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Abstract 

Cellulosic bioenergy crops have potential to meet United States greenhouse gas (GHG) 

reduction targets and provide energy self-sufficiency. The Renewable Fuel Standard (RFS) 

calls for increasing the volume of cellulosic biofuel by 16 billion gallons while reducing 

lifecycle GHG emissions by 60%. Consideration of crop selection, location, and management 

strategies is critical to meet these goals and prevent environmental and economic costs from 

outweighing benefits. Depending on the productivity of selected land, 33 to >50 million 

hectares are required for cellulosic bioenergy production to meet RFS targets. Because a 

variety of factors are critical to a successful transition to cellulosic bioenergy, 

biogeochemical modeling is an essential tool to assessing potential scenarios. Models can 

evaluate potential yield, carbon pools and fluxes, and other GHG and nitrogen fluxes (e.g. 

nitrous oxide and methane emissions, nitrate leaching) with varying landscapes and 

management. The first chapter of this dissertation is a review on the current state of 

biogeochemical modeling and what improvements are necessary to evaluate the sustainability 

of varying crops, locations, and management to better inform economic models and policy 

decisions to meet RFS targets.  

Representation of soil carbon dynamics in most models is oversimplified with decay 

constant (i.e. first-order kinetics) driven decomposition and soil carbon pool structures that 

do not align with measurable pools or current understanding of soil carbon stabilization. 

Increasing microbial representation in models has shown to reduce uncertainty of predicted 

soil carbon. This is important not only from a GHG perspective, but also because soil carbon 

dynamics are intertwined with soil health attributes that increase landscape resiliency (i.e. 

soil fertility, water holding capacity, and erosion resistance). The second chapter integrates 

and evaluates microbial explicit mechanisms of decomposition into a new soil sub-model 

within a version of DayCent that was recently updated to encompass plant traits specific to 

perennial bioenergy crops. Specifically, the new soil sub-model uses reverse Michaelis-

Menten kinetics that incorporate feedbacks between microbial biomass and decomposition 

rate to simulate soil carbon fluxes. Along with a modified decomposition function the 

Michaelis-Menten (MM) version of the soil model split the original active soil carbon pool 

into a live microbial biomass pool and a dead microbial biomass pool with more realistic 

routing of soil carbon through the pool structure. With these changes, the new MM soil sub-
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model improved daily representation of ecosystem carbon fluxes and simulated different 

ratios of protected to unprotected soil carbon in response to disturbance and climate 

compared to the original first order soil sub-model.  

With improvements to the soil model, DayCent will be better suited to evaluate yield, soil 

health, and GHG balances across landscapes. Identifying appropriate locations for a 

particular crop is paramount to meeting GHG atmospheric loading reductions, fulfilling 

socioeconomic needs, and achieving sustainable land use. In comparison to traditional 

agricultural crops, some bioenergy crops have physiological attributes (e.g. low N 

requirements, high belowground biomass, no tillage) that will outweigh the potential 

negatives if planted strategically. However, there is still much uncertainty and controversy 

surrounding where cellulosic bioenergy crops will be grown. Conversion of land to cellulosic 

bioenergy crops that is currently used for food production raises concerns about food-scarcity 

and sequential conversion of uncultivated land converted for food production (indirect land-

use change) resulting in catastrophic losses of sequestered carbon and ecosystem services 

that will not be recouped through annual row crop production. Conversion of land to 

bioenergy crops that is not currently used for agricultural production also raises 

environmental concerns including the effects on GHG balances, biodiversity and ecosystem 

services, increasing reactive nitrogen through fertilizer, and water use. These potential side 

effects of conversion are thought to be largely avoided if bioenergy crops are produced on 

land that has been deemed marginal, or unproductive land that was used for agriculture in the 

recent past. Chapter three identifies current cropland that is likely to experience increased 

yield losses as a result of increasing climate variability (aka "marginal land") and analyzes 

the potential for growing more tolerant bioenergy crops using updated features of the 

DayCent model. Targeting low-lying, flood susceptible fields for conversion to switchgrass 

would provide a path to adapt agricultural practices to changing precipitation regimes, 

mitigate increasing climate variability, and reduce negative environmental impacts of corn 

production. Documented benefits of perennial grasses in riparian zones include reduced 

phosphorus and nitrate exports to waterways, decreased nitrous oxide emissions and 

increased soil carbon sequestration. In comparison to corn-soy production, I found that 

perennial bioenergy crops in selected flood prone areas will have 1) similar to higher yield, 

2) higher soil carbon sequestration, and 3) lower GHG emissions and nitrate exports in flood 
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prone areas because of lower risk to losses attributed to flooding, higher belowground 

biomass, decreased erosion, and greater productivity. Lower rates of nitrate leaching and 

nitrous oxide emissions are expected because switchgrass does not require fertilization.   
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Chapter 1 : 21st century biogeochemical modeling: Challenges for Century-based 

models and where do we go from here? 

 

Published in Global Change Biology – Bioenergy as: 

Berardi, D., Brzostek, E., Blanc‐Betes, E., Davison, B., DeLucia, E. H., Hartman, M. D., ... 

& Hudiburg, T. W. (2020). 21st‐century biogeochemical modeling: challenges for Century‐

based models and where do we go from here?. GCB Bioenergy, 12(10), 774-788. 

https://doi.org/10.1111/gcbb.12730 

 

Abstract 

21st century modeling of greenhouse gas (GHG) emissions from bioenergy crops is necessary 

to quantify the extent to which bioenergy production can mitigate climate change. For over 

30 years, the Century-based biogeochemical models have provided the preeminent 

framework for belowground carbon and nitrogen cycling in ecosystem and earth system 

models. While monthly Century and the daily time-step version of Century (DayCent) have 

advanced our ability to predict the sustainability of bioenergy crop production, new advances 

in feedstock generation and our empirical understanding of sources and sinks of GHGs in 

soils call for a re-visitation of DayCent’s core model structures. Here, we evaluate current 

challenges with modeling soil carbon dynamics, trace gas fluxes, and drought and age-related 

impacts on bioenergy crop productivity. We propose coupling a microbial process-based soil 

organic carbon and nitrogen model, with DayCent to improve soil carbon dynamics. We 

describe recent improvements to DayCent for simulating unique plant structural and 

physiological attributes of perennial bioenergy grasses. Finally, we propose a method for 

using machine learning to identify key parameters for simulating N2O emissions. Our efforts 

are focused on meeting the needs for modeling bioenergy crops, however, many updates 

reviewed and suggested to DayCent will be broadly applicable to other systems.  
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Introduction 

Biogeochemical models are used to simulate how abiotic and biotic variables interact 

through time and across space to determine rates of biogeochemical fluxes. They provide a 

platform for scientists to evaluate how current and potential changes in climate, land use, 

disturbance regimes, or vegetation will impact GHG budgets, carbon sequestration and 

storage, and water quality. As we consider bioenergy crops as alternatives to fossil fuels, it is 

extremely valuable to use biogeochemical models in tandem with field experiments to make 

projections that determine which crops will be the most effective and sustainable and in 

which locations (Whitaker et al., 2018). Challenges we face include the fact that bioenergy 

crops have unique physiological traits (e.g., dynamic allocation, carbohydrate and nitrogen 

storage, tolerance for low quality soils), particularly in genetically modified forms (e.g., 

Energycane, Petro sorghum) that are not currently represented in models. Moreover, N2O 

emissions, drought-response, and perennial crop age-related dynamics are poorly simulated 

by models despite their importance to making future predictions of bioenergy crop GHG 

balances. With mitigation strategies being developed for decarbonization of the atmosphere, 

it is becoming increasingly important for biogeochemical models to confidently project GHG 

emissions in the future for all ecosystem types, land uses, and climatic variability. This is 

especially true when evaluating the impact of potential bioenergy crops as they are 

genetically manipulated to maximize biofuel production.  

In this review, we discuss the history, current status, and future directions of Century-

based biogeochemical modeling in the context of better simulating GHG balances of 

bioenergy feedstock production, as well as general improvements to soil carbon dynamics 

that may be used more broadly across all ecosystems. This manuscript covers 1) the history 

of soil carbon modeling with Century-based biogeochemical models and their relevance in 

modern ecosystem modeling, 2) future direction of soil carbon modeling, 3) modifications 

necessary to accurately simulate bioenergy feedstock growth and functions, and 4) how 

machine learning may be used to refine modeling of N2O fluxes despite the lack of high 

resolution spatial and temporal data.   
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There is a rich history of Century-based models utilizing a simple but powerful 

framework for predicting soil carbon pools 

The Century model was initially used to predict the extent to which abiotic and biotic 

factors control carbon cycling in temperate grasslands (Parton et al., 1987). Over time, a 

large number of contemporary earth system models (Table 1.1) have adopted the Century 

framework as the core prediction of carbon cycling in terrestrial ecosystems. It is difficult to 

find a study comparing the performance of soil carbon dynamics between models that does 

not include Century or DayCent, the daily time-step version of Century (Parton et al., 1998), 

amongst the ranks (Wieder et al., 2013; Walker et al., 2014; Abramoff et al., 2018; Sulman 

et al., 2018; Ye et al., 2019). Century runs on a monthly time-step and simulates carbon, 

nitrogen, phosphorous, and sulfur dynamics within soil and vegetation of a specified system. 

The soil organic matter sub-model uses three major pools to model carbon flow through the 

soil relying on first-order kinetics (decay constants; k-values value) and soil texture (Figure 

1.1a). This system consists of discrete pools to represent soil organic matter (SOM) and litter. 

SOM is partitioned into active, slow, and passive pools, each with a different intrinsic rate of 

decomposition which is altered by abiotic factors (i.e. soil temperature and soil moisture; 

(Parton, 1996)). Most of the models reviewed in Table 1.1 share similar methods of 

simulating soil carbon dynamics using decay constants to drive decomposition and carbon 

transfer between pools. While some models, such as DayCent, CASA (Wang et al., 2010), 

and DNDC (Li et al., 1992; Li et al., 1994), include a microbial biomass pool, they do not 

use microbial biomass, microbial enzyme production, or microbial carbon use efficiency 

(CUE; the ratio of carbon assimilated that is converted to biomass vs. that which is respired) 

to drive decomposition rates. The microbial biomass pool simply serves as another carbon 

pool with a different rate of carbon loss and transfer. 

While Century-like soil carbon dynamics have been the staple for many models over 

the past three decades (Table 1.1), there is a movement to improve how decomposition is 

represented in models by progressing beyond k-value driven first-order kinetic equations that 

lack the complexity necessary to capture smaller scale temporal dynamics that are important 

for balancing carbon budgets (Wieder et al., 2013). Recent model advances have shown that 

explicit representation of soil microbial physiology leads to divergent soil carbon flux 

trajectories not captured by models that rely on first-order kinetics. For example, microbial 
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models have been successful in capturing ephemeral increases in decomposition due to 

warming (Allison et al., 2010), re-wetting (Evans et al., 2016), and root-priming (Sulman et 

al., 2017). Researchers argue that temperature sensitivities are too variable across space to 

work well with single site observational data and therefore do not allow models of 

decomposition to be truly mechanistic (Davidson et al., 2006). As such, earth system model 

development (CLM; Table 1.1) has begun to integrate microbial process-based reverse 

Michaelis-Menten kinetics (Wieder et al., 2013; Sulman et al., 2019) as well as incorporating 

vertical connectivity to the Century-based model of decomposition already present in CLM 

(Koven et al., 2013). However, microbial process-based mechanisms are not being 

incorporated into the CMIP6 version of CLM. To date, the only CMIP6 model that is 

incorporating microbial processes (i.e. microbial biomass has an influence on decomposition 

rates) is IPSL-CM6A-LR which uses the ORCHIDEE-PRIM biogeochemical model. 

 

New empirical evidence is being utilized to improve model mechanisms and constrain 

model parameters 

The ability of models to accurately predict biogeochemical cycling of bioenergy 

systems ultimately relies on the quantity and quality of data available for parameterization 

and validation. When initially developed, Century was validated using ecosystem carbon and 

nitrogen budgets with the goal of accurately simulating biomass yields and equilibrium soil 

carbon and nitrogen stocks across grassland ecosystems (Parton et al., 1987). Century used 

these budgets to distill first principle controls (climate, tissue chemistry, etc.) on plant 

productivity and soil organic matter decomposition into simple yet powerful mechanistic 

representations of these complex processes. As technology progressed, particularly with the 

advent of eddy-covariance techniques to quantify ecosystem GHG budgets, these new data 

streams were used to push the validation of Century and DayCent beyond ecosystem carbon 

and nitrogen pools to the fluxes that control them. Given the development and maturity of 

new empirical techniques, there is now the potential to delve even deeper and refine the 

mechanistic controls on these fluxes. For example, the ability to rapidly measure key leaf and 

photosynthetic traits (e.g., leaf mass per area, nitrogen content, Vmax, etc.) of bioenergy 

feedstocks can improve plant functional type parameterizations of such traits in DayCent. 
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Belowground, the maturity of soil fractionation techniques has led to the development of soil 

decomposition models (MEMS; (Cotrufo et al., 2013; Robertson et al., 2019) that simulate 

soil carbon fractions that are measurable in the field; thereby, replacing the conceptual active, 

slow, and passive fractions used by Century-based models.      
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Table 1.1. Selected CMIP6 earth system models (ESM) and their land and biogeochemical/soil sub-models. Models not a part of 
CMIP6 are designated by “NA.” Soil sub-model traits are included. Even though some have microbial pools, microbes do not 
influence the rate of decomposition, except for ORCHIDEE-PRIM and FUN-CORPSE. “Optimum” describes equations where 
temperature or moisture increase until a point and then a decrease in decomposition. YASSO uses precipitation events rather than soil 
moisture to influence decomposition. When N (Nitrogen) is “No” the model is carbon only, otherwise the model includes N dynamics. 

