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Abstract 

 The Hagberg falling number (FN) is an important quality trait in common wheat. 

Assessment of FN being used on flour samples from harvested grain is costly and affected by 

environments where the grains were produced. Pre-harvest sprouting (PHS) and late maturity 

α-Amylase (LMA) are the two main sources of low FN in wheat. Use of quantitative trait loci 

(QTL) and tightly linked molecular markers for FN, PHS, and LMA are good alternatives to 

use in early generation selection and for improvement of selection efficiency. The present 

study uses a comparative QTL mapping for the three related traits in a doubled haploid 

population derived from two hard white spring wheat cultivars: UI Platinum (UIP) and SY 

Capstone (SYC). FN data from nine trials, PHS data from eight datasets in two experiments, 

and LMA data from one trial with two treatments were used in the QTL analysis. Out of 

sixteen QTLs for FN detected, five (QFN.UIA-1B-1, QFN.UIA-2B, QFN.UIA-3B-1, 

QFN.UIA-5A-1, QFN.UIA-7A-1) were detected in three or more data sets, explaining 10 to 

34% of phenotypic variation. Nine QTLs for PHS were identified in three or more data sets on 

six chromosome regions, explaining 10 to 25% of phenotypic variation. Three QTL for LMA 

were identified on chromosomes 4A, 5A, and 7A-1. The QTL on 5A was associated with all 

three traits, and UIP contributed to higher FN, resistance to PHS and LMA. The QTL on 7A-1 

was associated with FN and LMA and UIP contributed to lower FNs and higher PHS scores. 

QTL on 1B-1 was associated with FN and PHS and UIP contributed to lower FNs and higher 

PHS scores. This study suggests that the three traits may share some common genetic 

information; therefore, selecting one trait may permit the indirect selection of other related 

traits. This study also suggests that lines with improved resistance to FN, PHS, and LMA may 

be achieved through genetic recombination for QTL from the two parents. Compared to the 

physical map of Chinese Spring, the 5A QTL is in the flanking region of the Amy 3 gene. This 

suggests that it is necessary to study the Amy 3 gene in order to understand the genetic control 

of the three traits assessed in the present study. 

 

 

 



iv 

 

Acknowledgments 

First, I would like to express my sincere gratitude to my advising professor Dr. Jianli Chen for 

her continuous patience, support, motivation, and immense knowledge in wheat breeding. Her 

guidance was the main force driving me forward and is one of the biggest reasons I was able 

to complete all the research necessary for writing and preparing this thesis. I cannot see how I 

could have achieved this Master's degree without her guidance and motivation.  

In addition to thanking Dr. Chen, I would like to thank my committee members, Dr. Juliet 

Marshall, Dr. Kurtis Schroeder, and Dr. Zonglie Hong, for their insight, constructive 

criticism, thought-provoking questions, and encouragement. 

I want to thank Dr. Amy Lin and Dr. Daolin Fu for letting me use their lab facilities to 

continue my research while on the main campus. Also, I’d like to thank Dr. Rui Wang for 

helping me learn and apply the JMP Genomic statistical program when performing my QTL 

analysis. Also, I would like to take this opportunity to thank Dr. Rawnaq Chowdhury for all 

her insight and critiquing in aiding the writing of my thesis to make it the best it could be. 

My sincerest thanks to my mentor Justin Wheeler for his support and guidance, and I would 

like to thank Natalie Klassen, Weidong Zhao, Philip Anderson, and Thom Koehler for helping 

me with the greenhouse and fieldwork performed throughout this project. Finally, I would like 

to thank my fellow grad-student, Kyle Isham, for his help in collecting the data for this 

project. 

 

 

 

 

 

 

 

 



v 

 

 

 

 

 

 

 

 

Dedication 

I want to take this opportunity to thank my parents as well as my younger sisters for their 

unwavering support and encouragement throughout this whole process. I would also like to 

thank my friends for standing by me and believing in me when I started to falter. 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

Table of Contents 

Authorization to Submit ............................................................................................................ ii 

Abstract .................................................................................................................................... iii 

Acknowledgments .................................................................................................................... iv 

Dedication ................................................................................................................................. v 

Table of Contents ..................................................................................................................... vi 

List of Tables.......................................................................................................................... viii  

List of Figures .......................................................................................................................... ix 

Chapter 1. LITERATURE REVIEW ........................................................................................ 1 

1.1 Common Wheat and Its Quality .......................................................................................... 1 

1.2 Hagberg Falling Number and Its Effect on Wheat Quality................................................. 2 

1.3 Pre-harvest Sprouting (PHS) and Its Effects on Wheat ...................................................... 4 

1.4 Late Maturity α-Amylase (LMA) and Its Effects on Wheat ............................................... 6  

1.5 Starch Genetics.................................................................................................................... 9 

1.6 Perspectives and Challenges of Solving Low Falling Numbers Issues in Wheat ............. 11 

Chapter 2. COMPARATIVE QTL MAPPING OF HAGBERG FALLING NUMBER, PRE-

HARVEST SPROUTING, AND LATE MATURITY ALPHA AMYLASE IN HARD 

WHITE SPRING WHEAT ..................................................................................................... 13 

INTRODUCTION .................................................................................................................. 13 

MATERIALS AND MEHTODS ............................................................................................ 15 

• Mapping Population and Field Experiments ............................................................... 15 

• Falling Numbers Evaluation ....................................................................................... 16 

• Pre-harvest Sprouting Test .......................................................................................... 16 

• Late Maturity Alpha Amylase Test ............................................................................. 17 

• Phenotypic Data Analysis ........................................................................................... 18 

• Genotypic Data Analysis and Linkage Map Construction .......................................... 19 



vii 

 

• QTL Analysis .............................................................................................................. 20 

RESULTS ............................................................................................................................... 20 

• Falling Number Performance in Nine Trials Over 2015 to 2019 ............................... 20 

• PHS Resistance in Two Greenhouse Experiments...................................................... 21 

• LMA Resistance in Two Detached Spike Greenhouse Experiments .......................... 21 

• QTL Detection ............................................................................................................ 22 

o QTL Associated With FN ............................................................................... 22 

o QTL Associated With PHS ............................................................................. 22 

o QTL Associated With LMA............................................................................ 22 

DISCUSSION ......................................................................................................................... 23 

• Phenotypic Performance Strongly Affected by Environment ............................... 23 

• QTL Detection Found Similarities and Differences Among the Three Traits ...... 24 

o QTL for FN ............................................................................................... 24 

o QTL for PHS ............................................................................................. 25 

o QTL for LMA ........................................................................................... 26 

COMPARISONS OF QTL FOR FN, PHS, AND LMA AND POSSIBLE BREEDING 

STRATEGIES ......................................................................................................................... 26 

REFERENCES ........................................................................................................................ 28 

 

 

 

 

 

 

 



viii 

 

List of Tables 

Figure 2.1 Heading, anthesis, physiological maturity (PMD), harvesting dates, rainfall and 

irrigation (“) during the four wheat-growing seasons from the Aberdeen and Soda Spring of 

the eight trials .......................................................................................................................... 34 

Table 2.2 Summary of FN performance in parents and the derived lines in nine trials over 

2015 to 2019 ............................................................................................................................ 35 

Table 2.3 Correlations among FN data from different trials ................................................... 36 

Table 2.4 Summary of pre-harvest sprouting data in parents and derived doubled haploid 

lines in two spike germination experiments from 2018 to 2019 ............................................. 37 

Table 2.5 Correlations among different PHS data sets derived from 2018 and 2019 ............. 38 

Table 2.6 Summary FN derived from detached spike method for late maturity alpha amylase 

data in parents and derived doubled haploid lines in 2018 ..................................................... 38 

Table 2.7 Significant QTL for falling number traits identified ............................................... 39  

Table 2.8 Significant QTL identified in different PHS data sets ............................................ 40 

Table 2.9 Significant QTL for LMA resistance identified from 2018 detached spike test ..... 40 

 

 

 

 

 

 

 

 

 

 



ix 

 

List of Figures 

Figure 2.1 Temperature (oF) during the four wheat-growing seasons and two locations of the 

eight trials ................................................................................................................................ 41 

Figure 2.2 Pre-harvest sprouting (PHS) rating system developed at (Cornell University) 

(Paterson et al., 1989) 0-2 showing high resistance to PHS, 3-6 showing moderate resistance, 

and 7-9 showing low resistance to PHS .................................................................................. 42 

Figure 2.3 Distribution for FN data in individual trail and trial BLUP of multiple years from 

2015-2019 in the UIP x SYC DH population .................................................................... 43-45 

Figure 2.4 Distribution for PHS data sets from day four through day six in the UIP x SYC 

DH population ......................................................................................................................... 46 

Figure 2.5 Distribution for the detached spike LMA trials from 2018 in the UIP x SYC DH 

population ................................................................................................................................ 47 

Figure 2.6 QTL and map co-locations of QTLs for falling numbers (FN), pre-harvest 

sprouting (PHS) and late maturity alpha amylase (LMA) ...................................................... 48 

Figure 2.7 QTL 5A map with co-locations for FN, PHS and LMA. Amy3’s location is also 

shown on this map ................................................................................................................... 49 

 

 

 

 

 

 

 

 



1 

 

 

Chapter 1. LITERATURE REVIEW 

 

1.1 Common Wheat and its Quality 

Common wheat, also known as “bread wheat” (Triticum aestivum L. em Thell; 

AABBDD; 2n = 6x = 42), is considered an essential food crop as it provides a large portion of 

protein and calories for the human diet. Nearly 20% of the total dietary protein worldwide is 

known to be supplied by common wheat (Braun et al. 2010). According to the FAOSTAT 

(2016), world wheat production was about 730 million tons and harvested from an area of 

over 220 million ha during the year 2014 (FAO-Stat 2016 ). Based on worldwide production, 

wheat (751.1 million tons) stood second after maize (1,341.7 million tons), but the production 

was more than rice (480 million tons) in 2016 (USDA-ESMIS, 2016). Wheat has a wide 

adaptation and is capable of growing in temperate climates, irrigated to dry and high-rain-fall 

areas, as well as in warm, humid to dry, and cold environments. More specifically, wheat can 

grow from 67oN to 45oS latitude (Trethowan, et al. 2005). 

