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Abstract 

This research presents new code for Monte Carlo N-Particle (MCNP) to achieve an 

improved time during criticality calculations.  Modifications implementing the grouping and 

sorting of neutrons takes advantage of memory locality by processing all neutrons in a group 

to achieve the temporal reuse of cross section data.  This prevents unnecessary data lookups.  

Various groupings and their results are compared. 

The modified code utilizing neutron energy groups provided the best result of a 

16.7% ± 0.5% speedup for a criticality determination of a two slab tank experiment.  This is 

a savings of 2 ½ hours for a system that normally takes approximately 15 ½ hours to 

execute.  The code implemented was chosen to require minimal modifications to the MCNP 

program thus avoiding the need to rewrite a new version.  Verification and validation is still 

needed in order to show that a speedup using neutron groups can be achieved in all cases. 
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Chapter 1: Introduction 

 The ability to model nuclear systems that reach criticality and determining which 

configurations will provide the desired outcome (safety margin and performance) is a 

complex and, oft times, long process.  Monte Carlo simulations can provide results that 

give a close approximation to real historical and experimental data for neutron transport.  

Software has been developed to provide a means to simulate the Monte Carlo methods 

for more detailed designs. 

 Software programs, such as Monte Carlo N-Particle (MCNP), have been created 

to provide a way to automate the calculations.  However, due to the lengthy computation 

time that the Monte Carlo method requires it is still difficult to use in every day 

modeling.  Smith (2003) tells of interest by the reactor physics community in performing 

a full-core Monte Carlo analysis.  Smith predicted that a full-core Monte Carlo 

calculation would take 5,000 hours on a 2-GHz PC and, according to Moore’s Law, could 

not be performed in less than one hour until the year 2030.  Martin (2007) re-analyzed the 

topic at the 2007 ANS Mathematics & Computation Conference and concluded that it 

would be 2019 when such a full reactor core calculation could be accomplished in one 

hour by making use of a 1500-core processor.  The availability of a 1500-core processor 

isn’t a reality to every engineer. 

 Research and development has been pursued to develop ways to speed up the 

calculations allowing engineers the ability to take advantage of computer–based 

modeling without having to wait for long periods of time.  Many have worked on 

modifying MCNP to optimize its performance and thus speed up the process. 

MCNP has been modified by rewriting the code to work on parallel processors.  

McKinney and West (1993) researched the idea of running on an IBM RS6500 cluster 

with speedups of 13.3x faster.  Others have applied MCNP to parallel processors as well.  

Hadjidoukas et al. (2010) achieved speedup of results of 61.16x with a parallel processor 

code rewrite of the MC4 software and Carstens (2004) got a speedup of 20 – 30x with a 

Beowulf Cluster of parallel processors. 
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 Another optimization process has been to work with Graphics Processing Units 

(GPU) to achieve their results. Brown, et al. (2012a) reports speedups of up to 33.3x and 

64.0x using a single or dual GPU environment.  Nelson (2009) stated in his thesis of 

speedup results, on a GPU converted code, of 23.91x over standard central processing 

unit (CPU) runs.  Meanwhile Gong, et al. (2011) reported speedups of a factor of 16.3 – 

23.67x compared to single core CPU.  Brown, et al. (2012b) stated that in order to take 

full advantage of GPU technologies, many challenges related to the hardware and 

software must be carefully understood and addressed.  Furthermore, it must be kept in 

mind that some of the deficiencies and constrains in existing GPUs will likely be 

mitigated in future-generation products, leading to exponentially improved and perhaps 

unexpected computing power when compared with its CPU counterparts. 

 MCNP has shown increased speed by being rewritten to allow vectorization of the 

calculations by Brown and Martin (1984).  Their results show speedups of at least 20 – 

40x over scalar calculations utilizing the vectorized code. 

 All this previous research into optimizing MCNP involves intensive rewrites of 

the program to take advantage of the increased speed.  Also, the rewritten code is very 

specific to the system it is running on and would not be able to be run on another system 

unless it had the same configuration. 

 Brown and Martin (1987), in using a vectorized code to implement Monte Carlo 

methods, discussed that speedups are achieved from the organization of neutrons into 

groups they called supergroups.  These supergroups allow for the use of the same cross 

section data without having to jump around memory looking for the data when the 

neutrons don’t have similar characteristics.  Brown and Martin also mentioned the issue 

of moving the data that represents the neutron from group to group counteracting the 

benefits of having the groups.  As cross section data has to be removed from memory in 

order to handle the memory position swapping of the neutron.  In order to counter that 

problem they discussed placing pointers in the groups that directs the neutron data’s 

location and only moving the pointers from group to group.  These methods take 
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advantage of temporal and spatial locality of data in memory and are the main topic of 

the research discussed here. 

Siegel, et al. (2013) also investigated the need for memory optimizations resulting 

in better use of locality in memory.  Siegel, et al. state the cross section probabilities are 

strongly dependent on the precise energy of the neutron, and thus, as a neutron jumps 

around in energy from interaction to interaction, the calculation involves frequent, nearly 

random access to very large read-only lookup tables, something which presents 

significant performance challenges when executing simulations on modern CPUs.  The 

significance of the need to explore memory optimizations can also be seen in their 

discussion that for robust reactor calculations the cross section data loads can consume up 

to 85% of the total application time, and typical integration times of thousands of 

particles per second can make highly detailed calculations impractical.  The program 

used to test their theory was OpenMC. 

The commonality of all the approaches described above requires an extensive 

restructuring of the Monte Carlo particle transport code as currently implemented in the 

MCNP program. 

The objective of this thesis is to demonstrate that a more optimal sequential 

MCNP performance can be obtained with minimal programming effort by organizing the 

neutrons in to groups. 

The methods discussed in this document have been applied with slight 

modifications to the original MCNP code allowing it to run on various systems without 

the need to be rewritten each time you want to change the system that you are using.  

Also, more engineers can benefit from a faster running code on their normal desktop 

computers. 

 To provide enough background information to the reader, a brief discussion on 

the basic nuclear engineering aspect of neutrons and cross section interactions is 

provided.  The MCNP code is describe and used as the basis for comparing structural 

programming changes made in this thesis.  Details of the various methods used are 
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provided.  Finally, the process and reasoning behind the choices made for the additions to 

the MCNP code and the results achieved are illustrated.  
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Chapter 2: Neutron Interaction with Matter 

2.1 Introduction 

 A brief explanation of concepts regarding the interactions of neutrons with fuel 

and non-fuel materials is given in this chapter.  For the reader well versed on interactions 

please skip to the chapters where the Monte Carlo N-Particle (MCNP) code will be 

discussed. 

2.2 The Neutron 

 An atom consists of 3 sub-atomic particles called electrons, protons, and neutrons.  

Electrons are described as circling the nucleus of the atom while protons and neutrons 

make up the nucleus.  Neutrons are necessary within an atomic nucleus as they bind with 

protons to hold the nucleus together via the nuclear force or binding energy.  While 

bound neutrons in nuclei have the possibility to be stable, free neutrons are unstable and 

undergo decay, thus the cause for radiation. 

 The neutron was discovered in 1932 by James Chadwick, and in 1933 it was 

hypothesized by Leo Szilard to be the cause for nuclear chain reactions, and that nuclear 

reactions can self-perpetuate.  During the 1930’s, when nuclear fission was discovered, it 

became clear that if the process also produced free neutrons, this could produce the 

neutrons needed for a fission chain reaction.  The kinetic energy of the fission fragment is 

the method that generates the energy, in the form of heat, used in energy conversion in a 

nuclear power plant. 

2.3 Concept of Cross Sections 

 A cross section is the effective area that governs the probability that a nuclear 

reaction will occur.  From nuclear physics the cross section is used as the probability of 

an interaction event between a neutron traveling through a material and that material’s 

nuclides.   
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Cross sections are dependent on various parameters: energy of the neutron 

involved, material in which the neutron is traveling, energy of the material atoms, and the 

relative angle between neutron and target material nuclide.  These parameters influence 

the cross sections by either increasing or decreasing the probability of the interaction 

events. 

2.4 Neutron Interactions 

Interactions of a free neutron traveling through other materials can be divided into 

two major phenomena with corresponding cross sections: scattering and absorption.  The 

sum of these cross sections is called the total cross section.  When a neutron is scattered 

by a nucleus, its speed and direction change but the nucleus is left with the same number 

of protons and neutrons it had before the interaction.  The nucleus will have some recoil 

velocity and it may be left in an excited state that will lead to the eventual release of 

radiation.  When a neutron is absorbed by a nucleus the atom will enter into an excited 

state and will attempt to reach a stable state by either releasing energy in the form of 

radiation or fission can be induced. 

 Scattering events, see Figure 2-1, can be subdivided into elastic and inelastic 

scattering.  In elastic scattering the total kinetic energy of the neutron and nucleus is 

unchanged by the interaction.  During the interaction, a fraction of the neutron’s kinetic 

energy is transferred to the nucleus thus slowing down the neutron.  Inelastic scattering is 

similar to elastic scattering except that the nucleus undergoes an internal rearrangement 

into an excited state from which it eventually releases radiation.
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Figure 2-1: Scattering Event 

 

 Instead of being scattered by a nucleus, the neutron may be absorbed as shown in 

Figure 2-2.  A variety of emissions may follow.  The nucleus may rearrange its internal 

structure and release one or more gamma rays.  Charged particles may also be emitted.  

The more common charged particles are protons, deuterons, and alpha particles.  The 

nucleus may also rid itself of excess neutrons.  The emission of only one neutron is 

indistinguishable from a scattering event.  If more than one neutron is emitted, the 

number of neutrons now moving through the material is larger than the number present 

before the interaction; the number of neutrons is said to have been multiplied.  Finally, 

there may be a fission event, leading to two or more fission fragments (nuclei of 

intermediate atomic weight) and more neutrons. Rinard, (1991). 
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Figure 2-2: Absorption Event 

 Figure 2-3 shows the types of cross sections and how they are related to one 

another. 

 

Figure 2-3: Types of Cross Sections  

Total σT 

Scattering σs Absorption σa 

Elastic σel Inelastic σinel Fission σf Capture σc 
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2.5 Variation of Cross Sections with Neutron Energy 

There are four regions that a neutron can be classified under due to its energy: 

fast, resonance, epithermal and thermal. 

Table 2-1: Neutron Energy Ranges 

Neutron Energy Ranges 

Fast 100 keV to 10 MeV 

Resonance 1 eV to 100 keV 

Epithermal 0.1 eV to 1 eV 

Thermal 0.025 eV (< 0.1 eV) 

 

Figure 2-4 shows the relationship between cross section and incident neutron energy. For 

the most part the cross section decreases as an inverse of neutron energy (1/E). 

  
Figure 2-4: Cross Section vs Neutron Incident Energy 
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2.6 Effective Neutron Multiplication Factor 

The effective neutron multiplication factor, keff, is the rate of neutron production 

divided by the rate of neutron absorption plus rate of neutron leakage from the system.  

The value of k determines how a nuclear chain reaction proceeds. (Glasstone and 

Sesonske, (1969)): 

 keff < 1 (subcritical): The system cannot sustain a chain reaction, and any 

beginning of a chain reaction dies out over time.  The rate of production of 

neutrons would be less than the rate of neutron loss. 

 keff = 1 (critical): A steady state is achieved and just as many neutrons are 

produced as lost. 

 keff > 1 (supercritical): More neutrons are being produced than are lost, and so the 

density (and fission rate) will increase continuously.  Nuclear weapons are 

designed to operate under this state. 

The keff is thus a value that classifies whether a system design is a critical system.  

MCNP is a software application that can run a series of calculations and then tally the 

results to determine a statistical value for keff. 

2.7 Summary 

 In summary, neutrons are of major interest when studying or creating nuclear 

power.  Cross sections are dependent on the material in which the neutron is traveling and 

the neutron’s energy.  The interaction events each have a cross section associated with 

them that together can add up to the total cross section.  
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Chapter 3: Monte Carlo N-Particle 

3.1 Introduction 

As found in the manual for Monte Carlo N-Particle (MCNP) written by X-5 

Monte Carlo Team, (2003): The Monte Carlo N-Particle code is a general purpose 

program that can be used for modeling and calculating neutron, photon, electron, or 

coupled neutron/photon/electron transport.  MCNP was written and developed by Los 

Alamos National Laboratory since at least 1957.  The program is written in ANSI-

Standard Fortran 90 software language.  The program uses the Monte Carlo method, 

which is a numerical analysis technique that uses random sampling to estimate the 

solution of a physical or mathematical problem. 

MCNP uses continuous-energy nuclear and atomic data libraries.  The primary 

source of the nuclear data are evaluations from the Evaluated Nuclear Data File (ENDF) 

system, Advanced Computational Technology Initiative (ACTI), the Evaluated Nuclear 

Data Library (ENDL), Evaluated Photon Data Library (EPDL), the Activation Library 

(ACTL) compilations from Livermore, and evaluations from the Nuclear Physics (T–16) 

Group at Los Alamos.  Evaluated data is processed into a format appropriate for MCNP 

by codes such as NJOY.  The processed nuclear data libraries retain as much detail from 

the original evaluations as is feasible to faithfully reproduce the evaluator’s intent. 

