
Intelligent Decimation of River Geometry Data for Manageable Use

in Surface-Water Models

A Dissertation

Presented in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

with a

Major in Civil Engineering

in the

College of Graduate Studies

University of Idaho

by

Charles Berenbrock

Major Professor: Peter Goodwin, Ph.D.

Committee Members: Nigel Wright, Ph.D.; Fritz Fiedler, Ph.D.; Terry Soule, Ph.D.

Department Administrator: Patricia Colberg, Ph.D.

May 2018

ii

Authorization to Submit Dissertation

This dissertation of Charles Berenbrock, submitted for the degree of Doctor of Philosophy

with a major in Civil Engineering and titled "Intelligent Decimation of River Geometry Data

for Manageable Use in Surface-Water Models," has been reviewed in final form. Permission,

as indicated by the signatures and dates given below, is now granted to submit final copies to

the College of Graduate Studies for approval.

Major Professor __________________________________Date______________

Peter Goodwin, Ph.D.

Committee

Members __________________________________Date______________

Nigel G. Wright, Ph.D.

 __________________________________Date______________

Fritz R. Fiedler, Ph.D.

 __________________________________Date______________

Terrence Soule, Ph.D.

Department

Administrator __________________________________Date______________

Patricia Colberg, Ph.D.

iii

Abstract

Two genetic algorithms (GA) for reducing river geometry data are presented. These

algorithms effectively remove “redundant” and/or “nonessential” points from large datasets. The

resulting smaller, less dense datasets makes the information more manageable and easier to work with.

The first genetic algorithm reduces stream channel cross section data, and the second reduces

bathymetry/LiDAR data.

The cross-section genetic algorithm was used to reduce stream channel cross section data. A

hypothetical example consisting of 41 data points and 10 cross sections on the Kootenai River in

northern Idaho were reduced. Cross sections from the Kootenai River that are representative of

meander, straight, braided, and canyon reaches were used to evaluate the reduction methods. The

number of data points for the Kootenai River cross sections ranged from about 500 to more than

2,500. Results indicated that the genetic algorithm successfully reduced the data. However, the

original genetic algorithm does not account for varying distances between the data points. To account

for irregularly-spaced data, the fitness function was modified and used in subsequent analyses. Fitness

values from the modified genetic algorithm were lower (better) than in the original genetic algorithm

and those that used the standard method of reducing cross-section data. Visual and hydraulic analyses

were also used to assess the methods. The genetic algorithm reduced cross sections approximated the

shape of the original cross sections better than the standard-reduced cross sections. Also a greater

number of cross-sectional data points were needed for reduced cross sections in the straight reach and

even more in the meander reach because a greater amount of data points are needed to adequately

define cross sections that have greater topographic variability.

The effects of reduced cross-sectional data points on steady flow profiles were also analyzed.

A portion of the original steady-flow model of the Kootenai River was used, consisting of thirty-five

cross sections. These cross sections were reduced to 10, 20, and 30 data points by the standard and

modified genetic algorithm methods, that is, six test were completed for each of the thirty-five cross

sections. Differences were smaller for reduced cross sections developed by the genetic algorithm

(modified) method than the standard algorithm method. Generally, differences from the original water-

surface elevation were smaller as the number of data points in reduced cross sections increased, but

not always, especially in the braided reach.

A genetic algorithm to decimate bathymetry and Light Detection and Ranging (LiDAR)

datasets was also developed. These datasets can be used in two- and three-dimensional surface-water

iv

models. A hypothetical example consisting of 961 regularly spaced data points (x, y, and z) and data

taken from an actual bathymetric and LiDAR dataset (10,080 data points) were reduced. Results

indicated that the genetic algorithm successfully reduced the data. Terrains produced by the genetic

algorithm are fairly representative of the original data and had smaller differences (better) than

standard procedures of decimating LiDAR. Hypsometric curves of volume between the GA runs and

original dataset were quite similar while the curves from standard reduction methods were quite

different than the original.

Other x-y data also can be reduced in a method similar to that for cross section data. Also the

LiDAR/bathymetric genetic algorithm should decimate equally as well on any terrain data that is

expressed in x, y, and z coordinates.

v

Acknowledgements

I would like to express my gratitude to everyone who supported me throughout this lengthy

journey, from concept to completion of the doctorate. First off, I would like to express my deep

appreciation and gratitude to my advisor, Dr. Peter Goodwin, for his patience, encouragement, and

support throughout the dissertation. I would also like to thank my committee members Dr. Nigel

Wright, Dr. Terrence Soule, and Dr. Fritz R. Fiedler for reading through the dissertation and providing

helpful comments. In particular, Dr. Terrence Soule provided invaluable guidance in the topics of

genetic algorithms. Also I would like to thank Dr. Patricia Colberg, Department Administrator, for the

support and encouragement she provided.

Thanks to Maureen and Paulette, my children, their husbands, Brian and Robert, respectively,

and to my grandchildren Sawyer, Evelyn, Colette, Carlene, Aurelia, Brice, and Natalia for putting up

with all the “inconveniences” of having a Dad and Grandpa who frequently had to study. God has

richly blessed me with all of you and I feel very humbled.

Many, many thanks to my wife Marcia—there are too many things to thank you for, suffice to

say you deserve this degree as much as I do. You are “truly” my best cheerleader and number one

encourager. You have persevered with me every step of the way. You had the steadfast determination

to purse this dream “for the Glory of God” when I wanted to give up. You are the love of my life!

vi

Dedication

To Marcia…

An excellent wife, who can find? For her worth is far above jewels. Proverbs 31:10

To Maureen, Paulette, Brian, Robert, Sawyer, Evelyn, Colette, Carlene, Aurelia, Brice, and

Natalia

Behold, children are a gift of the Lord……….How blessed is the man whose quiver is full of

them…………Psalms 127:3-5

“To God be the Glory”

vii

Table of Contents

Authorization to Submit Dissertation ... ii

Abstract ... iii

Acknowledgements ... v

Dedication ... vi

Table of Contents .. vii

List of Figures ... xi

List of Tables ... xiii

CHAPTER 1. INTRODUCTION ... 1

 1.1 References .. 3

CHAPTER 2. A GENETIC ALGORITHM TO REDUCE STREAM CHANNEL CROSS

SECTION DATA

 2.1 Abstract .. 5

 2.2 Introduction ... 5

 2.3 Genetic Algorithms.. 7

 2.4 Program Description ... 8

 2.5 Program Validation.. 11

 2.5.1 Hypothetical Example .. 11

 2.5.2 Kootenai River Application .. 13

 2.6 Discussion and Conclusions .. 18

 2.7 References ... 19

CHAPTER 3. REDUCING CROSS-SECTIONAL DATA USING A GENETIC ALGORITHM

METHOD AND EFFECTS ON CROSS-SECTION GEOMETRY AND STEADY-FLOW

PROFILES

 3.1 Abstract .. 21

 3.2 Introduction ... 21

 3.3 Reduction Methods ... 24

 3.3.1 Standard Reduction .. 25

 3.3.2 Genetic Algorithm Reduction ... 25

 3.4 Comparison of Reduction Results .. 30

 3.4.1 Visual Analysis of Cross-Section Reductions ... 30

viii

 3.4.2 Hydraulic Modeling Analysis of Reduction Methods 38

 3.5 Summary .. 42

 3.6 References Cited ... 44

CHAPTER 4. DECIMATION OF RIVER GEOMETRY DATASETS USING GENETIC

ALGORITHMS FOR USE IN SURFACE-WATER MODELS

 4.1 Abstract .. 47

 4.2 Introduction ... 47

 4.3 Genetic Algorithm .. 49

 4.4 Program Description ... 50

 4.5 Program Validation.. 52

 4.5.1 Hypothetical Example ... 52

 4.5.2 Coeur d’Alene River Application ... 57

 4.6 Summary and Conclusions .. 60

 4.7 References ... 61

CHAPTER 5. SPECTRAL ANALYSIS OF CROSS-SECTION DATA

 5.1 Introduction ... 64

 5.2 Spectral Content of Cross Sections ... 64

 5.3 Summary .. 68

 5.3 References ... 68

CHAPTER 6. EXECUTIVE SUMMARY ... 69

CHAPTER 7. FUTURE WORK .. 71

 7.1 References ... 72

CHAPTER 8. CONCLUSIONS ... 73

Appendix A. Copyright from Journal of the American Water Resources Association 75

Appendix B. Copyright from U.S. Geological Survey .. 81

Appendix C. Copyright from Federal Interagency Hydrologic Modeling Conference

Proceedings ... 83

Appendix D. General Description of the Genetic Algorithm for Reducing Cross-Section

and (or) X-Y Data ... 84

Appendix E. Listing of Computer Code for Reducing Cross-Sectional Data and (or)

X-Y Data Using a Genetic Algorithm

 E.1. Main Program (file dxsxy02.f) ... 88

 E.2. Subroutine read1 (file read1.f) .. 90

ix

 E.3. Subroutine read2 (file read202.f) .. 91

 E.4. Subroutine gip (file gip.f) .. 92

 E.5. Subroutine rdm (file rdm01.f) ... 93

 E.6. Subroutine select (file select02.f) .. 94

 E.7. Subroutine ftnss (file ftnss03.f) ... 96

 E.8. Subroutine average (file average02.f) ... 101

 E.9. Subroutine best2 (file best202.f) ... 102

 E.10. Subroutine rmse (file rmse02.f) .. 103

 E.11. Subroutine zlast (file zlast02.f) ... 104

 E.12. Subroutine tourn (file tourn02.f) ... 105

 E.13. Subroutine xover (file xover.f) .. 106

 E.14. Subroutine zmutat (file zmutat.f) .. 107

Appendix F. Listing of Input File for the Hypothetical Cross Section Example 108

Appendix G. Listing of Outputs Files for the Hypothetical Cross Section Example 111

Appendix H. General Description of the Genetic Algorithm for Decimating Bathymetry

and (or) LiDAR Data ... 119

Appendix I. Listing of Computer Code for Decimating Bathymetry and (or) LiDAR

Data Using a Genetic Algorithm

 I.1. Main program (file d3dga08.f) .. 125

 I.2. Subroutine gip (file gip02f) ... 129

 I.3. Subroutine init_random_seed() (included in file gip02.f) 130

 I.4. Subroutine isort (file isort01.f) ... 131

 I.5. Subroutine select (file select03.f) ... 137

 I.6. Subroutine ftnss (file ftnss04.f) ... 140

 I.7. Subroutine average (file average02.f) ... 142

 I.8. Subroutine median (file median01.f) ... 143

 I.9. Subroutine best2 (file best202.f) ... 144

 I.10. Subroutine rmse (file rmse02.f) .. 145

 I.11. Subroutine last (file last02.f) .. 146

 I.12. Subroutine tourn (file tourn02.f) .. 147

 I.13. Subroutine xover (file xover03.f) .. 148

 I.14. Subroutine mutat (file mutat04.f) .. 149

 I.15. Subroutine calcvol (file calcvol02.f) .. 150

 I.16. Subroutine locpt (file locpt02.f) .. 152

x

 I.17. Subroutine zxc2 (file zxc01.f) ... 154

 I.18. GEOMPACK Code (file test0704.f) .. 157

Appendix J. Listing of Input File for the Hypothetical LiDAR Example.............................. 184

Appendix K. Listing of Output Files for the Hypothetical LiDAR Example 214

Appendix L. Permission to use isort (Appendix I.4) ... 225

Appendix M. Permission to use locpt (Appendix I.16) ... 227

Appendix N. Permission to use GEOMPACK (Appendix I.18) ... 228

Appendix O. Listing of MATLAB file for Spectral Analysis ... 232

xi

List of Figures

Figure 2.1. Location of the Kootenai River study area .. 6

Figure 2.2. Fitness calculation for individual 10000111 ... 9

Figure 2.3. Individual fitness and inclusions of a population and point limit 10

Figure 2.4. Hypothetical cross section and run 9 best-fit cross section 12

Figure 2.5. Best fitness, average fitness, and root mean squared error (RMSE) of fitness

for each generation of run 9 for the hypothetical example ... 13

Figure 2.6. Cross section 199.727 and best-fit genetic algorithm run 16

Figure 2.7. Best fitness and average fitness for each generation in cross

section 199.727 ... 17

Figure 3.1. Fitness calculation for a hypothetical cross section .. 27

Figure 3.2. Effects of data-point reduction on cross-sectional shape 32

Figure 3.3. Effects of data-point reduction on cross-sectional area ... 33

Figure 3.4. Reduction-error (RE) curves for 10 cross sections resulting from the genetic

algorithm (GA) reduction method, Kootenai River, Idaho ... 37

Figure 3.5. Effects of reduced cross sections on simulated water-surface elevation at five

river discharges ... 40

Figure 3.6. Comparisons between the original and 10 point, 20 point, and 30 point reduced

cross sections produced by two reduction methods for cross-section 154.575 41

Figure 4.1. Pseudo code for a simple genetic algorithm .. 50

Figure 4.2. Terrain from the original dataset, VIP run, LATTICETIN run, and GA runs for

the hypothetical example .. 53

Figure 4.3. Best fitness, average fitness, and root mean squared error (RMSE) fitness for

each generation of GA Run 8 for the hypothetical example ... 55

Figure 4.4. (A) TIN volumes for the original, VIP, LATTICETIN, and GA runs and (B)

volumetric differences from the original for the hypothetical example.................................... 56

Figure 4.5. Best fitness, average fitness, and root mean squared error (RMSE) fitness for

each generation of GA Run 4 for the Coeur d’Alene River ... 58

Figure 4.6. Terrain from the original, VIP run and GA run 4 for the Coeur d’Alene River

application... 59

Figure 4.7. Volumetric differences in TIN volumes from the original to the VIP Run and

GA Run 4 for the Coeur d’Alene River application ... 60

xii

Figure 5.1. Modified cross-section data for an interval spacing of 0.5 feet and its power

spectral density for cross section 154.972, braided reach, Kootenai, Idaho 66

Figure 5.2. Smoothed curves of power spectral density for cross-section 154.972,

braided reach, at selected interval spacing of 0.5, 1, 5, 10, 50, 100, and 200 feet

of cross-section data ... 67

Figure D.1. Flow chart of evolutionary computation .. 86

Figure D.2. The parameter file ("param.dat") for the hypothetical cross-section example 86

Figure F.1. Graph of the hypothetical cross section .. 108

Figure H.1. Flow chart of evolutionary computation ... 121

Figure H.2. The parameter file (contained in file "param.dat") for the hypothetical

LiDAR example .. 122

Figure H.3. The "seq_info.txt" file for the hypothetical LiDAR example 123

Figure H.4. Boundary points (contained in file "bndpts.txt") for the hypothetical

LiDAR example .. 123

Figure H.5. Volume (contained in file "vol_out.txt") for the hypothetical

LiDAR example .. 123

Figure H.6. Hull points (contained in file "hull_out2.txt") for the hypothetical

LiDAR example .. 124

Figure J.1. Inputted LiDAR data for the hypothetical LiDAR example 185

xiii

List of Tables

Table 2.1. Fitness values, run time, and number of included points for the hypothetical

example ... 12

Table 2.2. Comparison between best fitness values from genetic algorithm (GA) runs and

values from standard procedures (Barton et al., 2004) for each cross section 14

Table 2.3. Genetic Algorithm (GA) Parameters Used in Runs for Each Cross Section 15

Table 3.1. Comparison of best fitness between several reduction methods for 10 cross

sections on the Kootenai River, Idaho .. 29

Table 3.2. Reduction error (RE) values for 10 cross sections resulting from the standard

and genetic algorithm (GA) reduction methods, Kootenai River, Idaho 36

Table 4.1. Best fitness value, number of data points, and number of points on the boundary

for the hypothetical example .. 54

Table 4.2. Best fitness value, number of data points, and number of points on the boundary

for the Coeur d’Alene River application ... 58

Table D.1. Files that compose the genetic algorithm cross-section reduction program 85

Table F.1. Listing of x-y data pairs for the hypothetical cross section example 109

Table G.1 Listing of output file r-table_dxsxy.csv ... 111

Table G.2. Listing of output file r-xsxy_dxsxy.txt which contains the final genetic

algorithm produced cross section or X-Y data ... 114

Table G.3 Listing of output file indivi_dxsxy.txt ... 115

Table H.1. Files that compose the decimating bathymetry and (or) LiDAR program........... 120

Table J.1. Listing of hypothetical and inputted LiDAR data ... 186

Table K.1. Listing of output file stat_out.csv .. 215

Table K.2. Listing of output file bi_out.csv ... 220

1

CHAPTER 1. INTRODUCTON

The size of digital datasets can be quite large, and as technology advances, the size in digital

data usually increases too. Large datasets can cause numerous problems especially in storing,

handling, transmitting, and with software. Data reduction is commonly applied to large datasets. For

bathymetric and (or) Light Detection and Ranging (LiDAR) datasets, for example, it is critical that the

bathymetry/terrain not be altered when points or data are removed. By decimating intelligently, large

datasets can be reduced to a manageable size for surface-water models and other applications while

maintaining the original geometry. This is quite important for the accuracy of surface-water models.

Surface-water hydraulic models require accurate representation of the river and (or) floodplain

geometry. Accuracy of geometry is important because it could affect channel-geometry determinations

and water-surface calculations, which consequently has major effects on computations of velocity,

shear stress, and sediment transport. For one-dimensional surface-water models, cross-sectional data

are needed and defined by a series of data points (distance and elevation) along a straight line roughly

perpendicular to streamflow. For several large rivers in northern Idaho, bathymetry data for

approximately 500 cross sections were collected using a global positioning system (GPS) with an echo

sounder, and bank data were collected by connecting the GPS to a laser range finder equipped with an

angle encoder (Moran and Berenbrock, 2003; Barton et al, 2004; and Berenbrock and Tranmer, 2008).

The echo sounder obtained data at very close intervals, usually exceeding 500 data points, whereas

about 10 bank data points were collected at each cross section. The number of data points in each cross

section ranged from about 500 to more than 2,000 which is too large for most one-dimensional

models. Selecting the appropriate data points among the hundreds or thousands of data points can be

both challenging and tedious.

For multi-dimensional surface-water models, data such as bathymetry and (or) LiDAR are

needed. Bathymetry and (or) LiDAR datasets are usually quite large. For example, a LiDAR dataset

on the lower Coeur d’Alene River for a 2 kilometer (km) by 2 km area consist of about 300,000 data

points (x, y, and z). If a 10 km x 2 km reach of the river and floodplain were selected to be modeled,

the dataset would be composed of about 3 million data points which is too large for multi-dimensional

models. Selecting the appropriate data points among the millions of data points can be both

challenging and tedious and also time consuming. Standard procedures usually consist of gridding

which generalizes—misses high and low points—the terrain. Another disadvantage to gridding is that

the original data points might not be honored in the grid.

2

For flood insurance studies, the Federal Emergency Management Agency (FEMA) indicates

that cross-section points should be located at breaks in the ground slope and should approximate the

actual shape of the channel and (or) floodplain (FEMA, 1995). There is no point minimum as long as

the actual shape of the channel and floodplain are well defined. The FEMA requirement applies to

cross-section data, but is a reasonable requirement for multi-dimensional datasets such as digital

elevation models (DEM) and bathymetric and LiDAR datasets.

The purpose of this dissertation is to describe application of several GAs for decimating river

geometry data for manageable use in surface-water models and demonstrate that GAs are a viable

approach. The first GA is for reducing the number of data points in a cross section, and the second GA

is for decimating bathymetry and (or) LiDAR data. This dissertation presents the development, testing,

comparisons, and ‘real world’ application of the GAs. Also the cross-section GA is evaluated to

determine its effects of reduced cross sections on channel geometry and steady-flow profiles, and the

bathymetry/LiDAR GA is evaluated to determine its effects on decimated bathymetry/terrain data.

These evaluations are presented in this dissertation. Also spectral analysis will be used to investigate

the spectral content of cross-section data for different channel types and for different scales of

resolution.

Chapters 2 and 3 of this dissertation discuss the development, application, and evaluation of

the cross-section genetic algorithm (GA). Chapter 2 is found in Berenbrock (2006), and permission is

granted by the publisher (John Wiley & Sons) to publish it in this dissertation (see Appendix A). This

GA, however, did not account for irregularly spaced data, and thus, it was modified and with

additional evaluation is presented in Chapter 3. This chapter (3) is found in Berenbrock (2015) and is

considered a public domain report, which does not require permission to publish (see Appendix B).

Chapter 4 discusses the development, application and evaluation of the bathymetry and (or) LiDAR

GA. This chapter (4) is found in Berenbrock (2010) and is also a public domain paper, which does not

require permission to publish (see Appendix C).

Supporting materials for this dissertation are given in the appendices. The following is a short

description of each appendix:

Appendix

A. Permission by publisher (John Wiley & Sons) to publish paper in Chapter 2 in

dissertation.

B. The published report in Chapter 3 is in public domain and does not require permission to

publish.

3

C. The published paper in Chapter 4 is in public domain and does not require permission to

publish.

D. A generalize description of the cross-section genetic algorithm code including how to

compile and run the code.

E. A listing of the computer code (main and subroutines) for the cross-section genetic

algorithm.

F. Listing of the hypothetical example used for the cross-section GA.

G. Computer listing of outputs from running the hypothetical example.

H. A generalize description of the bathymetric and LiDAR genetic algorithm code including

how to compile and run the code.

I. A listing of the computer code (main and subroutines) for the bathymetry and LiDAR

genetic algorithm.

J. Listing of hypothetical LiDAR data used for the bathymetry/LiDAR genetic algorithm.

K. Computer listing of output from running the hypothetical LiDAR data.

L. Permission by SNLA to use the isort code.

M. Permission by author to use the locpt code.

N. Permission by GNU LGPL to use the GEOMPACK code.

1.1 References

Barton, G.J., E.H. Moran, and Charles Berenbrock, 2004. Stream Channel Cross Sections for the

Kootenai River Between Libby Dam, Montana, and Kootenay Lake, British Columbia, Canada.

U.S. Geological Survey Open-File Report 2004-1045, Boise, Idaho. p. 35.

Berenbrock, Charles, 2010. Decimation of River Geometry Datasets with Integrity for Use in Surface-

Water Models. Proceeding of the Second Joint Federal Interagency Conference on

Sedimentation and Hydrologic Modeling 2010, Fourth Federal Interagency Hydrologic

Modeling Conferences, [p. 14].

Berenbrock, Charles, 2015. Reducing cross-sectional data using a genetic algorithm method and

effects on cross-section geometry and steady-flow profiles. U.S. Geological Survey Scientific

Investigations Report 2015–5034, p. 16.

4

Berenbrock, Charles, and A.W. Tranmer, 2008. Simulation of flow, sediment transport, and sediment

mobility of the Lower Coeur d’Alene River, Idaho. U.S. Geological Survey Scientific

Investigations Report 2008–5093, p. 164.

FEMA (Federal Emergency Management Agency), 1995. Guidelines and Specifications for Study

Contractors. Federal Emergency Management Agency, Publication 37. U.S. Government

Printing Office, Washington, D.C., p. 174.

Moran, E.H. and Charles Berenbrock, 2003. GPS – Time Saver and Functional. U.S. Geological

Survey Western Water Watch 1(1): 6-7.

5

CHAPTER 2. A GENETIC ALGORITHM TO REDUCE STREAM CHANNEL

CROSS SECTION DATA

2.1 Abstract

A genetic algorithm (GA) was used to reduce cross section data for a hypothetical example

consisting of 41 data points and for 10 cross sections on the Kootenai River. The number of data

points for the Kootenai River cross sections ranged from about 500 to more than 2,500. The GA was

applied to reduce the number of data points to a manageable dataset because most models and other

software require fewer than 100 data points for management, manipulation, and analysis. Results

indicated that the program successfully reduced the data. Fitness values from the genetic algorithm

were lower (better) than those in a previous study that used standard procedures of reducing the cross

section data. On average, fitnesses were 29 percent lower, and several were about 50 percent lower.

Results also showed that cross sections produced by the genetic algorithm were representative of the

original section and that near-optimal results could be obtained in a single run, even for large

problems. Other data also can be reduced in a method similar to that for cross section data.

2.2 Introduction

Cross sections are used to describe the channel shape of streams and most commonly are used

in mathematical computer models to simulate flow hydraulics and sediment transport in a stream. A

stream channel cross section is a series of data pairs (distance and elevation) along a straight line that

is roughly perpendicular to streamflow. During 2002 and 2003 stream channel cross sections and

longitudinal data were collected along the Kootenai River from Libby Dam, Montana, to where the

river empties into Kootenay Lake near Creston, British Columbia, Canada (study area, Figure 2.1).

About 250 kilometers of streambed and banks along the Kootenai River in the study area were mapped

on the basis of approximately 400 cross sections (Moran and Berenbrock, 2003). Of these cross

sections, only 245 were needed for use in one-dimensional hydraulic flow and sediment transport

models of the Kootenai River.

For the Kootenai River, cross section data are a combination of bathymetric and bank data.

Bathymetric data collection involves interfacing global positioning system (GPS) equipment with an

echo sounder, and bank data are collected by connecting the GPS to a laser range finder equipped with

6

Figure 2.1. Location of the Kootenai River study area.

an angle encoder. The echo sounder obtains data at very close intervals along a section, and the

number of soundings in a cross section usually exceeds 500 points, whereas about 10 bank data points

are collected at each cross section. Most of the 245 cross sections have more than 1,000 data points,

and about one-fourth have more than 2,000. Only a few cross sections on the Kootenai River have

more than 2,500 data points.

These large datasets present a problem for use in models and software designed for data

management and manipulation. Most models require fewer than 100 data points per stream channel

cross section; datasets with fewer than 100 data points also are much more manageable and easier to

use. For flood insurance studies, the Federal Emergency Management Agency (FEMA) has indicated

that cross section points should be located at breaks in the ground slope and should approximate the

actual shape of the channel and (or) floodplain (FEMA, 1995). This indicates that there is no point

minimum as long as the actual shape is well defined. In a recent study, Barton et al. (2004) used

standard procedures to reduce cross-section data by selecting a data pair every one to two meters.

Because this selection process frequently misses high and low points in the data, the reduced dataset

7

was viewed graphically, and data were added until the reduced dataset appeared to be representative of

the original cross section. This procedure was done for each of the 245 cross sections; this took about

a month of labor intensive work to complete.

Many water resource problems have been solved using optimization, especially in water

supply and distribution and ground water remediation problems. Optimization techniques such as

linear programming, nonlinear programming, and dynamic programming have been used widely in

water resources. Vink and Schot (2002) and Chen (2003) discuss the advantages, disadvantages, and

appropriateness of these techniques. However, they indicate that GAs are capable of handling highly

nonlinear, discontinuous, nondifferentiable, interdependent, and nonconvex problems where these

other techniques cannot. Genetic algorithms have been used to solve many optimization problems, and

applications in water resources are becoming more abundant. McKinney and Lin (1992) applied a

single objective optimization GA to the development of a well field and aquifer remediation.

Cieniawski et al. (1995) applied a two-objective optimization GA to ground water monitoring, and

Vink and Schot (2002) applied a multi-objective optimization to a multiple well production with

interdependent and nonlinear impacts. Chen (2003) applied a real coded GA to optimize rule curves

for a reservoir in a water supply network system. Knaapen and Hulscher (2003) applied a GA to

determine the shape, migration, and boundary variables of alternate bars from bathymetry data for

input into a streambed evolution model.

The purpose of this paper is to describe applications of a GA to the reduction of cross section

data and prove that the GA is successful and can complete the task within a reasonable amount of

time. The GA in this paper is a single objective optimization for reducing cross section data. A

hypothetical example and case study with varying amounts of cross section data are presented to

validate the genetic algorithm. The hypothetical example is a cross section composed of 41 data pairs.

The case study consists of data from 10 cross sections on the Kootenai River.

2.3 Genetic Algorithms

Genetic algorithms apply the principles of evolution to find the solution to a problem. They

are based loosely on Darwin's theory of evolution, “survival of the fittest,” and use genetic operators

such as selection, reproduction (crossover), and mutation to improve a population. Holland (1975) was

the first to apply the operators of selection and mutation in a computer program. Presently, GAs have

been applied successfully to many water resource problems.

8

In a GA, an initial population of individuals is created and is evolved until a solution is

obtained or a user-specified number of generations has been met. Each individual is initially a random

solution to the problem. Being random, the solutions or individuals may or may not be accurate. The

fitness of an individual is a measure of its accuracy, which guides the GA. Greater accuracy increases

the chances that the individual will be selected to reproduce using genetic crossover and mutation.

Crossover is a random process that exchanges chromosomes between the parents to create the

offspring (children). For example, two individuals 100010 and 111111 are crossed between the

third and fifth elements to form two children, 101110 and 110011. Mutation randomly changes

some of the chromosomes in the individual. For example, the child 100110 might be mutated in the

fourth element to form 100010. Some children will be better fit than the parents and some will be

worse. By repetition of this process and selection of individuals with better fits in subsequent

generations, the population improves. A more complete discussion on genetic algorithms is given in

Grefenstette (1986), Goldberg (1989), Davis (1991), and Mitchell (2002).

2.4 Program Description

A binary GA program was written to reduce the amount of data pairs in a cross section. Binary

strings of a fixed length in the program are used to represent individuals in the population, where the

fixed length is equivalent to the number of data pairs (n) in the original stream channel cross section.

A 0 bit represents exclusion of that particular data pair on that cross section, and a 1 represents

inclusion. Also, the first and last elements are fixed to 1 (included) in all individuals to ensure that

endpoints are maintained.

A limit on the number of data points is set, creating a two-conditional fitness function,

 i

n

j i

j=1

n
inc -plimit

j

j=1

d if inc plimit

f (i) =

d 1 10 otherwise



  
   

   





where f(i) is the value of fitness for individual i, n is the number of data pairs in the original cross

section, dj is the vertical distance (m) between the original and reduced data pairs in the cross section

for element j, inci is the number of included data pairs in the reduced cross section for individual i, and

plimit (point limit) is the maximum number of data pairs to be included in the reduced cross section.

(Equation 2.1)

9

The first condition applies if an individual’s sum of inclusions (1 bits) is less than or equal to

the point limit; otherwise, the second condition applies. Fitness for the first condition is the sum of the

distances between the original and reduced data pairs. At included data pairs, vertical distance (dj) is

zero. At excluded pairs, dj is calculated by subtracting the elevation from the original data pair to an

elevation on a straight line derived from two adjacent included data pairs. The vertical distance is

always a positive value.

Equation 2.1 gives the single objective function for optimization. The GA minimizes the sum

of distances between the original and reduced cross sections or fitness in Equation 2.1 (Minimize f(i))

for quantifying the optimal reduced cross section from all possible cross sections.

Figure 2.2 shows a sample calculation of fitness. Included pairs occur at Elements 1, 6, 7, and

8, and dj for those points is 0. Elevation at excluded Elements 2, 3, 4, and 5 is calculated from a

straight line connecting Elements 1 and 6 (included), and dj is calculated to be 0 m, 10 m, 15 m, and

15 m, respectively. At Element 2, elevations from the original data pair and from the straight line are

the same, which results in dj equal to 0. Fitness for the second condition of Equation 2.1 is more

complex and requires the same fitness calculation as in the first. The plus one expression prevents a 0

fitness, which will occur if all data pairs are included. The second half of this condition penalizes

fitness because an individual's inci exceeds the point limit. The function also causes fitness to increase

beyond the point limit.

Figure 2.2. Fitness calculation for individual 10000111.

10

Figure 2.3 shows fitness results of a population by using Equation 2.1. Individuals with

inclusions greater than the point limit have much higher (worse) fitnesses. The penalty to fitness is

quite significant (Figure 2.3), which causes the GA to perform better by increasing more highly fit

(lower fitness value) individuals in the population.

In most binary GAs, each bit has a 50 percent chance of being excluded (0) or included (1)

during creation. Thus, on average, half of the bits in an individual will be 0s and the other half will be

1s. In these experiments, half of n is usually greater than plimit. Therefore, the probability of an

element being included is set to the plimit divided by string length (n). This greatly reduces the

number of generations and program run time.

Figure 2.3. Individual fitness and inclusions of a population and point limit.

This initialization technique might reduce the search space and increase premature

convergence. However, the reduced search space is still large relative to the population size. For

example, the search space for the hypothetical example (discussed later in the paper) with a probability

of an element being included of 50 percent (N/2) is 1.68 x 1029. For a reduced probability of 33

percent, the search space is 5.06 x 1019. This search space is still quite large relative to the population

size and should not significantly affect convergence. By narrowing the search space, the GA then

focuses its search on approximately the right number of points and does not explore unlikely solutions

(including all points, including no points, and so on).

11

The GA is generational; two elite individuals are copied each generation. Tournament

selection is used as the reproduction method, and tournament size is 3. Several different crossover

rates (Pc), population sizes, and mutation rates (Pm) were tested. The mutation rate of 1/n was used, a

standard rate suggested by Reed et al. (2000, 2003). A general description of the genetic algorithm

program for cross-section reduction is given in Appendix D, and a listing of the program code is given

in Appendix E.

2.5 Program Validation

The hypothetical and Kootenai River stream channel cross section data were used to validate

the binary GA. The plimit for the hypothetical example was arbitrarily set to 15 and to the number of

points selected by Barton et al. (2004) for the Kootenai River cross sections. On the basis of work by

Reed et al. (2000, 2003) and Mitchell (2002), a Pc of 0.70 was used for the hypothetical data.

2.5.1 Hypothetical Example

The hypothetical cross section (Figure 2.4) consists of 41 data pairs (distance and elevation)

(see Appendix 3 for the x-y data pairs). The GA was run 10 times with a population of 200, for 100

generations, using a crossover rate of 0.70 (Reed et al., 2000, 2003; Mitchell, 2002) and a plimit of 15

points. Results from the runs are shown in Table 2.1. The best fitness in all runs had 15 inclusions (the

plimit), and Run 9 had the lowest (best) fitness, 1.572 m. Even though the GA relies on randomness in

sampling and in creating the initial population, the range in best fitness for all runs was small

compared with the ranges in average fitness and root mean squared error (RMSE). The small range in

best fitness suggests that near optimal results could be obtained in a single GA run. The large range in

average and RMSE fitnesses is indicative of the randomness of the GA and diversity in the population.

The reduced cross section from the best fit individual in Run 9 was superimposed on the original cross

section (Figure 2.4) and the result indicates that the GA reduced dataset closely represents the original.

The best, average, and RMSE fitnesses for Run 9 are shown in Figure 2.5. Initially these

values decreased, but after 10 generations, average and RMSE fitnesses oscillated while best fitness

continued to decrease. Similar results were observed in the other nine runs.

The run time for this example was extremely fast, less than 1 second (Table 2.1). These runs

were performed on a 450-MHz personal computer (PC). An example output listing from the cross-

section reduction program for the hypothetical cross section is given in Appendix 4.

12

Figure 2.4. Hypothetical cross section and run 9 best-fit cross section.

Table 2.1. Fitness values, run time, and number of included points for the hypothetical example.

[RMSE, root mean squared error]

 Fitness (meters)

Run

No.

Run Time

(seconds)

Number of

Included

Points Best Average RMSE

1 0.4707 15 1.648 187 1,380

2 0.4607 15 1.755 91 397

3 0.5007 15 1.780 116 479

4 0.4306 15 1.977 583 4,204

5 0.4607 15 1.928 62 332

6 0.4807 15 1.877 130 529

7 0.4807 15 1.709 203 1,996

8 0.4607 15 1.712 92 415

9 0.4807 15 1.572 148 646

10 0.4707 15 1.773 47 244

13

Figure 2.5. Best fitness, average fitness, and root mean squared error (RMSE) of fitness for each

generation of run 9 for the hypothetical example.

2.5.2 Kootenai River Application

For the real world application, 10 cross sections out of 245 from the Kootenai River were

arbitrarily selected (Table 2.2). The number of data pairs in the original cross sections ranged from

497 in cross section 152.019 to 2,521 in cross section 154.972 (Table 2.2, column 2). The GA initially

was run with the same parameter values as in the hypothetical example, except plimit was set to the

number of data pairs in the reduced cross sections from Barton et al. (2004) (see Table 2.2, column 3).

Their procedure for reducing data pairs was previously discussed (see 2.2 Introduction).

14

Table 2.2. Comparison between best fitness values from genetic algorithm (GA) runs and values from

standard procedures (Barton et al., 2004) for each cross section.

 Number of

Data Pairs

in Number of GA Best Fitness (meters)

Cross Original Included Run Time Barton et al. Percent

Section Dataset (n) Points (seconds) (2004) GA Lower

219.881 2,024 130 183.7 23.9 20.2 15.7

216.622 696 86 31.8 18.6 11.6 38.0

212.227 1,534 126 70.0 13.6 8.7 35.5

199.727 762 81 34.6 8.4 4.9 51.8

185.394 548 94 51.7 6.6 3.4 47.9

163.027 1,723 123 49.5 22.5 1.9 91.8

154.972 2,521 444 224.9 37.9 33.6 11.3

152.019 497 117 23.3 22.2 16.6 25.4

151.438 987 181 96.4 26.8 19.4 27.6

107.658 886 126 125.3 28.0 19.9 28.9

 Average = 29.0

Results with the parameters (Pc and Pm) used for the hypothetical case were somewhat poor, so

a trial-and-error approach was used to determine the appropriate parameter values for each cross

section. Ten runs usually were necessary to determine the appropriate values for the GA parameters

(Table 2.3), which represent approximately 10 minutes of user time. This process probably could be

further automated so that the GA automatically tests several standard parameter choices and uses the

best one.

After parameter values were determined, the GA was run five times for each cross section.

The best fitness results are shown in Table 2.2 (column 6). Best fitness values in all GA runs were

consistently lower (better) than those of Barton et al. (2004), and several values were as much as 50

percent lower. On average, the GA fitness was 29 percent lower. These results indicate that GA cross

15

sections are significantly more defined or representative of the original cross section than those

generated by Barton et al. (2004).

Table 2.3. Genetic Algorithm (GA) Parameters Used in Runs for Each Cross Section.

Cross Section

Number of

Generations Population Size

Cross Over Rate

(Pc)

Mutation Rate

(Pm)

219.881 400 400 0.60 1/2.5n

216.622 400 200 0.70 1/2.5n

212.227 400 200 0.70 1/2.5n

199.727 400 200 0.70 1/5n

185.394 400 200 0.30 1/10n

163.027 400 200 0.60 1/3.5n

154.972 400 200 0.50 1/5n

152.019 400 200 0.70 1/10n

151.438 400 400 0.50 1/n

107.658 600 400 0.70 1/2.5n

The range of best fitness for cross section 199.727 was small. Best fitness for the five runs

were 5.2 m (Run 1), 4.9 m (Run 2), 5.0 m (Run 3), 5.4 m (Run 4), and 5.8 m (Run 5). In fact, the range

was small for all cross sections, and this suggests that near optimal results can be obtained in a single

GA run. For cross section 199.727, the best fit individual (4.9 m for Run 2) was superimposed on the

original cross section (Figure 2.6A) and matched the original cross section quite well. Even a detailed

portion of the cross section showed a good match (Figure 2.6B). The other GA generated cross

sections were similarly representative of the original cross section.

Again, as expected, the fitness for a run in cross section 199.727 decreased as the number of

generations increased (Figure 2.7), indicating that the program functions correctly for large datasets.

Best fitness decreased from 10.1 m to 5.2 m, about half at generation 400 from its initial fitness. Also,

average fitness and RMSE generally decreased throughout the run. Similar results were observed in

other runs from this section and in runs from other cross sections.

16

Figure 2.6. Cross section 199.727 and best-fit genetic algorithm run.

17

Figure 2.7. Best fitness and average fitness for each generation in cross section 199.727.

Genetic algorithm run time for these cross sections was very fast (Table 2.2, column 4) and

was faster than the standard procedure used by Barton et al. (2004). It is estimated that it would take

one week to perform all 245 cross sections by the GA, compared with the month required for Barton et

al.’s procedure, a time savings of 75 percent. Run times were less than one minute for four cross

sections, greater than one minute and less than two minutes for three cross sections, and greater than

two minutes for three cross sections. These runs were performed on a 450 MHz PC. Run times would

be faster using higher speed PCs.

18

2.6 Discussion and Conclusions

This paper demonstrates that a genetic algorithm can successfully solve the stream channel

cross section reduction problem. Because the value of plimit is much less than the total number of data

pairs in the cross section, initial populations created with a probability of plimit divided by string

length (n) for inclusion significantly shortened the number of generations needed for successful

results, especially for the larger Kootenai River datasets.

Fitness values for the GA run were all lower than those of Barton et al. (2004). Several GA

cross sections had fitness values about 50 percent lower (better) than those of Barton et al. (2004).

Results showed that GA cross sections closely represented the original cross section. Results also

demonstrated that near-optimal results could be obtained in a single GA run, even for large problems.

Genetic algorithm run times for the hypothetical example and Kootenai River cross sections

were much faster than the standard procedures used by Barton et al. (2004). Estimates indicate that it

would take one week to complete the 245 Kootenai River cross sections using the GA, a time savings

of 75 percent over the standard procedure.

To prevent a trial-and-error approach, an automated process is needed in the program that will

determine the appropriate parameter values for each cross section. Also, a method is needed to select a

plimit without relying on previous work, as in this study. The current fitness function always selects

the plimit as the number of inclusions. A fitness function that gradually penalizes more points and

gradually gives credit to fewer points might cause the GA to select a good minimum number of points.

These improvements are left for future investigations.

Using this GA, other water resource, ecological, and biological data can be reduced in a

method similar to that used for cross section data. For example, a dataset containing the location along

a river (river mile) or highway (mileage) and the number of nonnative plants at the location can be

reduced to a smaller and representative dataset. Time series data likewise can be reduced by

transforming date values to a single numeric value such as Julian date.

19

2.7 References

Barton, G.J., E.H. Moran, and Charles Berenbrock, 2004. Stream Channel Cross Sections for the

Kootenai River Between Libby Dam, Montana, and Kootenay Lake, British Columbia, Canada.

U.S. Geological Survey Open-File Report 2004-1045, Boise, Idaho. p. 35.

Chen, Li, 2003. Real Coded Genetic Algorithm Optimization of Long Term Reservoir Operation.

Journal of the American Water Resources Association (JAWRA) 39(5):1157-1165.

Cieniawski, S.E., J.W. Eheart, and S. Ranjithan, 1995. Using Genetic Algorithms to Solve a

Multiobjective Groundwater Monitoring Problem. Water Resources Research 31(2):399-409.

Davis, L., 1991. Hybridization and Numerical Representation. In: Handbook of Genetic Algorithms,

L. Davis (Editor). Van Nostrand Reinhold, United Kingdom, pp. 61-71.

FEMA (Federal Emergency Management Agency), 1995. Guidelines and Specifications for Study

Contractors. Federal Emergency Management Agency, Publication 37, U.S. Government

Printing Office, Washington, D.C., p. 174.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison

Wesley, Reading, Massachusetts.