Wheat is a C3 type annual plant belonging to the family Poaceae (Gramineae) and 

genus Triticum. Common wheat evolved roughly 8,000 years ago from the natural 

hybridization of three wild diploid grasses known as Triticum urartu, Aegilops speltoides, and 

Aegilops tauschii (Trethowan, et al. 2005). After hybridization, allohexaploid wheat was 

formed, which contains 21 pairs of chromosomes originating from the A, B, and D genomes 

(Mangelsdorf, 1953). The wheat genome size is 17 Gb and the genome include 94,000 to 

96,000 genes (Brenchley, et al. 2012).  

Wheat is classified as winter, spring and facultative based on whether vernalization is 

required. Winter wheat must go through a period of cold temperature to be able to produce 

seeds, while spring and facultative wheat do not. Winter wheat is planted in fall and harvested 

in summer of the following year, while spring wheat is planted in spring and harvested in 

summer of the same year. Facultative wheat has a flexible planting period. By also 

considering grain hardness and seed color of winter and spring wheat, wheat is classified as 

https://onlinelibrary.wiley.com/doi/full/10.1111/1541-4337.12262#crf312262-bib-0024
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soft white winter, soft red winter, hard red winter, hard white winter, soft white spring, soft 

red spring, hard red spring, and hard white spring. These classes of wheat have different 

adaptation areas in the world and produce different end-use products. 

Wheat contains about 13% protein (weight basis), including many essential amino 

acids, important minerals and vitamins, beneficial phytochemicals, and other fiber 

components for the human diet (Shewry, 2009). The majority of plant-based protein in our 

daily diet comes from wheat as it has relatively higher protein content compared to other 

cereal crops. Therefore, more than 30% of the human population considers wheat a staple 

food (International Wheat Genome Sequencing 2014). A wide range of foods such as bread, 

noodles, and tortillas use wheat flour as its main ingredient. Whole wheat products have the 

potential to reduce the risk of chronic diseases like diabetes and cancer; it can also reduce the 

risk of obesity and assist in improved weight control (“Wheat facts,” 2017). In addition to its 

high nutritional value, wheat is an important food crop due to its long shelf life and 

transporting qualities. 

   

1.2.  Hagberg Falling Number and Its Relation to Wheat Quality  

Hagberg falling number (FN) is a critical quality trait used in wheat grading in grain 

elevators, export markets and baking industries. The FN method, also referred to as the 

Hagberg number or Hagberg-Perten number, measures the degradation in wheat flour or meal 

of starch that results from α-Amylase activity (Perten, 1964). In the FN test, 6 to 7 grams of 

flour are placed in a test tube, and 25 mL of distilled water is added. The tubes are shaken to 

mix the water and flour. The wheat flour- water mixture is gelatinized upon boiling. Finally, 

the flour-water mixture is stirred for one minute, with stir rods, that are then dropped from the 

top to the bottom of the tube. The FN instrument measures the number of seconds it takes for 

the metal stir rod to fall in the gelatinized paste (Kweon, 2010). The excess enzyme, α-

Amylase, in the wheat flour and water mixture will break down the starch and reduce the 

viscosity of the slurry, making the stir rod fall faster, resulting in a lower FN of the sample 

(Kweon, 2010). A wheat line with an FN less than 300 seconds indicates the starch is 

damaged, or hydrolyzed, mostly by over-expressed α-Amylase in the wheat grain sample 

(Instruments, 2019).  
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The falling number test was initially developed in 1960 by Sven Hagberg as a rapid 

and original method to determine the starch damage of pre-harvest sprout (PHS) damaged 

wheat grains and the name was later changed from the Hagberg Falling Number to merely the 

“falling number” (Kweon, 2010). At the time that Sven Hagberg established the FN test, there 

were some well-known tests for measuring starch damage.  To name a couple of these 

methods there is the Wohlegmuth method that involved using the dextrinizing properties of α-

Amylase (Bendelow, 1963, Hagberg, 1960), and the Sandstedt, Kneen, and Blish method 

which involved measuring enzyme activity for a standard decrease to occur in the starch-

iodine (Briggs, 1961, Hagberg, 1960).  However, these and other tests were too time-

consuming and could only measure a few samples at a time. Often, they also required an 

expensive apparatus to perform the tests, or the results collected from those tests did not 

accurately reflect the amount of damaged starch (Hagberg, 1960). These tests also often had a 

common defect in that they measured the time required to cleave starch to a much higher 

degree than what is necessary during bread-baking (Hagberg, 1960). Hagberg’s FN method 

proved to be reliable over a wide range of tests and quickly became one of the most common 

methods used to test starch damage (Hagberg, 1960). 

Starch can be damaged due to a number of reasons. Starch damage can occur due to 

technological interferences such as milling. Such damage can be improved by milling 

methods and the mechanics used. Excessive moisture prior to and during harvest, causes PHS, 

and extreme temperature changes (cold or hot), which cause Late Maturity Alpha Amylase 

(LMA), during grain fill also induce elevated α-Amylase activities in mature grain 

subsequently causing starch damage and reduce quality of baked products. In baking 

industries, a certain amount of α-Amylase activity is needed to break the starch into sugars 

that aid as fuel for the fermentation process. Too much α-Amylase activity in low falling 

number (below 300 seconds) flour results in high sugar content that causes cakes to fall, make 

noodles sticky and results in bread that does not rise well (Steber, 2017). However, too low of 

α-Amylase activity and an FN over 350 seconds, may result in dry breadcrumbs and a 

diminished volume (Instruments, 2019). Optimal α-Amylase activity with an FN around 300 

seconds is desirable for a high-volume bread with a firm and soft texture (Instruments, 2019). 
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FN is used in grain elevators to differentiate between a successful growing season and 

a devastating one. If the FN falls below the optimal level (300 seconds), then the value of the 

wheat can be discounted by $0.25/bu for every 25 seconds below 300 (Steber, 2017). In 2016, 

wheat farmers in the Pacific Northwest (PNW) lost several million dollars in profit due to low 

falling number (LFN). Since the loss in 2016 and due to other incidents, e.g. in 2013 and 2014 

growers reported to have a higher than average number of cases of PHS across the PNW 

region, the PNW region has committed substantial resources to determine the leading causes 

of LFN and how to counter them.  

To breed wheat cultivars with desirable FNs in diverse environments, it is essential to 

understand the genetic control of FN. QTL mapping can help to determine the genes and 

chromosome regions underlying FN. Molecular markers tightly linked to FN can be used in 

the selection of resistant plants in early generations for cultivar improvement. Researchers 

have determined that significant QTLs related to FN are located on 14 chromosomes: 1B, 2D, 

3A, 6B (Zhang, et al., 2014), 3B, 3D, 4A, 4D, 6A, 6D (Tang et al., 2017), 5A, 5D, (Bőrner,et 

al.,2017) and 4B, 7B (Zhang, et al., 2014Tang et al., 2017).  

Chromosome 4A has been shown to be associated with PHS, specifically seed 

dormancy and several other smaller traits connected to controlling PHS (Lin, et al., 2016). 

PHS is one of the primary causes of LFN and is also better understood compared to LMA, a 

defect just as devastating and a more recently discovered cause of LFN. Chromosomes 6A 

and 6D are connected to the synthesize of α-Amylase and is often associated with LMA 

(Barrero, et al., 2013). Both PHS and LMA will be discussed further in the following sections. 

1.3.  Pre-harvest Sprouting (PHS) and Its Effects on Wheat 

 PHS results when wheat germinates in the grain head due to excess rainfall prior to 

harvest (Thomason et al., 2019). Germination is activated by GA3-induced alpha amylase 

(Mrva & Mares, 1999). Genetic variations for PHS were observed and associated with known 

genes controlling seed color, dormancy, and spike morphology (Kocheshkova, et al., 2017).  

Various features influence PHS resistance in the spike morphology; spike shape, 

presence of awns, the openness of florets, glume rigidity, and germination inhibitors in husks 

(Kocheshkova, et al., 2017). The seed coat determines seed dormancy and its ability to resist 
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PHS. The seed coat can contain germination inhibitors, and it determines the rate moisture 

penetrates the seed (Kocheshkova, et al., 2017). In addition to the aforementioned features, 

the seed’s red color is also connected to seed dormancy (Kocheshkova, et al., 2017).  

Red color wheat is associated with the triplicate R homoeoloci gene, which is a 

significant gene in controlling PHS (Andreoli, Bassoi, & Brunetta, 2006). However, the red 

wheat cultivar will not guarantee a complete or adequate PHS resistance. For optimal 

resistance, the Phs1 gene, which affects seed dormancy, is needed (Andreoli, Bassoi, & 

Brunetta, 2006). In addition to triplicate R homoeoloci and Phs1, two causal genes for non-

grain color have been cloned and designated as TaPHS1 and TaMKK3-A, respectfully (Lin et 

al., 2018). Both of these cloned genes have additive effects that can significantly reduce PHS 

and its impact in a wheat cultivar. To fully utilize these seed dormancy and seed color genes, 

wheat breeders have been studying the QTLs associated with these genes (Mares & Mrva, 

2014).  

The Phs1 QTL is located on chromosome 4A, and the triplicate R homoeloci’s QTL 

located on chromosomes 3A, 3B, and 3D (Torada, et al., 2016). The TaPHS1 and TaMKK3-A 

QTLs are located on chromosomes 3AS and 4AL (Lin et al., 2018), respectively. However, 

the TaPHS1 QTL effects vary based upon the environment the cultivars are grown in, such as 

temperature, humidity, and rainfall. The gene sources of the cultivar also influence the effects 

of TaPHS1, while in contrast, TaMKK3-A effectiveness was only influenced by the 

environment (Lin et al., 2018). As all of the mentioned genes are affected by the environment, 

it is essential to determine how resistant a cultivar is to PHS. There are several methods to test 

a wheat cultivar’s resistance to PHS, including artificial sprouting of intact spikes, 

germination tests, natural weathering in field trials, artificial weathering trials and indirect 

assessment of sprouting by measuring the falling number (DePauw, et al., 2012).    

