -2.5:
 Ko = (3.024112 + 0.121290 * n + 0.003169 * (n ** 2))
 elif n > -2.5 and n <= -1:
 Ko = (1.967647 - 2.616021 * n - 3.738166 * (n ** 2) - 2.649437 * (n ** 3) - 0.891906 * (n ** 4)
- 0.113063 * (n ** 5))
 elif n > -1: # and n <= 10: # <= 10: # some conditions yield n = 10.25, which is just beyond the
defined limits of n. Can either remove n <= 10 boundary or set n = 10 if n > 10.
 Ko = (2.654855 - 0.509896 * (10 ** -1) * n + 0.126749 * (10 ** -1) * (n ** 2) - 0.142039 * (10
** -2) * (n ** 3) + 0.584525 * (10 ** -4) * (n ** 4))
 else: # added 8/9/2022

 132

 Ko = (2.654855 - 0.509896 * (10 ** -1) * n + 0.126749 * (10 ** -1) * (n ** 2) - 0.142039 * (10
** -2) * (n ** 3) + 0.584525 * (10 ** -4) * (n ** 4))

 return Ko

 # MAIN FUNCTION THAT RETURNS THE SYSTEM'S MEAN EI
 def EI_Interaction(f, h, l, s):
 #f, h, l, s = peak_force, stemheight, barbottom,stemspacing_average
 print(f, h, l, s)
 f=f/4.44822 # N to lbs
 h=h/2.54 # cm to inches
 l=l/2.54 # cm to inches
 s=s/76*30 # adjust barlength by cm to by inches
 ## DETERMINE 1ST BEAM'S KINEMATICS ##

 #initial assumption that force bar applies a horizontal force yields:
 n = 0 # initial n value
 gamma = EI_Interaction_Fx.gammaUpdate(n) # initial gamma

 # Gamma Convergence Cycle - update gamma for better estimate
 # issue is here, Nans are coming out
 j = 0
 while j < 100: # gamma converges well before 100 iterations
 b = (1 - gamma) * l # length below torsional spring (in.)
 # betaV needs edge case management - the solution should have been programmed already
on the laptop, or the desktop
 betaV = (np.arcsin((h - b) / (gamma * l))) # beta angle value (rads)
 if np.isnan(betaV):
 betaV = 0
 thetaV = (math.pi / 2) - betaV # PRBM theta value (rads)
 c = EI_Interaction_Fx.Parametric_angle_coefficient(n) # get parametric angle coefficient
 beam_end_angle = thetaV * c # corrected beam end angle
 phiV = (math.pi / 2) - beam_end_angle # phi value (perpendicular to beam end angle)
 n = (1 / np.tan(phiV)) # update n
 # Option below: if n > 10 (beyond PRBM defined limits) set n = 10 (note: negligible change if
used)
 if n > 10:
 n = 10
 gamma = EI_Interaction_Fx.gammaUpdate(n) # update gamma
 j += 1

 b1 = b # stores final b of 1st beam
 gamma1 = gamma # stores final gamma of 1st beam

 # 1st beam's geometry & attributes:
 EI_Interaction_Fx_q_len.insert(0, l) # effective beam length
 EI_Interaction_Fx_gamma_length.insert(0, gamma * l) # stores longer rigid link length
 Ko = EI_Interaction_Fx.KOupdate(n) # update Ko (stiffness coefficient)

 133

 EI_Interaction_Fx_KO.insert(0, Ko) # stores 1st beam's stiffness coefficient
 EI_Interaction_Fx_betaA.insert(0, betaV) # stores beta angle
 EI_Interaction_Fx_x_deflection.insert(0, EI_Interaction_Fx_gamma_length[0] *
np.cos(EI_Interaction_Fx_betaA[0])) # stores x deflection
 EI_Interaction_Fx_dist_horz.insert(0, EI_Interaction_Fx_x_deflection[0] - s) # stores horizontal
distance beam extends past the next

 phiCorrection = EI_Interaction_Fx.MultiPhiCor(h, l, s, phiV) # correct phi (if h/l < 0.7)
 EI_Interaction_Fx_phi.insert(0, phiCorrection) # force vector angle w/ respect to undeflected
axis

 # ALL OTHER BEAM'S KINEMATICS
 def otherBeams(i): # called after determining # of beams
 EI_Interaction_Fx_betaA.insert(i + 1, np.arctan((EI_Interaction_Fx_gamma_length[i] *
np.sin(EI_Interaction_Fx_betaA[i])) / EI_Interaction_Fx_dist_horz[i]))
 phiV = (EI_Interaction_Fx_betaA[i]) # initially assume phi = previous beta
 n = (1 / np.tan(phiV)) # determine n
 c = EI_Interaction_Fx.Parametric_angle_coefficient(n) # determine c
 phiV = (math.pi / 2) - (math.pi / 2 - EI_Interaction_Fx_betaA[i]) * c # correct & update phi
 phiCorrection = EI_Interaction_Fx.MultiPhiCor(h, l, s, phiV) # correct phi (if h/l < 0.7)
 EI_Interaction_Fx_phi.insert(i + 1, phiCorrection) # store beam's phi
 Ko = EI_Interaction_Fx.KOupdate(n) # update Ko
 EI_Interaction_Fx_KO.insert(i+1, Ko) # store beam's Ko
 gamma = EI_Interaction_Fx.gammaUpdate(n) # update gamma
 b = (1 - gamma) * l # update base length
 EI_Interaction_Fx_q_len.insert(i + 1, b + math.sqrt(EI_Interaction_Fx_dist_horz[i] ** 2 +
(EI_Interaction_Fx_gamma_length[i] * np.sin(EI_Interaction_Fx_betaA[i])) ** 2)) # effective
cantilever beam length (base to applied force from previous beam or force bar)
 EI_Interaction_Fx_gamma_length.append(gamma * l) # store beam's gamma*length
 EI_Interaction_Fx_x_deflection.insert(i + 1, EI_Interaction_Fx_gamma_length[i + 1] *
np.cos(EI_Interaction_Fx_betaA[i + 1])) # x deflection at end of beam
 #y.insert(i+1, EI_Interaction_Fx_gamma_length[i+1] * np.sin(beta[i + 1])) # y deflection at end
of beam (not needed for EI calculation)
 EI_Interaction_Fx_dist_horz.insert(i + 1, EI_Interaction_Fx_x_deflection[i + 1] - s)# stores
horizontal distance beam extends past the next

 return EI_Interaction_Fx_dist_horz[i] # returns distance to check to continue looping or not