Grefenstette, J.J., 1990. Genetic Algorithms and Their Applications. In: Encyclopaedia of Computer

Science and Technology, A. Kent and J.G. Williams (Editors). Marcel Dekker, New York, New

York, pp. 139-152.

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. The University of Michigan Press,

Ann Arbor, Michigan.

Knaapen, M.A..F. and S.J.M.H. Hulscher, 2003. Use of a Genetic Algorithm to Improve Predictions of

Alternate Bar Dynamics. Journal of Water Resources Research 39(9):1231, doi

10.1029/2002WR001793, 2003.

McKinney, D.C. and M.D. Lin, 1992. Design Methodology for Efficient Aquifer Remediation Using

Pump and Treat Systems. In: Mathematical Modeling in Water Resources, T. Russel et al.

(Editors). Elsevier Science, New York, New York, pp. 695-702.

Mitchell, M., 2002. An Introduction to Genetic Algorithms. The MIT Press, Cambridge,

Massachusetts, (8th printing), p. 209.

20

Moran, E.H. and Charles Berenbrock, 2003. GPS – Time Saver and Functional. U.S. Geological

Survey Western Water Watch 1(1): 6-7.

Reed, P., B. Minsker, and D.E. Goldberg, 2000. Designing a Competent Simple Genetic Algorithm for

Search and Optimization. Journal of Water Resources Research 36(12):3757-3761.

Reed, P., B. Minsker, and D.E. Goldberg, 2003. Simplifying Multiobjective Optimization – An

Automated Design Methodology for the Nondominated Sorted Genetic Algorithm-II. Journal of

Water Resources Research 39(7):1196-1206.

Vink, K. and P. Schot, 2002. Multiple-Objective Optimization of Drinking Water Production

Strategies Using a Genetic Algorithm. Journal of Water Resources Research 38(9):1157-1165.

21

CHAPTER 3. REDUCING CROSS-SECTIONAL DATA USING A GENETIC

ALGORITHM METHOD AND EFFECTS ON CROSS-SECTION GEOMETRY

AND STEADY-FLOW PROFILES

3.1 Abstract

Reduction of cross-sectional data using a genetic algorithm method, and the effects of data

reduction on channel geometry and steady-flow profiles, were analyzed. Two reduction

methods─standard and genetic algorithms─were used to reduce cross-sectional data from the Kootenai

River in northern Idaho. Cross sections that are representative of meander, straight, braided, and

canyon reaches were used to evaluate the reduction methods. Visual and hydraulic analyses were used

to assess the methods. The genetic algorithm-reduced cross sections approximated the shape of the

original cross sections better than the standard-reduced cross sections. A greater number of cross-

sectional data points were needed for reduced cross sections in the straight reach, and even more in the

braided reach, because a greater amount of data points are needed to adequately define cross sections

that have greater topographic variability. For the genetic algorithm-reduction method, about 40 data

points were needed to adequately define the shape of a reduced cross section in the braided reach

compared to 10 to 20 data points in the meander and canyon reaches. The standard-reduction method

needed about 70 data points for the braided reach and more than 30 points for the meander and canyon

reaches. The genetic algorithm can effectively reduce data while staying within the threshold set by

the maximum number of points to be included in the reduced dataset.

The effects of reduced cross-sectional data points on steady-flow profiles were also

determined. Thirty-five cross sections of the original steady-flow model of the Kootenai River were

used. These two methods were tested for all cross sections with each cross section resolution reduced

to 10, 20 and 30 data points, that is, six tests were completed for each of the thirty-five cross sections.

Generally, differences from the original water-surface elevation were smaller as the number of data

points in reduced cross sections increased, but this was not always the case, especially in the braided

reach. Differences were smaller for reduced cross sections developed by the genetic algorithm method

than the standard algorithm method.

3.2 Introduction

Cross-sectional data are used for many purposes, such as the investigations of flood plain

delineation, flow patterns, shear stress, sediment mobility and transport, channel evolution, and

22

aquatic habitat conditions. Accuracy of cross-section data is important because it could affect channel-

geometry determinations and water-surface profile calculations. For example, the consequence of

errors in the water-surface elevation has a major effect on computations of velocity, shear stress, and

sediment transport. Water-surface profiles in many studies are computed by using one-dimensional (1-

D) step-backwater models such as HEC-RAS (Brunner, 2010), which uses the standard step method

for steady flow. The standard step method uses the energy, continuity, and flow resistance (for

example, Manning’s) equations between cross sections to compute the water-surface elevation and

streamflow velocity (Chow, 1959).

All models have a limit to the number of points allowed in a cross section. For example, the

HEC-RAS version 4 model has a 500-point limit. This limit might seem large enough, but when cross

sections are computer generated from Light Detection and Ranging (LiDAR) or Digital Elevation

Models (DEMs), or data are collected with equipment such as an echo sounder, the number of cross-

sectional data points tends to be quite substantial. In an earlier study (Barton et al, 2004), for example,

approximately 400 cross sections were surveyed on the Kootenai River in northern Idaho in order to

understand the hydraulic characteristics of the river and to promote hydraulic conditions that improve

spawning conditions for the endangered Kootenai River white sturgeon. The number of data points for

each cross section ranged from about 500 to more than 2,500 points (Moran and Berenbrock, 2003;

Barton et al., 2004). Only a few cross sections had more than 2,000 data points. More than half of the

surveyed cross sections were included in a HEC-RAS model of the Kootenai River (Berenbrock, 2005,

2006a), and most cross sections were reduced to less than 150 data points.

Large datasets must be reduced to the meet the limitations of the programs being used.

Reduced datasets improve run-time performance and facilitate data transmission and storage. Selecting

the appropriate data points to keep from among the hundreds or thousands of data points can be both

challenging and tedious. However, reducing the number of cross-sectional data points can result in

significant changes to the reduced cross section, which could affect computed water-surface

elevations, streamflow velocity, shear stress, and sediment transport. Considerable care must be taken

when reducing data so that computed errors and uncertainties remain small or within acceptable limits.

It is important to understand the effects that reduced cross sections can have on National Flood

Insurance Program, flood-inundation, habitat, and sediment-transport studies. The Federal Emergency

Management Agency (FEMA) has indicated that there is no point minimum—the number of data

points for defining a cross section—as long as the actual shape of the cross section is well defined

(Federal Emergency Management Agency, 2007).

23

Much research has been done on error and uncertainty analysis in surface-water hydraulics.

Research has been carried out on determining the optimal spacing between cross sections (Samuels,

1989; Castellarin et al., 2009); developing cross sections from topographic maps, LiDAR, and DEM

data (Burnham and Davis, 1990; Pasternack et al., 2004; Cook and Merwade, 2009); and interpolating

cross sections between known cross sections (Traver and Miller, 1993). Travis and Lokey (1999)

developed a method to reduce cross-section data to 100 data points, the maximum limit of the HEC-2

model. Berenbrock (2006b) developed a genetic algorithm (GA) computer program that reduces the

number of data points in a cross section to any size. He compared the GA-reduced cross sections to

cross sections developed by standard reduction methods—selecting every 10th, 20th, or nth point and

omitting the rest—for the same number of data points in a cross section. Reduced cross sections

developed from standard and GA methods were compared to the original cross-sectional data, and

results showed that the GA method produced smaller differences from the original cross-sectional data

than those obtained by using standard procedures. Unfortunately, no research to date has been done to

determine the optimal number of points that are needed in a cross section or the effects on cross-

section geometry and steady-flow profiles. The optimal number of points depends on the degree of

topographic variability and the scale of topography that is of interest. It also depends on laws,

regulations, or the requirements of the funding party—for example, FEMA (Federal Emergency

Management Agency, 2007).

The purpose of this report is to describe an application of a GA to the reduction of

cross-sectional data points, demonstrate that the GA is a viable approach, and to evaluate the

effects of reduced cross sections on channel geometry and steady-flow profiles. First, the

study compared the accuracy of two reduction approaches, standard and genetic algorithm

methods. Data from 10 cross sections covering 4 different channel types on a river were

reduced by standard and genetic algorithm methods. These reduction methods were employed

because the raw (original) data are preserved, not averaged, interpolated, or extrapolated.

Second, the study identified the sources and spatial distribution of error in different channel

types and determined the requisite sample size for different scales of resolution and

application. Third, the study examined the effects of data reduction on steady-flow profiles.

From these components, the amount of reduction can be tailored to the goals of an

application.

24

3.3 Reduction Methods

There are many data-reduction methods available. For this study, only methods that preserve

the original data were considered. The advantages of preserving the original data are that the original

features, including vertical banks and discontinuities, are maintained. The original cross section—

whether it contains 2,000 data points or 20 data points—is more accurate than anything generated in

part from those data. Stream-channel cross-section data from the Kootenai River (Barton et al., 2004)

were used in the data-point reduction methods. Data for the streambed part of these cross sections

were collected by connecting continuous Real-Time Kinematic (RTK) Global Positioning System

(GPS) equipment to an echo sounder, and bank data were collected by connecting a RTK GPS to a

laser rangefinder equipped with an angle encoder (Moran and Berenbrock, 2003). Berenbrock (2006b)

specifically used 10 cross sections from the Kootenai River to substantiate a genetic algorithm (GA)

for data-point reduction. Data points from these 10 cross sections were also used in this study because

the original data were still available. The cross sections are 107.658, 151.438, 152.019, 154.972,

163.027, 185.394, 199.727, 212.227, 216.622, and 219.881, which are defined by a station number in

river miles1 that corresponds to its location on the river. The number of data points in these sections

ranged from 497 in cross-section 152.019 to 2,521 in cross-section 154.972. Original data from the

other cross sections on the Kootenai River were not available. However, there were still enough data

points in the reduced cross sections by Barton et al. (2004)—usually more than 100 data points per

cross section, with some sections containing several hundred data points—for further reduction. For

this study, cross-section data were reduced to as few as 10 data points per cross section.

 1River mile locations are based on Columbia Basin Inter-Agency Committee (1965) river-mile index

for the Kootenai/Kootenay River. River mile 0 is at the confluence of the Kootenay River and

Columbia River near Castlegar, British Columbia, Canada, and river mile 152 is upstream on the

Kootenai River near Bonners Ferry, Idaho.

25

3.3.1 Standard Reduction

The standard-reduction method to reduce data points is to keep every 10th, 20th, 30th, or nth

point and discard (omit) the rest. This procedure was used in this study because of the standard-

reduction method’s simplicity, ease, and quickness. The value of the nth data point for each cross

section was different because the total number of data points in the cross sections was different. For

example, cross-section 152.019 has 497 data points. If the number of points was reduced to 20, then

every 26th point would be selected with 2 points remaining (1+(26×19)=495; then 497−495=2). The

first data point in the cross section is always kept, so a value of 1 is added to the number of intervals

(19 for this example). Fewer points exist along the banks than on the streambed for this dataset

because the bank data were collected manually with a laser rangefinder. The remaining two points in

this example were inserted into two different intervals that spanned the streambed. Thus, the size of

those intervals was increased to 27. This procedure ensures that the last point in the cross section is

kept and, for this example, the 497th point (last point) was kept (1+(26×17)+(27×2)=497).

3.3.2 Genetic Algorithm Reduction

Reducing the number of data points in a cross section is a non-linear combinatorial problem and,

therefore, is well suited for heuristic algorithms such as genetic algorithm (GA). GAs mimic the

natural selection and survival of the fittest and are well suited for solving combinatorial optimization

problems in which there is a large set of candidate solutions (Fisher, 2013). Koza (1992, p. 18)

provides the following definition of a GA:

The genetic algorithm is a highly parallel mathematical algorithm that transforms a set

(population) of individual mathematical objects (typically fixed-length character strings

patterned after chromosome strings), each with an associated fitness value, into a new

population (i.e., the next generation) using operations patterned after the Darwinian

principle of reproduction and survival of the fittest and after naturally occurring genetic

operations (notably sexual recombination).

In a GA, a population is represented by a number of individuals called genes (strings of

chromosomes). Individuals are produced by ‘mating’ (crossover of chromosomes) two individuals

together and ‘mutating’ a chromosome. The fittest individuals in the new population are selected to

breed and mutate again, passing their genetic information to their children to create a newer

population, and the least fit individuals are discarded. The newer population is then used in the next

iteration of the algorithm. This process is repeated until a number of iterations has been reached or the

26

maximum number of consecutive iterations without any improvement to the best fit individual is

exceeded. Note that each individual is a solution to the problem. In essence, the GA represents an

“intelligent” exploitation of the search space in a random fashion to solve a problem. A more complete

discussion on genetic algorithms is given in Goldberg (1989), Grefenstette (1990), Davis (1991), and

Mitchell (2002).

The GA developed by Berenbrock (2006b) [Chapter 2] was used in this study to reduce cross-

section point data because it is easy to use, fast, and preserves the original data. The fitness function in

Berenbrock’s (2006b) [Chapter 2, Equation 2.1] GA, however, is biased because the x-value (distance)

for each data point does not contribute to the fitness function—only the y-values (elevation) do. The

function does not account for the varying distances between the data points (irregularly spaced data)

and, thus, data points need to be regularly spaced along a cross section. However, most cross sections

are composed of irregularly spaced points. To account for irregularly spaced points, the fitness

function was modified to calculate the area between the original and reduced cross sections–noted as

the area between the cross sections (ABC). Thus, ABC accounts for the contribution from both x and y

values. The value of ABC is always positive, regardless of how the cross sections cross one another.

To solve this mathematically, the absolute value of ABC is employed and is denoted as |ABC|. The

modified two-conditional fitness function is as follows:

where

 f(i) is the value of fitness for individual i;

 n is the number of data points in the original dataset;

ABCj is the area between the cross sections, original and reduced, for trait j;

 inci is the number of included data points in individual i; and

plimit or point limit is the maximum number of points to be included in the reduced

dataset.

Each individual in the GA represents a reduced cross section, and the fitness of an individual (thus, a

fitness of traits or data-point combinations) is represented as a value from the fitness function. The GA

minimizes the fitness function, Minimize f(i), to identify the best-fit or optimal individual from all

possible data-point combinations.

(Equation 3.1)

27

A sample calculation of fitness for a hypothetical cross section is shown in Figure 3.1.

Reduced cross sections are composed of included and excluded points. Included points are data points

that are kept from the original cross section, and excluded points are data points that are discarded

from the original cross section. For the reduced cross section shown in Figure 3.1, the included data

points are at points 1, 2, 5, 6, 9, and 11, and excluded data points are at points 3, 4, 7, 8, and 10. The

area between the cross-sections (ABC), original and reduced, is calculated for each closest pair of

points. For the first pair of points 1–2, ABC is calculated to be 0 square meters (m2) because the data

points for both cross sections are the same. For the second pair (2–3), ABC is calculated to be 53.8 m2.

For point pairs 3–4 and 4–5, ABC is calculated to be 40.3 m2 and 0.4 m2, respectively. For point pairs

5–6, ABC is calculated to be 0 m2 because the data points for both cross sections are the same. For

point pairs 6–7, 7–8, 8–9, 9–10, and 10–11, ABC is calculated to be 0.5 m2, 25.2 m2, 34.3 m2, 13.4 m2,

Figure 3.1. Fitness calculations for a hypothetical cross section. Fitness is calculated according to

equation 3.1 as shown at the top of the figure. m2, square meters.

28

and 24.1 m2, respectively. The total ABC is 192.0 m2, which is the fitness value for this reduced

hypothetical cross section. Fitness serves to aggregate the errors of an individual into a single measure.

It is a good measure of accuracy, but only between other individuals in the population, as it is scale

dependent.

To validate the modifications made to the GA, the 10 cross sections that were used to validate

the original GA (Berenbrock, 2006b) were used. The GA was run with the same parameter values as

in the original GA. The best fitness results are shown in Table 3.1. The reduction method used by

Barton et al. (2004), however, was based on selecting points every 1 to 2 meters (m), plus additional

user-specified points to capture any important missing topography as determined from visual

inspection (Berenbrock, 2006b, p. 388); this results in a variable number of reduced data points per

cross section (Table 3.1, column 3), rather than a fixed number of points, as described by the standard-

reduction method. To compare these methods, the fitness for the best fit reduced cross sections from

Barton et al. (2004) and original GA (Berenbrock, 2006b) were recalculated by using Equation 3.1 and

presented in Table 3.1.

The best fitness values for the GA runs were consistently less (better performance, more

accurate) than those from Barton et al. (2004) and original GA (Berenbrock, 2006b) methods. On

average, the GA fitness was 39.2 percent and 57.0 percent less than Barton et al. (2004) and original

GA methods, respectively. These results indicate that the GA cross sections are significantly more

(better) defined or representative of the original cross section than cross sections by the other two

reduction methods. Note that the original GA fitness values were usually greater (lower performance)

than Barton et al (2004) fitness values because the original GA fitness function was optimized for

regularly spaced data, not irregularly spaced data as constitute most cross sections.

The GA-reduction method preserves the detailed character of the original cross section better

than Barton et al. (2004) and original GA (Berenbrock 2006b) methods. The GA cross sections were

generally more defined where the original cross section had more topographic variability. The GA

cross section matched the original cross section quite well, especially in the relatively smooth areas.

The point density in the relatively smooth areas was far more reduced in the GA section than in Barton

et al. (2004) and original GA sections. Conversely, the point density in the relatively rough areas

(topographic variability) was increased more in the GA section than in Barton et al. (2004) and

original GA sections. For the most part, the detailed character of the original cross section was better

preserved by using the GA method than using the other two reduction methods. Therefore, the

29

30

modification that was made to the GA method is the more appropriate genetic algorithm-reduction

method and was used throughout this study.

3.4 Comparison of Reduction Results

To evaluate the effect on cross-section geometry and steady flow profiles, comparisons from

the standard-reduction method and GA-reduction method were conducted. The comparisons included

the 10 cross sections from the Kootenai River in Table 3.1. The original cross sections were reduced in

size to 10, 20, and 30 data points using both standard-reduction and GA-reduction methods. Harrelson

et al. (1994) determined that at least 20 data points are needed in a cross section to accurately describe

the character of the channel. The reduction to 30 data points was selected because a greater amount of

data points are needed if the cross section is quite broad or complex, such as the case with braided

channels. The reduction to 10 data points was selected because it is one-half of the recommended

minimum (Harrelson et al., 1994). Results from the reductions’ visual and hydraulic analyses are

presented in the following sections. The practical consequences from both reduction methods are

investigated in the “Hydraulic Modeling Analysis of Reduction Methods” section by the use of one-

dimensional (1-D) steady-flow profiles.

3.4.1 Visual Analysis of Cross-Section Reductions

After reducing the cross-section data, the reduced datasets were viewed graphically and

compared to the original data. Although the analysis of fitness is useful as given in Table 3.1, it is a

black-box approach that reports aggregate results without providing an understanding of the spatial

details and does not distinguish which parts of the cross section are causing the error. Visual analysis

provides further insight regarding the spatial distribution of error for the two reduction methods.

Synder and Minshall (1996) identified three geomorphic reaches in the Kootenai River—a

meander reach, a braided reach, and a canyon reach. Barton et al. (2005) defined a fourth geomorphic

reach—a straight reach. The meander reach is a single channel with gentle bends. The streambed

consists primarily of fine sand. Water depths usually exceed 12 m, and the water-surface slope is about

2×10-5 meters per meter (m/m), less than one-twentieth the slope in the braided reach. Sand dunes—as

high as 1.4 m and as long as about 23 m (Barton et al., 2005)—also occur throughout the meander

reach. The straight reach is a transitional reach between the meander and braided reaches, and its

streambed consists primarily of sand, gravel, and cobbles. The braided reach usually consists of

multiple channels, and the streambed is composed primarily of gravel and cobbles. Water depths

usually are less than 2 m, and water-surface slope is about 4.6×10-4 m/m. The canyon reach consists of

31

a long, straight single channel with steep canyon walls and is incised into bedrock. The streambed

consists primarily of cobbles and boulders. Water depths are usually about 6 m, and water-surface

slope is about 3×10-4 m/m.

Examples for each geomorphic or channel type—meander, straight, braided, and canyon

(Czuba and Barton, 2011)—are shown in Figure 3.2. Cross-section 107.658 is in the meander reach,

cross-section 152.019 is in a straight reach, cross-section 154.972 is in a braided reach, and cross-

section 163.027 is in a canyon reach. The effects of standard data-point reduction on cross-sectional

shape are shown in Figures 3.2A, 3.2C, 3.2E, and 3.2G, and effects of GA reduction on cross-sectional

shape are shown in Figures 3.2B, 3.2D, 3.2F, and 3.2H.

At first glance, the reduced cross sections composed of 10 data points showed that it was the

worst shaped case for both reduction methods. The graphs in Figure 3.2 indicate that more than 30

points were needed when using the standard-reduction method, whereas 20 to 30 data points were

adequate when using the GA-reduction method, except for cross-section 154.972 (Figure 3.2D). The

GA-reduced cross sections approximated the shape of the original cross sections better than the

standard-reduced cross sections for the same number of reduced data points (npr). The standard-

reduction method produced greater bank errors than the GA method; also there were greater streambed

errors in the braided and straight reaches. At cross-section 154.972 (braided reach), a greater number

of data points were needed for both reduction methods because there was much more topographic

variability in this cross section than in the other cross sections. Additional analysis indicated (not

shown in Figure 3.2) that about 70 data points were needed to adequately define the shape of cross-

section 154.972 when using the standard-reduction method and about 40 points when using the GA-

reduction method.

A visual comparison was performed on cross-sectional area plots. Area was used instead of

conveyance because the performance of conveyance can be confounded by the uncertainly in

coefficients in Manning’s flow equation (Chow, 1959). The effects of data-point reduction on cross-

sectional area for the cross sections in Figure 3.2 are shown in Figure 3.3. The cross-sectional area

curves for the reduced cross sections composed of 10 points were furthest from the original area

curves for both reduction methods, and were closest to the original curves for the 30-point cross

sections for both methods. Cross-sectional areas for the GA-reduced cross sections approximated the

shape of the original cross-sectional areas better than the standard-reduced cross sections for

respective data-point reduction. But for cross-section 154.972 (braided reach), none of the reduced

32

Figure 3.2. Effects of data-point reduction on cross-sectional shape.

33

Figure 3.3. Effects of data-point reduction on cross-sectional area.

34

area curves for both methods closely agreed with the original area curves (Figures 3.3E and 3.3F). The

original area curves show a break near an elevation of 534 m that is probably caused by a greater

amount of topographic variability in the original cross section (Figures 3.2E and 3.2F) compared to the

reduced cross sections. For the reduced cross sections, this departure at the break in slope indicates

that there are not enough data points to adequately define the topographic variability in this area.

The performance of the cross-section reduction is quantified by the measured error in the

reduced cross section. This error is designated as reduction error (RE) and is defined as the total area

between the original and reduced cross-section curves (ABC) divided by the number of reduced data

points (npr) and is expressed as follows:

 (Equation 3.2)

The RE normalizes the reduction methods with respect to the number of npr and allows for

direct comparison of different cross sections and reduction methods. The RE has units of area per

point; for the datasets used in this study, it was square meters per reduced data point (m2/point). The

value for RE depends on the number of points in the original and reduced cross sections and the

topography of the cross section. The smaller the RE, the greater similarity between the original and

reduced cross sections. The larger the RE, the greater the disparity between the topography of the

original and reduced cross sections. Equation 3.2 represents the gain in cross-sectional likeness due to

the reduction of the area between the cross-section curves with the increase in the number of reduced

data points. The RE values are unique and depend on cross-section topography and the number of data

points in the original and reduced cross sections. The accuracy of the cross-section reduction is likely

to be sensitive to the quality and quantity of the original data and how it represents the different scales

of topography that are present. For example, the performance of the cross-section could differ if a

topographically complex channel was surveyed by 40 data points as opposed to 400 data points. This

is not an issue for the Kootenai data, given the high density of original data points, but it could be an

issue in other studies.

Values of RE for reduced cross sections that contained 10, 20, and 30 data points were

calculated for the 10 cross sections on the Kootenai River by using the standard- and GA-reduction

methods (Table 3.2). For the GA-reduced cross sections, fitness or ABC was calculated by the GA

program (Appendix E). For the standard-reduced cross sections, ABC was calculated using the first

part of Equation 3.1, similar to the calculation shown in Figure 3.1. Then, Equation 3.2 was used to

calculate the RE for both methods. As shown in Table 3.2, as the number of reduced data points

35

increase, the RE decreases. Also the RE values for the GA-reduced cross sections were always less

than the RE values for the standard-reduced cross sections, indicating that the GA-reduced cross

sections are more representative of the original data than the standard-reduced cross sections. The RE

values for the canyon-reach cross sections were usually consistent with one another for the number of

data points for both methods. For the GA method, the canyon cross sections had the lowest RE values,

and cross-section 154.972 (braided reach) had the highest RE values. For the standard-reduction

method, cross-section 107.658 (meander reach) had the lowest RE values because the banks in this

cross section were gently sloping, thus, reducing its ABC value (Figure 3.2A). Also, for the standard-

reduction methods, cross-section 152.019 (straight reach) had the highest RE values because the

method selected only a few points on the banks, thus, causing ABC to be quite large (Figure 3.2C).

Similarly, that is the reason for the large RE values for cross-section 151.438 (straight reach).

The GA program was used to develop RE curves (Figure 3.4) for the 10 cross sections listed

in Table 3.2. Each curve was developed by running the program for a selected number of reduced data

points (npr) starting at 10 data points and incrementing by 10 until reaching 100 data points. The

program was run 10 times at every npr to ensure that near optimal results were reached. The lowest RE

value (calculated from Equation 3.2) at each npr was retained and used to develop the RE curve for

every cross section. Also, the ABC and npr values from Table 3.1 for the modified GA were used,

and, for seven cross sections, they were used to extend the RE curves beyond an npr of 100. These

curves represent near optimal solutions. All RE curves in Figure 3.4 are concave upward to the right.

The RE curve for cross-section 154.972 (braided reach) is more upward toward the right than all the

other RE curves because its cross section was more complex (greater topographic variability). In

contrast, cross sections in the meander and canyon reaches were less complex (less topography

variability), causing the RE curves to be in the lower part of the plot. The RE curves for cross sections

in the straight reach were between the canyon and braided curves. The RE plot (Figure 3.4) shows that

as topographic variability in a cross section increases, the RE curve will be more upward toward the

right in the plot, thereby indicating that increasing the number of points in a cross section needs to be

increased to adequately represent the original cross section. The RE curve also allows one to visually

judge where an increase in npr does not result in significant RE reduction (called the point of

diminishing returns). This location on a RE curve is at the point of diminishing returns (breakpoint).

For this study, the breakpoint’s location was determined by a two-phase linear regression where two

straight lines are fitted to the data by minimizing the residual sum of squares. Above the breakpoint (to

the left on the curve), the RE value increases quite rapidly as the number of data points decrease;

below the breakpoint (to the right on the curve), the increase in the number of data points does not

36

Table 3.2. Reduction error (RE) values for 10 cross sections resulting from the standard and genetic

algorithm (GA) reduction methods, Kootenai River, Idaho.

 Reduction error, in square meters per reduced point

 Number of reduced data points in cross sections

Cross Standard method GA method

Section 10 20 30 10 20 30

Meander Reach

107.658 4.9 1.7 0.8 2.0 0.6 0.2

Straight Reach

151.438 33.9 9.0 4.3 11.6 2.1 0.9

152.019 49.8 18.1 10.4 10.9 1.7 0.6

Braided Reach

154.972 41.1 10.4 4.2 18.2 4.7 2.6

Canyon Reach

163.027 11.8 6.1 3.9 3.5 0.7 0.1

185.394 13.0 3.4 1.5 1.8 0.2 0.1

199.727 11.1 4.0 2.5 3.4 0.1 <0.1

212.227 9.7 2.5 1.5 4.1 0.9 0.2

216.622 7.6 2.7 1.3 3.5 0.6 0.2

219.881 17.0 4.6 2.1 2.7 1.2 0.6

37

Figure 3.4. Reduction-error (RE) curves for 10 cross sections resulting from the genetic algorithm

(GA) reduction method, Kootenai River, Idaho.

38

lower the RE value as rapidly. The break points for the 10 RE curves are shown in Figure 3.4. The

location of the breakpoint for cross-section 107.658 (meander reach) is at an RE of about 0.4 m2/point

and at a number of reduced data points of 22 points, about 1 m2/point and 22 points for cross-section

152.019 (straight reach), about 3 m2/point and 29 points for cross-section 154.972 (braided reach), and

about 0.4 m2/point and 23 points for cross-section 163.027 (canyon reach). Breakpoints (points of

diminishing returns) for cross sections in the meander and canyon reaches were less than those in the

straight and braided reaches because their topography is less varied (Figure 3.4). By 50 data points, all

cross sections except 154.972 (braided reach) had RE values equal to or less than 0.25 m2/point

(Figure 3.4). At this value, the RE curves for the meander, straight, and canyon cross sections are

nearly asymptotic to the x-axis. Cross-section 154.972 (braided reach) did not reach an RE value of

0.25 m2/point until 93 data points. This again indicates that cross sections having varied topography

such as the braided reach, require more data points to define them adequately.

3.4.2 Hydraulic Modeling Analysis of Reduction Methods

The effects of cross-sectional data-point reduction along a reach were examined on steady-

flow water-surface profiles. The 1-D hydraulic-flow model of the Kootenai River in Idaho

(Berenbrock, 2005, 2006a) was used to evaluate these effects. The HEC-RAS model, version 4.1

(Brunner, 2010), was used to compute the steady flow profiles (water-surface elevations at cross

sections). Only part of the original model (164 cross sections) was used. Cross-sectional data points

for only 35 cross sections were reduced—starting at cross-section 149.910 (meander reach) and

stopping at cross-section 156.861 (braided reach). This reach was selected because it is the focus of a

habitat-restoration project for the recovery of the endangered Kootenai River white sturgeon

(Acipenser transmontanus) population, and misrepresentation of cross-sectional data could have major

effects on computed steady-flow profiles. This reach included meander, straight, and braided reaches.

The model was not extended into the canyon reach because reduction in cross-sectional data points

had little effect on the computed cross sections, as shown by the low RE values (Table 3.2 and Figure

3.4). The transition from meander to straight occurs near river mile 151, straight to braided at river

mile 153.3, and braided to canyon near river mile 161. A total of 30 simulations were run using the

combinations of 5 discharges, 3 data-point reduction levels, and 2 reduction methods. The five

discharges (170, 283, 850, 1,416, and 1,982 cubic meters per second, or m3/s) represent the objective

discharges, with respect to habitat restoration (Berenbrock, 2006a), and cross sections were reduced to

10, 20, and 30 data points because they span the breakpoint values for cross sections in figure 3.4. The

two data-point reduction methods used were standard and GA.

39

Results for water-surface elevations are given as differences from the original (Figure 3.5).

Generally, results from the simulations showed that the standard-reduced cross sections had greater

water-surface differences from the original than did simulations from GA-reduced cross sections. Also

differences were greater for the 10-point simulations than for the 20-point and 30-point simulations in

respective methods and discharges. For all simulations, the greatest water-surface elevation differences

were at cross sections in the braided reach, probably because the reduced cross sections in that reach

were not as accurate in representing the original, as shown by the higher RE values. For the standard-

reduction simulations, effects from the reduced cross section were seen upstream of river mile 161

(not shown on Figure 3.5), and for the GA-reduced simulations, no effects were seen upstream of river

mile 159 (Figure 3.5). In simulations where the RE value for every cross section was equal to or less

than 0.25 m2/point, differences in water-surface elevations (steady flow profile) from the original were

very small.

Some cross sections had greater differences in water-surface elevation when more data points

were used (Figure 3.5). This is contrary to the paradigm that more data are better. For example, as seen

in Figure 3.5A, model results for the standard-reduction method showed that water-surface differences

for the 20-point simulation were less than for the 30-point simulation. This occurred in and around

cross-section 154.575 (braided reach). The error depends on which cross-sectional data points are

captured during reduction and their importance in defining the cross section. The original cross section

of 154.575 has four braided channels—three shallow secondary channels and one deep main

channel—when total discharge is 170 m3/s (Figure 3.6). The left most secondary channel was

characterized by 6 and 10 data points in the 20-point and 30-point standard-reduced cross sections,

respectively (Figure 3.6A). However, water-surface differences were less for the 20-point simulation

than for the 30-point simulation (Figure 3.5A). This also occurred at other cross sections, at other

discharges, and for both reduction methods. Figure 3.6A shows that both point-reduction levels poorly

fit the braided bar landforms in the middle of the cross section, but both point-reduction levels fit the

original quite well in the deep main channel (right). The braided bar landforms were reduced in size in

the 20-point and 30-point standard reduced cross sections. For the 10-point standard reduced cross

section, only two channels were seen—a shallow and wide secondary channel (left), and one deep

main channel (right) in which the braided bar landforms from the original cross section are missing.

At discharges of 850 m3/s and greater, model results for the standard-reduction method

showed differences in water-surface elevation were less for the 20-point simulations than for the 30-

point simulations in the braided reach, specifically in and around cross-section 156.604 (Figures 3.5C–

E). At this cross section, the 20-point and 30-point standard-reduced cross sections excluded data

40

Figure 3.5. Effects of reduced cross sections on simulated water-surface elevation at five river

discharges.

41

Figure 3.6. Comparisons between the original and 10 point, 20 point, and 30 point reduced cross

sections produced by two reduction methods for cross-section 154.575.

42

points in the thalweg of the secondary channel, which caused the elevation of the reduced cross section

in this area to be 0.5 m higher than the original. However, the 10-point standard-reduced cross section

included it, but excluded other secondary thalweg points in the cross section. Even though the 30-point

standard-reduced cross sections had more points than the 20-point cross section, the 20-point standard-

reduced cross section had points in locations that represent the cross-section topography more

accurately.

Generally, the GA-reduced cross sections incorporated the shallow channel thalweg and better

represented the original cross section. However, at discharges of 170 and 283 m3/s, water-surface

differences for the 10-point GA-reduced simulation were less than the 20-point simulation in and

around cross-section 154.575 (Figures 3.5A–B). Although the 20-point reduced cross section

resembled the original cross section better than the 10-point reduced cross section (Figure 3.6B), it did

worse when it came to step-backwater analysis because the water-surface elevation at cross-section

154.178, a reduced cross section just downstream of this section, contained large errors from the

original. At cross-section 154.178, there were too few data points in the secondary channels to define

the topographic variability adequately, especially the thalwegs in the secondary channels.

Differences from the original water-surface elevation in the steady-flow profiles were small in

the GA-reduced cross sections when an RE of less than or equal to 0.25 m2/point was used (Figure

3.5). The number of reduced data points for this condition ranged from 20 to 40 points, but several

cross sections in the braided reach contained more. Cross-section 154.972 (braided reach), for

example, had the most reduced data points (93) in order to meet this condition. This value is less than

100, the limit of most hydraulic and sediment transport models such as HEC-2 and HEC-6. Note that

the level of acceptable error in the water-surface elevation or flow depth depends on one’s intended

use (for example, floodplain maps, sediment transport, or fish habitat).

3.5 Summary

The genetic algorithm (GA) method is a viable approach for reducing data points in a cross

section and produced better results than the standard method it was tested against in this study. The

original GA by Berenbrock (2006b) [Chapter 2] did not account for varying distances between cross-

sectional data points. To account for irregularly spaced data points, the fitness function was modified

to calculate the area between the original and reduced-cross-section curves. By using 10 cross sections

from the Kootenai River, best fitness values were consistently lower (demonstrating better

performance) for the GA runs than for the standard-method and original GA runs. On average, the GA

43

fitness was 39.2 percent lower than the standard method, and for several cross sections was nearly 50

percent lower. The GA-reduced cross sections approximated the shape of the original cross sections

better than the standard method and, thus, the GA-reduction method should be used over the standard

method.

To provide further insight regarding the spatial distribution of error for the two approaches,

visual and hydraulic analyses were completed. Visual analysis (graphs) demonstrated that GA-reduced

cross sections approximated the shape of the original cross section better than the standard-reduced

cross sections. This was also true for the cross-sectional area. An reduction error (RE) was developed

to quantify the difference between the original and reduced cross sections. The RE values decreased as

the number of reduced data points increased for both reduction methods, and as expected, RE values

were lower (better) for the GA-reduced cross sections than for the standard method. The RE curves

were developed for the 10 cross sections on the Kootenai River by using the GA-reduction method,

and the breakpoints (points of diminishing returns) found. For the canyon and meander reaches, the

breakpoints (about 20 data points) represent the optimal number of points needed in a cross section.

However, many more cross-sectional data points were needed for cross sections in the braided and

straight reaches as compared to cross sections in the canyon and meander reaches. Also, additional

cross sections from other study areas are needed to draw consistent conclusions regarding the number

of cross-sectional data points needed for each reach type. The GA-reduced cross sections matched the

shape of the original cross section quite well when the RE was equal or less than 0.25 m2/point, the

point at which the RE curves become approximately asymptotic to the x-axis. Most cross sections

reached this value at 20 to 40 data points, but cross-section 154.972 (braided reach) did not reach it

until 93 data points. More complexly shaped cross sections need greater amounts of data points to

define them adequately. Depending on the intended use of a cross section, the number of data points

depends on the degree of topographic variability of the cross section and the scale of interest.

This study also investigated the practical consequences of errors due to cross-section reduction

on steady-flow profiles. Thirty-five cross sections from the original steady-flow surface-water model

of the Kootenai River were used. Cross-sectional data in these cross sections were reduced to 10, 20,

and 30 data points for both reduction methods. Results generally indicated that differences were less

for cross sections developed by the GA-reduction method than by the standard-reduction method.

Also, differences from the original water-surface elevation were usually less as the number of data

points in cross sections increased—except for some of the reduced cross sections in the braided and

straight reaches. The exception is contrary to the paradigm that more data points are better, and is the

result of the standard and GA methods not always having enough points in the secondary channels

44

(braided) to define them adequately. The GA method did not select enough points in the secondary

channels because fitness was not bettered (lower value) by doing so. To rectify this problem, the GA

needs to be modified so that thalweg points in all channels, the main as well as secondary, are

selected. Although the GA method is clearly a major advancement in the reduction of cross-sectional

data, there are, of course, limits to its performance. In particular, cross sections having multiple

channels, such as braided channels, can be problematic.

3.6 References Cited

Barton, G.J., McDonald, R.R., Nelson, J.M., and Dinehart, R.L., 2005, Simulation of flow and

sediment mobility using a multidimensional flow model for the white sturgeon critical-habitat

reach, Kootenai River near Bonners Ferry, Idaho: U.S. Geological Survey Scientific Investigations

Report 2005–5230, 54 p.

Barton, G.J., Moran, E.H., and Berenbrock, Charles, 2004, Surveying cross sections of Kootenai River

between Libby Dam, Montana, and Kootenay Lake, British Columbia, Canada: U.S. Geological

Survey Open-File Report 2004–1045, 35 p.

Berenbrock, Charles, 2005, Simulations of hydraulic characteristics in the white sturgeon spawning

habitat of the Kootenai River near Bonners Ferry, Idaho: U.S. Geological Survey Scientific

Investigations Report 2005–5110, 30 p.

Berenbrock, Charles, 2006a, Simulations of hydraulic characteristics for an upstream extension of the

white sturgeon habitat of the Kootenai River near Bonners Ferry, Idaho—A supplement to

Scientific Investigations Report 2005–5110: U.S. Geological Survey Scientific Investigations

Report 2006–5019, 17 p.

Berenbrock, Charles, 2006b, A genetic algorithm to reduce stream channel cross section data: Journal

of the American Water Resources Association, v. 42, no. 2, p. 387–394.

Brunner, G.W., 2010, HEC-RAS, River analysis system hydraulic reference manual: U.S. Army Corps

of Engineers Hydrologic Engineering Center, CPD-69, January 2010, version 4.1, 417 p.

Burnham, M.W., and Davis, D.W., 1990, Effects of data errors on computed steady-flow profiles:

American Society of Civil Engineers Journal of Hydraulic Engineering, v. 116, no. 7, p. 914–929,

DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(1990)116:7(914).

45

Castellarin, A., Di Baldassarre, G., Bates, P.D., and Brath, A., 2009, Optimal cross-sectional spacing

in Preissmann Scheme 1D hydrodynamic models: Journal of Hydraulic Engineering, v. 135, no. 2,

p. 96–105.

Chow, V.T., 1959, Open-channel hydraulics: New York, McGraw-Hill, 680 p.

Columbia Basin Inter-Agency Committee, 1965, River mile index, Kootenai River, United States,

Kootenay River, Canada, Columbia River Basin, Idaho, Montana, British Columbia: Columbia

Basin Inter-Agency Committee, Hydrology Subcommittee, November 1965, 49p [114].

Cook, Aaron, and Merwade, Venkatesh, 2009, Effect of topographic data, geometric configuration and

modeling approach on flood inundation mapping: Journal of Hydrology, v. 377, p. 131–142.

Czuba, C.R., and Barton, G.J., 2011, Updated one-dimensional hydraulic model of the Kootenai River,

Idaho—A supplement to Scientific Investigations Report 2005–5110: U.S. Geological Survey

Scientific Investigations Report 2011–5128, 36 p.

Davis, L., 1991, Hybridization and numerical representation, in Davis, L., ed.,The handbook of

genetic algorithms: United Kingdom, Van Nostrand Reinhold, p. 61–71.

Federal Emergency Management Agency, 2007, Guidelines and specifications for study contractors:

Federal Emergency Management Agency, Publication 37, Washington, D.C., U.S. Government

Printing Office, p. 174, accessed August 25, 2011, at

http://www.fema.gov/library/viewRecord.do?id=2238.

Fisher, J.C., 2013, Optimization of water-level monitoring networks in the eastern Snake River Plain

aquifer using a kriging-based genetic algorithm method: U.S. Geological Survey Scientific

Investigations Report 2013-5120 (DOE/ID-22224), 74 p., http://pubs.usgs.gov/sir/2013/5120.

Goldberg, D.E., 1989, Genetic algorithms in search, optimization and machine learning: Reading,

Mass., Addison Wesley, 412 p.

Grefenstette, J.J., 1990, Genetic algorithms and their applications, in Kent, A., and Williams, J.G.,

eds., The encyclopedia of computer science and technology, 21 (Supp. 6): New York, Marcel

Dekker, p. 139–152.

Harrelson, C.C., Rawlins, C.L., and Potyondy, J.P., 1994, Stream channel reference sites—An

illustrated guide to field technique: U.S. Department of Agriculture, Forest Service, Rocky

46

Mountain Forest and Range Experiment Station, Gen. Tech. Rep. RM-245, Fort Collins, Colo.,

61 p.

Koza, J.R., 1992, Genetic programming—Vol. 1, on the programming of computers by means of

natural selection (complex adaptive systems): London, A Bradford Book, 819 p.

Mitchell, M., 2002, An introduction to genetic algorithms: Cambridge, Mass., The MIT Press, (8th

printing), p. 209.