Three genes synthesize α-Amylase, Amy1, Amy2, and Amy3. Amy1 is located on 

chromosomes 6A, 6B, and 6D (Cheng, et al., 2013). Amy2 is located on group 7 

chromosomes- 7A, 7B and 7D in wheat (Mares & Mrva, 2014). Amy3 is located on 

chromosome 5A. Amy1 was reported as having an association with PHS (Laethauwer, et al., 

2013), while the relationship between PHS and Amy2 and Amy3 is not clear. The most 

significant way to resist PHS resistance would be through a cultivar without genes relating to 
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seed color, dormancy and morphology. Such QTLs have been reported on 2D (Munkvold et 

al., 2009), but the effects of these QTLs were much smaller than those known genes. There is 

still a need to identify additional such QTLs for PHS. 

The artificial sprouting of intact spikes, which is the most common method of 

assessing PHS, exposes the wheat seeds to conditions that will induce PHS while still in the 

spikes. This method was utilized to test the cultivars BRS Pardela and BRS 220, which are 

two varieties that are considered PHS susceptible after threshing. When these cultivars were 

tested using intact spikes, the seeds proved to be resistant while still within the spike 

(Gavazza, et al., 2012). This research supports what has been stated earlier in this section that 

spike morphology plays a vital role in a cultivar’s ability to resist PHS.  

The third and final factor is the genetics of the cultivar. Amy 1, as mentioned earlier in 

this section, is the gene responsible for the majority of the production of α-Amylase after a 

wheat plant reaches physiological maturity (PM). The higher the levels of Amy1 that are 

expressed in a cultivar, the more PHS will be able to damage the wheat starch (Laethauwer, et 

al., 2013). Thus, it is imperative to choose a cultivar that expresses lower levels of Amy1 

(Laethauwer, et al., 2013). 

1.4.  Late Maturity α-Amylase (LMA) and Its Effects on Wheat  

  LMA is a newer field of research in wheat breeding that deals with the early 

production of α-Amylase during the middle stages of seed development when exposed to 

extreme temperatures (e.g. excessive low temperatures) (Mares & Mrva, 2014). Unlike PHS, 

LMA is a genetic defect that is widespread in bread wheat germplasm and causes high levels 

of α-Amylase in seeds when the environment lacks excessive moisture levels. (Barrero, et al., 

2013). LMA however, is not induced simply by extreme temperature. Rather, this is a 

complex mechanism that is not fully understood but involves extreme temperature shock 

(large shifts in daily temperatures, either up or down) (Barrero, et al., 2013). It also occurs at a 

specific window during kernel development (25-30 days post-anthesis) (Emebiri, et al., 2010). 

This defect is a recessive trait with a significant QTL found on the long arm of chromosome 

7B (Mrva & Mares, 2001). Other QTLs, though less prominent than 7B, have been found on 

3B and 4B (Mrva & Mares, 2001). As this is a genetic issue, the best way to reveal what 
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genotypes are more susceptible to LMA’s effects. is to study the genes that form α-Amylase 

(Barrero, et al., 2013).  

As mentioned in Section 1.2, α-Amy1 and α-Amy2 are the genes that produce α-

Amylase; more specifically, they create pI isozymes. There are two primary forms of pI 

isozymes; a high pI α-Amylase (associated with α-Amy1 or the germination isozyme) and a 

low pI α-Amylase (associated with α-Amy2 or the development isozyme) (Cheng, et al., 

2013). The ability to distinguish between these two types of pI α-Amylase is crucial, as it is 

the high pI α-Amylase that is active in cultivars with the LMA quality defect during later 

stages of grain development (Cheng, et al., 2013). The best method to predict the LMA defect 

is to analyze the QTL using the α-Amy1 sequences of established expressed sequence tags 

(ESTs) (Cheng, et al., 2013). Since the QTL for LMA is located on the long arm of 

chromosome 7B, which is associated with α-Amy2, many would expect this QTL to produce 

only low pI isozymes α-Amylase. However, this particular QTL is distant and genetically 

independent from the α-Amy2 gene allowing it to create high pI isozymes (Mrva & Mares 

2002). 

Typically, LMA occurs when the plant is exposed to extreme temperature changes 

while the seed is still developing, roughly between 24-32 days after anthesis or flowering 

(DF). However, it is highly unpredictable, and several factors can affect the influence of 

LMA. Temperature, field location, individual plants, the spikes of different plants, even the 

grains themselves can influence how LMA will affect the wheat (Mares & Mrva, 2008). 

These factors and their unpredictability have made it difficult for wheat breeders to develop 

an effective screening method for LMA. One reliable method was initially designed in an 

Australian breeding program.  

This method involves a two-phase process where in the first phase, the wheat plants 

are raised in a controlled environment and subjected to a cold temperature treatment during 

the grain development stage (26-32 DF) (Mrva & Mares 2002). The second phase tests the α-

Amylase that is synthesized in the grains due to the induction of LMA (Mrva & Mares 2002). 

This method has proved to be effective because it can be used on wheat grown in controled 

conditions or wheat grown in the field under natural conditions. It has been implemented in 
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numerous breeding programs around the world (Mrva & Mares 2002). A significant 

advantage of this screening method is that allows breeders to determine the influence a 

particular field and environment has on LMA. The implementation of this two-phase method 

is assisting wheat breeding programs as they make advancements to eliminate LMA (Mrva & 

Mares 2002). With knowledge of the QTL that affects LMA and by developing an effective 

screening method, breeders have been working on selecting cultivars resistant to LMA. Using 

the numerous tests to determine what causes LMA, breeders discovered a new connection 

between LMA and wheat cultivars that possess the semi-dwarfing gene Rht-Dtb (Rht-Dtb) 

(Farrell, et al., 2013). 

When comparing the tall cultivars to those with the semi-dwarfing gene, breeders 

discovered that semi-dwarf varieties show greater resistance to LMA (Farrell, et al., 2013). As 

a result, breeders began to look more closely at the genes found in the semi-dwarfing types. 

They found that cultivars possessing the semi-dwarfing gene Rht-D1b and carrying a GA-

insensitive semi-dwarfing alleles had greater LMA resistance (Farrell, et al., 2013). With this 

knowledge, breeders began using semi-dwarfing genes; however, not every dwarfing gene 

helps with LMA resistance. In fact, in some of the very same semi-dwarfing cultivars, there 

was another set of genes known as B1/R1 that were prone to express LMA (Farrell, et al., 

2013). In spite of this, Rht-D1b continues to be utilized since Rht-D1b and B1/R1 work 

independently from each other. A cultivars resistance to LMA is determined by whether Rht-

D1b is absent from the cultivar and the strength of the presence of B1/R1 (Farrell, et al., 

2013). 

However, despite the knowledge we have gained on the genetics behind LMA; the 

mechanisims are still largely unknown, and its effects are not fully understood (Ral, et al., 

2015). The Australian National University, the International Rice Research Institute in 

Manilla, Philippines, and the Commonwealth Scientific Industrial Research Organisation 

(CSIRO) are working to increase the world’s understanding of LMA (Ral, et al., 2015). The 

research performed by this collaboration found that wheat overexpressing an isoform of α-

Amylase known as TaAmy3, in the endosperm, resulted in low FN. These FN results were 

similar to those seen in LMA- or PHS- affected grains (Ral, et al., 2015). However, inspite of 

the increase of α-amylase levels from TaAmy3, there was no detrimental effect on the starch 
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structure or flour composition, instead TaAmy3 enhanced the baking quality in small-scale 

(10g) baking tests (Ral, et al., 2015). From these small-scale tests, they discovered that 

overexpression of TaAmy3 led to increased loaf volume and Maillard-related browning at 

levels higher than those in control flours when baking improver was added. These findings, 

challenge the assumption that all LMA is detrimental to the end product quality and that a low 

FN is always an indication of a reduction in quality (Ral, et al., 2015).  

1.5.  Starch Genetics 

Since wheat is one of the top and most vital cash crops around the world, it is crucial 

that production of high-quality end products continues. With the FN crisis that struck the 

Pacific Northwest of America in 2016, the United States Department of Agriculture (USDA) 

determined that it was necessary to investigate the cause of this crisis to save one of the 

country's major economic commodities (USDA, 2019). As mentioned in Section 1.1, the FN 

test is a means of measuring starch damage in wheat from PHS and LMA. However, to 

understand how PHS and LMA can damage the starch, it is best to have a basic understanding 

of starch genetics and how the environment can influence it. Starch is divided into two types 

based on the mode of synthesis and utilization; the first is transitory starch which is 

synthesized in leaves during the day and consumed at night (Rahman, et al., 2019). The 

second type, reserve starch, is deposited in storage organs for later use by the plant; this is the 

starch found in wheat grains (Rahman, et al., 2005). Reserve starch is typically divided into 

two main types of granules, the large, disk-shaped A-type granules and the small, spherical B-

type granules. A-type granules are distinct in that they have more amylose and long-B2 

amylopectin than B-type granules (He et al, 2019). There is a third type of granule known as 

C-type granules; however, it is uncertain whether these are a type of granule or just a step in 

the A or B starch granule development (He et al, 2019). 

The higher amylose levels and long B2 amylopectin give A-type granules a higher 

viscosity than B-type granules (He et al, 2019). In addition to size and shape, A-type and B-

type granules are also different in their composition. All starch is constructed from two linear 

α-glucans known as amylose and amylopectin. Amylose forms about 20-30% of the starch 

structure; it has α-1-4 glycosidic linkages and forms a straight-chain structure (Zhang, et al., 
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2017). Amylose is less soluble in water, so it does not create a gel when hot water is added, 

and it is a great storage system for energy (Zhang, et al., 2017). 