Soil/ Ecosystem model ESM / 
Land Model 

# Litter / Soil / 
Microbe pools 

Temperature 
Response 

Moisture N Decomposition Driver 

RothC (Harper et al., 2018) UKESM1 / JULES 0 /4 / 1 Q10 Optimum No First-order kinetics 
Soil-submodel of CTEM 
(Arora, 2003)  

CanESM5 / CTEM 1/ 1 / 0 Q10 Optimum No First-order kinetics 

Century + PRIM (Guenet et 
al., 2016) 

IPSL-CM6A-LR / 
ORCHIDEE-PRIM 

2 / 4 / 0 Arrhenius Optimum Yes Optimized first-order 
kinetics + priming effect 

Modified Century or CLM-
CN (Lawrence et al., 2018)  

CESM2 / CLM5 3 / 3 / 0 Q10 Increasing Yes First-order kinetics 

CEVSA (Wu et al., 2019) BCC-CSM2_MR / 
AVIM2.0 

2 / 6 / 0 Optimum Optimum Yes First-order kinetics 

ELMv1 (Zhu et al., 2019) E3SM (previously 
ACME)  

3 / 3 / 3 Q10 Optimum Yes First-order kinetics + 
Equilibrium chemistry 
approximation 

YASSO (Goll et al., 2015) MPI-ESM1.2-LR / 
JSBACH3.2 

4 / 5 / 0 Optimum Precipitatio
n 

No First-order kinetics 

DNDC (Li et al., 1992) NA  3 / 3 / 1 Optimum Optimum Yes First-order kinetics 
CASA (Wang et al., 2010) NA 2 / 3 / 0  Q10 Optimum Yes First-order kinetics 
MIMICS or MIMICS-CN 
(Wieder et al., 2014) 

NA 2 / 3 / 2 Q10 Optimum Yes Forward or Reverse 
Michaelis-Menten 
kinetics 

FUN-CORPSE (Sulman et 
al., 2017) 

NA 3 / 2 / 3 Q10 Optimum Yes Reverse Michaelis-
Menten kinetics 

DayCent (Parton et al., 1998) NA 2 / 5 / 1 Variable Q10 Optimum Yes First-order kinetics 
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New paradigms of soil organic matter formation, stabilization, and loss are not included 

in ecosystem and earth system models 

Despite the success of models that rely on decay constants or “k-values” to control 

the turnover rates of SOM pools, recognition of new paradigms describing the formation, 

stabilization, and loss of SOM may improve the ability of these models to predict the 

environmental impact of bioenergy crops (and other agricultural and native plants) as we 

transition to novel climatic conditions in the future. At the heart of these new theories is the 

concept that plant-microbial interactions govern the extent to which plant-derived inputs (i.e., 

root and leaf litter) form stable SOM (Sokol & Bradford, 2019). For bioenergy crops, there 

are two key plant traits that feedback on SOM persistence. The first is that there is a strong 

interaction between feedstock litter chemistry and microbial traits. The second is that 

differences between feedstocks in belowground carbon allocation to rhizosphere microbes 

can enhance the formation of stable SOM.  

Feedstock litter chemistry drives keystone microbial traits that control the rate and 

pathway of SOM formation. For example, feedstocks like corn with low C:N ratio litters 

promote microbes with high carbon use efficiency (CUE- carbon assimilated into biomass 

per unit carbon taken up) and fast turnover rates  (Cotrufo et al., 2013; Zhu et al., 2018). The 

resulting pool of dead microbial products is thought to be preferentially sorbed to clay 

minerals in the soil making it physically protected from microbial attack (Schmidt et al., 

2011). By contrast, plants with high C:N ratio litters like Miscanthus require greater enzyme 

investment for microbial decomposition, resulting in lower CUE and turnover rates. As a 

result, more SOM is chemically stabilized as particulate organic matter because microbial 

decay is energetically limited (Castellano et al., 2015). Why do these pathways matter for 

models? SOM that is chemically protected is highly susceptible to loss in a warmer world 

because rising temperatures lower the activation energy of microbial decay. As such, models 

that can mechanistically link microbial traits and activity with the distribution of SOM that is 

physically vs. chemically protected are essential to projecting differences between feedstocks 

in SOM persistence. 

To improve DayCent’s ability to better represent plant-microbe interactions and to 

simulate soil carbon dynamics under future climate scenarios, we plan to integrate microbial 
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explicit mechanisms of the coupled soil carbon and nitrogen cycling model, FUN-CORPSE 

(Figure 1.1; (Sulman et al., 2017)) into DayCent. The nitrogen portion of the model, FUN 

(Fixation and Uptake of Nitrogen), estimates the carbon cost of nitrogen to determine carbon 

allocation from plants to stimulate N cycling in the rhizosphere (Fisher et al., 2010; Brzostek 

et al., 2014). The SOC model, CORPSE (Carbon, Organisms, Rhizosphere, and Protection in 

the Soil Environment), integrates microbial explicit controls of SOC transformations with 

feedbacks between live microbial biomass and decomposition to drive soil carbon efflux and 

stabilization (Sulman et al., 2014). We select FUN-CORPSE as a guide to modifying 

DayCent’s SOM cycling processes because, unlike many other microbial explicit SOM 

models, FUN-CORPSE simulates N and well and C cycling, which are both vital to 

DayCent’s plant growth and trace gas models, and has been evaluated against measurements 

of rhizosphere fluxes and SOC (Sulman et al., 2017; Sulman et al., 2018). While the 

mechanisms driving decomposition vary, much of the core structural components of the 

DayCent SOM cycling serve the similar roles as pools in microbial explicit models, such as 

FUN-CORPSE. For example, the metabolic litter pools in DayCent serve the same function 

as the labile carbon pools in FUN-CORPSE. The structural litter and slow SOC pools in 

DayCent are similar to the recalcitrant or chemically protected pools with varying levels of 

protection. DayCent’s passive pool, defined as microbially-derived inputs sorbed to soil clay 

particles, is representative of physically protected carbon. DayCent’s active pool is its 

representation of live microbial biomass. While there are similarities between these pools, 

there is also a fundamental need to redefine and reroute flows between pools so they serve 

more mechanistic functions that align with microbial frameworks. 

While maintaining a similar structure of the DayCent’s SOM cycling sub-model 

(Figure 1.1a), we propose redefining pools to match advances in functional understanding in 

accordance with the MEMS framework (Cotrufo et al., 2013; Robertson et al., 2019). New 

pool definitions would align with measurable pools that serve a functional role similar to 

those described by Lavallee and others (2020) in order to move beyond the conceptual active, 

slow, and passive framework in Century-based models.  

Here, we rename the metabolic surface and rhizosphere litter pools as labile carbon 

pools to align better with contemporary terminology. They serve the same role as a category 

of plant residues with simple chemical structure entering the litter or rhizosphere layers. 
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However, the labile pools will now be routed directly into live microbial pools. Recalcitrant 

plant material (e.g. lignin, cellulose, etc.) will still enter the litter or rhizosphere through 

pools categorized as structural carbon. Carbon from this pool will pass through the live 

microbial carbon pools. After microbial processing of structural carbon this material will be 

transferred to the chemically protected, recalcitrant carbon pools. Recalcitrant carbon pools 

can may undergo further microbial decomposition or experience physical transfer of material 

from the litter recalcitrant pool to the rhizosphere recalcitrant pool. The recalcitrant carbon 

pools in the litter and rhizosphere will take the place of the slow carbon pools in Century-

based models. 

Carbon that enters the live microbial biomass pool will either go towards microbial 

biomass growth or will be lost as CO2 to the atmosphere based on the CUE of the original 

pool. The live microbial biomass pool can transfer material to the dead microbial carbon pool 

as microbial necromass or biproducts. From there, carbon can be transferred abiotically to the 

Mineral Associated Organic Matter pool (MAOM); this will replace the conceptual passive 

soil carbon pool in Century-based models. There will be a carbon saturation level of the 

MAOM pool that will be based on the mineral soil composition (sand, silt, and clay content). 

Carbon, regardless of the source, must undergo microbial processing before it can be 

incorporated into the MAOM pool. 

We are also integrating mechanisms and parameters from FUN-CORPSE that will 

incorporate more plant-soil and soil-microbial interactions (Figure 1.1b). We will replace 

DayCent’s decomposition function with the microbial explicit, reverse Michaelis-Menten 

kinetics functions and add the carbon cost of nitrogen function to determine carbon allocation 

as root exudates to the rhizosphere carbon pool. The new live microbial biomass pools for 

each the litter and rhizosphere allow for the feedbacks between decomposition rate and 

microbial biomass growth and the transfer of microbial necromass to the MAOM pool. While 

here, we are describing how microbial processes may be incorporated specifically into 

DayCent, this may be applied similarly to other Century-based soil carbon models.  

As microbial processes are incorporated into ecosystem models, the challenge will be 

to attain parameterization and validation data at larger spatial scales with varying microbial 

and plant communities. For example, to date, FUN-CORPSE has only been validated in 
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Eastern USA deciduous forests. Microbial response has been a focus of many warming 

studies but changes in microbial CUE, microbial biomass, and enzyme activity vary in 

direction and duration of response (Li et al., 2019; Ye et al., 2019). While studies are 

addressing the mechanisms driving this variation (Alvarez et al., 2018), more measurements 

are necessary to validate models across larger spatial scales. Recent studies have found that 

CUE of microbial communities has a stronger correlation with mean annual temperature 

(MAT) rather than assay temperature (Sinsabaugh et al., 2017; Takriti et al., 2018). Recently, 

Ye and colleagues (2019) evaluated using MAT as a driver of CUE and microbial 

extracellular enzyme kinetics (Vmax, the maximal activity, and km, the half-saturation 

constant) using three microbial-explicit models compared with an early version of the 

Century soil model (Parton et al., 1988). They found that there was a strong positive 

relationship between CUE and MAT and that the microbial models performed better than the 

first-order kinetics model. In both DayCent and FUN-CORPSE, each SOM pool has its own 

CUE, and while it can be tuned during model calibration, direct measurements are often not 

available. Until measurements of microbial traits become more widespread, developing and 

testing the use of empirical relationships with microbial traits, such as that between CUE and 

MAT, is a step towards more data driven parameterization. As models progress towards 

including the more process-based microbial mechanisms of decomposition, it will be vital 

that we continue to expand on field-based studies that can evaluate microbial model 

parameterizations and results.  
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Figure 1.1. DayCent soil sub-model and the proposed FUN-CORPSE integration to Century-
based soil submodules. (a) In the current DayCent soil sub-model, each litter and soil pool 
have empirically derived k-value (Ki) that drives the rate of decomposition along with a 
temperature (Td) and moisture (Md) effect. Ci represents the size of the carbon pool. (b) 
Suggested changes to Century-based soil submodules are 1) updating the decomposition 
function to include microbial biomass pools and use reverse Michaelis-Menten kinetics to 
drive decomposition in each pool rather than a k-value, and 2) use the carbon cost of nitrogen 
acquisition by plants described in the FUN model to determine carbon allocation from plants 
in the form of root exudates to the soil metabolic carbon pool.  CO2 is lost as respiration 
when there is transfer between all soil pools except for the formation of MAOM and live to 
dead microbes.  
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Bioenergy crop modeling lacks representation of vegetation dynamics and landscape 

heterogeneity over time 

The perennial growth form of many high-yielding bioenergy crops, including 

Miscanthus (Miscanthus x giganteus), switchgrass (Panicum virgatum), and sugarcane 

(Saccharum officinarum) pose a special challenge to modelers as endogenous (i.e. aging) and 

management factors, in addition to the environment, may affect their yields over long periods 

of time (Figure 1.2). For several years after planting, perennial bioenergy grasses produce 

relatively low yields (i.e. establishment effects; Figure 1.2b) and are more vulnerable to 

nutrient and water deficiencies than established stands. Because of high costs of crop 

establishment and for the construction of biorefineries, it is desirable that the yield of 

bioenergy crops remain high and stable over many years, however, this may not be the case. 

Sugarcane yields decline precipitously after only two or three cycles of vegetative growth – 

ratoon cycles (Smith et al., 2005) necessitating replanting. Generalizations about the yield 

stability of Miscanthus and switchgrass are more difficult as few long-term data sets are 

available. After an initial establishment phase where yields increase for 1-5 years, Arundale 

et al. (2014) observed a gradual decline in yield for both species thereafter. This study was 

conducted on rich agricultural soils in the Midwest US without fertilization. After peak 

yields, reductions also were observed for these species in other regions, however, observed 

yield reductions are not universal. For Miscanthus it took longer (>15 years) for these 

reductions to become apparent in the Mediterranean (Alexopoulou et al., 2015).  

Predicting age-related declines in yield remains a key challenge for models. Adding 

to this challenge, the empirical understanding of the mechanisms driving time-dependent 

yield reductions is limited. Excessive tillage at planting followed by soil compaction 

contribute to the strong decline in sugarcane yield from one year to the next (Pankhurst et al., 

2003). Nutrient management for Miscanthus and switchgrass is not well understood (Heaton 

et al., 2009). Particularly for Miscanthus, which can yield well in excess of 20 dry Mg ha-1 

yr-1 (Laurent et al., 2015), removal of nitrogen and phosphorus from the soil as plant biomass 

is harvested can contribute to declining yields. Miscanthus more than switchgrass is sensitive 

to hard winter freezes which can damage overwintering rhizomes and reduce yields the 

following summer (Clifton-Brown & Lewandowski, 2000). Physiologically, the 

extraordinarily dense canopies developed by these crops can reduce photosynthetic efficiency 
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by shading (Pignon et al., 2017). There is ongoing work that is using a staggered stand age to 

separate age dynamics from environmental effects on Miscanthus physiology and yield 

(Tejera et al., 2019). Studies such as this, will provide insight to develop a more 

comprehensive and integrated understanding of mechanisms driving these changes, including 

the role of management practices, edaphic and biotic factors and endogenous physiological 

controls of productivity. It is critical to continue incorporating emerging mechanistic 

improvements as they are identified in the literature.  
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Figure 1.2. Modeled and observed above ground biomass of Miscanthus from two studies at 
the University of Illinois Urbana Champaign Energy Farm. Davis et al. (2010) did not have 
any Miscanthus validation data at the time of the study. Hudiburg et al. (2015) had biomass 
data for validation and used daily site weather data through 2012 when the study was 
finished. In other words, observations at the time of these studies did not have either a 
drought or aging-induced decline in yield and in the case of Davis et al. (2010), an 
establishment phase. DayCent's crop model (primarily used for annual crops) was not 
designed capture these types of dynamics because annual crops do not have multi-year 
establisment or multi-year responses to past events. These new observations have led to the 
development of a new plant sub-model in DayCent that is now being used for the perrenial 
bioenergy crops. 
 

