

Improved MCNP Memory Locality by

Neutron Grouping

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Nuclear Engineering

in the

College of Graduate Studies

University of Idaho

by

Aaron Bly

May 2014

Major Professors: Akira Tokuhiro, Ph.D. and Robert Hiromoto, Ph.D.

ii

Authorization to Submit Thesis

This thesis of Aaron Bly, submitted for the degree of Master of Science with a major in

Nuclear Engineering and titled “Improved MCNP Memory Locality by Neutron Grouping,”

has been reviewed in final form. Permission, as indicated by the signatures and dates given

below, is now granted to submit final copies to the College of Graduate Studies for approval.

Major Professors: _______________________ Date______________

 Akira Tokuhiro

 _______________________ Date______________

 Robert Hiromoto

Committee

Member: _______________________ Date______________

 Fatih Aydogan

Department

Administrator: _______________________ Date______________

 Lee Ostrom

Discipline's

College Dean: _______________________ Date______________

 Larry Stauffer

Final Approval and Acceptance

Dean of the College

of Graduate Studies: _______________________ Date______________

 Jie Chen

iii

Abstract

This research presents new code for Monte Carlo N-Particle (MCNP) to achieve an

improved time during criticality calculations. Modifications implementing the grouping and

sorting of neutrons takes advantage of memory locality by processing all neutrons in a group

to achieve the temporal reuse of cross section data. This prevents unnecessary data lookups.

Various groupings and their results are compared.

The modified code utilizing neutron energy groups provided the best result of a

16.7% ± 0.5% speedup for a criticality determination of a two slab tank experiment. This is

a savings of 2 ½ hours for a system that normally takes approximately 15 ½ hours to

execute. The code implemented was chosen to require minimal modifications to the MCNP

program thus avoiding the need to rewrite a new version. Verification and validation is still

needed in order to show that a speedup using neutron groups can be achieved in all cases.

iv

Acknowledgements

The author would like to thank his wife and family who have put up with long study

hours and for supporting him in every way. He couldn’t have done it without them. Also he

is indebted to Dr. Robert Hiromoto for his guidance and insights during the programming of

the changes in the code. He would also like to thank Dr. Akira Tokuhiro for his review and

helpful comments in writing this document.