3.2 MCNP Input Cards 

The MCNP program requires an input file from the user where the user defines 

the problem geometry, specifies the materials and source, and states the results desired 

from the calculation.  The geometry is determined by identifying cells that are bound by 

surfaces.  Within these surfaces the cell can be either filled with a material or a void. 

The input file consists of three major sections: cell cards, surface cards, and data 

cards.  Note that “card” is used to describe a single line of input up to 80 characters and 

refers back to the usage of punch cards which were created to store data and program 
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code.  However, today the program uses an electronic file, which makes it easier to 

design the problem.  A section in the input file is made up of one or more cards and is 

delimited by a blank line to distinguish between sections. 

The cell cards are used to define the shape and material content of the physical 

space.  This is done by joining the surface cards in the next section of the input file.  The 

data cards hold the information that describes the materials and source, which are both 

important for criticality calculations.  These are only two of the many cards available in 

MCNP.  For a full list, usage of, and formatting requirements for these cards can be 

found in the MCNP manual. 

Appendix A has an example of an input card.  It is the input card used for the 

testing of the optimizations used in this discussion. 

3.3 KCode Calculation 

MCNP can perform many types of calculations.  The KCode calculation is of 

particular interest for this paper.  This calculation determines the average k effective (keff) 

value for the given inputs to the program.  This helps provide the criticality of the model 

described in the input file.  These calculations can run for a very long time.  The test case 

used in this discussion is a KCode calculation and the base run time is about 15 ½ hours.  

As you might expect that can cause delay for trying to study various reactor models. 

The KCode information is found in the input card.  It lists the amount of source 

particles wanted and how many cycles, or iterations, are wanted to repeat the problem in 

order to provide the average value of keff for a given configuration. 

3.4 Cross Section Data 

The input file holds a list of the material make-up of the different parts of the 

reactor.  This list states the elements and their reference to the data libraries that contain 

the characteristics of the elements.  These characteristics are what determine cross section 

groupings. 



13 

 

 

The data libraries containing this information have been determined and gathered 

through actual experimental processes.  The data they store are the probability values for 

the various types of events that can occur between a neutron and another nucleus and is 

called a cross section. 

 At the initialization of the MCNP program it reads in the cross section data that is 

needed based on what is listed in the materials list.  MCNP stores all the data it needs into 

a data array.  At this point MCNP has a smaller amount of information to work with 

compared to having to store all the cross section data in the full library. 

3.5 MCNP Flow 

 Once MCNP begins the actual calculation processes it begins by generating a 

source neutron.  This neutron is then followed through its “lifetime” until it is either 

absorbed into a nucleus without a fission event or it leaks out of the system.  This process 

of following the neutron is called the particle’s history.  See Figure 3-1 for a simplified 

flow of how the MCNP program works. 
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Figure 3-1: Overview MCNP Process Flow 

 The first thing that is done in the neutron history is the calculation of the cross 

section data for the given material and energy of the neutron.  The program has to access 

the cross section data it has stored and make the calculation.  The program makes the 

adjustments for energy (erg) and the cell / material (icl) that the neutron is currently in 

when making calculations with the cross section data. 

 The neutron is then advanced a random distance.  The neutron position is 

measured to determine if the neutron has moved far enough to have entered into a new 

cell or material.  If it has, then the process starts again of calculating the new cross 

section data.  If, however, the neutron has not reached a boundary, it is now time to 

determine which interaction event, if any, will occur.  The calculated cross section is used 

to determine which interaction occurs, because as was stated earlier the cross section data 

is a set of probabilities of which event is most likely to occur. 

 If an event occurs then the resultant effect is calculated.  Scattering events change 

the direction and energy level of the neutron.  Absorption ends the life of the neutron, 
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however if fission occurs, new neutrons are generated.  All but one neutron is stored in a 

process called banking and then that neutron is followed through its history.  After the 

current neutron finishes its history the program retrieves a banked neutron and starts 

processing its history and repeats the process stated above.  This continues until all 

banked particles have either been absorbed or leak out of the system.  Once the banked 

particles are used up the program generates another source neutron and begins the history 

again.  This process continues until the numbers of desired source neutrons have been 

processed. 

 Each event is recorded and a running tally is kept so that the keff value can be 

calculated.  Once the source neutron count has been reached and all neutron histories 

tracked, the cycle is finished and the keff value is determined.  The program will continue 

until all cycles have been completed. 
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Figure 3-2: Detailed MCNP Flow 
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The history flow can be shown using high level pseudo code to show the process 

and how it loops in the program.  See Figure 3-3 below. 

  
MCNP Process Pseudo Code 

1: for each count in desired particle do 

2:  generate particle or retrieve stored particle if available 

3: repeat 

4:  advance particle random distance in material 

5:  lookup material at particle position 

6:  for each type of material in current position do 

7:   for each interaction event do 

8:    lookup x-section data 

9:    calculate addition to total x-section 

10:   end for 

11:  end for 

12:  randomize interaction 

13:  update particle properties (position and energy)  

14:  if fission, store all but one particle 

15: until particle is absorbed or leaks 

16 tally results for particle 

17: end for 

Figure 3-3: MCNP Process Pseudo Code 
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Chapter 4: Improvement of Memory Locality Techniques 

4.1 Introduction 

 Various methods of optimization are discussed in this chapter.  The methods used 

in this research code are based on compiler optimization techniques. 

4.2 Memory 

 Memory consists of a hierarchy of locations that all have different speeds at 

which a program can access them.  This hierarchy ranges from the slowest being 

accessing the data on the hard drive to next being main memory increasing speed by 10k 

and then the CPU cache-memory which is yet generally 100 times faster than that. 

Hennesy and Patterson (2007) describe the most important property that is 

regularly exploited for memory as the principle of locality: Programs tend to reuse data 

and instructions they have used recently.  A widely held rule of thumb is that a program 

spends 90% of its execution time in only 10% of the code.  An implication of locality is 

that we can predict with reasonable accuracy what instructions and data a program will 

use in the near future based on its accesses in the recent past.  The principle of locality 

also applies to data accesses, though not as strongly as to code accesses. 

Two different types of locality are defined.  Temporal locality states that recently 

accessed items are likely to be accessed in the near future.  Spatial locality says that items 

whose addresses are near one another tend to be referenced close together in time. 

When the processor finds a requested data item in the cache, it is called a cache 

hit.  When the processor does not find a data item it needs in the cache, a cache miss 

occurs.  A fixed-size collection of data containing the requested word, called a block or 

line run, is retrieved from the main memory and placed into the cache.  Temporal locality 

tells us that we are likely to need this word again in the near future, so it is useful to place 

it in the cache where it can be accessed quickly.  Because of spatial locality, there is a 

high probability that the other data in the block will be needed soon. 



19 

 

 

 In order to utilize this optimization involving more efficient use of temporal and 

spatial locality computer code needs to be written in such a way that it stores and 

organizes the data with these locality references in mind. 

Weinberg, (2005) confirmed the importance of memory organization in HPC 

when he mentioned that some concrete and arbitrary choices have to be made when 

implementing the formal definitions about how to count locality statistics, and some 

approximations have to be made to make the data acquisition process tractable for HPC 

applications. 

A big issue to overcome in MCNP is the amount of data that exists in the cross section 

calculations and the method and speed in which it is accessed.  A commonality 

mentioned in using GPUs to program was memory management. Nelson, (2009) stated 

that the cross-section lookup routine takes approximately 33% of the computation time.  

As well, Brown, et al. (2012a) had to pay close attention to where they needed to store 

the cross section data in order to not slow down their process. 

4.3 Compiler Optimizations 

 The compiler can perform optimizations on the machine level code it creates.  

Compiler optimization is generally implemented using a sequence of optimizing 

transformations, which take a program and transform it to produce a semantically 

equivalent output program that now utilizes fewer resources [e.g., registers, cache lines, 

data accesses, etc.]. 

 Most compilers have preset groupings of optimizations that can be performed by 

setting the appropriate flag.  They are generally setup in a hierarchical manner with a 

base group and each group after that adds on new optimizations to those of the previous 

group. 

 Programs written in high-level languages, such as Fortran 90, do not efficiently 

map the access of operands or the utilization of the cache to the underlying computer 

hardware optimally.  The compiler, in addition to translating the written program into 
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machine language, schedules the compiled instructions in such a way as to maximize the 

locality of operand references with prolonged temporal usage over as long a period as 

possible.  The primary goal is to achieve minimal movement of the same date (operands 

and instructions) in and out of the CPU.  Wadleigh and Crawford, (2000), and Levesque 

and Wagenbreth, (2011) discuss techniques used in order to achieve an optimized state.  

They are Inlining, Register Utilization, Prefetching Operands, Loops (Unrolling, 

Interchange, and Code Motion), Scalar Optimizations, and Vectorization.  

4.4 Inlining 

 Programs are usually written with functions or subroutines that are used as 

reusable code.  If a function is to be called several times then it usually written in a way 

that other code can call the function and get the expected outcome every time.  Any 

changes to that function can be made in only one location where the code resides.  All 

calls to this function automatically use the same updated code without ambiguities.  This 

provides a much cleaner and easier code for upkeep. 

Functions are typically much simpler in the number of lines of code and the 

required data arrays as compared by a subroutine (or procedure).  When calling a 

function or a subroutine, the operating system must set aside a stack area and temporary 

registers sets, along with a pointer back to the program's calling-site.  For a function, this 

overhead can be more costly in setup time than the actual execution time.  For this 

reason, the compiler may copy the body of the function at the point of the function call 

and remove the call altogether.  This inclusion of the code is referred to as function 

inlining. 

4.5 Register Utilization 

As described earlier, performance is tied to data access and latency.  Registers are 

placed in the close proximity of the processor's CPU limited in numbers and capacity but 

has low access latencies, and reside in the close proximity of the processor's CPU.  The 

closest (and smallest) storage areas are registers that are contained in the processor.  

These registers have little latency and provide additional high speed memory for 
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multiple, independent instruction streams.  This allows the compiler to schedule 

instructions so that pipelining is more efficient. 

4.6 Prefetching Operands 

 Prefetching upcoming operands, or values, during the processing of current code 

and data blocks can provide optimization since the latency of fetching operands to the 

cache is so much longer than fetching them from memory.  This means the code needs to 

be written or the compiler needs to be able to interpret the code in order to guess what 

will be needed next. 

 A difficulty can arise in doing this as the operands have to be placed in to the 

same cache that is being used to hold the data that is currently being processed. 

4.7 Loops 

 Most of the optimizations for loops are related to increasing the amount of data 

reuse – taking advantage of the spatial and temporal locality of the data in memory.  

 Loop unrolling is when the value of the loop index is known and constant, the 

loop may benefit from flattening the loop and getting rid of it entirely.  Consider a simple 

loop that loops four times to add values together.  It might be beneficial to just write the 

four lines of code to add them as opposed to creating the overhead to handle the loop. 

 Nested loops appear in most significant computational-intensive codes.  Since 

there are many optimizations that can be done to loops, most compilers avoid attempts to 

optimize nested loops unless told to specifically by the user. 

 In nested loops the loops can oft times be interchanged to increase the number of 

unit stride array references.  This helps performance due to cache reuse. 

 Nested loops can also undergo an Unroll and Jam technique.  This refers to 

unrolling multiple loops and jamming them back together in ways to reduce the number 

of memory operations. 
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 Code Motion is a term that describes the action of the compiler to move 

(reschedule) instructions in such a way as to make the utilization of registers more 

efficient.  Code Motion can guarantee the availability of operands at the moment an 

instruction is to be executed or to hoist loop invariant operands and instructions before 

the beginning of the loop as a means to avoid multiple fetches from memory.  In addition, 

the compiler applies code motion in such a way that the resulting code is still executed 

correctly.  The example below shows that the loading of the scale variable Y takes place 

inside the Do loop.  However, notice that value of Y is never updated during the 

execution of the loop body.  We refer to Y in this situation as a loop 'invariant'.  In Fig. 4-

1 the Original Loop fetches Y from memory during each loop iteration.  In the Optimized 

Loop the value of Y is stored in register 1 and becomes part of the instruction sequence 

within the loop: 

Original Loop 

Do i= 1,N 

    X(i) = X(i) * Y 

End Do 

Optimized Loop 

Load y into register 1 

Do i = 1,N 

    X(i) = X(i) * register 1 

End Do 

  
Figure 4-1: Loop Code Motion 

4.8 Scalar Optimizations 

 Compilers can often replace an explicit use of an operation with a less expensive 

iterative operation in a loop.  In particular, a multiplication can be replaced with an 

addition, and an exponential can be replaced with a multiplication. 