Moran, E.H., and Berenbrock, Charles, 2003, GPS—Time saver and functional: U.S. Geological

Survey Western Water Watch, v. 1, no. 1, p. 6–7.

Pasternack, G.B., Wang, C.L., and Merz, J.E., 2004, Application of a 2D hydrodynamic model to

design of reach-scale spawning gravel replenishment on the Mokelumne River, California: Journal

of River Research and Applications, v. 20, p. 205–225.

Samuels, P.G., 1989, Backwater length in rivers: Proceedings of Institution of Civil Engineers, pt. 2,

no. 87, December, p. 571–581.

Synder, E.B., and Minshall, G.W., 1996, Ecosystem metabolism and nutrient dynamics in the

Kootenai River in relation to impoundment and flow enhancement of fisheries management: Idaho

State University, Stream Ecology Center, variously paginated.

Traver, R.G., and Miller, A.C., 1993, Open channel interpolation of cross sectional properties: Journal

of the American Water Resources Association, v. 29, no. 5, p. 767–776. DOI:

http://dx.doi.org/10.1111/j.1752-1688.1993.tb03236.x.

Travis, Quentin, and Lokey, Burke, 1999, Minimizing errors due to cross-section point reduction, in

American Society of Civil Engineers Proceedings of the 26th Annual Water Resources Planning

and Management Conference (WRPMD), Tempe, Ariz., June 6–9, 1999, Wilson, E.M., ed.: Reston,

Va., ASCE, 978-0-7844-0430-0 or 0-7844-0430-5, 1999, chap. 3G64, p. 1-13, DOI:

http://dx.doi.org/10.1061/40430(1999)142.

http://dx.doi.org/10.1061/40430(1999)142

47

CHAPTER 4. DECIMATION OF RIVER GEOMETRY DATASETS USING

GENETIC ALGORITHMS FOR USE IN SURFACE-WATER MODELS

4.1 Abstract

Surface-water hydraulic models require accurate representation of the river and (or) floodplain

geometry, and the resulting dataset can be too large for most one-dimensional models. Selecting the

appropriate data points to use in the model from among the hundreds or thousands of data points can

be both challenging and tedious.

The problem is even more challenging for multi-dimensional datasets such as bathymetry or

datasets produced from using Light Detection and Ranging (LiDAR). These datasets are typically used

in two- and three-dimensional surface-water models. The standard procedure usually consists of

gridding, which generalizes the terrain—missing the high and low elevations. To more effectively

perform this task, the Genetic Algorithm (GA) computer program was modified to decimate (i.e.

reduce) multi-dimensional datasets. The program was then used to decimate data for a hypothetical

example and data taken from an actual bathymetric and LiDAR dataset. Results indicated that the

program successfully reduced the data. Terrains produced by the GA are fairly representative of the

original data, and volumetric differences from the original terrain were smaller for the GA produced

terrain than standard procedures of decimating LiDAR. Results also showed that near-optimal results

could be obtained in a single GA run.

4.2 Introduction

Traditionally, surveyed stream profiles and cross sections and (or) Light Detection and

Ranging (LiDAR) scans are used to obtain data that describe the channel shape of streams and

floodplains and are used in mathematical computer models to simulate flow hydraulics and sediment

transport in a stream. A cross section is a series of data pairs (distance and elevation) along a straight

line that is roughly perpendicular to streamflow. These datasets can be large. For example, data for

approximately 500 cross sections were collected on the Kootenai River in northern Idaho. The number

of data points for each cross section ranged from about 500 to more than 2,000 points (Barton et al.,

2004; and Moran and Berenbrock, 2003). LiDAR and bathymetric datasets present an even larger

problem. These datasets are usually used in two- and three-dimensional surface-water models. For

example, a raw LiDAR dataset from the Lower Coeur d’Alene River for a 1 kilometer (km) by 1 km

48

area consisted of more than 350,000 data points (x, y, and z). If a 10 km x 2 km reach of this river and

floodplain were selected to be modeled, the dataset would consist of more than 6 million data points.

For flood insurance studies, the Federal Emergency Management Agency (FEMA) indicates

that cross-section points should be located at breaks in the ground slope and should approximate the

actual shape of the channel and (or) floodplain (FEMA, 1995). There is no point minimum as long as

the actual shape of the channel and floodplain are well defined. The FEMA requirement applies to

cross-section data, but is a reasonable requirement for multi-dimensional datasets such as digital

elevation models (DEM) and bathymetric and LiDAR datasets.

These large datasets can be reduced to smaller, less dense datasets that are easier to work

with—a process called decimation. Previous investigators have developed automatic decimation

procedures. Chen and Guevara (1987) presented an automatic point selection procedure called “very

important points” (VIP) for selecting points directly from DEMs or triangulated irregular networks

(TIN). VIP is essentially a high-pass filter that selects data based on the distance a point is from the 4

lines connecting its diametrically opposed neighbors. Factors such as slope and proximity guide the

selection of data points. This procedure has several potential problems. First, the peak of a small, sharp

hill will be considered more important than a peak of one that is large, yet slopes gently. Secondly, the

VIP procedure chooses nearly all of the points along valleys and ridges. It is desirable to capture these

important features. However, if a ridge or valley follows a straight line, that feature may be

represented by two or a few points instead of by many points. Another disadvantage is that the VIP

procedure chooses nearly all of the points along the boundary, thereby overly defining the margins of

the study area.

Berenbrock (2006) developed a genetic algorithm (GA) for decimating cross-section data

while ensuring the integrity of the cross-section geometry. The program successfully decimated cross-

section data and fit better to the original data than standard procedures—selection of a data point a set

distance apart or selecting every 10th, 20th, or nth point. On average, differences between the original

cross sections and the GA-produced cross sections were about 30 percent less than cross sections

obtained using standard procedures.

The purpose of this paper is to describe application of a GA to the decimation of LiDAR data

and demonstrate that the GA is a viable approach. The GA described in this paper uses a single

objective optimization scheme for decimating LiDAR and bathymetric data. A hypothetical example

and a case study with actual data are presented to validate the genetic algorithm. The hypothetical

example is a square dataset composed of 961 x, y, and z data points. The case study, Coeur d’Alene

49

River and Floodplain Application, consists of bathymetric data from the river and LiDAR data from

the floodplain.

4.3 Genetic Algorithm

Genetic algorithms apply the ideas of Darwin’s theory of evolution: individuals more adapted

to the environment have a better chance to survive (“survival of the fittest”). Genetic operators such as

selection, reproduction (crossover), and mutation are used to improve a population. Holland (1975)

was the first to apply these operators. Since then, GAs have been applied successfully to many water

resource problems (McKinney and Lin, 1992; Cieniawski et al., 1995; Vink and Schot, 2002; Chen,

2003; Knaapen and Hulscher, 2003). Vink and Schot (2002) and Chen (2003) indicated that GAs are

capable of handling highly nonlinear, discontinuous, nondifferentiable, interdependent, and nonconvex

problems where many other techniques such as linear and nonlinear programming, heuristic, etc.

cannot. Simulated annealing relies on a weighted objective function that only finds one optimal

solution per iteration, whereas, GAs are able to find multiple convex or nonconvex solutions in a

single iteration (Cieniawski et al., 1995).

In a GA, a population of individuals is created and evolved until an individual is obtained that

best represents the salient features of the dataset or until a specified number of generations is met.

Individuals exhibit traits that can be inherited. For the problem at hand, traits are combinations of

bathymetry and LiDAR data (terrain) points that are either included or excluded (removed) from the

dataset to create individuals. The inclusion or exclusion of traits might be represented as a string of

numbers or chromosomes. For example, the binary string “10101111” might represent an individual

where the second and fourth chromosomes (data points) are excluded (a value of 0) and the other

chromosomes included (a value of 1). The fitness of an individual (thus a fitness of traits or data point

combinations) is represented as a value from the fitness or objective function.

Chromosomes are passed from parents to offspring through a process called “crossover” in

which randomly selected chromosomes of the parents are combined or swamped to create children.

For example, two individuals (parents) with traits 10101010 and 11111111 are crossed at the sixth

through the eighth chromosome to produce two children, 10101111 and 11111010.

Individuals with superior fitness values are more likely to be allowed to reproduced, although

this rule is often relaxed or altered to increase the genetic diversity of the population. Additional

diversity is also introduced through mutation in which randomly selected chromosomes of the children

50

are changed (reassigned) to create a combination of traits not present in either parent. A child that has

been mutated may exhibit better or poorer fitness than the parents. Mutation rates are set very low.

Repeating the selection, crossover, and mutation processes over many generations under

conditions controlled by a fitness function results in better-fit individuals and the overall population

improves. The concept is described as pseudo code instructions in Figure 4.1. Instructions within the

“do-loop” are repeated until some time (number of generations) has elapsed, a threshold criterion has

been met, or best individual fitness has reached a plateau. Goldberg (1989), Grefenstette (1990), Davis

(1991), and Mitchell (2002) provide more complete discussions of the GA concept.

Figure 4.1. Pseudo code for a simple genetic algorithm.

4.4 Program Description

The cross section GA program (Berenbrock, 2006) was generalized and modified to create a

new binary GA program capable of decimating LiDAR and (or) bathymetric data. The program uses

strings of ones (1s) and zeros (0s) to represent the traits of individuals (combinations of present or

omitted data points) from the dataset. The position of chromosomes within the strings and the lengths

of the strings are fixed on the number of original data points (n). Ones (1s) are inserted into

chromosome positions corresponding to data points that define the convex hull for the dataset. A

convex hull is a set of points that define the extent or boundary of the dataset in n-space.

An individual represents a collection of data points with values of x, y, and z on the terrain.

The GA program uses TINs to represent or describe the terrain because data points can be irregularly

spaced, whereas in a DEM, points must be regularly spaced. A TIN is composed of three points to

51

form a triangular arrangement. An individual’s volume is the volume beneath the terrain or volume of

the TINs, which is calculated by computing the volume in each TIN and summing the TIN volumes.

The program computes an individual’s fitness as the difference between the individual’s

volume and the original volume. A limit on the number of included data points was accomplished by

imposing a two-conditional fitness function (Berenbrock, 2006). The two-conditional fitness function

is:

 i

n

j original i

j=1

n
inc -plimit

j original

j=1

v v if inc plimit

f (i) =

v v 10 otherwise

 
  

 

 
  

 





where f is the value of the fitness for individual i, n is the number of TINs in individual i, vj is the

volume of the TIN for trait j, voriginal is the volume of the original dataset, inci is the number of included

data points in individual i, and plimit (point limit) is the maximum number of points to be included in

the decimated dataset. The first condition applies if the number of included points in an individual is

less than or equal to the point limit; otherwise, the second condition applies. The GA then minimizes

the fitness function (Minimize f(i)) to identify the best-fit individual or optimal dataset.

To reduce the number of generations and program run time, an initialization technique was

used to generate the initial population. This technique sets the probability of a data point being

included to the plimit divided by the string length (n). By narrowing the search space, the GA then

focuses its search on approximately the right number of points and does not explore unlikely solutions

(including all points, including no points, and so on) (Berenbrock, 2006).

The GA is generational; two elite individuals are copied each generation. Tournament

selection is used as the reproduction methods, and tournament size is 3. In the validation test, several

different crossover rates (Pc), population sizes, and number of generations at first were used. The

mutation rate (Pm) was set to 1/n, a standard rate suggested by Reed et al. (2000, 2003). A general

description of the genetic algorithm program for LiDAR and bathymetric decimation is given in

Appendix H, and a listing of the program code is given in Appendix I.

(Equation 4.1)

52

4.5 Program Validation

Data representing a hypothetical example and data taken from actual bathymetric and LiDAR

datasets collected on the Coeur d’Alene River and Floodplain were used to validate the binary GA.

The plimit for the hypothetical example was arbitrarily set to 15 percent of the hypothetical data (144

data points) and 10 percent for the Coeur d’Alene data. A mutation rate of 1/n was used (Reed et al.,

2000, 2003).

4.5.1 Hypothetical Example

The hypothetical dataset consists of 961 regularly spaced points (x, y, z) on a 31 x 31 grid,

spaced 16 m apart (Figure 4.2A) (see Appendix J for the x-y-z data points). The GA was run 10 times

with a population size of 80 individuals, for 100 generations, using a crossover rate of 0.30 and plimit

of 15 percent (144 data points). The number of included data points ranged from 139 to 144 (Table

4.1). Because this GA seeks to minimize the fitness function (Equation 4.1), the run with the lowest

fitness value is the superior or “best” run for the given fitness function and domain. In this case, Run 8

had the superior fitness value (166 m3) given the 10 runs. Even though the GA relies on randomness in

sampling and in creating the initial population, the range in best fitness for all runs was small as

compared to the range in average fitness and root mean square error (RMSE) fitness. The small range

in best fitness suggests that near optimal results could be obtained in a single GA run. An example

output listing from the cross-section reduction program for the hypothetical dataset is given in

Appendix K.

Figure 4.2 shows a colorized relief terrain representation of the TIN produced by the

hypothetical (original), VIP, LATTICETIN and 10 GA runs. VIP and LATTICETIN are two

commonly used TIN procedures. The number of points used in VIP and LATTICETIN was not

allowed to exceed the plimit (144 points). From a qualitative viewpoint, the VIP run (Figure 4.2B) is a

very poor representation of the original dataset under this condition; only 20 points were used to

define the interior terrain while 120 points were used to define the boundary. The terrain is under

emphasized in the interior and over emphasized at the boundary. As discussed earlier, VIP retains

most if not all of the boundary points in its solution. The LATTICETIN run (Figure 4.2C) preserved

the major features fairly well but also had inaccurate features near the boundaries especially near the

stream. For example, the stream near the southern boundary extended too wide probably because only

a few data points are used to define the terrain in this area. For the LATTICETIN run, 37 data points

53

Figure 4.2. Terrain from the original dataset, VIP run, LATTICETIN run, and GA runs for the

hypothetical example. (n is the number of data points, and value inside the parenthesis is the number of

points located on the boundary)

54

Figure 4.2.—Continued.

Table 4.1. Best fitness value, number of data points, and number of points on the boundary for the

hypothetical example.

Run

Number of

data points

Best fitness value

(cubic meters)

Number of points

on boundary

Figure

no.

Original 961 -- 120 2A

VIP Run 144 -- 120 2B

LATTICETIN Run 144 -- 37 2C

1GA Run 1 140 361 28 2D

1GA Run 2 144 355 25 2E

1GA Run 2 141 771 23 2F

1GA Run 2 140 518 21 2G

1GA Run 2 139 271 20 2H

1GA Run 2 141 260 19 2I

1GA Run 2 140 332 26 2J

1GA Run 2 139 166 21 2K

1GA Run 2 143 1,110 19 2L

1GA Run 2 140 460 20 2M

1
The crossover rate (Pc) was set to 30 percent, the mutation rate (Pm) was set to 1/n, plimit was set to 15 percent

or 144 points, and n is the number of data points in the original data (961).

55

are located on the boundary. In the 10 GA runs, the major topographic features are preserved fairly

well (Figures 4.2D through 4.2M). Inaccurate features are also seen near the boundaries especially

near the stream. This is probably due to the GA runs containing fewer points on the boundary (ranging

from 19 to 28 points) which is less than the LATTICETIN run. The fewer points especially near the

stream caused the stream to not fully extend to the boundary of the study area or caused the stream to

extend too widely, similar to the LATTICETIN run. For example, the stream in runs 1 (Figure 4.2D),

2 (Figure 4.2E), and 10 (Figure 4.2M) did not fully extend to the northern boundary of the study area,

and the stream in run 4 (Figure 4.2G) did not fully extend to the southern boundary.

The best, average, and RMSE fitness values for Run 8 are shown in Figure 4.3. The best

fitness decreased as the number of generations increased indicating that the program functioned

correctly for this large dataset; best fitness decreased from 1,540 m3 to 518 m3. To measure the

distribution of the population, the average and RMSE fitness values are calculated for each generation.

If the average and RMSE fitness values are large, then the diversity between individuals is high; if

average and RMSE fitness values are small, the diversity is low. The genetic algorithm might not

perform well if the diversity is too high or too low. For example, if the population’s diversity is too

low, the genetic operator “crossover” becomes almost ineffective and the population probably will

have a hard time escaping from the local optimum where the population has converged too. On the

other hand, if the population’s diversity is too high, an optimal solution might not be reach or take a

long time (number of generations) to reach. The large range in average and RMSE fitness values

shown in Figure 4.3 indicates that the population is highly diverse. These values also fluctuated from

one generation to the next indicating changes in the population. Similar results were observed in the

other nine runs.

Figure 4.3. Best fitness, average fitness, and root mean squared error (RMSE) fitness for each

generation of GA Run 8 for the hypothetical example.

56

Volumetric results [hypsometric curves of volume] from the VIP, LATTICETIN, and GA runs

and the original are shown in Figure 4.4. The volume for the original and each run is calculated by

computing the volume for each TIN in the dataset and then summing those TIN volumes. Results for

the VIP run were much lower than the original indicating that the VIP-produced terrain is inaccurate in

this example. The volumetric differences from the original for this run are quite large (Figure 4.4B).

The number of interior data points (20 points) in this run was not enough to produce a reasonable

volumetric representation of the original. Volumetric results [hypsometric curves for volume] for the

LATTICETIN run closely tracked the original (Figure 4.4A). Differences in volume from the original

and the LATTICETIN run are small for heights greater than 1 m (Figure 4.4B); differences increase

when heights are less than 1 m, which can be seen in the unnatural shape of the stream (Figure 4.2C).

Results for the GA runs showed that volumes closely track the original and are bunched together in a

narrow band (Figure 4.4A), which also supports that near optimal results could be obtained in a single

GA run.

Differences in volume from the original in the GA runs are also small (Figure 4.4B). The

greatest differences occurred in the middle heights and are probably cause by the fitness function in

the GA basing its volumetric calculations only at a 0 m height. These differences are small but are

evidence of the deficiency in the GA. A fitness function is needed that integrates the entire volume

along the curve.

Figure 4.4. (A) TIN volumes for the original, VIP, LATTICETIN, and GA runs and (B) volumetric

differences from the original for the hypothetical example.

57

4.5.2 Coeur d’Alene River Application

For the real world application, a section was extracted from LiDAR and bathymetric datasets

from the Coeur d’Alene River and Floodplain near river mile 156 (Berenbrock and Tranmer, 2008).

The subsection, 1073 m (0.67 mi) wide and 952 m (0.60 mi) long, contains 10,080 points. The GA

initially was run with the same parameter values as in the hypothetical example, except plimit was

arbitrarily set to 10 percent (1,008 points).

The GA was run 10 times for the Coeur d’Alene River dataset. The best fitness and number of

points for each run are shown in Table 4.2. The run with the lowest fitness value is the superior or

"best" run because this GA seeks to minimize the fitness function (Equation 4.1). The range of best

fitness for the GA runs varied from 165 m3 to 1,390 m3. The fourth GA run had the superior fitness of

all the runs. The best, average, and RMSE fitness values for Run 4 are shown in Figure 4.5. Again, as

expected, the best fitness decreased as the number of generations increased indicating that the program

functions correctly for large datasets. The best fitness decreased from 12,200 m3 to 165 m3. The large

range in average and RMSE fitness values indicates that the population is highly diverse, and the

fluctuations from one generation to the next show the changing diversity in the population. Similar

results were observed in the other nine runs.

Figure 4.6 shows a colorized relief terrain representation of the TINs produced by the original

dataset, VIP run and the GA run 4. From a qualitative viewpoint, the major topographic features for

the VIP run are generally preserved (Figure 4.6B). However, several large discontinuities in the terrain

occurred in the study area. The discontinuity in the river could have significant impacts on river flows

if this dataset were used in a multi-dimensional model, and the discontinuity of the hill could have

impacts on floodplain flows. Neither the Fourth of July Creek, the road/levee north of the river, nor the

road south of the river is distinguishable (Figure 4.6B). If the VIP had fewer points located along its

boundary (262), there would be more points available for the interior that would give more definition

to the interior especially to areas in the river. A LATTICETIN run was not conducted because the

LATTICETIN requires regularly spaced data throughout the domain. The LiDAR and bathymetric

datasets used in the subsection are regularly spaced but the datasets do not line up to one another to

create a regularly spaced dataset. Together the dataset is considered irregularly spaced, and thus, a

LATTICETIN run could not be performed. This is a distinct advantage of a TIN and a disadvantage in

LATTICETIN that requires regularly spaced data. The major topographic features for the fourth GA

run are generally preserved even along the boundary (41 points located on the boundary) (Figure 4.6C)

unlike what happen in the hypothetical example. A plausible explanation is that there are enough

58

Table 4.2. Best fitness value, number of data points, and number of points on the boundary for the

Coeur d’Alene River application.

Run

Number of

data points

Best fitness value

(cubic meters)

Number of points

on boundary

Figure

no.

Original 10,080 -- 396 4.6A

VIP Run 1,010 -- 262 4.6B

1GA Run 1 1,003 473 52 --

1GA Run 2 993 1,310 48 --

1GA Run 3 990 1,390 41 4.6C

1GA Run 4 1,003 165 41 --

1GA Run 5 1,008 903 41 --

1GA Run 6 1,008 856 45 --

1GA Run 7 962 1,360 50 --

1GA Run 8 1,005 242 46 --

1GA Run 9 1,008 812 47 --

1GA Run 10 1,004 940 45 --

1The crossover rate (Pc) was set to 30 percent, the mutation rate (Pm) was set to 1/n, plimit was set to 10 percent

or 1,008 points, and n is the number of data points in the original data (10,080).

Figure 4.5. Best fitness, average fitness, and root mean squared error (RMSE) fitness for each

generation of GA Run 4 for the Coeur d’Alene River.

59

Figure 4.6. Terrain from the original, VIP run and GA run 4 for the Coeur d’Alene River application.

(n is the number of LiDAR points, and number inside parenthesis is the number of points located on

the boundary).

points near the boundary to obtain a good representation. Neither the Fourth of July Creek nor the

road/levee north of the river is distinguishable in the fourth GA run, but the road south of the river is

somewhat distinguishable (Figure 4.6C).

60

Volume was calculated for these runs. These volumetric results [hypsometric curves of

volume] also closely tracked the original. Again, results from all GA runs fell within a narrow band

similar to results from the hypothetical example, which supports that near-optimal results could be

obtained in a single run. Volumetric differences were also calculated for these runs, but only the VIP

run and the fourth GA run, the superior GA run, are shown in Figure 4.7. Differences from the original

in the VIP run were greater at all heights than in the fourth GA run. The largest differences between

the two runs occurred when the height ranged from 10 m to 20 m.

Figure 4.7. Volumetric differences in TIN volumes from the original to the VIP Run

 and GA Run 4 for the Coeur d’Alene River application.

4.6 Summary and Discussion

This paper demonstrates that a Genetic Algorithm (GA) is a viable approach for solving the

LiDAR/bathymetric decimation problem. GAs cannot assure exact solutions, but yield reasonable

solutions to optimization and search problems. For the hypothetical example, TINs from the GA runs

are fairly representative of the original, but gave poor representation near the boundary. The VIP

compared poorly to the original and to the GAs. The LATTICETIN compared favorably to the GA

runs. The GA and LATTICETIN runs compared favorably to the original data with the LATTICETIN,

61

overall, closer to the original. To better fit the original data, the fitness function used in the GA needs

to integrate the entire volumetric curve and rather than just the total volume of the TINs. Also results

from these GA runs demonstrated that near optimal results could be obtained in a single GA run.

For the case study of Coeur d’Alene River and Floodplain, TINs from the GA runs are fairly

representative of the subsection even along the boundary. The VIP run also showed fair representation.

Some of the finer features such as creeks, levees and roads were poorly defined in the GA and VIP

runs. TIN volumes from the superior GA run (no. 4) and VIP compared favorably, with the GA run

having a smaller difference from the original. A LATTICETIN run could not be performed because

the combined bathymetric and LiDAR data do not line up to produce a regularly spaced dataset.

Although the genetic algorithm was successful in decimating the datasets, it still needs to be

tested with datasets having more data points. The current fitness function calculates the volume of an

individual at the zero height. A fitness function that integrates volume along its height (hypsometric

curve) might cause the GA to select better fit individuals in the population that have smaller

differences from the original at all elevations. Also the current fitness function always selects the

plimit as the number of inclusions. A fitness function that gradually penalizes more points and

gradually gives credit to fewer points might also enable the GA to select a good minimum number of

points. These improvements are left for future investigations.

4.7 References

Barton, G.J., Moran, E.H., Berenbrock, C. (2004). Stream Channel Cross Sections for the Kootenai

River Between Libby Dam, Montana, and Kootenay Lake, British Columbia, Canada. U.S.

Geological Survey Open-File Report 2004-1045, p 35.

Berenbrock, C. (2006). “A genetic algorithm to reduce stream channel cross section data,” Journal of

the American Water Resources Association, 42(2), pp 387-394.

Berenbrock, C., and Tranmer, A.W. (2008). Simulation of flow, sediment transport, and sediment

mobility of the Lower Coeur d’Alene River, Idaho. U.S. Geological Survey Scientific

Investigations Report 2008-5093, p 164.

Chen, L. (2003). “Real Coded Genetic Algorithm Optimization of Long Term Reservoir Operation,”

Journal of the American Water Resources Association (JAWRA) 39(5), pp 1157-1165.

62

Chen, Z.T., and Guevara, J.A. (1987). “Systematic Selectin of Very Important Points (VIP) from

Digital Terrain Model for Constructing Triangular Irregular Networks,” Proceedings of the

Eighth International Symposium on Computer-Assisted Cartography, N.R. Chrisman (Editor),

pp 57-67.

Cieniawski, W.E., Eheart, J.W., and Ranjithan, S. (1995). “Using Genetic Algorithms to Solve a

Multiobjective Groundwater Monitoring Problem,” Water Resources Research 21(2), pp 399-

409.

Davis, L., (1991). “Hybridization and Numerical Representation,” In: Handbook of Genetic

Algorithms, L. Davis (Editor). Van Nostrand Reinhold, United Kingdom, pp 62-72.

FEMA (Federal Emergency Management Agency). (1995). Guidelines and Specifications for Study

Contractors. Federal Emergency Management Agency, Publication 37, U.S. Government

Printing Office, Washington, D.C., p 174.

Goldberg, D.E., (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-

Wesley Pub. Co., p 372.

Grefenstette, J.J. (1990). “Genetic Algorithms and Their Application,” In: Encyclopedia of Computer

Science and Technology, A. Kent and J.G. Williams (Editors). Marcel Dekker, New York, New

York, 21(6), pp 139-152.

Holland, J.H. (1975). Adaptation in Natural and Artifical Systems. University of Michigan Press, Ann

Arbor, Michigan.

Knaapen, M.A.F., and Hulscher, S.J.M.H. (2003). “Use of a Genetic Algorithm to Improve Predictions

of Alternate Bar Dynamics,” Journal of Water Resources Research 39(9), 1231,

doi:10.1029/2002WR001793, 2003.

McKinney, D.C., and Lin, M.D. (1992). “Design Methodology for Efficient Aquifer Remediation

Using Pump and Treat Systems,” In: Mathematical Modeling in Water Resources, T. Russel et

al. (Editors). Elsevier Science, New York, New York, pp 695-702.

Mitchell, M. (2002). An Introduction to Genetic Algorithms. The MIT Press, Cambridge,

Massachusetts, (8th printing), p 209.

Moran, E.H. and Berenbrock, C. (2003). “GPS—Time Saver and Functional,” U.S. Geological Survey

Western Water Watch, 1(1), pp 6-7.

63

Reed, P., Minsker, B. and Goldberg, D.E. (2000). “Designing a Competent Simple Genetic Algorithm

for Search and Optimization,” Journal of Water Resources Research, 36(12), pp 3757-3761.

Reed, P.B., Minsker, B., and Goldberg, D.E. (2003). “Simplifying Multiobjective Optimization–An

Automated Design methodology for the Nondominated Sorted Genetic Algorithm-II,” Journal of

Water Resources Research, 39(7), pp 1196-1206.

Vink, K. and Schot, P. (2002). “Multiple-Objective Optimization of Drinking Water Production

Strategies Using a Genetic Algorithm,” Journal of Water Resources Research 38(9), pp 1157-

1165.

64

CHAPTER 5. SPECTRAL ANALYSIS OF CROSS-SECTION DATA

5.1 Introduction

Spectral analysis is the process of decomposing a complex signal into simpler parts (Brigham,

2002). Usually, it is used in the analysis of electrical signals or data that has periodic components of

time. Specifically it has been used in optics, speech, sonar, radar, medicine, seismology, chemistry,

radio astronomy, oceanography, etc. For cross-section data, spectral analysis will be used to determine

how energy is distributed over space (spectral content). Also it is hoped that the spectral content of the

cross-section data will be unique for different channel types and for different scales of resolution.

Cross-section data has no components of time, but the space and time domain will be exchanged. The

exchange was set to 1 foot (ft) to 1 second (s) or 1 ft equaling 1 s.

Cross sections from the Kootenai River, Idaho (Barton et al., 2004) will be evaluated for its

spectral content. One cross section from each geomorphic or channel type—meander, straight,

braided, and canyon (Czuba and Barton, 2011)—will be used. These cross sections are presented in

Chapters 2 and 3 of this dissertation.

The MATLAB software was used to conduct spectral analysis on the cross-section data.

MATLAB is a proprietary programming language of MathWorks (https://www.mathworks.com). The

MATLAB program shown in Appendix O was used to determine the spectral content, specifically the

power spectral density function (PSD), of cross-section data. A fast Fourier transform (FFT) algorithm

(https://www.mathworks.com/help/matlab/ref/fft.html and Brigham, 2004) was used to determine the

PSD.

5.2 Spectral Content of Cross Sections

Four cross section from the Kootenai River, Idaho, will be analyzed for its spectral content.

Cross sections 107.658, 152.019, 154.972, and 163.027 that represented the meander, straight, braided,

and canyon reach types, respectively, were used in this analysis. Spectral analysis was performed on

the entire cross-section data, but the cross-section data had to be modified because spectral analysis

requires regularly spaced data. Whereas, the data from these cross sections are irregularly space. To

develop regularly spaced data from irregularly spaced data, linearizing between each data point in the

cross section was done, and then the data were selected at the desired interval spacing. Data from the

linearized cross section was reselected 7 different times to develop modified cross sections having an

https://www.mathworks.com/
https://www.mathworks.com/help/matlab/ref/fft.html

65

interval spacing of 0.5 ft, 1 ft, 5 ft, 10 ft, 50 ft, 100 ft, and 200 ft. These modified cross sections

represent the different scales of resolution of a cross section.

Cross section 154.972 located in the braided reach was analyzed first because previous

analyses considered it to be more complexly shaped than the other cross sections (see Section 3.4.1).

The modified cross section 154.972 with an interval spacing of 0.5 ft is shown in Figure 5.1A. The

shape of this cross section is very similar to that of the original, irregular spaced data, cross section

(Figure 3.2). Note that the horizontal axis in Figure 5.1A is labeled as “Time, in seconds” because the

space and time domain were exchanged (1 ft = 1 s) so that the spatial content (energy and frequency)

can be determined.

The power spectral density function (PSD) calculates the strength of energy as a function of

frequency. It generally indicates which frequencies are strong or weak. Figure 5.1B shows the PSD of

the modified cross section 154.972 with an interval spacing of 0.5 ft. The horizontal axis is frequency

in the time domain. Note that frequency is inversely proportional to the period. In climate time series

data, for example, the PSD is determined to find out periodicity an event. Usually distinctive or sharp

peak(s) would appear in a PSD plot to indicate where very strong energies occur(s), but for the

modified cross-section 154.972, no distinctive peaks occurred at any frequency (Figure 5.1B). This

indicates that there is no periodicity in the landform of this cross section. The PSD plot (Figure 5.1B)

also showed energy decreasing exponentially toward higher frequencies. This is especially seen in the

smoothed red line in Figure 5.1B. Smoothing the data removes the random variation and can help

show data trends. Smoothing was done using a moving average.

Figure 5.2 shows smoothed curves of PSD for cross section 154.972 at 7 different interval

spacing ranging from 0.5 ft to 200 ft. No distinctive peaks occur in any of the curves. The curves

generally follow the trend of the 0.5 ft curve. A hill of higher energy at low frequencies (near 0.001)

for the 100 ft and 200 ft curves is probably an artifact of the smaller amount of data available for

analysis, 24 and 13 data points, respectively.

The spectral content, specifically determining PSD, was perform on cross sections 107.658,

152.019, and 163.027. Before PSD could be performed, the cross sections were also modified for each

interval spacing. The PSD for these cross sections showed no distinct power increases at any of the

frequency ranges and for the different interval spacing. The PSD for these cross sections were similar

to that of the PSD for cross section 154.972 as shown in Figure 5.2. Thus, plots of PSD for these cross

66

67

68

sections were not shown. Also for several modified cross sections, the PSD could not be determine

because the cross section was not long enough to have sufficient amounts of data for determining the

PSD. This was especially true for an interval spacing of 100 ft and 200 ft. The PSD indicates that there

is no periodicity in the landform of these cross sections suggesting that the different channel types

cannot be discerned using spectral analysis.

5.3 Summary

Spectral analysis was perform on data from four cross section from the Kootenai River, Idaho.

Each cross section was representative of a different geomorphic or channel type—meander, straight,

braided, and canyon. Before spectral analysis could begin, the cross-section data were modified

because the original data was irregularly space and spectral analysis requires regularly space data.

Thus, the data were modified by linearizing between each data point in a cross section. Data from the

linearized cross section was reselected 7 different times to develop modified cross sections having an

interval spacing of 0.5 ft, 1 ft, 5 ft, 10 ft, 50 ft, 100 ft, and 200 ft.

The power spectral density function (PSD) for all cross sections at each interval spacing

showed no distinct power increases at any frequency range. The spectral energy decreased

exponentially as frequency increased. Because there were no distinct power increases, different

channel types could not be discerned using spectral analysis. Unfortunately, cross-section data did not

lend itself to spectral analysis like wave and (or) seabed landforms.

5.4 References

Barton, G.J., E.H. Moran, and C. Berenbrock. (2004). Stream Channel Cross Sections for the Kootenai

River Between Libby Dam, Montana, and Kootenay Lake, British Columbia, Canada. U.S.

Geological Survey Open-File Report 2004-1045, p 35.

Brigham, E. Oran, (2004). The Fast Fourier Transform. New York, New York. Prentice-Hall. p. 304.

Czuba, C.R., and G.J. Barton, (2011). Updated one-dimensional hydraulic model of the Kootenai

River, Idaho—A supplement to Scientific Investigations Report 2005–5110. U.S. Geological

Survey Scientific Investigations Report 2011–5128, 36 p.

MATLAB, Statistics Toolbox Release (2011b), and Signal Processing Toolbox Release (2011b). The

MathWorks, Inc., Natick, Massachusetts, United States.

69

CHAPTER 6. EXECUTIVE SUMMARY

Two new tools have been developed. These tools successfully reduced or decimated the

number of points in river geometry data to be handled and consequently used in surface-water models

and in any other subsequent processes. The first tool is a genetic algorithm (GA) to reduce stream

channel cross section data. A hypothetical cross section consisting of 41 data pairs (distance and

elevation) was first tested. Even though the GA relies on randomness in sampling and in creating the

initial population, the range in best fitness for all runs was small compared with the ranges in average

fitness and root mean squared error (RMSE). Validation included using real-world cross sections from

the Kootenai River in Idaho and comparing the best fitness values between GA-reduced and standard

reduction method (Barton et al., 2004) cross sections. The best fitness values for the GA-reduced cross

sections were all lower than standard reduced cross sections. Several GA-reduced cross sections had

fitness values about 50 percent lower (better) than those from standard method. The GA-reduced cross

sections also closely represented the original cross section and that near-optimal results could be

obtained in a single GA run, even for large problems. Computer run times for the Kootenai River cross

sections were much faster for the GA-reduced cross sections than the standard reduction. Estimates

indicate that it would take one week to complete the 245 Kootenai River cross sections using the GA,

a time savings of 75 percent over the standard procedure.

Additional research reveal that the previous genetic algorithm (original) did not account for

irregularly spaced data. Thus, it was modified. To validate the modifications, the 10 cross sections that

were used to validate the original GA were used. Results showed that best fitness from the modified

GA were consistently lower (demonstrating better performance) than for the standard-method and

original GA. On average, the modified GA fitness was 39.2 and 57.0 percent lower than the standard

reduction method and original GA, respectively. The modified GA-reduced cross sections

approximated the shape of the original cross sections better than the other two reduction methods.

Therefore, the modification that was made to the original GA is the more appropriate genetic

algorithm-reduction method and was used throughout the study.

Further analyses were conducted to evaluate the effects of the reduced cross sections on cross-

section geometry and steady flow profiles for the two methods. Visual analysis (graphs) demonstrated

that GA-reduced cross sections approximated the shape of the original cross section better than the

standard-reduced cross sections. This was also true for the cross-sectional area. Also an reduction error

(RE) was developed to quantify the performance of the cross-section reduction. RE values were lower

70

(better) for the GA-reduced cross sections than for the standard method. RE curves were also

developed for the 10 Kootenai River cross sections only using the GA-reduction method. These curves

showed that cross sections in canyon and meander reaches need fewer points than cross sections in the

braided and straight reaches. It also confirms that a greater amount of data are needed to define more

complexly shaped cross sections.

This study also investigated the practical consequences of errors due to cross-section reduction

on steady-flow profiles. Thirty-five cross sections from the original steady-flow surface-water model

of the Kootenai River were used. Cross-sectional data in these cross sections were reduced to 10, 20,

and 30 data points for both reduction methods. Differences in water-surface elevation were less for

cross sections developed by the GA-reduction method than by the standard-reduction method.

Sometimes the methods did not select enough points in the secondary channels because fitness was not

bettered (lower value) by doing so. To rectify this problem the GA needs to be modified so that

thalweg points in secondary channels, not just the main, are selected

The second tool is also a GA but for decimating bathymetric/LiDAR datasets. Multi-

dimensional datasets such as bathymetry and (or) LiDAR are usually very large and often surpasses

the capacity of programs especially those of two- and three-dimensional surface-water models. A

hypothetical example consisting of 961 regularly spaced points (LiDAR) was tested. The points were

decimated to 15 percent or 144 points. GA results were mostly superior to standard reduction

methods–VIP (Very Important Points) and LATTICETIN. Hypsometric curves of volume between the

GA runs and original dataset were quite similar while the curves from VIP and LATTICETIN were

quite different than the original. Validation of this GA included using bathymetric and LiDAR datasets

from the Coeur d’Alene River and Floodplain in Idaho and comparing the reduction methods to the

original. A LATTICETIN reduction was not performed because the LATTICETIN requires regularly

spaced data and the Coeur d’Alene data are irregularly spaced. The major topographic features were

preserved fairly well in the GA runs and VIP. The VIP showed several discontinuities (one in the river

and one on a hill) while the best GA (fourth run) did not. Both discontinuity could have impacts on

river and floodplain flows. Features such as the Fourth of July Creek and the road/levee north of the

river were not distinguishable in either reduction. However, the road south of the river is somewhat

distinguishable in the GA run. Volumetric differences from the original were smaller in the GA run

than in the VIP, but the largest differences in both methods occurred in the first 5 meters of height. A

fitness function that integrates volume along its height (hypsometric curve) might cause the GA to

select better fit individuals in the population that have smaller differences from the original at all

heights.

71

CHAPTER 7. FUTURE WORK

Implementation of the hypothetical examples were intended as a proof of concept, but to

provide more rigorous validation of the algorithms, real world river geometry data–Kootenai and

Coeur d’Alene Rivers in Idaho–were used. This methodology showed that the cross-section genetic

algorithm (GA) and the LiDAR-bathymetry GA can greatly reduce the amount of information without

a significant loss in precision. However, to extend the usefulness and to address limitations, future

enhancements to these GAs could include:

 Automate the process in the program to determine the appropriate operator (crossover and

mutation) values instead of the current trial-and-error approach.

 Ability to run multiple instances of the GA program at once.

 Modify the fitness function such that it gradually penalizes more points and gradually gives

credit to fewer points might also enable the GA to select a good minimum number of points or

plimit.

 Demonstrate how the cross-section GA can be applied to other water resource, ecological, and

biological data and to other X-Y datasets and time series datasets.

 Test the cross-section GA using cross-section data of high density from other rivers from

around the world and with various channel types (low gradient-meander (single thread and

sinuous), braided, anastomosing, nearly straight, etc.; and high gradient-riffle-pool sequence,

rapids, step-pools, cascade, etc.).

 Modify the cross-section GA to select more points in cross sections having multiple channels

such as braided channels.

 Rewrite the GAs to have a one-dimensional array where all data is stored, similar to the code

in MODFLOW (Langevin et al. 2017, https://water.usgs.gov/ogw/modflow/). Hopefully, this

action allows the GA to run faster, more efficiently, with larger datasets and without the use of

supercomputers or high-end PCs.

 Rewrite the GAs with no operators, crossover and mutation (called “Naive Evolution”) and

test them. Spears and Anand (1991) indicated that some practical problems are better solved

using this methodology. Also biologist consider mutation, not crossover, as the main source of

evolution (Senaratna, 2005).

 Develop general RE curves for the various channel types to estimate the minimum number of

points needed for that type of cross sections.

https://water.usgs.gov/ogw/modflow/

72

 Run the LiDAR-Bathymetric GA with datasets having at least several million points or

greater.

 Modify the fitness function of the LiDAR-Bathymetric GA to calculate the volume along its

height (hypsometric curve) for each reduced dataset curve and compare to the original dataset

hypsometric curve. The difference between the original and reduced hypsometric curves

would be minimized by the fitness function similar to what is done in Equation 3.1. Hopefully

this method causes the GA to select better fit individuals in the population that have smaller

differences from the original at all heights.

7.1. References

Spears W.M., Anand V. (1991) A study of crossover operators in genetic programming. In: Ras Z.W.,

Zemankova M. (eds) Methodologies for Intelligent Systems. ISMIS 1991. Lecture Notes in

Computer Science (Lecture Notes in Artificial Intelligence), vol 542. Springer, Berlin,

Heidelberg, p. 409-?

Nuwan I. Senaratna,2005, Genetic Algorithms: The Crossover-Mutation Debate, in partial fulfilment

of the requirements for the Degree of Bachelor of Computer Science(Special) of the University

of Colombo, 22 p.

Langevin, C.D., Hughes, J.D., Banta, E.R., Niswonger, R.G., Panday, Sorab, and Provost, A.M., 2017,

Documentation for the MODFLOW 6 Groundwater Flow Model: U.S. Geological Survey

Techniques and Methods, book 6, chap. A55, 197 p., https://doi.org/10.3133/tm6A55.

https://doi.org/10.3133/tm6A55

73

CHAPTER 8. CONCLUSIONS

The size of digital datasets can be quite large, and as technology advances, the size in digital

data usually increases too. Large datasets cause numerous problems in storing, handling, transmitting,

and with software. Computer models usually have a finite limit on the amount of data it can use, and

data reduction or decimating is commonly applied to large datasets to skirt these limitations.