Amylopectin makes up the other 70-80% of the starch structure; it has α-1-4 

glycosidic linkages, but it also has α-1-6 glycosidic linkages, and instead of forming a 

straight-chain it forms a branched-chain polymer (Zhang, et al., 2017). With this branched 

structure, it also has more complicated molecular chains, which are classified into A, B1, B2, 

B3 and B4 chains (He et al, 2019). It is more soluble in water than amylose, and unlike 

amylose, it is only able to store a small amount of energy (Zhang, et al., 2017). The overall 

fraction ratio of these two glucose polymers affects the processing quality and digestibility of 

starch-based food products; digestibility, in turn, determines nutritional quality (Mishra, et al, 

2016). For instance, a starch that has a higher amylose content is considered a resistant or 

healthy starch and is very desirable for preventive measures against obesity and related health 

conditions (Mishra, et al, 2016). The α-Amylase produced from PHS causes degradation of 

the A-type granules, which contributes to the end-product quality and stability (Simsek, et al., 

2014). However, it has been hypothesized that part of what causes low FNs is not only a 

degradation of the A-type granules but also a surplus of B-type granules. This hypothesis was 

tested in 2019 through a collaboration between the Idaho Wheat Commission and the 

University of Idaho (Shao, et al., 2019).  

The experiment was conducted on two soft white spring (SWS) wheat cultivars, UI 

Stone and Alturas, along with an SWS wheat elite line, SA043 (Shao, et al., 2019). The 

samples of the three cultivars used were grown in 2013 and 2014. The wheat seeds were 

ground into a mill using a lab grinder with a 0.8 mm screen and tested for FN as well as 

several other starch rating tests (Shao, et al., 2019). The FNs for all three of the 2013 cultivars 

were above 300 seconds (s); however, the FNs of the samples from 2014 all fell below 200 s 

with SA043’s FN decreasing from 337 to only 62 s. The starch tests were used to help explain 

these drastic decreases of the FNs for these cultivars. Researchers looked at the starch granule 

morphology, size and the susceptibility of A-type and B-type starch to α-Amylase.  

When observing the morphology of isolated starch, the researchers found that both the 

A-type and B-type granules showed smooth surfaces, and most of the starch granules were 

intact (Shao, et al., 2019). However, in both 2013 and 2014 there were a small number of 
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dents observed on the surface of the A-type wheat granules in all three cultivars (Shao, et al., 

2019). For granule size, the researchers found that the proportion of B-type granules showed a 

statistically significant increase (p < 0.05)  for all three cultivars in 2014; for example, the 

percentage of  B-type granules found in UI Stone increased from 88.6% to 93.2% (Shao, et 

al., 2019). Finally, in determining the susceptibility of the A-type and B-type starch granules 

to α-Amylase, the researchers found that the B-type granules proved to be more susceptible α-

Amylase than the A-type granules under normal hydrolysis conditions (Shao, et al., 2019). 

Interestingly enough, when the two granules were gelatinized, the A-type granules was more 

vulnerable to α-Amylase when compared to the B-type granules (Shao, et al., 2019). 

Like FN, PHS and LMA, one of the best ways to understand and control starch issues 

is to study the genetic process by which starch is formed (Rahman, et al., 2005). There are 

several genes connected to starch synthesis: ADP-glucose pyrophosphorylase (large subunits 

and small subunits), granule bound starch synthase I (GBSS I), starch synthase (SS I, SS II, 

SS III, SS IV), starch branching enzyme I (SBE I, SBE IIa, SBE IIb) isoamylase I (ISA 3) and 

pullulanase (Rahman, et al., 2005). These genes are located on 1AS, 1B, 1D, 2A, 2AL, 2B, 

2BL, 2D, 2DL, 4AL, 7AS, 7B, 7BS, 7D, and 7DS (Rahman, et al., 2005). The removal or 

alteration of any one of these genes can result in starch alterations; for example, a loss of 

ADP-glucose pyrophosphorylase will lead to a loss of the total starch synthesized and result 

in slight alterations to grain size (Rahman, et al., 2005).  

1.6.  Perspectives and Challenges of Solving Low Falling Numbers Issues in Wheat 

As has been stated in the previous sections, LFN wheat has been a significant issue 

since 2014 and was a noticeably more critical issue between the years of 2014 and 2016. 

Since 2016, wheat breeders and other plant scientists have been working to help prevent LFN. 

This is not a simple task given the environment, more specifically the weather, is the biggest 

challenge to preventing LFN and is something growers have limited control over (Steber, 

2017). PHS is the initiation of grain germination on the mother plant in response to rain 

before harvest. LMA is the induction of α-Amylase in response to large temperature changes 

during late-grain maturation (Steber, 2017). In 2016, rain before harvest and great changes in 

temperature induced low FN. The most effective method to combat LFN is to develop and 

plant wheat cultivars that are genetically resistant to PHS and/or LMA and to harvest wheat 
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quickly, after it reaches full maturity, to help reduce the chances of rain damage (Steber, 

2017).  

However, in addition to countering the effects of the weather, LFN prevention also 

involves considering crop storage. (Steber, 2017). Since α-Amylase is an enzyme catalyst, 

even a small amount can cause severe FN problems. Researchers at the University of 

Minnesota and Northern Crops Institue, reported placing just two highly sprouted seed into 

200 grams [~5500 to 6500 grains] of sound seeds was sufficient to drop the FN of the sound 

seeds by 100 seconds (Ross, 2011). Improving storage methods and avoiding the blending of 

grain with different FNs is another big step in preventing LFN. Using these methods can help 

farmers reduce the damaging effects of LFNs.  

Even with these advancements, there are still many other factors and issues related to 

LFN, which we do not fully understand or are unable to control. In addition to starch damage 

caused by α-Amylase due to PHS and LMA, there are a number of other challenges, including 

the need to better understand how the composition of the starch itself can affect the wheat’s 

FN. Thus, continued research is essential to better understand the complexities of LFN. In an 

attempt to expand the world's understanding of LFN, our research looked into the idea that 

there could possibly be a genetic link between PHS and LMA that is also connected to FN. If 

such a connection does exist, it could potentially lead to the development of wheat 

germplasms that could eventually be used to breed resistance to PHS and LMA with naturally 

higher FN. In order to do this, we used a mapping population with 111 double haploid lines 

(DHL) that were developed from a cross of two photo-insensitive and semi-dwarfing cultivars 

known as UI Platinum and SY Capstone. Our first objective with these DHLs was to 

characterize the cause and effects of LFN. Second, we wanted to assess PHS and LMA under 

controlled conditions. Finally, our ultimate objective, as mentioned earlier, was to identify 

candidate QTLs controlling LMA and PHS once objectives 1 and 2 were completed.     
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Chapter 2. COMPARATIVE QTL MAPPING OF HAGBERG FALLING 

NUMBER, PRE-HARVEST SPROUTING, AND LATE MATURITY 

ALPHA AMYLASE IN HARD WHITE SPRING WHEAT 

 

INTRODUCTION 

The Hagberg falling number (FN) is a critical grain quality trait used for grading in 

grain elevators, the baking industry, and export markets. A FN less than 300 seconds is used 

to discount grain samples in grain elevators (Steber, 2017). In 2016, wheat farmers in the 

Pacific Northwest (PNW) lost several million dollars in profit due to low falling number 

(LFN). With 2016 and as a result of other incidents over the years, e.g. in 2013 and 2014 

growers reported to have a higher than average number of cases of PHS across the PNW 

region, the PNW region has committed substantial resources to determine the leading causes 

of LFN and how to counter them.  

The cause of low FN (LFN) is starch damage due to mechanical damage during 

milling enzyme hydrolysis, elevated alpha amylase activities, and other unknown factors. 

Excessive moisture at the plant physiological maturity can cause elevated α-Amylase activity 

and germination on wheat spikes, or pre-harvest sprouting (PHS). Cold shock during the 

grain-filling stage can also cause elevated α-Amylase activity and low FN in sound grain after 

harvesting. This phenomenon is called late maturity alpha amylase (LMA). FN data cannot 

differentiate if a low FN is caused by PHS or LMA. Phenotyping FN, PHS, and LMA is very 

difficult and costly. The QTL mapping of LFN, PHS and LMA may help us understand the 

similarities or differences in chromosomal locations underlying their genetic controls. QTL 

mapping and associated markers can be used in early generation selections and progeny 

predictions.     

QTLs associated with FN has been reported in several publications, as reviewed in 

greater detail in Chapter 1 above. Approximately 21 QTL in twelve chromosome regions (1B, 

2A, 2B, 3D, 4A, 4B, 4D, 5A, 5D, 7A, 7B and 7D) are associated with FN according to prior 
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publications (Zhang et al., 2014; Tang et al., 2017; Bȍrner, et al., 2017; Martinez et al., 2018). 

Chromosomes 2B, 4A, 5A, 5D, 6B, 7B were reported to have significant QTLs in more than 

two papers; however, the QTL positions cannot be compared as different marker platforms 

were used. All of the studies acknowledged further study was needed to validate these QTLs 

due to either small population size, few field trials, older marker platforms, or environmental 

interference. 

The phenotyping of PHS by using the spike germination method is easier than 

measurements for FN and LMA; therefore, more QTL have been identified for PHS and two 

QTLs controlling PHS have been cloned, including the QTL on chromosome 3AS (Liu et al. 

2013 and 2018; Nakamura et al., 2011) and chromosome 4AL (Phs1) (Barrero et al., 2015; 

Torada et al., 2016). The cloned genes on the two chromosome regions are associated with 

seed color or seed dormancy. There were some technical limitations in using these QTL in 

breeding when pyramiding with other traits. Therefore, additional QTLs are needed in 

universal genetic backgrounds.   

Limited QTL mapping studies have been conducted for LMA because accurate 

phenotyping of LMA is very difficult compared to testing FN and PHS. This is due to LMA 

being affected by multiple factors such as, the temperature, field locations, wheat spikes or 

even the wheat grains themselves. One major QTL on chromosome 7B and two minor QTL 

on 3B and 4B were reported for LMA in 158 doubled haploid lines derived from Australian 

germplasm (Mrva & Mares, 2001). This paper used a patented method that is has not been 

repeatable in US germplasm. Therefore, it is necessary to do an additional QTL mapping the 

locally adapted cultivars using a more developed genotyping platform. 