Below is an example of an exponentiation being replaced by a multiplication: 

Original Exponentiation 

Do i= 1,10 

    A(i) = X**i 

End Do 

Compiler Optimized Equivalent 

XTemp = X 

Do i = 1,10 

    A(i) = XTemp 

    XTemp = XTemp*X 

End Do 

  
Figure 4-2: Exponentiation Replaced by Multiplication 
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 Similarly, the compiler can replace a multiplication with an addition: 

Original Exponentiation 

Do i= 1,10 

    A(i) = X*I 

End Do 

Compiler Optimized Equivalent 

XTemp = X 

Do i = 1,10 

    A(i) = XTemp 

    XTemp = XTemp + X 

End Do 

  
Figure 4-3: Multiplication Replaced by Addition 

 

4.9 Vectorization 

 This optimization is where a program is converted from a scalar implementation, 

which processes a single pair of operands at one time, to a vector implementation which 

then processes one operation on multiple pairs of operands at once.  The code is written 

to group and organize the data so that it can take advantage of the vector implementation. 

 The vector implementation takes advantage temporal and spatial locality as the 

same operation is used multiple times and does not have to be fetched for each pair of 

operands. 

 Brown and Martin (1984) demonstrated in their research the benefits of 

vectorization in their discussion on vectorized Monte Carlo calculations.  They structured 

the code to extract long vectors of particles that could be executed in a single loop.  Their 

results in all cases, for sufficiently large batch sizes, show speedups of at least 20-40x 

over non-vectorized calculations. 
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Chapter 5: Application of Neutron Groupings 

5.1 Introduction 

 The changes in the MCNP code flow made by applying the optimizations 

mentioned earlier and their various results will be discussed in this section.  The main 

ideas behind the modifications used in this study are to improve of memory locality, both 

temporal and spatial. 

5.2 Source Generation Modifications 

 The first change made to MCNP was the source generation.  As discussed earlier 

in Chapter 3, MCNP source neutrons are generated in a random pattern.  The Monte 

Carlo method requires a significantly large number of source neutrons to achieve 

acceptably accurate results. 

 The code is modified to generate all source neutrons and store them for later use.  

The original code generates a single neutron that is then tracked through a history of 

events.  After the completion of a neutron's history, the next source neutron is generated 

and its history tracked.  The loop continues until all source neutrons have been tracked.  

The new code can be seen in Appendix B.2. 

 This new loop created a structure that the complier can take advantage of.  In 

condensing the loop around a smaller section of the code the compiler used the 

techniques for inlining on the function calls to generate the neutron.  Also, the compiler 

could use the prefetching optimization to move the data necessary to generate the 

pseudorandom values for the neutron into cache. This allows the program faster access to 

the values. 

 Each neutron is stored after generation so they can be accessed when it is time to 

run through each of their life cycle histories.  This call is made in the code found in 

Appendix B.3.  After all source neutrons have been generated the program can proceed 



25 

 

 

with the rest of the process.  This optimization is a common optimization used in all 

variants of the code sets developed in this research. 

5.3 Material Bins 

 As discussed earlier cross sections are dependent on the material that the neutron 

is traveling through.  A grouping of neutrons by like material, in which they are traveling 

through, would allow the reuse of the cross section data for the current material that is 

already in the cache.  Further dividing the material groups into respective energy groups 

uses the spatial locality aspect of memory optimization.  If all the neutrons being 

processed at that time are of the same material and energy then the cross section data 

should be in cache and can be accessed faster. 

The code modifications that were done to the MCNP code, groups the source 

particles as they are generated into groups of the same material.  This is done during the 

source particle generation as the source will be located in one location for most 

calculations.  In some instances you have multiple source locations and so the particles 

are grouped into their respective bins. 

 Looking at the MCNP input cards you will see that the critical configuration 

being modeled for the calculation is made up of material cells.  All cell regions of the 

same material are grouped into the same bin. 

 In the configuration used during the test case for this research it was determined 

that there were nine groups.  These nine groups make up the material cells in the design 

configuration.  The ninth group being the void area where there is no material. 

 As mentioned this is done at the beginning of each cycle during the source 

particle generation.  However, as the cycle is processed new particles are generated 

during fission events.  As the new particles are generated they are stored or “banked,” as 

the code states, into the material groups until it is time to process them. 
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5.4 Energy Bins 

 Another factor that affects the cross section data needing to be accessed and 

stored in cache is the energy of the neutron.  The MCNP code is modified to group the 

neutrons into subgroups based on their energy levels.  The energy bins handled a range of 

energy levels. 

The spread in energy ranges invoke the principle of spatial locality.  The ranges 

being accessed at the given time provides the program better access to the data as it is 

small enough to be stored in cache. 

The energy bins used are related to the supergroups introduced by Brown and 

Martin, (1987) that closely match the energy ranges within the cross section data.  The 

subroutine used to determine the energy bin to which the neutron belongs is illustrated in 

Figure 5-7 showing the use of 5 bins of energy ranges.  When 10 bins were used the 

energy bins classify the neutrons into thermal (< 0.1 eV), epithermal (0.1 eV to 1 eV), 

and resonance (1 eV to 100keV) ranges.  The other bins break up the fast neutrons into 

smaller groups.  This code was used in all code combinations as each test code used 

energy bins. 

 

 

 

 

 

 

 

 

 

Figure 5-1: Energy Group Determination 

Energy Group Determination 

!code found inbanked_particle_mod.F90 – Appendix B.4 

subroutine getErgGrp(tmpErgGrp) 

    implicit none 

    integer, intent(out) :: tmpErgGrp 

       if(erg < 1.0) then 

            tmpErgGrp = 1 

        else if(erg >= 1.0 .and. erg < 2.0) then 

            tmpErgGrp = 2 

        else if(erg >= 2.0 .and. erg < 3.0) then 

            tmpErgGrp = 3 

        else if(erg >= 3.0 .and. erg < 4.0) then 

            tmpErgGrp = 4 

        else 

            tmpErgGrp = 5 

        end if 

end subroutine getErgGrp 
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The groups were arbitrarily decided in an attempt to match how the cross section data 

might be organized.  As the organization of the data was unknown and again not wanting to have 

to rewrite the data in order to organize and know the exact groupings, the 2 sets of groups were 

chosen to prove that neutron groups could be used to optimize MCNP. 

The ability to go back to the cache data for each neutron in the current group 

allows for the principle of temporal locality.  The program now has a better chance of 

finding the data it needs for the current neutron in the cache and doesn’t spend time 

retrieving more data from the slower memory. 

5.5 New MCNP Flow  

 MCNP’s original code would generate a neutron and then follow it through its life 

cycle and store any particles created during fission events.  Then once the source neutron 

was absorbed or allowed to leak out of the system the stored particles would be processed 

until all were done.  At that time a new source particle was generated.  See figure 2 for 

the diagram of the flow. 

 The changes made to the original code resulted in a change to the flow of the 

MCNP process. 



28 

 

 

 

Figure 5-2: New Overview MCNP Process Flow 

 This new flow differs from the original flow in that all the source particles are 

generated at once in the first section.  Then a neutron is retrieved from the highest energy 

level in the current group that still has neutrons stored.  The neutron life cycle is then 

processed in the same manner as before with the exception that the neutrons that are 

generated in fission events are stored back into the same bins that already exist and are 

processed when they are retrieved after determining the current material and energy 

group. 

The other change you can notice in figure 5-1 is that the flow has a back and forth 

process between section 2 and 3.  This is to represent that after tallying up the results 

from each neutron the code just goes back to the storage bins and gets the next neutron.  

It only goes back to section 1 when all neutrons have been processed so it can start the 

whole process again in the new cycle. 
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Figure 5-2 displays the more detailed flow with the changes in the flow marked in 

bold.  The flow starts off by generating all source neutrons that the test configuration 

states.  Once each neutron is generated it is stored in its energy group.  Then once all 

neutrons have been stored it proceeds to grab the neutron from the first energy group.  

The flow then proceeds in the normal method that the original MCNP follows.  The next 

difference occurs when an interaction event occurs.  If there is fission all but one neutron 

is stored in their respective energy groups.  After returning from the interaction code the 

neutron is checked to see if it has the same energy group as the current group being 

processed.  If it does it continues on, if not it is stored and the next neutron in the current 

energy group is retrieved and the process continues until all neutrons have been absorbed 

or leaked. 
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Figure 5-3: New Detailed MCNP Flow 
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The new flow can also be shown using high level pseudo code to show the 

process and how it loops in the program.  See Figure 5-4 below. 

  New MCNP Process Pseudo Code 

1: for each count in desired particle do 

2:  generate particle 

3: store particle in material/energy group 

4: end for 

5: for each material/energy group do 

6: for each particle in group do 

7:  repeat 

8:    retrieve stored particle 

9:   advance particle random distance in material 

10:   lookup material at particle position 

11:   for each type of material in current position do 

12:    for each interaction event do 

13:     lookup x-section data 

14:     calculate addition to total x-section 

15:    end for 

16:   end for 

17:   randomize interaction 

18:   update particle properties (position and energy)  

19: if fission, store all but one particle stored corresponding 

group 

20 if material/energy has changed, store particle in new group 

and retrieve next particle 

21: until particle is absorbed or leaks or leaves current processing 

group properties 

22 tally results for the particle and calculate keff 

23: end for 

24: end for 

 
Figure 5-4: New MCNP Process Pseudo Code 



32 

 

 

5.6 Neutron Groups and Cache Effects 

 The organization of the neutrons into groups allows data in the cache to be reused. 

When an application looks up data it will first look in the cache.  If the data is there, 

known as cache hit, it is used.  If the data is not there, a cache miss, then the application 

must spend time to go out to other memory locations to read and retrieve the data that is 

needed. 

Figures 5-5, 5-6, and 5-7 show a representation of how the original MCNP code 

accessed the cross section data in cache.  The first neutron accesses the cross section in 

cache (X-Sec 2) but the next neutron needs different data for its calculations. 

 

Figure 5-5: MCNP Cache Hit/Miss 1 

 The cache miss will cause the program to need to read in the new cross section 

data (X-Sec 3) and swap out X-Sec 2.  Overhead is created having to spend time reading 

in the new cross section and swapping out the old.  

 

Figure 5-6: MCNP Cache Hit/Miss 2 
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Since MCNP is not sorted the next neutron could need X-Sec 2 data and again the 

program has to spend time swapping out the information. 

 Figure 5-7: MCNP Cache Hit/Miss 3 

 

The time spent can be considerable as each neutron using the Monte Carlo 

method is going to have random attributes and is very unlikely that it will be similar to 

the previous neutron or the next.  In order to optimize the time spent in memory and help 

keep each access to the cache as a cache hit, the neutrons are organized in to groups.  

The neutron groups force the data of each neutron to fit into a small range and 

thus the cross section data needed for each neutron can be found more often in the cache 

and save time from not having to read in the new cross section data for each neutron.  

This is show in Figures 5-8 and 5-9 where the neutrons in the first group can use the same 

X-Sec 2 data for their calculations.  Then when the first group is processed the program 

moves on to the second group.  The X-Sec data is swapped out but only once and then the 

second group can reuse that data for each of its neutrons. 
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Figure 5-8: Neutron Group Cache Hit/Miss 1 

 

Figure 5-9: Neutron Group Cache Hit/Miss 2 

 

 A large number of bins can force more of the neutrons into the cross section table 

loaded into the cache.  As the number of bins decrease, the number of neutrons increases 
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per bin and can result in a greater chance of a retrieved neutron that requires a cross 

section table that is not in the cache. 

5.7 Code Changes and Results for Energy Groups 

 Several code changes were done in this thesis to achieve the best speedups with 

the least amount of changes.  Special attention was paid during design to the knowledge, 

stated in Chapter2, that material and energy affect cross sections.  The changes were done 

in order to maximize the temporal and spatial locality of the data to utilize the data most 

often in cache to provide the fastest access times.  Small examples of the code changes 

are included in this section but to see where the code is used refer to Appendix B. 

 The original MCNP code was compiled using the delivered compiler optimization 

flag of O1.  The results from this implementation form the basis for comparisons made to 

results reported here.  The results of Base for the test design took 924.58 minutes.  The 

resultant keff value was 0.99571.  The keff is consistent with the value that is expected for 

the test design delivered by the MCNP team to test the installation of the MCNP 

program. 

 The new code was tested with eight different code sets each exploring different 

combinations of groupings for the neutrons.  Each test was an attempt to find the most 

optimal method to arrange the neutrons so that the data for the cross section data needed 

for the current neutron and the next neutron would be available in the cache. 

5.7.1 Store Neutron in Energy Group 

 The eight code sets are divided into two major grouping types.  The first set of 

tests only takes into account the energy of the neutron and creates the groups based on a 

range of energy.  The next major grouping type was to group the neutrons by the material 

they were in and then divided those further into energy bins.  These bins were handled by 

data arrays. 

 In order to store the neutrons in their respective bins their attributes needed to be 

gathered and stored.  MCNP makes use of global common block memory in the Fortran 
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code to store the attributes (energy, location, etc.) of the current neutron being processed.  

This works, as the Base code only runs one neutron from source generation to 

termination.  In order to store the neutrons into their groups the use of a Fortran complex 

type was used.  The complex type is equivalent to object oriented classes that exist in 

other languages such as Java, C#, etc.  The complex type used was called a 

banked_particle and can be seen in part in Figure 5-10.  It is just a collection of attributes 

that define the neutron. 