 # Determine # of other beams:
 if definite_beam_num == False: # full interaction @ 1st beam's max deflection
 i = 0
 while EI_Interaction_Fx_dist_horz[i] > 0: # will previous beam hit next beam? If so, run that
beam through otherBeams()
 EI_Interaction_Fx.otherBeams(i)
 i += 1
 else: # definite number of beams in a row (may not be full/max interaction possible)
 i = 0

 134

 while EI_Interaction_Fx_dist_horz[i] > 0 and i < beams-1: # will previous beam hit next beam
& does that beam exist? If so, run that beam through otherBeams()
 EI_Interaction_Fx.otherBeams(i)
 i += 1

 # BACKSOLVE TO GET ALL FORCES/K EXCEPT 1ST FORCE/K

 # Last beam force/k
 if len(EI_Interaction_Fx_betaA) > 1: # check if more than 1 beam
 num = ((math.pi / 2) - EI_Interaction_Fx_betaA[-1]) # numerator = theta
 den = ((EI_Interaction_Fx_x_deflection[-2] - s) * np.cos(EI_Interaction_Fx_phi[-1]) +
(EI_Interaction_Fx_gamma_length[-2] * np.sin(EI_Interaction_Fx_betaA[-2]) *
np.sin(EI_Interaction_Fx_phi[-1]))) # denominator
 EI_Interaction_Fx_forces.insert(-1, num / den) # last force/k
 else: # if only one beam, skip
 pass

 # middle beam forces/k
 j = -2
 if len(EI_Interaction_Fx_betaA) > 1: # check if more than 1 beam
 while j > -(len(EI_Interaction_Fx_betaA)): # loop until reaching 1st force/K
 num1 = ((math.pi / 2) - EI_Interaction_Fx_betaA[j]) # 1st numerator term = theta
 num2 = EI_Interaction_Fx_forces[j + 1] * (EI_Interaction_Fx_gamma_length[j] *
np.sin(EI_Interaction_Fx_betaA[j]) * np.sin(EI_Interaction_Fx_phi[j + 1]) + x[j] *
np.cos(EI_Interaction_Fx_phi[j + 1])) # force due to previous beam
 den1 = (EI_Interaction_Fx_x_deflection[j - 1] - s) * np.cos(EI_Interaction_Fx_phi[j]) #
denominator term 1
 den2 = EI_Interaction_Fx_gamma_length[j - 1] * np.sin(EI_Interaction_Fx_betaA[j - 1]) *
np.sin(EI_Interaction_Fx_phi[j]) # denominator term 2
 EI_Interaction_Fx_forces.insert(j, (num1 + num2) / (den1 + den2)) # forces/k

 j = j - 1 # increment backwards

 # 1st Beam calculations
 print("EI_Interaction_Fx_phi[0] = ",EI_Interaction_Fx_phi[0])
 print("np.sin(EI_Interaction_Fx_phi[0]) = ",np.sin(EI_Interaction_Fx_phi[0]))
 print("f = ",f)
 fx = f/np.sin(EI_Interaction_Fx_phi[0])
 EI_Interaction_Fx_forces.insert(0, fx) # store force bar applied force in 0 index

 # calculate K (torsional spring constant) of 1st beam
 knum1 = fx * (EI_Interaction_Fx_x_deflection[0] * np.cos(EI_Interaction_Fx_phi[0]) + (h - b1) *
np.sin(EI_Interaction_Fx_phi[0])) # numerator
 kden1 = ((math.pi / 2) - EI_Interaction_Fx_betaA[0]) # denominator 1st term

 if len(EI_Interaction_Fx_betaA) > 1: # if more than 1 beam (i.e., interacting beams)

 135

 kden2 = EI_Interaction_Fx_forces[1] * ((h - b1) * np.sin(EI_Interaction_Fx_phi[1]) +
EI_Interaction_Fx_x_deflection[0] * np.cos(EI_Interaction_Fx_phi[1])) # denominator 2nd term due
to interactions
 else: # only 1 beam, no interactions
 kden2 = 0

 K = (knum1) / (kden1 + kden2) # compute K (torsional spring constant)

 ## COMPUTE EI ##
 EI = (l * K) / (EI_Interaction_Fx_KO[0] * gamma1)

 #t_num = len(EI_Interaction_Fx_betaA) # total number of interacting beams @ 1st beam's
deflection
 # EI here is in lb*in^2
 EI = EI*4.44822*2.54*2.54 # convert lb*in^2 to N*cm*2
 return EI

 def test(f, h, l, s):
 clearAll()
 EI = EI_Interaction(f, h, l, s)
 print(EI)
 #test(7, 5, 10, 1)

class EI_No_Interaction_Fx:
 '''
 No-Interaction Closed-form solution for calculating EI via the Multiple Inline Non-Interacting
Cantilever Beam Model
 Author: Austin Bebee
 Last updated: 7/6/2020
 Require input values for peak force (f), force bar height (h), beam length (l), beam-to-beam
spacing (s).
 Assumes the system contains the full/max number of beams at the first beam's max deflection.
 If this is not the case, set the variable "finite_beam_num" to True and set the variable "beam-
num" to the number
 of beams in a row.
 Additional assumptions:
 - no contact between beams. Beams only contact the force bar
 - force bar force always perpendicular to 1st beam's end angle
 - each beam may have different K & KO
 '''
 # INPUT PARAMETERS (EI will be calculated in units of f*l^2)
 # f = 5 # peak force
 # h = 8 # force bar height
 # l = 10 # beam length
 # s = 1 # beam-to-beam spacing
 global definite_beam_num, beams
 definite_beam_num = False # # if False, assumes max number of beams at the first beam's max
deflection

 136

 beams = 8 # num. of beams in a row (only used if "definite_beam_num" set to True)

 # Model lists/arrays - each index is a beam's attribute (0 index = 1st beam, last index = last beam)
 global EI_No_Interaction_Fx_theta
 global EI_No_Interaction_Fx_betaA
 global EI_No_Interaction_Fx_x_deflection
 global EI_No_Interaction_Fx_dist_horz
 global EI_No_Interaction_Fx_phi
 global EI_No_Interaction_Fx_q_len
 global EI_No_Interaction_Fx_KO
 global EI_No_Interaction_Fx_gamma_length
 global EI_No_Interaction_Fx_dist_horzens