Previous QTL studies were primarily conducted on one of the three traits at a time, 

and in different genetic materials, such as using an association mapping population instead of 

linkage mapping populations. Few studies have investigated FN and PHS in the same 

population, and no studies worked on the three traits in the same population. The primary 

objective of the present study was to map QTLs associated with FN, PHS, and LMA in the 

same set of doubled haploid lines, to identify candidate QTLs controlling LFN,PHS and 

LMA. 
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MATERIALS AND METHODS 

Mapping Population and Field Experiments 

A mapping population of 111 double haploid (DH) lines was developed from the F1 

generation of UI Platinum x SY Capstone using wheat by maize hybridization (Lui et al., 

2018) under service from Heartland Plant Innovation (Manhattan, Kansas). UI Platinum (UIP) 

and SY Capstone (SYC) are two high-yielding hard white spring wheat cultivars. Both are 

photo-insensitive and semi-dwarfing. SYC was developed by Syngenta Cereals and released 

in 2011 (Marshall, et al, 2013). UIP was developed by the Idaho Agricultural Experiment 

Station and released in 2014 (Chen, et al., 2015). It should be noted that this DH population 

was not originally designed to be used for this study. It was originally intended to be used for 

physiological trait analysis. Due to this the difference FN, PHS and LMA between the UIP 

and SYC was not as large as we expected but was still good and could be used in QTL 

analysis. However, the transgressive segregation of this population was good and the use of 

elite cultivars as parents meant that we could easily translate the QTL markers from this study 

to other populations in our breeding program. This would allow the marks to be immediately 

used in other studies.     

Field experiments for the DH population were performed in nine separate trials from 

late March to August in Aberdeen (AB) (42.96o N, 112.8o W, elevation 4403') in 2015 to 

2019 (15-19) and one year at Soda Springs (SD), Idaho (42.66o N, 111.6o W, elevation 5774') 

in 2016 (16). Trials in Aberdeen, Idaho (15F206, 15F210, 15F309, 16AB, 17AB1, 17AB2, 

18AB, 19AB) were irrigated, while the trial in Soda Springs (16SD) was under dryland. The 

temperature data for those years are summarized in Figure 2.1 and table 2.1. The irrigation 

management was the same in all Aberdeen trials except for the difference in rainfall received 

(see Table 2.1.). Based on the rainfall data in, five trials in 2015 and 2016 (15F206, 15F210, 

15F309, 16AB, 16SD) received more rainfall in July and August than the four trials (17AB1, 

17AB2, 18AB, 19AB) in 2017 and 2019. 

For each trial, the population and the parental lines were planted in a randomized 

complete block design with one to two replications. All trials consisted of seven row plots 

measuring 3.0 m in length, 1.5 m in width, and 0.25 m between rows. For optimal trial 

management, standard fertilizer and weed control were applied to the plots when necessary 
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this was applied to all of the trials; the wheat borders were planted to minimize edge effect. 

Heading and anthesis dates were collected for each year along with height and yield data. 

 

Falling Numbers Evaluation 

Falling Number (FN) data was collected in all nine trials. Considering the workload, 

only one replicate of each DH line was tested for FN in each trial. After harvesting and 

cleaning the glume and awns from the grains, a 200 g sample from each line was ground into 

a flour meal using a UDY Cyclone Sample Mill grinder (UDY Corporation, USA) with a 0.05 

mm screen. A Kern MLB_N moisture analyzer (Kern & Sohn GmbH, Germany) was used to 

help determine the correct sample size for preforming the FN tests. After acquiring the 

moisture percentage (%) for the samples, we used a moisture percent to weight (g) conversion 

chart to find the correct sample size of the meal to utilize in the FN rating tests. Two test tubes 

were filled with the meal at the correct sample size.   

25ml of water was added to the tubes that were then capped and put in a Perten 1095 

SM shaker (Perten Instruments, USA) to mix the water and flour. Stirring rods were then 

placed into the tubes. The tubes were placed into a water bath, set to 100oC, in a Perten FN 

1000 Falling Numbers machine (Perten Instruments, USA). Five seconds after the test tubes 

were placed in the water bath, the FN machine stirred the water-flour meal mix for 55 s with 

the stir rods. As the water-flour meal mix was stirred after 60 s a doughy gelatin substance 

formed and the machine released the stir rods measuring the time, in seconds, it took for the 

rods to reach the bottom of the tubes to determine the raw FN scoring. For each line in each 

trial, two duplicate samples were measured at once, and the average scores of the two FNs 

were considered for each of the DH lines. If the two ratings were not within 20 s of each 

other, the rating test would be redone to ensure accuracy. 

 

Pre-harvest Sprouting Test 

For rating pre-harvest sprouting (PHS) resistance of this population, we used an 

established protocol of artificial sprouting of intact spikes (DePauw, et al., 2012). With an 
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established rating system developed at (Cornell University) (Paterson et al., 1989) (See Figure 

2.2). The samples were grown in the field where we also collected physiological maturity 

dates (PMD). Once the samples reached PMD, we gathered ten heads from each plot, and 

tagged them with the plot number and double haploid (DH) line IDs. The spikes were taken to 

the greenhouse, where we placed them in 13 3/4 26 ¾ inches or 10x20 cell seedling foam trays. 

The trays were placed in a misting tent that had been prepared beforehand. The tent 

was made of clear plastic tarps and surrounded one of the tables in the greenhouse; it was 

designed to maintain a temperature of 66 to 75o F and a humidity of 74% (Paterson et al., 

1989). The table the tent was built on was selected as it also had a misting system built over 

the table. The misting system was also within the tent and was set to mist the samples for 

thirty seconds every five minutes, which ran for twenty-four hours for one week. We used an 

established artificial sprouting of intact spikes method, but we needed to determine what day 

would show the most variation of PHS injury between the samples. The samples were rated 

on specific days throughout the week to find which day would show a significant variation. In 

a preliminary experiment in 2017, the PHS was rated on the third day, the fifth day, and the 

seventh day. 

However, the variation was limited on the 3rd and 7th days; therefore, we optimized our 

protocol and implemented PHS rating on the 4th, 5th, and 6th day in the 2018 and 2019 

experiments. The rating system was based on a 0-9 assessment scale. With 0-2 showing high 

resistance to PHS, 3-6 showing moderate resistance, and 7-9 showing low resistance to PHS 

(Paterson et al., 1989). 

 

Late Maturity Alpha Amylase Test 

We used a detached spike method developed by Mrva and Mares (Mrva & Mares 

2002) with modifications. Prior to this study, a preliminary study was conducted on fifteen 

selected lines from the DH population. Based on the flowering date, wheat spikes with stem 

were cut at 20, 22, 24, 26, 28, and 30 days after flowering (DAF). We tested these 15 lines to 

determine which day would provide the greatest variation. On each testing day, stalks from 

the field plots were collected by cutting three bundles of fifty stalks each. The bundles were 
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tagged with the plot numbers and the doubled haploid ID. The bundles were then placed in 

1.5-gallon buckets filled roughly three-quarters of the way with water to keep the stalks alive 

until they reach maturity. Two of the three bundles were placed in a growth chamber for three 

days, with the third set in the greenhouse as the control sample. In the growth chamber, the 

bundles were exposed to twelve hours of light and a temperature of 50oF after being exposed 

to a temperature range of 65 to 75oF to induce cold shock in the samples. After three days in 

the growth chamber, the detached spike samples were placed in the greenhouse on station 

where they remained until they reached full maturity, and then the spikes were harvested from 

the stalks. The seeds were then cleaned and ground using a UDY Cyclone Sample Mill 

grinder (UDY Corporation, USA) with a 0.05 mm screen. We used the flour meal to perform 

the Hagberg FN test to rate LMA results. The results of these preliminary tests showed that 28 

DAF was the optimal day to assess the LMA resistance and thus, was used in the present 

study. 

  

Phenotypic Data Analysis 

FN data in parents and the derived lines was used to calculate population mean and 

standard deviation in each trial and in the correlation analysis among the nine trials. Based on 

the FN distribution, population mean, and weather data, the best linear unbiased predictions 

(BLUPs) and broad-sense heritability were estimated for the 2015-2016 trials and the 2017-

2019 trials. The BLUPs were calculated using the grand mean for the entire population 

subtract the mean for each the 111 induvial lines. The BLUPs considered the special variation 

of the trait. The distribution of the BLUP data in general has a normal distribution.  

This is more effective in data analysis than simply using the means.  The correlation 

rating used for all three traits were measured using the R values ranges, 0.2 or below showed 

low correlations, 0.3 to 0.5 showed moderate correlations. R values that ranged from 0.6 and 

up showed high correlations. We used the correlation tests to determine how the results were 

affected by the environment. 

Based on daily ratings of PHS, six datasets for PHS (PHS18-D4, PHS18-D5, PHS18-

D6, PHS19-D4, PHS19-D5, PHS19-D6) were created for the parents and DH population in 
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two experiments. PHS data in the parents and the derived lines were used to calculate the 

population mean and standard deviation in each dataset as well as the correlation analysis 

among the six datasets from the two experiments. The BLUPs were created to encompass 

days four through six for 2018 and 2019 (PHSD4_BLUP, PHSD5_BLUP, PHSD6_BLUP).  

LMA data in the parents and the derived lines was used to calculate the population 

mean and standard deviation in each trial as well as in the correlation analysis among the four 

trials (DSFNC18, DSFNT18, DSFNC19, DSFNT19). BLUPs were created to encompass the 

two years of control and treated trials (DSFNC18, DSFNT18).  

Broad-sense heritability (H2) was estimated based on the following equation H2= σ2
G/ 

(σ2
G + σ2

E/er) (Fehr, 1987). Where σ2
G is the variance of genotype, σ2

E is the error in variance, 

e is the number of environments and r is the number of replications (Fehr, 1987). Broad-sense 

heritability is the ratio of total genetic variance to total phenotypic variance, while narrow-

sense heritability is the ratio of additive genetic variance, focusing on one specific allele, to 

the total phenotypic variance. The reason we chose the broad-sense heritability is because we 

needed to see the effects both parental alleles had on the phenotypic data. All data analyses 

were conducted using the JMP Genomics v8.0 (JMP) statistics program (JMP®, Version 8 SAS 

Institute Inc., Cary, NC, 1989-2019). 