In addition to an establishment phase for Miscanthus, a decline in yield was observed 

following the 2012 drought at the University of Illinois Energy Farm (Figure 1.2; red dots); 

this decline has continued. DayCent model predictions for Miscanthus yield at the Energy 

Farm prior to planting (Figure 1.2a; (Davis et al., 2010)) neither capture the establishment 

phase nor a decline in yield (to drought or aging). Model predictions were improved in later 

modeling studies (Hudiburg et al., 2015) by adding an establishment phase by modifying 
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DayCent’s plant growth potential parameter for Miscanthus. However, representing the 

establishment phase did not improve the ability of the model to capture the response to 

drought, or yield declines due to aging. The suggested path to addressing age related decline 

is described in the following section describing long-term plant dynamics in DayCent. 

To improve our ability to model drought effects on yield, we must be able to 

incorporate the ways in which plants respond to drought which varies between feedstocks. 

Switchgrass pursues a strategy of drought avoidance by investing in root mass to extract deep 

soil water, while Miscanthus has been found to have a variety of physiological responses to 

drought. When established Miscanthus stands were subjected to an extreme drought in 2012, 

Joo et al. (2017) observed increased ET driven by deep soil water use by Miscanthus 

compared to switchgrass and prairie plots. In contrast, another study found that Miscanthus 

had lower evapotranspiration in 2012 than either switchgrass, corn or mixed prairie 

(Hamilton et al., 2015). Other research has suggested a lack of sensitivity of Miscanthus to 

moderate drought, with water use and photosynthesis remaining high through early phases of 

scarcity and stomatal closure only upon onset of severe drought (Ings et al., 2013). DayCent 

crop parameters currently allow specification of root allocation responses to water scarcity. 

However, the rate of consumption of available water is dictated by leaf area and climatic 

factors that are not specific to crop species. If field results establish clear differences in the 

water use strategies of perennial bioenergy crops it may be necessary to introduce a water 

consumption algorithm that accounts for species-specific responses to drought.  

 

Recent DayCent developments show improved short and long-term dynamics 

To simulate the dynamics of fast-growing, highly productive biofuel plants which 

have different dynamics and traits than more traditional crops and grasses, we have 

developed a new bioenergy grass plant functional type (PFT) with additional physiological 

parameters for the DayCent ecosystem model. Although the new bioenergy grass can 

represent both annual and perennial crops, it was developed primarily to improve the 

representation of the long-term dynamics of large perennial biofuel grasses such as 

sugarcane, switchgrass, and Miscanthus. The grass category differs from the model’s 

traditional crop/grass plant type by representing above-ground biomass as both stems and 
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leaves instead of as shoots only and representing below-ground root biomass as both 

rhizomes and fine roots instead of as fine roots only. The stems, which contain a larger 

percentage of structural material than leaves, have a higher C:N ratio than leaves and the 

amount of leaves that can grow is dependent on the amount of stem biomass that can support 

them. Phenology, such as when senescence begins, can be prescribed or can be governed by 

growing degree days and moisture-related triggers. Shading can cause partial senescence of 

leaves which can either remain attached to the stems or fall to the ground. During the latter 

part of the growing season, perennial plants build up carbohydrate storage which will be 

available for growth in the subsequent growing season. Similarly, during senescence large 

perennial grasses re-translocate nitrogen from leaves to the rhizomes and this stored nitrogen 

will be available for growth in the subsequent growing season. Thus, the health of the plant 

in one growing season may affect yields in the subsequent growing season.  

New PFT parameterizations in DayCent-CABBI, a version of DayCent developed by 

the Center for Advanced Bioenergy and Bioproducts Innovation, have improved the model 

representation of perennial plant establishment and growth (Figure 1.3; (Moore et al., 

Unpublished)). Model-data agreement can be tuned with a comparable amount of success for 

both DayCent-CABBI and DayCent-Photo, the previous version of the model (Straube et al., 

2018; Stenzel et al., 2019). However, to simulate lower yields during establishment years for 

perennials in DayCent-Photo, the model required three consecutive switchgrass PFT 

parameterizations to be used with varying growth potential (see table in Figure 1.3). In this 

comparison, DayCent-CABBI captured the effects of establishment in a single 

parameterization of switchgrass since simulated stem and rhizome growth required several 

years to achieve peak biomass through additional biomass to LAI and maximum LAI 

parameters. DayCent-CABBI also differentiates carbon and nitrogen allocation between 

leaves and stems and root tissues, whereas previous versions of the model only differentiate 

C:N ratios between above and belowground pools. 
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Figure 1.3. DayCent-CABBI and DayCent-Photo (the previous version of the model) 
evaluated against measurements of peak above- and belowground peak biomass of 
switchgrass at the UIUC Energy Farm over eight years following the initial planting. Points 
represent observed data. Error bars are standard error (n = 5). The table provides differences 
in major crop parameterizations between the old and the new version of the model. DayCent-
Photo adjusting the growth potential coefficient during the first two years to limit growth 
during switchgrass establishment, whereas DayCent-CABBI achieves this though LAI 
parameters. The C:N and LAI values were derived from measurements taken at UIEF (Smith 
et al., 2013; Masters et al., 2016). 
 

To improve long-term dynamics, we are investigating if long-term changes in 

allocation between above- and below-ground biomass is altered by prolonged drought and 

plant age. We are also investigating the best way to represent the age-related declines in 

Miscanthus and switchgrass production that have been observed in field trials in the USA 

since we are unsure if these yield declines are a result of reduced soil nutrient availability, 

changing soil conditions or pests and disease. Furthermore, heterogenous conditions within a 

field may reduce average biomass harvest over time. The model already simulates nutrient 

uptake and therefore simulated yields will respond to nutrient supply, but other age-related 

productivity declines are not currently represented (Arundale et al., 2014). These changes to 

model algorithms will also be useful for woody plants, especially age-related changes to 

allocation of carbon.  

The role of carbon and nitrogen stored belowground is also important to 

understanding stress response in perennial grasses. Eichelmann et al. (2016) found that water 

use efficiency (WUE) of mature switchgrass increased in the 2012 drought year relative to 
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2011 despite lower CO2 fixation, suggesting the use of belowground stored carbon to 

“subsidize” drought year biomass production. The new grass category provides for carbon 

accumulation in rhizomes which will allow for plants to mobilize carbon stored in roots 

under drought stress for aboveground biomass production. However, algorithms involved 

with the new grass category will need to be validated against measurements such as these as 

they become available to enable accurate prediction of yield stability across wet and dry 

growing seasons.  

 

Current mechanistic understanding about the timing and magnitude of trace gas fluxes 

(e.g. N2O) is insufficient for model development 

Given the amplified global warming potential of N2O relative to other GHGs, 

inaccurate estimates of N2O fluxes under land use or climate change scenarios represent a 

large source of uncertainty on terrestrial ecosystems-climate feedbacks, particularly when 

considering the agricultural sector (Stein & Yung, 2003). Accurate predictions of potential 

feedbacks are key for evaluating risks and designing mitigation strategies 

Because a direct measurement of all factors and interactions integrating the nitrogen 

(N) cycle is unfeasible and subject to large variability, models of varying complexity have 

been developed to reproduce the complex processes driving N dynamics and ultimately N2O 

emissions. DayCent was developed to link to a daily land surface model to improve estimates 

of trace gas fluxes by incorporating daily soil hydrological and thermal dynamics in 

conjunction with modified parameterizations to accommodate a higher temporal resolution of 

ecosystem processes subject to significant daily variability (Parton et al., 1996, 1998). 

DayCent simulates N2O and NOx emissions from nitrification and denitrification and N2 

emissions from denitrification reproducing the regulation of each process separately. The 

model assumes that nitrification rates are controlled by the availability in soil of NH4+, and 

soil water content, temperature, and pH (Parton et al., 2001). Maximum nitrification rates 

occur at close to 50% water-filled pore space (WFPS) and are assumed to decreases as 

temperature and pH decrease. Denitrification is assumed to be a function of soil NO3- (e- 

acceptor) concentration, labile C (e- donor) availability, and O2 (competing e acceptor). 

Heterotrophic respiration is used as a proxy for labile C availability while O2 availability is 
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estimated from WFPS, and soil physical properties related to texture that influence gas 

diffusivity (Del Grosso et al., 2000). 

The DayCent model has been extensively used to generate N2O flux estimates for 

regional greenhouse gas inventories, predict N2O emissions and N2O emission factors across 

land uses and management practices, and evaluate the impacts of climate change on 

agriculture (Adler et al., 2007; Davis et al., 2010, 2012; Del Grosso et al., 2006, 2008; Del 

Grosso, Mosier, et al., 2005). However, despite yielding more accurate estimates than the 

IPCC recommended EF methodology (Del Grosso, Mosier, et al., 2005) and a generally 

better performance relative to alternative process-based models (Abdalla et al., 2010; Yue et 

al., 2019), DayCent estimates are not devoid of uncertainty, with reported deviations ranging 

from -57% to 38% (Abdalla et al., 2010; Del Grosso, Mosier, et al., 2005; Gaillard et al., 

2018; Yue et al., 2019). The complexity of model predictions of ecosystem N2O fluxes lies 

largely on the fact that N2O fluxes result from multiple processes, whose regulation, drivers 

and interactions are still not sufficiently understood or even identified.   

The lack of mechanistic understanding of N2O dynamics is largely due to the highly 

variable nature of these fluxes. In the last few decades, it has become apparent that the 

majority of N2O emissions from soil and aquatic systems occurs in hot spots and during hot 

moments (McClain et al., 2003). Sampling is limited in space and time leading to an uneven 

representation in the literature (e.g. more accessible vs less accessible areas; growing season 

vs non-growing season), making it difficult to disentangle the primary variables driving the 

response of N2O to changes in the environment.  

Predicting ecosystem N2O fluxes requires integration of multiple processes operating 

simultaneously (i.e. nitrification and denitrification). These processes have different lag-

times and sensitivities to a wide range of biotic factors (e.g. plant-soil interactions, natural 

inhibitors of the nitrogen metabolism, dominant microbial communities) and environmental 

conditions which are still not fully understood or even identified. The role of soil pH in 

denitrification metabolism has only recently been recognized (Liu et al., 2010) and new 

evidence suggests that the contribution of N2O emissions induced by freeze-thaw cycles to 

annual emissions has been underestimated by ~20-30% (Wagner-Riddle et al., 2017). 
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Neglecting to capture these processes in biogeochemical models likely contributes to strong 

biases in ecosystem N2O annual budgets. 

Moreover, static model site (or grid cell) parameters such as soil texture, drainage, or 

pH may not be constant as they can evolve over the course of the development of supported 

vegetation, buildup of soil organic matter, or particularly following disturbance events. A 

recent review found that there is frequently high N2O emissions in the first few years 

following conversion of annual crops to perennial bioenergy feedstocks (Whitaker et al., 

2018). To accurately predict ecosystem N2O emissions, models need be able to integrate 

these legacy effects, where the short-term effects of changes in land use and/or climate on the 

ecosystem physical and biological parameters are foundational to long-term responses.  

The complex functional relationships between N2O and its controlling factors makes 

it difficult for process-based biogeochemical models to predict spatial and temporal N2O 

dynamics. Furthermore, the popular process-based models for N2O prediction such as 

DayCent and DNDC are often parameterized based on limited number of observations from 

controlled laboratory experiments that do not represent the complex variable interactions. 

The process-based models often fail to accurately predict fine-scale (daily) temporal N2O 

predictions (Parton et al., 2001; Jarecki et al., 2008). We propose that data-driven machine 

learning models could be used to improve predictability as well as understand controlling 

variable sensitivity and identify their functional relationships with N2O, which in turn could 

help to refine the process-based models through improved parameterization (Philibert et al., 

2013; Perlman et al., 2014; Reichstein et al., 2019). For example, deep learning models can 

improve prediction accuracy for poorly understood processes at the expense of 

interpretability (Brenowitz & Bretherton, 2018; de Bezenac et al., 2019). Whereas, tree-

based models such as Random Forest is a non-parametric machine learning technique that 

learns functional forms between the response and predictor variables from the data (Breiman, 

2001). Hence, can provide novel understanding on process controls while improving 

prediction accuracy. This process can operate in parallel  or in fusion with biogeochemical or 

other process-based models (Walsh & Hudiburg, 2019). Unlike process-based models, the 

Random Forest algorithm learning is facilitated through an iterative process of recursive data 

partitioning and constructing hundreds of decision trees to partition the observations into 

distinct groups characterized by different properties of the predictor variables. Meta-
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modeling approach using Random Forest and process-based models has been used in 

predicting soil N biogeochemistry (Ramanantenasoa et al., 2019; Shahhosseini et al., 2019) 

however, its use in predicting highly variable temporal soil N2O fluxes is limited. Saha, 

Basso, and Robertson (Submitted) developed a Random Forest model based on automated 

flux chamber data from corn in the upper Midwest that predicted 51% variability in daily 

N2O fluxes from an unknown site. 

High temporal and spatial resolution input data are critical to facilitate this learning 

process, hence measured data from diverse soil, climate, and cropping system management 

practices are critical for model training (Figure 1.4). As more long-term observed flux data 

from automated flux chamber sites becomes available, the opportunity to use machine 

learning methods to improve process-based biogeochemical models, like DayCent, is 

increasing. The predictor variables may include soil properties (texture organic matter, pH), 

weather variables (precipitation, temperature), management practices (tillage, cover crop, 

fertilization and land use change), and dynamic soil biogeochemistry (mineral nitrogen 

availability, soil moisture and temperature). As a way forward, we suggest first identifying 

the available measured N2O data sources from diverse soil, climate and production systems. 

Second, creation of a database of N2O fluxes and associated predictor variables that are 

empirically identified as important. Process-based models can be used to fill in the gaps in 

input data with a certain level of confidence to facilitate an integration of data-driven and 

physics-based N2O modeling approach (Figure 1.4). Third, machine learning models should 

be trained and then tested with separate validation data. Fourth, performance comparisons 

between the process-based models and Random Forest method in predicting N2O fluxes can 

be used as a metric of improved model confidence. This method could extend to other 

ecosystem fluxes that are also difficult to model under quickly changing environmental 

conditions such as CO2 from heterotrophic respiration and CH4 production and consumption.  
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Figure 1.4. A schematic representation of integrating machine learning and biogeochemical 
simulation models to predict N2O fluxes. The left broken box represents the development of 
machine learning model by learning from the data. In order to improve the machine learning 
model’s ability to generalize predictions, the model should be trained and tested on data from 
diverse environmental and agronomic production systems. The right solid box represents 
output generation from process-based simulation model. The relevant outputs can serve as 
input variables for the machine model to predict N2O fluxes at the same resolution as the 
simulation model (adapted from Saha, Basso, & Robertson (2021). 
 