 EI_No_Interaction_Fx_theta = list() # PRBM angle (rads)
 EI_No_Interaction_Fx_betaA = list() # math.pi/2 - theta (rads)
 EI_No_Interaction_Fx_x_deflection = list() # x deflection
 EI_No_Interaction_Fx_dist_horz = list() # horizontal distance a beam extends past the next (x - s)
 EI_No_Interaction_Fx_phi = list() # 180 deg. - alpha
 EI_No_Interaction_Fx_q_len = list()# effective l term in following k's equation
 EI_No_Interaction_Fx_KO = list() # stiffness coefficient
 EI_No_Interaction_Fx_gamma_length = list() # gamma*l (longer rigid link length)
 EI_No_Interaction_Fx_dist_horzens = list() # denominator terms for EI

 def clearAll(): # clears variables for new simulation
 EI_No_Interaction_Fx_betaA.clear()
 EI_No_Interaction_Fx_theta.clear()
 EI_No_Interaction_Fx_x_deflection.clear()
 EI_No_Interaction_Fx_dist_horz.clear()
 EI_No_Interaction_Fx_phi.clear()
 EI_No_Interaction_Fx_q_len.clear()
 EI_No_Interaction_Fx_KO.clear()
 EI_No_Interaction_Fx_gamma_length.clear()
 dens.clear()

 def Parametric_angle_coefficient(n): # returns c (parametric angle coefficient) when given n
 if -4 < n <= -1.5:
 c = 1.238945 + 0.012035*n + 0.00454*(n**2)
 elif -0.5 < n: # <= 10: # some conditions yield n = 10.25, which is just beyond the defined limits
of n. Can either remove n <= 10 boundary or set n = 10 if n > 10.
 c = 1.238845 + 0.009113*n - 0.001929*(n**2) + 0.000191*(n**3) - 0.000007*(n**4)
 else:
 c = 1.238845 + 0.009113*n - 0.001929*(n**2) + 0.000191*(n**3) - 0.000007*(n**4) # added
8/9/2022
 return c

 def gammaUpdate(n):# returns gamma value when give n
 if n > 10:
 n = 10

 137

 if n > .5: # <= 10: # some conditions yield n = 10.25, which is just beyond the defined limits of n.
Can either remove n <= 10 boundary or set n = 10 if n > 10.
 gamma = .841655 - 0.0067807 * n + .000438 * (n ** 2)
 elif n > -1.8316 and n < 0.5:
 gamma = .852144 - 0.0182867 * n
 elif n > -5 and n < -1.8316:
 gamma = .912364 + .0145928 * n
 else: # added 9/8/2022
 gamma = .912364 + .0145928 * n # added 9/8/2022

 return gamma

 def KOupdate(n):# returns Ko (stiffness coefficient) when given n
 if n > -5 and n <= -2.5:
 Ko = (3.024112 + 0.121290 * n + 0.003169 * (n ** 2))
 elif n > -2.5 and n <= -1:
 Ko = (1.967647 - 2.616021 * n - 3.738166 * (n ** 2) - 2.649437 * (n ** 3) - 0.891906 * (n ** 4)
- 0.113063 * (n ** 5))
 elif n > -1: # and n <= 10: # <= 10: # some conditions yield n = 10.25, which is just beyond the
defined limits of n. Can either remove n <= 10 boundary or set n = 10 if n > 10.
 Ko = (2.654855 - 0.509896 * (10 ** -1) * n + 0.126749 * (10 ** -1) * (n ** 2) - 0.142039 * (10
** -2) * (n ** 3) + 0.584525 * (10 ** -4) * (n ** 4))
 else: # added 8/9/2022
 Ko = (2.654855 - 0.509896 * (10 ** -1) * n + 0.126749 * (10 ** -1) * (n ** 2) - 0.142039 * (10
** -2) * (n ** 3) + 0.584525 * (10 ** -4) * (n ** 4))

 return Ko

 # MAIN FUNCTION THAT RETURNS THE SYSTEM'S MEAN EI
 def EI_NoInteraction(f, h, l, s):
 #f, h, l, s = peak_force, stemheight, barbottom,stemspacing_average
 f=f/4.44822 # N to lbs
 h=h/2.54 # cm to inches
 l=l/2.54 # cm to inches
 s=s/76*30 # adjust barlength by cm to by inches
 ## DETERMINE 1ST BEAM'S KINEMATICS ##

 #initial assumption that force bar applies a horizontal force yields:
 n = 0 # initial n value
 gamma = EI_No_Interaction_Fx.gammaUpdate(n) # initial gamma

 # Gamma Convergence Cycle - update gamma for better estimate
 j = 0

 while j < 100: # gamma converges well before 100 iterations
 b = (1 - gamma) * l # length below torsional spring (in.)
 betaV = (np.arcsin((h - b) / (gamma * l))) # beta angle value (rads)
 if np.isnan(betaV):

 138

 betaV = 0
 thetaV = (math.pi / 2) - betaV # PRBM theta value (rads)
 c = EI_No_Interaction_Fx.Parametric_angle_coefficient(n) # get parametric angle coefficient
 beam_end_angle = thetaV * c # corrected beam end angle
 phiV = (math.pi / 2) - beam_end_angle # phi value (perpendicular to beam end angle)
 n = (1 / np.tan(phiV)) # update n
 # Option below: if n > 10 (beyond PRBM defined limits) set n = 10 (note: negligible change if
used)
 if n > 10:
 n = 10
 gamma = EI_No_Interaction_Fx.gammaUpdate(n) # update gamma
 j += 1

 b1 = b # stores final b of 1st beam
 gamma1 = gamma # stores final gamma of 1st beam

 # 1st beam's geometry & attributes:
 EI_No_Interaction_Fx_q_len.insert(0, l) # effective beam length
 EI_No_Interaction_Fx_gamma_length.insert(0, gamma1 * l) # stores longer rigid link length
 if np.isnan(EI_No_Interaction_Fx_gamma_length[0]):
 print("np.isnan(EI_No_Interaction_Fx_gamma_length[0])
=",np.isnan(EI_No_Interaction_Fx_gamma_length[0]))
 EI_No_Interaction_Fx_gamma_length[0]= 1 # fix this to a more realistic value
 print("EI_No_Interaction_Fx_gamma_length[0]) =",EI_No_Interaction_Fx_gamma_length[0])
 Ko = EI_No_Interaction_Fx.KOupdate(n) # update Ko (stiffness coefficient)
 EI_No_Interaction_Fx_KO.insert(0, Ko) # stores 1st beam's stiffness coefficient
 EI_No_Interaction_Fx_betaA.insert(0, betaV) # stores beta angle
 EI_No_Interaction_Fx_x_deflection.insert(0, EI_No_Interaction_Fx_gamma_length[0] *
np.cos(EI_No_Interaction_Fx_betaA[0])) # stores x deflection