 

 

 

 

 

 

 

 

 

 

 

The banked_particle has all the attributes that MCNP keeps track of for a neutron.  

Some of the attributes are stored in arrays.  These arrays are of unknown length at 

compile time.  First attempts were made to guess at the size of the arrays to make them 

static in an attempt to avoid the time it requires for the program to dynamically allocate 

the arrays.  However, the memory space required by the banked_particle was big enough 

that the static arrays caused the group arrays to be bigger and thus they weren’t able to be 

Banked_Particle Complex Type 

!code found in banked_particle_mod.F90 – Appendix B.4 and Appendix B.7 

type banked_particle 

    … 

    real(dknd), dimension(:,:),pointer ::  bprtc 

    real(dknd), dimension(:,:),pointer ::  bpudt 

    real(dknd), dimension(:,:),pointer ::  bpptb 

    real(dknd), dimension(:,:,:),pointer ::  bpuran_trf 

    integer, dimension(:,:),pointer :: bpktc 

    real(dknd) :: xxx                     != X-coordinate of the particle position. 

    real(dknd) :: yyy                     != Y-coordinate of the particle position. 

    real(dknd) :: zzz                     != Z-coordinate of the particle position. 

    real(dknd) :: uuu                     != Particle direction cosine with X-axis. 

    real(dknd) :: vvv                     != Particle direction cosine with Y-axis. 

    real(dknd) :: www                     != Particle direction cosine with Z-axis. 

    real(dknd) :: erg                     != Particle energy. 

    real(dknd) :: wgt                     != Particle weight. 

    … 

end type banked_particle 

Figure 5-10: Banked_Particle Complex Type 
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read into cache efficiently.  Thus causing the data access reads for the neutrons to take 

more time.  The use of dynamic arrays provided a tradeoff that resulted in smaller overall 

memory use of the bin arrays. 

 When a neutron is stored the attributes of the neutron are copied into the 

banked_particle object.  The object is then stored into its respective bin to be retrieved 

when its bin is processed. 

The four combinations of groupings that only used energy bins were stored in five 

or ten arrays depending on how many groups were used.  The groupings were done with 

arrays of the structure shown in Figure 5-11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Energy Group Arrays 

!code found in banked_particle_mod.F90 – Appendix B.4 

…  

type bpErgArrayType 

    integer :: bpErgTotal = 0 

    type(banked_particle), dimension(:),pointer :: bpArray 

  end type bpErgArrayType 

 

  type(bpErgArrayType), allocatable :: bpErgArray(:) 

 

… 

subroutine bpInit 

    implicit none 

    allocate(bpErgArray(5)) 

    bpErgArray(1)%bpErgTotal = 0 

    allocate(bpErgArray(1)%bpArray(10000)) 

    bpErgArray(2)%bpErgTotal = 0 

    allocate(bpErgArray(2)%bpArray(10000)) 

    bpErgArray(3)%bpErgTotal = 0 

    allocate(bpErgArray(3)%bpArray(5000)) 

    bpErgArray(4)%bpErgTotal = 0 

    allocate(bpErgArray(4)%bpArray(5000)) 

    bpErgArray(5)%bpErgTotal = 0 

    allocate(bpErgArray(5)%bpArray(5000)) 

end subroutine bpInit 

… 
 

Figure 5-11: Energy Group Arrays 
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The neutrons were stored in the arrays with code shown in Figure 5-12.  For 

storage the code first determine the energy bin, add 1 to the bin total and then add the 

neutron to the array bin.

 

Figure 5-12: Neutron Storage in Groups 

 

To retrieve the neutron, when needed, MCNP checks to see if the current energy 

group is empty and if so, it moves to the next energy group down and retrieves the 

neutron.  Figure 5-13 demonstrates the retrieval. 
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Figure 5-13: Neutron Retrieval from Groups 

 

The code that used Energy Bins (5 Bins) had a resultant run time of 887.44 

minutes on the O1 compiler level.  The keff achieved was 0.99575.  This was a 4% speed 

up from the Base code.  The same code using Energy Bins (10 Bins) resulted in a run 

time of 895.30 minutes on the O1 compiler level.  The keff achieved was 0.99577.  The 

speed up was only 3.2% from the Base code.  The difference can be attributed to the fact 

that in the 10 bin code there is more calls to the storing and retrieving of the neutron in 

the fast energy ranges as the neutron loses energy and doesn’t fit the current energy 

group. 

The Energy Bin codes were then run using the O2 compiler level to determine if 

the compiler could improve on the code by applying its optimizations where it could.  

The Energy Bin (5 Bins) code had a resultant run time of 774.53 and keff of 0.99583.  

This provided a speed up of 16.2% over the Base code.  The Energy Bin (10 Bins) code 

resulted in a run time of 799.28 and keff of 0.99583, providing a speed up of 13.6 over 
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Base.  The same conclusions on run times difference in O2 are the same as stated 

previously for O1. 

5.7.2 Arrays of Memory Pointers 

Brown and Martin, (1987) discussed that more speed up could be achieved with 

the use of arrays that held pointers to give a location in memory where the neutron 

needing to be stored or retrieved was.  This the allowed manipulation of the pointers in 

the array groups without having to actually move the neutron data around from group to 

group. 

This use of pointers was applied to the Energy Bin code.  The storage code of the 

neutron changed while the retrieval remained the same.  An array was used to store all 

the neutrons in memory and the pointers in the energy groups held the address of where 

the neutron was stored in memory in the array.  The code in Figure 5-14 shows how the 

storage was accomplished. 

 

Figure 5-14: Neutron Storage with Pointers 

 

The results for the O1 compiler level of the Energy Bins w/ Pointers (5 Bins) 

showed a run time of 882.15 minutes and keff of 0.99575, achieving a speed up of 4.6% 

over the Base code.  The Energy Bins w/ Pointers (10 Bins) resulted in a run time of 

879.27 minutes and keff of 0.99574, giving it a speed up of 4.9% over Base.  The increase 
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in speed up over the Energy Bin code without pointers shows that the program was able 

to spend less time in accessing and moving the neutron pointer when it didn’t have to 

move the actual neutron data within the groups. 

 The O2 compiler level results for the Energy Bins w/ Pointers, however, didn’t 

achieve faster results.  The Energy Bins w/ Pointers (5 Bins) had a run time of 776.19 and 

keff of 0.99583.  The speed up was 16.1% over Base.  The Energy Bins w/ Pointers (10 

Bins) had a run time of 769.89 minutes and keff of 0.99583.  The speed up was 16.7% 

over Base and achieved the fastest run time of all the code sets. 

 The application of pointers to the code did not have as much an increase in speed 

as expected.  With no need to move the whole neutron data around in the various energy 

group arrays the results in theory and according to Brown and Martin should have had a 

much higher impact.  One reason the impact was not as high is because the code in this 

research was not written for a vector machine like the one that Brown and Martin used.  

Vector machines have specialized hardware that can perform Gather/Scatter functions. 

Gather/Scatter occurs when data is not arranged in memory in a sequential, single 

stride fashion (for example using pointers to access and update operands in memory).  On 

a vector machine special hardware is provided to access (Gather) data for a vector 

operation and write back (Scatter) data to their corresponding memory locations.  On a 

typical dual core machine such hardware is not available; however, it is possible to use 

one of the cores to dedicate it to gather operands before the data is needed and scatter 

operands after the data has been updated and written back to memory.  Although to 

implement that on a dual core machine the MCNP code would have to be rewritten to 

dedicate one of the cores to do the Gather/Scatter of the operands.  See Figure 5-15 that 

illustrates how the pointers in the array can perform Gather/Scatter functions. 



42 

 

 

 

Figure 5-15: Array of Pointers Showing Gather/Scatter 

 

Another reason why this did not happen is due to the fact that the pointers were 

only implemented in the new code sections that were added.  In order to fully implement 

the pointers the common memory block where MCNP stores the current neutron 

attributes would have to be modified to include the pointers.  This would require a rewrite 

of the majority of the MCNP code in order to utilize the new pointers in the common 

block.  As it was the purpose of this research to avoid a rewrite of MCNP it was not fully 

implemented, but was used in a partial state that did provide speed improvement. 

5.8 Code Changes and Results for Material/Energy Groups 

 The second major grouping of tests involved the organizing of the neutrons into 

the current material they are in and then into energy groups within those material groups.  

This takes into account that both material and energy affect the cross section.  The 

advantage being that the cross section data needed for the neutrons would be even more 
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specific and reused.  This organization would provide better temporal and spatial locality 

of the data in memory. 

 The banked_particle object is the same as used in the other tests to describe the 

neutrons and their attributes.  The energy group ranges were kept the same.  The material 

bins are determined by the surface cards in the MCNP input card.  Figure 5-16 illustrates 

what the design configuration looks like for this research. 

 

Figure 5-16: Geometry of Criticality Design used in Research 

 

Figure 5-17 shows how it is written in the cell card.  The first two columns are the 

important columns for looking up the material bins.  The first column is the cell index; 

the second is the material index. 
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The code to handle the lookup of the material group in the program was an array 

containing the material group number by giving the cell number.  This can be seen in 

Figure 5-18.  The lookup was created to combine each cell index found in configuration 

design into groups of the same material.  For example cell index 2 and 3 are the bottom 

and top plates of the configuration design and are both made of the same stainless steel 

material and therefore are given the same group, in this case group 2. 

 

Material Cells 

!found in cell card of input card – Appendix A 

…  

1   10  -7.8894  2 -1 4 -5            $ Top tank (#1) wall thickness           

2   20  -7.883   -4 3 -1              $ Bottom plate of top tank 

3   20  -7.883   5 -6 -1              $ Top plate of top tank 

4   70  -7.8297  -7 -5 4              $ Top tank support post 

5   40  -1.5542   4 -2 -5 7           $ Tank #1 Uranyl-nitrate Solution 

6   30  -7.8932   -11 -8 9 12         $ Bottom tank (#2) wall thick 

7   20  -7.883   11 -10 -8            $ Top plate of bottom tank 

8   20  -7.883   -12 13 -8            $ Bottom plate of bottom tank  

9   70  -7.8297  -7 12 -11            $ Bottom tank support post 

10  50  -1.5551   -11 -9 12 7         $ Tank #2 Uranyl-nitrate Solution 

11  60  -2.69    -13 55 -15 19           $ Bottom Support leg 

12  60  -2.69    -13 56 -16 19           $ Bottom Support leg 

13  60  -2.69    -13 57 -17 19           $ Bottom Support leg 

14  60  -2.69    -13 58 -18 19           $ Bottom Support leg 

15  60  -2.69    -19 20 -21 22 -23 24 $ Aluminum Support Plate 

16  60  -2.69    -25 26 -35 36 30 -31 $ Top X-axis Plate - A 

17  60  -2.69    -25 26 33 -34 30 -31 $ Top X-axis plate - B 

18  60  -2.69    -25 26 -27 28 29 -30 $ Top Y-axis plate - C 

19  60  -2.69    -25 26 -27 28 31 -32 $ Top Y-axis plate - D 

20  60  -2.69    -26 37 -27 38 40 -41 $ Top X-axis plate - E 

21  60  -2.69    -26 37 28 -39 40 -41 $ Top X-axis plate - F 

22  80  -7.8849   10 -42 -43          $ SS - Bottom            

23  0      28 -27 40 -41 20 -6 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10  

Figure 5-17: Material Cells 
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The groupings were done with arrays of the structure shown in Figure 5-19.  The 

arrays represented the material and each contained 5 or 10 sub arrays that represented the 

2 sets of energy groups being used. 