 

Genotypic Data Analysis and Linkage Map Construction 

This study used previously published linkage maps in the mapping population (Liu et 

al., 2018; Wang et al., 2018). Briefly, the DH population was genotyped using the 90K SNP 

iSelect platform (Wang, et al., 2014), and 11,632 polymorphic SNP markers were selected 

and obtained. Among them, 4,213 remained after filtering for monomorphism, high frequency 

of missing values, or segregation distortion. Forty-two linkage groups (LG), representing all 

21 chromosomes of wheat, were identified from the linkage analysis (Liu et al., 2018). 
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QTL Analysis  

For the QTL analysis, the major and minor QTLs were identified using the composite 

interval mapping model (CIM) in JMP (JMP®, Version 8 SAS Institute Inc., Cary, NC, 1989-

2019). The expectation-maximization (EM) (Dellaert, 2002) threshold of 2.5 (LOD>2.5) was 

used to identify all significant QTLs. The phenotypic variance (R2) and the additive effects of 

the QTLs were also obtained from the JMP software. The effect contributions from SYC and 

UIP were indicated with negative or positive numbers of the additive effect, respectively. 

  

RESULTS 

Falling Number Performance in Nine Trials Over 2015 to 2019 

FN data of parents and the derived lines were summarized for all nine trials in Table 

2.2. Four trials conducted in 2017-2019 had a very limited number of lines (max of five) with 

FNs less than 300 seconds, while five trials in 2015-2016 had 29 to 85 lines with FNs less 

than 300 seconds. Correlation values among the 2015-2016 trials were much higher than 

correlation values among the 2017-2019 trials (Table 2.3). This performance reflects weather 

data between the flowering and physiological maturity dates of each year. Trials in 2015-2016 

matured about two weeks earlier (around July 11) than the trials in 2017-2019 (matured 

around July 29). Relatively lower temperature and higher moisture occurred during the 

physiological maturity days (PMDs) (Table 2.1). Therefore, two BLUPs were estimated, 

BLUP1516FN from the 2015 to 2016 trials, and BLUP1719FN from the 2017 to 2019 trials. 

The two BLUPs showed a normal distribution, but BLUP1516FN had a much higher broad 

sense heritability than BLUP1719FN (0.82 vs. 0.45) (Figure 2.3). The FN data in UIP was 

much higher than that in SYC in trials in 2015-2016, but the difference of the two parents was 

minimal in trials in 2017-2019. For the correlation ratings, high correlations were set at 0.6 

and up, moderate correlations were set at 0.3 to 0.5, and low correlations were 0.2 and below. 

The FN values from 2015, 2016 and 2017 showed low to high correlations (r2 ranged from 

0.20 to 0.82) between the various environments. The 2018 and 2019 FN values showed little 

to no relationship with any of the environments confirming that there were stark differences 

between these two years and the other trials.  
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PHS Resistance in Two Greenhouse Experiments 

PHS data in parents and the derived lines was summarized for all six trials in Table 

2.4. PHS scores from Day 4 to Day 6 changed from 3.47 to 7.24 based on the BLUP data 

(Table 2.4). The broad sense heritability at Day 6 was the highest, while the lowest was at 

Day 4. The parental line, SY Capstone (SYC), showed a lower PHS rating than UI Platinum 

(UIP) although, the differences between the two parents were small (e.g. day four’s rating for 

both years were exactly the same) Both parents were moderately susceptible to PHS, but 

transgressive segregation was commonly observed (Table 2.4). Correlation values among the 

three rating days (day 4, 5 and 6), within the same experiment year (2018 or 2019), were 

much higher, ranging from 0.60 to 0.92, than those between the two experiments (Table 2.5), 

or two years (2018 and 2019), ranging from 0.26 to 0.37. Correlation values between 

individual ratings with the PHS BLUP data were all high; ranging from 0.60 to 0.92 (Table 

2.5).   

 

LMA Resistance in a Detached Spike Greenhouse Experiment 

 We used FN data to measure LMA that was induced by cold temperature, which is a 

commonly accepted approach to assess resistance to LMA. Both parents responded to the cold 

treatment, but their FN stayed above 300 seconds. The FN of UIP changed from 397 to 362 

seconds, while the FN of SYC changed from 388 to 372 seconds (Table 2.6). When the FN of 

a line decreased to less than 300 seconds in the cold-treated sample, the line was called 

susceptible. When a line remained unchanged or the FN increased, the line was called 

resistant. In the 2018 detached spike test, in the cold-treated lines, 8 lines were susceptible, 24 

lines were resistant, and 76 lines had a decrease in FN but stayed above 300 seconds. The FN 

correlation value was 0.66 between the FN of untreated and cold treated among lines in the 

population. The histogram of the FN distribution of untreated and cold treated samples 

showed a broad but normal variation of the results, suggesting the mode of multiple gene 

control (Figure 2.5). In this one-year experiment, we were not able to estimate broad sense 

heritability. 
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QTL Detection 

QTL Associated With FN 

A total of sixteen QTL were detected on seven chromosome regions (Table 2.7), 

explaining 10 to 34% of phenotypic variation. Most of the QTL were detected in trials in 

2015-2016. Five of 16 QTL were detected in three or more data sets. These major QTL 

include QFN.UIA-1B-1, QFN.UIA-2B, QFN.UIA-3B-1, QFN.UIA-5A-1, and QFN.UIA-7A-1. 

QFN.UIA-2B was detected in four of the five trials in 2015-2016 and one of the four trials in 

2017-2019. QFN.UIA-1B-1, QFN.UIA-5A-1, QFN.UIA-7A-1 were only detected in trials in 

2015-2016, while QFN.UIA-3B-1 was only detected in trials in 2017-2019. UIP contributed to 

the high FN for QFN.UIA-5A-1, effect shown as a positive number, while SYC contributed to 

the high FN for the other four QTL and the effect shown was displayed as a negative number. 

This was done to help distinguish between the two parental alleles and to show which had the 

greater positive influence in the QTLs for all three traits.  

 

QTL Associated With PHS 

 A total of nine QTLs were located on six chromosome regions (Table 2.8), that 

explain 10 to 34% of the phenotypic variation for PHS. Three of the nine QTLs were detected 

in three or more data sets. These major QTL include QPHS.UIA-1A, QPHS.UIA-1B and 

QPHS.UIA-5A. QPHS.UIA-5A was detected in two data sets in 2018, one in 2019, and two 

BLUPs. QPHS.UIA-1A was only detected in two data sets in the 2018 experiment and two 

BLUPS while QPHS.UIA-1B was only detected in three data sets in 2019. SYC contributed 

higher PHS scores for QPHS.UIA-1A and QPHS.UIA-5A, while UIP contributed higher PHS 

scores for QPHS.UIA-1B. 

 

QTL Associated With LMA 

 FN data from non-treated and cold-treated lines was used separately in QTL detection. 

A total of seven QTL on seven chromosome regions were detected (Table 2.9), explaining 11 

to 29% of the phenotypic variation for LMA. Three QTL, QLMA.UIA-4A, QLMA.UIA-5A, 
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and QLMA.UIA-7A were associated with FN data from both treated and non-treated lines; 

however, the QTL effect (29.76 sec) of the QLMA.UIA-7A treated lines was much higher than 

that on the non-treated lines (20.78 sec.). UIP contributed to the higher FN for QLMA.UIA-4A 

and QLMA.UIA-5A, while SYC contributed to higher FN for QLMA.UIA-7A. Two QTL, 

QLMA.UIA-2B and QLMA.UIA-5B were associated with FN only from non-treated lines, 

while QLMA.uiA-2D and QLMA.UIA-3B were only associated with FN from the treated lines.  

 

DISCUSSION 

  The present study used a unique mapping population consisting of 110 double haploid 

lines of hard white spring wheat derived from two high yielding cultivars, UI Platinum (UIP) 

and SY Capstone (SYC). The population and parental lines were assessed simultaneously for 

FN, PHS and LMA and genotyped with the advanced genotyping platform, Wheat 90K SNP 

Illumina iSelect. QTL information for the three traits will help us to understand the 

similarities and differences of the three traits, facilitate the selection method development, and 

improve breeding efficiency.  

 

Phenotypic Performance Strongly Affected by Environment 

FN assessment in the parents and the derived DH lines were conducted in nine field 

trials. Five trials in 2015-2016 had a number of lines with an FN less than 300 sec. and were 

considered as low FN (LFN) years, while the four trials in 2017-2019 had very few lines with 

low FNs and were considered as normal crop years. This can be seen in the BLUPs for the 

two sets of trials. Weather conditions (rainfall and temperature) during grain filling (from 

flowering to physiological maturity) and maturation (from physiological maturity to 

harvesting) are possible reasons for these differences (Table 2.1 and Figure2.1). There was a 

cold temperature (below 60oF) event around July 10th, about twenty-five days after flowering 

(DAF) occurred for the trials in AB in 2015 and 2016. There was another cold event around 

July 28th, seventeen days after PMD coupled with 0.07 inches of rain occurred in AB in 2015. 

The two AB trials received 4.32 and 4.65 inches of rainfall and irrigation waters for 2015AB 

and 2016AB trials, respectively. In contrast, there was no cold temperature events occurred in 
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trials in AB over 2017 to 2-18 (Figure 2.1), the irrigation water received in the three trials 

(2.38” in 2017AB, 1.47” in 2018AB, 0.91” in 2019AB) was much smaller than that in 

2015AB and 2016AB (Table 2.1). 2016SD is a dryland location, it had a cold event around 

July 10th, fourteen DAF, coupled with 0.09 inches of rainfall, but this trial only received 0.2 

inches rainfall after PMD before harvesting. It is hard to understand why so many LFN lines 

showed in that trial/year. To fully understand the weather effects on the FN performance, it is 

necessary to conduct additional experiments with more accurate weather data and more 

accurate plant growth stage record data in the future. 