v

Table of Contents

Authorization to Submit Thesis .. ii

Abstract .. iii

Acknowledgements .. iv

Table of Contents .. v

List of Figures ... vii

List of Tables ... viii

Chapter 1: Introduction ... 1

Chapter 2: Neutron Interaction with Matter .. 5

2.1 Introduction ... 5

2.2 The Neutron .. 5

2.3 Concept of Cross Sections .. 5

2.4 Neutron Interactions .. 6

2.5 Variation of Cross Sections with Neutron Energy .. 9

2.6 Effective Neutron Multiplication Factor ... 10

2.7 Summary ... 10

Chapter 3: Monte Carlo N-Particle ... 11

3.1 Introduction ... 11

3.2 MCNP Input Cards .. 11

3.3 KCode Calculation .. 12

3.4 Cross Section Data .. 12

3.5 MCNP Flow .. 13

Chapter 4: Improvement of Memory Locality Techniques ... 18

4.1 Introduction ... 18

4.2 Memory ... 18

4.3 Compiler Optimizations .. 19

4.4 Inlining .. 20

4.5 Register Utilization ... 20

4.6 Prefetching Operands .. 21

4.7 Loops ... 21

4.8 Scalar Optimizations ... 22

4.9 Vectorization ... 23

Chapter 5: Application of Neutron Groupings .. 24

5.1 Introduction ... 24

vi

5.2 Source Generation Modifications.. 24

5.3 Material Bins ... 25

5.4 Energy Bins ... 26

5.5 New MCNP Flow .. 27

5.6 Neutron Groups and Cache Effects ... 32

5.7 Code Changes and Results for Energy Groups ... 35

5.7.1 Store Neutron in Energy Group ... 35

5.7.2 Arrays of Memory Pointers .. 40

5.8 Code Changes and Results for Material/Energy Groups... 42

5.9 Side by Side Comparison of Code Set Results ... 49

5.10 Complex Configuration Designs ... 51

Chapter 6: Conclusion ... 53

References ... 55

Appendix A ... 57

Appendix B ... 63

B.1 Introduction .. 64

B.2 trnspt.F90 .. 64

B.3 newSource.F90 ... 65

B.4 Energy Group banked_particle_mod.F90 ... 65

B.5 Energy Group hstory.F90 ... 69

B.6 Energy Group bankit.F90 ... 69

B.7 Material/Energy Group banked_particle_mod.F90 .. 71

B.8 Material/Energy Group hstory.F90 .. 76

B.9 Material/Energy Group bankit.F90 .. 77

Appendix C ... 80

vii

List of Figures

Figure 2-1: Scattering Event .. 7

Figure 2-2: Absortion Event .. 8

Figure 2-3: Types of Cross Sections .. 8

Figure 2-4: Cross Section vs Neutron Incident Energy ... 9

Figure 3-1: Overview MCNP Process Flow .. 14

Figure 3-2: Detailed MCNP Flow ... 16

Figure 3-3: MCNP Process Pseudo Code .. 17

Figure 4-1: Loop Code Motion .. 22

Figure 4-2: Exponentiation Replaced by Multiplication ... 22

Figure 4-3: Multiplication Replaced by Addition ... 23

Figure 5-1: Energy Group Determination.. 26

Figure 5-2: New Overview MCNP Process Flow ... 28

Figure 5-3: New Detailed MCNP Flow ... 30

Figure 5-4: New MCNP Process Pseudo Code ... 31

Figure 5-5: MCNP Cache Hit/Miss 1 .. 32

Figure 5-6: MCNP Cache Hit/Miss 2 .. 32

Figure 5-7: MCNP Cache Hit/Miss 3 .. 33

Figure 5-8: Neutron Group Cache Hit/Miss 1 ... 34

Figure 5-9: Neutron Group Cache Hit/Miss 2 ... 34

Figure 5-10: Banked_Particle Complex Type ... 36

Figure 5-11: Energy Group Arrays .. 37

Figure 5-12: Neutron Storage in Groups ... 38

Figure 5-13: Neutron Retrieval from Groups .. 39

Figure 5-14: Neutron Storage with Pointers .. 40

Figure 5-15: Array of Pointers Showing Gather/Scatter ... 42

Figure 5-16: Geometry of Criticality Design used in Research .. 43

Figure 5-17: Material Cells .. 44

Figure 5-18: Material Group Lookup .. 45

Figure 5-19: Material/Energy Group Arrays ... 46

Figure 5-20: Material/Energy Group Neutron Storage and Retrieval 47

viii

List of Tables

Table 2-1: Neutron Energy Ranges ... 9

Table 5-1: Run Time Comparisons .. 49

Table 5-2: keff Comparisons ... 51

1

Chapter 1: Introduction

 The ability to model nuclear systems that reach criticality and determining which

configurations will provide the desired outcome (safety margin and performance) is a

complex and, oft times, long process. Monte Carlo simulations can provide results that

give a close approximation to real historical and experimental data for neutron transport.

Software has been developed to provide a means to simulate the Monte Carlo methods

for more detailed designs.

 Software programs, such as Monte Carlo N-Particle (MCNP), have been created

to provide a way to automate the calculations. However, due to the lengthy computation

time that the Monte Carlo method requires it is still difficult to use in every day

modeling. Smith (2003) tells of interest by the reactor physics community in performing

a full-core Monte Carlo analysis. Smith predicted that a full-core Monte Carlo

calculation would take 5,000 hours on a 2-GHz PC and, according to Moore’s Law, could

not be performed in less than one hour until the year 2030. Martin (2007) re-analyzed the

topic at the 2007 ANS Mathematics & Computation Conference and concluded that it

would be 2019 when such a full reactor core calculation could be accomplished in one

hour by making use of a 1500-core processor. The availability of a 1500-core processor

isn’t a reality to every engineer.

 Research and development has been pursued to develop ways to speed up the

calculations allowing engineers the ability to take advantage of computer–based

modeling without having to wait for long periods of time. Many have worked on

modifying MCNP to optimize its performance and thus speed up the process.

MCNP has been modified by rewriting the code to work on parallel processors.