 

Material Group Lookup 

!code found in banked_particle_mod.F90 – Appendix B.7 

…  

    allocate(IclGrpLookup(25)) 

    IclGrpLookup(1) = 1 

    IclGrpLookup(2) = 2 

    IclGrpLookup(3) = 2 

    IclGrpLookup(4) = 7 

    IclGrpLookup(5) = 4 

    IclGrpLookup(6) = 3 

    IclGrpLookup(7) = 2 

    IclGrpLookup(8) = 2 

    IclGrpLookup(9) = 7 

    IclGrpLookup(10) = 5 

    IclGrpLookup(11) = 6 

    IclGrpLookup(12) = 6 

    IclGrpLookup(13) = 6 

    IclGrpLookup(14) = 6 

    IclGrpLookup(15) = 6 

    IclGrpLookup(16) = 6 

    IclGrpLookup(17) = 6 

    IclGrpLookup(18) = 6 

    IclGrpLookup(19) = 6 

    IclGrpLookup(20) = 6 

    IclGrpLookup(21) = 6 

    IclGrpLookup(22) = 8 

    IclGrpLookup(23) = 9 

    IclGrpLookup(24) = 9 

    IclGrpLookup(25) = 9 

 

!Found in bankit.F90 – Appendix B.9 

… 

tmpIclGrp = IclGrpLookup(icl) 

Figure 5-18: Material Group Lookup 
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Material/Energy Group Arrays 
!found in banked_particle_mod.F90 – Appendix B.7 

…  

  type bpErgArrayType 

    integer :: bpErgTotal = 0 

    type(banked_particle), dimension(:),pointer :: bpArray 

  end type bpErgArrayType 

  type bpIclArrayType 

    integer :: bpIclTotal = 0 

    type(bpErgArrayType), dimension(:),pointer :: bpErgArray 

  end type bpIclArrayType 

  type(bpIclArrayType), allocatable :: bpIclArray(:) 

… 

    allocate(bpIclArray(iclGrpCnt)) 

    do i = 1, iclGrpCnt, 1 

        allocate(bpIclArray(i)%bpErgArray(ergGrpCnt)) 

        bpIclArray(i)%bpIclTotal = 0 

 

        bpIclArray(i)%bpErgArray(1)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(1)%bpArray(7000)) 

 

        bpIclArray(i)%bpErgArray(2)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(2)%bpArray(7000)) 

 

        bpIclArray(i)%bpErgArray(3)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(3)%bpArray(5000)) 

 

        bpIclArray(i)%bpErgArray(4)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(4)%bpArray(5000)) 

 

        bpIclArray(i)%bpErgArray(5)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(5)%bpArray(5000)) 

 

        if (ergGrpCnt == 10) then 

        bpIclArray(i)%bpErgArray(6)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(6)%bpArray(5000)) 

 

        bpIclArray(i)%bpErgArray(7)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(7)%bpArray(5000)) 

 

        bpIclArray(i)%bpErgArray(8)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(8)%bpArray(5000)) 

 

        bpIclArray(i)%bpErgArray(9)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(9)%bpArray(5000)) 

 

        bpIclArray(i)%bpErgArray(10)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(10)%bpArray(5000)) 

        end if 

    enddo 

 

Figure 5-19: Material/Energy Group Arrays 
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The lookup provided the 9 material bins needed to group the neutrons together in 

the correct material.  The storage and retrieval of the neutrons had to be modified to 

allow for the material bins and energy bins.  This can be seen in Figure 5-20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Material/Energy Group Neutron Storage and Retrieval 
!code found in banked_particl_mod.F90 – Appendix B.7 

…  

!storage 

    call getErgGrp(tmpErgGrp) 

    tmpIclGrp = IclGrpLookup(icl) 

    tmpIclTot = bpIclArray(tmpIclGrp)%bpIclTotal + 1 

    tmpErgTot = bpIclArray(tmpIclGrp)%bpErgArray(tmpErgGrp)%bpErgTotal + 1 

    bpIclArray(tmpIclGrp)%bpIclTotal = tmpIclTot 

    bpIclArray(tmpIclGrp)%bpErgArray(tmpErgGrp)%bpErgTotal = tmpErgTot 

 

    bpIclArray(tmpIclGrp)%bpErgArray(tmpErgGrp)%bpArray(tmpErgTot) = curbp 

!new pointer code 

!     bpIclArray(tmpIclGrp)%bpErgArray(tmpErgGrp)%bpArray(tmpErgTot)%p_bp => 

bpMasterArray(srcMasterTot) 

!new pointer code 

… 

!retrieval 

    if(bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpErgTotal  <= 0) then 

    do i = ergGrpCnt, 1, -1 

      if(bpIclArray(curIclGrp)%bpErgArray(i)%bpErgTotal > 0) then 

        curErgGrp = i 

        goto 120 

      else 

        do j = iclGrpCnt, 1, -1 

          if(bpIclArray(j)%bpIclTotal > 0) then 

            curIclGrp = j 

            do k = ergGrpCnt, 1, -1 

              if(bpIclArray(curIclGrp)%bpErgArray(k)%bpErgTotal > 0) then 

                curErgGrp = k 

                goto 120 

              end if 

            enddo 

          end if 

        enddo 

      end if 

    enddo 

    end if 

120 continue 

    tmpIclTot = bpIclArray(curIclGrp)%bpIclTotal 

    tmpErgTot = bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpErgTotal 

 

    curbp = bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpArray(tmpErgTot) 

!new pointer code 

!    curbp = bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpArray(tmpErgTot)%p_bp 

!new pointer code 

    bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpErgTotal = tmpErgTot - 1 

    bpIclArray(curIclGrp)%bpIclTotal = tmpIclTot – 1 

 

Figure 5-20: Material/Energy Group Neutron Storage and Retrieval 
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The addition of the Material groups takes more code to look up neutrons in the 

groups.  This extra overhead, as will be discussed, causes the Material Bin code sets to 

not achieve competitive speedups. 

The Material/Energy Bins (5 Bins) code used the 9 material groups and 5 energy 

groups.  The material groups were those mentioned above and the energy groups where 

the same as the ones used in the Energy Bins code.  The results from the O1 compiled 

code was a run time of 945.72 minutes and keff of 0.99588.  This is a 2.2% decrease in 

speed from Base.  It also is a decrease from the Energy Bins (5 Bins) code.  The reason 

that was determined to be the cause of the slowdown was the size of the array structure 

that made up the groups.  Since the array structure was large and 3 dimensional, it wasn’t 

able to fit into the cache entirely.  So the program would have to load up sections of the 

array and see if it contained the neutron to process and if not then it would have to go 

back to the memory and pull the next section of the array and look again.  This shifting in 

and out the data from the cache caused the slowness. 

 The Material/Energy Bins (5 Bins) compiled at the O2 level gave a run time of 

841.29 minutes and keff of 0.99593.  This gave a speed up of 9% faster than Base code.  

However, it is still slower than just using energy bins. 

 The code was then changed to Material/Energy Bins (10 bins) and compiled at the 

O1 optimization level.  The result was a run time of 952.56 minutes and keff of 0.99593.  

This was another decrease in speed of 3.0% from Base.  At the O2 level the same code 

gave a run time of 842.42 minutes and keff of 0.99588.  Speed up of 8.9% over Base.  

These times also are a resultant of the struggle with the large array structure. 

 In order to cut down on the size of the array structure and moving the data around 

in the array and thus cut down the memory access time the array of pointers was applied 

to these sets of code. 

 First the Material/Energy Bins w/ Pointers (5 Bins) was compiled at the O1 level.  

The results were a run time of 938.82 minutes and keff of 0.99593.  This was still a 

decrease of 1.6% from Base but an increase of the same code without pointers.  At the O2 
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level of compiler optimization the resultant run time was 840.08 minutes and keff of 

0.99593.  The speed up achieved was 9.2% over Base.  Still the array size is an issue. 

 Next the Material/Energy Bins w/ Pointers (10 Bins) was compiled at the O1 

level.  The run time was 939.31 minutes and keff 0.99585.  The speed decreased by 1.6% 

from Base.  However, at the O2 level of compiler optimization the run time was 836.28 

minutes and keff of 0.99578.  The speed up was 9.6% over Base.  The 10 Bins w/ Pointers 

at O2 achieved the best result for the Material/Energy Bins code set. 

5.9 Side by Side Comparison of Code Set Results 

The following table provides a quick side by side comparison. 

Table 5-1: Run Time Comparisons 

Code Compiler O1 

(mins) 

± 5 mins 

O1 Speedup 

from Base O1 

± 0.5% 

Compiler O2 

(mins) 

± 5 mins 

O2 Speedup 
from Base O1 

± 0.5% 

Base 924.58 
(15.4 hours) 

 830.05 
(13.8 hours) 

10.2% 

Energy Bins  

(5 Bins) 

887.44 
(14.8 hours) 

4% 774.53 
(12.9 hours) 

16.2% 

Energy Bins  

(10 Bins) 

895.30 
(14.9 hours) 

3.2% 799.28 
(13.3 hours) 

13.6% 

Energy Bins w/ 

Pointers (5 Bins) 

882.15 
(14.7 hours) 

4.6% 776.19 
(12.9 hours) 

16.1% 

Energy Bins w/ 

Pointers (10 Bins) 

879.27 
(14.65 hours) 

4.9% 769.89 
(12.8 hours) 

16.7% 

Material/Energy 

Bins (5 Bins) 

945.72 
(15.8 hours) 

-2.2% 841.29 
(14.0 hours) 

9% 

Material/Energy 

Bins (10 Bins) 

952.56 
(15.9 hours) 

-3.0% 842.42 
(14.0 hours) 

8.9% 

Material/Energy 

Bins w/ Pointers  

(5 Bins) 

938.82 
(15.6 hours) 

-1.6% 840.08 
(14.0 hours) 

9.2% 

Material/Energy 

Bins w/ Pointers 

(10 Bins) 

939.31 
(15.7 hours) 

-1.6% 836.28 
(13.9 hours) 

9.6% 
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We compared the accuracy of the calculated keff.  Table 5-2 compares keff 

calculated by the various code modifications and the Base code.  As can be seen in this 

table the O2 compiler introduced a higher error when compared to the Base code.  

However if the O2 results are compared with the Base O2 results there isn’t much error 

introduced by the new code sets. 

The small differences in keff can be explained by the fact that in changing the code 

to group and order the neutrons, we have changed the behavior of the MCNP code and its 

use of random numbers.  MCNP uses a sequence of random numbers throughout the 

history of the cycle and neutron history.  Therefore when the new code sets change the 

order of neutrons, the neutrons use different random numbers they would have used in 

the original order.  This may not appear to be a problem but the neutron history is based 

on several factors and one of them is the random number.  Thus a neutron using a 

different random number can easily take a different path in history and result in a slightly 

different statistical behavior. 

As the keff can be affected by many factors any slight changes to the code will 

cause a variation.  In fact the keff can be different from computer to computer.  Part of the 

install process of the MCNP program has you run test programs to verify that your 

installed program results in a keff value that is statistically close to the expected accepted 

value.  In the case of the different code sets researched here, all are close to the accepted 

value and thus provides a measure of confidence that the new code sets have achieved an 

acceptable keff value. 
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Table 5-2: keff Comparisons 

Code Compiler O1 

keff 

σ = 0.00004 

Reactivity ρ Compiler O2 

keff 

σ = 0.00004 

Reactivity ρ 

Reactor Period 

τ 

Reactor Period τ 

Base 0.99571 $-0.00431 0.99582 $-0.00420 

-31.35s -31.85s 

Energy Bins  

(5 Bins) 

0.99575 $-0.00427 0.99583 $-0.00419 

-31.53s -31.89s 

Energy Bins  

(10 Bins) 

0.99577 $-0.00425 0.99583 $-0.00419 

-31.61s -31.89s 

Energy Bins w/ 

Pointers  

(5 Bins) 

0.99575 $-0.00427 0.99583 $-0.00419 

-31.53s -31.89s 

Energy Bins w/ 

Pointers  

(10 Bins) 

0.99574 $-0.00428 0.99583 $-0.00419 

-31.48s -31.89s 

Material/Energy 

Bins (5 Bins) 

0.99588 $-0.00414 0.99593 $-0.00409 

-32.13s -32.37s 

Material/Energy 

Bins (10 Bins) 

0.99583 $-0.00419 0.99588 $-0.00414 

-31.89s -32.13s 

Material/Energy 

Bins w/ Pointers 

(5 Bins) 

0.99588 $-0.00414 0.99593 $-0.00409 

-32.13s -32.37s 

Material/Energy 

Bins w/ Pointers 

(10 Bins) 

0.99585 $-0.00417 0.99578 $-0.00424 

-31.98s -31.66s 

 

Comparing the reactor period τ between the code sets, the differences in the 

outcome of the various code sets are within about ½ second of the Base code set and 

show that the new code modifications deliver acceptable results. 

5.10 Complex Configuration Designs 

 The results as discussed are for the design slab tank experiment. As shown, the 

material code sets actually produced a slight slowdown of speed.  Therefore, the 

groupings to choose would be the energy groups for this design.  This design when 

compared to a full reactor design is considered a simple design.  As material is still a 

factor in cross section data, the concern arises that if a more complex design is tested 

with thousands of materials will the energy groupings achieve the same speed up.  Also 

as the reactor fuel is depleted during different stages of burnup the material composition 

in the reactor changes and the different materials present in the reactor again increases. 
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 Regardless of configuration and material composition energy of the neutron still 

affects the cross section data needed in the calculation.  Therefore, the groupings by 

energy will still have an effect on the application run time for the more complex designs.  

The effective speed up may not be as significant as that found in this less complex design 

but a speed up is expected.  The act of creating the groups and sorting them provides 

order from the pseudo-random neutron sample provided using the Monte Carlo method.  

This order improves the spatial and temporal locality of the cross section data and will 

increase the speed up. 
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Chapter 6: Conclusion 

The objective of this thesis was to demonstrate that a more optimal sequential 

MCNP performance can be obtained with minimal programming effort by organizing the 

neutrons into groups.  The unmodified MCNP process took 15 ½ hours to perform the 

criticality calculations for the two slab tank experiment.  The improved memory locality, 

by using 10 groups of energy bins with pointer arrays, was able to achieve a 16.7% ± 

0.5% speedup and results in 2 ½ hours being removed from the run time taken to perform 

the criticality calculations. 