 EI_No_Interaction_Fx_dist_horz.insert(0, EI_No_Interaction_Fx_x_deflection[0] - s) # stores
horizontal distance beam extends past the next
 EI_No_Interaction_Fx_phi.insert(0, phiV) # force vector angle w/ respect to undeflected axis

 # ALL OTHER BEAM'S KINEMATICS
 i = 0
 def otherBeams(i): # called after determining # of beams
 EI_No_Interaction_Fx_betaA.insert(i+1, np.arctan((EI_No_Interaction_Fx_gamma_length[0] *
np.sin(EI_No_Interaction_Fx_betaA[0])) / (EI_No_Interaction_Fx_dist_horz[i])))
 phiV = EI_No.Interaction_Fx.beta[i] # initialy assum phi = previous beta
 n = (1/np.tan(phiV)) # determine n
 c = EI_No_Interaction_Fx.Parametric_angle_coefficient(n) # get parametric angle coefficient
 phiV = (math.pi / 2) - (math.pi / 2 - EI_No_Interaction_Fx_betaA[i]) * c # correct & update phi
 EI_No_Interaction_Fx_phi.insert(i+1, phiV) # store beam's phi
 Ko = EI_No_Interaction_Fx.KOupdate(n) # update Ko
 EI_No_Interaction_Fx_KO.insert(i+1, Ko) # store Ko
 gamma = EI_No_Interaction_Fx.gammaUpdate(n) # update gamma
 EI_No_Interaction_Fx_gamma_length.append(gamma * l) # store g*l

 139

 b = ((1 - gamma) * l) # update base length
 EI_No_Interaction_Fx_x_deflection.insert(i+1, EI_No_Interaction_Fx_dist_horz[i]) # x distance
from base of beam to force bar's positon @ 1st beam's max deflection
 EI_No_Interaction_Fx_dist_horz.insert(i+1, EI_No_Interaction_Fx_x_deflection[i+1] - s) #
horizontal distance beam extends past the next
 EI_No_Interaction_Fx_q_len.insert(i+1, b +
math.sqrt(EI_No_Interaction_Fx_x_deflection[i]**2 +
(EI_No_Interaction_Fx_gamma_length[0]*np.sin(EI_No_Interaction_Fx_betaA[0]))**2)) # effective
cantilever beam length (base to applied force)

 return i

 # Determine # of other beams:
 numBeams = int(round(EI_No_Interaction_Fx_x_deflection[0]/s)) # number of additional beams
hitting force bar at 1st one's max deflection

 if definite_beam_num == False: # full number of beams @ 1st beam's max deflection
 i = 0
 while i <= (numBeams-2): # will beam hit force bar? If so, run that beam through
otherBeams()
 # numBeams - 2: -2 because 1st beam already computed, i starts at 0
 EI_No_Interaction_Fx.otherBeams(i)
 i += 1
 else: # definite number of beams in a row (may expect more beams than the system actually
has)
 i = 0
 while i <= (numBeams-2) and i < beams-1: # will beam hit force bar & does that beam exist?
If so, run that beam through otherBeams()
 EI_No_Interaction_Fx.otherBeams(i)
 i += 1

 # Calculations required to compute EI
 for i in range(len(EI_No_Interaction_Fx_betaA)):
 EI_No_Interaction_Fx_theta.insert(i, ((math.pi/2)-EI_No_Interaction_Fx_betaA[i])) # PRBM
Theta
 #s.insert(i, deltaTheta[i]/(gamma*(q[i]**2)))
 dens.insert(i, (EI_No_Interaction_Fx_KO[i]*theta[i])/(EI_No_Interaction_Fx_q_len[i]**2)) #
denominator terms for EI
 EIden = sum(dens) # denominator sum term for EI
 # Compute EI
 print("np.sin(EI_No_Interaction_Fx_phi[0]) = ",np.sin(EI_No_Interaction_Fx_phi[0]))
 print("f = ",f)
 Ftot = f/np.sin(EI_No_Interaction_Fx_phi[0]) # estimate F total from Fx
 EI = Ftot/EIden
 # EI here is in lb*in^2
 EI = EI*4.44822*2.54*2.54 # convert lb*in^2 to N*cm*2
 return EI

 140

 def test(f, h, l, s):
 clearAll()
 EI = EI_NoInteraction(f, h, l, s)
 print(EI)

 #test(5, 8, 10, 1)

''' Main '''
print("StemBerry is loading.....")
print("output: address = "+address)
print("script = "+script)
print("directory = "+directory)
print("ignoreserial = "+str(ignoreserial))
app = GUI() # INITIATES GUI TO START
app.title("StemBerry")
app.geometry("800x480+0+0")
app.aspect()
#app.geometry("700x700+0+0")
#fig = plt.figure()
#app.iconbitmap(s'/home/pi/Desktop/SOCEM Code')
#app.geometry("{0}x{1}+0+0".format(app.winfo_screenwidth()-3,app.winfo_screenheight()-3)) #full
screen:
app.mainloop()
''' End '''

 141

Appendix B2: spreadsheetsToTable_v3.m
% Title: spreadsheetsToTable_v3.m
% Author: Clayton Bennett
% Created: 16 March 2022
% Last edited: 27 September 2022
% Purpose:
% - Import any xlsx file!! Expect a single row for single values. Any
% columns longer than 1 row will be imported as a cells.
% - Checks that the filename is present as a data column. If not, two
% columns will be added, one for the short name and one for the entire file
% location.