Conclusion 

Modeling is a powerful tool for generating hypotheses and predictions about how 

major changes in land use, driven by the expansion of bioenergy crops and other changes in 

managed landscapes, will affect the land-atmosphere exchange of GHGs. Century-based 

models have been keystone models representing processes affecting SOC and GHG 

exchange. Assimilation of new understanding of plant physiology, new paradigms explaining 

changes in SOC, the ability to quantify feedbacks between the microbial community and 

decomposition, and the use of machine learning to identify and optimize key parameters 

when high-resolution data is lacking will improve the predictive power of DayCent when 

confronted with rapidly changing environmental conditions.  
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Chapter 2 : Microbial explicit processes improve modeled soil carbon dynamics. 

 

Abstract 

Globally, soils hold approximately half of ecosystem carbon and can serve as a source or sink 

depending on climate, vegetation, management, and disturbance regimes. Understanding how 

soil carbon dynamics are influenced by these factors is essential to evaluate proposed natural 

climate solutions and policy regarding net ecosystem carbon balance. While there is still 

uncertainty surrounding processes that affect soil carbon dynamics, it is clear that soil 

microbes play a key role in both carbon fluxes and stabilization. However, biogeochemical 

models often do not specifically address microbial-explicit processes – a topic of debate in 

the literature. Here, we incorporated microbial explicit processes into the DayCent 

biogeochemical model to better represent soil carbon fluxes and stabilization. Specifically, 

the model now has three major changes: 1) live and dead microbe pools that influence 

routing of carbon to chemically and physically protected pools, 2) Michaelis-Menten kinetics 

rather than first-order kinetics in the decomposition function, and 3) feedbacks between 

decomposition and live microbial pools. We evaluated the performance of microbial and 

first-order models using observations of net ecosystem production, ecosystem respiration, 

soil respiration, microbial biomass, and soil carbon from long-term bioenergy research plots 

in the mid-west United States. Live microbial biomass pools in the new model were validated 

with measurements taken at the beginning and middle of the growing season. For both 

measurement dates, modeled microbial biomass was within the standard error of the 

observed means. The microbial-explicit model had better model-data agreement for 

ecosystem respiration for switchgrass and miscanthus (switchgrass: R2 = 0.86; miscanthus: 

R2 = 0.70) compared to the first-order model (switchgrass: R2 = 0.81; miscanthus: R2 = 68). 

The microbial-explicit model also represented seasonal dynamics of soil carbon fluxes better 

than the first-order model which consistently overestimated winter soil respiration. Both 

models simulated total soil carbon within the observed standard error. However, the 

microbial model allocated less soil carbon to the passive pool (analogous with mineral 

associated organic matter or MAOM) and more to the slow pool (analogous to particulate 
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organic matter or POM) than the first-order model. Response to disturbance and management 

varied between the models. For example, in historic agricultural simulations the microbial 

model had higher soil carbon loss in response to poor cultivation practices in the era leading 

up to the Dust Bowl but increased soil carbon at faster rates when agricultural practices 

improved during the Green Revolution. In simulated soil warming and wetting experiments 

that also increased plant production, the first-order model showed a linear increase in soil C 

with the increase in litter inputs, but soil C predictions by the microbial model plateaued after 

X years. It’s clear that adding microbial-explicit mechanisms to ecosystem models will 

improve model predictions of ecosystem carbon balances, particularly when evaluating 

management decisions, but more research is necessary to validate disturbance and climate 

change responses and pool allocation.  

 

Introduction  

Understanding the nuances of ecosystem carbon sequestration and storage is critical 

as governments, researchers, and the private sector grapple with meeting net-zero emission 

goals outlined by the International Panel on Climate Change (IPCC) and Paris Climate 

Accord. Among strategies to remove and store atmospheric carbon are 'Natural Climate 

Solutions’ (NCS) which return carbon to the biosphere where it is stored in biomass or soil 

(Griscom et al., 2017; Osaka et al., 2021). Soil carbon has the potential to make up a quarter 

(23.8 Gt CO2 eq yr-1) of the land-based NCS through protection of existing soil carbon stocks 

as well as increasing soil carbon where stocks have been depleted (Bossio et al., 2020). 

However, the effectiveness and efficiency of nature-based carbon removal strategies relies on 

measurements and research to evaluate and predict the amount of carbon being sequestered, 

how long it will remain in the ecosystem, and how susceptible it is to events that may cause 

sudden losses of ecosystem carbon (e.g., fire, land use change, etc.).  

Perennial bioenergy crops (e.g., miscanthus and switchgrass) have the potential to be 

used as feedstocks to produce biofuels and bioproducts while also reducing net greenhouse 

gas emissions and improving water quality relative to other crops (Hudiburg et al., 2015; G. 

P. Robertson et al., 2017). For example, compared to common annual row crops such as corn 

and soybeans, these large perennial grasses produce more biomass, require less fertilizer, 
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may be more drought and flood tolerant, and contribute more plant residue and deeper roots 

that can increase soil carbon accumulation (He et al., 2022; Heaton et al., 2008). 

Soils comprise more than half of terrestrial carbon storage (IPCC, 2018; Scharlemann 

et al., 2014), yet they are vulnerable to losses from land cover and land use change (IPCC, 

2018; G. P. Robertson et al., 2017). Biogeochemical models serve as a way to evaluate how a 

variety of climate, disturbance, and management scenarios on soil carbon stocks and Net 

Ecosystem Carbon Balance over long temporal and broad spatial scales. To date, Earth 

System Models (ESMs) and ecosystem-scale models have largely relied on first-order 

kinetics and soil pool structures that don’t explicitly represent microbial processes or the 

mechanisms of soil carbon stabilization (Berardi et al., 2020). Parsimonious and data-

efficient first-order models have been effective tools to simulate soil organic carbon dynamic 

trends in decomposition experiments (Bonan et al., 2013; Campbell et al., 2016) as well as 

large-scale spatial variation and temporal dynamics (Campbell & Paustian, 2015; Wieder, 

Grandy, Kallenbach, Taylor, & Bonan, 2015; Wieder et al., 2018). However, there remains 

substantial uncertainty in Earth System Model (ESM) projections of soil carbon under future 

scenarios due to the lack of crucial biogeochemical processes (Todd-Brown et al., 2018; 

Wieder et al., 2013). 

First-order soil carbon models are commonly built on theories of mean residence 

times of soil carbon pools to determine decay rates (i.e., k-values) and largely ignore the 

major role that soil microbes play in the breakdown of plant organic material and soil carbon 

stabilization. Microbial decomposition disproportionately results in necromass with strong 

soil particle bonds in the mineral associated organic matter pool (MAOM), where carbon is 

the most protected from leaching and further decomposition (Cotrufo et al., 2013). Without 

explicitly addressing microbial biomass pools, biogeochemical models will continue to 

ignore the feedbacks between microbial biomass and rates of decomposition (Sulman et al., 

2017; Wieder et al., 2015).  

In the last decade, advances in soil models have allowed more mechanistic, trait-

based approaches that include feedbacks between microbial biomass and decomposition as 

well as plant-microbial interactions (Berardi et al., 2020; Wan & Crowther, 2022). This 

coincides with empirical studies that have emphasized the importance of soil microbes in 
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decomposition and soil carbon stabilization. The Microbial Efficiency-Matrix Stabilization 

(MEMS) v2.0 model was recently developed from the MEMS v1.0 soil model into a full 

ecosystem scale model that simulates measurable pools of soil organic matter (SOM) and 

physio-chemical mechanisms of SOC stabilization. MEMS represents complex microbial 

mechanisms to determine MAOM and POM formation while using first-order kinetics to 

drive decomposition (A. D. Robertson et al., 2019; Y. Zhang et al., 2021). The Microbial-

Mineral Carbon Stabilization (MIMICS) model (Wieder et al., 2014) and the Fixation and 

Uptake of Nitrogen – Carbon, Organisms, Rhizosphere, and Protection in the Soil 

Environment (FUN-CORPSE) model (Sulman et al., 2017) use Michaelis-Menten kinetics, 

rather than first-order, that simulates feedbacks between the size of the microbial biomass 

pool on decay rates of soil C pools. 

Here we seek to understand if current biogeochemical models are limited in their 

ability to predict soil carbon stocks and net ecosystem carbon balance over long temporal and 

broad spatial scales by a lack of mechanistic representation of microbial processes. We 

expect that an ecosystem model may be improved by incorporating these mechanisms, 

resulting in lower uncertainty and more accurate representation of soil carbon in past data 

and future projections. In this study, we aim to evaluate how microbial-driven decomposition 

compares to the first-order model by adapting the decomposition function from a modified 

version of FUN-CORPSE (Juice et al., 2022) into the DayCent ecosystem model (Parton et 

al., 1998). However, comparing separate ecosystem models to each other can make it 

challenging to isolate the effects of recent model improvements on their predictions. To 

address this issue, we have updated the DayCent model to allow for interchangeable 

functions and components, including two soil organic matter sub-models (First-Order (FO) 

and Michaelis-Menten (MM)) and multiple functions that describe soil temperature and 

moisture effects on decomposition. Doing this creates a form of a model testbed that allows 

for alternative sub-models to be forced with common inputs in order to quantify how 

different functions influence the rate of decomposition and SOM formation (Wieder et al., 

2018). 

Furthermore, realistic inputs to the litter and soil pools from observed or modeled 

plant biomass are critical to best simulate soil carbon dynamics with both first-order and 

microbial explicit soil models. Thus, we have continued to develop and validate a new plant 



35 

 

submodel in DayCent to better represent the plant physiology and chemistry of large 

perennial grasses (Berardi et al., 2020; Moore et al., 2020). Finally, to compare the long-term 

soil carbon dynamics of each soil carbon model, we simulate perennial bioenergy grasses 

under potential future climate conditions. By doing so, we aim to determine which model 

provides more accurate predictions of soil carbon dynamics and assess the potential of these 

grasses as a bioenergy feedstock. 

 

Methods 

Model description and development  

The version of DayCent we use for this study, DayCent-CABBI, was developed from 

DayCent-Photo (Straube et al., 2018). The new version includes a sub-model called 

'grasstree', which simulates large annual and perennial bioenergy crops such as sorghum, 

switchgrass, miscanthus, and sugarcane (Berardi et al 2020, Moore et al 2020). Unlike the 

original crop sub-model, the grasstree sub-model treats stems and leaves as separate carbon 

and nitrogen pools, similar to the tree sub-model. Additionally, it includes an additional root 

pool to represent rhizomes, which accounts for differences in the chemical composition and 

physiological processes between plant tissues that play important roles in growth, nitrogen 

demand, decomposition as plant parts enter litter and soil pools, and sensitivity to climate and 

weather events (e.g. drought, freezing events). The grasstree sub-model also has a gradual 

senescence over a user-specified period that begins after the autumn equinox and is triggered 

by user-specified daylength where senescence begins, allowing for variability in the length of 

senescence by plant species and for better automation of senescence events across broader 

spatial extents. Additionally, the new model incorporates new parameters and mechanisms 

for simulating temperature thresholds and the severity of damage caused by frost to above 

and belowground plant parts. For specific functions and further details describing the new 

plant sub-model, see Supporting Information (SI). 

DayCent-CABBI soil sub-models 

The model simulates decomposition and soil organic carbon stabilization by either 

using the original soil sub-model using first-order kinetics, or using the new microbial 
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explicit soil sub-model using Michaelis-Menten kinetics. The new sub-model adapts the 

Michaelis-Menten decomposition functions from the FUN-CORPSE soil model, which has a 

more representative pool structure and includes a mechanism for roots exudation. The MM 

model maintains a similar pool structure, pool properties, soil texture effects, and lignin 

effects on carbon flows from the original DayCent decomposition function but adds surface 

and soil dead biomass pools and replaces the surface and soil 'active pools' with surface and 

soil 'microbe biomass pools' (Figure 2.1). In the MM model, most carbon from other pools is 

now routed through the live microbial and dead microbial pools as material passes through 

the decomposition process before entering either slow or passive soil pools, though some 

dead microbe biomass, structural litter, and decomposing dead wood can bypass microbial 

processing and flow directly to the slow pool. 

As an example of the differences between the FO model and the MM model, we 

consider the amount of C in the soil slow pool (som2c(SOIL) that is decomposed daily 

(tcflowsom2c(SOIL), g C m-2). In the FO model tcflowsom2c(SOIL) it is computed as: 

 

 

 

where f(T)  is the temperature effect on decomposition (0– 1) (variable Q10), f(Ɵ) is the soil 

moisture effect on decomposition (0– 1) (strictly increasing and plateauing at field capacity), 

dec5(SOIL) is the intrinsic decomposition rate of som2c(SOIL) (yr-1), cltfac(2) is the 

cultivation effect for som2c(SOIL) (it > 1.0 when cultivation has recently occurred and is 1.0 

otherwise), pHeff is the pH effect on decomposition (0 – 1), and dtm is the time step (fraction 

of a year). 

In the MM model tcflowsom2c(SOIL), is computed as 

 

( ) ( ) ( )2 ( ) 2 ( ) ( ) 5 2  som c SOILtcflow som c SOIL f T f dec SOIL cltfac
pHeff dtm

q= ´ ´ ´ ´

´ ´
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where Vmaxref,som22 is the reference Vmax (maximum reaction velocity) for som2c(SOIL)( yr-

1), micc(SOIL) is the amount of live microbial biomass in the soil (g C m-2), frecalcitrant(T) is 

the temperature effect on decomposition for recalcitrant material (either variable Q10 or 

exponential Q10), f(Ɵ) is the soil moisture effect on decomposition (either strictly increasing 

or reaching a maximum at 50% saturation then declining), and KM,som2 is the half saturation 

fraction for the Michaelis-Mention function. The values of pHeff, clteff(2), and dtm are the 

same as those for the FO model. 
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Figure 2.1. Diagram of DayCent-CABBI soil model pool structures and C flows between 
pools for the MM and FO soil submodels. Solid rounded arrows show the direction of C flow 
from one pool to another. Bowties indicate decomposition occurring and CO2 loss as a part of 
C transfer between pools.  
 