Research discovered a slowdown may occur if one does not take care in 

structuring the group sizes.  Some groups may be unable to fit in memory and have to 

push out the cross section data from cache.  This is inherent in the use of the 

Material/Energy Group code sets discussed in that the group array structure was a large 

three dimensional array (material x energy x neutron).  This array structure was not able 

to fit in the cache during stored neutron data retrieval and required extra time to read 

from the slower memory sections when data was swapped out of cache to provide room. 

It was shown that the time savings of the MCNP code can be achieved without 

completely rewriting the code.  As stated in the thesis research, previous investigators 

have rewritten the code to take advantage of new computer hardware, like GPUs, in order 

to achieve speed ups.  This however, according to the investigators, takes significant 

effort and the end results are often a completely new program. 

 Creating groups based on the neutron energy increases the efficiency of the reuse 

of data located in the cache.  The cross section data in the cache used by a neutron in a 

group is already loaded and can be used by the next neutron in the same group due to the 

similar energy levels of the neutron.  The reuse of data is an efficient use of the temporal 

locality principle. 

 Several sets of code modifications were tested to determine the makeup of the 

neutron groups to coincide with the energy ranges found in the ENDF/B VI cross section 
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data.  This allowed the cross section data in the cache to be reused allowing the program 

to take advantage of the temporal and spatial locality of the data to increase its efficiency 

and not spend more time than necessary outside the cache retrieving information for its 

calculations. 

 The modifications to the MCNP code consisted of rearranging the main functional 

loop of tracking the history of the neutron, from source generation through its lifecycle, 

in the program to break it out into two separate loops: generation of source neutrons and 

tracking the history of each neutron.  All the neutrons were generated from the source and 

stored into groups based on their energy levels.  Then each neutron history was tracked as 

in the normal MCNP flow until it was absorbed, leaked out of the system, or moved into 

another energy range encompassed by another energy group.  

 As stated, this research showed that a speedup is achieved for the two slab tank 

design by grouping neutrons by their energy levels to optimize the reuse of the cross 

section data in the cache.  It gives results that are promising and with thorough 

verification and validation the additions can be used for further study in all system 

designs.  For example, further study can be done to determine the speedup results that can 

be achieved using more complex designs like a full reactor model.  Organization of 

neutron into groups offers potential MCNP improvements and valuable time savings for 

future engineers. 
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Appendix A  

 

 

MCNP Input Card 
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Slab Tank Experiment 

c Cell Cards 

1   10  -7.8894  2 -1 4 -5            $ Top tank (#1) wall thickness           

2   20  -7.883   -4 3 -1              $ Bottom plate of top tank 

3   20  -7.883   5 -6 -1              $ Top plate of top tank 

4   70  -7.8297  -7 -5 4              $ Top tank support post 

5   40  -1.5542   4 -2 -5 7           $ Tank #1 Uranyl-nitrate Solution 

6   30  -7.8932   -11 -8 9 12         $ Bottom tank (#2) wall thick 

7   20  -7.883   11 -10 -8            $ Top plate of bottom tank 

8   20  -7.883   -12 13 -8            $ Bottom plate of bottom tank  

9   70  -7.8297  -7 12 -11            $ Bottom tank support post 

10  50  -1.5551   -11 -9 12 7         $ Tank #2 Uranyl-nitrate Solution 

11  60  -2.69    -13 55 -15 19           $ Bottom Support leg 

12  60  -2.69    -13 56 -16 19           $ Bottom Support leg 

13  60  -2.69    -13 57 -17 19           $ Bottom Support leg 

14  60  -2.69    -13 58 -18 19           $ Bottom Support leg 

15  60  -2.69    -19 20 -21 22 -23 24 $ Aluminum Support Plate 

16  60  -2.69    -25 26 -35 36 30 -31 $ Top X-axis Plate - A 

17  60  -2.69    -25 26 33 -34 30 -31 $ Top X-axis plate - B 

18  60  -2.69    -25 26 -27 28 29 -30 $ Top Y-axis plate - C 

19  60  -2.69    -25 26 -27 28 31 -32 $ Top Y-axis plate - D 

20  60  -2.69    -26 37 -27 38 40 -41 $ Top X-axis plate - E 

21  60  -2.69    -26 37 28 -39 40 -41 $ Top X-axis plate - F 

22  80  -7.8849   10 -42 -43          $ SS - Bottom            

23  0      28 -27 40 -41 20 -6 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10  

           #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22     

24  0             -28:27:-40:41:-20:6  $ External Void   

     

c Surface Cards 

1   cz 37.90696 

2   cz 35.81654 

3   pz 4.63296  

4   pz 5.60095  

5   pz 14.50162 

6   pz 15.46301  

7   cz 1.26873 

8   cz 37.95903 

9   cz 35.78733 

10  pz -5.27050 
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11  pz -6.24434  

12  pz -15.15593 

13  pz -16.11249 

15  c/z 26.4922 26.4922 2.54 

16  c/z 26.4922 -26.4922 2.54 

17  c/z -26.4922  26.4922 2.54 

18  c/z -26.4922 -26.4922 2.54 

19  pz -51.67249 

20  pz -52.94249 

21  px 39.37 

22  px -39.37 

23  py 39.37 

24  py -39.37 

25  pz 12.92301 

26  pz 5.30301 

27  px 58.42 

28  px -58.42 

29  py -39.2176  

30  py -38.5826 

31  py  38.5826 

32  py  39.2176 

33  px  38.5826 

34  px  39.2176 

35  px -38.5826 

36  px -39.2176 

37  pz  2.76301 

38  px 48.26 

39  px -48.26 

40  py -58.42 

41  py 58.42 

42  pz -4.63296 

43  cz 38.09619 

55  c/z 26.4922 26.4922 1.905 

56  c/z 26.4922 -26.4922 1.905 

57  c/z -26.4922  26.4922 1.905 

58  c/z -26.4922 -26.4922 1.905 

 

mode n     

imp:n 1 22r 0   
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c    Hoop#1 

m10   6000.70c  1.9778-4 

     25055.70c  1.6518-3   15031.70c  4.7551-5  

     16032.70c  7.4074-6    

     14028.70c  1.0453-3   14029.70c  5.2930-5   14030.70c  3.5135-5 

     24050.70c  7.2653-4   24052.70c  1.4010-2   24053.70c  1.5887-3 

     24054.70c  3.9545-4  

     28058.70c  4.5245-3   28060.70c  1.7435-3   28061.70c  7.5767-5 

     28062.70c  2.4152-4   28064.70c  6.1544-5 

     42092.70c  1.9108-5   42094.70c  1.1910-5   42095.70c  2.0499-5 

     42096.70c  2.1477-5   42098.70c  1.2297-5   42098.70c  3.1070-5 

     42100.70c  1.2400-5 

     29063.70c  1.6027-4   29065.70c  7.1501-5 

      7014.70c  2.0352-4    

     26054.70c  3.4635-3   26056.70c  5.4772-2   26057.70c  1.3138-3 

     26058.70c  1.6720-4 

c    Tank Plates 

m20   6000.70c  1.9762-4 

     25055.70c  1.6504-3   15031.70c  4.7512-5  

     16032.70c  7.4013-6    

     14028.70c  1.0445-3   14029.70c  5.2888-5   14030.70c  3.5108-5 

     24050.70c  7.2596-4   24052.70c  1.3999-2   24053.70c  1.5874-3 

     24054.70c  3.9514-4 

     28058.70c  4.5209-3   28060.70c  1.7421-3   28061.70c  7.5705-5 

     28062.70c  2.4133-4   28064.70c  6.1494-5 

     42092.70c  1.9092-5   42094.70c  1.1900-5   42095.70c  2.0481-5 

     42096.70c  2.1459-5   42098.70c  1.2286-5   42098.70c  3.1043-5 

     42100.70c  1.2389-5 

     29063.70c  1.6014-4   29065.70c  7.1446-5 

      7014.70c  2.0336-4    

     26054.70c  3.4607-3   26056.70c  5.4727-2   26057.70c  1.3127-3 

     26058.70c  1.6707-4 

c    Hoop#2 

m30   6000.70c  1.9788-4 

     25055.70c  1.6526-3   15031.70c  4.7574-5  

     16032.70c  7.4109-6    

     14028.70c  1.0458-3   14029.70c  5.2953-5   14030.70c  3.5151-5 

     24050.70c  7.2688-4   24052.70c  1.4017-2   24053.70c  1.5894-3 

     24054.70c  3.9564-4 



61 

 

 

     28058.70c  4.5267-3   28060.70c  1.7443-3   28061.70c  7.5803-5 

     28062.70c  2.4164-4   28064.70c  6.1573-5 

     42092.70c  1.9117-5   42094.70c  1.1916-5   42095.70c  2.0508-5 

     42096.70c  2.1487-5   42098.70c  1.2302-5   42098.70c  3.1084-5 

     42100.70c  1.2405-5 

     29063.70c  1.6035-4   29065.70c  7.1535-5 

      7014.70c  2.0362-4    

     26054.70c  3.4652-3   26056.70c  5.4798-2   26057.70c  1.3144-3 

     26058.70c  1.6729-4 

c    Tank#1 Solution 

m40  92234.70c  8.7477-6   92235.70c  9.6338-4   92236.70c  2.8747-6  

     92238.70c  5.9027-5    8016.70c  3.7675-2    7014.70c  2.2608-3 

      1001.70c  5.7842-2 

mt40 lwtr.01t 

c    Tank#2 Solution 

m50  92234.70c  8.7673-6   92235.70c  9.6404-4   92236.70c  2.8787-6  

     92238.70c  5.9069-5    8016.70c  3.7695-2    7014.70c  2.2622-3 

      1001.70c  5.7871-2 

mt50   lwtr.01t 

c    Al Support Plates 

m60  14028.70c  3.1918-4   14029.70c  1.6161-5   14030.70c  1.0728-5 

     26054.70c  5.8882-6   26056.70c  9.3114-5   26057.70c  2.2334-6 

     26058.70c  2.8426-7 

     29063.70c  4.4070-5   29065.70c  1.9661-5 

     25055.70c  2.2115-5    

     12024.70c  5.2648-4   12025.70c  6.6651-5   12026.70c  7.3383-5 

     24050.70c  2.7074-6   24052.70c  5.2209-5   24053.70c  5.9201-6 

     24054.70c  1.4736-6 

     29063.70c  2.1414-5  29065.70c  9.5533-6 

     22046.70c  2.0300-6  22047.70c  1.8524-6    22048.70c  1.8727-5 

     22049.70c  1.3956-6  22050.70c  1.3703-6 

     13027.70c  5.8433-2 

c    Center Support Bar 

m70   6000.70c  1.9628-4  

     25055.70c  1.6393-3   15031.70c  4.7191-5  

     16032.70c  7.3513-6    

     14028.70c  1.0374-3   14029.70c  5.2528-5   14030.70c  3.4869-5 

     24050.70c  7.2105-4   24052.70c  1.3905-2   24053.70c  1.5767-3 

     24054.70c  3.9247-4 
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     28058.70c  4.4903-3   28060.70c  1.7303-3   28061.70c  7.5193-5 

     28062.70c  2.3970-4   28064.70c  6.1078-5 

     42092.70c  1.8963-5   42094.70c  1.1820-5   42095.70c  2.0343-5 

     42096.70c  2.1314-5   42098.70c  1.2203-5   42098.70c  3.0833-5 

     42100.70c  1.2305-5 

     29063.70c  1.5906-4   29065.70c  7.0961-5 

      7014.70c  2.0198-4    

     26054.70c  3.4373-3   26056.70c  5.4357-2   26057.70c  1.3038-3 

     26058.70c  1.6594-4 

c    SS                    

m80   6000.70c  1.9767-4  

     25055.70c  1.6508-3   15031.70c  4.7524-5 

     16032.70c  7.4031-6    

     14028.70c  1.0448-3   14029.70c  5.2902-5   14030.70c  3.5117-5 

     24050.70c  7.2614-4   24052.70c  1.4003-2   24053.70c  1.5878-3 

     24054.70c  3.9524-4 

     28058.70c  4.5219-3   28060.70c  1.7425-3   28061.70c  7.5723-5 

     28062.70c  2.4138-4   28064.70c  6.1509-5 

     42092.70c  1.9096-5   42094.70c  1.1903-5   42095.70c  2.0486-5 

     42096.70c  2.1464-5   42098.70c  1.2289-5   42098.70c  3.1050-5 

     42100.70c  1.2392-5 

     29063.70c  1.6018-4   29065.70c  7.1461-5 

      7014.70c  2.0340-4    

     26054.70c  3.4616-3   26056.70c  5.4740-2   26057.70c  1.3130-3 

     26058.70c  1.6711-4 

c 

kcode  10000  1.0  100  50100 

kopts  blocksize=10  kinetics=yes  precursor=yes 

ksrc 15. 0. 9. -15. 0. 9. 15. 0. -9. -15. 0. -9 

prdmp j 10000 -1 
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B.1 Introduction 

 Included here is the code that was written to make the optimizations.  Two new 

files were added to the MCNP code base called banked_particle_mod.F90 and 

newSource.F90.  Three files were modified to include references to the new files; they 

are trnspt.F90, hstory.F90 and bankit.F90.  Code, except where it has been modified and 

is my orginal code, has been removed from the three files in accordance with RSICC 

Licensing and intellectual propery rights.  Also to stay in accordance to the license some 

modifications cannot be included as they would publicize the original code. 