% SOCEM specific:
% - Pull in data from analyzed SOCEM files, in "EI, Analyzed" and "EI,
% Analyzed_timebased" folders.
% - This data does not include things like run numbers and hour label,
% though these are discernible from description and filename text.
savestuff = 'y';
format compact
%% Import data
% Edit this section for your specific needs.
% names key folders

directory_script = ''; % ENTER script location
dir_compiledData = ''; % ENTER target file directory

if (directory_script(end)~='\')
 directory_script = strcat(directory_script,'\');
end

% folders for dividing up the 2021 data
level1names = {'August5','August6','August10','August13'};
%level1names = {'August28'};
%level1names = {'correctedHeights'}
level2names = {'EI_outputFiles'}; % Use both of these?
%level2names = {'cleanRaw'}; % Use both of these?
list_xlsxfiles = {};

for i_level1name = 1:numel(level1names) % i_level1name=4;
 for j_level2name = 1:numel(level2names) % j_level2name=1;
 activefolder =
strcat(directory_data,level1names{i_level1name},'\',level2names{j_level2name},'\');
 cd(activefolder)
 % files files in active folder, then remove files that are not of the

 142

 % proper filetype
 desired_import_filetype = '.xlsx';
 list_xlsxfiles_active = strtrim(string(ls())); %string(ls()) % cellstr(ls())

 i=1;
 while i<=numel(list_xlsxfiles_active)
 if not(contains(list_xlsxfiles_active(i),desired_import_filetype))
 list_xlsxfiles_active(i)=[];
 else
 list_xlsxfiles_active(i) = strcat(activefolder,list_xlsxfiles_active(i));
 i=i+1;
 end
 end

 for i=1:numel(list_xlsxfiles_active)
 list_xlsxfiles{end+1}=list_xlsxfiles_active(i);
 end
 end % end level 1 names loop
end % end level 2 names loop
n_files = numel(list_xlsxfiles);

%% Import data from each file
% Look one column at a time. Record the column header name. If the column
% is greater than one row long, package it as a cell

% Some numeric data saved by Python was output as string. Find which.
stringToDouble=[];
cellTrack=[];
list_filepath= {};
list_filedetail = {};

handle_waitbar=waitbar(0,strcat('Data is being imported from ',string(n_files),' SOCEM files.
Computer speed, go!'));
for i=1:n_files

 filename = list_xlsxfiles{i};
 strfile=filename;
 sheets = sheetnames(strfile);

 [filepath,filedetail,ext] = fileparts(filename);
 list_filepath{end+1} = filepath;
 list_filedetail{end+1} = filedetail;

 143

 T_active = [];
 for s = 1:numel(sheets) % loop through all sheets in the same file
 if s>1
 opts_sheetPrevious = opts_sheet;
 end

 opts_sheet = detectImportOptions(strfile,'Sheet',sheets{s},'PreserveVariableNames',1);

 % Remove duplicates from sheet 2 and above, if they data has been
 % represented in a previous sheet.
 if s>1
 % find duplicates, to remove from second sheet
 k=1;
 while k<=numel(opts_sheet.VariableNames)
 if sum(opts_sheet.VariableNames{k}==string(opts_sheetPrevious.VariableNames))>0
 opts_sheet.VariableNames(k)=[];
 else
 k=k+1;
 end
 end
 end

 charIdx=string(opts_sheet.VariableTypes)=='char';
 charNames=opts_sheet.VariableNames(charIdx);
 opts_sheet=setvartype(opts_sheet,charNames,'string');

 %create table
 T_active_sheet =
table('Size',[size(opts_sheet.VariableNames)],'VariableNames',opts_sheet.VariableNames,'VariableT
ypes',opts_sheet.VariableTypes);

 % get raw data
 t_active_sheet = readtable(filename,opts_sheet,'Sheet',sheets{s});

 % allocate raw data into a single row for active sheet
 for k = 1:width(t_active_sheet)
 columnData=rmmissing(t_active_sheet.(k));
 if isempty(columnData)
 if sum(cellTrack==k)>0
 columnData = [];
 T_active_sheet.(k)={columnData};
 elseif sum(cellTrack==k)==0 && sum(stringToDouble==k)>0
 columnData = NaN;

 144

 T_active_sheet.(k)=columnData;
 end
 elseif numel(columnData)>1
 if isstring(columnData) && logical(mean(not(isnan(double(columnData)))))
 columnData = double(columnData);
 if sum(stringToDouble==k)==0
 stringToDouble(end+1)=k;
 end

 end

 if sum(cellTrack==k)==0
 cellTrack(end+1)=k;
 end
 T_active_sheet.(k)={columnData};
 elseif numel(columnData)==1
 if isstring(columnData) && not(isnan(double(columnData))) % some numeric data was saved
by Python as a string. This fixes it.
 columnData = double(columnData);
 if sum(stringToDouble==k)==0
 stringToDouble(end+1)=k;
 end
 end
 T_active_sheet.(k)=columnData;
 end
 end

 T_active = [T_active,T_active_sheet];

 end % loop through all sheets in the same file
 % Once all sheets have been imported,
 % check to see if filename was stored in the table, in final row.
 % If not, add filepath and filedetail.
 if i==1
 hay_filedetail = 0;
 for checkcolumn = 1:width(T_active)
 if isstring(table2array(T_active(end,checkcolumn))) ||
ischar(table2array(T_active(end,checkcolumn)))
 if 1==numel(table2array(T_active(end,checkcolumn)))
 if contains(table2array(T_active(end,checkcolumn)),filedetail)
 hay_filedetail = 1; % "hay" is spanish for "there is". "1" is binary for "yes, there is".
 break % leave this for loop, what is sought has been found
 else

 145

 hay_filedetail = -99; % to show that the first row was already checked
 end
 else
 hay_filedetail = -98;
 end
 else hay_filedetail = -97;
 end
 end
 end
 % if hay_filedetail is still zero, and no record of the filename was
 % found, then record the full filename and the file detail, in two new
 % columns.
 if not(hay_filedetail == 1) % file name details were not found in the first row of the table. Beware
of mixed directories with files from various stages of development.
 T_active.("File detail") = filedetail;
 T_active.Filename = filename;
 end

 if i==1
 T = T_active;
 elseif string(T.Properties.VariableNames)==string(T_active.Properties.VariableNames)
 T = [T;T_active];
 else % different variable names, different number of columns
 msg= strcat("Your files have columns that differ.", newline(), filename);
 disp(msg)
 % In this case, items are not stored?
 % if class(string), use <missing>
 % if class(double), use NaN
 % if other, use?
 end

 fprintf('%d.', i)
 waitbar(i/n_files,handle_waitbar)

end

% If file details were just added because they weren't present in the
% imported data, put the filedetail column first, so that it's easy to read.
if not(hay_filedetail==1)
 T = [T(:,end-1), T(:,1:end-2) ,T(:,end)];
end

close(handle_waitbar)