McKinney and West (1993) researched the idea of running on an IBM RS6500 cluster

with speedups of 13.3x faster. Others have applied MCNP to parallel processors as well.

Hadjidoukas et al. (2010) achieved speedup of results of 61.16x with a parallel processor

code rewrite of the MC4 software and Carstens (2004) got a speedup of 20 – 30x with a

Beowulf Cluster of parallel processors.

2

 Another optimization process has been to work with Graphics Processing Units

(GPU) to achieve their results. Brown, et al. (2012a) reports speedups of up to 33.3x and

64.0x using a single or dual GPU environment. Nelson (2009) stated in his thesis of

speedup results, on a GPU converted code, of 23.91x over standard central processing

unit (CPU) runs. Meanwhile Gong, et al. (2011) reported speedups of a factor of 16.3 –

23.67x compared to single core CPU. Brown, et al. (2012b) stated that in order to take

full advantage of GPU technologies, many challenges related to the hardware and

software must be carefully understood and addressed. Furthermore, it must be kept in

mind that some of the deficiencies and constrains in existing GPUs will likely be

mitigated in future-generation products, leading to exponentially improved and perhaps

unexpected computing power when compared with its CPU counterparts.

 MCNP has shown increased speed by being rewritten to allow vectorization of the

calculations by Brown and Martin (1984). Their results show speedups of at least 20 –

40x over scalar calculations utilizing the vectorized code.

 All this previous research into optimizing MCNP involves intensive rewrites of

the program to take advantage of the increased speed. Also, the rewritten code is very

specific to the system it is running on and would not be able to be run on another system

unless it had the same configuration.

 Brown and Martin (1987), in using a vectorized code to implement Monte Carlo

methods, discussed that speedups are achieved from the organization of neutrons into

groups they called supergroups. These supergroups allow for the use of the same cross

section data without having to jump around memory looking for the data when the

neutrons don’t have similar characteristics. Brown and Martin also mentioned the issue

of moving the data that represents the neutron from group to group counteracting the

benefits of having the groups. As cross section data has to be removed from memory in

order to handle the memory position swapping of the neutron. In order to counter that

problem they discussed placing pointers in the groups that directs the neutron data’s

location and only moving the pointers from group to group. These methods take

3

advantage of temporal and spatial locality of data in memory and are the main topic of

the research discussed here.

Siegel, et al. (2013) also investigated the need for memory optimizations resulting

in better use of locality in memory. Siegel, et al. state the cross section probabilities are

strongly dependent on the precise energy of the neutron, and thus, as a neutron jumps

around in energy from interaction to interaction, the calculation involves frequent, nearly

random access to very large read-only lookup tables, something which presents

significant performance challenges when executing simulations on modern CPUs. The

significance of the need to explore memory optimizations can also be seen in their

discussion that for robust reactor calculations the cross section data loads can consume up

to 85% of the total application time, and typical integration times of thousands of

particles per second can make highly detailed calculations impractical. The program

used to test their theory was OpenMC.

The commonality of all the approaches described above requires an extensive

restructuring of the Monte Carlo particle transport code as currently implemented in the

MCNP program.

The objective of this thesis is to demonstrate that a more optimal sequential

MCNP performance can be obtained with minimal programming effort by organizing the

neutrons in to groups.

The methods discussed in this document have been applied with slight

modifications to the original MCNP code allowing it to run on various systems without

the need to be rewritten each time you want to change the system that you are using.

Also, more engineers can benefit from a faster running code on their normal desktop

computers.

 To provide enough background information to the reader, a brief discussion on

the basic nuclear engineering aspect of neutrons and cross section interactions is

provided. The MCNP code is describe and used as the basis for comparing structural

programming changes made in this thesis. Details of the various methods used are

4

provided. Finally, the process and reasoning behind the choices made for the additions to

the MCNP code and the results achieved are illustrated.

5

Chapter 2: Neutron Interaction with Matter

2.1 Introduction

 A brief explanation of concepts regarding the interactions of neutrons with fuel

and non-fuel materials is given in this chapter. For the reader well versed on interactions

please skip to the chapters where the Monte Carlo N-Particle (MCNP) code will be

discussed.

2.2 The Neutron

 An atom consists of 3 sub-atomic particles called electrons, protons, and neutrons.