Although PHS experiments were conducted in the greenhouse, the correlation was 

much smaller (<0.41) between the two greenhouse experiments than among the three PHS 

ratings within the same experiment (>0.78). The two field trials in 2018 and 2019 had close 

physiological maturity dates (PMD) (July 23 to July 31), but flowering dates (FD) in 2018 

occurred from June 17 to June 23, approximately one week earlier than in 2019 (June 25 to 

July 1). FD difference may have caused the poor correlation between the two years, although 

PHS sampling was based on PMD. 

Accurate screening of LMA resistance was also affected by environments in the 

detached spike test. We observed sprouting in some non-treated lines during cold treatment 

due to limited growth chamber space, and there were too many samples that were treated 

simultaneously; therefore, we were unable to use the 2019 data in the final analysis. 

 

QTL for FN, PHS, and LMA 

QTL for FN 

Of the sixteen QTL identified, five (QFN.UIA-1B-1, QFN.UIA-2B, QFN.UIA-3B-1, 

QFN.UIA-5A-1, QFN.UIA-7A-1) were detected in three or more data sets. QTL for FN on 1B 

was reported by Zhang, and others (2014), but its position was different from that of 

QFN.UIA-1B-1, which was identified in the present study. The QFN.UIA-1B-1 was found in 

three environments and showed strong LOD scores ranging from 4.18 to 5.60, explaining 16 

to 21% of the genetic variation. SYC contributed to the high FN  
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A QTL on QFN.UIA-2B was detected in six environments with strong LOD scores 

ranging from 3.77 to 9.61, explaining 10 to 34% of the genetic variation. QTL on 2B was 

reported by Tang, and others (2017), but its position cannot be compared because they used 

the SSR marker platform. QTL on 2B was also reported by Zhang and others (2014), but its 

position they found was different from that of QFN.UIA-2B identified in the present study. 

SYC contributed to the high FN score.  

QFN.UIA-3B-1 was found in three environments with strong LOD scores ranging 

from 3.43 to 5.47 and explains 13 to 18% of the genetic variation. QTL for FN on 3B has 

been reported in previous research but was a minor QTL in the study by Tang and others 

(2017). In this study it was detected as a major QTL for FN. SYC contributed to the high FN 

score.  

QFN.UIA-5A-1 was found in three environments with strong LOD scores that ranged 

from 3.64 to 6.37. QFN.UIA-5A-1 explaining 10 to 30% of the genetic variation. QTL for FN 

on 5A was reported by Bȍner and others (2017)and Martinez and others (2018), but its 

position in Martienz and others (2018), is different from that of QFN.UIA-5A-1 in the present 

study, and it cannot be compared with Bȍner and others (2017) because of the different 

marker platform Bȍner used. UIP contributed to the high FN score. 

QFN.UIA-7A-1 was detected in three environments with one LOD score that was 

weaker than most but still good, and the other two were very good; they ranged from 2.87 to 

6.25; explaining 11 to 24% of the genetic variation. QTL for FN on 7A was reported Martinez 

and others (2018), but its position is different from that of QFN.UIA-7A-1 in this study. SYC 

contributed to the high FN score.  

 

QTL for PHS 

 Of nine QTLs identified, three (QPHS.UIA-1A, QPHS.UIA-1B and QPHS.UIA-5A) 

were detected in two or more data sets. QTLs for PHS on 1A and 1B were reported by 

Martinez and others (2018), but their positions were different from those identified in the 

present study. QPHS.UIA-1A was only detected in two data sets in the 2018 experiment and 

two BLUPs, explaining 11 to 14% of the genetic variation, while QPHS.UIA-1B was only 
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detected in three data sets in the 2019 experiment, explaining 19 to 34% of phenotypic 

variation. UIP contributed to the low PHS score for QPHS.UIA-1B. SYC contributed to the 

low PHS score for QPHS.UIA-1A.   

 QPHS.UIA-5A was detected in three data sets explaining 11 to 25% of the genetic 

variation. A QTL on 5A for PHS was reported by Martinez and others (2018); the position, 

however, was different from that of QPHS.UIA-5A. SYC contributed to the low PHS score.  

  

QTL for LMA 

 A total of seven QTL on seven chromosome regions were detected (Table 2.9), 

explaining 11 to 29% of the phenotypic variation for LMA. Three QTL, QLMA.UIA-4A, 

QLMA.UIA-5A, and QLMA.UIA-7A, were associated with FN data from both treated and non-

treated lines; however, the QTL effect (29.76 sec.) of the QLMA.UIA-7A on treated lines was 

much higher than that on the non-treated lines (20.78 sec.). Two QTL, QLMA.UIA-2B and 

QLMA.UIA-5B, were associated with FNs only from non-treated lines, while QLMA.UIA-2D 

and QLMA.UIA-3B were associated with FNs only from treated lines. QTL for LMA on 4A 

was reported in Emebiri et al., 2010 but its position cannot be compared because of the 

different marker platform used. UIP contributed to the low LMA score. QLMA.UIA-2B, 

QLMA.UIA-5B and QLMA.UIA-3B were also present in the FN QTL analysis of this study. 

QLMA.UIA-5Aand QLMA.UIA-7Aare novel QTLs since they have not been reported in 

previous LMA studies. UIP contributed to the high FN (LMA resistance) for QLMA.UIA-5A 

and SYC contributed to the low FN (LMA susceptibility) for QLMA.UIA-7A.  

  

Comparisons of QTL for FN, FN, PHS, and LMA and Possible Breeding Strategies 

 The present study conducted a comparative QTL mapping for the three related traits in 

a doubled haploid population derived from two hard white spring wheat cultivars, UIP and 

SYC. Four chromosomal regions each has multiple QTL associated with two to three traits 

assessed in the present study (Figure 2.6). QTL on 5A was associated with all three traits, and 

UIP contributed to higher FN, resistance to PHS, and LMA. Compared to the physical map of 
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Chinese Spring, the 5A QTL is in the flanking region of the Amy 3 gene (Figure 2.7). This is 

the first report that describes the Amy 3 gene in relation to FN, PHS, and LMA. This finding 

will help us to understand the relationships among FN, PHS, and LMA, as well as to develop 

selection strategies of the three traits after they are confirmed.  

QTL on 7A-1 was associated with FN and LMA, SYC contributed to higher FN and 

higher FN induced by cold treatment (LMA resistance). QTL on 1B-1 was associated with FN 

and PHS, UIP contributed to the lower FN and higher PHS score. QTL on 2B was also 

associated with FN and LMA, SYC contributed to the higher FN and lower FN-LMA score.  

Based on above analysis both parents have desirable and complementary alleles for 

different QTL in different chromosome regions, suggesting that resistant lines to FN, PHS and 

LMA can be selected through genetic recombination. The present study suggests that the best 

strategy is to select UIP alleles at QTL on chromosome 5A, but SYC alleles at QTL on 

chromosome on 1B-1, 2B, and 7A-1. Using this strategy, few lines were selected in the 

present population that have improved PHS and LMA resistance over both parents.  
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*Trial names were defined in materials and methods. 

Trial* Heading Anthesis PMD Harvesting Rainfall after PMD Dates Irrigation after PMD 

2015AB 6/8/2015 6/15/2015 7/11/2015 8/18/2015 

0.25, 7/15; 0.25, 7/22-24; 

0.07, 7/27; 0.35, 8/07-08; 

0.01, 8/10; 0.03, 8/14 

1.89, 7/13-14; 1.47, 

7/15 

2016AB 6/8/2016 6/15/2016 7/15/2016 8/15/2016 None 

1.89, 7/13; 1.26, 

7/20; 1.5, 7/27 

2016SD 6/19/2016 6/26/2016 7/26/2016 8/26/2016 

0.03, 7/31; 0.01, 8/04; 

0.11, 8/07; 0.04, 8/17; 

0.01, 8/20 Dryland trial 

2017AB 6/19/2017 6/26/2017 7/27/2017 8/23/17 

0.16, 7/26-27; 

0.26, 8/08; 0.02, 8/11; 

0.05, 8/14 1.89, 7/25 

2018AB 6/11/2018 6/18/2018 7/25/2018 8/14/2018 None 1.47, 7/24 

2019AB 6/21/2019 6/28/2019 7/29/2019 8/23/2019 0.07, 7/29 0.84, 8/01 

Table 2.1 Dates of heading, anthesis, physiological maturity (PMD), harvesting, rainfall and irrigation (“) during the four 

wheat-growing seasons from the Aberdeen and Soda Spring of the eight trials.  
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Table 2.2 Summary of FN performance in parents and the derived lines in nine trials over 2015 to 2019 

Trial* ----------Parents---------- ---------------------------------DHLs---------------------------------------- 
 

UIP SYC MAX MIN Mean SD h2
b 

 

15ABF206 344 265 396 190 313.94 36 
  

15ABF210 338 273 406 205 313.21 38 
  

15ABF309 351 297 408 199 318.95 37 
  

16AB 344 334 366 200 311.50 25 
  

16SD 284 174 360 173 272.56 38 
  

15-16BLUP 330 271 363 233 306.40 21 0.82 
 

17AB1 377 366 464 287 362.19 34 
  

17AB2 355 339 421 294 351.65 25 
  

18AB 331 352 470 253 364.87 37 
  

19AB 421 425 527 351 430.34 36 
  

17-19BLUP 375 372 399 353 377.45 9 0.45 
 

*Trial names were defined in materials and methods. 
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Trial* 15ABF206 15ABF210 15ABF309 16AB 16SD 17AB1 17AB2 18AB 19AB 15-16BLUP 