Whenever data are reduced, some informational content is lost. Choosing a suitable set of data points

for the representation of the natural geometry of a river and floodplain is quite important for the

accuracy of surface-water models. The goal was to minimize that loss while maximizing the amount of

data reduction because it could affect channel and floodplain geometry determinations and water-

surface calculations, which in turn has major effects on the computations of velocity, shear stress, and

sediment transport. By decimating intelligently, large datasets such as LiDAR can be reduced to a

manageable size for surface-water models and other computer applications while maintaining the

original geometry.

Two genetic algorithms (GAs) were developed for decimating river geometry data: one for

cross-section data and the other for bathymetry and (or) LiDAR data. These GAs were shown to

successfully reduce or decimate the data and were found to be more effective than standard reduction

methods–removing or keeping every tenth point, for example, regardless of its significance, which is

unacceptable.

The cross-section GA program successfully reduced cross-sectional data by having smaller

differences in cross-sectional area and water-surface elevations between the GA-produced and original

cross sections than those using standard methods. Fitness (a measure of a solution) values were

consistently lower (demonstrating better performance) for GA-produced cross sections. Reduction

error (RE) values were also lower (better) for GA-reduced cross sections. RE curves also demonstrated

that about 20 data points are needed to approximate the shape of the original cross section in the

canyon and meander reaches, and more than 40 points are need in the straight reach and more than 70

data points in the braided reach. However, this needs to be tested against datasets from other rivers.

The bathymetric and (or) LiDAR GA program was also successful in decimating the data by

having smaller differences in the terrain between the GA-produced and original than by other methods.

Also the GA datasets selected fewer data points on the boundary while the terrain by other methods is

under emphasized in the interior and over emphasized at the boundary. Volumetric analysis

[hypsometric curves of volume] also showed that the GA terrain more closely tracks the original.

74

Therefore, this dissertation demonstrates that the genetic algorithm is a viable approach for solving the

cross-section reduction and bathymetric/LiDAR decimation problems.

75

Appendix A. Copyright from Journal of the American Water Resources

Association (Chapter 2)

The Journal of the American Water Resources Association (JAWRA) is a John Wiley & Sons

publication. For the material in Chapter 2, permission was granted and is shown as follows:

JOHN WILEY AND SONS LICENSE
TERMS AND CONDITIONS

Sep 22, 2017

This Agreement between Charles Berenbrock ("You") and John Wiley and Sons ("John

Wiley and Sons") consists of your license details and the terms and conditions provided by

John Wiley and Sons and Copyright Clearance Center.
License Number 4194350566110 License date Sep 22, 2017

Licensed Content Publisher John Wiley and Sons

Licensed Content Publication Journal of the American Water Resources Association

Licensed Content Title A GENETIC ALGORITHM TO REDUCE STREAM CHANNEL CROSS
SECTION DATA1

Licensed Content Author Charles Berenbrock

Licensed Content Date Jun 8, 2007

Licensed Content Pages 8

Type of use Dissertation/Thesis

Requestor type Author of this Wiley article

Format Print and electronic

Portion Full article

Will you be translating? No

Title of your thesis / dissertation Intelligent Decimation of River Geometry Data for Manageable Use in Surface-

Water Models

Expected completion date May 2018

Expected size (number of pages) 100

Requestor Location none
P.O. Box 2233

SUN CITY, AZ 85372
United States
Attn: none

76

Publisher Tax ID EU826007151

Billing Type Invoice

Billing Address

Total 0.00 USD
Terms and Conditions

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or

one of its group companies (each a"Wiley Company") or handled on behalf of a society with

which a Wiley Company has exclusive publishing rights in relation to a particular work

(collectively "WILEY"). By clicking "accept" in connection with completing this licensing

transaction, you agree that the following terms and conditions apply to this transaction (along

with the billing and payment terms and conditions established by the Copyright Clearance

Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that you opened

your RightsLink account (these are available at any time at http://myaccount.copyright.com).

Terms and Conditions

The materials you have requested permission to reproduce or reuse (the "Wiley

Materials") are protected by copyright.

You are hereby granted a personal, non-exclusive, non-sub licensable (on a standalone

basis), non-transferable, worldwide, limited license to reproduce the Wiley Materials

for the purpose specified in the licensing process. This license, and any CONTENT

(PDF or image file) purchased as part of your order, is for a one-time use only and

limited to any maximum distribution number specified in the license. The first instance

of republication or reuse granted by this license must be completed within two years of

the date of the grant of this license (although copies prepared before the end date may

be distributed thereafter). The Wiley Materials shall not be used in any other manner or

for any other purpose, beyond what is granted in the license. Permission is granted

subject to an appropriate acknowledgement given to the author, title of the

material/book/journal and the publisher. You shall also duplicate the copyright notice

that appears in the Wiley publication in your use of the Wiley Material. Permission is

also granted on the understanding that nowhere in the text is a previously published

source acknowledged for all or part of this Wiley Material. Any third party content is

expressly excluded from this permission.

With respect to the Wiley Materials, all rights are reserved. Except as expressly granted

by the terms of the license, no part of the Wiley Materials may be copied, modified,

77

adapted (except for minor reformatting required by the new Publication), translated,

reproduced, transferred or distributed, in any form or by any means, and no derivative

works may be made based on the Wiley Materials without the prior permission of the

respective copyright owner.For STM Signatory Publishers clearing permission under

the terms of the STM Permissions Guidelines only, the terms of the license are

extended to include subsequent editions and for editions in other languages, provided

such editions are for the work as a whole in situ and does not involve the separate

exploitation of the permitted figures or extracts, You may not alter, remove or suppress

in any manner any copyright, trademark or other notices displayed by the Wiley

Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer

or assign the Wiley Materials on a stand-alone basis, or any of the rights granted to you

hereunder to any other person.

The Wiley Materials and all of the intellectual property rights therein shall at all times

remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or their

respective licensors, and your interest therein is only that of having possession of and

the right to reproduce the Wiley Materials pursuant to Section 2 herein during the

continuance of this Agreement. You agree that you own no right, title or interest in or

to the Wiley Materials or any of the intellectual property rights therein. You shall have

no rights hereunder other than the license as provided for above in Section 2. No right,

license or interest to any trademark, trade name, service mark or other branding

("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall

not assert any such right, license or interest with respect thereto

NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR

REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,

EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS

OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE

MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED

WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY

QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY,

INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE

HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY

YOU.

WILEY shall have the right to terminate this Agreement immediately upon breach of

this Agreement by you.

You shall indemnify, defend and hold harmless WILEY, its Licensors and their

respective directors, officers, agents and employees, from and against any actual or

threatened claims, demands, causes of action or proceedings arising from any breach of

this Agreement by you.

IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR

78

ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY

SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR

PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN

CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR

USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,

WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,

NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT

LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE,

BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER

OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY

FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED

HEREIN.

Should any provision of this Agreement be held by a court of competent jurisdiction to

be illegal, invalid, or unenforceable, that provision shall be deemed amended to achieve

as nearly as possible the same economic effect as the original provision, and the

legality, validity and enforceability of the remaining provisions of this Agreement shall

not be affected or impaired thereby.

The failure of either party to enforce any term or condition of this Agreement shall not

constitute a waiver of either party's right to enforce each and every term and condition

of this Agreement. No breach under this agreement shall be deemed waived or excused

by either party unless such waiver or consent is in writing signed by the party granting

such waiver or consent. The waiver by or consent of a party to a breach of any

provision of this Agreement shall not operate or be construed as a waiver of or consent

to any other or subsequent breach by such other party.

This Agreement may not be assigned (including by operation of law or otherwise) by

you without WILEY's prior written consent.

Any fee required for this permission shall be non-refundable after thirty (30) days from

receipt by the CCC.

These terms and conditions together with CCC's Billing and Payment terms and

conditions (which are incorporated herein) form the entire agreement between you and

WILEY concerning this licensing transaction and (in the absence of fraud) supersedes

all prior agreements and representations of the parties, oral or written. This Agreement

may not be amended except in writing signed by both parties. This Agreement shall be

binding upon and inure to the benefit of the parties' successors, legal representatives,

and authorized assigns.

79

In the event of any conflict between your obligations established by these terms and

conditions and those established by CCC's Billing and Payment terms and conditions,

these terms and conditions shall prevail.

WILEY expressly reserves all rights not specifically granted in the combination of (i) the

license details provided by you and accepted in the course of this licensing transaction,

(ii) these terms and conditions and (iii) CCC's Billing and Payment terms and

conditions.

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type

was misrepresented during the licensing process.

This Agreement shall be governed by and construed in accordance with the laws of the

State of New York, USA, without regards to such state's conflict of law rules. Any

legal action, suit or proceeding arising out of or relating to these Terms and Conditions

or the breach thereof shall be instituted in a court of competent jurisdiction in New

York County in the State of New York in the United States of America and each party

hereby consents and submits to the personal jurisdiction of such court, waives any

objection to venue in such court and consents to service of process by registered or

certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription

journals offering Online Open. Although most of the fully Open Access journals publish open

access articles under the terms of the Creative Commons Attribution (CC BY) License only,

the subscription journals and a few of the Open Access Journals offer a choice of Creative

Commons Licenses. The license type is clearly identified on the article.

The Creative Commons Attribution License

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and

transmit an article, adapt the article and make commercial use of the article. The CC-BY

license permits commercial and non-

Creative Commons Attribution Non-Commercial License

The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use,

distribution and reproduction in any medium, provided the original work is properly cited and

is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND)

permits use, distribution and reproduction in any medium, provided the original work is

properly cited, is not used for commercial purposes and no modifications or adaptations are

made. (see below)

Use by commercial "for-profit" organizations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes

requires further explicit permission from Wiley and will be subject to a fee.

80

Further details can be found on Wiley Online Library http://olabout.wiley.com/WileyCDA

/Section/id-410895.html Other Terms and Conditions: v1.10 Last updated September 2015

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

81

Appendix B. Copyright from U.S. Geological Survey

From: https://www.usgs.gov/media/audio/are-usgs-reports-copyrighted

Are USGS reports copyrighted?

 (Public domain.)

Detailed Description

Listen to hear the answer.

Details

Date Taken: April 17, 2008

Location Taken: US

Transcript

[music fades in]

Hello and welcome to CoreFacts, where we're always short on time and big on science. I'm

Steve Sobieszczyk. Today we're looking publishing.

Are USGS reports copyrighted?

USGS-authored or produced data and information are in the public domain. While the content

of most USGS web pages and reports are in the public domain, not all information,

illustrations, or photographs are. Some are used by USGS with permission. In those cases,

you may need to obtain permission from the copyright holder under the copyright law. You

are welcome to make a link to any of the websites USGS has published online. There is no

need to request permission. However, the use of the USGS visual identifier, or logo, is

restricted to official publications. When using information from USGS products, publications,

or websites, we ask that proper credit be given. Credit can be provided by including a citation

such as:

https://www.usgs.gov/media/audio/are-usgs-reports-copyrighted
http://www.copyright.gov/

82

Credit: U. S. Geological Survey/photo by Steven Sobieszczyk (or photographer's name) or if

the originating office is known but the artist or scientist is not, it can be sited as:

USGS/Portland, OR (for example).

Additional information is available from links in our show notes: USGS Privacy

Policy and Disclaimers and Acknowledging or Crediting USGS as Information Source.

If you have questions concerning the use of USGS information, contact us at 1-888-ASK-

USGS or 1-888-275-8747.

And now you know. Join us every weekday for a new CoreFact. If you have a question you

think we should answer on the air, email it to us at corefacts@usgs.gov or leave us a

voicemail at 703-648-5600; long distance fees do apply.

The USGS CoreFacts is a product of the U.S. Geological Survey, Department of the Interior.

[music fades out]

http://www.usgs.gov/laws/privacy.html
http://www.usgs.gov/laws/privacy.html
http://www.usgs.gov/visual-id/credit_usgs.html
mailto:corefacts@usgs.gov

83

Appendix C. Copyright from Federal Interagency Hydrologic Modeling

Conference Proceedings

The Hydrologic Modeling Workgroup (HMWG) is the organization that plans, organizes, and

promotes the Federal Interagency Hydrologic Modeling Conference about every 4 years. The purpose

of HMWG is to promote the sharing of information on modeling tools and modeling systems in

hydrology and water resources between federal, state and local government agencies, universities, the

private sector, water users’ organizations and other stakeholder groups. HMWG is a working group of

the Subcommittee on Hydrology (SOH) of the Advisory Committee on Water Information (ACWI).

The Office of Management and Budget (OMB) Memorandum No. 92-01 designates the Department of

the Interior, through the U.S. Geological Survey (USGS), as the lead agency of ACWI

(https://acwi.gov/m9201.html). Other Federal organizations that fund, collect, or use water resources

information work together with the USGS to implement program recommendations. Therefore, the

content of the ACWI web pages, data, and information including conference proceedings are in the

public domain. The home web page for ACWI is https://acwi.gov/.

https://acwi.gov/m9201.html
https://acwi.gov/

84

Appendix D. General Description of the Genetic Algorithm Program for

Reducing Cross-Section and (or) X-Y Data

The genetic algorithm program that was used to reduce cross-section and (or) X-Y data in

Chapters 2 and 3 is generalized in this appendix. However, only the irregularly spaced data module

(ftness03_area.f) discussed in chapter 3.3.2 (Genetic Algorithm Reduction) is kept and used. The

program was written in the FORTRAN (77 and (or) 90) computer language and is composed of 14

FORTRAN files. The program is composed of one main program and 20 subroutines. A file may

include more than one subroutine. A description of the main program and subroutines including the

FORTRAN file, and calling subroutines is given in Table D.1. The program follows the flow chart in

Figure D.1.

The program uses the GNU FORTRAN (gfortran, http://gcc.gnu.org/wiki/GFortran) to

compile and load the program. The following command in the command processor (cmd.exe) window

can be used.

gfortran dxsxy02.f average02.f best202.f ftnss03_area.f gip.f

rdm01.f read1.f read202.f rmse02.f select02.f tourn02.f xover.f

zlast02.f zmutat.f

To run program the program in a command processor window, type “c:\dxsxy02”.

Another way to run the program is from the ‘Run’ command line in the ‘start’ menu. Browse to the

folder where ‘dxsxy02.exe’ is located and double click on it.

The genetic algorithm program reads a parameter file named ‘param.dat’. This file is in text

file. The first line in the file contains the file name of the cross-section or time-series data. The second

line is a number representing the size of the population (n); the third line represents the number of

points to reduce to (plimit), the fourth line represents the crossover rate (Pc); and the fifth line

represents the mutation factor (mf). The mutation rate is inversely proportional to the population size

multiplied by the mutation rate or
nm

1
P

f

m




. The parameter file for the hypothetical cross-

section example (Chapter 2.5.1, Hypothetical Example) is given in Figure D.2. The cross-section data

for the hypothetical example is in a file named “hypo41.dat” (see Appendix F for data). The size of the

population was set to 400 individuals, the program was run for 1000 generations, the number of points

http://gcc.gnu.org/wiki/GFortran

85

Table D.1. Files that compose the genetic algorithm cross-section reduction program.

Main program

or subroutine

 File

Calling

Subroutines

Description

dsxsy dxsxy02.f cpu_time,

date_and_time,

read1, read2, gip,

select

Main program

average average02.f -- Calculates the average fitness of the

population

best2 best202.f -- Determine the best (superior) individual of

the population

ftnss ftnss03_area.f -- Calculates the fitness of each individual of

the population for irregular spaced data

gip gip.f Creates the initial population

rdm rdm01.f random_seed,

system_clock

Initates the random number generator which

is dependend on the date and time

read1 read1.f -- Reads the ‘param.dat’ file on unit 36

read2 read202.f -- Reads the cross-section or time-series data

on unit 33

rmse rmse02.f -- Calculates the root-mean-squared error

(RMSE) fitness of the population

select select02.f ftnss, average,

rmse, zlast, best2,

tourn, xover, zmutat

Uses a generational selection method

tourn tourn02.f random_number Conducts tournament selection for the

reproduction method with a size of 3

xover xover.f random_number Conducts crossover

zlast zlast02.f -- Determine the worst or least superior

individual of the population

zmutat zmutat.f random_number Conducts mutation on each chromosome

86

Figure D.1. Flow chart of evolutionary computation (modified from

Terrance Soule, 2003, written communication).

 Figure D.2. The parameter file (“param.dat”) for the hypothetical cross-section example.

hypo41.dat

400 /* population size (n)

1000 /* number of generations (ngen)

15 /* number of points to reduce to (plimit)

0.70 /* crossover rate (Pc)

1 /* mutation factor (mf)

87

to reduce too or less than was set to 15 points, the crossover rate (Pc) was set to 70 percent, and the

mutation factor (mf) was set to 1.

The “params.dat” file (Figure D.2) is read in the program from unit 36 from subroutine

“read1”. The cross-section data (see Appendix F) or X-Y data are read from unit 33 from subroutine

“read2”. The program outputs three text files: r-table_dxsxy.csv, indivi_dxsxy.txt, and r-

xsxy_dxsxy.txt (see Appendix G). File “r-table_dxsxy.csv” prints the best fitness, worst fitness,

average fitness, rmse fitness per generation. This file is a comma delimited text file that can easily be

imported into a spreadsheet; hence, the csv suffix. These results are printed using unit 31. The ‘rmse’

is a statistical abbreviation for root-mean-squared error. The file “indivi_dxsxy.txt” prints the

chromosomes from the best fit individual for each generation. The file is a space delimited text file

and printed using unit 32. The file “r-xsxy_dxsxy.txt” prints the best GA cross-section data or X-Y

data u. If the X-Y data are time-series data, the date and time must be converted to a single numeric

value such as Julian date. The file is also a space delimited text file and printed using unit 34. Only

one cross-section pair (distance and elevation) or X-Y pair is printed per line.

88

Appendix E. Listing of Computer Code for Reducing Cross-Sectional Data and

(or) X-Y Data Using a Genetic Algorithm

E.1. Main Program (file dxsxy02.f)

!

! ---

! DECIMATING CROSS SECTION DATA WITH INTEGRITY USING A BINARY GENETIC ALGORITHM

! ---

!

!

! by: Charles Berenbrock

! creation date: December 2006

! language: FORTRAN

!

! modified date: 01-27-09, fitness calculates the area between points-curve,

! not on distances between points

!

!

! ---

! To compile, type:

! gfortran dxsxy02.f average02.f best202.f ftnss02_area.f gip.f rdm01.f read1.f

! read202.f rmse02.f select02.f tourn02.f xover.f zlast02.f zmutat.f forig.f

! ---

!

!

 double precision dist(5000), elev(5000)

!

 dimension ipop(2000,5000)

!

 integer dt(8)

!

 character*40 infile

 character*8 date

 character*10 time

 character*5 zone

!

 call cpu_time (start)

!

!........Opening files output file

 open (31, file='r-table_dxsxy.csv', status='replace')

 open (32, file='indivi_dxsxy.txt', status='replace')

 open (34, file='r-xsxy_dxsxy.txt', status='replace')

!

!........Writing head notes to screen

 print *,''

 print *,''

 print *,' --'

 print *,' Decimating Cross Section (XS) or X-Y Data'

 print *,' with Integrity using a Binary '

 print *,' Genetic Algorithm'

 print *,' --'

 print *,''

 print *,''

 call date_and_time (date,time,zone,dt)

 print *,'DATE: ',date,' TIME: ',time

 print *,''

!

89

!.........Writing head notes to output files

 write(31,*) ''

 write(31,*) '--'

 write(31,*) 'OUTPUT from the XS or X-Y DECIMATING PROGRAM '

 write(31,*) '--'

 write(31,*) ''

 write(31,*) 'RUN DATE:,',date,', RUN TIME:,',time

 write(31,*) ''

 write(32,*) 'RUN DATE:',date,' RUN TIME:',time

 write(32,*) ''

!

!........reading needed parameters

 open (36,file='params.dat',status='old')

 call read1 (infile, itp, istop, npts, pc, fpm)

!

!........Reading bathymetry data

 open (33, file=infile, status='old')

 n = 0

 call read2 (n, dist, elev, pm, fpm)

!

 ngen=0

!........Generate initial population

 call gip (n, itp, ipop, npts)

!

!........writing more head notes for output files

 write(31,*) 'Generation,Best,Best,Average,Worst,Worst'

 write(31,*) 'No.,Weight,Fitness,Fitness,Weight,Fitness,RMSE'

 write(32,*) 'BEST'

 write(32,*) 'Generation number, weight, fitness, and individual'

 write(32,*) ''

!........Selection of "survival of the fittest"

 call select(n,itp,ipop,dist,elev,ngen,istop,npts,pc,pm)

!

!........Estimating CPU time

 call cpu_time (finish)

 cputime = finish - start

 print *,''

 print *,'Seconds to run program (CPU):', cputime

!

!

!........Ending the program

 stop

 end

!

90

E.2. Subroutine read1 (file read1.f)

!

!...........Reading population and stopage from screen

 subroutine read1(infile,itp,istop,npts,pc,fpm)

!

!

 character*40 infile

!

!.............read input file from infile

!

!...............read file name of bathymetry data

 print *,''

 read (36,*) infile

!

!...............read population size

 read (36,*) itp

 if (itp.lt.50.or.itp.gt.2000) then

 print *,''

 print *,'Population size should be between 50 and 2000.'

 print *,'Please edit the parameter file'

 stop

 endif

!

 print *,'population size=',itp

 write(31,*) 'N =,',itp

!

!.............read maximum number of generations

 print *,''

 print *,''

 read (36,*) istop

 write(31,*) 'Gen =,',istop

 if (istop.gt.5000) then

 print *,''

 print *,'Too many generations.'

 print *,'Edit the parameter file so that <=5000'

 stop

 endif

!

 print *,'maximum number of generations=',istop

!

 print *,''

 read (36,*) npts

 print *,'plimit =',npts

 write(31,*) 'plimit =,',npts

!

 print *,''

 read (36,*) pc

 print *,'crossover rate =',pc

 write(31,*) 'Pc =,',pc

!

 print *,''

 read (36,*) fpm

!

!

 return

 end

!

91

E.3. Subroutine read2 (file read202.f)

!

!.........Read dist and elev from infile

 subroutine read2(len,dist,elev,pm,fpm)

!

 double precision dist(5000),elev(5000)

!

!

 print *,''

 print *,'Reading cross-section data'

!

!...........read distance and elevation of each point

 i=1

 10 read (33, *, end=888) dist(i),elev(i)

! print *,i,':', dist(i), elev(i)

 i=i+1

 goto 10

!

 888 len=i-1

!

 pm=(1./(fpm*(float(len))))

 print *,''

 print *,'mutation rate =',pm

 write (31, *) 'Pm =,',pm

 write (31, *) ''

!

 print *,''

 print *,''

 print *,'length of individuals=',len

 print *,''

!

 return

 end

!

92

E.4. Subroutine gip (file gip.f)

!

!.........Generate initial population

 subroutine gip(n,itp,ipop,npts)

!

 dimension ipop(itp,n)

 real rval

!

 call init_random_seed()

!

!

 prob=(float(npts)/float(n))

!

!...........initialize population to zeros and turn bits to 1 based on the

probability

 do 10 i=1,itp

 ipop(i,1)=1

 ipop(i,n)=1

 do 20 j=2,n-1

 ipop(i,j)=0

 call random_number(rval)

 if(rval.le.prob) ipop(i,j)=1

 20 continue

 10 continue

!

! print *,'look at each individual (population=',itp,')'

! do 30 i=1,itp

! print *,i,':',(ipop(i,j),j=1,n)

! 30 continue

! print *,''

!

!

 return

 end

!

93

E.5. Subroutine rdm (file rdm01.f)

 SUBROUTINE init_random_seed()

 INTEGER :: i, n, clock

 INTEGER, DIMENSION(:), ALLOCATABLE :: seed

 CALL RANDOM_SEED(size = n)

 ALLOCATE(seed(n))

 CALL SYSTEM_CLOCK(COUNT=clock)

 seed = clock + 37 * (/ (i - 1, i = 1, n) /)

 CALL RANDOM_SEED(PUT = seed)

 DEALLOCATE(seed)

 END SUBROUTINE

94

E.6. Subroutine select (file select02.f)

!

!.........Selection solution ***Generational GA***

 subroutine select(n,itp,ipop,dist,elev,ngen,istop,npts,pc,pm)

!

!

 double precision dist(n),elev(n)

 double precision f(itp)

 double precision fov,ave,r,ymin

!

 integer ipop(itp,n)

 integer temp(itp,n)

 integer j1(n),j2(n)

!

 dimension iw(itp)

!

!

!...........calculate the area of the original dataset (calc only once)

! call forig(n,fov,ymin,dist,elev)

!

 print *,''

 print *,'Generations'

 print *,'-----------'

 print *,''

!

 5 ngen=ngen+1

 print *,ngen

! print *,''

!...........measure the fitness of each individual

! call ftnss(n,itp,ipop,dist,elev,f,fov,ymin,iw,npts)

 call ftnss(n,itp,ipop,dist,elev,f,iw,npts)

 call average(itp,f,ave)

 call rmse(itp,f,ave,r)

 call zlast(itp,f,m3)

!

!...........elitism (best fitnesses in population)

! print *,'individuals 1 & 2'

! print *,'-----------------'

 call best2(f,itp,m1,m2)

!...........print best fitness, average, worst, and rmse to unit 31

 write(31,*) ngen,',',iw(m1),',',f(m1),',',ave,',',iw(m3),',',

 1 f(m3),',',r

!...........print best individual characteristics to unit 32

 write(32,*) ngen,':',iw(m1),':',f(m1),':',(ipop(m1,j),j=1,n)

!

!...........print parents & children

! print *,m1,':(parents)',(ipop(m1,j),j=1,n)

! print *,m2,':(parents)',(ipop(m2,j),j=1,n)

!...........put 2 best individuals from old into the NEW population

 do 8 j=1,n

 temp(1,j)=ipop(m1,j)

 temp(2,j)=ipop(m2,j)

 8 continue

! print *,'1:(children)',(temp(1,j),j=1,n)

! print *,'2:(children)',(temp(2,j),j=1,n)

! print *,''

!

!...........determine children by selecting two parents

 do 10 j=3,itp,2

! print *,'individuals',j,'&',j+1

! print *,'-----------------------'

 call tourn(f,itp,m1,m2)

95

!...........two parents (j1,j2) to create children

 do 20 ii=1,n

 j1(ii)=ipop(m1,ii)

 j2(ii)=ipop(m2,ii)

 20 continue

!...........crossover of parents to create children

 call xover(j1,j2,n,m1,m2,pc)

!...........mutation (probability based) of the two children

! print *,'children after mutation'

 call zmutat(n,j1,m1,pm)

 call zmutat(n,j2,m2,pm)

! print *,''

!...........put children into new population

 do 30 i=1,n

 temp(j,i)=j1(i)

 temp(j+1,i)=j2(i)

 30 continue

 10 continue

!

!..........replace NEW population with old population

 do 40 i=1,itp

 do 50 j=1,n

 ipop(i,j)=temp(i,j)

 50 continue

 40 continue

!

! print *,''

! print *,'NEW population'

! print *,'--------------'

! do 70 i=1,itp

! print *,i,':',(ipop(i,j),j=1,n)

! 70 continue

!

! print *,''

!

 if(ngen.lt.istop) goto 5

!

!........Output best reduced cross section

 do 80 j=1,n

 80 if(ipop(1,j).eq.1) write(34,1000) dist(j),elev(j)

 1000 format(1x,2f8.1)

!

!

 return

 end

!

96

E.7. Subroutine ftnss (file ftnss03.f)

!

!.........Calculate fitness for each individual based on the

!...........area between the curves: original and GA curve

 subroutine ftnss(n,itp,ipop,dist,elev,fit,iw,npts)

! use inf_nan_detection

 double precision dist(n),elev(n)

 double precision fit(itp),d2(n)

 double precision cx(5),cy(5)

 double precision slope,b,sum,area1,area2

 double precision area(n)

 dimension ipop(itp,n)

 dimension iw(itp)

! print *,'fitness for each individual (',itp,')'

!

!...........total the weight for each individual

! print *,'weight for each individual'

 do 10 i=1,itp

 iw(i)=0

 k=0

 do 20 j=1,n

 20 if(ipop(i,j).eq.1) k=k+1

 iw(i)=k

! print *,i,':',iw(i),':',(ipop(i,j),j=1,n)

 10 continue

! print *,''

!...........determine vertical difference (d2) at each point in an individual

 do 30 i=1,itp

!.............clearing d2 array

 do 40 j=1,n

 40 d2(j)=0.0d00

!.............assigning a value of zero at 1's

 do 50 j=1,n

 50 if(ipop(i,j).eq.1) d2(j)=0.0d00

!

!.............determine value of d2 at every point

 j1=1

 j2=1

 52 j2=j2+1

 if(ipop(i,j2).eq.0) goto 52

 slope=(elev(j2)-elev(j1))/(dist(j2)-dist(j1))

 b=elev(j1)-slope*dist(j1)

 do 53 k=j1+1,j2-1

 vy=slope*dist(k)+b

 d2(k)=vy-elev(k)

 53 continue

 j1=j2

 if(j1.lt.n) goto 52

!............print d2 array

! print *, 'dist d2'

! do 55 j=1,n

! print *, dist(j), d2(j)

97

! 55 continue

! print *, ''

! print *, ''

!............determine area of depth curve (d2) for each point along cross section

 do 60 j=1,n-1

!..............case (1)

 if(ipop(i,j).eq.1.and.ipop(i,j+1).eq.1) then

! print *, 'Case (1)'

 area(j)=0.d00

! print *, 'j=', j,' j+1=',j+1,' area=', area(j)

! print *,'ipop(i,j)=',ipop(i,j),' ipop(i,j+1)=',ipop(i,j+1)

! print *, 'd2(j)=', d2(j), ' d2(j+1)=', d2(j+1)

! print *, ''

 goto 69

 endif

!..............case (2)

 if(ipop(i,j).eq.1) then

! print *, 'Case (2)'

 cx(1)=dist(j)

 cy(1)=0.0d00

 cx(2)=dist(j+1)

 cy(2)=d2(j+1)

 cx(3)=dist(j+1)

 cy(3)=0.0d00

 cx(4)=cx(1)

 cy(4)=cy(1)

 sum=0.0d00

 do 62 k=1,3

 62 sum=sum+cx(k)*cy(k+1)-cx(k+1)*cy(k)

 area(j)=dabs(sum)/2.0d00

! print *, 'j=', j,' j+1=',j+1, ' area=', area(j)

! print *,'ipop(i,j)=',ipop(i,j),' ipop(i,j+1)=',ipop(i,j+1)

! print *, 'd2(j)=', d2(j), ' d2(j+1)=', d2(j+1)

! print *, ''

 goto 69

 endif

!..............case (3)

 if(ipop(i,j+1).eq.1) then

! print *, 'Case (3)'

 cx(1)=dist(j)

 cy(1)=0.0d00

 cx(2)=dist(j)

 cy(2)=d2(j)

 cx(3)=dist(j+1)

 cy(3)=0.0d00

 cx(4)=cx(1)

 cy(4)=cy(1)

 sum=0.0d00

 do 63 k=1,3

 63 sum=sum+cx(k)*cy(k+1)-cx(k+1)*cy(k)

 area(j)=dabs(sum)/2.0d00

! print *, 'j=', j,' j+1=',j+1,' area=', area(j)

! print *,'ipop(i,j)=',ipop(i,j),' ipop(i,j+1)=',ipop(i,j+1)

! print *, 'd2(j)=', d2(j), ' d2(j+1)=', d2(j+1)

! print *, ''

 goto 69

 endif

98

!..............case (4)

 if(d2(j).gt.0.0d00.and.d2(j+1).gt.0.0d00.or.d2(j).lt.0.0d00

 1 .and.d2(j+1).lt.0.0d00.or.d2(j).eq.0.0d00.or.d2(j+1).eq.

 2 0.0d00) then

! print *, 'Case (4)'

 cx(1)=dist(j)

 cy(1)=0.0d00

 cx(2)=dist(j)

 cy(2)=d2(j)

 cx(3)=dist(j+1)

 cy(3)=d2(j+1)

 cx(4)=dist(j+1)

 cy(4)=0.0d00

 cx(5)=cx(1)

 cy(5)=cy(1)

 sum=0.0d00

 do 64 k=1,4

 64 sum=sum+cx(k)*cy(k+1)-cx(k+1)*cy(k)

 area(j)=dabs(sum)/2.0d00

! print *, 'j=', j,' j+1=',j+1,' area=', area(j)

! print *,'ipop(i,j)=',ipop(i,j),' ipop(i,j+1)=',ipop(i,j+1)

! print *, 'd2(j)=', d2(j), ' d2(j+1)=', d2(j+1)

! print *, ''

 goto 69

 endif

!...............case (5)

 if(d2(j).lt.0.0d00.and.d2(j+1).gt.0.0d00) then

! print *, 'Case (5)'

 cx(1)=dist(j)

 cy(1)=0.0d00

 cx(2)=dist(j)

 cy(2)=d2(j)

 slope=(d2(j+1)-d2(j))/(dist(j+1)-dist(j))

 b=d2(j)-slope*dist(j)

 cx(3)=-b/slope

 cy(3)=0.0d00

 cx(4)=cx(1)

 cy(4)=cy(1)

 sum=0.0d00

 do 65 k=1,3

 65 sum=sum+cx(k)*cy(k+1)-cx(k+1)*cy(k)

 area1=dabs(sum)/2.0d00

! print *, 'area1=', area1

 cx(1)=cx(3)

 cy(1)=0.0d00

 cx(2)=dist(j+1)

 cy(2)=d2(j+1)

 cx(3)=dist(j+1)

 cy(3)=0.0d00

 cx(4)=cx(1)

 cy(4)=cy(1)

 sum=0.0d00

 do 865 k=1,3

 865 sum=sum+cx(k)*cy(k+1)-cx(k+1)*cy(k)

 area2=dabs(sum)/2.0d00

! print *, 'area2=', area2

 area(j)=area1+area2

! print *, 'j=', j,' j+1=',j+1,' area=', area(j)

! print *,'ipop(i,j)=',ipop(i,j),' ipop(i,j+1)=',ipop(i,j+1)

! print *, 'd2(j)=', d2(j), ' d2(j+1)=', d2(j+1)

! print *, ''

 goto 69

99

 endif

!..............case (6)

 if(d2(j).gt.0.0d00.and.d2(j+1).lt.0.0d00) then

! print *, 'Case (6)'

 cx(1)=dist(j)

 cy(1)=0.0d00

 cx(2)=dist(j)

 cy(2)=d2(j)

 slope=(d2(j+1)-d2(j))/(dist(j+1)-dist(j))

 b=d2(j)-slope*dist(j)

 cx(3)=-b/slope

 cy(3)=0.0d00

 cx(4)=cx(1)

 cy(4)=cy(1)

 sum=0.0d00

 do 66 k=1,3

 66 sum=sum+cx(k)*cy(k+1)-cx(k+1)*cy(k)

 area1=dabs(sum)/2.0d00

! print *, 'area1=', area1

 cx(1)=cx(3)

 cy(1)=0.0d00

 cx(2)=dist(j+1)

 cy(2)=d2(j+1)

 cx(3)=dist(j+1)

 cy(3)=0.0d00

 cx(4)=cx(1)

 cy(4)=cy(1)

 sum=0.0d00

 do 866 k=1,3

 866 sum=sum+cx(k)*cy(k+1)-cx(k+1)*cy(k)

 area2=dabs(sum)/2.0d00

! print *, 'area2=', area2

 area(j)=area1+area2

! print *, 'j=', j,' j+1=',j+1,' area=', area(j)

! print *,'ipop(i,j)=',ipop(i,j),' ipop(i,j+1)=',ipop(i,j+1)

! print *, 'd2(j)=', d2(j), ' d2(j+1)=', d2(j+1)

! print *, ''

 goto 69

 endif

!..............case (7)

 if(d2(j).eq.0.0d00.and.d2(j+1).eq.0.0d00) then

! print *, 'Case (7)'

 area(j)=0.0d00

! print *, 'j=', j,' j+1=',j+1,' area=', area(j)

! print *,'ipop(i,j)=',ipop(i,j),' ipop(i,j+1)=',ipop(i,j+1)

! print *, 'd2(j)=', d2(j), ' d2(j+1)=', d2(j+1)

! print *, ''

 goto 69

 endif

!..............case (8)

! print *, 'Case (8)'

! print *, 'if you reach this, sometime went wrong'

! print *, 'j=', j,' j+1=',j+1

! print *,'ipop(i,j)=',ipop(i,j),' ipop(i,j+1)=',ipop(i,j+1)

! print *, 'd2(j)=', d2(j), ' d2(j+1)=', d2(j+1)

! print *, ''

 69 continue

 60 continue

!..............summing up areas for total area

100

 sum=0.0d00

 do 70 j=1,n-1

 sum=sum+area(j)

 70 continue

 fit(i)=sum

! print *,'individual=', i, ' total area (fitness)=', fit(i)

 30 continue

 nan=0

 do 80 i=1,itp

 if(iw(i).gt.npts) fit(i)=(fit(i)+1.)*10.**(float(iw(i)-npts))

!...........checking for "not a number" value (NaN)

 if(isnan(fit(i))) then

 nan=nan+1

 fit(i)=10.**30.

 endif

 80 continue

! print *, 'number of NAN:', nan

 return

 end

!

101

E.8. Subroutine average (file average02.f)

!

!.........calculates average fitness

 subroutine average (itp, f, ave)

 double precision ave,sum,outfb

 double precision f(itp)

 m = 0

 outfb = 10.d00**50

 sum = 0.d00

 ave = 0.d00

 do 10 i = 1, itp

 if (f(i). lt. outfb) then

 sum = sum + f(i)

 m = m + 1

 endif

 10 continue

 ave = sum / dfloat(m)

 return

 end

!

102

E.9. Subroutine best2 (file best202.f)

!

!.............elitism--find the 2 best fitnesses in the entire population

!...............equal or less than the weight limit

 subroutine best2(f,itp,m1,m2)

 double precision f(itp)

! print *,'Elitism: find 2 best indivials in population (',itp,')'

!......find best value from fitness

 m1=1

 do 20 i=2,itp

 if(f(i).lt.f(m1)) m1=i

! print *,'** f(',m1,')=',f(m1),' f(',i,')=',f(i)

 20 continue

! print *,'best=',m1,' (fitness=',f(m1),')'

!......now find second best value

 m2=1

 if(m1.eq.1) m2=2

 do 30 i=2,itp

 if(i.eq.m1) goto 30

 if(f(i).lt.f(m2)) m2=i

! print *,'** f(',m2,')=',f(m2),' f(',i,')=',f(i)

 30 continue

! print *,'second best=',m2,' (fitness=',f(m2),')'

 return

 end

!

103

E.10. Subroutine rmse (file rmse02.f)

!

!...........calculates the root-mean-squared error of fitness

 subroutine rmse (itp, f, ave, r)

 double precision f(itp)

 double precision ave,r,outfb

 m = 0

 outfb = 10.d00**50

 sum = 0.d00

 r = 0.d00

 do 10 i = 1, itp

 if(f(i) .lt. outfb) then

 sum = sum + (f(i)-ave)**2

 m = m + 1

 endif

 10 continue

 r = dsqrt(sum/dfloat(m))

 return

 end

!

104

E.11. Subroutine zlast (file zlast02.f)

!

!...........find the worst fitness

 subroutine zlast (itp, f, m3)

 double precision outfb

 double precision f(itp)

 m3 = 1

 outfb = 10.d00**50

 do 10 i = 2, itp

 if (f(i) .ge. outfb) goto 10

 if (f(i) .gt. f(m3)) m3 = i

 10 continue

 return

 end

!

105

E.12. Subroutine tourn (file tourn02.f)

!

!............tournament selection

 subroutine tourn(f,itp,m1,m2)

 double precision f(itp)

 integer ir(7)

!.........select 3 individuals in the population by random choice

 ii=3

! print *,'select best of',ii,'individuals (#, fitness)'

 do 10 i=1,ii

 5 call random_number(rval)

 ir(i)=int(rval*itp+0.5)

 if(ir(i).eq.0) goto 5

! print *,ir(i),':',f(ir(i))

 10 continue

!.........sorting by fitness

 do 30 j=1,ii

 do 20 i=1,ii-1

 if(f(ir(i+1)).lt.f(ir(i))) then

 ia=ir(i)

 ir(i)=ir(i+1)

 ir(i+1)=ia

 endif

 20 continue

 30 continue

!...........the 2 best

 m1=ir(1)

 m2=ir(2)

! print *,'best=',m1

! print *,'second best=',m2

 return

 end

!

106

E.13. Subroutine xover (file xover.f)

!

!.........performs random two-point crossover between 2 individuals

!...........and only middle portion gets switched

 subroutine xover(j1,j2,n,m1,m2,pc)

!

 integer j1(n),j2(n)

!

! print *,'children before crossover'

! print *,m1,':',(j1(i),i=1,n)

! print *,m2,':',(j2(i),i=1,n)

!

!...........determining if crossover will occur with probability of 70%

!.............NO CROSSOVER if > 70%

 call random_number(rval)

 if(rval.gt.(pc/100.)) then

! print *,'NO CROSSOVER--probability exceeds Pc',pc,'%'

! print *,'children are identical copies of parents'

 return

 endif

!

!...........determining random two points

 5 call random_number(rval)

 i1=int(rval*n+0.5)

 if(i1.eq.0) goto 5

! print *,'random number i1=',i1

 20 call random_number(rval)

 i2=int(rval*n+0.5)

 if(i2.eq.0) goto 20

! print *,'random number i2=',i2

!

 if(i1-i2)10,20,30

 30 k=i1

 i1=i2

 i2=k

!

 10 continue

! print *,'2-point random no: i1=',i1,' i2=',i2

!...........performing crossover between i1 and i2

 do 40 i=i1,i2

 k=j1(i)

 j1(i)=j2(i)

 j2(i)=k

 40 continue

!

! print *,'children after crossover and before mutation'

! print *,m1,':',(j1(i),i=1,n)

! print *,m2,':',(j2(i),i=1,n)

!

 return

 end

!

107

E.14. Subroutine zmutat (file zmutat.f)

!

!.........Causes possible mutation of children based on a small probability

!...........Mutation

 subroutine zmutat(n,k,m,pm)

!

 integer k(n)

!

!

!...........determining mutation at each bit in the string with a

!............probability of Pm=1/N

 prob=1.-pm

!

 j=0

 do 10 i=2,n-1

 call random_number(rval)

 if(rval.lt.prob) goto 10

 j=j+1

 if(k(i).eq.0) then

 k(i)=1

 else

 k(i)=0

 endif

 10 continue

!

 if(j.eq.0) then

! print *,'NO MUTATION of',m

 return

 endif

!