Note that the FO model still protects microbe C (the active pool) as passive C and is 

not simply decomposition cascade of increasingly recalcitrant material. We consider the 

passive pool to be analogous with mineral associated organic matter (MAOM) and the slow 

pool to be analogous with particulate organic matter (POM). 

Microbial consumption of organic matter is controlled by abiotic factors as well as 

Michaelis-Mention dynamics based on the relative amount of live microbial biomass present. 

DayCent has interchangeable functions that are used to calculate soil temperature and 

moisture effects on decomposition rates and microbial growth. The first order model uses a 
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variable Q10 temperature effect on decomposition function, and an arc-tangent function to 

simulate the effect of soil moisture on decomposition using relative soil water content (Del 

Grosso, Parton, et al., 2005). With the MM model users can select from the following soil 

temperature and moisture functions: 1a) a variable Q10 temperature effect (DayCent) or 1b) 

an exponential Q10 temperature effect (CORPSE, (Sulman et al., 2014)); 2a) an increasing 

relationship with soil moisture that plateaus when soil water content reaches the field 

capacity (DayCent) or 2b) a hill relationship where soil moisture effect is highest around 

50% saturated water filled pore space (WFPS) and declines as WFPS is greater or less than 

50% (CORPSE, (Sulman et al., 2014)). All functions are described in more detail in Model 

Documentation in the SI. 

Observational data and model simulations  

The models were calibrated and evaluated with an extensive, long-term dataset from 

the University of Illinois Champaign-Urbana Energy Farm (UIEF; 40° 3′ 46.209″ N, 88° 11′ 

46.0212″ W) located in the Midwest region of the United States. The regional climate is 

characterized by a hot and humid growing season, no dry season, and severe cold winters. 

The mean annual temperature is 10.9 C and mean annual precipitation is 1,051 mm (Illinois 

State Water Survey, 2020). The soil is Drummer silty clay loam with poor drainage (Soil 

Survey Staff, 2015). The switchgrass and miscanthus fields used in this study were 

established in 2008. Soil samples were collected prior to planting to obtain a baseline of soil 

C and N. Eddy covariance flux towers were installed in the center of each field with 

instrumentation measuring C, water, and energy fluxes at high temporal resolution (Zeri et 

al., 2011). Because this study solely leveraged existing data, measurement of different pools 

and fluxes aren’t consistent for both crops (Table 2.1). Measurements of above- and 

belowground biogeochemical pools for both crops have been taken annually since the plots 

were established for long-term evaluation of the crops potential to meet bioenergy GHG 

mitigation goals (Kantola et al., 2022). Additionally, some observations used for model 

evaluation were taken as a part of smaller studies to understand specific processes related to 

one or both crops.  
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Table 2.1. Calibration and validation periods used for GPP, NEP, ER, NPP, SOC, and 
microbial biomass C data for Miscanthus and Switchgrass fields. 

 Temporal 
Resolution 

Crop Calibration 
period 

Validation Period 

Flux tower (GPP, 
NEP, ER, AET) 

Continuous daily Switchgrass 2009 – 2011 2012 – 2015 
Miscanthus 2009 - 2013 2014 – 2018 

NPP Annual  Both 2008 - 2011 2012 – 2016 

SOC 8 – 9 years Switchgrass 2008 2018 
Miscanthus 2008 2019 

POM & MAOM Single observation Miscanthus NA 2020 

Soil Respiration Continuous daily - 
biweekly 

Switchgrass NA 2009 – 2011, 2018 
– 2019 

Miscanthus NA 2009 – 2011, 2019 
Microbial biomass Monthly  Switchgrass NA 2018 

Miscanthus NA 2018 – 2019 
 

The model was calibrated to an average SOC value for both fields in 2008 through 

the spinup and historical land use simulations. DayMet weather data (daily max temperature, 

minimum temperature, and precipitation) for a past 38-year period (1980 – 2017) was used 

for spinup and historical simulations (Daymet citation). The spinup simulated year 1 – 1847 

with a tall grass prairie plant sub-model grown using grasstree. Light grazing occurred 

annually with a fire every four years. Historic land use was simulated from 1848 to 2007 and 

consisted primarily of corn and soybean rotations. The same spinup and historic land use 

simulations were used for both switchgrass and miscanthus fields. 

Switchgrass and miscanthus management for 2008-2019 was prescribed following 

site-specific timing of planting, fertilization, cultivation, and harvest. Both crops were 

planted early in the 2008 growing season but required a second planting later in the season in 

patches where establishment failed. Switchgrass was not fertilized throughout the entire field 

trial whereas miscanthus was fertilized at a rate of 56 kg ha-1 2014 – 2019 after experiencing 

a decline in productivity. Both the switchgrass and the miscanthus fields were cultivated with 

a moldboard plow in 2008 when transitioning the fields from corn production to perennial 

grasses. Both crops were harvested annually between November and January. Detailed 

descriptions of site management can be found in Moore and others (2020) for switchgrass 

and for both switchgrass and miscanthus in Kantola and others (2022). 
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We calibrated DayCent-CABBI to ecosystem carbon fluxes for switchgrass and 

miscanthus simulations at the Energy Farm. Net primary productivity (NPP) and gross 

primary productivity (GPP) were calibrated by adjusting parameters that were specific to 

growth response to temperature (Table 2.2). Ecosystem respiration (ER) was calibrated by 

adjusting the fraction of GPP applied to maintenance respiration. Net ecosystem productivity 

(NEP) was calibrated through the combined efforts to calibrate GPP and ER.  
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Table 2.2. Parameters used to calibrate switchgrass and miscanthus NPP, GPP, ER, and NEP. 
Photosynthetic parameters were constrained by range values identified by Straube and others 
(2018). 
Parameter Description Switchgrass 

Value 
Miscanthus 
Value 

PS2Mrsp Fraction of GPP applied to maintenance 
respiration 

0.2 0.2 

Amax Maximum net CO2 assimilation rate 39.0 40.0 
AmaxFrac Average daily max photosynthesis rate as a 

fraction of Amax 
0.75 0.75 

AmaxScalar1 Scalar value of Amax during period defined by 
GrowthDays1 

1.0 0.8 

AmaxScalar2 Scalar value of Amax during period defined by 
GrowthDays2 

1.2 1.38 

AmaxScalar3 Scalar value of Amax during period defined by 
GrowthDays3 

0.8 0.9 

AmaxScalar4 Scalar value of Amax during period defined by 
GrowthDays4 

0.2 0.6 

GrowthDays1 The first day of growth to apply AmaxScalar1 1 1 
GrowthDays2 Number of days after the start of growth to apply 

AmaxScalar2 
150 120 

GrowthDays3 Number of days after the start of growth to apply 
AmaxScalar3 

200 210 

GrowthDays4 Number of days after the start of growth to apply 
AmaxScalar4 

260 245 

PsntMin Minimum temperature for photosynthesis to occur 1.0 -2.0 
PsntOpt Optimum temperature for photosynthesis to occur 27.0 29.0 
PPDF(1) Optimum temperature for production 27.0 29.0 
PPDF(2) Maximum temperature for production 44.0 44.0 
PPDF(3) Right curve shape for Poisson Density curve 

function 
20.0 20.0 

PPDF(4) Left curve shape for Poisson Density curve 
function 

0.7 0.3 

DYLENSEN Day length after autumn equinox that triggers 
senescence  

11.99 11.95 

GSENEDYS Number of days that senescence occurs 40 50 
GSENDETH(1) Fraction of leaves that dies over senescence 0.96 0.963 
GSENDETH(2) Fraction of stems that dies over senescence 0.96 0.963 

 

We ran the MM model with every combination of soil temperature and soil moisture 

functions and then evaluated which combination best captured daily observed NEP and ER. 

We used the MM model with the variable Q10 soil temperature effect function and the hill 

soil moisture effect function, which produced the best match between simulated and 
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observed daily fluxes relative to the exponential Q10 function and the increasing soil moisture 

function overestimated ER in the winter and the spring.  

Total SOC was calibrated to during the spinup and historic land use simulations. The 

passive pool of both the first order and MM model were calibrated to be equal during the 

spinup and historical period. The slow and passive pools were slightly different throughout 

the simulations, but total SOC was equal by year 2008. With the availability of soil 

particulate organic matter (POM) C and MAOM C in measured in the miscanthus field in 

2019 (Ridgeway et al., 2022), we were able to calibrate specific pools to the observed data by 

adjusting the rate of flow between pools. The slow soil pools in both the first order and MM 

model were calibrated to observed POM and the passive soil pools were calibrated to 

observed MAOM while maintaining the total SOC calibration for 2008.  

Following model calibration and evaluation, we ran four future climate scenarios 

from 2020 – 2049 for switchgrass and miscanthus with both soil models. Current 

management of switchgrass and miscanthus was continued during future simulations. To 

create the future climate scenarios, the past 30-years of weather were blocked by year and 

randomized. Using the same set of future weather data, we then constructed the four climate 

scenarios: 1) Unaltered, but randomized weather (Current); 2) 2°C added to the minimum 

and maximum temperature (Warming); 3) Increased precipitation during the early growing 

season (Rain); and 4) 2°C added to the minimum and maximum temperature and increased 

precipitation during the early growing season (Warming + Rain).  

Microbial biomass measurements were taken during the growing season in 2018 for 

switchgrass and both 2018 and 2019 for miscanthus. There were three measurement dates in 

2018 and two in 2019, allowing us to evaluate if the model was capturing the seasonality of 

microbial biomass growth. Samples were taken in the top 10 cm of the soil profile and frozen 

until chloroform extractions were performed. Microbial biomass C was measured using a 

mass spectrometer and then scaled to a square meter. This depth was assumed to account for 

most of the microbial biomass because the majority of miscanthus and switchgrass root and 

rhizome biomass is in the top 10 cm of the soil profile (Black et al., 2017) and the 

distribution of soil microbial biomass mirrors the distribution of roots (Xu et al., 2013). 
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Microbial biomass data was used to evaluate if DayCent was capturing reasonable values of 

microbial biomass and growth but was not tuned specifically to microbial biomass data.  

Soil respiration data from two different measurement campaigns was used to evaluate 

modeled soil C flux. We used the daily total soil respiration measurements (Rs) that were 

taken using automated respiration chambers between 2009 – 2011. The measurement 

methods and data processing is described by Anderson-Teixeira and others (2013). We also 

evaluated model performance using soil respiration that had been partitioned into autotrophic 

(Ra) and heterotrophic (Rh) respiration. These measurements were taken weekly to biweekly 

during the growing season of 2018 for miscanthus (Moore et al., 2021) and 2017 – 2018 for 

switchgrass (Moore et al., 2020). 

 

Results 

The grasstree model was rigorously tested against flux tower data and other 

observational datasets at the UIEF. To calibrate GPP we compared model results to observed 

daily average flux and average daily cumulative flux to ensure that both seasonal variation 

and annual carbon fluxes were well represented by the model (Figures 2.2, S. 2.1, S. 2.2). 

There was a tight fit between simulated and observed GPP for both grasses, although annual 

GPP estimates by the model were slightly underestimated for miscanthus during the 

calibration years. While switchgrass and miscanthus are both perennial grasses, they have 

different physiological and phenological traits that provide useful insight for model 

evaluation. The physiology and phenology of miscanthus in particular presents several 

modeling challenges. Miscanthus has significantly more biomass (above- and below-ground) 

compared to switchgrass, ranging from approximately 1,200 to 1,800 g C m-2 compared to 

700 to 1,300 g C m-2 once established at the UIEF (Figure 2.3). Once established, miscanthus 

has shallow rhizomes that allow it to start photosynthesizing earlier in the growing season 

than switchgrass. Miscanthus has a longer growing season than switchgrass, and it was 

difficult to capture early season GPP for miscanthus during most years. Although the GPP 

calculations in the plant model are not directly affected by the choice of soil models, there 

were slight differences in simulated GPP between the FO and MM versions of DayCent for 

both crops caused by slightly higher soil moisture in the MM model as a result of more SOM.  
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Figure 2.2. Daily observed and modeled GPP, NEP, and ER for switchgrass and miscanthus 
from 2012 through 2015. 
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Table 2.3.Statistical evaluation of the FO and MM model compared to daily flux tower data.  
Flux Crop Model Calibration Validation 

R2 RMSE R2 RMSE 

GPP Miscanthus MM 0.69 3.47 0.80 2.85 

Switchgrass MM 0.77 2.99 0.82 2.63 

ER Miscanthus MM 0.49 2.14 0.70 1.84 

Switchgrass MM 0.83 1.69 0.86 1.42 

NEP Miscanthus MM 0.64 2.67 0.67 2.60 

Switchgrass MM 0.56 2.47 0.46 2.55 

GPP Miscanthus FO 0.67 3.62 0.82 2.77 

 Switchgrass FO 0.79 2.84 0.82 2.61 

ER Miscanthus FO 0.44 2.30 0.68 1.82 

 Switchgrass FO 0.74 1.77 0.81 1.57 

NEP Miscanthus FO 0.55 3.13 0.69 2.70 

 Switchgrass FO 0.51 2.61 0.44 2.67 

 

Both crops had the highest observed above-ground peak biomass C in 2011, the 

fourth year after planting. Above-ground biomass is roughly equivalent to above-ground NPP 

each year since most above-ground biomass is harvested at the end of the growing season. 

We were not able to capture this one-year peak in the model for either crop without 

overestimating NPP in following years. For miscanthus, this discrepancy between simulated 

and measured above ground biomass in 2011 can at least be partially explained by a 

“reestablishment” planting in 2010 to fill gaps, reduced harvest in 2010 and 2011 (Moore et 

al., 2021); these events were not scheduled in the simulations. Switchgrass plots may have 

received some fertilizer in 2010 that was not scheduled in the simulations. While 2011 

above-ground biomass was significantly underestimated by the model, above- and 

belowground biomass fell within the standard error for both crops most years (Figure 2.3). 

Modeled biomass directly impacts how much plant biomass C enters the litter, surface, and 

soil C pools as dead plant material after harvest and subsequently affects rates of 

decomposition. Modeled plant biomass was nearly identical between the two models, so for 

simplicity, only modeled NPP in the MM model is shown in Figure 2.3.  
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Figure 2.3. Modeled (lines) and observed (points) above- and belowground biomass C for 
miscanthus and switchgrass. 