15ABF210 0.82***          

15ABF309 0.73*** 0.72***         

16AB 0.42*** 0.49*** 0.41***        

16SD 0.33** 0.33** 0.32** 0.23*       

17AB1 0.43*** 0.38*** 0.36** 0.26** 0.22*      

17AB2 0.45*** 0.53*** 0.50*** 0.47*** 0.20* 0.22*     

18AB 0.04 0.14 0.09 0.30** 0.06 0.19 0.34**    

19AB 0.15 0.20* 0.21* 0.22* 0.02 0.10 0.16 0.10   

15-16BLUP 0.87*** 0.89*** 0.84*** 0.62*** 0.60*** 0.43*** 0.55*** 0.16 0.19  

17-19BLUP 0.40*** 0.48*** 0.43*** 0.48*** 0.17 0.61*** 0.62*** 0.67*** 0.58*** 0.50*** 

*Trial names were defined in materials and methods. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3 Correlations among FN data from different trials 
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PHS* ----------Parents---------- ----------------------------------------------DHLs---------------------------------------------- 
 

UIPa SYCa MAX MIN Mean SD h2
b 

 

PHS_D4-18 4 4 6 1 3.29 1.06 
  

PHS_D4-19 4 4 6 2 3.70 0.98 
  

BLUP_PHSD4 4 4 4 3 3.47 0.32 0.42 
 

PHS_D5-18 6 5 8 2 5.25 1.09 
  

PHS_D5-19 5 5 8 2 5.21 1.10 
  

BLUP_PHSD5 5 5 6 4 5.18 0.44 0.53 
 

PHS_D6-18 8 8 9 4 7.42 1.18 
  

PHS_D6-19 8 7 9 3 7.15 1.12 
  

BLUP_PHSD6 8 8 8 6 7.24 0.55 0.58 
 

*PHS scores assessed on day 4, 5, 6 and the BLUPs of each day over two years in 2018 and 2019, respectively. 

 

 

 

 

 

 

 

 

Table 2.4 Summary of pre-harvest sprouting data in parents and derived doubled haploid lines in 

two spike germination experiment from 2018 to 2019 
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PHS*  PHS_D4-18 PHS_D5-18 PHS_D6-18 PHS_D4-19 PHS_D5-19 PHS_D6-19 BLUP_PHSD4 BLUP_PHSD5 

PHS_D5-18 0.77***        

PHS_D6-18 0.67*** 0.86***       

PHS_D4-19 0.26** 0.35** 0.32**      

PHS_D5-19 0.30** 0.36*** 0.37*** 0.88***     

PHS_D6-19 0.33** 0.40*** 0.41*** 0.78*** 0.91***    

BLUP_PHSD4 0.81*** 0.71*** 0.63*** 0.78*** 0.73*** 0.69***   

BLUP_PHSD5 0.65*** 0.82*** 0.74*** 0.74*** 0.83*** 0.80*** 0.87***  

BLUP_PHSD6 0.60*** 0.75*** 0.85*** 0.64*** 0.76*** 0.83*** 0.78*** 0.92*** 

*PHS scores assessed on day 4, 5, 6 and the BLUPs of each day over two years in 2018 and 2019, respectively.     

 

Table 2.6 Summary FN derived from detached spike method for late maturity alpha amylase in parents and derived doubled haploid lines in 2018 

Treatment ----------Parents---------- ---------------------------------DHLs---------------------------------------- 

 UIP SYC Max Min. Aver. SD h2
b 

DSFNC18 397 388 489 288 394.05 38  

DSFNT18 362 372 458 261 363.67 42  

 

Table 2.5 Correlations among different PHS data sets derived from 2018 and 2019 
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QTL Trial* Peak position (cM) LOD Effecta R2 (%) 

QFN.UIA-1B-1 15ABF210 86.47 5.01 -28.08 19 

 15ABF309 86.47 5.6 -30.04 21 

 15-16BLUP 86.47 4.18 -14.52 16 

QFN.UIA-1B-2 15ABF206 156.4 4.86 -26.19 18 

QFN.UIA-2A-1 16SD 38.51 2.97 -20.37 12 

 15-16BLUP 43.06 4.47 -13.56 17 

QFN.UIA-2A-2 17AB2 100.96 5.42 19.546 20 

 17-19BLUP 102.77 6.68 7.6742 24 

QFN.UIA-2A-3 16AB 171.4 5.25 20.318 20 

QFN.UIA-2B 15ABF206 20.95 6.97 -29 25 

 15ABF210 21.86 9.61 -34.82 34 

 15ABF309 20.95 2.6 -17.29 10 

 16AB 25.5 3.77 -15.53 15 

 15-16BLUP 20.95 5.25 -14.37 20 

 17AB1 25.5 6.81 -30.65 25 

 17-19BLUP 25.5 5.11 -6.124 19 

QFN.UIA-3B-1 17AB1 87.66 4.63 -24.93 18 

 18AB 94.94 3.43 -23.75 13 

 17-19BLUP 85.84 5.47 -6.446 20 

QFN.UIA-3B-2 16AB 126.38 4.85 -18.39 18 

QFN.UIA-5A-1 15ABF206 6.37 2.53 19.755 10 

 15ABF210 6.37 8.33 30.87 30 

 16SD 3.64 3.17 21.16 12 

 15-16BLUP 6.37 3.76 12.995 15 

QFN.UIA-5A-2 15ABF309 57.21 6.01 29.134 22 

 15-16BLUP 59.21 7.84 19.248 28 

QFN.UIA-5A-3 18AB 166.89 2.67 -20.84 11 

QFN.UIA-5A-4 19AB 147.77 2.8 19.891 11 

QFN.UIA-5B 17AB1 96.72 3.89 25.359 15 

QFN.UIA-7A-1 15ABF206 37.38 2.87 -20.85 11 

 15ABF210 37.38 6.25 -28.81 24 

 15ABF309 31.92 5.35 -26.47 20 

 15-16BLUP 24.61 6.3 -16.3 23 

QFN.UIA-7A-2 16SD 156.35 4.13 24.628 16 

QFN.UIA-7A-3 19AB 177.33 4.59 -26.43 17 
*Trial names were defined in materials and methods. 

a The effect contribution from SYC is indicated by a negative and UIP is indicated by a positive number.  

 

 

Table 2.7 Significant QTL for falling number traits identified 
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QTL Data Set Peak position (cM) LOD Effecta R2 (% 

QPHS.UIA-1A PHS_D5-18 57.29 2.65 -0.68 11 

 PHS_D6-18 57.29 3.58 -0.86 14 

 BLUP_PHSD5 57.29 4.28 -0.35 16 

 BLUP_PHSD6 57.29 6.12 -0.51 23 

QPHS.UIA-1B PHS_D4-19 56.09 5.03 0.817 19 

 PHS_D5-19 56.09 9.89 1.243 34 

 PHS_D6-19 54.28 5.03 0.856 19 

QPHS.UIA-2A-1 PHS_D4-18 29.37 2.54 -0.59 10 

QPHS.UIA-2A-2 PHS_D6-19 86.36 6.02 -0.95 22 

QPHS.UIA-2A-3 BLUP_PHSD5 62.29 2.7 -0.24 11 

QPHS.UIA-3D PHS_D6-19 177.03 3.22 0.656 13 

QPHS.UIA-5A PHS_D5-18 3.64 5.93 -0.89 22 

 PHS_D6-18 3.64 6.85 -1.04 25 

 PHS_D4-19 6.37 2.86 -0.55 11 

 BLUP_PHSD5 3.64 4.97 -0.32 19 

 BLUP_PHSD6 3.64 5.1 -0.4 19 

QPHS.UIA-7A-1 BLUP_PHSD5 37.38 3.09 0.251 12 

QPHS.UIA-7A-2 BLUP_PHSD6 170.94 2.97 0.302 12 
a The effect contribution from SYC is indicated by a negative and UIP is indicated by a positive number.  

 

 

QTL Environment Peak position (cM) LOD Effecta R2 (%) 

QTLMA.UIA-2B DSFNC18 83.78 3.76 -22.91 0.15 

QTLMA.UIA-2D DSFNT18 119.48 2.81 21.54 0.11 

QTLMA.UIA-3B DSFNT18 6.39 2.88 -22.44 0.12 

QTLMA.UIA-4A DSFNT18 1.82 7.94 37.26 0.29 

 DSFNC18 22.77 7.01 32.13 0.26 

QTLMA.UIA-5A DSFNT18 0 3.93 24.61 0.16 

 DSFNC18 3.64 3.18 21.00 0.13 

QTLMA.UIA-5B DSFNC18 163.04 3.52 22.10 0.14 

QTLMA.UIA-7A DSFNC18 31.92 2.94 -20.78 0.12 

  DSFNT18 31.92 5.07 -29.76 0.20 
a The effect contribution from SYC is indicated by a negative and UIP is indicated by a positive number. 

Table 2.8 Significant QTL identified in different PHS data sets 

Table 2.9 Significant QTL for LMA resistance identified from 2018 detached spike test 
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Figure 2.1 Temperature (oF) during the four wheat-growing seasons from the Aberdeen and Soda Spring of the eight trials.  
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Figure 2.2 Pre-harvest sprouting (PHS) rating system developed at (Cornell University) (Paterson et al., 1989) 0-2 showing high resistance to PHS, 3-6 showing 

moderate resistance, and 7-9 showing low resistance to PHS  
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SYC 

UIP 

15-16BLUP  
UIP SYC 

17-19BLUP  
UIP SYC Figure 2.3 Distribution for FN data in individual trial and trial BLUP of 

multiple years from 2015-2019 in the UIP X SYC DH population. The 

values for the two parents were indicated on the histogram plots using 

red arrows.  
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Figure 2.4 Distribution for PHS data sets from day four through day 

six in the UIP X SYC DH population. The BLUP values for the two 

parents were indicated on the histogram plots using red arrows.  
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Figure 2.5 Distribution for the detached spike LMA trials from 2018 in the UIP X SYC DH population. The values for the two parents were indicated 

on the histogram plots using red arrows.  
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Figure 2.6 Major QTL and map co-locations of QTLs for falling numbers (FN), pre-harvest sprouting 

(PHS) and late maturity alpha amylase (LMA). 
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Figure 2.7 QTL 5A and map co-locations for FN, PHS and LMA. Amy3’s location is also shown on this 

map.  