! print *,m,':',(k(i),i=1,n)

!

 return

 end

!

108

Appendix F. Listing of Input File for the Hypothetical Cross Section Example

The hypothetical cross section (Figure F.1) is described in Chapter 2 and in Berenbrock (2006)

and is used here to demonstrate the use of the cross-section genetic algorithm program. The input file

must be a space delimited text file composed of x, y pairs representing cross-section data or X-Y data.

If the X-Y data are time-series data, the date and time must be converted to a single numeric value

such as Julian date. The first value represents x and the second value represents y. The value of x must

increase and cannot be negative. Also the value of y cannot be negative.

For the hypothetical cross section (Figure F.1), the x value represents distance from left bank

and the y value represents elevation above a datum (Table F.1).

Figure F.1. Graph of the hypothetical cross section example.

109

Table F.1. Listing of x-y data pairs for the hypothetical cross section example.

 0 14.0

 1 13.7

 2 13.3

 3 12.8

 4 12.0

 5 10.6

 6 8.3

 7 6.5

 8 5.7

 9 5.7

10 6.0

11 6.5

12 6.9

13 6.9

14 6.4

15 4.8

16 3.1

17 2.0

18 1.3

19 0.8

20 0.5

21 0.3

22 0.1

23 0.0

24 0.1

25 0.1

26 0.3

27 0.7

28 1.2

29 1.9

30 2.7

31 3.9

32 5.5

110

33 7.4

34 9.7

35 10.4

36 10.2

37 10.1

38 10.4

39 11.8

40 13.5

111

Appendix G. Listing of Outputs Files for the Hypothetical Cross Section

The cross-section genetic algorithm program outputs three files: r-table_dxsxy.csv,

r-xsxy_dxsxy.txt, and indivi_dxsxy.txt. These files will be replace when the program is reran, so it is

suggested that they be renamed if these files are needed. The file r-table_dsxsy.csv is a comma

delimited text file containing fitness values (best, average, worst, and RMSE) for every generation.

This file is a comma delimited text file that can easily be imported into a spreadsheet; hence, the csv

suffix. An example of output file r-table_dxsxy.csv for the hypothetical cross section for the first 100

generations is given in Table G.1. The file r-xsxy_dxsxy.txt is also a text file that contains the final

genetic algorithm (GA)-produced cross section or X-Y data. A listing of output file r-xsxy_dxsxy.txt is

given in Table G.2. The first column in this file represents distance or the x-value while the second

column represents the elevation or the y-value. File indivi_dxsxy.txt is a text file that contains the

weight (the number of included pairs), fitness (calculated from Equation 3.1), and chromosomes for

the best individual in each generation. The chromosomes in this program are either 0 or 1 because the

GA is binary. A 0 bit in the chromosome represents exclusion of that particular data pair on the cross

section or X-Y data, and a 1 represents inclusion. The output file indivi_dxsxy.txt is a text file and is

given in Table G.3.

Table G.1. Listing of output file r-table_dxsxy.csv.

--

 OUTPUT from the XS or X-Y DECIMATING PROGRAM

--

RUNDATE:, 20100330, RUNTIME:, 143536.237

N=, 400

Gen=, 100

plimit=, 15

Pc=, 0.69999999

Pm=, 2.43902430E-02

Generation, Best, Best, Average, Worst, Worst

No., Weight, Fitness, Fitness, Weight, Fitness, RMSE

1, 14, 10.322726 181667903.9853, 25, 54357141461.909225, 2774413746.2586784

2, 14, 10.322726 163162130.5744, 25, 58500013276.934601, 2934715274.9809661

112

3, 15, 8.5227265 9538.291652732, 20, 1180789.4858113229, 80828.670715285174

4, 15, 8.5227265 6766.403249407, 20, 1647200.0937302245, 83482.753993863909

5, 15, 8.3184426 1350.510677429, 19, 153500.00587105754, 11624.948178809229

6, 15, 8.3184426 321.3273822682, 18, 19911.475292159575, 1773.0504335748603

7, 15, 8.2092486 413.6691861093, 19, 101857.13591867725, 5131.4225084278532

8, 15, 8.2092486 548.8316125608, 19, 123516.13496195931, 6331.5042636011867

9, 15, 7.5186865 504.5494623409, 19, 103220.00336785450, 5301.8032253187221

10, 15, 7.518686, 594.174162623, 19, 97499.997779726968, 5139.7887583051506

11, 15, 7.166433, 352.4791983070, 18, 15050.000546872610, 1560.5724078042647

12, 15, 7.166433, 457.0920974123, 19, 61500.002473592751, 3431.8069875795754

13, 15, 7.166433, 203.2871105444, 18, 19149.801882014428, 1202.5518866144612

14, 15, 7.166433, 2526.726114204, 20, 890000.08553266560, 44453.067644876886

15, 15, 7.166433, 449.8304849961, 19, 87596.144947869077, 4530.8128365669663

16, 15, 7.166433, 772.8006138946, 19, 148114.75489599962, 7602.9003307948215

17, 15, 6.927778, 1081.579588373, 19, 192000.00485777855, 10611.930976028822

18, 15, 6.927778, 638.8608642598, 19, 84672.430873546939, 4631.2008982552243

19, 15, 6.927778, 3994.026427575, 20, 1070000.0655651093, 54337.792573493454

20, 15, 6.927778, 486.1888147425, 19, 75277.774769215146, 4027.0685715542513

21, 15, 6.927778, 531.7515538686, 19, 96999.990731477723, 5108.8831812833614

22, 15, 6.927778, 1002.981610954, 19, 94909.079995283420, 7834.9668742120411

23, 15, 6.927778, 783.3729713036, 19, 157701.60708096615, 9129.9720919617266

24, 15, 6.477778, 678.6163724741, 19, 127176.47784242159, 6611.0296202633972

25, 15, 6.477777, 771.4565754956, 19, 112717.40144440545, 7979.6923048448425

26, 15, 6.477777, 222.7476480084, 18, 10468.182224571003, 1053.7662359366047

27, 15, 6.477777, 624.5108940430, 19, 91000.006705522537, 5628.1418603301036

28, 15, 6.4777773, 522.15668804781114, 19, 122277.77940402887, 6193.5351068674827

29, 15, 6.4777773, 901.05693122242462, 19, 107000.00263750559, 8004.6955819693731

30, 15, 6.4777773, 552.43941859597442, 19, 115310.36209071535, 5877.9022108231775

31, 15, 6.4777773, 462.74692085069751, 19, 119637.93320647340, 6026.0611613225437

32, 15, 6.4777773, 567.68183156370355, 19, 96172.426619265461, 5037.5226927528574

33, 15, 6.4777773, 504.88265368296123, 19, 79999.993979930849, 4289.2908504786665

34, 15, 6.4777773, 997.37023698515350, 19, 117540.24198798572, 8363.6375626876616

35, 15, 6.4777773, 480.82297199560611, 19, 102999.99618530272, 5260.7075417666019

36, 15, 6.1277774, 2339.5261683249391, 20, 709545.42781942163, 35816.819932540078

37, 15, 6.1277774, 623.30356877758891, 19, 157500.02282857898, 8031.3631620043179

38, 15, 6.1277774, 547.75934870453591, 19, 77499.991416931152, 5224.8403611976510

39, 15, 6.1277774, 2576.3786153332326, 20, 815000.12695789314, 40914.100282420972

40, 15, 6.1277774, 470.05591481456338, 19, 72863.628856899348, 3871.9563633904759

41, 15, 6.1277774, 359.70422796547655, 18, 12317.271783249098, 1507.9532088231385

42, 15, 6.1277774, 606.71706268964783, 19, 67578.943574342164, 4724.8029800193790

43, 15, 6.1277774, 981.91631361441512, 19, 88272.721411152655, 7487.6406751392660

44, 15, 6.1277774, 637.54970416581216, 19, 140000.00119209287, 7125.5744470182890

113

45, 15, 6.1277774, 358.16081938372065, 18, 13889.736926398957, 1649.0873112118716

46, 15, 6.1277774, 2191.4837517003643, 20, 806379.36663542839, 40272.079205325368

47, 15, 6.1277774, 5693.3777470662972, 20, 1250000.0842660672, 74821.977109402826

48, 15, 6.1277774, 1207.2171528647916, 19, 112000.00344961882, 9710.5775564587293

49, 15, 6.1277774, 2890.2234064213744, 20, 951571.40015901404, 47779.106449576888

50, 15, 6.1277774, 579.90108520719798, 19, 91064.514873241293, 4819.6860312680119

51, 15, 6.1277774, 1129.4965080264221, 19, 196578.95368477996, 10943.262665220094

52, 15, 6.1277774, 4799.3902729803249, 20, 1611379.4381610018, 80791.085385455735

53, 15, 6.1277774, 572.57855017564020, 19, 76592.466570881705, 4140.0121352479146

54, 15, 6.1277774, 1292.4960029605529, 19, 168418.04534107150, 11127.016146299060

55, 15, 6.1277774, 2050.8992903553390, 20, 644250.96352770494, 32483.143099152214

56, 15, 6.1277774, 2890.1963395900079, 20, 940355.78781527991, 47298.251637877693

57, 15, 6.1277774, 2377.2530851434353, 20, 638181.86590743659, 32415.414328371618

58, 15, 6.1277774, 526.44850241782956, 19, 77999.993912875638, 4207.1319256709794

59, 15, 6.1277774, 557.80982193248474, 19, 66999.988287687287, 3686.1420048609089

60, 15, 6.1277774, 3274.1397169099182, 20, 917500.12710691418, 46508.498361482278

61, 15, 6.1277774, 436.48830885731809, 19, 67851.675949611978, 3644.5028851682914

62, 15, 6.1277774, 228.50228538720413, 18, 15500.000169873239, 1290.9642907532339

63, 15, 6.1277774, 506.51922621310473, 19, 95846.161592465156, 4933.5202847459741

64, 15, 6.1277774, 29409.072219379119, 21, 11600001.894682650, 579262.12857503467

65, 15, 6.1277774, 448.50035008881883, 19, 105954.54920434263, 5352.7609623445733

66, 15, 6.1277774, 239.35459493005300, 18, 14750.000530481340, 1242.2164062674426

67, 15, 6.1277774, 265.67905422478839, 18, 10353.350066884965, 1186.8719897276201

68, 15, 6.1277774, 705.79577433377574, 19, 84500.002950429916, 5940.3132577331307

69, 15, 6.1277774, 708.84337239835861, 19, 97500.011026859283, 6393.0272015689097

70, 15, 6.1277774, 454.88144353059886, 19, 89129.868043764771, 4644.1360875839973

71, 15, 6.1277774, 265.82154857649186, 18, 15630.645464163792, 1376.1689431170869

72, 15, 6.1277774, 1216.3772975245772, 19, 218500.00059604636, 12482.019939096395

73, 15, 6.1277774, 1909.1907708108376, 20, 636643.41015750298, 31808.883368015293

74, 15, 6.1277774, 418.13574795750594, 19, 79749.997437001279, 4094.5453667043425

75, 15, 6.1277774, 412.22651690772540, 19, 86910.669474083799, 4483.3473209199392

76, 15, 6.1277774, 343.41787440701609, 18, 14549.999544024466, 1596.8935844319747

77, 15, 6.1277774, 281.35462196415540, 18, 13649.999877810478, 1371.7278447272258

78, 15, 6.1277774, 692.34266744127979, 19, 88857.141461909152, 6075.3280997819365

79, 15, 6.1277774, 175.21038776193802, 18, 10135.986527390496, 829.19401830934601

80, 15, 6.1277774, 875.63929229221219, 19, 96500.006526708545, 7841.5848194099135

81, 15, 6.1277774, 678.90069694279146, 19, 79068.191865755682, 5779.5020962017134

82, 15, 6.1277774, 23899.195139191019, 21, 9301614.4185778089, 464501.20893500373

83, 15, 6.1277774, 4476.6057849239160, 20, 1350000.1299381263, 68297.108146099417

84, 15, 6.1277774, 385.03467414603983, 19, 68134.918541356892, 3514.9702246249540

85, 15, 6.1277774, 400.25391679212873, 19, 78910.675377921725, 4055.0277335673059

86, 15, 6.1277774, 3756.9352278095816, 20, 1439999.9582767480, 71906.403591335315

114

87, 15, 6.1277774, 401.72922058628797, 19, 60346.166688662292, 3213.8432569121974

88, 15, 6.1277774, 1394.0702105980306, 19, 117500.01835823053, 10392.655622120845

89, 15, 6.1277774, 129.74138543304184, 18, 8527.7773801192252, 646.03646955880129

90, 15, 6.1277774, 514.37436707057577, 19, 74277.771476611102, 4025.2497462890424

91, 15, 6.1277774, 426.86923808296524, 19, 76484.091028944851, 3994.0698441564591

92, 15, 6.1277774, 1094.9772408407564, 19, 114000.00816583633, 8756.7545403534059

93, 15, 6.1277774, 374.49284781282074, 18, 18549.999898672097, 1844.5111655937462

94, 15, 6.1277774, 179.06695505707853, 18, 11858.209266480560, 888.38316057881241

95, 15, 6.1277774, 544.80260929715087, 19, 102172.43061277660, 5260.8420922890282

96, 15, 6.1277774, 471.51634278943311, 19, 73499.995186924920, 3896.1245154640528

97, 15, 6.1277774, 429.87258789686581, 19, 90318.178961349098, 4611.2148507741431

98, 15, 6.1277774, 693.77210981942198, 19, 97500.008970498995, 6751.0111124186424

99, 15, 6.1277774, 240.56878828633796, 18, 12977.778428415913, 1150.2581623270491

100, 15, 6.127777, 652.82244611355611, 19, 149818.19332606849, 7577.8523606626168

Table G.2. Listing of output file r-xsxy_dxsxy.txt which contains the final genetic algorithm-

produced cross section or X-Y data. Note that the first column represents distance or x-value, and

second column represents elevation or y-value.

 0.0 14.0

 3.0 12.8

 5.0 10.6

 7.0 6.5

 10.0 6.0

 12.0 6.9

 14.0 6.4

 17.0 2.0

 20.0 0.5

 23.0 0.0

 27.0 0.7

 30.0 2.7

 35.0 10.4

 38.0 10.4

 40.0 13.5

115

116

117

118

119

Appendix H. General Description of the Genetic Algorithm for Decimating

Bathymetry and (or) LiDAR Data

The genetic algorithm (GA) program for decimating bathymetry and (or) LiDAR data was

written in the FORTRAN computer language (version 77 and (or) 90) and is composed of 17

FORTRAN files. The GA program is composed of one main program and 18 subroutines. A file may

include more than one subroutine. A generalize description of the main program and subroutines

including the FORTRAN file and calling subroutines is given in Table H.1. Several subroutines also

came from other sources, and permission by the authors/owners to use them are given in Appendices

L, M, and N. The program follows the flow chart in Figure H.1. The computer code for decimating

bathymetry and (or) LiDAR data is given in Appendix I.

The program uses the GNU FORTRAN (gfortran, http://gcc.gnu.org/wiki/GFortran) to

compile and load the program. The following command in the command processor (cmd.exe) window

is used.

gfortran d3dga08.f select03.f gip02.f ftnss04.f average02.f

median01.f rmse02.f last02.f best202.f tourn02.f xover03.f

mutate04.f calcvol02.f isort01.f zxc201.f locpt02.f test0704.f

To run the LiDAR and bathymetric GA program in a command processor window, type

“c:\d2sga08”. Another way to run the program is from the ‘Run’ command line in the ‘start’ menu.

Browse to the folder where file ‘d2dga08.exe’ is located and double click on it.

The LiDAR and bathymetric genetic algorithm program reads all data into the program from

unit 21. Six data files are needed: params.dat, seq_out.txt, seq_info.txt, bndpts.txt, vol_out.txt, and

hull_out2.txt. The file “params.dat” defines the GA parameters for simulation and is a text file (Figure

H.2). The first line is a number representing the size of the population (n); the second line represents

the number of generations to simulate, the third line represents the number of points to reduce to

(plimit), the fourth line represents the crossover rate (Pc); and the fifth line represents the mutation

factor (mf). The mutation rate (Pm) is inversely proportional to the product of the population size and

mutation rate. Another words,
nm

1
P

f

m


 . The parameter file for the hypothetical LiDAR

example is shown in Figure H.2. LiDAR data for the hypothetical example (see Appendix J) is a

120

Table H.1. Files that compose the decimating bathymetry and (or) LiDAR program.

Main program

or subroutine

 File

Calling

Subroutines

Description

d3dga d3dga08.f cpu_time,

date_and_time, gip,

select

Main program

average average02.f Calculates the average fitness of the

population

median median01.f isort Calculates the median fitness of the

population

best2 best202.f Determine the best (superior) individual in

the population

ftnss ftnss04.f test0704, zxc2,

calcvol

Calculates the fitness of each individual in

the population

gip gip02.f Init_random_seed,

random_number

Creates the initial population

init_random_seed gip02.f random_seed,

system_clock

Initiates the random number generator

which is dependent on date and time

test0704 test0704.f GEOMPACK—for developing Delaunay

triangulation(modified from

http://orion.math.iastate.edu/burkardt/f_s

rc/geompack/geompack_prb.f90)

median median01.f Calculates the median fitness value for the

population

zxc2 file zxc201.f locpt Deletes TINs outside the boundary and

modifies the hull output file

calcvol calcvol02.f Determines the volume of each individual

by calculating the volume in each TIN

isort isort01.f Sorts the data (modified from

http://www.netlib.no/netlib/slatec/src/iso

rt.f)

rmse rmse02.f Calculates the root-mean-squared error

(RMSE) fitness of the population

http://www.netlib.no/netlib/slatec/src/isort.f
http://www.netlib.no/netlib/slatec/src/isort.f

121

locpt locpt02.f Determines if a point is inside or outside a

polygon (modified from

http://jblevins.org/mirror/amiller/locpt.f9

0)

select select03.f ftnss, average,

median, rmse, last,

best2, tourn, xover,

mutat

Uses a generational selection method

tourn tourn02.f random_number Conducts tournament selection for the

reproduction method with a size of 3

xover xover03.f random_number Conducts crossover

last last02.f -- Determine the worst or least superior

individual of the population

mutat Mutat04.f Random_number Conducts mutation

Figure H.1. Flow chart of evolutionary computation (modified from Terrance Soule,

2003, written communication).

122

square grid with dimensions of 31×31 columns and rows. The data points are spaced 16 m apart. The

size of the population in the GA was set to 200 individuals, and was run for 1,000 generations. The

number of points to reduce was set to 15 percent, the crossover rate (Pc) was set to 70 percent, and the

mutation factor (mf) was set to 1.

 Figure H.2. The parameter file (contained in file “param.dat”) for the hypothetical LiDAR example.

The file “seq_out.txt” contains the LiDAR data points (x, y, and z) in centimeters. The file

must contain one data point on each line with its x, y, and z values given in that order and separated by

at least by one space. A listing of the LiDAR data for the hypothetical LiDAR example is given in

Appendix J.

The file “seq_info.txt” defines additional information that is needed by the program (Figure

H.3). This file is in text format and values are separated by at least one space. The multiplication and

subtraction values in lines 2 through 4 are used to convert the LiDAR data from meters to centimeters.

For example, the original LiDAR data for the hypothetical example are in units of meters. To convert

from meters to centimeters, one multiplies by 100. Hence, 100 is placed for the first value in lines two

through four. The second number in these lines represents the minimum value that will be used to

subtract other respective values. The number on the fifth line represents the number of data points that

are within the boundary points. In the hypothetical example, all points are within the boundary; its

value will be the same as on the first line. The number on the sixth line represents the number of

boundary data points, and the first and last point must be identical.

200 /* population size (n)

1000 /* number of generations to stop (ngen)

15 /* number of points to reduce to in percent (plimit)

0.70 /* crossover rate (Pc)

1 /* mutation factor (mf)

123

Figure H.3. The “seq_info.txt” file for the hypothetical LiDAR example.

The file “bndpts.txt” contains the boundary data points (x, y, and z) in meters. Figure H.4

shows the boundary data points for the hypothetical example. The first and last boundary data points

must be identical.

 Figure H.4. Boundary points (contained in file “bndpts.txt”) for the hypothetical LiDAR example.

The file “vol_out.txt” contains the volume of the LiDAR data above a zero vertical datum in

cubic meters (m3). The volume for the hypothetical example is shown in Figure H.5. This value

probability can be estimated by mapping, computer-aided design (CAD), and (or) geographic

information system (GIS) software.

 Figure H.5. Volume (contained in file “vol_out.txt”) for the hypothetical LiDAR example.

961 /* total number of LiDAR data points

100 314400 /* x-value multiplication and subtraction values

100 1228000 /* y-value multiplication and subtraction values

100 1791 /* z-value multiplication and subtraction values

961 /* number of LiDAR data points within the boundary

5 /* number of boundary data points

3144.0 12280.0

3144.0 12760.0

3624.0 12760.0

3624.0 12280.0

3144.0 12280.0

793626.02666666685

124

The last input file is the hull file (“hull_out2.txt”). This file contains a listing of points

representing the convex hull of the LiDAR data. The listing corresponds to the line number of the

coordinate (x, y, and z) in the LiDAR data (“seq_out.txt” file). The hull file for the hypothetical

example is shown in Figure H.6. The first number in Figure H.6, for example, corresponds to the

coordinate in line number 1 of the seq_out.txt file, which has the coordinate of x = 0, y = 0, and z =

532. The second number corresponds to the coordinate in line number 31, x = 0, y = 48000, and z =

598. Coordinates for the remaining hull points can be found in a similar method.

Figure H.6. Hull points (contained in file “hull_out2.txt”) for the hypothetical LiDAR example.

The LiDAR and bathymetric genetic algorithm program outputs two files: r-table_dxsxy.csv

and r-xsxy_dxsxy.txt. The file “r-table_dxsxy.csv” prints the best fitness, worst fitness, average

fitness, median fitness, and rmse fitness per generation. The file is a comma delimited text file that can

easily be read into a spreadsheet; hence, the csv suffix. The file “r-xsxy_dxsxy.txt” prints the best GA

cross-section data or X-Y data. The file is a space delimited text file with one data point (x-y-z) per

line. A listing of the output files for this hypothetical example are given in Appendix K.

 1

 31

 961

 931

125

Appendix I. Listing of Computer Code for Decimating Bathymetry and (or)

LiDAR Data Using a Genetic Algorithm

I.1. Main program (file d3dga08.f)

!

! --

! Intelligent Decimation of LiDAR and Bathymetry Data

! for Use in 2D and 3D surface-water models

! Using a Binary Genetic Algorithm

! --

! by: Charles Berenbrock

! creation date: November 2009

! language: FORTRAN77&90

! ---

!

! To compile:

!

! gfortran d3dga08.f select03.f gip02.f ftnss04.f average02.f median01.f rmse02.f

last02.f best202.f tourn02.f xover03.f mutate04.f calcvol02.f isort01.f zxc201.f

locpt02.f test0704.f90

!

! ---

!.........declare variables

 dimension ix(11000), iy(11000), iz(11000)

 dimension ihv(1000)

 dimension ipop(300,11000)

 integer dt(8)

 double precision avol

 double precision bx(1000), by(1000)

 character*8 date

 character*10 time

 character*5 zone

 common /lidar/ ix, iy, iz

 common /conv/ multx, minx, multy, miny, multz, minz

 common /populace/ ipop

 common /bound/ bx, by

 common /hulls/ nh, ihv

 call cpu_time (start)

!.........writing head notes to screen

 print *, ''

126

 print *, ''

 print *, ' --'

 print *, ' Intelligent Decimation of LiDAR and Bathymetry'

 print *, ' Data for Use in 2D & 3D Surface-Water Models'

 print *, ' Using a Binary Genetic Algorithm'

 print *, ' ---'

 print *, ''

 print *, ''

 call date_and_time (date,time,zone,dt)

 print *, 'DATE: ', date,' TIME: ', time

 print *, ''

 print *, ''

!.........reading parameters

 open (21, file='params.dat', status='old')

 print *, 'reading the parameter file'

 read (21, *) nsize

 read (21, *) nstop

 read (21, *) prob

 read (21, *) cor

 read (21, *) zmrf

 close (21)

 print *, 'population size=', nsize

 print *, 'number of generations to stop=', nstop

 print *, 'data reduction, in percent=', prob

 print *, 'crossover rate=', cor

 print *, 'mutation rate factor=', zmrf

 print *, ''

!.........reading the number of points (vertices) and conversion units from info

file

 open (21, file='seq_info.txt', status='old')

 print *, 'reading conversion file'

 read (21, *) i

 read (21, *) multx, minx

 read (21, *) multy, miny

 read (21, *) multz, minz

 read (21, *) nv

 close (21)

 print *, 'number of LiDAR points or vertices=', nv

!.........calculating the probability of mutation

 pm = (1./(zmrf*(float(nv))))

!.........calculating the number of bits to turn on

 npr = int(float(nv) * prob / 100.0 + 0.5)

 print *, 'number of points to reduce to=', npr

! len = int(1.2 * float(npr) + 0.5)

 len = int(1.5 * float(npr) + 0.5)

 print *, 'length of individuals=', len

!.........reading hull points

 open (21, file='hull_out2.txt', status='old')

 print *, 'reading hull data'

 i = 0

 do

 i = i + 1

 read (21, *, end = 888) ihv(i)

127

 end do

 888 close (21)

 nh = i - 1

 print *, 'number of points defining the hull=', nh

!.........reading boundary data

 open (21, file='bndpts.txt', status='old')

 print *, 'reading boundary data'

 i = 0

 do

 i = i + 1

 read (21, *, end = 889) bx(i), by(i)

 bx(i) = dfloat(int(bx(i)*dfloat(multx)+0.5d00) - minx)

 by(i) = dfloat(int(by(i)*dfloat(multy)+0.5d00) - miny)

 end do

 889 close (21)

 nb = i - 1

 print *, 'number of points defining the boundary=', nb

!.........generate initial population

 print *, ''

 print *, 'generating the inital population'

 call gip (nv, prob, npr, nsize, len)

!.........reading LiDAR & Bathymetry data

 open (21, file='seq_out.txt', status='old')

 print *, 'reading LiDAR & Bathymetry data'

 do i = 1, nv

 read (21, *) ix(i), iy(i), iz(i)

 end do

 close (21)

!.........reading original volume

 open (21, file='vol_out.txt', status='old')

 read (21, *) avol

 close (21)

 print *, 'reading original volume= (', avol, ')'

!.........writing output to UNIT 22

 open (22, file='stats_out.csv', status='REPLACE')

 write(22,1000)

 1000 format('Generation',2(',Best'),',Average',2(',Median'),

 12(',Worst'),',RMSE')

 write(22,2000)

 2000 format('No.,Weight,Fitness',2(',Fitness,Weight'),

 12(',Fitness'))

!.........Selection of "survival of the fittest"

 call select (nv, nb, nsize, nstop, len, npr, cor, pm, avol)

 close (22)

!.........Estimating CPU time

 call cpu_time (finish)

 cput = (finish - start)

128

 print *, ''

 print *, ''

 print *, 'Seconds to run program (CPU):', cput

 print *, ''

 print *, ''

!.........Ending the program

 stop

 end

129

I.2. Subroutine gip (file gip02f)

 subroutine gip (nv, prob, npr, nsize, len)

!...........this subroutine generates the initial population

!...........declare variables

 dimension ihv(11000)

 dimension ipop(300,11000)

 common /populace/ ipop

 common /hulls/ nh, ihv

 call init_random_seed()

!...........probability of occurance

 prob = (float(npr) - float(nh)) / float(nv)

 print *, 'probability of occurance=', prob

!...........setting hull indices to 1

 print *, 'loading individuals with hull vertices'

 do i = 1, nsize

 do j = 1, nh

 ipop(i,ihv(j)) = 1

 end do

 end do

!...........generating the population

 do i = 1, nsize

 do j = 1, nv

 call random_number (rn)

 if (rn .le. prob) ipop(i,j) = 1

 end do

 end do

 return

 end

130

I.3. Subroutine init_random_seed() (included in file gip02.f)

 SUBROUTINE init_random_seed()

 INTEGER :: i, n, clock

 INTEGER, DIMENSION(:), ALLOCATABLE :: seed

 CALL RANDOM_SEED(size = n)

 ALLOCATE(seed(n))

 CALL SYSTEM_CLOCK(COUNT=clock)

 seed = clock + 37 * (/ (i - 1, i = 1, n) /)

 CALL RANDOM_SEED(PUT = seed)

 DEALLOCATE(seed)

 END SUBROUTINE

131

I.4. Subroutine isort (file isort01.f) (from http://www.netlib.no/netlib/slatec/src/isort.f; see

Appendix L for copyright information)

*DECK ISORT

 SUBROUTINE ISORT (IX, IY, N, KFLAG)

C***BEGIN PROLOGUE ISORT

C***PURPOSE Sort an array and optionally make the same interchanges in

C an auxiliary array. The array may be sorted in increasing

C or decreasing order. A slightly modified QUICKSORT

C algorithm is used.

C***LIBRARY SLATEC

C***CATEGORY N6A2A

C***TYPE INTEGER (SSORT-S, DSORT-D, ISORT-I)

C***KEYWORDS SINGLETON QUICKSORT, SORT, SORTING

C***AUTHOR Jones, R. E., (SNLA)

C Kahaner, D. K., (NBS)

C Wisniewski, J. A., (SNLA)

C###

C http://www.netlib.org/slatec/src/isort.f

C###

C***DESCRIPTION

C

C ISORT sorts array IX and optionally makes the same interchanges in

C array IY. The array IX may be sorted in increasing order or

C decreasing order. A slightly modified quicksort algorithm is used.

C

C Description of Parameters

C IX - integer array of values to be sorted

C IY - integer array to be (optionally) carried along

C N - number of values in integer array IX to be sorted

C KFLAG - control parameter

C = 2 means sort IX in increasing order and carry IY along.

C = 1 means sort IX in increasing order (ignoring IY)

C = -1 means sort IX in decreasing order (ignoring IY)

C = -2 means sort IX in decreasing order and carry IY along.

C

C***REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm

C for sorting with minimal storage, Communications of

C the ACM, 12, 3 (1969), pp. 185-187.

C***ROUTINES CALLED XERMSG

C***REVISION HISTORY (YYMMDD)

C 761118 DATE WRITTEN

C 810801 Modified by David K. Kahaner.

C 890531 Changed all specific intrinsics to generic. (WRB)

C 890831 Modified array declarations. (WRB)

C 891009 Removed unreferenced statement labels. (WRB)

C 891009 REVISION DATE from Version 3.2

C 891214 Prologue converted to Version 4.0 format. (BAB)

C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)

C 901012 Declared all variables; changed X,Y to IX,IY. (M. McClain)

C 920501 Reformatted the REFERENCES section. (DWL, WRB)

C 920519 Clarified error messages. (DWL)

C 920801 Declarations section rebuilt and code restructured to use

C IF-THEN-ELSE-ENDIF. (RWC, WRB)

C***END PROLOGUE ISORT

C .. Scalar Arguments ..

 INTEGER KFLAG, N

C .. Array Arguments ..

C INTEGER IX(*), IY(*)

 integer ix(11000), iy(11000)

C .. Local Scalars ..

http://www.netlib.no/netlib/slatec/src/isort.f

132

 REAL R

 INTEGER I, IJ, J, K, KK, L, M, NN, T, TT, TTY, TY

C .. Local Arrays ..

 INTEGER IL(21), IU(21)

C .. External Subroutines ..

c EXTERNAL XERMSG

C .. Intrinsic Functions ..

 INTRINSIC ABS, INT

C***FIRST EXECUTABLE STATEMENT ISORT

 NN = N

c IF (NN .LT. 1) THEN

c CALL XERMSG ('SLATEC', 'ISORT',

c + 'The number of values to be sorted is not positive.', 1, 1)

c RETURN

c ENDIF

C

 KK = ABS(KFLAG)

c IF (KK.NE.1 .AND. KK.NE.2) THEN

c CALL XERMSG ('SLATEC', 'ISORT',

c + 'The sort control parameter, K, is not 2, 1, -1, or -2.', 2,

c + 1)

c RETURN

c ENDIF

C

C Alter array IX to get decreasing order if needed

C

 IF (KFLAG .LE. -1) THEN

 DO 10 I=1,NN

 IX(I) = -IX(I)

 10 CONTINUE

 ENDIF

C

 IF (KK .EQ. 2) GO TO 100

C

C Sort IX only

C

 M = 1

 I = 1

 J = NN

 R = 0.375E0

C

 20 IF (I .EQ. J) GO TO 60

 IF (R .LE. 0.5898437E0) THEN

 R = R+3.90625E-2

 ELSE

 R = R-0.21875E0

 ENDIF

C

 30 K = I

C

C Select a central element of the array and save it in location T

C

 IJ = I + INT((J-I)*R)

 T = IX(IJ)

C

C If first element of array is greater than T, interchange with T

C

 IF (IX(I) .GT. T) THEN

 IX(IJ) = IX(I)

 IX(I) = T

 T = IX(IJ)

 ENDIF

 L = J

133

C

C If last element of array is less than than T, interchange with T

C

 IF (IX(J) .LT. T) THEN

 IX(IJ) = IX(J)

 IX(J) = T

 T = IX(IJ)

C

C If first element of array is greater than T, interchange with T

C

 IF (IX(I) .GT. T) THEN

 IX(IJ) = IX(I)

 IX(I) = T

 T = IX(IJ)

 ENDIF

 ENDIF

C

C Find an element in the second half of the array which is smaller

C than T

C

 40 L = L-1

 IF (IX(L) .GT. T) GO TO 40

C

C Find an element in the first half of the array which is greater

C than T

C

 50 K = K+1

 IF (IX(K) .LT. T) GO TO 50

C

C Interchange these elements

C

 IF (K .LE. L) THEN

 TT = IX(L)

 IX(L) = IX(K)

 IX(K) = TT

 GO TO 40

 ENDIF

C

C Save upper and lower subscripts of the array yet to be sorted

C

 IF (L-I .GT. J-K) THEN

 IL(M) = I

 IU(M) = L

 I = K

 M = M+1

 ELSE

 IL(M) = K

 IU(M) = J

 J = L

 M = M+1

 ENDIF

 GO TO 70

C

C Begin again on another portion of the unsorted array

C

 60 M = M-1

 IF (M .EQ. 0) GO TO 190

 I = IL(M)

 J = IU(M)

C

 70 IF (J-I .GE. 1) GO TO 30

 IF (I .EQ. 1) GO TO 20

 I = I-1

134

C

 80 I = I+1

 IF (I .EQ. J) GO TO 60

 T = IX(I+1)

 IF (IX(I) .LE. T) GO TO 80

 K = I

C

 90 IX(K+1) = IX(K)

 K = K-1

 IF (T .LT. IX(K)) GO TO 90

 IX(K+1) = T

 GO TO 80

C

C Sort IX and carry IY along

C

 100 M = 1

 I = 1

 J = NN

 R = 0.375E0

C

 110 IF (I .EQ. J) GO TO 150

 IF (R .LE. 0.5898437E0) THEN

 R = R+3.90625E-2

 ELSE

 R = R-0.21875E0

 ENDIF

C

 120 K = I

C

C Select a central element of the array and save it in location T

C

 IJ = I + INT((J-I)*R)

 T = IX(IJ)

 TY = IY(IJ)

C

C If first element of array is greater than T, interchange with T

C

 IF (IX(I) .GT. T) THEN

 IX(IJ) = IX(I)

 IX(I) = T

 T = IX(IJ)

 IY(IJ) = IY(I)

 IY(I) = TY

 TY = IY(IJ)

 ENDIF

 L = J

C

C If last element of array is less than T, interchange with T

C

 IF (IX(J) .LT. T) THEN

 IX(IJ) = IX(J)

 IX(J) = T

 T = IX(IJ)

 IY(IJ) = IY(J)

 IY(J) = TY

 TY = IY(IJ)

C

C If first element of array is greater than T, interchange with T

C

 IF (IX(I) .GT. T) THEN

 IX(IJ) = IX(I)

 IX(I) = T

 T = IX(IJ)

135

 IY(IJ) = IY(I)

 IY(I) = TY

 TY = IY(IJ)

 ENDIF

 ENDIF

C

C Find an element in the second half of the array which is smaller

C than T

C

 130 L = L-1

 IF (IX(L) .GT. T) GO TO 130

C

C Find an element in the first half of the array which is greater

C than T

C

 140 K = K+1

 IF (IX(K) .LT. T) GO TO 140

C

C Interchange these elements

C

 IF (K .LE. L) THEN

 TT = IX(L)

 IX(L) = IX(K)

 IX(K) = TT

 TTY = IY(L)

 IY(L) = IY(K)

 IY(K) = TTY

 GO TO 130

 ENDIF

C

C Save upper and lower subscripts of the array yet to be sorted

C

 IF (L-I .GT. J-K) THEN

 IL(M) = I

 IU(M) = L

 I = K

 M = M+1

 ELSE

 IL(M) = K

 IU(M) = J

 J = L

 M = M+1

 ENDIF

 GO TO 160

C

C Begin again on another portion of the unsorted array

C

 150 M = M-1

 IF (M .EQ. 0) GO TO 190

 I = IL(M)

 J = IU(M)

C

 160 IF (J-I .GE. 1) GO TO 120

 IF (I .EQ. 1) GO TO 110

 I = I-1

C

 170 I = I+1

 IF (I .EQ. J) GO TO 150

 T = IX(I+1)

 TY = IY(I+1)

 IF (IX(I) .LE. T) GO TO 170

 K = I

C

136

 180 IX(K+1) = IX(K)

 IY(K+1) = IY(K)

 K = K-1

 IF (T .LT. IX(K)) GO TO 180

 IX(K+1) = T

 IY(K+1) = TY

 GO TO 170

C

C Clean up

C

 190 IF (KFLAG .LE. -1) THEN

 DO 200 I=1,NN

 IX(I) = -IX(I)

 200 CONTINUE

 ENDIF

C

 RETURN

 END

137

I.5. Subroutine select (file select03.f)

 subroutine select(nv, nb, nsize, nstop, len, npr, cor, pm, avol)

!.........Selection solution * * * Generational GA * * *

!...........declare variables

 dimension j1(11000), j2(11000)

 dimension ix(11000), iy(11000), iz(11000)

 dimension ihv(1000)

 dimension ipop(300,11000)

 dimension itemp(300,11000)

 double precision a1, a2, a3

 double precision avol, ave, r

 double precision bx(1000), by(1000)

 double precision fit(300)

 common /lidar/ ix, iy, iz

 common /conv/ multx, minx, multy, miny, multz, minz

 common /populace/ ipop

 common /bound/ bx, by

 common /hulls/ nh, ihv

 common /health/ fit

 igen = 0

 print *, 'Generation'

 5 igen = igen + 1

 print *, igen

!...........zero out the fitness array

 do i = 1, 300

 fit(i) = 0.d00

 end do

!...........determine the fitness of each individual in the populace

! print *, 'calling ftnss'

 call ftnss (nv, nb, nsize, avol, len, npr)

!...........determine the median fitness of the populace

! print *, 'calling median'

 call median (nsize, m4)

!...........determine the average fitness of the populace

! print *, 'calling average'

 call average (nsize, ave)

!...........determine the root-mean-squared-error (rmse) of the populace

! print *, 'calling rmse'

 call rmse (nsize, ave, r)

!...........determine the worst fit individual in the populace

! print *, 'calling zlast'

 call last (nsize, m3)

138

!...........elitism (finding the best 2 individuals in populace based on fitness)

! print *,'individuals 1 & 2'

! print *,'-----------------'

! print *, 'calling best2'

 call best2 (nsize, m1, m2)

! print *, 'm1=', m1, ' m2=', m2, ' m3=', m3, ' m4=', m4

!...........determining who in the population has the best, median,and worst

fitness

 k1 = 0

! do i = 1, len

 do i = 1, nv

 if (ipop(m1,i) .eq. 1) k1 = k1 + 1

 end do

! print *, 'Best(m1):', m1, (ipop(m1,i), i = 1, nv)

 k4 = 0

! do i = 1, len

 do i = 1, nv

 if (ipop(m4,i) .eq. 1) k4 = k4 + 1

 end do

! print *, 'Median(m4):', m4, (ipop(m4,i), i = 1, nv)

 k3 = 0

! do i = 1, len

 do i = 1, nv

 if (ipop(m3,i) .eq. 1) k3 = k3 + 1

 end do

! print *, 'Worst(m3):', m3, (ipop(m3,i), i = 1, nv)

!...........printing to UNIT 22

 write(22,1000)igen,k1,fit(m1),ave,k4,fit(m4),k3,fit(m3),r

 1000 format(2(i6,','),2(e15.3,','),2(i6,',',e12.3,','),e15.5)

!...........placing the best two individuals from OLD population (ipop) into the

!.............TEMPORARY population (itemp)

! print *, 'writing 1st & 2nd individuals to temp array'

! do i = 1, len

 do i = 1, nv

 itemp (1, i) = ipop (m1, i)

 itemp (2, i) = ipop (m2, i)

 end do

!