 

With GPP and biomass C calibrated, only minor adjustments were required to 

improve ER and NEP calibration (Figures 2.2, S 2.3, S 2.4, S 2.5, S 2.6). For both crops, the 

MM model had better model-data agreement of both ER and NEP. In particular, the MM 

model performed much better at capturing fall, winter, and spring ER whereas the FO model 

simulated higher than observed ER characterized by spikes in respiration that weren’t 

observed by the eddy covariance tower (Figure 2.2). Both models performed similarly during 

the summer. For miscanthus, the simulated summer peak ER was shifted sooner in the 

growing season than was observed (Figure S 2.3) and the cumulative annual ER predicted by 

the two SOM models was overestimated for both the calibration and validation periods, the 

MM model was closer to observations (Figure S 2.4). For switchgrass, there was more ER 

observed than simulated after day 200, and both SOM models underestimated annual ER. For 

NEP, model estimates were close to observations most of the year, but a discrepancy 

occurred from days 200 – 300 when NEP was slightly overestimated for miscanthus and 

underestimated for switchgrass (Figure S. 2.5). Model estimates of cumulative annual NEP 

for both miscanthus and switchgrass were close to observations although annual NEP was 
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underestimated for miscanthus during the validation period (Figure S. 2.6). Simulated NEP 

for miscanthus was underestimated by both SOM models from days 1-150, but the MM-

model was closer to observations than the FO model was (Figure S. 2.6). 

Soil respiration data was used for validation following calibration to ecosystem 

carbon fluxes and soil C pools (Figure 2.4). Compared to survey measurements of soil 

respiration partitioned into autotrophic and heterotrophic respiration (Ra and Rh), both 

models captured the seasonal variation in Rh when compared to the survey measurements. 

The FO model simulated large spikes in respiration throughout the year that weren’t visible 

in the survey measurements. The MM model didn’t simulate as large of a variation in daily 

soil respiration and fell closer to the observed values, particularly for miscanthus. There was 

some variation in Ra between the FO and MM models that would be attributed to the slight 

variation in GPP between the two models discussed above. Both models have reasonable 

model-data agreement for Ra, well representing both the magnitude and seasonal variation for 

switchgrass while capturing the seasonal variation for miscanthus but underestimating the 

magnitude.  
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Figure 2.4. Modeled (lines) and observed (points) soil respiration for miscanthus and 
switchgrass. 
 

The MM model underestimated microbial biomass C but simulated similar increases 

to the observed values over the growing season (Figure 2.5). However, the estimation of total 

microbial biomass relies on uncertain factors such as the variation in bulk density in the top 

30 cm of soil. There was a decrease in observed microbial biomass C in May 2018 between 

the first and third measurement period for switchgrass that the model didn’t capture. Because 

of limited data availability, we are unsure what caused this decline and, therefore, unable to 

determine why the model didn’t also simulate a decline in microbial biomass C during that 

time.  

 



50 

 

Figure 2.5. Modeled (line) and observed (points) microbial biomass C for switchgrass and 
miscanthus. Microbial biomass was not measured in 2019 for switchgrass.  

 
Through spinup and historical land use simulations, both models were benchmarked 

to have approximately the same total soil C (Figure 2.6 and Figure 2.7) and to fall within the 

standard error of the observed average soil C in 2008 (Figure 2.7). Soil C measurements 

taken in 2018 and 2019 for switchgrass and miscanthus respectively were used for validation. 

Both models underestimated soil C during the validation years, falling just shy of the range 

of the standard error. Additionally, both models were calibrated to have approximately the 

observed value of protected (MAOM) and unprotected (POM) soil C (Figure 2.7A). 
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Figure 2.6. The slow and passive soil C pools and the combined total soil C at the end of the 

spinup period and during the historic land use simulations for both the FO and MM model.  

 

While the FO model started out with nearly the same soil C as the MM model during 

the period with observed data (2008 -2019) for both crops, it simulated higher soil C by the 

end of the future simulations (2049) for all climate scenarios. Among the future scenarios 

with the FO model, the highest simulated soil C accumulation occurred under Warming for 

miscanthus, followed by the Warming + Rain, Control, and Rain. The MM model also 

simulated its highest soil C accumulation with Warming, followed by the Control, Warming 

+ Rain, and Rain for miscanthus. The MM model projects a plateau in soil C in the last 5-10 

years of the future miscanthus simulations whereas the FO model continues to show 

increasing trends of soil C through the end of the future simulations. Similar to miscanthus 

simulations, the FO model projected its highest soil C with the Warming climate scenario for 
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switchgrass. However, the other three scenarios had very similar soil C by the end of the 

future simulations. The MM model projected soil C to be very similar in the Control, Rain, 

and Warming scenarios for switchgrass, but much lower in the Warming + Rain scenario for 

switchgrass.  

 

 

Figure 2.7. Modeled and observed soil carbon. a) The calibration of miscanthus protected and 
unprotected soil C in 2019 where the MM model is represented by the triangles and the FO 
model is represent by the circles. b) Soil C projected into the future under four different 
climate scenarios. Observed soil C is represented by the navy dash with error bars showing 
standard error of measurements.  
 

Discussion 

We developed and used a new plant sub-model that better represents large perennial 

grasses and a microbial explicit soil organic matter model that can represent measurable soil 

C pools. We evaluated these two primary advances to the DayCent model that to improve 

predictions of bioenergy crops and related soil carbon dynamics using an extensive 

observational dataset of eddy covariance data, above- and belowground biomass C, soil C 
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(total, MAOM, and POM), microbial biomass C, and partitioned soil respiration (Rs, Rh, and 

Ra). Selectable features in the DayCent model allowed us to directly compare the predictions 

of a soil organic matter model with first-order kinetics against one with microbial-explicit 

controls on decomposition and organic matter formation, and also highlighted the effects of 

different soil temperature and moisture functions on daily ecosystem respiration fluxes. 

The new grasstree sub-model performed well when compared to observed daily C 

fluxes and peak biomass C for both crops, although better with switchgrass than with 

miscanthus. While switchgrass is native to the midwestern United States and adapted to harsh 

winters and more tolerant of drought, miscanthus, native to Eurasia, is not. Miscanthus has 

shallow rhizomes that are vulnerable to climate extremes. The miscanthus fields in this study 

had rhizome damage from a harsh winter freeze in 2011 and were further disturbed by a 

drought in 2012 that substantially lowered productivity during and afterwards (Kantola et al., 

2022). The continued lower productivity following disturbance was difficult to capture in the 

model, even with additional parameters to simulate damage during the disturbance, while still 

capturing the peak biomass in 2011. Additional miscanthus planting also occurred in 2010 

and 2011 to fill in gaps where plants didn’t establish (Moore et al., 2021; Zeri et al., 2020), 

further complicating capturing miscanthus production in model simulations. While this is still 

not perfect, the new grasstree plant sub-model provided more realistic inputs to the soil 

system than previously possible with the crop plant sub-model. With more accurate timing of 

plant C and N inputs through senescence and mortality, as well as more refined 

representation of litter chemistry, we were better able to evaluate the soil sub-models. 

To date, most soil model studies evaluating the inclusion of microbial explicit 

processes have been stand-alone soil models that require forced litter inputs (Kyker-

Snowman et al., 2020; Sulman et al., 2018; Wieder et al., 2013, 2018; H. Zhang et al., 2020). 

While forced litter inputs, or a model test bed, provide a controlled and useful way to 

evaluate model performance, there are limits to understanding how the soil model responds 

to feedbacks between vegetation and environmental conditions. For example, changes in 

climate will affect plant productivity and chemistry and will have subsequent effects on soil 

C fluxes and stabilization. DayCent-CABBI is a full ecosystem scale model with 

interchangeable functions allowing us to understand how the FO and MM model respond to 

different future climate and vegetation, as well as feedbacks between SOM and vegetation.  
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Although the increases in model-data agreement in the MM model compared to the 

FO model are incremental, they are a promising result. Comparing model simulations to 

observations at the daily scale allows us to evaluate if the model is responding to 

environmental changes. In other words, if the MM model is capturing daily and seasonal 

changes better than the FO, it is more likely that it will appropriately simulate future climate 

effects on decomposition. In particular, the MM-model showed improvements to winter and 

spring-time respiration fluxes. This was due the extra control that microbial biomass has in 

the MM-model as well as using the ideal combination of soil temperature and moisture effect 

functions.  Microbial biomass was low in the winter and gradually ramped up as soil 

temperature increased in the spring (Figure 2.5), creating a lag in the rate of heterotrophic 

respiration relative to the FO model.  

We found that a variable Q10 soil temperature effect function and “hill” soil moisture 

effect function are most appropriate for predicting daily ecosystem respiration fluxes, 

particularly during the winter and spring (Figure S 2.X). This is consistent with other 

evaluations of temperature function and soil moisture functions (Del Grosso, Parton, et al., 

2005). While this finding isn’t a focal point of this study, we do think it is an important 

consideration for soil biogeochemical models moving forward. Most of the microbial explicit 

soil models that have been developed use an exponential Q10 temperature effect function (A. 

D. Robertson et al., 2019; Sulman et al., 2014; Wieder et al., 2014) that our results showed to 

have worse model-data agreement. Earth system models have a variety of combinations these 

soil temperature and moisture functions in their soil models that contributes to variation in 

future projections of soil C (Todd-Brown et al., 2018).  

Perhaps more interesting than the daily C flux evaluation of the soil models are the 

differences in simulated soil C during past, present, and future simulations. During the 

historic land use simulations, there were two key differences between the soil C models: 1) 

the MM model simulated a greater loss of physically protected C (MAOM, the passive soil C 

pool) in response to tillage events leading up to the dust bowl compared to the FO model that 

had a more substantial loss from the POM or slow soil C pool; and 2) the MM model was 

slower to rebuild soil C in either pool compared to the FO model as cultivation practices 

improved and crop productivity increased. Both models were calibrated to have 

approximately the same total soil C in 2008 and the same POM and MAOM in 2019. This 
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indicates that the models have different responses to disturbance and vegetation yet can be 

benchmarked to the same data. Without more soil C data, we can’t determine which model is 

more accurately simulating these responses. Observational studies have found that tillage 

decreases that ratio of protected to unprotected soil C while increasing decomposition of both 

pools (Jastrow & Miller, 1996; Reicosky et al., 1995) supporting the more substantial loss of 

MAOM by the MM model. 

The increases in soil C during all future simulations are linked to the expected effects 

of the transition to miscanthus and switchgrass. Both crops are bioenergy feedstock 

candidates because as perennial grasses that don’t require annual tillage, they are expected to 

rebuild soil C stocks, especially when planted in fields that were previously used for corn 

production (G. P. Robertson et al., 2017). Differences in how miscanthus and switchgrass 

soil C respond to climate scenarios demonstrate how differences in vegetation can impact the 

trajectory of predicted soil C for both of the soil models. For example, there is a much 

broader range of projected soil C in 2049 in miscanthus for both soil models than there is for 

switchgrass. The divergence in magnitude of soil C increase by the end of the future 

simulations between soil models for each climate scenario suggests that the MM model 

simulates a lower carbon storage capacity for a given plant community and climate. 

Microbial biomass increases with Warming and Warming+Rain scenarios, mitigating soil C 

accumulation with litter inputs from miscanthus. There are also differences in the amount of 

protected (more in MM model) and unprotected C (more in the FO model). Both the FO and 

MM models used the same pool-specific carbon use efficiencies (CUE). The CUE from the 

decomposition of the structural litter pools was reduced as a function of lignin content, but 

otherwise CUE was fixed. Fixed carbon use efficiency in biogeochemical models doesn’t 

allow for carbon acquisition and storage in ecosystems to respond to environmental 

conditions such as temperature and nitrogen availability (Allison et al., 2010; Bradford & 

Crowther, 2013). Adding environmental controls on CUE would be a next step in DayCent 

model development, as CUE is critical in regulating the activity of microbial decomposers 

(Schimel, 2021). 

As biogeochemical models are being adapted for use for land management decisions 

in the context of climate change by government agencies and the private sector, it is critical 

that we continue to improve models and understand sources of uncertainty. First-order SOC 
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models have been criticized for their SOC predictions that linearly increase with litter inputs. 

The MM model has a built-in priming effect such that increased litter inputs promote 

increased microbial biomass, preventing a linear increase in SOC with an increase in litter 

inputs to the soil, producing more conservative and saturating SOC response to increased 

production. This new MM model for DayCent represents the first step in adding complexity 

that is appropriate to improve predictions of C stocks and fluxes at the ecosystem level. 
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Supporting Information  

Model documentation 

DayCent has interchangeable functions that are used to calculate soil temperature and 

moisture effects on decomposition rates and microbial growth. The first order model uses a 

variable Q10 temperature effect on decomposition function, and an arc-tangent function to 

simulate the effect of soil moisture on decomposition using relative soil water content (Del 

Grosso et al. 2005). With DayCent-MM users can select from the following soilt temperature 

and moisture functions: 1a) a variable Q10 temperature effect (DayCent) or 1b) an 

exponential Q10 temperature effect (CORPSE, Sulman et al. 2014); 2a) an increasing 

relationship with soil moisture that plateaus when soil water content reaches the saturation 

point (DayCent) or 2b) a hill relationship where soil moisture effect is highest around 50% 

saturated water filled pore space (WFPS) and declines as WFPS is greater or less than 50% 

(CORPSE, Sulman et al. 2014).  

1a) a variable Q10 temperature effect (DayCent) 

The temperature effect on decomposition (tfunc) is a variable Q10 function (Figure S. 

2.1) and is computed as 

 

 

 

where soiltemp is the average surface soil temperature for the day, teff1 – teff4 are fix.100 

parameters, and normalizer is the value of the tfunc numerator when soiltemp = 30 ºC.  The 

function has a low Q10 values at high temperatures and high Q10 values at low temperatures 

(Del Grosso et al. 2005).  
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Figure S. 2.1. The variable Q10 temperature effect on decomposition (tfunc) with teff1 =  
15.4, teff2 = 11.75, teff3 = 29.7, and teff4 = 0.031. The value of tfunc strictly increases with 
average soil temperature, but has a low Q10 values at high temperatures and high Q10 values 
at low temperatures. The teff1 parameter determines the x-location of the inflection point.  
 