 146

fprintf('\n')
cd(directory_script)

%% prep for CSV, remove columns with cells
Tcsv=T;
[rows,cols]=size(T);
c=1;
while c<=cols
 if string(class(Tcsv.(c)))==string('cell')
 Tcsv.(c)=[];
 else
 c=c+1;
 end
 [rows,cols]=size(Tcsv);
end

%% CSV creation
filename_detail = 'wheat2021_SOCEM_directImport';
filenameCSV_withCells =
strcat('T_',filename_detail,'_withCells_',cell2mat(level1names),'_',cell2mat(level2names),'_',date,'.c
sv');
filenameCSV =
strcat('T_',filename_detail,'_',cell2mat(level1names),'_',cell2mat(level2names),'_',date,'.csv');

if savestuff == 'y'
cd(dir_compiledData)
writetable(T,filenameCSV_withCells,'FileType','Text','WriteVariableNames',1);
writetable(Tcsv,filenameCSV,'FileType','Text','WriteVariableNames',1);
end
cd(directory_script

 147

Appendix C: Glossary of Terms

Term Definition

Cell A portion of a row of crop that is the length of the SOCEM force bar and

that has been side hit by the SOCEM.

Edge effect A phenomenon that causes the mechanical properties of plants along the

edge of a plot to differ from the rest of the plot, because these plants

experience less competition for nutrients and sunlight.

Flexural rigidity (EI) A value used to approximate stalk lodging resistance and that is derived

from beam bending equations which correlates with stiffness and

characteristic size.

Interrow The space between rows of crops.

Morphology The geometric factors of the physical form and structure of a biological

specimen.

Phenotyping Collecting data for measurable traits of biological specimens to associate

expressed traits with genetic character in the DNA common to the breed

(i.e., variety) of a specimen.

Push A SOCEM push refers to a period of active data collection, as the device is

pushed through a small plot of wheat. A side hit is a push. A forward hit is a

push.

Side hit Testing from a side direction, perpendicular to the direction of rows, rather

than the standard forward direction, parallel to rows. The outcome is that

one force peak is generated for each row contacted.

Slenderness ratio The radio of the diameter of a stem over the length of the stem.

Small plot Experimental plots of cereal crops, meant for studying genetic variation.

Stalk lodging

resistance

The complex characteristic impacted by many factors with the result that a

given genetic variety of a crop will be less likely to break along the length of

its stalk.

 148

Appendix D: Table of Equations
Eq. 1: Young’s modulus [33]. .. 9
Eq. 2: Area moment of inertia, for a solid round beam deflecting about the Z axis, according to
Figure 11 [33]. .. 9
Eq. 3: Area moment of inertia, for a hollow round beam deflecting about the Z axis, according to
Figure 11 [33]. .. 9
Eq. 4: Deflection, Y, that causes maximums stress in a cantilever beam [33]. See Figure 12. 9
Eq. 5: Flexural stiffness, cantilever beam. Reorganized from Eq. 4. See Figure 12 and Figure 13. 9
Eq. 6: Deflection, Y, that causes maximum stress for a beam in three-point bending [33]. 21
Eq. 7: Flexural rigidity of a beam in three-point bending. See Figure 25. ... 21

 149

Bibliography
[1] B. Shiferaw, M. Smale, H.-J. Braun, E. Duveiller, M. Reynolds, and G. Muricho, “Crops that

feed the world 10. Past successes and future challenges to the role played by wheat in
global food security,” Food Sec., vol. 5, no. 3, pp. 291–317, Jun. 2013, doi:
10.1007/s12571-013-0263-y.

[2] Observatory of Economic Complexity, “Wheat and Meslin,” 2022.
https://oec.world/en/profile/hs/wheat

[3] International Grains Council, “Market Information,” 2022.
https://www.igc.int/en/markets/marketinfo-sd.aspx

[4] Y. Luo et al., “Accurately mapping global wheat production system using deep learning
algorithms,” International Journal of Applied Earth Observation and Geoinformation, vol.
110, p. 102823, Jun. 2022, doi: 10.1016/j.jag.2022.102823.

[5] USDA, “All Wheat Acres, United States,” National Agriculture Statistics Service, Jun. 30,
2020. https://www.nass.usda.gov/Charts_and_Maps/Field_Crops/awac.php

[6] W. F. Schillinger and R. I. Papendick, “Then and Now: 125 Years of Dryland Wheat
Farming in the Inland Pacific Northwest,” Agronomy Journal, vol. 100, no. S3, May 2008,
doi: 10.2134/agronj2007.0027c.

[7] Hannah Kammeyer, “Pacific Northwest 2022 Seed Guide.” Limagrain Seed Company,
2022. [Online]. Available: https://limagraincerealseeds.com/pacific-northwest/

[8] H. Wenholz, “William Farrer: Australia’s Greatest Benefactor,” The Australian Quarterly,
vol. 2, no. 6, p. 91, 1930, doi: 10.2307/20628860.

[9] W. Tadesse et al., “Genetic Gains in Wheat Breeding and Its Role in Feeding the World,”
Crop Breeding, Genetics and Genomics, vol. 1:e190005, Jul. 2019, doi:
10.20900/cbgg20190005.

[10] P. M. Berry et al., “Understanding and Reducing Lodging in Cereals,” in Advances in
Agronomy, vol. Volume 84, L. S. Donald, Ed. Academic Press, 2004, pp. 217–271.

[11] S.C. Salmon, “An Instrument For Determining The Breaking Strength Of Straw, And A
Preliminary Report On The Relation Between Breaking Strength And Lodging,” Journal of
Agricultural Research, vol. 43, no. 1, pp. 73–82, 1931.

[12] L. Shah et al., “Improving Lodging Resistance: Using Wheat and Rice as Classical
Examples,” IJMS, vol. 20, no. 17, p. 4211, Aug. 2019, doi: 10.3390/ijms20174211.

[13] H. Matsuyama and T. Ookawa, “The effects of seeding rate on yield, lodging
resistance and culm strength in wheat,” Plant Production Science, vol. 23, no. 3, pp. 322–
332, Jul. 2020, doi: 10.1080/1343943X.2019.1702469.