!...........selecting 2 parents

 do j = 3, nsize, 2

! print *, 'j=', j

! print *,'individuals', j,'&', j+1

! print *,'-------------------------------------'

! print *, 'calling tourn'

 call tourn (nsize, m1, m2)

! print *, 'm1=', m1, 'm2=', m2

!...........creating 2 single parents arrays: j1 and j2

! print *, 'creating 2 parents'

 do i = 1, len

139

 j1 (i) = ipop (m1, i)

 j2 (i) = ipop (m2, i)

 end do

!...........crossover of parents to create 2 children

! print *, 'calling cross over'

 call xover (nv, j1, j2, len, m1, m2, cor)

!...........mutating (probability based) the children (two)

! print *, 'calling mutation'

 call mutate (nv, len, j1, m1, pm)

! print *, 'calling mutation'

 call mutate (nv, len, j2, m2, pm)

!...........placing the 2 children into the TEMPORARY population

! print *, 'placing j1 & j2 into temp array'

! do i = 1, len

 do i = 1, nv

 itemp (j, i) = j1 (i)

 itemp (j+1, i) = j2 (i)

 end do

 end do

!..........reintializing the TEMPORARY population to zero

! print *, 'putting the temp array back into the ipop array'

 do i = 1, nsize

! do j = 1, len

 do j = 1, nv

 ipop (i,j) = itemp (i,j)

 itemp (i,j) = 0

 end do

 end do

 if (igen .lt. nstop) goto 5

!..........print best individual after simulating to UNIT 23

 open (23, file='bi_out.csv', status='REPLACE')

 write (23, '(a)') 'BEST INDIVIDUAL'

 write (23, '(a)') 'X, Y, Z'

 write (23, '(a)') ' '

 write (23,*) (ipop(1,i), i=1,nv)

 write (23, '(a)') ' '

 j = 0

! do i = 1, len

 do i = 1, nv

 if (ipop(1,i) .eq. 1) then

 a1 = dfloat(ix(i)+minx) / dfloat(multx)

 a2 = dfloat(iy(i)+miny) / dfloat(multy)

 a3 = dfloat(iz(i)+minz) / dfloat(multz)

 j = j + 1

 write(23, '(4(i10))') i, ix(i),iy(i),iz(i)

! write(23,'(2(e15.5,a),e15.5)') a1, ',', a2, ',', a3

 endif

 end do

 print *, ' '

 print *, 'Best individual has', j, ' points'

 close (23)

 return

 end

140

I.6. Subroutine ftnss (file ftnss04.f)

 subroutine ftnss (nv, nb, nsize, avol, len, npr)

!.........declaring variables

 dimension ix(11000), iy(11000), iz(11000)

 dimension ixcor(11000), iycor(11000), izcor(11000)

 dimension icon(6,25000)

 integer til(3,25000)

 integer tnbr(3,25000)

 dimension ipop(300,1000)

 double precision vol, avol

 double precision fit(300)

 double precision xcor(11000), ycor(11000), zcor(11000)

 double precision bx(1000), by(1000)

 common /lidar/ ix, iy, iz

 common /populace/ ipop

 common /bound/ bx, by

 common /health/ fit

 common /triang/ icon

! print *, 'nsize=', nsize, ' nv=', nv

!........creating individual coordinate arrays for bits > 0

 do j = 1, nsize

 ii = 0

! do i = 1, len

 do i = 1, nv

 if (ipop(j,i) .ne. 0) then

 ii = ii + 1

 ixcor(ii) = ix(i)

 iycor(ii) = iy(i)

 izcor(ii) = iz(i)

 xcor(ii) = dfloat(ixcor(ii))

 ycor(ii) = dfloat(iycor(ii))

 zcor(ii) = dfloat(izcor(ii))

! print *,'i=',i,'ii=',ii,ix(i),iy(i),iz(i)

! print *,'i=',i,'ii=',ii,xcor(ii),ycor(ii),zcor(ii)

 end if

 end do

!........generating TINs

 call test0704 (ii, xcor(1:ii), ycor(1:ii), ntins, til, tnbr)

! print *, 'ii=', ii, ' ntins=', ntins

 do k = 1, ntins

 icon(1,k) = tnbr(1,k)

 icon(2,k) = tnbr(2,k)

 icon(3,k) = tnbr(3,k)

 icon(4,k) = til(1,k)

 icon(5,k) = til(2,k)

 icon(6,k) = til(3,k)

 end do

 do k = ntins+1, 25000

 icon(1,k) = 0

 icon(2,k) = 0

 icon(3,k) = 0

141

 icon(4,k) = 0

 icon(5,k) = 0

 icon(6,k) = 0

 end do

!........deletes TINs outside of the boundary & update TIN matrix

 call zxc2 (ii, ntins, nb, xcor(1:ii), ycor(1:ii))

!........determine the volume from updated TIN matrix

 vol = 0.d00

 call calcvol(ii,ntins,ixcor(1:ii),iycor(1:ii),izcor(1:ii),vol)

 fit(j) = dabs(vol - avol)

!........penalizing fitness if ii > nprp

 if (ii .gt. npr) then

 fit(j) = fit(j) * (10.d0**dfloat(ii-npr))

 else

 fit(j) = fit(j) * (dfloat(1+npr-ii))

 end if

!...........checking for "not a number" value (NaN)

 if(isnan(fit(j))) fit(i) = 10.d0**50.d0

! write(*,*) ' ind',j, ': size=',ii, ' vol =',vol, 'fit=',

! 1dabs(vol-avol), ' adjusted fit =', fit(j)

! write (*, '(1x,3i6,2e20.7)') j, ii, (ii-npr), vol, fit(j)

 end do

 return

 end

142

I.7. Subroutine average (file average02.f)

!.........calculates average fitness

 subroutine average (itp, ave)

 double precision sum, outfb, ave

 double precision f(300)

 common /health/ f

 m = 0

 outfb = 10.d0**50.d0

 sum = 0.d0

 ave = 0.d0

 do i = 1, itp

! if (f(i) .lt. outfb) then

 sum = sum + f(i)

 m = m + 1

! end if

 end do

 ave = sum / dfloat(m)

 return

 end

143

I.8. Subroutine median (file median01.f)

!.........calculates average fitness

 subroutine median (nsize, m4)

 integer ifit(300), ib(300)

 double precision f(300)

 common /health/ f

! print *, ' i fitness integer_fitness who in populace'

 do i = 1, nsize

 if(f(i) .gt. 100000000) then

 ifit(i) = 100000000

 ib(i) = i

 else

 ifit(i) = abs(int(f(i)))

 ib(i) = i

 end if

! print *, i, f(i), ifit(i), ib(i)

 end do

 k = nsize

!..........sorting both ifit and ib arrays

 call isort(ifit, ib, k, 2)

! print *, ' i fitness who in populace'

! do i = 1, nsize

! print *, i, ifit(i), ib(i)

! end do

 k = nsize/2

!.........median point

 m4 = ib(k)

! print *, 'm4=', m4

 return

 end

144

I.9. Subroutine best2 (file best202.f)

!

!.............elitism--find the 2 best fitnesses in the entire population

!...............equal or less than the weight limit

 subroutine best2 (itp, m1, m2)

 double precision f(300)

 common /health/ f

! print *,'Elitism: find 2 best indivials in population (',itp,')'

!......find best value from fitness

 m1 = 1

 do i = 2, itp

 if (f(i) .lt. f(m1)) m1 = i

! print *, '** f(', m1,')=', f(m1), ' f(',i,')=', f(i)

 end do

! print *, 'best=', m1, ' (fitness=', f(m1), ')'

!......now find second best value

 m2 = 1

 if (m1 .eq. 1) m2 = 2

 do i=2,itp

 if (i .eq. m1) cycle

 if (f(i) .lt. f(m2)) m2 = i

! print *, '** f(', m2,')=', f(m2), ' f(',i,')=', f(i)

 end do

! print *, 'second best=', m2, ' (fitness=', f(m2), ')'

 return

 end

145

I.10. Subroutine rmse (file rmse02.f)

!

!...........calculates the root-mean-squared error of fitness

 subroutine rmse (itp, ave, r)

 double precision ave, outfb, sum, r

 double precision f(300)

 common /health/ f

 m = 0

 outfb = 10.d0**50.d0

 sum = 0.d0

 r = 0.d0

 do i = 1, itp

 if(f(i) .lt. outfb) then

 sum = sum + (f(i) - ave)**2.d0

 m = m + 1

 end if

 end do

 r = dsqrt(sum / dfloat(m))

 return

 end

146

I.11. Subroutine last (file last02.f)

!

!...........find the worst fitness

 subroutine last (itp, m3)

 double precision outfb

 double precision f(300)

 common /health/ f

 m3 = 1

 outfb = 10.**50.

 do i = 2, itp

! if (f(i) .ge. outfb) cycle

 if (f(i) .gt. f(m3)) m3 = i

 end do

 return

 end

147

I.12. Subroutine tourn (file tourn02.f)

!

 subroutine tourn (itp, m1, m2)

 integer ir(7)

 double precision f(300)

 common /health/ f

!.........select 3 individuals in the population by random choice

 ii=3

! print *,'select best of', ii, 'individuals (#, fitness)'

 do i = 1, ii

 5 call random_number (rval)

 ir(i) = int(rval * float(itp) + 0.5)

 if (ir(i) .eq. 0) goto 5

! print *, ir(i), ':', f(ir(i))

 end do

!.........sorting by fitness

 do j = 1, ii

 do i = 1, ii-1

 if (f(ir(i+1)) .lt. f(ir(i))) then

 ia = ir(i)

 ir(i) = ir(i+1)

 ir(i+1) = ia

 end if

 end do

 end do

!...........the 2 best

 m1 = ir(1)

 m2 = ir(2)

! print *, 'best=', m1

! print *, 'second best=', m2

! print *, ''

 return

 end

148

I.13. Subroutine xover (file xover03.f)

!

!.........performs random two-point crossover between 2 individuals

!...........and only middle portion gets switched

 subroutine xover (nv, j1, j2, len, m1, m2, pc)

 integer j1(11000), j2(11000)

 integer jj1(11000), jj2(11000)

!...........determining if crossover will occur with probability of pc%

!.............NO CROSSOVER if > pc%

 call random_number (rval)

 if (rval .gt. pc) goto 40

!...........uniform cross over

 do i = 1, nv

 5 call random_number(rval)

 if (rval .le. 0.5) then

 jj1(i) = j1(i)

 jj2(i) = j2(i)

 else

 jj1(i) = j2(i)

 jj2(i) = j1(i)

 end if

 end do

 do i = 1, nv

 j1(i) = jj1(i)

 j2(i) = jj2(i)

 end do

 40 continue

 return

 end

149

I.14. Subroutine mutat (file mutat04.f)

!

!.........Causes possible mutation of children based on a small probability

!...........Mutation

 subroutine mutate (nv, len, k, m, pm)

!

 integer k(11000)

 integer ihv(1000)

 common /hulls/ nh,ihv

!

!

!...........determining mutation at each bit in the string with a

!............probability of Pm=1/N

 prob = 1. - pm

!

 do i = 1, nv

 call random_number(rval)

 if(rval.lt.prob) cycle

 if(k(i).eq.0) then

 k(i)=1

 else

 k(i)=0

 end if

 end do

!...........redefining hulls to be included (=1)

 do i = 1, nh

 k(ihv(i))=1

 end do

 return

 end

!

150

I.15. Subroutine calcvol (file calcvol02.f)

 subroutine calcvol (ii, ntins, ixcor, iycor, izcor, vol_sum)

 dimension ixcor(11000), iycor(11000), izcor(11000)

 dimension icon(6,25000)

 dimension kx(4), ky(4), kz(4)

 double precision area, height, vol_tin, vol_sum

 common /conv/ multx, minx, multy, miny, multz, minz

 common /triang/ icon

! print *, 'printing tins from inside the volume subroutine'

! do i = 1, ntins

! print *, (icon(j,i), j=1,6)

! end do

! print *, 'printing integer ixcor, iycor, izcor arrays'

! do i = 1, ii

! print *, i, ixcor(i), iycor(i), izcor(i)

! end do

 vol_sum = 0.d00

 vol_tin = 0.d00

! print *, ''

 do i = 1, ntins

! print *, 'tin=', i

 if (icon(1,ntins) .lt. 0) cycle

! print *, 'tin=', i, ':', (icon(j,i), j=4,6)

!.........setting up the triangle

 do j = 1, 3

 kx(j) = ixcor(icon(j+3,i))

 ky(j) = iycor(icon(j+3,i))

 kz(j) = izcor(icon(j+3,i))

! print *, j, ' icon=', icon(j+3,i), ' x=', kx(j), ' y=', ky(j), '

z=', kz(j)

 end do

!...............the 4th point = 1st point

 kx(4) = kx(1)

 ky(4) = ky(1)

!.........calculating area of triangle

 area = 0.d00

 height = 0.d00

 do j = 1, 3

 area = area + dfloat(kx(j)*ky(j+1) - kx(j+1)*ky(j))

 end do

 area = area/2.0d0

!.........converting area to original units

 area = area/(dfloat(multx) * dfloat(multy))

151

!.........calculating average height of prism

 height = (dfloat(kz(1)+kz(2)+kz(3)))/3.d00

!.........converting height to original units

 height = height/dfloat(multz)

!.........calculating volume of the prism in orginal units

 vol_tin = area * height

!.........summing the volume

 vol_sum = vol_sum + vol_tin

! print *, ' area=', area, ' volume=', vol_tin

 end do

! print *, 'total volume=', vol_sum

! print *, ''

!..........end of volume program

 return

 end

152

I.16. Subroutine locpt (file locpt02.f) (from http://jblevins.org/mirror/amiller/locpt.f90;

See Appendix M for copyright information)

!

 SUBROUTINE locpt (x0, y0, n, l, m)

!---

! GIVEN A POLYGONAL LINE CONNECTING THE VERTICES (X(I),Y(I)) (I = 1,...,N)

! TAKEN IN THIS ORDER. IT IS ASSUMED THAT THE POLYGONAL PATH IS A LOOP,

! WHERE (X(N),Y(N)) = (X(1),Y(1)) OR THERE IS AN ARC FROM (X(N),Y(N)) TO

! (X(1),Y(1)). N.B. The polygon may cross itself any number of times.

! (X0,Y0) IS AN ARBITRARY POINT AND L AND M ARE VARIABLES.

! On output, L AND M ARE ASSIGNED THE FOLLOWING VALUES ...

! L = -1 IF (X0,Y0) IS OUTSIDE THE POLYGONAL PATH

! L = 0 IF (X0,Y0) LIES ON THE POLYGONAL PATH

! L = 1 IF (X0,Y0) IS INSIDE THE POLYGONAL PATH

! M = 0 IF (X0,Y0) IS ON OR OUTSIDE THE PATH. IF (X0,Y0) IS INSIDE THE

! PATH THEN M IS THE WINDING NUMBER OF THE PATH AROUND THE POINT (X0,Y0).

! Fortran 66 version by A.H. Morris

! Converted to ELF90 compatibility by Alan Miller, 15 February 1997

!-----------------------

 double precision x0, y0

 double precision x(1000), y(1000)

! Local variables

 double precision angle, eps, pi, pi2, sum, theta

 double precision theta1, thetai, tol, u, v

 common /bound/ x, y

! ****** EPS IS A MACHINE DEPENDENT CONSTANT. EPS IS THE

! SMALLEST NUMBER SUCH THAT 1.0 + EPS > 1.0

 eps = EPSILON(1.0)

!---

 n0 = n

 IF (x(1) == x(n) .AND. y(1) == y(n)) n0 = n - 1

 pi = DATAN2(0.0D00, -1.0D00)

 pi2 = 2.0*pi

 tol = 4.0*eps*pi

 l = -1

 m = 0

 u = x(1) - x0

 v = y(1) - y0

 IF (u == 0.0 .AND. v == 0.0) GO TO 20

 IF (n0 < 2) RETURN

 theta1 = DATAN2(v, u)

 sum = 0.0

 theta = theta1

 DO i = 2, n0

 u = x(i) - x0

http://jblevins.org/mirror/amiller/locpt.f90

153

 v = y(i) - y0

 IF (u == 0.0 .AND. v == 0.0) GO TO 20

 thetai = DATAN2(v, u)

 angle = DABS(thetai - theta)

 IF (DABS(angle - pi) < tol) GO TO 20

 IF (angle > pi) angle = angle - pi2

 IF (theta > thetai) angle = -angle

 sum = sum + angle

 theta = thetai

 END DO

 angle = DABS(theta1 - theta)

 IF (DABS(angle - pi) < tol) GO TO 20

 IF (angle > pi) angle = angle - pi2

 IF (theta > theta1) angle = -angle

 sum = sum + angle

! SUM = 2*PI*M WHERE M IS THE WINDING NUMBER

 m = DABS(sum)/pi2 + 0.2

 IF (m == 0) RETURN

 l = 1

 IF (sum < 0.0) m = -m

 RETURN

! (X0, Y0) IS ON THE BOUNDARY OF THE PATH

 20 l = 0

 RETURN

! END SUBROUTINE locpt

 END

154

I.17. Subroutine zxc2 (file zxc01.f)

 subroutine zxc2 (nv, nt, nb, x, y)

 integer A(11000), B(11000)

 dimension kx(11000), ky(11000)

 dimension icon(6,25000)

 double precision cx, cy, cxave, cyave

 double precision x(11000), y(11000)

 common /triang/ icon

!.......nv = number of points/vertices in his individual

!.......nt = number of TINS in this individual

! print *, ''

! print *, 'Entered subroutine zxc'

! print *, 'nv=', nv, ' nt=', nt

!.........converting x & y to interger arrays (kx, ky)

 do i = 1, nv

 kx(i) = int(x(i))

 ky(i) = int(y(i))

 end do

!.........finding tins inside boundary

! print *, ''

! print *, 'finding tins inside boundary'

! print *, ' 10pt sweep per tin'

! print *, ''

!.........1st ==> sweeping using centroids--this finds ~99% of the triangles

 j = 0

 do i = 1, nt

! print *, 'TIN:', i, ' vertices=', icon(4,i), icon(5,i), icon(6,i)

! print *, '1: x=', kx(icon(4,i)),' y=', ky(icon(4,i))

! print *, '2: x=', kx(icon(5,i)),' y=', ky(icon(5,i))

! print *, '3: x=', kx(icon(6,i)),' y=', ky(icon(6,i))

 cx = dfloat(kx(icon(4,i))+kx(icon(5,i))+kx(icon(6,i)))/3.0d00

 cy = dfloat(ky(icon(4,i))+ky(icon(5,i))+ky(icon(6,i)))/3.0d00

! print *, 'Centroid: cx=', cx, ' cy=', cy

 call locpt (cx, cy, nb, l, m)

! print *, 'l=' ,l

 A(i) = 1

 if (l .lt. 0) then

 j = j + 1

 B(j) = i

 end if

!.........2nd sweep on the triangle edges (3 per side of triangle)

!...........catch ~99.9% of the triangles

 if (l .ge. 0) then

 do ii = 1, 3

 select case (ii)

 case (1)

!...............vertice #1 of triangle

 kx1 = kx(icon(4,i))

 kx2 = kx(icon(5,i))

 ky1 = ky(icon(4,i))

 ky2 = ky(icon(5,i))

155

 case (2)

!...............vertice #2 of triangle

 kx1 = kx(icon(5,i))

 kx2 = kx(icon(6,i))

 ky1 = ky(icon(5,i))

 ky2 = ky(icon(6,i))

 case (3)

!...............vertice #3 of triangle

 kx1 = kx(icon(6,i))

 kx2 = kx(icon(4,i))

 ky1 = ky(icon(6,i))

 ky2 = ky(icon(4,i))

 end select

!...............determine if mid-point on line is outside the boundary

 cxave = dfloat(kx1 + kx2)/2.0d00

 cyave = dfloat(ky1 + ky2)/2.0d00

 call locpt (cxave, cyave, nb, l, m)

 A(i) = l

 if (l .lt. 0) then

 j = j + 1

 B(j) = i

! print *, 'outside from 2nd sweep'

 exit

 end if

!...............determine if point that is 1/3 away is outside the boundary

 cx = (dfloat(kx1) + cxave)/2.0d00

 cy = (dfloat(ky1) + cyave)/2.0d00

 call locpt (cx, cy, nb, l, m)

 A(i) = l

 if (l .lt. 0) then

 j = j + 1

 B(j) = i

! print *, 'outside from 2nd sweep'

 exit

 end if

!...............determine if point that is 2/3 away is outside the boundary

 cx = (dfloat(kx2) + cxave)/2.0d00

 cy = (dfloat(ky2) + cyave)/2.0d00

 call locpt (cx, cy, nb, l, m)

 A(i) = l

 if (l .lt. 0) then

 j = j + 1

 B(j) = i

! print *, 'outside from 2nd sweep'

 exit

 end if

 end do

 end if

 end do

 nost = j

! print *, 'number of outside tins from sweep=', nost

! print *, 'writing tin number of outside tins'

! do k = 1, j

! print *, B(k)

! end do

!..........updating the TIN from the sweeps if there are updates

156

 if (nost .ne. 0) then

! print *, 'updating the tin matrix due to the sweeps'

 do i = 1, nt

 do k = 1, nost

 if (icon(1,i) .eq. B(k)) icon(1,i) = 0

 if (icon(2,i) .eq. B(k)) icon(2,i) = 0

 if (icon(3,i) .eq. B(k)) icon(3,i) = 0

 if (B(k) .eq. i) then

 icon(1,i) = -99

 icon(2,i) = -99

 icon(3,i) = -99

 end if

 end do

! print *, (icon(k,i), k = 1, 6)

 end do

! else

! print *, 'there are no tins outside the polygon'

 end if

 return

 end

157

I.18. GEOMPACK code (file test0704.f) (modified from GEOMPACK—used for

developing Delaunay triangulation. The original download (1/18/10) was on the web at

http://orion.math.iastate.edu/burkardt/f_src/geompack/geompack_prb.f90. The code on

10/29/17 resides at https://people.sc.fsu.edu/~jburkardt/f77_src/geompack/geompack.f; See

Appendix N for copyright information)

 subroutine test0704 (npt, xvcl, yvcl, ntri, til, tnbr)

!

!***

!

!! TEST07 tests DTRIW2;

!

 implicit none

!

! double precision, parameter :: large = 1000.0D+00

 integer, parameter :: maxnp = 25000

 integer, parameter :: maxst = 25000

!

 integer a

! integer alg

 integer b

 double precision binexp

 integer c

 integer d

 integer diaedg

 integer i

 integer ierror

 integer ind(maxnp+3)

 integer j

 integer jp1

 integer jp2

 integer k

 integer msglvl

 integer nlo

 integer npt

 integer ntri

 integer stack(maxst)

! integer til(3,maxnp*2+1)

 integer til(3,25000)

! integer tnbr(3,maxnp*2+1)

 integer tnbr(3,25000)

 double precision xvcl(11000)

 double precision yvcl(11000)

! double precision vcl(2,maxnp+3)

 double precision vcl(2,11000)

!

! ALG =

! 2: DTRIW2;

! 3: DTRIW2 with bounding triangle;

! 4: DTRIW2 with call to BNSRT2 first.

! MSGLVL

! 0: print arrays;

! 4: also print edges as they are created and swapped.

!

! I HAVE NO IDEA HOW TO CHOOSE BINEXP

!

 msglvl = 0

 binexp = 0.5D+00

http://orion.math.iastate.edu/burkardt/f_src/geompack/geompack_prb.f90
https://people.sc.fsu.edu/~jburkardt/f77_src/geompack/geompack.f

158

 do i = 1, npt

 vcl(1,i) = xvcl(i)

 vcl(2,i) = yvcl(i)

 end do

! npt = 24

! write (*, '(a)') ' '

! write (*, '(a)') 'TEST07'

! write (*, '(a,i6)') ' MSGLVL = ', msglvl

! write (*, '(a,i6)') ' NPT = ', npt

! write (*, '(a,g14.6)') ' BINEXP = ', binexp

! if (npt > maxnp) then

! write (*, '(a)') ' '

! write (*, '(a)') 'TEST07 - Error!'

! write (*, '(a)') ' NPT > MAXNP.'

! return

! end if

! write (*, '(a)') ' '

! write (*, '(a,i6)') ' The number of points to triangulate is ', npt

! write (*, '(a)') ' '

! write (*, '(a)') ' The coordinates of the points are:'

! write (*, '(a)') ' '

! do i = 1, npt

! write (*, '(i5,2f15.7)') i, vcl(1,i), vcl(2,i)

! end do

! do alg = 2, 4

! npt = 24

! write (*, '(a,i6)') 'ALG = ', alg

! if (alg /= 3) then

 do i = 1, npt

 ind(i) = i

 end do

! else

! vcl(1,npt+1) = -large

! vcl(2,npt+1) = -large

! vcl(1,npt+2) = large

! vcl(2,npt+2) = -large

! vcl(1,npt+3) = 0.0D+00

! vcl(2,npt+3) = large

! ind(1) = npt + 1

! ind(2) = npt + 2

! ind(3) = npt + 3

! do i = 1, npt

! ind(i+3) = i

! end do

! npt = npt + 3

! end if

! if (alg == 4) then

! call bnsrt2 (binexp, npt, vcl, ind, til, tnbr)

! end if

159

 call dtriw2 (npt, maxst, vcl, ind, ntri, til, tnbr, stack, ierror)

! if (ierror /= 0) then

! write (*, '(a)') ' '

! write (*, '(a)') 'TEST07 - Error!'

! write (*, '(a,i6)') ' IERROR = ', ierror

! return

! end if

 nlo = 0

 do i = 1, ntri

 do j = 1, 3

 k = tnbr(j,i)

 if (k > i) then

 jp1 = j + 1

 if (jp1 > 3) then

 jp1 = 1

 end if

 jp2 = jp1 + 1

 if (jp2 > 3) then

 jp2 = 1

 end if

 a = til(j,i)

 b = til(jp1,i)

 c = til(jp2,i)

 if (til(1,k) == b) then

 d = til(3,k)

 else if (til(2,k) == b) then

 d = til(1,k)

 else

 d = til(2,k)

 end if

 if (diaedg(vcl(1,c),vcl(2,c),vcl(1,a),vcl(2,a),vcl(1,d), &

 vcl(2,d),vcl(1,b),vcl(2,b)) == 1) then

 nlo = nlo + 1

 end if

 end if

 end do

 end do

!! write (*, '(a)') ' '

! write (*, '(a,i6)') ' NLO = ', nlo

! call delaunay_print (npt, vcl, ntri, til, tnbr)

!! write (*, '(a,i6)') 'No. of triangles =', ntri

!! write (*, '(a)') ' '

!! do i = 1, ntri

!! write(*,'(7i6)')i,tnbr(1,i),tnbr(2,i),tnbr(3,i),til(1,i),til(2,i),til(3,i)

160

!! end do

! end do

 return

! stop

end

!---

function diaedg (x0, y0, x1, y1, x2, y2, x3, y3)

!

!***

!

!! DIAEDG chooses one of the diagonals of a quadrilateral.

!

!

! Discussion:

!

! The routine determines whether 0--2 or 1--3 is the diagonal edge

! that should be chosen, based on the circumcircle criterion, where

! (X0,Y0), (X1,Y1), (X2,Y2), (X3,Y3) are the vertices of a simple

! quadrilateral in counterclockwise order.

!

! Modified:

!

! 19 February 2001

!

! Author:

!

! Barry Joe,

! Department of Computing Science,

! University of Alberta,

! Edmonton, Alberta, Canada T6G 2H1

!

! Parameters:

!

! Input, double precision X0, Y0, X1, Y1, X2, Y2, X3, Y3, the

! coordinates of the vertices of a quadrilateral, given in

! counter clockwise order.

!

! Output, integer DIAEDG, chooses a diagonal:

! +1, if diagonal edge 02 is chosen;

! -1, if diagonal edge 13 is chosen;

! 0, if the four vertices are cocircular.

!

 double precision ca

 double precision cb

 integer diaedg

 double precision dx10

 double precision dx12

 double precision dx30

 double precision dx32

 double precision dy10

 double precision dy12

 double precision dy30

 double precision dy32

 double precision s

 double precision tol

 double precision tola

 double precision tolb

 double precision x0

 double precision x1

161

 double precision x2

 double precision x3

 double precision y0

 double precision y1

 double precision y2

 double precision y3

!

 tol = 100.0D+00 * epsilon (tol)

 dx10 = x1 - x0

 dy10 = y1 - y0

 dx12 = x1 - x2

 dy12 = y1 - y2

 dx30 = x3 - x0

 dy30 = y3 - y0

 dx32 = x3 - x2

 dy32 = y3 - y2

 tola = tol * max (abs (dx10), abs (dy10), abs (dx30), abs (dy30))

 tolb = tol * max (abs (dx12), abs (dy12), abs (dx32), abs (dy32))

 ca = dx10 * dx30 + dy10 * dy30

 cb = dx12 * dx32 + dy12 * dy32

 if (ca > tola .and. cb > tolb) then

 diaedg = -1

 else if (ca < -tola .and. cb < -tolb) then

 diaedg = 1

 else

 tola = max (tola, tolb)

 s = (dx10 * dy30 - dx30 * dy10) * cb + (dx32 * dy12 - dx12 * dy32) * ca

 if (s > tola) then

 diaedg = -1

 else if (s < -tola) then

 diaedg = 1

 else

 diaedg = 0

 end if

 end if

 return

end

!---

subroutine dtriw2 (npt, maxst, vcl, ind, ntri, til, tnbr, stack, ierror)

!

!***

!

!! DTRIW2 constructs an incremental Delaunay triangulation in 2D.

!

!

! Purpose:

!

! Construct Delaunay triangulation of 2-D vertices using

! incremental approach and diagonal edge swaps. Vertices are

162

! inserted one at a time in order given by IND array. The initial

! triangles created due to a new vertex are obtained by a walk

! through the triangulation until location of vertex is known.

!

! Modified:

!

! 12 July 1999

!

! Author:

!

! Barry Joe,

! Department of Computing Science,

! University of Alberta,

! Edmonton, Alberta, Canada T6G 2H1

!

! Parameters:

!

! Input, integer NPT, the number of 2-D points (vertices).

!

! Input, integer MAXST, the maximum size available for STACK array; should

! be about NPT to be safe, but MAX(10,2*LOG2(NPT)) usually enough.

!

! Input, double precision VCL(1:2,1:*), the coordinates of 2-D vertices.

!

! Input, integer IND(1:NPT), indices in VCL of vertices to be triangulated;

! vertices are inserted in order given by this array.

!

! Output, integer NTRI, the number of triangles in triangulation; equal to

! 2*NPT - NB - 2 where NB = number of boundary vertices.

!

! Output, integer TIL(1:3,1:NTRI), the triangle incidence list; elements

! are indices of VCL; vertices of triangles are in counter clockwise order.

!

! Output, integer TNBR(1:3,1:NTRI), the triangle neighbor list; positive

! elements are indices of TIL; negative elements are used for links

! of counter clockwise linked list of boundary edges; LINK = -(3*I + J-1)

! where I, J = triangle, edge index; TNBR(J,I) refers to

! the neighbor along edge from vertex J to J+1 (mod 3).

!

! Workspace, integer STACK(1:MAXST), used for stack of triangles for which

! circumcircle test must be made.

!

! Output, integer IERROR, error flag. For abnormal return,

! IERROR is set to 8, 224, 225, or 226.

!

 integer maxst

 integer npt

!

 integer bedg

 integer btri

 double precision cmax

 integer e

 integer em1

 integer ep1

 integer ntri

 integer i

 integer i3

 integer ierror

 integer ind(npt)

 integer j

 integer l

 integer ledg

 integer lr

163

 integer lrline

 integer ltri

 integer m

 integer m1

 integer m2

 integer m3

 integer, parameter :: msglvl = 0

 integer n

 integer redg

 integer rtri

 integer stack(maxst)

 integer t

 integer til(3,npt*2)

 integer tnbr(3,npt*2)

 integer top

 double precision tol

 double precision vcl(2,*)

!

 ierror = 0

 tol = 100.0D+00 * epsilon (tol)

!

! Determine the initial triangle.

!

 m1 = ind(1)

 m2 = ind(2)

 do j = 1, 2

 cmax = max (abs (vcl(j,m1)), abs (vcl(j,m2)))

 if (abs (vcl(j,m1) - vcl(j,m2)) > tol * cmax .and. cmax > tol) then

 go to 20

 end if

 end do

 ierror = 224

 return

20 continue

 i3 = 3

30 continue

 if (i3 > npt) then

 ierror = 225

 return

 end if

 m = ind(i3)

 lr = lrline (vcl(1,m), vcl(2,m), vcl(1,m1), vcl(2,m1), vcl(1,m2), &

 vcl(2,m2), 0.0D+00)

 if (lr == 0) then

 i3 = i3 + 1

 go to 30

 end if

 if (i3 /= 3) then

 ind(i3) = ind(3)

 ind(3) = m

 end if

 ntri = 1

164

 if (lr == -1) then

 til(1,1) = m1

 til(2,1) = m2

 else

 til(1,1) = m2

 til(2,1) = m1

 end if

 til(3,1) = m

 tnbr(1,1) = -4

 tnbr(2,1) = -5

 tnbr(3,1) = -3

!! if (msglvl == 4) then

!! write (*,600) 1,vcl(1,m1),vcl(2,m1),vcl(1,m2),vcl(2,m2)

!! write (*,600) 1,vcl(1,m2),vcl(2,m2),vcl(1,m),vcl(2,m)

!! write (*,600) 1,vcl(1,m),vcl(2,m),vcl(1,m1),vcl(2,m1)

!! end if

!

! Insert vertices one at a time from anywhere.

! Walk through the triangulation to determine the location of the new vertex.

! Apply diagonal edge swaps until Delaunay triangulation of vertices

! (so far) is obtained.

!

 top = 0

 do i = 4, npt

!! if (msglvl == 4) then

!! write (*,600) i

!! end if

 m = ind(i)

 rtri = ntri

 call walkt2 (vcl(1,m), vcl(2,m), ntri, vcl, til, tnbr, rtri, redg, ierror)

 if (redg == 0) then

 m1 = til(1,rtri)

 m2 = til(2,rtri)

 m3 = til(3,rtri)

 til(3,rtri) = m

 if (tnbr(1,rtri) > 0) then

 top = 1

 stack(top) = rtri

 end if

 ntri = ntri + 1

 til(1,ntri) = m2

 til(2,ntri) = m3

 til(3,ntri) = m

 n = tnbr(2,rtri)

 tnbr(1,ntri) = n

 if (n > 0) then

 if (tnbr(1,n) == rtri) then

 tnbr(1,n) = ntri

 else if (tnbr(2,n) == rtri) then

 tnbr(2,n) = ntri

 else

 tnbr(3,n) = ntri

165

 end if

 top = top + 1

 stack(top) = ntri

 end if

 ntri = ntri + 1

 til(1,ntri) = m3

 til(2,ntri) = m1

 til(3,ntri) = m

 n = tnbr(3,rtri)

 tnbr(1,ntri) = n

 if (n > 0) then

 if (tnbr(1,n) == rtri) then

 tnbr(1,n) = ntri

 else if (tnbr(2,n) == rtri) then

 tnbr(2,n) = ntri

 else

 tnbr(3,n) = ntri

 end if

 top = top + 1

 stack(top) = ntri

 end if

 tnbr(2,rtri) = ntri - 1

 tnbr(3,rtri) = ntri

 tnbr(2,ntri-1) = ntri

 tnbr(3,ntri-1) = rtri

 tnbr(2,ntri) = rtri

 tnbr(3,ntri) = ntri - 1

 if (tnbr(1,ntri-1) <= 0) then

 t = rtri

 e = 1

 do

 if (tnbr(e,t) <= 0) then

 exit

 end if

 t = tnbr(e,t)

 if (til(1,t) == m2) then

 e = 3

 else if (til(2,t) == m2) then

 e = 1

 else

 e = 2

 end if

 end do

 tnbr(e,t) = -3 * ntri + 3

 end if

 if (tnbr(1,ntri) <= 0) then

 t = ntri - 1

 e = 1

166

 do

 if (tnbr(e,t) <= 0) then

 exit

 end if

 t = tnbr(e,t)

 if (til(1,t) == m3) then

 e = 3

 else if (til(2,t) == m3) then

 e = 1

 else

 e = 2

 end if

 end do

 tnbr(e,t) = -3 * ntri

 end if

!! if (msglvl == 4) then

!! write (*,600) 1,vcl(1,m),vcl(2,m),vcl(1,m1),vcl(2,m1)

!! write (*,600) 1,vcl(1,m),vcl(2,m),vcl(1,m2),vcl(2,m2)

!! write (*,600) 1,vcl(1,m),vcl(2,m),vcl(1,m3),vcl(2,m3)

!! end if

 else if (redg < 0) then

 redg = -redg

 ltri = 0

 call vbedg (vcl(1,m), vcl(2,m), vcl, til, tnbr, ltri, ledg, rtri, redg)

 n = ntri + 1

 l = -tnbr(ledg,ltri)

60 continue

 t = l / 3

 e = mod (l, 3) + 1

 l = -tnbr(e,t)

 m2 = til(e,t)

 if (e <= 2) then

 m1 = til(e+1,t)

 else

 m1 = til(1,t)

 end if

 ntri = ntri + 1

 tnbr(e,t) = ntri

 til(1,ntri) = m1

 til(2,ntri) = m2

 til(3,ntri) = m

 tnbr(1,ntri) = t

 tnbr(2,ntri) = ntri - 1

 tnbr(3,ntri) = ntri + 1

 top = top + 1

 if (top > maxst) then

 ierror = 8

 go to 100

 end if

167

 stack(top) = ntri

!! if (msglvl == 4) then

!! write (*,600) 1,vcl(1,m),vcl(2,m),vcl(1,m2),vcl(2,m2)

!! end if

 if (t /= rtri .or. e /= redg) then

 go to 60

 end if

!! if (msglvl == 4) then

!! write (*,600) 1,vcl(1,m),vcl(2,m),vcl(1,m1),vcl(2,m1)

!! end if

 tnbr(ledg,ltri) = -3*n - 1

 tnbr(2,n) = -3*ntri - 2

 tnbr(3,ntri) = -l

 else if (redg <= 3) then

 m1 = til(redg,rtri)

 if (redg == 1) then

 e = 2

 ep1 = 3

 else if (redg == 2) then

 e = 3

 ep1 = 1

 else

 e = 1

 ep1 = 2

 end if

 m2 = til(e,rtri)

 til(e,rtri) = m

 m3 = til(ep1,rtri)

 if (tnbr(ep1,rtri) > 0) then

 top = 1

 stack(top) = rtri

 end if

 ntri = ntri + 1

 til(1,ntri) = m

 til(2,ntri) = m2

 til(3,ntri) = m3

 n = tnbr(e,rtri)

 tnbr(2,ntri) = n

 tnbr(3,ntri) = rtri

 tnbr(e,rtri) = ntri

 if (n > 0) then

 if (tnbr(1,n) == rtri) then

 tnbr(1,n) = ntri

 else if (tnbr(2,n) == rtri) then

 tnbr(2,n) = ntri

 else

 tnbr(3,n) = ntri

 end if

 top = top + 1

 stack(top) = ntri

 end if

168

!! if (msglvl == 4) then

!! write (*,600) 1,vcl(1,m),vcl(2,m),vcl(1,m3),vcl(2,m3)

!! end if

 ltri = tnbr(redg,rtri)

 if (ltri <= 0) then

 tnbr(1,ntri) = ltri

 tnbr(redg,rtri) = -3*ntri

 if (tnbr(2,ntri) <= 0) then

 tnbr(1,ntri) = -3*ntri - 1

 end if

 else

 tnbr(1,ntri) = ntri + 1

 tnbr(redg,rtri) = ltri

 if (til(1,ltri) == m2) then

 ledg = 1

 em1 = 2

 e = 3

 else if (til(2,ltri) == m2) then

 ledg = 2

 em1 = 3

 e = 1

 else

 ledg = 3

 em1 = 1

 e = 2

 end if

 til(ledg,ltri) = m

 m3 = til(e,ltri)

 if (tnbr(em1,ltri) > 0) then

 top = top + 1

 stack(top) = ltri

 end if

 ntri = ntri + 1

 til(1,ntri) = m2

 til(2,ntri) = m

 til(3,ntri) = m3

 tnbr(1,ntri) = ntri - 1

 tnbr(2,ntri) = ltri

 n = tnbr(e,ltri)

 tnbr(3,ntri) = n

 tnbr(e,ltri) = ntri

 if (n > 0) then

 if (tnbr(1,n) == ltri) then

 tnbr(1,n) = ntri

 else if (tnbr(2,n) == ltri) then

 tnbr(2,n) = ntri

 else

 tnbr(3,n) = ntri

 end if

 top = top + 1

 stack(top) = ntri

 end if

!! if (msglvl == 4) then

!! write (*,600) 1,vcl(1,m),vcl(2,m),vcl(1,m3),vcl(2,m3)

!! end if

169

 if (tnbr(2,ntri-1) <= 0) then

 t = ntri

 e = 3

 do

 if (tnbr(e,t) <= 0) then

 exit

 end if

 t = tnbr(e,t)

 if (til(1,t) == m2) then

 e = 3

 else if (til(2,t) == m2) then

 e = 1

 else

 e = 2

 end if

 end do

 tnbr(e,t) = -3 * ntri + 2

 end if

 if (tnbr(3,ntri) <= 0) then

 t = ltri

 if (ledg <= 2) then

 e = ledg + 1

 else

 e = 1

 end if

 do

 if (tnbr(e,t) <= 0) then

 exit

 end if

 t = tnbr(e,t)

 if (til(1,t) == m3) then

 e = 3

 else if (til(2,t) == m3) then

 e = 1

 else

 e = 2

 end if

 end do

 tnbr(e,t) = -3 * ntri - 2

 end if

 end if

 else

 ierror = 224

 go to 100

170

 end if

 btri = 0

 bedg = 0

 call swapec (m, top, maxst, btri, bedg, vcl, til, tnbr, stack, ierror)

 if (ierror /= 0) then

 exit

 end if

 end do

100 continue

 if (i3 /= 3) then

 t = ind(i3)

 ind(i3) = ind(3)

 ind(3) = t

 end if

!! if (msglvl == 4) then

!! write (*,600) npt+1

!! end if

!! 600 format (1x,i7,4f15.7)

 return

end

!---

function lrline (xu, yu, xv1, yv1, xv2, yv2, dv)

!

!***

!

!! LRLINE determines if a point is left of, right or, or on a directed line.

!

!

! Discussion:

!

! The directed line is paralled to, and at a signed distance DV from

! a directed base line from (XV1,YV1) to (XV2,YV2).

!

! Modified:

!

! 14 July 2001

!

! Author:

!

! Barry Joe,

! Department of Computing Science,

! University of Alberta,

! Edmonton, Alberta, Canada T6G 2H1

!

! Parameters:

!

! Input, double precision XU, YU, the coordinates of the point whose

! position relative to the directed line is to be determined.

!

! Input, double precision XV1, YV1, XV2, YV2, the coordinates of two points

! that determine the directed base line.

!

171

! Input, double precision DV, the signed distance of the directed line

! from the directed base line through the points (XV1,YV1) and (XV2,YV2).

! DV is positive for a line to the left of the base line.

!

! Output, integer LRLINE, the result:

! +1, the point is to the right of the directed line;

! 0, the point is on the directed line;

! -1, the point is to the left of the directed line.

!

 double precision dv

 double precision dx

 double precision dxu

 double precision dy

 double precision dyu

 integer lrline

 double precision t

 double precision tol

 double precision tolabs

 double precision xu

 double precision xv1

 double precision xv2

 double precision yu

 double precision yv1

 double precision yv2

!

 tol = 100.0D+00 * epsilon (tol)

 dx = xv2 - xv1

 dy = yv2 - yv1

 dxu = xu - xv1

 dyu = yu - yv1

 tolabs = tol * max (abs (dx), abs (dy), abs (dxu), &

 abs (dyu), abs (dv))

 t = dy * dxu - dx * dyu + dv * sqrt (dx * dx + dy * dy)

 if (tolabs < t) then

 lrline = 1

 else if (-tolabs <= t) then

 lrline = 0

 else

 lrline = -1

 end if

 return

end

!---

subroutine walkt2 (x, y, ntri, vcl, til, tnbr, itri, iedg, ierror)

!

!***

!

!! WALKT2 searches for a triangle containing a point.

!

!

! Purpose:

!

! Walk through neighboring triangles of a 2-D Delaunay

! triangulation until a triangle is found containing point (X,Y)

! or (X,Y) is found to be outside the convex hull. Search is

! guaranteed to terminate for a Delaunay triangulation, else a

172

! cycle may occur.