1b) an exponential Q10 temperature effect (CORPSE) (Sulman et al. 2014) 

In the CORPSE model, the decomposition rates of unprotected soil pools are 

determined by a temperature-dependent maximum enzymatic conversion rate Vmax,i(T) (yr-1) 

for the species {i= labile, recalcitrant, and dead microbe pools} (Figure S. 2.2 and S. 2.3), 

where T is the soil temperature (K), Tref is the reference soil temperature (293.7 K), Vmaxref,i is 

the reference Vmax for the species (yr-1), Rugas is the ideal gas constant (8.314472 J-K-1 mol-

1), Eαi is the activation energy for the species (kJ mol-1 ). For the new SOM model, we will 

want a switch that allows us to select between the f(T) function associated with Vmax and 

DayCent variable Q10 f(T) in order to compute the temperature effect on SOM 

decomposition. 
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  Vmaxref_Fast" = 9.0 (yr-1) 

  Vmaxref_Slow" = 0.25 (yr-1) 

  Vmaxref_Necro"= 4.5 (yr-1) 

  Ea_Fast = 5e3, used 20e3 instead to get a smaller intercept at extremely low temperatures 

  Ea_Slow = 30e3, used 40e3 instead to get a smaller intercept at extremely low temperatures 

  Ea_Necro= 3e3, used 30e3 instead to get a smaller intercept at extremely low temperatures 

 

 
Figure S. 2.2. The species-specific temperature function associate with the maximum 
enzymatic conversion rate Vmax,i(T) (yr-1) in the FUN CORPSE model. The reference 
temperature (where f(T) = 1.0) is 20 °C. 
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Figure S. 2.3. The species-specific, temperature-dependent maximum enzymatic conversion 
rate Vmax,i(T) (yr-1) in the FUN CORPSE model. Vmax(T) for a species is a product of 
Vmaxref for the species and f(T) for the species. 
 
2a) an increasing relationship with soil moisture that plateaus when soil water content 

reaches the saturation point (DayCent) 

 

The relative water content of soil controls the moisture effect.  The relative water 

content of a soil layer, relWaterContentlyr, is computed as 

 

 

where vswclyr is the volumetric soil water content of the layer, fieldclyr is the volumetric soil 

water content at field capacity, and swclimitlyr is the volumetric fraction that can never be 

extracted from the soil layer (Figure S. 2.4). 
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For aboveground decomposition, relWaterContent is the relative water content of the top soil 

water layer.  For belowground decomposition, relWaterContent is the weighted average 

relative soil water content of the second and third soil water layers.  

 

Figure S. 2.4. DayCent’s moisture effect on decomposition (wfunc). The value of wfunc 

strictly increases with available moisture. 

 

2b) a hill relationship where soil moisture effect is highest around 50% saturated water 

filled pore space (WFPS) and declines as WFPS is greater or less than 50% (CORPSE) 

(Sulman et al. 2014) 

 

The soil moisture effect on decomposition of soil organic matter in the CORPSE 

model (Figure S. 2.5) is defined as:  

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

w
fu
nc

relative soil water content

DayCent soil moisture effect on decomposition

( )

3 2.5

( ) 0.001 max 1.0 ,

( ) max , ( )

fl l

sat sat sat

f minAnaerobicRespFactor

f fWmin f

qq qq
q q q

q q

æ ö æ öæ ö æ ö
ç ÷ ç ÷= + × - -ç ÷ ç ÷ç ÷ ç ÷è ø è øè ø è ø

=



70 

 

 

where Ɵl is the volumetric liquid soil water content (0.0-1.), Ɵf is the volumetric frozen soil 

water content (0.0-1.0), and Ɵsat is the volumetric soil moisture at saturation (0.0-1.0), fWmin 

is the minimum value of f(Ɵ) (~0.001 as specified in the corpse_params.nml file), and 

minAnaerobicRespFactor is 0.003. 

 

 
Figure S. 2.5. The soil moisture effect on soil organic matter decomposition in the CORPSE 
model where Ɵl is the volumetric liquid soil water content, and Ɵsat is the volumetric total soil 
water content at saturation (here the volumetric frozen soil water content, Ɵf = 0.0).  
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Figure S. 2.6. Mean daily GPP (solid lines) over the calibration and validation periods for 
miscanthus and switchgrass (Table 2.1). The shaded areas are ±1 standard deviation within the mean.  
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Figure S. 2.7. Mean cumulative GPP (solid lines) over the calibration and validation periods for 
miscanthus and switchgrass (Table 2.1). The shaded areas are ±1 standard deviation within the mean.  
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Figure S. 2.8. Mean daily Ecosystem Respiration (ER) (solid lines) over the calibration and 
validation periods for miscanthus and switchgrass (Table 2.1). The shaded areas are ±1 standard 
deviation within the mean.  
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Figure S. 2.9. Mean cumulative Ecosystem Respiration (ER) (solid lines) over the calibration and 
validation periods for miscanthus and switchgrass (Table 2.1). The shaded areas are ±1 standard 
deviation within the mean.  
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Figure S. 2.10. Mean daily Net Ecosystem Productivity (NEP) (solid lines) over the calibration and 
validation periods for miscanthus and switchgrass (Table 2.1). The shaded areas are ±1 standard 
deviation within the mean.  
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Figure S. 2.11.Mean cumulative Net Ecosystem Productivity (NEP) (solid lines) over the calibration 
and validation periods for miscanthus and switchgrass (Table 2.1). The shaded areas are ±1 standard 
deviation within the mean.  
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Figure S. 2.12. Simulated and observed soil respiration (sum of heterotrophic and soil autotrophic 
respiration) for miscanthus (top figure) and switchgrass (bottom figure).  
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Figure S. 2.13.Simulated physically protected soil C projected into the future under different climate 
scenarios for switchgrass and miscanthus.  
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Chapter 3 : Can cellulosic bioenergy crops be used to mitigating corn and soy losses to 

extreme precipitation events and resulting excessive soil moisture? 

 

Abstract 

Transitioning to cellulosic bioenergy crops is a proposed strategy to reduce greenhouse gas 

emissions in the agriculture and energy sectors and increase soil carbon storage. Switchgrass, 

a perennial grass native to the United States, has many promising qualities that make it an 

appealing candidate as a bioenergy feedstock. It requires little to no fertilizer, has a deep 

perennial root system that encourages soil carbon sequestration, has comparable yield to 

corn, and is tolerant of drought and flooding, climate extremes that are increasing in 

frequency and severity with climate change. However, whether the transition to any 

bioenergy feedstock increases carbon storage depends on where the crop is grown and what 

was the prior land use. Marginal land that was once used for agriculture but is currently 

uncultivated has been a target for bioenergy production, but there is not enough marginal 

land to meet greenhouse gas reduction goals and the carbon deficit created by transitioning 

currently uncultivated land to bioenergy feedstock production leads to a reduction in carbon 

storage. Here, I identify current cropland used for corn and soybean production that is 

frequently flooding leading to crop loss events. Using the DayCent biogeochemical model, I 

evaluate the transition to flood tolerant switchgrass in flood susceptible cropland. 

Switchgrass increased soil carbon, reduced nitrogen leaching into waterways, and produced 

greater yields compared to corn, particularly in years that flooding was simulated.  

 

Introduction 

Cellulosic bioenergy crops have potential to meet United States greenhouse gas (GHG) 

reduction targets and provide energy self-sufficiency. The Renewable Fuel Standard (RFS) 

calls for increasing the volume of cellulosic biofuel by 16 billion gallons while reducing 

lifecycle GHG emissions by 60% (Schnepf and Yacobucci, 2013). Consideration of crop 

selection, location, and management strategies is critical to meet these goals and prevent 

environmental and economic costs from outweighing benefits. Depending on the productivity 



80 

 

of selected land, 33 to >50 million hectares are required for cellulosic bioenergy production 

to meet RFS targets (Langholtz et al., 2016; Robertson et al., 2011). This is about 25% of 

current U.S. agricultural land (USDA-NASS, 2016). Converting this much land into 

bioenergy production comes with challenges including economic viability, landowner 

willingness, and potential environmental consequences (e.g. habitat loss, degradation, and 

carbon debt; (Robertson et al., 2017)).  

Identifying appropriate locations for a particular crop is paramount to meeting GHG 

atmospheric loading reductions, fulfilling socioeconomic needs, and achieving sustainable 

land use. In comparison to traditional agricultural crops, some bioenergy crops have 

physiological attributes (e.g., low N requirements, high belowground biomass, no tillage) that 

will outweigh the potential negatives if grown strategically. However, there is still much 

uncertainty and controversy surrounding where cellulosic bioenergy crops will be grown. 

Conversion of land to cellulosic bioenergy crops that is currently used for food production 

raises concerns about food-scarcity and sequential conversion of uncultivated land converted 

for food production (indirect land-use change) resulting in catastrophic losses of sequestered 

carbon and ecosystem services that will not be recouped through annual row crop production. 

Conversion of land to bioenergy crops that is not currently used for agricultural production 

also raises environmental concerns including the effects on GHG balances, biodiversity and 

ecosystem services, increasing reactive nitrogen through fertilizer, and water use. These 

potential side effects of conversion are thought to be largely avoided if bioenergy crops are 

produced on land that has been deemed marginal, or unproductive land that was used for 

agriculture in the recent past. However, because of constraints such as proximity to a 

potential refinery location (Gelfand et al., 2013), landowner willingness (Skevas et al., 2016), 

and ecological risks, there is not a path to meet GHG reduction targets with bioenergy 

production on marginal land alone (Robertson et al., 2017).  

Much of the opposition to conversion of current cropland stems from fear of food scarcity 

(Kline et al., 2017; Woods J et al., 2015).  However, there was a large expansion of 

agricultural land for the purpose of corn grain ethanol production in the late 2000’s (Lark et 

al., 2015).  Subsequently, a large portion (approximately 40%) of corn grain is currently 

being allocated toward ethanol production. This expansion resulted in massive losses of 

carbon and ecosystem services (Lark et al., 2022, 2020; Spawn et al., 2019). Additionally, 
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there are substantial and increasing losses of corn and soybean yield in recent years. As much 

as 75% of these losses are attributed to water inundated fields (USDA-RMA, 2020).  

Flooding and extreme precipitation events are projected to increase due to climate 

variability, leading to a greater loss of corn and soy yield (Hirabayashi et al., 2013; Prein et 

al., 2017). Crops are susceptible to damage and loss from flooding, ponding, and extreme 

precipitation, especially in low lying depressions or along floodplains. Corn and soybean 

losses depend on the time of year and the duration of inundation. Flooding or ponding that 

occurs prior to planting can delay planting, sometimes to the point that planting corn is no 

longer a viable option. In this case, sometimes farmers are able to plant soybeans instead 

since it has a shorter growing season. Ponding or waterlogging that occurs after planting, but 

prior to emergence, reduces or prevents emergence depending on severity (von Haden et al., 

2021). Inundation events that occur following emergence cause root damage, reduce 

photosynthesis, transpiration, and growth (Zhu et al., 2016) resulting in little to no yield 

depending on the duration of flooding events. Over the last decade, reported average annual 

loss of corn and soybean to inundation and extreme precipitation events are 3.2 million ha yr-

1 and as high as 8.7 million ha yr-1 (USDA-RMA, 2020). This data is from crop insurance 

claims and may not include reduced yields that weren’t eligible for coverage, so is likely an 

underestimate of the damage to corn and soybean crops. With increasing precipitation 

extremes and flooding events on the horizon, it is essential that we consider strategies to 

lessen the impact to crop yield while also mitigating GHG emissions.  

Perennial bioenergy crops, such as switchgrass and Miscanthus, are tolerant of flooding 

once they are established (Costello and Ayoub, 2019; Kam et al., 2020), making them a 

productive alternative in low-lying areas that will otherwise suffer reoccurring losses of corn 

and soy yield from flooding events. Flooding in agricultural land typically occurs in potholes 

(i.e., low-lying land that surrounding areas drain into) and floodplains. Targeting low-lying, 

flood susceptible fields for conversion to flood tolerant bioenergy crops would provide a path 

to adapt agricultural practices to changing precipitation regimes, mitigate increasing climate 

variability, and reduce negative environmental impacts of corn production. Documented 

benefits of perennial grasses in riparian zones include reduced phosphorus and nitrate exports 

to waterways, decreased nitrous oxide emissions and increased soil carbon sequestration 



82 

 

(Meehan et al., 2013). Lower rates of nitrate leaching and nitrous oxide emissions are 

expected because Miscanthus requires low fertilization rates and switchgrass does not require 

fertilization (Wang et al., 2020).  

Here, I explore a category of land that is currently in agricultural use, but has 

compromised production because of frequent losses that are being exacerbated because of 

climate change. Specifically, I have identified cropland in the rainfed Eastern U.S. that is 

increasingly experiencing extreme precipitation events that lead to flooding, crop damage, 

and loss of yield. I then use DayCent, a biogeochemical model, to explore the GHG 

implications of converting flood susceptible corn and corn – soybean rotating fields to 

switchgrass.  

 

Methods 

Site Selection 

 Using USDA Indemnity Report data, I identified 337 counties that experienced corn and 

soybean loss of yield that met the following criteria between 2011 - 2020: 1) average annual 

loss > 5000 ha, 2) maximum annual loss > 10,000 ha, and 3) frequency of three or more 

annual loss events > 5000 ha (Figure 3.1; (USDA-RMA, 2020)). I removed counties that 

were spatially isolated from other counties, and therefore, not likely to be located in close 

proximity to a biorefinery. I selected only locations that are currently in use for corn or 

soybean production using the 2017 Cropland Data Layer (USDA-NASS, 2016). Within 

counties, SSURGO flood and ponding frequency data were used at a 4-km resolution to 

select sites within counties that experience either category of inundation (Figure 3.2). Of the 

selected sites, slope ranged from 0-26% gradient, with 97.8% of slopes less than or equal to 

5%. The site selection criteria resulted in 10,209 locations on a 4-km grid of the United 

States, potentially representative of 4.08 million hectares of flood vulnerable cropland or 

approximately 12.4% of the total land needed for bioenergy production. To reduce the 

computing requirements, I used R to randomly select a subset of 2,000 of the 10,209 grid 

points for model simulations.  
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Figure 3.1. County-level average, maximum, and frequency of annual corn and soybean 
reported losses of at least 5,000 ha over a 10-year period (2011-2020) for counties selected 
using minimum loss criteria. 

 

 

Figure 3.2. Frequency of flooding and ponding from SSURGO data in counties with 
significant crop loss events (see Figure 3.1). 