 

B.2 trnspt.F90 

subroutine trnspt 

 /* Code removed to protect Copyright information */ 

! Optimization Modification Begins 

    srcbpmax = nsa 

    srcbpproc = 0 

    srcbptot = 0 

    binCnt = 5 

  srcbpcur = nsa 

20 continue 

 

     do i = 1,srcbpcur 

      ! Run the next history. 

       /* Code removed to protect Copyright information */ 

 

      call newSource 

 

    enddo 

 

    if(bpErgArray(curErgGrp)%bpErgTotal  <= 0) then 

        if(bpErgArray(5)%bpErgTotal > 0) then 

            curErgGrp = 5 

        else if(bpErgArray(4)%bpErgTotal > 0) then 

            curErgGrp = 4 

        else if(bpErgArray(3)%bpErgTotal > 0) then 

            curErgGrp = 3 

        else if(bpErgArray(2)%bpErgTotal > 0) then 

            curErgGrp = 2 

        else 
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            curErgGrp = 1 

        end if 

    end if 

 

    do while( srcbptot > 0 ) 

 

      call bankit(101) 

      call hstory 

 

    enddo 

 

    if(.not. time_to_stop()) go to 20 

/* Code removed to protect Copyright information */ 

end subroutine trnspt 

B.3 newSource.F90 

subroutine newSource 

  ! Description: 

  ! Get New particles from source 

 

  ! Modules: 

/* Code removed to protect Copyright information */ 

 

  ! Start a particle from the source. 

20 continue 

 

/* Code removed to protect Copyright information */ 

  ! Set particle random number 

  call RN_init_particle( int(npstc,i8knd) ) 

 

  call startp 

  !$ call sm_loff(jlock,1) 

 

    npa=1 

    call bankit(1) 

 

  return 

end subroutine newSource 

B.4 Energy Group banked_particle_mod.F90 

module banked_particle_mod 

    use mcnp_global 

    use mcnp_debug 
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    implicit none 

  type banked_particle 

    integer ::  abprtc = 0 

    integer ::  abpudt = 0 

    integer ::  abpptb = 0 

    integer ::  abpuran_trf = 0 

    integer ::  abpktc = 0 

    real(dknd), dimension(:,:),pointer ::  bprtc 

    real(dknd), dimension(:,:),pointer ::  bpudt 

    real(dknd), dimension(:,:),pointer ::  bpptb 

    real(dknd), dimension(:,:,:),pointer ::  bpuran_trf 

    integer, dimension(:,:),pointer :: bpktc 

    real(dknd) :: xxx                     != X-coordinate of the particle position. 

    real(dknd) :: yyy                     != Y-coordinate of the particle position. 

    real(dknd) :: zzz                     != Z-coordinate of the particle position. 

    real(dknd) :: uuu                     != Particle direction cosine with X-axis. 

    real(dknd) :: vvv                     != Particle direction cosine with Y-axis. 

    real(dknd) :: www                     != Particle direction cosine with Z-axis. 

    real(dknd) :: erg                     != Particle energy. 

    real(dknd) :: wgt                     != Particle weight. 

    real(dknd) :: tme                     != Time at the particle position. 

    real(dknd) :: vel                     != Speed of the particle. 

    real(dknd) :: dls                     != Distance to next boundary. 

    real(dknd) :: dxl                     != Distance to nearest DXTRAN sphere. 

    real(dknd) :: dtc                     != Distance to time cutoff. 

    real(dknd) :: elc(mipt)               != Energy cutoffs in the current cell. 

    real(dknd) :: fiml(mipt)              != Importance of the current cell. 

    real(dknd) :: fismg                   != Multigroup importance. 

    real(dknd) :: wtfasv                  != Accumulated weight of adjoint particle. 

    real(dknd) :: rnk                     != RNR at point where new track was created. 

    real(dknd) :: spare(mspare)           != Spare banked array for user modifications. 

    real(dknd) :: totmp                   != Total cross section for previous track. 

    real(dknd) :: ralfp(2)                != Eigenvalue by 2nd order perturb method. 

    real(dknd) :: zpblcm 

 

    integer :: npa                 != Number of tracks in the same bank location. 

    integer :: icl                 != Program number of the current cell. 

    integer :: jsu                 != Program number of the current surface. 

    integer :: ipt                 != Type of particle. 

    integer :: iex                 != Index of the current cross section table. 

    integer :: node                != Number of nodes in track from source to here. 

    integer :: idx                 != Number of the current DXTRAN sphere. 

    integer :: ncp                 != Count of collisions per track. 

    integer :: jgp                 != Neutron: particle energy group number. 

                                 != Electron/photon: generation class for F6:p tally. 
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    integer :: lev                 != Level of the current particle. 

    integer :: iii                 != First lattice index of particle location. 

    integer :: jjj                 != Second lattice index of particle location. 

    integer :: kkk                 != Third lattice index of particle location. 

    integer :: iap                 != Program number of the next cell. 

    integer :: iexp                != IEX from previous collision. 

    integer :: mtp                 != Reaction MT from previous collision. 

    integer :: nmco                != Stores value of NMC as it is updated. 

    integer :: i_positron          != Flag for positron (when ipt==electron). 

    integer :: node_above          != Current PHTVR node of the particle 

    integer :: branch              != PHTVR tree branch of the particle 

    integer :: scoring_particle    != Flag to indicate that the particle 

                                 != does not contribute to regular tallies. 

    integer :: progenitor_id       != progenitor id for adjoint weighting in kcode. 

    integer :: delayed_group       != delayed neutron group 

    integer :: mpblcm 

  end type banked_particle 

  type bpErgArrayType 

    integer :: bpErgTotal = 0 

    type(banked_particle), dimension(:),pointer :: bpArray 

  end type bpErgArrayType 

 

  type(bpErgArrayType), allocatable :: bpErgArray(:) 

 

  integer :: curErgGrp = 0 

  integer :: binCnt = 5 

  integer :: srcbptot 

  integer :: srcbpmax 

  integer :: srcbpcur 

  integer :: srcbpproc 

 

contains 

subroutine bpInit 

    implicit none 

    allocate(bpErgArray(5)) 

    bpErgArray(1)%bpErgTotal = 0 

    allocate(bpErgArray(1)%bpArray(10000)) 

    bpErgArray(2)%bpErgTotal = 0 

    allocate(bpErgArray(2)%bpArray(10000)) 

    bpErgArray(3)%bpErgTotal = 0 

    allocate(bpErgArray(3)%bpArray(5000)) 

    bpErgArray(4)%bpErgTotal = 0 

    allocate(bpErgArray(4)%bpArray(5000)) 

    bpErgArray(5)%bpErgTotal = 0 

    allocate(bpErgArray(5)%bpArray(5000)) 
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end subroutine bpInit 

 

subroutine getErgGrp(tmpErgGrp) 

    implicit none 

 

    integer, intent(out) :: tmpErgGrp 

 

    if (ergGrpCnt == 10) then 

        if(erg < 0.0000001) then !thermal 

            tmpErgGrp = 1 

        else if(erg >= 0.0000001 .and. erg < 0.000001) then !epithermal 

            tmpErgGrp = 2 

        else if(erg >= 0.000001 .and. erg < 0.1) then !resonance 

            tmpErgGrp = 3 

        else if(erg >= 0.1 .and. erg < 1.0) then !fast 

            tmpErgGrp = 4 

        else if(erg >= 1.0 .and. erg < 1.5) then 

            tmpErgGrp = 5 

        else if(erg >= 1.5 .and. erg < 2.0) then 

            tmpErgGrp = 6 

        else if(erg >= 2.0 .and. erg < 2.5) then 

            tmpErgGrp = 7 

        else if(erg >= 2.5 .and. erg < 3.0) then 

            tmpErgGrp = 8 

        else if(erg >= 3.0 .and. erg < 3.5) then 

            tmpErgGrp = 9 

        else 

            tmpErgGrp = 10 

        end if 

    else 

        if(erg < 1.0) then 

            tmpErgGrp = 1 

        else if(erg >= 1.0 .and. erg < 2.0) then 

            tmpErgGrp = 2 

        else if(erg >= 2.0 .and. erg < 3.0) then 

            tmpErgGrp = 3 

        else if(erg >= 3.0 .and. erg < 4.0) then 

            tmpErgGrp = 4 

        else 

            tmpErgGrp = 5 

        end if 

    end if 

end subroutine getErgGrp 

end module banked_particle_mod 
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B.5 Energy Group hstory.F90 

/* Code removed to protect Copyright information */ 

/*Return from code that describes collision effects*/ 

! Optimization Modification Begins 

call getErgGrp(tmpErgGrp) 

  if(tmpErgGrp == curErgGrp) then 

    go to 30 

  else 

    npa = 1 

    call bankit(1) 

    go to 290 

  endif 

! Optimization Modification Ends 

  ! 

  ! ******************  Process terminated particles.  ******************** 

  ! 

 

/* Code removed to protect Copyright information */ 

end subroutine hstory 

B.6 Energy Group bankit.F90 

  subroutine bank_particle 

        ! Description: 

/* Code removed to protect Copyright information */ 

    integer :: tmpErgGrp = 5 

    type (banked_particle) :: curbp 

/* Code removed to protect Copyright information */ 

/* Assign curbp attributes from variables recorded in MCNP */ 

    srcbptot = srcbptot+1 

    nbnk = srcbptot 

!new pointer code 

!    srcMasterTot = srcMasterTot+1 

!    bpMasterArray(srcMasterTot) = curbp 

!new pointer code 

    call getErgGrp(tmpErgGrp) 

    tmpTotal = bpErgArray(tmpErgGrp)%bpErgTotal + 1 

    bpErgArray(tmpErgGrp)%bpErgTotal = tmpTotal 

    bpErgArray(tmpErgGrp)%bpArray(tmpTotal) = curbp    

!new pointer code 

!    bpErgArray(tmpErgGrp)%bpArray(tmpTotal)%p_bp => 

bpMasterArray(srcMasterTot) 

!new pointer code 
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    return 

end subroutine bank_particle 

  ! ------------------------------------------------------------------------ 

  subroutine unbank_particle 

    ! Description  

    type (banked_particle) :: curbp 

    if(bpErgArray(curErgGrp)%bpErgTotal  <= 0) then 

      do i = ergGrpCnt, 1, -1 

        if(bpErgArray(i)%bpErgTotal > 0) then 

          curErgGrp = i 

          goto 120 

        end if 

      end do 

    end if 

120 continue 

 

  tmpTotal = bpErgArray(curErgGrp)%bpErgTotal 

  curbp = bpErgArray(curErgGrp)%bpArray(tmpTotal) 

!new pointer code 

!    curbp = bpErgArray(curErgGrp)%bpArray(tmpTotal)%p_bp 

!new pointer code 

  bpErgArray(curErgGrp)%bpErgTotal = tmpTotal – 1 

 

130 continue 

    ! Retrieve the particle. 

    /* Code removed to protect Copyright information */ 

   /* Assign MCNP Global variables from curbp attributes */ 

 

    srcbptot = srcbptot-1 

    nbnk = srcbptot 

    if(curbp%abpptb == 1) then 

        deallocate(curbp%bpptb) 

    end if 

  

    if(curbp%abpudt == 1) then 

        deallocate(curbp%bpudt) 

    end if 

  

    if(curbp%abprtc == 1) then 

        deallocate(curbp%bprtc) 

    end if 

  

    if(curbp%abpktc == 1) then 

        deallocate(curbp%bpktc) 

    end if 
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    if(curbp%abpuran_trf == 1) then 

        deallocate(curbp%bpuran_trf) 

    end if 

    curbp%abprtc = 0 

    curbp%abpudt = 0 

    curbp%abpptb = 0 

    curbp%abpuran_trf = 0 

    curbp%abpktc = 0 

  

    return 

  end subroutine unbank_particle 
 

B.7 Material/Energy Group banked_particle_mod.F90 

module banked_particle_mod 

 

    use mcnp_global 

    use mcnp_debug 

    implicit none 

 

  type banked_particle 

    integer ::  abprtc = 0 

    integer ::  abpudt = 0 

    integer ::  abpptb = 0 

    integer ::  abpuran_trf = 0 

    integer ::  abpktc = 0 

    real(dknd), dimension(:,:),pointer ::  bprtc 

    real(dknd), dimension(:,:),pointer ::  bpudt 

    real(dknd), dimension(:,:),pointer ::  bpptb 

    real(dknd), dimension(:,:,:),pointer ::  bpuran_trf 

    integer, dimension(:,:),pointer :: bpktc 

    real(dknd) :: xxx                     != X-coordinate of the particle position. 

    real(dknd) :: yyy                     != Y-coordinate of the particle position. 

    real(dknd) :: zzz                     != Z-coordinate of the particle position. 

    real(dknd) :: uuu                     != Particle direction cosine with X-axis. 

    real(dknd) :: vvv                     != Particle direction cosine with Y-axis. 

    real(dknd) :: www                     != Particle direction cosine with Z-axis. 

    real(dknd) :: erg                     != Particle energy. 

    real(dknd) :: wgt                     != Particle weight. 

    real(dknd) :: tme                     != Time at the particle position. 

    real(dknd) :: vel                     != Speed of the particle. 

    real(dknd) :: dls                     != Distance to next boundary. 

    real(dknd) :: dxl                     != Distance to nearest DXTRAN sphere. 
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    real(dknd) :: dtc                     != Distance to time cutoff. 

    real(dknd) :: elc(mipt)               != Energy cutoffs in the current cell. 

    real(dknd) :: fiml(mipt)              != Importance of the current cell. 

    real(dknd) :: fismg                   != Multigroup importance. 

    real(dknd) :: wtfasv                  != Accumulated weight of adjoint particle. 

    real(dknd) :: rnk                     != RNR at point where new track was created. 

    real(dknd) :: spare(mspare)           != Spare banked array for user modifications. 

    real(dknd) :: totmp                   != Total cross section for previous track. 

    real(dknd) :: ralfp(2)                != Eigenvalue by 2nd order perturb method. 

    real(dknd) :: zpblcm 

 

    integer :: npa                 != Number of tracks in the same bank location. 

    integer :: icl                 != Program number of the current cell. 

    integer :: jsu                 != Program number of the current surface. 

    integer :: ipt                 != Type of particle. 

    integer :: iex                 != Index of the current cross section table. 

    integer :: node                != Number of nodes in track from source to here. 

    integer :: idx                 != Number of the current DXTRAN sphere. 

    integer :: ncp                 != Count of collisions per track. 

    integer :: jgp                 != Neutron: particle energy group number. 