!

! Modified:

!

! 14 July 2001

!

! Author:

!

! Barry Joe,

! Department of Computing Science,

! University of Alberta,

! Edmonton, Alberta, Canada T6G 2H1

!

! Parameters:

!

! Input, double precision X, Y, the coordinates of a 2-D point.

!

! Input, integer NTRI, the number of triangles in the triangulation; used

! to detect cycle.

!

! Input, double precision VCL(2,1:*), the coordinates of 2-D vertices.

!

! Input, integer TIL(3,NTRI), the triangle incidence list.

!

! Input, integer TNBR(3,NTRI), the triangle neighbor list.

!

! Input/output, integer ITRI. On input, the index of triangle to begin

! search at. On output, the index of triangle that search ends at.

!

! Output, integer IEDG, indicates the position of the point (X,Y) in

! triangle ITRI. A small tolerance is allowed in positions:

! 0, the interior of the triangle;

! 1, interior of edge 1;

! 2, interior of edge 2;

! 3, interior or edge 3;

! 4, vertex 1;

! 5, vertex 2;

! 6, vertex 3;

! -1, outside convex hull, past edge 1;

! -2, outside convex hull, past edge 2;

! -3, outside convex hull, past edge 3.

!

! Output, integer IERROR, error flag. On abnormal return,

! IERROR is set to 226.

!

 integer ntri

!

 integer a

 double precision alpha

 integer b

 double precision beta

 integer c

 integer cnt

 double precision det

 double precision dx

 double precision dxa

 double precision dxb

 double precision dy

 double precision dya

 double precision dyb

 double precision gamma

 integer i

 integer iedg

173

 integer ierror

 integer itri

 integer til(3,ntri)

 integer tnbr(3,ntri)

 double precision tol

 double precision vcl(2,*)

 double precision x

 double precision y

!

 ierror = 0

 tol = 100.0D+00 * epsilon (tol)

 cnt = 0

 iedg = 0

 ierror = 0

 do

 cnt = cnt + 1

!! if (cnt > ntri) then

!! write (*, '(a)') ' '

!! write (*, '(a)') 'WALKT2 - Fatal error!'

!! write (*, '(a)') ' All triangles have been searched.'

!! ierror = 226

!! return

!! end if

!

! Get the vertices of triangle ITRI.

!

 a = til(1,itri)

 b = til(2,itri)

 c = til(3,itri)

!

! Using vertex C as a base, compute the distances to vertices A and B,

! and the point (X,Y).

!

 dxa = vcl(1,a) - vcl(1,c)

 dya = vcl(2,a) - vcl(2,c)

 dxb = vcl(1,b) - vcl(1,c)

 dyb = vcl(2,b) - vcl(2,c)

 dx = x - vcl(1,c)

 dy = y - vcl(2,c)

 det = dxa * dyb - dya * dxb

!

! Compute the barycentric coordinates of the point (X,Y) with respect

! to this triangle.

!

 alpha = (dx * dyb - dy * dxb) / det

 beta = (dxa * dy - dya * dx) / det

 gamma = 1.0D+00 - alpha - beta

!

! If the barycentric coordinates are all positive, then the point

! is inside the triangle.

!

 if (alpha > tol .and. beta > tol .and. gamma > tol) then

 exit

 end if

!

! If any barycentric coordinate is (strongly) negative with respect to

174

! a side, and if that side is on the convex hull, the point is outside

! the triangles, and we are done.

!

 if (alpha < -tol) then

 i = tnbr(2,itri)

 if (i <= 0) then

 iedg = -2

 exit

 end if

 else if (beta < -tol) then

 i = tnbr(3,itri)

 if (i <= 0) then

 iedg = -3

 exit

 end if

 else if (gamma < -tol) then

 i = tnbr(1,itri)

 if (i <= 0) then

 iedg = -1

 exit

 end if

!

! At least one barycentric coordinate is between -TOL and TOL,

! and no barycentric coordinate is less than -TOL. We are going

! to assign the position to an edge or vertex.

!

 else if (alpha <= tol) then

 if (beta <= tol) then

 iedg = 6

 else if (gamma <= tol) then

 iedg = 5

 else

 iedg = 2

 end if

 exit

 else if (beta <= tol) then

 if (gamma <= tol) then

 iedg = 4

 else

 iedg = 3

 end if

 exit

 else

 iedg = 1

 exit

 end if

!

! If we fell through, then at least one barycentric coordinate was negative

! for a side of the current triangle, and that side has a neighboring

! triangle I. Let's go there.

!

 itri = i

 end do

 return

end

!---

subroutine vbedg (x, y, vcl, til, tnbr, ltri, ledg, rtri, redg)

!

!***

175

!

!! VBEDG determines visible boundary edges of a 2D triangulation.

!

!

! Purpose:

!

! Determine boundary edges of 2-D triangulation which are

! visible from point (X,Y) outside convex hull.

!

! Modified:

!

! 14 July 2001

!

! Author:

!

! Barry Joe,

! Department of Computing Science,

! University of Alberta,

! Edmonton, Alberta, Canada T6G 2H1

!

! Parameters:

!

! Input, double precision X, Y, the coordinates of a 2-D point outside

! the convex hull.

!

! Input, double precision VCL(1:2,1:*), the coordinates of 2-D vertices.

!

! Input, integer TIL(1:3,1:*), the triangle incidence list.

!

! Input, integer TNBR(1:3,1:*), the triangle neighbor list; negative

! values are used for links of counter clockwise linked list of boundary

! edges; LINK = -(3*I + J-1) where I, J = triangle, edge index.

!

! Input/output, integer LTRI, LEDG. On input, if LTRI /= 0 then they

! are assumed to be as defined below and are not changed, else they are

! updated. On output, LTRI is the index of the boundary triangle to the

! left of leftmost boundary triangle visible from (X,Y), and LEDG is the

! boundary edge of triangle LTRI to left of leftmost

! boundary edge visible from (X,Y). 1 <= LEDG <= 3.

!

! Input/output, integer RTRI, on input, the index of boundary triangle

! to begin search at. On output, the index of rightmost boundary triangle

! visible from (X,Y).

!

! Input/output, integer REDG. On input, the edge of triangle RTRI that

! is visible from (X,Y). On output, REDG has been updated so that this

! is still true. 1 <= REDG <= 3.

!

 integer a

 integer b

 integer e

 integer i_wrap

 integer l

 logical ldone

 integer ledg

 integer lr

 integer lrline

 integer ltri

 integer redg

 integer rtri

 integer t

 integer til(3,*)

 integer tnbr(3,*)

176

 double precision vcl(2,*)

 double precision x

 double precision y

!

! Find rightmost visible boundary edge using links, then possibly

! leftmost visible boundary edge using triangle neighbor information.

!

 if (ltri == 0) then

 ldone = .false.

 ltri = rtri

 ledg = redg

 else

 ldone = .true.

 end if

10 continue

 l = -tnbr(redg,rtri)

 t = l / 3

 e = mod (l, 3) + 1

 a = til(e,t)

 if (e <= 2) then

 b = til(e+1,t)

 else

 b = til(1,t)

 end if

 lr = lrline (x, y, vcl(1,a), vcl(2,a), vcl(1,b), vcl(2,b), 0.0D+00)

 if (lr > 0) then

 rtri = t

 redg = e

 go to 10

 end if

 if (ldone) then

 return

 end if

 t = ltri

 e = ledg

 do

 b = til(e,t)

 e = i_wrap (e-1, 1, 3)

 do while (tnbr(e,t) > 0)

 t = tnbr(e,t)

 if (til(1,t) == b) then

 e = 3

 else if (til(2,t) == b) then

 e = 1

 else

 e = 2

 end if

 end do

 a = til(e,t)

177

 lr = lrline (x, y, vcl(1,a), vcl(2,a), vcl(1,b), vcl(2,b), 0.0D+00)

 if (lr <= 0) then

 exit

 end if

 end do

 ltri = t

 ledg = e

 return

end

!---

subroutine swapec (i, top, maxst, btri, bedg, vcl, til, tnbr, stack, ierror)

!

!***

!

!! SWAPEC swaps diagonal edges until all triangles are Delaunay.

!

!

! Discussion:

!

! The routine swaps diagonal edges in a 2-D triangulation, based on

! the empty circumcircle criterion, until all triangles are Delaunay,

! given that I is the index of the new vertex added to triangulation.

!

! Modified:

!

! 19 February 2001

!

! Author:

!

! Barry Joe,

! Department of Computing Science,

! University of Alberta,

! Edmonton, Alberta, Canada T6G 2H1

!

! Parameters:

!

! Input, integer I, the index in VCL of the new vertex.

!

! Input/output, integer TOP, the index of the top of the stack.

! On output, TOP is zero.

!

! Input, integer MAXST, the maximum size available for the STACK array.

!

! Input/output, integer BTRI, BEDG; on input, if positive, are the

! triangle and edge indices of a boundary edge whose updated indices

! must be recorded. On output, these may be updated because of swaps.

!

! Input, double precision VCL(2,*), the coordinates of the vertices.

!

! Input/output, integer TIL(3,*), the triangle incidence list. May be updated

! on output because of swaps.

!

! Input/output, integer TNBR(3,*), the triangle neighbor list; negative

! values are used for links of the counter-clockwise linked list of boundary

! edges; May be updated on output because of swaps.

!

! LINK = -(3*I + J-1) where I, J = triangle, edge index.

178

!

! Workspace, integer STACK(1:MAXST); on input, entries 1 through TOP

! contain the indices of initial triangles (involving vertex I)

! put in stack; the edges opposite I should be in interior; entries

! TOP+1 through MAXST are used as a stack.

!

! Output, integer IERROR is set to 8 for abnormal return.

!

 integer maxst

!

 integer a

 integer b

 integer bedg

 integer btri

 integer c

 integer diaedg

 integer e

 integer ee

 integer em1

 integer ep1

 integer f

 integer fm1

 integer fp1

 integer i

 integer ierror

 integer l

 integer r

 integer s

 integer stack(maxst)

 integer swap

 integer t

 integer til(3,*)

 integer tnbr(3,*)

 integer top

 integer tt

 integer u

 double precision vcl(2,*)

 double precision x

 double precision y

!

! Determine whether triangles in stack are Delaunay, and swap

! diagonal edge of convex quadrilateral if not.

!

 ierror = 0

 x = vcl(1,i)

 y = vcl(2,i)

 do

 if (top <= 0) then

 exit

 end if

 t = stack(top)

 top = top - 1

 if (til(1,t) == i) then

 e = 2

 b = til(3,t)

 else if (til(2,t) == i) then

 e = 3

 b = til(1,t)

 else

179

 e = 1

 b = til(2,t)

 end if

 a = til(e,t)

 u = tnbr(e,t)

 if (tnbr(1,u) == t) then

 f = 1

 c = til(3,u)

 else if (tnbr(2,u) == t) then

 f = 2

 c = til(1,u)

 else

 f = 3

 c = til(2,u)

 end if

 swap = diaedg (x, y, vcl(1,a), vcl(2,a), vcl(1,c), vcl(2,c), &

 vcl(1,b), vcl(2,b))

 if (swap == 1) then

 em1 = i_wrap (e - 1, 1, 3)

 ep1 = i_wrap (e + 1, 1, 3)

 fm1 = i_wrap (f - 1, 1, 3)

 fp1 = i_wrap (f + 1, 1, 3)

 til(ep1,t) = c

 til(fp1,u) = i

 r = tnbr(ep1,t)

 s = tnbr(fp1,u)

 tnbr(ep1,t) = u

 tnbr(fp1,u) = t

 tnbr(e,t) = s

 tnbr(f,u) = r

 if (tnbr(fm1,u) > 0) then

 top = top + 1

 stack(top) = u

 end if

 if (s > 0) then

 if (tnbr(1,s) == u) then

 tnbr(1,s) = t

 else if (tnbr(2,s) == u) then

 tnbr(2,s) = t

 else

 tnbr(3,s) = t

 end if

 top = top + 1

 if (top > maxst) then

 ierror = 8

 return

 end if

 stack(top) = t

 else

180

 if (u == btri .and. fp1 == bedg) then

 btri = t

 bedg = e

 end if

 l = - (3 * t + e - 1)

 tt = t

 ee = em1

 do while (tnbr(ee,tt) > 0)

 tt = tnbr(ee,tt)

 if (til(1,tt) == a) then

 ee = 3

 else if (til(2,tt) == a) then

 ee = 1

 else

 ee = 2

 end if

 end do

 tnbr(ee,tt) = l

 end if

 if (r > 0) then

 if (tnbr(1,r) == t) then

 tnbr(1,r) = u

 else if (tnbr(2,r) == t) then

 tnbr(2,r) = u

 else

 tnbr(3,r) = u

 end if

 else

 if (t == btri .and. ep1 == bedg) then

 btri = u

 bedg = f

 end if

 l = - (3 * u + f - 1)

 tt = u

 ee = fm1

 do while (tnbr(ee,tt) > 0)

 tt = tnbr(ee,tt)

 if (til(1,tt) == b) then

 ee = 3

 else if (til(2,tt) == b) then

 ee = 1

 else

 ee = 2

 end if

 end do

 tnbr(ee,tt) = l

181

 end if

 end if

 end do

 return

end

!---

function i_wrap (ival, ilo, ihi)

!

!***

!

!! I_WRAP forces an integer to lie between given limits by wrapping.

!

!

! Example:

!

! ILO = 4, IHI = 8

!

! I I_WRAP

!

! -2 8

! -1 4

! 0 5

! 1 6

! 2 7

! 3 8

! 4 4

! 5 5

! 6 6

! 7 7

! 8 8

! 9 4

! 10 5

! 11 6

! 12 7

! 13 8

! 14 4

!

! Modified:

!

! 15 July 2000

!

! Author:

!

! John Burkardt

!

! Parameters:

!

! Input, integer IVAL, an integer value.

!

! Input, integer ILO, IHI, the desired bounds for the integer value.

!

! Output, integer I_WRAP, a "wrapped" version of IVAL.

!

 integer i_modp

 integer i_wrap

 integer ihi

 integer ilo

182

 integer ival

 integer wide

!

 wide = ihi + 1 - ilo

 if (wide == 0) then

 i_wrap = ilo

 else

 i_wrap = ilo + i_modp (ival-ilo, wide)

 end if

 return

end

!---

function i_modp (i, j)

!

!***

!

!! I_MODP returns the nonnegative remainder of integer division.

!

!

! Formula:

!

! If

! NREM = I_MODP (I, J)

! NMULT = (I - NREM) / J

! then

! I = J * NMULT + NREM

! where NREM is always nonnegative.

!

! Comments:

!

! The MOD function computes a result with the same sign as the

! quantity being divided. Thus, suppose you had an angle A,

! and you wanted to ensure that it was between 0 and 360.

! Then mod(A,360) would do, if A was positive, but if A

! was negative, your result would be between -360 and 0.

!

! On the other hand, I_MODP(A,360) is between 0 and 360, always.

!

! Examples:

!

! I J MOD I_MODP Factorization

!

! 107 50 7 7 107 = 2 * 50 + 7

! 107 -50 7 7 107 = -2 * -50 + 7

! -107 50 -7 43 -107 = -3 * 50 + 43

! -107 -50 -7 43 -107 = 3 * -50 + 43

!

! Modified:

!

! 02 March 1999

!

! Author:

!

! John Burkardt

!

! Parameters:

!

! Input, integer I, the number to be divided.

!

183

! Input, integer J, the number that divides I.

!

! Output, integer I_MODP, the nonnegative remainder when I is

! divided by J.

!

 integer i

 integer i_modp

 integer j

!

!! if (j == 0) then

!! write (*, '(a)') ' '

!! write (*, '(a)') 'I_MODP - Fatal error!'

!! write (*, '(a,i6)') ' I_MODP (I, J) called with J = ', j

!! stop

!! end if

 i_modp = mod (i, j)

 if (i_modp < 0) then

 i_modp = i_modp + abs (j)

 end if

 return

end

!---

!

184

Appendix J. Listing of Input File for the Hypothetical LiDAR Example

The hypothetical LiDAR data (Figure J.1) is described in section 3 and in Berenbrock (2010)

and is used here to demonstrate the use of the LiDAR and Bathymetric genetic algorithm (GA)

program. The input file must be a space delimited text file with one data point or coordinate per line.

The coordinate is composed of three variables: x, y, and z and given in that respective order. The x

coordinate represents the easting or longitude of a data point, y represents the northing or latitude of a

data point, and z represents the height or elevation of a point. The values of x, y, and z variables are

given in centimeters, are integers numbers (no decimals), and cannot be less than zero. Usually,

LiDAR data are given in units of meters, but the LiDAR and Bathymetric GA program requires that

the user converts the data to units of centimeters because working with integer numbers is easer,

faster, and requires less storage space than for computer programs that use floating-point numbers. See

Appendix H for setting up the input files for the program.

The original LiDAR dataset for the hypothetical LiDAR example is listed on the left-side of

the Table J.1. These units are in meters. Data that is inputted into the LiDAR and Bathymetry GA

program is listed on the right-side of Table J.1. The inputted data are illustrated in Figure J.1.

The following shows how to calculate inputted data from the original data. These calculations

can easily be performed by using a spreadsheet program. First determine the minimum values for

northing, easting, and elevation from the original data. For the hypothetical LiDAR example, the

minimums are 3144.0, 12280.0, and 17.912, for northing, easting, and elevation, respectively. Note

that northing represents y values, easting represents x values, and elevation represents z values. To

calculate x values, subtract each easting value from the minimum easting value (12760.0) and multiply

by 100 and round to the nearest whole number (integer). For example, the calculation for determining

the first x value in Table J-1 is (12760.0 – 12280.0) × 100 = 48000. To calculate y values, subtract

each northing value from the minimum northing value (3144.0) and multiply by 100 and round to the

nearest whole number (integer). For example, the calculation for determining the first y value in

Table J.1 is (3144.0 – 3144.0) × 100 = 0. To calculate z values, subtract each elevation value from the

minimum elevation value (17.912) and multiply by 100 and round to the nearest whole number

(integer). For example, the calculation for determining the first z value in Table J.1 is

(23.890 – 17.912) × 100 = 598.

185

 Explanation

 Elevation of TIN, in centimeters × 100

 • Data point (x, y, z)

Figure J.1. Inputted LiDAR data for the hypothetical LiDAR data.

186

Table J.1. Listing of hypothetical and inputted LiDAR data. The original LiDAR data (Northing,

Easting, and Elevation) are listed on the left-side (units in meters) and inputted data (x, y, and z) are

listed on the right-side (units in centimeters) minus the lowest respective value.