 

Model Description and Simulations 
To simulate crop yields, soil carbon, GHG emissions, and nitrate leaching for the 2,000 

sites, I used DayCent-CABBI that was developed to better represent tall perennial grasses 
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(Berardi et al., 2020; Moore et al., 2020) and to include a microbial explicit soil sub-model 

(described in Chapter 2). DayCent is an ecosystem scale biogeochemical model that has been 

widely used to simulate carbon and nitrogen dynamics in grasslands (S.J. Del Grosso et al., 

2005; Grant et al., 2016; Ryals et al., 2015) and agricultural systems (Del Grosso et al., 2009; 

S. J. Del Grosso et al., 2005; Zhang et al., 2020). To model the effects of flooding on crops, a 

new parameter that affects the productivity of the plant when the soils are saturated was 

added to the plant sub-model. 

This study leveraged existing DayCent model input files on an established 4 km grid of 

the United States. Historic weather data from 1980 – 2017, including daily maximum and 

minimum temperature and precipitation, were obtained for each grid point from the DayMet 

database (P. Thornton et al., 2018). This weather data sequence was repeated during the 

spinup and historical land use simulations. Sites were parameterized with SSURGO soil 

texture, pH, and depth data retrieved from the SoilGrids250 m database.  

In order to allow soil carbon and nitrogen to reach equilibrium conditions within each soil 

pool, pre-cultivation vegetation and disturbance (e.g. fire and grazing) was prescribed at a 

regional scale for 6,000 years (Melillo et al., 1995). Historic land use (1848 – 1979) was 

scheduled at a state or sub-divided state scale (Davis et al., 2012; Hudiburg et al., 2016). 

Recent land use (1980-2019) was prescribed using recent cropping practices of corn-soybean 

rotations of planting and harvest dates and average nitrogen fertilizer rates at the state level 

(USDA-NASS, 2018). Only corn was fertilized during these simulations.  

Soil carbon was calibrated and validated using the International Soil Carbon Network 

(ISCN) dataset (Gen 3: Soil Survey Staff, 2020). I selected observation sites that had 

available measured soil organic carbon within 2 km of a grid point and omitted any 

observations that weren’t on agricultural land. Additionally, soil organic carbon observations 

greater than 25,000 g C m-2 in sites with low Mean Annual Temperature (MAT) and Mean 

Annual Precipitation (MAP) were excluded because models are unable to capture soil carbon 

variation in these sites with large spatial scale calibrations (Drewniak et al., 2015). Using 

these constraints, I was left with 208 sites with observed soil carbon (Figure 3.3). I randomly 

assigned half of these sites to be used for model training and then used the remainder for 

model validation.  
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During model training and validation, model sites that were paired to sites with SOC 

observations were modified to match observed soil properties (bulk density, soil texture, soil 

depth, soil pH). In other words, soil property parameters that were previously informed by 

SSURGO data were re-parameterized with ISCN site specific parameters. To improve soil 

carbon calibration, I optimized the non-symbiotic nitrogen fixation value at sites based on 

mean annual temperature (MAT, Table S. 3.1). The spinup, historic land use, and recent 

agricultural practices simulations were all run with the new optimal non-symbiotic nitrogen 

fixation values for all modeling sites.  

Since this study was leveraging existing model simulations, corn and soybean 

parameterizations had already been calibrated and validated using county level yield data 

(Kent et al., 2020). Because switchgrass isn’t grown commercially on large scales, there were 

Figure 3.3 Locations of flood prone sites used for modeling (green) and observations of soil 
carbon on agricultural land used for soil carbon calibration (purple). 
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a limited number of sites within the study region with 3-9 years of peak yield data from 

experimental switchgrass trials (Table S. 3.2). Data from six field sites (n = 28) were used for 

model training while the remaining three sites (n = 19) were reserved for model validation. 

Following model training and validation, I developed future scenarios to evaluate the 

effects of flooding on corn and soybean rotations and the carbon and nitrogen implications of 

transitioning flood susceptible agricultural land to switchgrass production. Each of the 2,000 

sites was simulated from 2017 – 2045 using the following scenarios: 1) Current corn and 

soybean rotations with current climate (Corn Control); 2) current corn and soybean rotations 

with increased precipitation and warmer temperatures (Corn Flooding); 3) transition to 

switchgrass with increased precipitation and warmer temperatures (Switchgrass Flooding). 

To create future weather files, weather data files from 1980 – 2016 from all sites from were 

randomized by year using the same randomization scheme for each site. This created the 

weather input files for the Corn Control scenario. To create the flooding scenario weather 

files, 20% of the years from the randomized future Corn Control weather files were selected 

to have warmer and wetter weather. During the warmer and wetter years, the daily maximum 

and minimum temperatures were increased by 2°C, daily precipitation was multiplied by 1.5, 

and 1-week rainstorm event of 3.5 cm of precipitation was added to each day during the 

second week of June, when a flooding event would cause damage to corn and soybean plants 

and prevent or greatly reduce grain yield (Mukhtar et al., 1990). While not directly used, 

monthly flood and ponding frequency and duration data from SSURGO for April – July 

(Figures S. 3.2, S. 3.3, S. 3.4, and S.3.5) were considered to justify the flooding climate 

scenarios.  

Flooding was simulated by parameterizing site drainage in DayCent using SSURGO 

drainage class (Table 3.1, Figure S. 3.1) and allowing the model to use waterfilled pore space 

at saturation to simulate flooding events. In DayCent, when the drainage parameter is less 

than one, water flow out of the bottom of the soil profile is restricted allowing water to 

accumulate from the bottom of the soil profile. Because of this, flooding may have occurred 

during years that were not designated as “flood years” during all future scenarios. To 

simulate the effects of flooding on plant productivity, corn and soybean productivity was 
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lowered during flooding and didn’t recover following flooding. Switchgrass productivity was 

lowered during flooding events but recovered after flooding.  

 

Table 3.1 DayCent drainage parameters used based on SSURGO drainage class category 
(Figure S. 3.1). 

SSURGO Drainage Class DayCent 
Drainage 
Parameter 

Excessively drained 1 

Somewhat excessively drained 0.86 

Well drained 0.71 

Moderately well drained 0.57 

Somewhat poorly drained 0.43 

Poorly drained 0.29 

Very poorly drained 0.14 

 

Results 

Observed SOC values ranged from < 2,000 g C m-2 to more than 40,000 g C m-2 in 

the Great Plains region of the modeled area. Prior to model training, there was very little 

model-data agreements. Soil carbon was largely underestimated in the Great Plains region 

(North Dakota, South Dakota, and Minnesota) and overestimated in the southern portion of 

the study region.  Following model training, soil carbon model-data agreement was improved 

with R2 values of 0.32 for the calibration dataset and 0.37 for the validation dataset (Figure 

3.4). Similarly to other modeling studies that have used the ISCN database for SOC 

calibration and validation, DayCent tended to underestimate SOC in sites with observed SOC 

over 15,000 g C m2 (Drewniak et al., 2015). While the model was benchmarked to SOC with 

observations from land under current corn and soybean cultivation, there was insufficient 

data to calibrate to changes in SOC under switchgrass cultivation.  
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Figure 3.4 Comparison of modeled versus observed soil carbon used for (a) calibration and 
(b) validation. The solid lines represent the 1:1 ratio of modeled to observed data.  

 

Switchgrass was calibrated to annual yield measured in dry weight (Mg ha-1). Prior to 

model training, switchgrass biomass carbon was mostly underestimated. During model 

training, parameters determining plant response to drought and nitrogen limitation were 

adjusted, as well as a parameter that determines the soil depth that plants can access water 

and nitrogen from. Following model training, the model achieved an R2 of 0.26 with the 

training dataset and an R2 of 0.20 with the validation dataset (Figure 3.5).  
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Figure 3.5 Comparison of modeled vs observed switchgrass yield used for (a) model training 
and (b) model validation using independent data from seventeen field sites located 
throughout the study region. The solid lines represent the 1:1 ratio of modeled to observed 
data.  

 

Simulated switchgrass yields under flooding conditions (Figure 3.6d) were similar or 

greater than corn yield predicted under control climate conditions (Figure 3.6a). As expected, 

corn yield was lower in the Corn Flooding simulations (Figure 3.6b) compared to the Corn 

Control simulations. However, surprisingly, corn yield was also lower in years that didn’t 

flood (Figure 3.6c) compared to Corn Control yield (Figure 3.6a). This is likely linked to 

greater nitrogen leaching in Corn Flooding simulations affecting productivity in all years.  
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Figure 3.6 Simulated average annual yield for (a) Corn Control for all years of future 
simulations, (b) Corn Flooding for all years of future simulations, (c) Corn Flooding in non-
flood years of future simulations, and (d) Switchgrass Flooding of all years of future 
simulations. 

 

 Simulated nitrogen leaching was highest in Corn Flooding followed by Corn Control 

(Figure 3.7a and c). There was very little nitrogen leaching associated with future 

switchgrass production (Figure 3.7e), which was not fertilized in these simulations. Nitrogen 

leaching in corn simulations was generally higher in areas that receive higher mean annual 

precipitation. Nitrogen leaching in corn ranged from 9 kg N ha-1 to 87 kg N ha-1.  
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Figure 3.7. Modeled average annual leaching (a, c, and e) and change in SOC from 2017 - 
2048 (b, d, and f) over future simulations under Corn Control (a and b), Corn Flooding (c and 
d), and Switchgrass Flooding (e and f).   
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Change in simulated soil organic carbon was the most favorable in the Switchgrass 

Flooding simulations with all sites resulting in a net increase in soil organic carbon ranging 

from 0.47 Mg C ha-1 to 1.67 Mg C ha-1 (Figure 3.7f). Surprisingly, soil organic carbon 

increases were generally higher in the Corn Flooding scenario (Figure 3.7d) compared to the 

Corn Control scenario (Figure 3.7b). This is because corn was not harvest after flooding 

occurred leading to higher plant biomass carbon inputs to the soil system during flood years. 

Most Corn Control sites experienced very little change in soil organic carbon, ranging from -

0.96 Mg C ha-1 to 1.4 Mg C ha-1.  

 

Discussion 

Our results suggest that growing switchgrass in flood susceptible areas will produce 

higher and likely more reliable yield, greatly reduce nitrogen leaching, and lead to greater 

soil carbon sequestration compared to corn under current climate and increased flooding and 

warming scenarios. Producing switchgrass in flood susceptible areas could increase crop 

diversity, which has declined in the last century, providing economic and environmental 

resilience (Crossley et al., 2021). Additionally, switchgrass is native to the United States and 

tolerant of drought (Liu et al., 2015), as well as flooding. This, along with low fertilizer 

requirements make it a beneficial crop for production on frequently waterlogged soil. 

While it was expected, and prescribed, that corn biomass yield would be lower under 

flooding conditions, it was also lower in years that flooding didn’t occur. Soil nitrogen was 

lower during all years as a result of flooding, likely due to a combination of leaching and 

nitrous oxide emissions caused by saturated soil conditions during flood years. Although 

leaching and nitrous oxide emissions were not calibrated for this study because a lack of 

available data, DayCent has been extensively calibrated and validated to both (Del Grosso et 

al., 2008; S. J. Del Grosso et al., 2005). The range of nitrate loss from leaching simulated for 

corn fell within the observational ranges (Andraski et al., 2000; Jemison Jr. and Fox, 1994). 

The sites selected for this study are in low-lying areas with poor drainage and have some 

flooding or ponding during parts of the year. Whether or not these sites experience flooding 

events that cause crop loss events, they do likely have higher nitrous oxide emissions from 
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denitrification in waterlogged soils and will experience increasing nitrogen leaching with 

increasing extreme precipitation events and are becoming less suitable and sustainable for 

crops that require high amounts of fertilizer, like corn.  

To determine an effective path for the U.S. transition to cellulosic bioenergy, 

understanding of how each crop may integrate in a landscape from field to fuel is essential. 

In the absence of observational and experimental studies exploring the transition to bioenergy 

crops on flood susceptible land, biogeochemical modeling can provide insight to potential 

yield and ecosystem services, GHG mitigation, and water quality, that are incorporated into 

lifecycle analyses. There are limitations to how these modeling results can be used, but they 

do suggest that transitioning fields with diminishing corn yields to switchgrass would lead to 

reduced GHG emissions, improved soil health, and better water quality.  
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Supporting Information 

 

Figure S. 3.1 Drainage class assigned from SSURGO data. 
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Figure S. 3.2. April flooding and ponding frequency and duration from SSURGO data. 
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Figure S. 3.3. May flooding and ponding frequency and duration from SSURGO data. 
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Figure S. 3.4. June flooding and ponding frequency and duration from SSURGO data. 
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Figure S. 3.5. July flooding and ponding frequency and duration from SSURGO data. 
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Table S 3.1 Values used for the intercept (EPNFS(1)) and the slope (EPNFS(2)) parameters 
determining the effect of annual precipitation on non-symbiotic soil nitrogen fixation 
determined by MAT. 

MAT EPNFS(1) - Intercept EPNFS(2) - Slope 

 < 10°C  30*(MAT/10) 0.025 

 10°C - 16°C 30 0.020 

> 16°C 35 0.015 

 
Table S 3.2 Studies used for switchgrass calibration and validation with approximate location 
of study sites. 

Citation Location Latitude and 
Longitude 

Calibration/ 

Validation 

(Fike et al., 2006) Princeton, KY 37.06 N, 87.49 W Calibration 

(Fike et al., 2006) Jackson, TN 35.37 N, 88.50 W Calibration 

(Fike et al., 2017) Story County, IA 41.98 N, 93.70 W Validation 

(Fike et al., 2017) Day County, SD 45.27 N, 97.84 W Calibration 

(Heaton et al., 2009, 2008; 
Kantola et al., 2022) 

Urban, IL 40.08 N, 88.23 W Calibration 

(Heaton et al., 2009, 2008) Shabbona, IL 41.85 N, 88.85 W Validation 

(Heaton et al., 2009, 2008) Simpson, IL 37.45 N, 88.67 W Validation 

(Heggenstaller et al., 2009) Boone County, IA 42.06 N, 93.88 W Validation 

(Owens et al., 2013) Bristol, SD 45.16 N, 97.50 W Calibration 

(Owens et al., 2013) Ames, IA 41.58 N, 93.41 W Validation 

(Wang et al., 2020) Kellogg Biological Station, 
MI 

42.23 N, 85.22 W Validation 

 