                                 != Electron/photon: generation class for F6:p tally. 

    integer :: lev                 != Level of the current particle. 

    integer :: iii                 != First lattice index of particle location. 

    integer :: jjj                 != Second lattice index of particle location. 

    integer :: kkk                 != Third lattice index of particle location. 

    integer :: iap                 != Program number of the next cell. 

    integer :: iexp                != IEX from previous collision. 

    integer :: mtp                 != Reaction MT from previous collision. 

    integer :: nmco                != Stores value of NMC as it is updated. 

    integer :: i_positron          != Flag for positron (when ipt==electron). 

    integer :: node_above          != Current PHTVR node of the particle 

    integer :: branch              != PHTVR tree branch of the particle 

    integer :: scoring_particle    != Flag to indicate that the particle 

                                 != does not contribute to regular tallies. 

    integer :: progenitor_id       != progenitor id for adjoint weighting in kcode. 

    integer :: delayed_group       != delayed neutron group 

    integer :: mpblcm 

  end type banked_particle 

 

  type bpErgArrayType 

    integer :: bpErgTotal = 0 

    type(banked_particle), dimension(:),pointer :: bpArray 

  end type bpErgArrayType 

 

  !new pointer 
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!  type bpArrayType 

!    type(banked_particle),pointer :: p_bp 

!  end type bpArrayType 

! 

!  type bpErgArrayType 

!    integer :: bpErgTotal = 0 

!    type(bpArrayType), dimension(:),pointer :: bpArray 

!  end type bpErgArrayType 

!new pointer 

 

  type bpIclArrayType 

    integer :: bpIclTotal = 0 

    type(bpErgArrayType), dimension(:),pointer :: bpErgArray 

  end type bpIclArrayType 

 

  type(bpIclArrayType), allocatable :: bpIclArray(:) 

  !type(bpErgArrayType), allocatable :: bpErgArray(:) 

 

!new pointer 

!  type(banked_particle), allocatable, target :: bpMasterArray(:) 

!new pointer 

 

  integer, allocatable :: IclGrpLookup(:) 

 

  integer :: curErgGrp = 10 

  integer :: ergGrpCnt = 10 

  integer :: iclGrpCnt = 9 

  integer :: curIclGrp = 9 

 

!  type(banked_particle),allocatable :: arraySrcbp(:) 

  integer :: srcbptot 

  integer :: srcbpmax 

  integer :: srcbpcur 

  integer :: srcbpproc 

  integer :: particleMaxSet = 0 

  integer :: srcMasterTot 

contains 

 

subroutine bpInit 

    implicit none 

    integer :: i,j = 0 

 

    allocate(IclGrpLookup(25)) 

    IclGrpLookup(1) = 1 

    IclGrpLookup(2) = 2 
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    IclGrpLookup(3) = 2 

    IclGrpLookup(4) = 7 

    IclGrpLookup(5) = 4 

    IclGrpLookup(6) = 3 

    IclGrpLookup(7) = 2 

    IclGrpLookup(8) = 2 

    IclGrpLookup(9) = 7 

    IclGrpLookup(10) = 5 

    IclGrpLookup(11) = 6 

    IclGrpLookup(12) = 6 

    IclGrpLookup(13) = 6 

    IclGrpLookup(14) = 6 

    IclGrpLookup(15) = 6 

    IclGrpLookup(16) = 6 

    IclGrpLookup(17) = 6 

    IclGrpLookup(18) = 6 

    IclGrpLookup(19) = 6 

    IclGrpLookup(20) = 6 

    IclGrpLookup(21) = 6 

    IclGrpLookup(22) = 8 

    IclGrpLookup(23) = 9 

    IclGrpLookup(24) = 9 

    IclGrpLookup(25) = 9 

 

    allocate(bpIclArray(iclGrpCnt)) 

 

    do i = 1, iclGrpCnt, 1 

        allocate(bpIclArray(i)%bpErgArray(ergGrpCnt)) 

        bpIclArray(i)%bpIclTotal = 0 

 

        bpIclArray(i)%bpErgArray(1)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(1)%bpArray(7000)) 

 

        bpIclArray(i)%bpErgArray(2)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(2)%bpArray(7000)) 

 

        bpIclArray(i)%bpErgArray(3)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(3)%bpArray(5000)) 

 

        bpIclArray(i)%bpErgArray(4)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(4)%bpArray(5000)) 

 

        bpIclArray(i)%bpErgArray(5)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(5)%bpArray(5000)) 
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        if (ergGrpCnt == 10) then 

        bpIclArray(i)%bpErgArray(6)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(6)%bpArray(5000)) 

 

        bpIclArray(i)%bpErgArray(7)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(7)%bpArray(5000)) 

 

        bpIclArray(i)%bpErgArray(8)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(8)%bpArray(5000)) 

 

        bpIclArray(i)%bpErgArray(9)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(9)%bpArray(5000)) 

 

        bpIclArray(i)%bpErgArray(10)%bpErgTotal = 0 

        allocate(bpIclArray(i)%bpErgArray(10)%bpArray(5000)) 

        end if 

    enddo 

!    allocate(bpMasterArray(100000)) 

    return 

end subroutine bpInit 

 

subroutine getErgGrp(tmpErgGrp) 

    implicit none 

 

    integer, intent(out) :: tmpErgGrp 

 

    if (ergGrpCnt == 10) then 

        if(erg < 0.0000001) then !thermal 

            tmpErgGrp = 1 

        else if(erg >= 0.0000001 .and. erg < 0.000001) then !epithermal 

            tmpErgGrp = 2 

        else if(erg >= 0.000001 .and. erg < 0.1) then !resonance 

            tmpErgGrp = 3 

        else if(erg >= 0.1 .and. erg < 1.0) then 

            tmpErgGrp = 4 

        else if(erg >= 1.0 .and. erg < 1.5) then 

            tmpErgGrp = 5 

        else if(erg >= 1.5 .and. erg < 2.0) then 

            tmpErgGrp = 6 

        else if(erg >= 2.0 .and. erg < 2.5) then 

            tmpErgGrp = 7 

        else if(erg >= 2.5 .and. erg < 3.0) then 

            tmpErgGrp = 8 

        else if(erg >= 3.0 .and. erg < 3.5) then 

            tmpErgGrp = 9 
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        else 

            tmpErgGrp = 10 

        end if 

    else 

        if(erg < 0.0000001) then !thermal 

            tmpErgGrp = 1 

        else if(erg >= 0.0000001 .and. erg < 0.000001) then !epithermal 

            tmpErgGrp = 2 

        else if(erg >= 0.000001 .and. erg < 0.1) then !resonance 

            tmpErgGrp = 3 

        else if(erg >= 0.1 .and. erg < 3.0) then!fast 

            tmpErgGrp = 4 

        else 

            tmpErgGrp = 5 

        end if 

    end if 

end subroutine getErgGrp 

B.8 Material/Energy Group hstory.F90 

/* Code removed to protect Copyright information */ 

/*Code that handles the path of the neutron and determines if it goes to a new cell*/ 

!if new cell lookup group to store neutron in 

    if(IclGrpLookup(Icl) == curIclGrp ) then 

      go to 50 

    else 

      npa = 1 

      call bankit(1) 

      go to 290 

    endif 

 

/*Return from code that describes collision effects*/ 

! Optimization Modification Begins 

call getErgGrp(tmpErgGrp) 

 

  if(tmpErgGrp == curErgGrp) then 

    go to 30 

  else 

    npa = 1 

    call bankit(1) 

    go to 290 

  endif 

! Optimization Modification Ends 

  ! 

  ! ******************  Process terminated particles.  ******************** 
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  ! 

 

/* Code removed to protect Copyright information */ 

end subroutine hstory 

B.9 Material/Energy Group bankit.F90 

  subroutine bank_particle 

        ! Description: 

/* Code removed to protect Copyright information */ 

    integer :: tmpErgGrp = 5 

    type (banked_particle) :: curbp 

/* Code removed to protect Copyright information */ 

/* Assign curbp attributes from variables recorded in MCNP */ 

    srcbptot = srcbptot+1 

    nbnk = srcbptot 

!new pointer code 

!    srcMasterTot = srcMasterTot+1 

!    bpMasterArray(srcMasterTot) = curbp 

!new pointer code 

    call getErgGrp(tmpErgGrp) 

 

    tmpIclGrp = IclGrpLookup(icl) 

    tmpIclTot = bpIclArray(tmpIclGrp)%bpIclTotal + 1 

    tmpErgTot = bpIclArray(tmpIclGrp)%bpErgArray(tmpErgGrp)%bpErgTotal + 1 

    bpIclArray(tmpIclGrp)%bpIclTotal = tmpIclTot 

    bpIclArray(tmpIclGrp)%bpErgArray(tmpErgGrp)%bpErgTotal = tmpErgTot 

 

    bpIclArray(tmpIclGrp)%bpErgArray(tmpErgGrp)%bpArray(tmpErgTot) = curbp 

!new pointer code 

!     bpIclArray(tmpIclGrp)%bpErgArray(tmpErgGrp)%bpArray(tmpErgTot)%p_bp => 

bpMasterArray(srcMasterTot) 

!new pointer code 

    

    return 

end subroutine bank_particle 

  ! ------------------------------------------------------------------------ 

  subroutine unbank_particle 

    ! Description  

    type (banked_particle) :: curbp 

    if(bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpErgTotal  <= 0) then 

    do i = ergGrpCnt, 1, -1 

      if(bpIclArray(curIclGrp)%bpErgArray(i)%bpErgTotal > 0) then 

        curErgGrp = i 

        goto 120 
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      else 

        do j = iclGrpCnt, 1, -1 

          if(bpIclArray(j)%bpIclTotal > 0) then 

            curIclGrp = j 

            do k = ergGrpCnt, 1, -1 

              if(bpIclArray(curIclGrp)%bpErgArray(k)%bpErgTotal > 0) then 

                curErgGrp = k 

                goto 120 

              end if 

            enddo 

          end if 

        enddo 

      end if 

    enddo 

    end if 

120 continue 

    tmpIclTot = bpIclArray(curIclGrp)%bpIclTotal 

    tmpErgTot = bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpErgTotal 

 

    curbp = bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpArray(tmpErgTot) 

!new pointer code 

!    curbp = 

bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpArray(tmpErgTot)%p_bp 

!new pointer code 

    bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpErgTotal = tmpErgTot - 1 

    bpIclArray(curIclGrp)%bpIclTotal = tmpIclTot – 1 

 

130 continue 

    ! Retrieve the particle. 

    /* Code removed to protect Copyright information */ 

   /* Assign MCNP Global variables from curbp attributes */ 

 

    srcbptot = srcbptot-1 

    nbnk = srcbptot 

    if(curbp%abpptb == 1) then 

        deallocate(curbp%bpptb) 

    end if 

  

    if(curbp%abpudt == 1) then 

        deallocate(curbp%bpudt) 

    end if 

  

    if(curbp%abprtc == 1) then 

        deallocate(curbp%bprtc) 

    end if 
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    if(curbp%abpktc == 1) then 

        deallocate(curbp%bpktc) 

    end if 

  

    if(curbp%abpuran_trf == 1) then 

        deallocate(curbp%bpuran_trf) 

    end if 

    curbp%abprtc = 0 

    curbp%abpudt = 0 

    curbp%abpptb = 0 

    curbp%abpuran_trf = 0 

    curbp%abpktc = 0 

  

    return 

  end subroutine unbank_particle 
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Thesis Defense Presentation 
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