 Original LiDAR data Inputted LiDAR data

Northing Easting Elevation x y z

3144.0 12760.0 23.890 48000 0 598

3160.0 12760.0 23.400 48000 1600 549

3176.0 12760.0 23.510 48000 3200 560

3192.0 12760.0 24.200 48000 4800 629

3208.0 12760.0 24.580 48000 6400 667

3224.0 12760.0 24.135 48000 8000 622

3240.0 12760.0 22.382 48000 9600 447

3256.0 12760.0 22.935 48000 11200 502

3272.0 12760.0 22.798 48000 12800 489

3288.0 12760.0 22.644 48000 14400 473

3304.0 12760.0 21.524 48000 16000 361

3320.0 12760.0 20.376 48000 17600 246

3336.0 12760.0 19.455 48000 19200 154

3352.0 12760.0 18.740 48000 20800 83

3368.0 12760.0 18.122 48000 22400 21

3384.0 12760.0 17.912 48000 24000 0

3400.0 12760.0 17.912 48000 25600 0

3416.0 12760.0 17.913 48000 27200 0

3432.0 12760.0 17.913 48000 28800 0

3448.0 12760.0 18.182 48000 30400 27

3464.0 12760.0 19.429 48000 32000 152

3480.0 12760.0 20.720 48000 33600 281

3496.0 12760.0 22.009 48000 35200 410

3512.0 12760.0 22.678 48000 36800 477

3528.0 12760.0 22.573 48000 38400 466

3544.0 12760.0 22.503 48000 40000 459

3560.0 12760.0 22.675 48000 41600 476

3576.0 12760.0 22.962 48000 43200 505

187

3592.0 12760.0 23.000 48000 44800 509

3608.0 12760.0 22.868 48000 46400 496

3624.0 12760.0 22.538 48000 48000 463

3144.0 12744.0 24.560 46400 0 665

3160.0 12744.0 23.978 46400 1600 607

3176.0 12744.0 23.802 46400 3200 589

3192.0 12744.0 24.722 46400 4800 681

3208.0 12744.0 24.358 46400 6400 645

3224.0 12744.0 23.685 46400 8000 577

3240.0 12744.0 22.757 46400 9600 485

3256.0 12744.0 22.115 46400 11200 420

3272.0 12744.0 22.337 46400 12800 443

3288.0 12744.0 21.938 46400 14400 403

3304.0 12744.0 21.111 46400 16000 320

3320.0 12744.0 20.254 46400 17600 234

3336.0 12744.0 19.502 46400 19200 159

3352.0 12744.0 18.884 46400 20800 97

3368.0 12744.0 18.368 46400 22400 46

3384.0 12744.0 17.913 46400 24000 0

3400.0 12744.0 17.913 46400 25600 0

3416.0 12744.0 17.914 46400 27200 0

3432.0 12744.0 17.914 46400 28800 0

3448.0 12744.0 17.915 46400 30400 0

3464.0 12744.0 18.702 46400 32000 79

3480.0 12744.0 20.018 46400 33600 211

3496.0 12744.0 21.293 46400 35200 338

3512.0 12744.0 22.295 46400 36800 438

3528.0 12744.0 22.717 46400 38400 481

3544.0 12744.0 22.577 46400 40000 467

3560.0 12744.0 22.825 46400 41600 491

3576.0 12744.0 23.000 46400 43200 509

3592.0 12744.0 23.010 46400 44800 510

3608.0 12744.0 22.870 46400 46400 496

3624.0 12744.0 22.638 46400 48000 473

3144.0 12728.0 24.725 44800 0 681

188

3160.0 12728.0 23.440 44800 1600 553

3176.0 12728.0 24.460 44800 3200 655

3192.0 12728.0 25.050 44800 4800 714

3208.0 12728.0 24.680 44800 6400 677

3224.0 12728.0 24.077 44800 8000 617

3240.0 12728.0 22.610 44800 9600 470

3256.0 12728.0 21.340 44800 11200 343

3272.0 12728.0 20.452 44800 12800 254

3288.0 12728.0 20.967 44800 14400 306

3304.0 12728.0 20.632 44800 16000 272

3320.0 12728.0 20.091 44800 17600 218

3336.0 12728.0 19.509 44800 19200 160

3352.0 12728.0 19.018 44800 20800 111

3368.0 12728.0 18.547 44800 22400 64

3384.0 12728.0 18.093 44800 24000 18

3400.0 12728.0 17.914 44800 25600 0

3416.0 12728.0 17.915 44800 27200 0

3432.0 12728.0 17.915 44800 28800 0

3448.0 12728.0 17.916 44800 30400 0

3464.0 12728.0 18.227 44800 32000 32

3480.0 12728.0 19.409 44800 33600 150

3496.0 12728.0 20.628 44800 35200 272

3512.0 12728.0 21.766 44800 36800 385

3528.0 12728.0 22.592 44800 38400 468

3544.0 12728.0 22.593 44800 40000 468

3560.0 12728.0 22.870 44800 41600 496

3576.0 12728.0 23.042 44800 43200 513

3592.0 12728.0 23.000 44800 44800 509

3608.0 12728.0 22.897 44800 46400 499

3624.0 12728.0 22.788 44800 48000 488

3144.0 12712.0 23.190 43200 0 528

3160.0 12712.0 23.323 43200 1600 541

3176.0 12712.0 25.260 43200 3200 735

3192.0 12712.0 24.683 43200 4800 677

3208.0 12712.0 23.987 43200 6400 608

189

3224.0 12712.0 23.200 43200 8000 529

3240.0 12712.0 23.040 43200 9600 513

3256.0 12712.0 22.173 43200 11200 426

3272.0 12712.0 21.093 43200 12800 318

3288.0 12712.0 20.360 43200 14400 245

3304.0 12712.0 20.657 43200 16000 275

3320.0 12712.0 20.047 43200 17600 214

3336.0 12712.0 19.568 43200 19200 166

3352.0 12712.0 19.229 43200 20800 132

3368.0 12712.0 18.804 43200 22400 89

3384.0 12712.0 18.347 43200 24000 44

3400.0 12712.0 17.959 43200 25600 5

3416.0 12712.0 17.915 43200 27200 0

3432.0 12712.0 17.916 43200 28800 0

3448.0 12712.0 17.917 43200 30400 1

3464.0 12712.0 17.917 43200 32000 1

3480.0 12712.0 18.834 43200 33600 92

3496.0 12712.0 19.990 43200 35200 208

3512.0 12712.0 21.175 43200 36800 326

3528.0 12712.0 22.242 43200 38400 433

3544.0 12712.0 22.772 43200 40000 486

3560.0 12712.0 22.850 43200 41600 494

3576.0 12712.0 23.048 43200 43200 514

3592.0 12712.0 23.022 43200 44800 511

3608.0 12712.0 22.975 43200 46400 506

3624.0 12712.0 22.892 43200 48000 498

3144.0 12696.0 23.195 41600 0 528

3160.0 12696.0 23.247 41600 1600 534

3176.0 12696.0 23.340 41600 3200 543

3192.0 12696.0 23.458 41600 4800 555

3208.0 12696.0 23.190 41600 6400 528

3224.0 12696.0 22.670 41600 8000 476

3240.0 12696.0 22.405 41600 9600 449

3256.0 12696.0 21.550 41600 11200 364

3272.0 12696.0 20.487 41600 12800 258

190

3288.0 12696.0 20.245 41600 14400 233

3304.0 12696.0 20.308 41600 16000 240

3320.0 12696.0 20.233 41600 17600 232

3336.0 12696.0 19.944 41600 19200 203

3352.0 12696.0 19.624 41600 20800 171

3368.0 12696.0 19.162 41600 22400 125

3384.0 12696.0 18.696 41600 24000 78

3400.0 12696.0 18.363 41600 25600 45

3416.0 12696.0 17.945 41600 27200 3

3432.0 12696.0 17.917 41600 28800 1

3448.0 12696.0 17.917 41600 30400 1

3464.0 12696.0 17.918 41600 32000 1

3480.0 12696.0 18.040 41600 33600 13

3496.0 12696.0 19.391 41600 35200 148

3512.0 12696.0 20.574 41600 36800 266

3528.0 12696.0 21.778 41600 38400 387

3544.0 12696.0 22.798 41600 40000 489

3560.0 12696.0 22.923 41600 41600 501

3576.0 12696.0 23.035 41600 43200 512

3592.0 12696.0 23.028 41600 44800 512

3608.0 12696.0 23.005 41600 46400 509

3624.0 12696.0 22.915 41600 48000 500

3144.0 12680.0 23.058 40000 0 515

3160.0 12680.0 23.070 40000 1600 516

3176.0 12680.0 23.195 40000 3200 528

3192.0 12680.0 23.392 40000 4800 548

3208.0 12680.0 23.320 40000 6400 541

3224.0 12680.0 22.720 40000 8000 481

3240.0 12680.0 22.382 40000 9600 447

3256.0 12680.0 21.775 40000 11200 386

3272.0 12680.0 21.202 40000 12800 329

3288.0 12680.0 20.407 40000 14400 250

3304.0 12680.0 20.510 40000 16000 260

3320.0 12680.0 20.462 40000 17600 255

3336.0 12680.0 20.610 40000 19200 270

191

3352.0 12680.0 20.071 40000 20800 216

3368.0 12680.0 19.531 40000 22400 162

3384.0 12680.0 19.044 40000 24000 113

3400.0 12680.0 18.611 40000 25600 70

3416.0 12680.0 19.023 40000 27200 111

3432.0 12680.0 18.104 40000 28800 19

3448.0 12680.0 17.918 40000 30400 1

3464.0 12680.0 17.919 40000 32000 1

3480.0 12680.0 17.919 40000 33600 1

3496.0 12680.0 18.628 40000 35200 72

3512.0 12680.0 19.947 40000 36800 204

3528.0 12680.0 21.271 40000 38400 336

3544.0 12680.0 22.527 40000 40000 462

3560.0 12680.0 23.160 40000 41600 525

3576.0 12680.0 23.077 40000 43200 517

3592.0 12680.0 23.105 40000 44800 519

3608.0 12680.0 23.073 40000 46400 516

3624.0 12680.0 23.050 40000 48000 514

3144.0 12664.0 22.975 38400 0 506

3160.0 12664.0 23.007 38400 1600 510

3176.0 12664.0 23.205 38400 3200 529

3192.0 12664.0 23.455 38400 4800 554

3208.0 12664.0 23.438 38400 6400 553

3224.0 12664.0 22.952 38400 8000 504

3240.0 12664.0 22.472 38400 9600 456

3256.0 12664.0 21.790 38400 11200 388

3272.0 12664.0 21.075 38400 12800 316

3288.0 12664.0 20.840 38400 14400 293

3304.0 12664.0 20.785 38400 16000 287

3320.0 12664.0 20.615 38400 17600 270

3336.0 12664.0 20.694 38400 19200 278

3352.0 12664.0 20.287 38400 20800 238

3368.0 12664.0 19.822 38400 22400 191

3384.0 12664.0 19.367 38400 24000 146

3400.0 12664.0 18.941 38400 25600 103

192

3416.0 12664.0 19.409 38400 27200 150

3432.0 12664.0 19.092 38400 28800 118

3448.0 12664.0 17.947 38400 30400 4

3464.0 12664.0 17.919 38400 32000 1

3480.0 12664.0 17.920 38400 33600 1

3496.0 12664.0 17.920 38400 35200 1

3512.0 12664.0 19.304 38400 36800 139

3528.0 12664.0 20.728 38400 38400 282

3544.0 12664.0 22.144 38400 40000 423

3560.0 12664.0 23.217 38400 41600 531

3576.0 12664.0 23.210 38400 43200 530

3592.0 12664.0 23.228 38400 44800 532

3608.0 12664.0 23.243 38400 46400 533

3624.0 12664.0 23.470 38400 48000 556

3144.0 12648.0 22.865 36800 0 495

3160.0 12648.0 23.010 36800 1600 510

3176.0 12648.0 23.250 36800 3200 534

3192.0 12648.0 23.532 36800 4800 562

3208.0 12648.0 23.573 36800 6400 566

3224.0 12648.0 23.330 36800 8000 542

3240.0 12648.0 22.490 36800 9600 458

3256.0 12648.0 21.225 36800 11200 331

3272.0 12648.0 20.995 36800 12800 308

3288.0 12648.0 21.017 36800 14400 311

3304.0 12648.0 20.927 36800 16000 302

3320.0 12648.0 20.745 36800 17600 283

3336.0 12648.0 20.650 36800 19200 274

3352.0 12648.0 20.393 36800 20800 248

3368.0 12648.0 20.067 36800 22400 216

3384.0 12648.0 19.678 36800 24000 177

3400.0 12648.0 19.271 36800 25600 136

3416.0 12648.0 19.031 36800 27200 112

3432.0 12648.0 19.503 36800 28800 159

3448.0 12648.0 18.854 36800 30400 94

3464.0 12648.0 17.920 36800 32000 1

193

3480.0 12648.0 17.921 36800 33600 1

3496.0 12648.0 17.921 36800 35200 1

3512.0 12648.0 18.375 36800 36800 46

3528.0 12648.0 20.194 36800 38400 228

3544.0 12648.0 21.704 36800 40000 379

3560.0 12648.0 23.047 36800 41600 514

3576.0 12648.0 23.215 36800 43200 530

3592.0 12648.0 23.230 36800 44800 532

3608.0 12648.0 23.167 36800 46400 526

3624.0 12648.0 22.962 36800 48000 505

3144.0 12632.0 22.765 35200 0 485

3160.0 12632.0 22.897 35200 1600 499

3176.0 12632.0 23.210 35200 3200 530

3192.0 12632.0 23.460 35200 4800 555

3208.0 12632.0 23.618 35200 6400 571

3224.0 12632.0 23.653 35200 8000 574

3240.0 12632.0 22.962 35200 9600 505

3256.0 12632.0 21.205 35200 11200 329

3272.0 12632.0 21.015 35200 12800 310

3288.0 12632.0 21.128 35200 14400 322

3304.0 12632.0 21.077 35200 16000 317

3320.0 12632.0 20.882 35200 17600 297

3336.0 12632.0 20.694 35200 19200 278

3352.0 12632.0 20.560 35200 20800 265

3368.0 12632.0 20.345 35200 22400 243

3384.0 12632.0 20.015 35200 24000 210

3400.0 12632.0 19.616 35200 25600 170

3416.0 12632.0 19.198 35200 27200 129

3432.0 12632.0 19.742 35200 28800 183

3448.0 12632.0 19.348 35200 30400 144

3464.0 12632.0 18.149 35200 32000 24

3480.0 12632.0 17.922 35200 33600 1

3496.0 12632.0 17.922 35200 35200 1

3512.0 12632.0 17.922 35200 36800 1

3528.0 12632.0 19.651 35200 38400 174

194

3544.0 12632.0 21.178 35200 40000 327

3560.0 12632.0 22.565 35200 41600 465

3576.0 12632.0 23.418 35200 43200 551

3592.0 12632.0 23.235 35200 44800 532

3608.0 12632.0 23.073 35200 46400 516

3624.0 12632.0 22.747 35200 48000 484

3144.0 12616.0 22.657 33600 0 475

3160.0 12616.0 22.800 33600 1600 489

3176.0 12616.0 23.045 33600 3200 513

3192.0 12616.0 23.347 33600 4800 544

3208.0 12616.0 23.647 33600 6400 574

3224.0 12616.0 23.692 33600 8000 578

3240.0 12616.0 23.362 33600 9600 545

3256.0 12616.0 21.253 33600 11200 334

3272.0 12616.0 21.050 33600 12800 314

3288.0 12616.0 21.215 33600 14400 330

3304.0 12616.0 21.280 33600 16000 337

3320.0 12616.0 21.142 33600 17600 323

3336.0 12616.0 20.975 33600 19200 306

3352.0 12616.0 20.860 33600 20800 295

3368.0 12616.0 20.699 33600 22400 279

3384.0 12616.0 20.401 33600 24000 249

3400.0 12616.0 19.987 33600 25600 208

3416.0 12616.0 19.526 33600 27200 161

3432.0 12616.0 19.725 33600 28800 181

3448.0 12616.0 19.604 33600 30400 169

3464.0 12616.0 18.849 33600 32000 94

3480.0 12616.0 17.923 33600 33600 1

3496.0 12616.0 17.923 33600 35200 1

3512.0 12616.0 17.923 33600 36800 1

3528.0 12616.0 19.215 33600 38400 130

3544.0 12616.0 20.718 33600 40000 281

3560.0 12616.0 22.094 33600 41600 418

3576.0 12616.0 23.131 33600 43200 522

3592.0 12616.0 23.235 33600 44800 532

195

3608.0 12616.0 22.847 33600 46400 494

3624.0 12616.0 22.405 33600 48000 449

3144.0 12600.0 22.653 32000 0 474

3160.0 12600.0 22.772 32000 1600 486

3176.0 12600.0 23.050 32000 3200 514

3192.0 12600.0 23.362 32000 4800 545

3208.0 12600.0 23.587 32000 6400 568

3224.0 12600.0 23.710 32000 8000 580

3240.0 12600.0 23.038 32000 9600 513

3256.0 12600.0 21.522 32000 11200 361

3272.0 12600.0 20.925 32000 12800 301

3288.0 12600.0 21.210 32000 14400 330

3304.0 12600.0 21.330 32000 16000 342

3320.0 12600.0 21.308 32000 17600 340

3336.0 12600.0 21.288 32000 19200 338

3352.0 12600.0 21.166 32000 20800 325

3368.0 12600.0 21.106 32000 22400 319

3384.0 12600.0 20.828 32000 24000 292

3400.0 12600.0 20.363 32000 25600 245

3416.0 12600.0 19.851 32000 27200 194

3432.0 12600.0 19.337 32000 28800 143

3448.0 12600.0 19.828 32000 30400 192

3464.0 12600.0 19.362 32000 32000 145

3480.0 12600.0 18.007 32000 33600 10

3496.0 12600.0 17.924 32000 35200 1

3512.0 12600.0 17.925 32000 36800 1

3528.0 12600.0 19.049 32000 38400 114

3544.0 12600.0 20.434 32000 40000 252

3560.0 12600.0 21.753 32000 41600 384

3576.0 12600.0 22.825 32000 43200 491

3592.0 12600.0 23.067 32000 44800 516

3608.0 12600.0 22.642 32000 46400 473

3624.0 12600.0 22.240 32000 48000 433

3144.0 12584.0 22.712 30400 0 480

3160.0 12584.0 22.798 30400 1600 489

196

3176.0 12584.0 23.015 30400 3200 510

3192.0 12584.0 23.385 30400 4800 547

3208.0 12584.0 23.595 30400 6400 568

3224.0 12584.0 23.718 30400 8000 581

3240.0 12584.0 22.978 30400 9600 507

3256.0 12584.0 21.663 30400 11200 375

3272.0 12584.0 21.063 30400 12800 315

3288.0 12584.0 21.080 30400 14400 317

3304.0 12584.0 21.202 30400 16000 329

3320.0 12584.0 21.343 30400 17600 343

3336.0 12584.0 21.420 30400 19200 351

3352.0 12584.0 21.448 30400 20800 354

3368.0 12584.0 21.495 30400 22400 358

3384.0 12584.0 21.225 30400 24000 331

3400.0 12584.0 20.689 30400 25600 278

3416.0 12584.0 20.134 30400 27200 222

3432.0 12584.0 19.586 30400 28800 167

3448.0 12584.0 19.910 30400 30400 200

3464.0 12584.0 19.585 30400 32000 167

3480.0 12584.0 18.616 30400 33600 70

3496.0 12584.0 17.926 30400 35200 1

3512.0 12584.0 17.926 30400 36800 1

3528.0 12584.0 18.986 30400 38400 107

3544.0 12584.0 20.293 30400 40000 238

3560.0 12584.0 21.574 30400 41600 366

3576.0 12584.0 22.671 30400 43200 476

3592.0 12584.0 22.983 30400 44800 507

3608.0 12584.0 22.675 30400 46400 476

3624.0 12584.0 22.417 30400 48000 451

3144.0 12568.0 22.670 28800 0 476

3160.0 12568.0 22.850 28800 1600 494

3176.0 12568.0 23.100 28800 3200 519

3192.0 12568.0 23.390 28800 4800 548

3208.0 12568.0 23.635 28800 6400 572

3224.0 12568.0 23.755 28800 8000 584

197

3240.0 12568.0 23.600 28800 9600 569

3256.0 12568.0 22.298 28800 11200 439

3272.0 12568.0 21.372 28800 12800 346

3288.0 12568.0 21.095 28800 14400 318

3304.0 12568.0 21.093 28800 16000 318

3320.0 12568.0 21.270 28800 17600 336

3336.0 12568.0 21.392 28800 19200 348

3352.0 12568.0 21.510 28800 20800 360

3368.0 12568.0 21.565 28800 22400 365

3384.0 12568.0 21.379 28800 24000 347

3400.0 12568.0 20.906 28800 25600 299

3416.0 12568.0 20.358 28800 27200 245

3432.0 12568.0 19.790 28800 28800 188

3448.0 12568.0 19.385 28800 30400 147

3464.0 12568.0 19.694 28800 32000 178

3480.0 12568.0 18.985 28800 33600 107

3496.0 12568.0 17.928 28800 35200 2

3512.0 12568.0 17.928 28800 36800 2

3528.0 12568.0 18.946 28800 38400 103

3544.0 12568.0 20.225 28800 40000 231

3560.0 12568.0 21.508 28800 41600 360

3576.0 12568.0 22.658 28800 43200 475

3592.0 12568.0 23.040 28800 44800 513

3608.0 12568.0 22.862 28800 46400 495

3624.0 12568.0 22.655 28800 48000 474

3144.0 12552.0 21.135 27200 0 322

3160.0 12552.0 21.983 27200 1600 407

3176.0 12552.0 23.097 27200 3200 519

3192.0 12552.0 23.420 27200 4800 551

3208.0 12552.0 23.705 27200 6400 579

3224.0 12552.0 23.737 27200 8000 583

3240.0 12552.0 23.680 27200 9600 577

3256.0 12552.0 22.860 27200 11200 495

3272.0 12552.0 21.810 27200 12800 390

3288.0 12552.0 21.215 27200 14400 330

198

3304.0 12552.0 21.100 27200 16000 319

3320.0 12552.0 21.210 27200 17600 330

3336.0 12552.0 21.427 27200 19200 352

3352.0 12552.0 21.580 27200 20800 367

3368.0 12552.0 21.612 27200 22400 370

3384.0 12552.0 21.498 27200 24000 359

3400.0 12552.0 21.095 27200 25600 318

3416.0 12552.0 20.556 27200 27200 264

3432.0 12552.0 19.964 27200 28800 205

3448.0 12552.0 19.378 27200 30400 147

3464.0 12552.0 19.482 27200 32000 157

3480.0 12552.0 18.745 27200 33600 83

3496.0 12552.0 17.929 27200 35200 2

3512.0 12552.0 17.929 27200 36800 2

3528.0 12552.0 18.919 27200 38400 101

3544.0 12552.0 20.162 27200 40000 225

3560.0 12552.0 21.457 27200 41600 355

3576.0 12552.0 22.662 27200 43200 475

3592.0 12552.0 23.140 27200 44800 523

3608.0 12552.0 22.903 27200 46400 499

3624.0 12552.0 22.663 27200 48000 475

3144.0 12536.0 22.978 25600 0 507

3160.0 12536.0 22.907 25600 1600 500

3176.0 12536.0 23.120 25600 3200 521

3192.0 12536.0 23.380 25600 4800 547

3208.0 12536.0 23.573 25600 6400 566

3224.0 12536.0 23.630 25600 8000 572

3240.0 12536.0 23.622 25600 9600 571

3256.0 12536.0 23.010 25600 11200 510

3272.0 12536.0 21.890 25600 12800 398

3288.0 12536.0 21.343 25600 14400 343

3304.0 12536.0 21.243 25600 16000 333

3320.0 12536.0 21.243 25600 17600 333

3336.0 12536.0 21.403 25600 19200 349

3352.0 12536.0 21.550 25600 20800 364

199

3368.0 12536.0 21.608 25600 22400 370

3384.0 12536.0 21.695 25600 24000 378

3400.0 12536.0 21.320 25600 25600 341

3416.0 12536.0 20.764 25600 27200 285

3432.0 12536.0 20.131 25600 28800 222

3448.0 12536.0 19.500 25600 30400 159

3464.0 12536.0 18.901 25600 32000 99

3480.0 12536.0 17.931 25600 33600 2

3496.0 12536.0 17.931 25600 35200 2

3512.0 12536.0 17.931 25600 36800 2

3528.0 12536.0 18.843 25600 38400 93

3544.0 12536.0 20.053 25600 40000 214

3560.0 12536.0 21.321 25600 41600 341

3576.0 12536.0 22.509 25600 43200 460

3592.0 12536.0 23.029 25600 44800 512

3608.0 12536.0 22.800 25600 46400 489

3624.0 12536.0 22.522 25600 48000 461

3144.0 12520.0 23.395 24000 0 548

3160.0 12520.0 22.910 24000 1600 500

3176.0 12520.0 23.077 24000 3200 517

3192.0 12520.0 23.278 24000 4800 537

3208.0 12520.0 23.565 24000 6400 565

3224.0 12520.0 23.670 24000 8000 576

3240.0 12520.0 23.715 24000 9600 580

3256.0 12520.0 23.430 24000 11200 552

3272.0 12520.0 22.583 24000 12800 467

3288.0 12520.0 21.530 24000 14400 362

3304.0 12520.0 21.392 24000 16000 348

3320.0 12520.0 21.327 24000 17600 342

3336.0 12520.0 21.365 24000 19200 345

3352.0 12520.0 21.465 24000 20800 355

3368.0 12520.0 21.612 24000 22400 370

3384.0 12520.0 21.905 24000 24000 399

3400.0 12520.0 21.591 24000 25600 368

3416.0 12520.0 20.990 24000 27200 308

200

3432.0 12520.0 20.297 24000 28800 239

3448.0 12520.0 19.612 24000 30400 170

3464.0 12520.0 18.968 24000 32000 106

3480.0 12520.0 17.932 24000 33600 2

3496.0 12520.0 17.932 24000 35200 2

3512.0 12520.0 17.932 24000 36800 2

3528.0 12520.0 18.789 24000 38400 88

3544.0 12520.0 19.929 24000 40000 202

3560.0 12520.0 21.124 24000 41600 321

3576.0 12520.0 22.190 24000 43200 428

3592.0 12520.0 22.875 24000 44800 496

3608.0 12520.0 22.710 24000 46400 480

3624.0 12520.0 22.448 24000 48000 454

3144.0 12504.0 23.718 22400 0 581

3160.0 12504.0 22.817 22400 1600 491

3176.0 12504.0 23.173 22400 3200 526

3192.0 12504.0 23.330 22400 4800 542

3208.0 12504.0 23.563 22400 6400 565

3224.0 12504.0 23.688 22400 8000 578

3240.0 12504.0 23.740 22400 9600 583

3256.0 12504.0 23.628 22400 11200 572

3272.0 12504.0 22.913 22400 12800 500

3288.0 12504.0 21.757 22400 14400 385

3304.0 12504.0 21.507 22400 16000 360

3320.0 12504.0 21.433 22400 17600 352

3336.0 12504.0 21.347 22400 19200 344

3352.0 12504.0 21.427 22400 20800 352

3368.0 12504.0 21.680 22400 22400 377

3384.0 12504.0 21.855 22400 24000 394

3400.0 12504.0 21.879 22400 25600 397

3416.0 12504.0 21.204 22400 27200 329

3432.0 12504.0 20.444 22400 28800 253

3448.0 12504.0 19.706 22400 30400 179

3464.0 12504.0 19.020 22400 32000 111

3480.0 12504.0 17.933 22400 33600 2

201

3496.0 12504.0 17.933 22400 35200 2

3512.0 12504.0 17.933 22400 36800 2

3528.0 12504.0 18.345 22400 38400 43

3544.0 12504.0 19.847 22400 40000 194

3560.0 12504.0 21.002 22400 41600 309

3576.0 12504.0 22.082 22400 43200 417

3592.0 12504.0 22.942 22400 44800 503

3608.0 12504.0 22.823 22400 46400 491

3624.0 12504.0 22.462 22400 48000 455

3144.0 12488.0 23.323 20800 0 541

3160.0 12488.0 22.830 20800 1600 492

3176.0 12488.0 23.138 20800 3200 523

3192.0 12488.0 23.343 20800 4800 543

3208.0 12488.0 23.552 20800 6400 564

3224.0 12488.0 23.645 20800 8000 573

3240.0 12488.0 23.805 20800 9600 589

3256.0 12488.0 23.597 20800 11200 569

3272.0 12488.0 23.080 20800 12800 517

3288.0 12488.0 22.150 20800 14400 424

3304.0 12488.0 21.708 20800 16000 380

3320.0 12488.0 21.610 20800 17600 370

3336.0 12488.0 21.513 20800 19200 360

3352.0 12488.0 21.470 20800 20800 356

3368.0 12488.0 21.677 20800 22400 377

3384.0 12488.0 21.917 20800 24000 401

3400.0 12488.0 22.003 20800 25600 409

3416.0 12488.0 21.342 20800 27200 343

3432.0 12488.0 20.548 20800 28800 264

3448.0 12488.0 19.768 20800 30400 186

3464.0 12488.0 19.048 20800 32000 114

3480.0 12488.0 17.935 20800 33600 2

3496.0 12488.0 17.935 20800 35200 2

3512.0 12488.0 17.935 20800 36800 2

3528.0 12488.0 18.338 20800 38400 43

3544.0 12488.0 19.812 20800 40000 190

202

3560.0 12488.0 20.958 20800 41600 305

3576.0 12488.0 22.082 20800 43200 417

3592.0 12488.0 23.034 20800 44800 512

3608.0 12488.0 22.940 20800 46400 503

3624.0 12488.0 22.632 20800 48000 472

3144.0 12472.0 22.795 19200 0 488

3160.0 12472.0 22.782 19200 1600 487

3176.0 12472.0 23.080 19200 3200 517

3192.0 12472.0 23.208 19200 4800 530

3208.0 12472.0 23.392 19200 6400 548

3224.0 12472.0 23.740 19200 8000 583

3240.0 12472.0 23.905 19200 9600 599

3256.0 12472.0 23.710 19200 11200 580

3272.0 12472.0 23.170 19200 12800 526

3288.0 12472.0 22.495 19200 14400 458

3304.0 12472.0 22.125 19200 16000 421

3320.0 12472.0 21.725 19200 17600 381

3336.0 12472.0 21.570 19200 19200 366

3352.0 12472.0 21.520 19200 20800 361

3368.0 12472.0 21.700 19200 22400 379

3384.0 12472.0 21.970 19200 24000 406

3400.0 12472.0 22.111 19200 25600 420

3416.0 12472.0 21.440 19200 27200 353

3432.0 12472.0 20.610 19200 28800 270

3448.0 12472.0 19.786 19200 30400 187

3464.0 12472.0 19.037 19200 32000 113

3480.0 12472.0 17.936 19200 33600 2

3496.0 12472.0 17.936 19200 35200 2

3512.0 12472.0 17.936 19200 36800 2

3528.0 12472.0 18.343 19200 38400 43

3544.0 12472.0 19.803 19200 40000 189

3560.0 12472.0 20.941 19200 41600 303

3576.0 12472.0 22.078 19200 43200 417

3592.0 12472.0 23.047 19200 44800 514

3608.0 12472.0 22.975 19200 46400 506

203

3624.0 12472.0 22.862 19200 48000 495

3144.0 12456.0 22.490 17600 0 458

3160.0 12456.0 22.595 17600 1600 468

3176.0 12456.0 22.987 17600 3200 508

3192.0 12456.0 23.195 17600 4800 528

3208.0 12456.0 23.395 17600 6400 548

3224.0 12456.0 23.770 17600 8000 586

3240.0 12456.0 23.913 17600 9600 600

3256.0 12456.0 23.830 17600 11200 592

3272.0 12456.0 23.507 17600 12800 560

3288.0 12456.0 22.895 17600 14400 498

3304.0 12456.0 22.480 17600 16000 457

3320.0 12456.0 21.862 17600 17600 395

3336.0 12456.0 21.620 17600 19200 371

3352.0 12456.0 21.580 17600 20800 367

3368.0 12456.0 21.843 17600 22400 393

3384.0 12456.0 22.120 17600 24000 421

3400.0 12456.0 22.254 17600 25600 434

3416.0 12456.0 21.515 17600 27200 360

3432.0 12456.0 20.627 17600 28800 272

3448.0 12456.0 19.743 17600 30400 183

3464.0 12456.0 18.954 17600 32000 104

3480.0 12456.0 17.937 17600 33600 3

3496.0 12456.0 17.937 17600 35200 3

3512.0 12456.0 17.937 17600 36800 3

3528.0 12456.0 18.137 17600 38400 23

3544.0 12456.0 19.788 17600 40000 188

3560.0 12456.0 20.920 17600 41600 301

3576.0 12456.0 22.052 17600 43200 414

3592.0 12456.0 23.023 17600 44800 511

3608.0 12456.0 22.955 17600 46400 504

3624.0 12456.0 22.958 17600 48000 505

3144.0 12440.0 22.372 16000 0 446

3160.0 12440.0 22.503 16000 1600 459

3176.0 12440.0 22.888 16000 3200 498

204

3192.0 12440.0 23.155 16000 4800 524

3208.0 12440.0 23.468 16000 6400 556

3224.0 12440.0 23.772 16000 8000 586

3240.0 12440.0 23.798 16000 9600 589

3256.0 12440.0 23.690 16000 11200 578

3272.0 12440.0 23.445 16000 12800 553

3288.0 12440.0 22.990 16000 14400 508

3304.0 12440.0 22.630 16000 16000 472

3320.0 12440.0 22.130 16000 17600 422

3336.0 12440.0 21.735 16000 19200 382

3352.0 12440.0 21.630 16000 20800 372

3368.0 12440.0 21.815 16000 22400 390

3384.0 12440.0 22.317 16000 24000 441

3400.0 12440.0 22.241 16000 25600 433

3416.0 12440.0 21.521 16000 27200 361

3432.0 12440.0 20.588 16000 28800 268

3448.0 12440.0 19.622 16000 30400 171

3464.0 12440.0 18.756 16000 32000 84

3480.0 12440.0 17.939 16000 33600 3

3496.0 12440.0 17.939 16000 35200 3

3512.0 12440.0 17.939 16000 36800 3

3528.0 12440.0 17.939 16000 38400 3

3544.0 12440.0 19.762 16000 40000 185

3560.0 12440.0 20.877 16000 41600 297

3576.0 12440.0 21.998 16000 43200 409

3592.0 12440.0 22.987 16000 44800 508

3608.0 12440.0 22.955 16000 46400 504

3624.0 12440.0 23.020 16000 48000 511

3144.0 12424.0 23.188 14400 0 528

3160.0 12424.0 22.545 14400 1600 463

3176.0 12424.0 22.980 14400 3200 507

3192.0 12424.0 23.140 14400 4800 523

3208.0 12424.0 23.435 14400 6400 552

3224.0 12424.0 23.847 14400 8000 594

3240.0 12424.0 23.765 14400 9600 585

205

3256.0 12424.0 23.535 14400 11200 562

3272.0 12424.0 23.302 14400 12800 539

3288.0 12424.0 22.965 14400 14400 505

3304.0 12424.0 22.708 14400 16000 480

3320.0 12424.0 22.250 14400 17600 434

3336.0 12424.0 21.960 14400 19200 405

3352.0 12424.0 21.907 14400 20800 400

3368.0 12424.0 22.038 14400 22400 413

3384.0 12424.0 22.400 14400 24000 449

3400.0 12424.0 22.324 14400 25600 441

3416.0 12424.0 21.528 14400 27200 362

3432.0 12424.0 20.521 14400 28800 261

3448.0 12424.0 19.448 14400 30400 154

3464.0 12424.0 18.444 14400 32000 53

3480.0 12424.0 17.940 14400 33600 3

3496.0 12424.0 17.940 14400 35200 3

3512.0 12424.0 17.940 14400 36800 3

3528.0 12424.0 17.940 14400 38400 3

3544.0 12424.0 19.725 14400 40000 181

3560.0 12424.0 20.810 14400 41600 290

3576.0 12424.0 21.882 14400 43200 397

3592.0 12424.0 22.792 14400 44800 488

3608.0 12424.0 23.035 14400 46400 512

3624.0 12424.0 23.065 14400 48000 515

3144.0 12408.0 22.665 12800 0 475

3160.0 12408.0 22.390 12800 1600 448

3176.0 12408.0 23.167 12800 3200 526

3192.0 12408.0 23.233 12800 4800 532

3208.0 12408.0 23.532 12800 6400 562

3224.0 12408.0 23.840 12800 8000 593

3240.0 12408.0 23.708 12800 9600 580

3256.0 12408.0 23.455 12800 11200 554

3272.0 12408.0 23.237 12800 12800 533

3288.0 12408.0 22.833 12800 14400 492

3304.0 12408.0 22.567 12800 16000 466

206

3320.0 12408.0 22.340 12800 17600 443

3336.0 12408.0 22.150 12800 19200 424

3352.0 12408.0 22.125 12800 20800 421

3368.0 12408.0 22.243 12800 22400 433

3384.0 12408.0 22.475 12800 24000 456

3400.0 12408.0 22.395 12800 25600 448

3416.0 12408.0 21.555 12800 27200 364

3432.0 12408.0 20.444 12800 28800 253

3448.0 12408.0 19.300 12800 30400 139

3464.0 12408.0 18.298 12800 32000 39

3480.0 12408.0 17.942 12800 33600 3

3496.0 12408.0 17.941 12800 35200 3

3512.0 12408.0 17.941 12800 36800 3

3528.0 12408.0 17.941 12800 38400 3

3544.0 12408.0 19.685 12800 40000 177

3560.0 12408.0 20.748 12800 41600 284

3576.0 12408.0 21.796 12800 43200 388

3592.0 12408.0 22.723 12800 44800 481

3608.0 12408.0 23.110 12800 46400 520

3624.0 12408.0 23.130 12800 48000 522

3144.0 12392.0 22.353 11200 0 444

3160.0 12392.0 22.323 11200 1600 441

3176.0 12392.0 22.983 11200 3200 507

3192.0 12392.0 23.337 11200 4800 543

3208.0 12392.0 23.647 11200 6400 574

3224.0 12392.0 23.802 11200 8000 589

3240.0 12392.0 23.680 11200 9600 577

3256.0 12392.0 23.522 11200 11200 561

3272.0 12392.0 23.360 11200 12800 545

3288.0 12392.0 22.745 11200 14400 483

3304.0 12392.0 22.403 11200 16000 449

3320.0 12392.0 22.280 11200 17600 437

3336.0 12392.0 22.235 11200 19200 432

3352.0 12392.0 22.290 11200 20800 438

3368.0 12392.0 22.442 11200 22400 453

207

3384.0 12392.0 22.603 11200 24000 469

3400.0 12392.0 22.723 11200 25600 481

3416.0 12392.0 21.587 11200 27200 368

3432.0 12392.0 20.303 11200 28800 239

3448.0 12392.0 19.122 11200 30400 121

3464.0 12392.0 18.095 11200 32000 18

3480.0 12392.0 17.943 11200 33600 3

3496.0 12392.0 17.943 11200 35200 3

3512.0 12392.0 17.942 11200 36800 3

3528.0 12392.0 17.942 11200 38400 3

3544.0 12392.0 19.656 11200 40000 174

3560.0 12392.0 20.708 11200 41600 280

3576.0 12392.0 21.758 11200 43200 385

3592.0 12392.0 22.719 11200 44800 481

3608.0 12392.0 23.223 11200 46400 531

3624.0 12392.0 23.085 11200 48000 517

3144.0 12376.0 22.420 9600 0 451

3160.0 12376.0 22.442 9600 1600 453

3176.0 12376.0 23.118 9600 3200 521

3192.0 12376.0 23.355 9600 4800 544

3208.0 12376.0 23.593 9600 6400 568

3224.0 12376.0 23.712 9600 8000 580

3240.0 12376.0 23.680 9600 9600 577

3256.0 12376.0 23.595 9600 11200 568

3272.0 12376.0 23.400 9600 12800 549

3288.0 12376.0 22.733 9600 14400 482

3304.0 12376.0 22.288 9600 16000 438

3320.0 12376.0 22.337 9600 17600 443

3336.0 12376.0 22.378 9600 19200 447

3352.0 12376.0 22.468 9600 20800 456

3368.0 12376.0 22.595 9600 22400 468

3384.0 12376.0 22.705 9600 24000 479

3400.0 12376.0 22.649 9600 25600 474

3416.0 12376.0 21.347 9600 27200 344

3432.0 12376.0 19.977 9600 28800 207

208

3448.0 12376.0 18.770 9600 30400 86

3464.0 12376.0 17.945 9600 32000 3

3480.0 12376.0 17.944 9600 33600 3

3496.0 12376.0 17.944 9600 35200 3

3512.0 12376.0 17.944 9600 36800 3

3528.0 12376.0 17.943 9600 38400 3

3544.0 12376.0 19.644 9600 40000 173

3560.0 12376.0 20.692 9600 41600 278

3576.0 12376.0 21.738 9600 43200 383

3592.0 12376.0 22.687 9600 44800 478

3608.0 12376.0 23.192 9600 46400 528

3624.0 12376.0 23.045 9600 48000 513

3144.0 12360.0 22.632 8000 0 472

3160.0 12360.0 22.673 8000 1600 476

3176.0 12360.0 23.173 8000 3200 526

3192.0 12360.0 23.390 8000 4800 548

3208.0 12360.0 23.540 8000 6400 563

3224.0 12360.0 23.635 8000 8000 572

3240.0 12360.0 23.743 8000 9600 583

3256.0 12360.0 23.603 8000 11200 569

3272.0 12360.0 23.305 8000 12800 539

3288.0 12360.0 22.638 8000 14400 473

3304.0 12360.0 22.343 8000 16000 443

3320.0 12360.0 22.517 8000 17600 461

3336.0 12360.0 22.603 8000 19200 469

3352.0 12360.0 22.673 8000 20800 476

3368.0 12360.0 22.785 8000 22400 487

3384.0 12360.0 22.887 8000 24000 498

3400.0 12360.0 22.083 8000 25600 417

3416.0 12360.0 20.780 8000 27200 287

3432.0 12360.0 19.486 8000 28800 157

3448.0 12360.0 18.165 8000 30400 25

3464.0 12360.0 17.946 8000 32000 3

3480.0 12360.0 17.946 8000 33600 3

3496.0 12360.0 17.945 8000 35200 3

209

3512.0 12360.0 17.945 8000 36800 3

3528.0 12360.0 18.320 8000 38400 41

3544.0 12360.0 19.670 8000 40000 176

3560.0 12360.0 20.714 8000 41600 280

3576.0 12360.0 21.748 8000 43200 384

3592.0 12360.0 22.685 8000 44800 477

3608.0 12360.0 23.035 8000 46400 512

3624.0 12360.0 23.022 8000 48000 511

3144.0 12344.0 22.823 6400 0 491

3160.0 12344.0 22.903 6400 1600 499

3176.0 12344.0 23.120 6400 3200 521

3192.0 12344.0 23.313 6400 4800 540

3208.0 12344.0 23.540 6400 6400 563

3224.0 12344.0 23.590 6400 8000 568

3240.0 12344.0 23.665 6400 9600 575

3256.0 12344.0 23.712 6400 11200 580

3272.0 12344.0 23.325 6400 12800 541

3288.0 12344.0 22.663 6400 14400 475

3304.0 12344.0 22.478 6400 16000 457

3320.0 12344.0 22.610 6400 17600 470

3336.0 12344.0 22.728 6400 19200 482

3352.0 12344.0 22.872 6400 20800 496

3368.0 12344.0 23.114 6400 22400 520

3384.0 12344.0 22.547 6400 24000 464

3400.0 12344.0 21.366 6400 25600 345

3416.0 12344.0 20.046 6400 27200 213

3432.0 12344.0 18.896 6400 28800 98

3448.0 12344.0 17.948 6400 30400 4

3464.0 12344.0 17.947 6400 32000 4

3480.0 12344.0 17.947 6400 33600 4

3496.0 12344.0 17.946 6400 35200 3

3512.0 12344.0 17.946 6400 36800 3

3528.0 12344.0 18.733 6400 38400 82

3544.0 12344.0 19.739 6400 40000 183

3560.0 12344.0 20.790 6400 41600 288

210

3576.0 12344.0 21.806 6400 43200 389

3592.0 12344.0 22.663 6400 44800 475

3608.0 12344.0 22.888 6400 46400 498

3624.0 12344.0 22.907 6400 48000 500

3144.0 12328.0 22.985 4800 0 507

3160.0 12328.0 23.048 4800 1600 514

3176.0 12328.0 23.210 4800 3200 530

3192.0 12328.0 23.370 4800 4800 546

3208.0 12328.0 23.542 4800 6400 563

3224.0 12328.0 23.555 4800 8000 564

3240.0 12328.0 23.700 4800 9600 579

3256.0 12328.0 23.820 4800 11200 591

3272.0 12328.0 23.495 4800 12800 558

3288.0 12328.0 22.795 4800 14400 488

3304.0 12328.0 22.597 4800 16000 469

3320.0 12328.0 22.760 4800 17600 485

3336.0 12328.0 22.927 4800 19200 502

3352.0 12328.0 23.103 4800 20800 519

3368.0 12328.0 23.171 4800 22400 526

3384.0 12328.0 22.065 4800 24000 415

3400.0 12328.0 20.631 4800 25600 272

3416.0 12328.0 19.248 4800 27200 134

3432.0 12328.0 17.949 4800 28800 4

3448.0 12328.0 17.949 4800 30400 4

3464.0 12328.0 17.948 4800 32000 4

3480.0 12328.0 17.948 4800 33600 4

3496.0 12328.0 17.947 4800 35200 4

3512.0 12328.0 17.947 4800 36800 4

3528.0 12328.0 18.781 4800 38400 87

3544.0 12328.0 19.851 4800 40000 194

3560.0 12328.0 20.931 4800 41600 302

3576.0 12328.0 21.957 4800 43200 405

3592.0 12328.0 22.826 4800 44800 491

3608.0 12328.0 22.790 4800 46400 488

3624.0 12328.0 22.872 4800 48000 496

211

3144.0 12312.0 23.112 3200 0 520

3160.0 12312.0 23.160 3200 1600 525

3176.0 12312.0 23.335 3200 3200 542

3192.0 12312.0 23.462 3200 4800 555

3208.0 12312.0 23.580 3200 6400 567

3224.0 12312.0 23.610 3200 8000 570

3240.0 12312.0 23.698 3200 9600 579

3256.0 12312.0 23.958 3200 11200 605

3272.0 12312.0 23.642 3200 12800 573

3288.0 12312.0 23.007 3200 14400 510

3304.0 12312.0 22.747 3200 16000 484

3320.0 12312.0 22.885 3200 17600 497

3336.0 12312.0 23.175 3200 19200 526

3352.0 12312.0 23.333 3200 20800 542

3368.0 12312.0 22.690 3200 22400 478

3384.0 12312.0 21.381 3200 24000 347

3400.0 12312.0 19.870 3200 25600 196

3416.0 12312.0 18.432 3200 27200 52

3432.0 12312.0 17.951 3200 28800 4

3448.0 12312.0 17.950 3200 30400 4

3464.0 12312.0 17.949 3200 32000 4

3480.0 12312.0 17.949 3200 33600 4

3496.0 12312.0 17.949 3200 35200 4

3512.0 12312.0 17.948 3200 36800 4

3528.0 12312.0 18.882 3200 38400 97

3544.0 12312.0 20.019 3200 40000 211

3560.0 12312.0 21.129 3200 41600 322

3576.0 12312.0 22.141 3200 43200 423

3592.0 12312.0 22.944 3200 44800 503

3608.0 12312.0 22.702 3200 46400 479

3624.0 12312.0 22.895 3200 48000 498

3144.0 12296.0 23.190 1600 0 528

3160.0 12296.0 23.263 1600 1600 535

3176.0 12296.0 23.423 1600 3200 551

3192.0 12296.0 23.520 1600 4800 561

212

3208.0 12296.0 23.622 1600 6400 571

3224.0 12296.0 23.630 1600 8000 572

3240.0 12296.0 23.665 1600 9600 575

3256.0 12296.0 23.975 1600 11200 606

3272.0 12296.0 23.890 1600 12800 598

3288.0 12296.0 23.235 1600 14400 532

3304.0 12296.0 22.878 1600 16000 497

3320.0 12296.0 22.940 1600 17600 503

3336.0 12296.0 23.335 1600 19200 542

3352.0 12296.0 23.001 1600 20800 509

3368.0 12296.0 22.019 1600 22400 411

3384.0 12296.0 20.692 1600 24000 278

3400.0 12296.0 19.239 1600 25600 133

3416.0 12296.0 17.952 1600 27200 4

3432.0 12296.0 17.952 1600 28800 4

3448.0 12296.0 17.951 1600 30400 4

3464.0 12296.0 17.951 1600 32000 4

3480.0 12296.0 17.950 1600 33600 4

3496.0 12296.0 17.950 1600 35200 4

3512.0 12296.0 18.016 1600 36800 10

3528.0 12296.0 19.109 1600 38400 120

3544.0 12296.0 20.279 1600 40000 237

3560.0 12296.0 21.398 1600 41600 349

3576.0 12296.0 22.394 1600 43200 448

3592.0 12296.0 23.054 1600 44800 514

3608.0 12296.0 22.638 1600 46400 473

3624.0 12296.0 22.788 1600 48000 488

3144.0 12280.0 23.235 0 0 532

3160.0 12280.0 23.370 0 1600 546

3176.0 12280.0 23.528 0 3200 562

3192.0 12280.0 23.685 0 4800 577

3208.0 12280.0 23.698 0 6400 579

3224.0 12280.0 23.740 0 8000 583

3240.0 12280.0 23.858 0 9600 595

3256.0 12280.0 23.962 0 11200 605

213

3272.0 12280.0 23.872 0 12800 596

3288.0 12280.0 23.275 0 14400 536

3304.0 12280.0 22.935 0 16000 502

3320.0 12280.0 22.997 0 17600 509

3336.0 12280.0 23.257 0 19200 535

3352.0 12280.0 22.592 0 20800 468

3368.0 12280.0 21.426 0 22400 351

3384.0 12280.0 20.103 0 24000 219

3400.0 12280.0 18.863 0 25600 95

3416.0 12280.0 17.953 0 27200 4

3432.0 12280.0 17.953 0 28800 4

3448.0 12280.0 17.952 0 30400 4

3464.0 12280.0 17.952 0 32000 4

3480.0 12280.0 17.951 0 33600 4

3496.0 12280.0 17.950 0 35200 4

3512.0 12280.0 18.556 0 36800 64

3528.0 12280.0 19.551 0 38400 164

3544.0 12280.0 20.655 0 40000 274

3560.0 12280.0 21.727 0 41600 382

3576.0 12280.0 22.707 0 43200 480

3592.0 12280.0 23.151 0 44800 524

3608.0 12280.0 22.573 0 46400 466

3624.0 12280.0 22.650 0 48000 474

214

Appendix K. Listing of Output Files for the Hypothetical LiDAR Example

The bathymetry and (or) LiDAR genetic algorithm (GA) program outputs two files:

stats_out.csv and bi_out.txt. These files are created each time the program is ran and will overwrite if

they exist. If these files are needed, it is suggested that they be renamed before the program is reran.

The file stats_out.csv is a comma delimited text file containing fitness values for the best, average,

median, worst, and RMSE (Root Mean Square Error) at every generation. Because the file has a csv

suffix, it can easily be read into a spreadsheet. The file bi_out.txt is a space delimited text file

containing the final GA-produced bathymetry and (or) LiDAR dataset (x, y, and z). The first column

in file bi_out.txt represents the x-value (easting), the second column represents the y-value (northing),

and the third column represents the z-value (elevation or height).

Tables K.1 and K.2 are computer listings of output files for run 8 of the hypothetical LiDAR

example (Chapter 4.5.1), which was ran for 100 generations. Table K.1 is a listing of the stat_out.csv

file and Table K.2 is a listing of the bi_out.csv.

215

216

217

218

219

220

Table K.2. Listing of output file bi_out.csv. (The first column represents the x-value, the second

column represents the y-value, and the third column represents the z-value.)

BEST INDIVIDUAL

X Y Z

 0 0 532

 0 35200 485

 0 36800 495

 0 48000 598

 1600 0 546

 1600 1600 535

 1600 9600 453

 1600 25600 499

 3200 1600 551

 3200 14400 507

 3200 27200 518

 3200 28800 519

 3200 36800 534

 3200 43200 735

 3200 44800 655

 4800 6400 540

 4800 12800 532

 4800 14400 523

 4800 48000 628

 6400 4800 563

 6400 6400 562

 6400 11200 573

 6400 20800 564

 6400 35200 570

 6400 44800 676

 6400 48000 666

 8000 0 582

 8000 9600 580

 8000 12800 592

 8000 24000 576

221

 8000 32000 580

 8000 33600 578

 8000 38400 504

 8000 40000 480

 9600 4800 578

 9600 41600 449

 9600 43200 512

 9600 48000 447

 11200 12800 554

 11200 24000 551

 11200 41600 364

 11200 44800 342

 12800 4800 558

 12800 8000 539

 12800 11200 544

 12800 41600 257

 14400 41600 233

 16000 1600 496

 16000 8000 443

 16000 22400 359

 16000 25600 333

 16000 30400 329

 16000 32000 341

 16000 48000 361

 17600 1600 503

 17600 22400 352

 17600 24000 341

 19200 22400 343

 19200 25600 349

 19200 27200 351

 20800 9600 455

 20800 20800 355

 20800 36800 248

 20800 46400 97

 22400 6400 520

222

 22400 19200 378

 22400 32000 319

 24000 25600 378

 24000 28800 346

 25600 11200 481

 25600 12800 448

 25600 16000 433

 27200 4800 133

 27200 32000 194

 27200 48000 0

 28800 3200 4

 28800 20800 263

 28800 22400 253

 28800 43200 0

 30400 0 4

 30400 1600 4

 30400 4800 3

 30400 6400 3

 30400 8000 25

 30400 20800 185

 30400 36800 94

 30400 43200 0

 32000 3200 3

 32000 25600 99

 32000 27200 157

 32000 38400 0

 32000 44800 31

 33600 1600 3

 33600 12800 3

 33600 28800 107

 33600 30400 70

 33600 33600 1

 35200 8000 3

 35200 12800 3

 35200 20800 2

223

 35200 30400 1

 35200 33600 1

 35200 43200 207

 36800 6400 3

 36800 9600 3

 36800 19200 2

 36800 44800 385

 38400 3200 97

 38400 14400 3

 38400 17600 22

 38400 20800 42

 38400 28800 103

 38400 40000 336

 40000 3200 210

 40000 6400 182

 40000 17600 187

 40000 36800 379

 41600 1600 348

 41600 6400 287

 41600 41600 501

 41600 44800 496

 43200 20800 417

 43200 22400 417

 43200 27200 475

 43200 44800 513

 44800 1600 514

 44800 27200 523

 44800 35200 532

 44800 36800 532

 44800 48000 509

 46400 14400 512

 46400 22400 491

 46400 24000 480

 46400 38400 533

 46400 41600 509

224

 46400 46400 496

 48000 0 473

 48000 3200 498

 48000 8000 511

 48000 11200 517

 48000 12800 521

 48000 22400 455

 48000 44800 487

 48000 48000 462

225

Appendix L. Permission to Use isort (Appendix I.4)

ISORT sorts array IX and optionally makes the same interchanges in array IY. The array IX may be

sorted in increasing order or decreasing order.

file: slatec/src/isort.f (http://www.netlib.org/slatec/src/)

for: Sort an array and optionally make the same interchanges in

gams: N6A2A

by: Jones, R. E., (SNLA)

SLATEC Common Mathematical Library, Version 4.1, July 1993, a comprehensive software library

containing over 1400 general purpose mathematical and statistical routines written in Fortran 77.

 */

 * The authors of this software is R.E. Jones

 * Copyright (c) 1993 by SNLA.

 * Permission to use, copy, modify, and distribute this software for any

 * purpose without fee is hereby granted, provided that this entire notice

 * is included in all copies of any software which is or includes a copy

 * or modification of this software and in all copies of the supporting

 * documentation for such software.

 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

 * WARRANTY. IN PARTICULAR, NEITHER THE AUTHORS NOR <org> MAKE ANY

 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE

MERCHANTABILITY

 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

 */

Here is another notice, from the IJG jpeg library source, that may be a useful model:

In plain English:

1. We don't promise that this software works. (But if you find any bugs, please let us know!)

2. You can use this software for whatever you want. You don't have to pay us.

3. You may not pretend that you wrote this software. If you use it in a program, you must

acknowledge somewhere in your documentation that you've used the IJG code.

http://www.netlib.org/slatec/src/

226

In legalese:

The authors make NO WARRANTY or representation, either express or implied, with respect to this

software, its quality, accuracy, merchantability, or fitness for a particular purpose. This software is

provided "AS IS", and you, its user, assume the entire risk as to its quality and accuracy.

This software is copyright (C) 1991-1996, Thomas G. Lane. All Rights Reserved except as specified

below.

Permission is hereby granted to use, copy, modify, and distribute this software (or portions thereof) for

any purpose, without fee, subject to these conditions:

1. If any part of the source code for this software is distributed, then this README file must be

included, with this copyright and no-warranty notice unaltered; and any additions, deletions,

or changes to the original files must be clearly indicated in accompanying documentation.

2. If only executable code is distributed, then the accompanying documentation must state that

"this software is based in part on the work of the Independent JPEG Group".

3. Permission for use of this software is granted only if the user accepts full responsibility for

any undesirable consequences; the authors accept NO LIABILITY for damages of any kind.

These conditions apply to any software derived from or based on the IJG code, not just to the

unmodified library. If you use our work, you ought to acknowledge us.

Permission is NOT granted for the use of any IJG author's name or company name in advertising or

publicity relating to this software or products derived from it. This software may be referred to only

as "the Independent JPEG Group's software".

We specifically permit and encourage the use of this software as the basis of commercial products,

provided that all warranty or liability claims are assumed by the product vendor.

227

Appendix M. Permission to Use locpt (Appendix I.16)

The library locpt.90 determines if a point resides inside a polygon. This code was written by Alan

Miller and is released into the public domain (https://jblevins.org/mirror/amiller/, webpage updated 4

February 2004).

https://jblevins.org/mirror/amiller/

228

Appendix N. Permission to Use GEOMPACK (Appendix I.18)

geompack https://people.sc.fsu.edu/~jburkardt/f77_src/geompack/geompack.f (accessed 10/29/2017)

Subroutines in geompack.f: vbedg, swapec

Functions in geompack.f: diaedg, lrline, i_wrap, i_modp

This code is distributed under the GNU LGPL license. See section 2 about conveying modified

versions.

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

https://www.gnu.org/copyleft/lesser.html

Copyright © 2007 Free Software Foundation, Inc. <https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions

of version 3 of the GNU General Public License, supplemented by the additional permissions

listed below.

0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser General Public License,

and the “GNU GPL” refers to version 3 of the GNU General Public License.

“The Library” refers to a covered work governed by this License, other than an Application or

a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided by the Library, but

which is not otherwise based on the Library. Defining a subclass of a class defined by the

Library is deemed a mode of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an Application with the

Library. The particular version of the Library with which the Combined Work was made is

also called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corresponding

Source for the Combined Work, excluding any source code for portions of the Combined

https://www.gnu.org/copyleft/lesser.html
https://fsf.org/

229

Work that, considered in isolation, are based on the Application, and not on the Linked

Version.

The “Corresponding Application Code” for a Combined Work means the object code and/or

source code for the Application, including any data and utility programs needed for

reproducing the Combined Work from the Application, but excluding the System Libraries of

the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound

by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function

or data to be supplied by an Application that uses the facility (other than as an argument

passed when the facility is invoked), then you may convey a copy of the modified version:

 a) under this License, provided that you make a good faith effort to ensure that, in the event
an Application does not supply the function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or

 b) under the GNU GPL, with none of the additional permissions of this License applicable to
that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is

part of the Library. You may convey such object code under terms of your choice, provided

that, if the incorporated material is not limited to numerical parameters, data structure layouts

and accessors, or small macros, inline functions and templates (ten or fewer lines in length),

you do both of the following:

 a) Give prominent notice with each copy of the object code that the Library is used in it and
that the Library and its use are covered by this License.

 b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together,

effectively do not restrict modification of the portions of the Library contained in the

Combined Work and reverse engineering for debugging such modifications, if you also do

each of the following:

 a) Give prominent notice with each copy of the Combined Work that the Library is used in it
and that the Library and its use are covered by this License.

 b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

230

 c) For a Combined Work that displays copyright notices during execution, include the
copyright notice for the Library among these notices, as well as a reference directing the user
to the copies of the GNU GPL and this license document.

 d) Do one of the following:
o 0) Convey the Minimal Corresponding Source under the terms of this License, and

the Corresponding Application Code in a form suitable for, and under terms that
permit, the user to recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the manner specified
by section 6 of the GNU GPL for conveying Corresponding Source.

o 1) Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (a) uses at run time a copy of the Library already present on
the user's computer system, and (b) will operate properly with a modified version of
the Library that is interface-compatible with the Linked Version.

 e) Provide Installation Information, but only if you would otherwise be required to provide
such information under section 6 of the GNU GPL, and only to the extent that such
information is necessary to install and execute a modified version of the Combined Work
produced by recombining or relinking the Application with a modified version of the Linked
Version. (If you use option 4d0, the Installation Information must accompany the Minimal
Corresponding Source and Corresponding Application Code. If you use option 4d1, you must
provide the Installation Information in the manner specified by section 6 of the GNU GPL for
conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single

library together with other library facilities that are not Applications and are not covered by

this License, and convey such a combined library under terms of your choice, if you do both

of the following:

 a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities, conveyed under the terms of this License.

 b) Give prominent notice with the combined library that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser

General Public License from time to time. Such new versions will be similar in spirit to the

present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it

specifies that a certain numbered version of the GNU Lesser General Public License “or any

later version” applies to it, you have the option of following the terms and conditions either of

that published version or of any later version published by the Free Software Foundation. If

the Library as you received it does not specify a version number of the GNU Lesser General

Public License, you may choose any version of the GNU Lesser General Public License ever

published by the Free Software Foundation.

231

If the Library as you received it specifies that a proxy can decide whether future versions of

the GNU Lesser General Public License shall apply, that proxy's public statement of

acceptance of any version is permanent authorization for you to choose that version for the

232

Appendix I. Listing of MATLAB file for Spectral Analysis

%%
%
%
% Power Spectral Density (PSD) of a dataset
%
%

% clear workspace...
clear; clc; close all;

% read source data file.
datfile = 'braided_original.txt'; % 2 columns of space separated numbers.
fid = fopen(datfile);
C = textscan(fid,'%f%f', 'MultipleDelimsAsOne',1);
fclose(fid);

% get data columns:
t = C{1}; % x-value [distance from left bank, feet]
y = C{2}; % y-value [elevation, feet]

% make sure sorted in x-value....
[t,iSORT] = sort(t);
y = y(iSORT);

% make sure x-value starts at 0...
t = t - min(t);

% get the interval (time step) and make sure all the same...
dt = unique(diff(t));
if numel(dt) ~= 1,
 error('Data is not sampled at a uniform rate (time steps not all the same).');
end

% set interval or time step
dt = 0.5;

% get the sampling frequency...
sampFreqHz = 1/dt;

% get number of values...
n = numel(t);

233

% plot time-series...
scr_sz = get(0,'ScreenSize'); % [x,y,w,h].
figure('Color','w', 'Position',[5 5 0.9*scr_sz(3:4)]); axes; hold on;
subplot(2,1,1);
plot(t,y);
title('\bfTime-Series Plot (Time Domain)');
xlabel('TIME, IN SECONDS');
ylabel('VALUE');
box on;

%%
% spectral analysis: this uses technique in Malab documentation.
% type "doc fftdemo.m" for more information.

% compute FFT...
Y = fft(y,n);

% compute the power spectral density...
Pyy = Y.*conj(Y)/n;

% compute the corresponding frequencies...
f = (sampFreqHz/n)*(0:n-1)';

% plot power spectral density...
subplot(2,1,2); hold on;
plot(f,Pyy);
title('\bfPower Spectral Density (Frequency Domain)');
xlim([0,sampFreqHz/2]);
set(gca, 'XScale','log', 'YScale','log');
xlabel('FREQUENCY, IN HERTZ');
box on;

%--
% "llfft.m" method from 'Matlab WDS Toolkit'
% See: http://www.nortekusa.com/usa/knowledge-center/table-of-contents/waves
%
% The core code from "llfft.m" was copied here and modified to work with how my variables are
defined.
%
% This starts from scratch (uing their code) to compute the PSD from the raw data, then performs a
smooth.

% nF: nominal number of frequency bands for computing average (the actual number of bands will
be less)
%
% This essentially just smooths the result by taking the means of logrithmically-spaced partitions:

234

% less 'bands' = more smoothing.
%
nF = 70; % this value used in the 'WDS Toolkit' demo.

x = y; % reset for new compuatation.
np = length(x); % number of points.
if mod(np,2)==1, % make even number of points.
 np = np - 1;
 x = x(1:np);
end

Dt = np*dt; % Dt = total duration of TS.
f = (1:(np/2))'./Dt; % frequency array up to Nyquist.

xf = abs(fft(x)); % compute spectrum.

xp = xf(2:(np/2+1)).^2; % compute power spectrum & ignore zero freq.
xp = xp*2/np^2/f(1); % scale power spectrum.

% jvrabel: here comes the log-smoothing part.
% if it is just taking means of log-spaced intervals, it can be done more simply than this.

% logarithmically average spectrum into nF uniformly-spaced "log10" frequency bands.
lf = log(f);
dlf = 1.000000001*(lf(end) - lf(1)) / nF ; % log frequency increment.
NDX = 1 + floor((lf-lf(1))/dlf);
AA = [find(diff(NDX)>0)' length(f)]; % array of transitions plus final f.

Cs = cumsum(xp);
Cf = cumsum(f);
F = [Cf(AA(1)) diff(Cf(AA)')]./ [AA(1) diff(AA)];
S = [Cs(AA(1),:); diff(Cs(AA,:))]./([AA(1) diff(AA)]');

% add unsmoothed and log-smooth to plot...
plot(f,xp,'g.');
plot(F,S, 'r');
legend({ ...
 'Raw PSD (fftdemo.m method)' ...
 'Raw PSD (WDS Toolkit method)' ...
 ['Smoothed (' num2str(nF) ' bands)'] ...
 }, ...
 'Location','EastOutside');
legend boxoff;
return;

	title&prelim
	Chapter 1
	awra
	sir
	fihmc
	spectral
	Executive_Summary
	Future_Work
	Conclusions
	Appendix_A
	Appendix_B
	Appendix_C
	Appendix_D
	Appendix_E
	Appendix_F
	Appendix_G
	Appendix_H
	Appendix_I
	Appendix_J
	Appendix_K
	Appendix_L
	Appendix_M
	Appendix_N
	Appendix_O