[14] M. Sterling, C. J. Baker, P. M. Berry, and A. Wade, “An experimental investigation of
the lodging of wheat,” Agricultural and Forest Meteorology, vol. 119, no. 3–4, pp. 149–
165, Nov. 2003, doi: 10.1016/S0168-1923(03)00140-0.

[15] M. J. Crook and A. R. Ennos, “The effect of nitrogen and growth regulators on stem
and root characteristics associated with lodging in two cultivars of winter wheat,” Journal
of Experimental Botany, vol. 46, no. 8, pp. 931–938, 1995.

[16] A. Muhammad et al., “Survey of wheat straw stem characteristics for enhanced
resistance to lodging,” Cellulose, pp. 1–16, 2020.

 150

[17] Y. A. Oduntan, C. J. Stubbs, and D. J. Robertson, “High throughput phenotyping of
cross-sectional morphology to assess stalk lodging resistance,” Plant Methods, vol. 18,
no. 1, p. 1, Jan. 2022, doi: 10.1186/s13007-021-00833-3.

[18] D. Robertson, Z. Benton, S. Kresovich, and D. Cook, “Stalk architecture is a stronger
predictor of stalk lodging resistance than chemical composition,” Biosystems Engineering,
2022.

[19] D. J. Robertson, M. Julias, S. Y. Lee, and D. D. Cook, “Maize Stalk Lodging:
Morphological Determinants of Stalk Strength,” Crop Science, vol. 57, no. 2, pp. 926–934,
2017, doi: 10.2135/cropsci2016.07.0569.

[20] D. J. Robertson, Z. W. Brenton, S. Kresovich, and D. D. Cook, “Maize lodging
resistance: Stalk architecture is a stronger predictor of stalk bending strength than
chemical composition,” Biosystems Engineering, vol. 219, pp. 124–134, Jul. 2022, doi:
10.1016/j.biosystemseng.2022.04.010.

[21] P. M. Berry and S. T. Berry, “Understanding the genetic control of lodging-associated
plant characters in winter wheat (Triticum aestivum L.),” Euphytica, vol. 205, no. 3, pp.
671–689, Oct. 2015, doi: 10.1007/s10681-015-1387-2.

[22] B. C. Helmick, “A Method for Testing the Breaking Strength of Straw 1,” Agronomy
Journal, vol. 7, no. 3, pp. 118–120, May 1915, doi:
10.2134/agronj1915.00021962000700030003x.

[23] M. A. Willis, “An Apparatus for Testing the Breaking Strength of Straw 1,” Agronomy
Journal, vol. 17, no. 6, pp. 334–335, Jun. 1925, doi:
10.2134/agronj1925.00021962001700060005x.

[24] P. M. Berry, J. Spink, M. Sterling, and A. A. Pickett, “Methods for Rapidly Measuring
the Lodging Resistance of Wheat Cultivars,” Journal of Agronomy and Crop Science, vol.
189, pp. 390–401, 2003.

[25] D. Jo Heuschele, J. Wiersma, L. Reynolds, A. Mangin, Y. Lawley, and P. Marchetto,
“The Stalker: An open source force meter for rapid stalk strength phenotyping,”
HardwareX, vol. 6, p. e00067, Oct. 2019, doi: 10.1016/j.ohx.2019.e00067.

[26] L. Erndwein, D. Cook, D. Robertson, and E. Sparks, “Field-based mechanical
phenotyping of cereal crops to assess lodging resistance,” arXiv:1909.08555, 2019.

[27] Q. Guo et al., “A Non-Destructive and Direction-Insensitive Method Using a Strain
Sensor and Two Single Axis Angle Sensors for Evaluating Corn Stalk Lodging Resistance,”
Sensors, vol. 18, no. 6, p. 1852, 2018.

[28] D. D. Cook, W. de la Chapelle, T.-C. Lin, S. Y. Lee, W. Sun, and D. J. Robertson,
“DARLING: a device for assessing resistance to lodging in grain crops,” Plant methods,
vol. 15, no. 1, p. 102, 2019.

[29] A. Mangin, J. Heuschele, A. Brûlé-Babel, D. Flaten, J. Wiersma, and Y. Lawley, “Rapid
in situ non-destructive evaluation of lodging risk in dryland agronomic wheat research,”
Agronomy Journal, 2022, doi: doi: 10.1002/agj2.21173.

[30] D. J. Heuschele, J. Wiersma, L. Reynolds, A. Mangin, Y. Lawley, and P. Marchetto, “The
Stalker: An open source force meter for rapid stalk strength phenotyping,” HardwareX, p.
e00067, 2019.

 151

[31] C. J. Stubbs, K. Seegmiller, C. McMahan, R. S. Sekhon, and D. J. Robertson, “Diverse
maize hybrids are structurally inefficient at resisting wind induced bending forces that
cause stalk lodging,” Plant Methods, vol. 16, pp. 1–15, 2020.

[32] R. G. Budynas, J. K. Nisbett, and J. E. Shigley, Shigley’s mechanical engineering design,
Tenth edition. New York, NY: McGraw-Hill Education, 2015.

[33] R.M. Khurmi, Textbook of Engineering Mechanics. Ram Nagar, New Delhi: S Chand &
Co Ltd, 2010.

[34] Christian Lorbach, Wolfgang J. Fischer, Adriana Gregorova, Ulrich Hirn, and Wolfgang
Bauer, “Pulp Fiber Bending Stiffness in Wet and Dry State Measured from Moment of
Inertia and Modulus of Elasticity,” BioResources, vol. 9, no. 3, pp. 5511–5528, 2014.

[35] C. J. Collins, B. Yang, T. D. Crenshaw, and H.-L. Ploeg, “Evaluation of experimental,
analytical, and computational methods to determine long-bone bending stiffness,”
Journal of the Mechanical Behavior of Biomedical Materials, vol. 115, p. 104253, Mar.
2021, doi: 10.1016/j.jmbbm.2020.104253.

[36] Austin Bebee, “A Model and Device for High Throughput Measurements of Stem
Flexural Stiffness in Grains,” University of Idaho, 2020.

[37] R. B. Austin and R. D. Blackwell, “Edge and neighbour effects in cereal yield trials,” J.
Agric. Sci., vol. 94, no. 3, pp. 731–734, Jun. 1980, doi: 10.1017/S0021859600028720.

[38] M. Romani, B. Borghi, R. Alberici, G. Delogu, J. Hesselbach, and F. Salamini,
“Intergenotypic competition and border effect in bread wheat and barley,” Euphytica,
vol. 69, no. 1–2, pp. 19–31, Jan. 1993, doi: 10.1007/BF00021722.

[39] A. Hadjichristodoulou, “Edge effects on yield, yield components and other traits in
mechanized durum wheat and barley trials,” J. Agric. Sci., vol. 101, no. 2, pp. 383–387,
Oct. 1983, doi: 10.1017/S0021859600037709.

[40] C. Stubbs, R. Larson, and D. Cook, “Maize stalk stiffness and strength are primarily
determined by morphological Factors,” Scientific Reports (in review).

[41] D. Robertson, J. Cornwall, C. Stubbs, and McMahan Christopher, “The Overlooked
Biomechanical Role of the Clasping Leaf Sheath in Wheat Stalk Lodging,” Frontiers in
Plant Science, p. 1774, doi: doi: 10.3389/fpls.2021.617880.

[42] Kurtis Schroeder and Doug Finkelnburg, “2014 Small Grain and Grain Legume
Report,” University of Idaho, College of Agricultural and Life Sciences, Department of
Plant Sciences, Cereal Yield Trials Research Bulletin 187, Jun. 2015. [Online]. Available:
https://www.lib.uidaho.edu/digital/uiext/items/uiext33195.html

[43] Kurtis Schroeder, Doug Finkelnburg, and David White, “2015 Small Grain and Grain
Legume Report,” University of Idaho, College of Agricultural and Life Sciences,
Department of Plant Sciences, Cereal Yield Trials Research Bulletin 190, Jun. 2016.
[Online]. Available: https://dokumen.tips/documents/2015-small-grain-and-grain-
legume-report-small-grain-and-grain-legume-report-.html?page=3

[44] Kurtis Schroeder, David White, and Andrew McGinnis, “2018 Small Grain and Grain
Legume Report,” University of Idaho, College of Agricultural and Life Sciences,
Department of Plant Sciences, Cereal Yield Trials Research Bulletin 201, Nov. 2019.
[Online]. Available: https://www.uidaho.edu/-/media/UIdaho-
Responsive/Files/Extension/topic/cereals/north/reports/2018-smallgrain-and-
grainlegumereport-approved.pdf

 152

[45] Kurtis Schroeder and David White, “2017 Small Grain and Grain Legume Report,”
University of Idaho, College of Agricultural and Life Sciences, Department of Plant
Sciences, Cereal Yield Trials Research Bulletin 194, Jun. 2018. [Online]. Available:
http://www.extension.uidaho.edu/cereals

[46] F. Galton, “Regression Towards Mediocrity in Hereditary Stature.,” The Journal of the
Anthropological Institute of Great Britain and Ireland, vol. 15, p. 246, 1886, doi:
10.2307/2841583.

[47] D. S. Moore, W. I. Notz, and M. A. Flinger, The Basic Practice of Statistics, 6th ed. New
York, NY: W. H. Freeman and Company, 2013.

[48] J. Lee Rodgers and W. A. Nicewander, “Thirteen Ways to Look at the Correlation
Coefficient,” The American Statistician, vol. 42, no. 1, pp. 59–66, Feb. 1988, doi:
10.1080/00031305.1988.10475524.

[49] D. U. Shah, T. P. S. Reynolds, and M. H. Ramage, “The strength of plants: theory and
experimental methods to measure the mechanical properties of stems,” Journal of
Experimental Botany, vol. 68, pp. 4497–4516, Jul. 2017, doi: 10.1093/jxb/erx245.

[50] Z. Z. Sun et al., “The Viscoelasticity Model of Corn Straw under the Different Moisture
Contents,” Mathematical Problems in Engineering, 2013, doi: Artn 320207
10.1155/2013/320207.

[51] “EAS Air Suspension Ride Height Sensor LR020159, Left Rear, Original Equipment, For
LR3 And Range Rover Sport, 2005 - 2009,” Roverparts.com.
https://www.roverparts.com/suspension/relays-sensors/LR020159OE/

[52] “Python Pickle Module,” Real Python. https://realpython.com/python-pickle-module/
[53] S. de Bossoreille de Ribou, F. Douam, O. Hamant, M. W. Frohlich, and I. Negrutiu,

“Plant science and agricultural productivity: Why are we hitting the yield ceiling?,” Plant
Science, vol. 210, pp. 159–176, May 2013, doi:
http://dx.doi.org/10.1016/j.plantsci.2013.05.010.

	Abstract
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1: Background
	Global Wheat Production
	Stalk Lodging
	Factors Affecting Lodging Resistance
	Existing Solutions and Devices to Quantify Lodging Resistance
	Laboratory-based Devices for Assessing Lodging Resistance
	Using Historical Stalk Lodging Rates to Assess Lodging Resistance

	Mechanics of Materials of Cereal Stems
	Cantilever Beams
	Defining Stem Strength
	Stacking Beam Model

	Chapter 2: Description and Validation of the SOCEM Device
	What is the SOCEM?
	Hardware
	Software
	Calculating Flexural Stiffness Values from SOCEM Data

	Experimental Data Collection with the SOCEM
	Validating SOCEM Measurements: Experimental Design Overview
	Experimental Methodology
	Overview
	SOCEM Experimental Method
	Three-Point Bending Experimental Method

	Results
	SOCEM vs Three-Point Bending Test Results
	SOCEM vs Historical Stalk Lodging Results

	Discussion

	Chapter 3: Improvements and Investigations
	Hardware Improvements
	Software Improvements
	Visualization Software Development

	Experimental Design Improvements, 2021
	Knowledge and Investigations
	Three-Point Bending Stiffness vs Diameter Correlation
	Node Choice
	Force Drop Over Subsequent SOCEM Pushes
	Nine-Cell Scheme
	Mass Sampling

	Chapter 4: Suggestions for Future Work
	Hardware Suggestions
	Software Development Suggestions
	Experimental Design Suggestions
	Addressing Stem Height Variation
	Python as a Standard
	The SOCEM as a Combine Harvester Accessory

	Appendix A: Additional Figures
	Appendix B: Software
	Appendix B1: StemBerry_v97.py
	Appendix B2: spreadsheetsToTable_v3.m

	Appendix C: Glossary of Terms
	Appendix D: Table of Equations
	Bibliography