Electrons are described as circling the nucleus of the atom while protons and neutrons

make up the nucleus. Neutrons are necessary within an atomic nucleus as they bind with

protons to hold the nucleus together via the nuclear force or binding energy. While

bound neutrons in nuclei have the possibility to be stable, free neutrons are unstable and

undergo decay, thus the cause for radiation.

 The neutron was discovered in 1932 by James Chadwick, and in 1933 it was

hypothesized by Leo Szilard to be the cause for nuclear chain reactions, and that nuclear

reactions can self-perpetuate. During the 1930’s, when nuclear fission was discovered, it

became clear that if the process also produced free neutrons, this could produce the

neutrons needed for a fission chain reaction. The kinetic energy of the fission fragment is

the method that generates the energy, in the form of heat, used in energy conversion in a

nuclear power plant.

2.3 Concept of Cross Sections

 A cross section is the effective area that governs the probability that a nuclear

reaction will occur. From nuclear physics the cross section is used as the probability of

an interaction event between a neutron traveling through a material and that material’s

nuclides.

6

Cross sections are dependent on various parameters: energy of the neutron

involved, material in which the neutron is traveling, energy of the material atoms, and the

relative angle between neutron and target material nuclide. These parameters influence

the cross sections by either increasing or decreasing the probability of the interaction

events.

2.4 Neutron Interactions

Interactions of a free neutron traveling through other materials can be divided into

two major phenomena with corresponding cross sections: scattering and absorption. The

sum of these cross sections is called the total cross section. When a neutron is scattered

by a nucleus, its speed and direction change but the nucleus is left with the same number

of protons and neutrons it had before the interaction. The nucleus will have some recoil

velocity and it may be left in an excited state that will lead to the eventual release of

radiation. When a neutron is absorbed by a nucleus the atom will enter into an excited

state and will attempt to reach a stable state by either releasing energy in the form of

radiation or fission can be induced.

 Scattering events, see Figure 2-1, can be subdivided into elastic and inelastic

scattering. In elastic scattering the total kinetic energy of the neutron and nucleus is

unchanged by the interaction. During the interaction, a fraction of the neutron’s kinetic

energy is transferred to the nucleus thus slowing down the neutron. Inelastic scattering is

similar to elastic scattering except that the nucleus undergoes an internal rearrangement

into an excited state from which it eventually releases radiation.

7

Figure 2-1: Scattering Event

 Instead of being scattered by a nucleus, the neutron may be absorbed as shown in

Figure 2-2. A variety of emissions may follow. The nucleus may rearrange its internal

structure and release one or more gamma rays. Charged particles may also be emitted.

The more common charged particles are protons, deuterons, and alpha particles. The

nucleus may also rid itself of excess neutrons. The emission of only one neutron is

indistinguishable from a scattering event. If more than one neutron is emitted, the

number of neutrons now moving through the material is larger than the number present

before the interaction; the number of neutrons is said to have been multiplied. Finally,

there may be a fission event, leading to two or more fission fragments (nuclei of

intermediate atomic weight) and more neutrons. Rinard, (1991).

8

Figure 2-2: Absorption Event

 Figure 2-3 shows the types of cross sections and how they are related to one

another.

Figure 2-3: Types of Cross Sections

Total σT

Scattering σs Absorption σa

Elastic σel Inelastic σinel Fission σf Capture σc

9

2.5 Variation of Cross Sections with Neutron Energy

There are four regions that a neutron can be classified under due to its energy:

fast, resonance, epithermal and thermal.

Table 2-1: Neutron Energy Ranges

Neutron Energy Ranges

Fast 100 keV to 10 MeV

Resonance 1 eV to 100 keV

Epithermal 0.1 eV to 1 eV

Thermal 0.025 eV (< 0.1 eV)

Figure 2-4 shows the relationship between cross section and incident neutron energy. For

the most part the cross section decreases as an inverse of neutron energy (1/E).

Figure 2-4: Cross Section vs Neutron Incident Energy

10

2.6 Effective Neutron Multiplication Factor

The effective neutron multiplication factor, keff, is the rate of neutron production

divided by the rate of neutron absorption plus rate of neutron leakage from the system.

The value of k determines how a nuclear chain reaction proceeds. (Glasstone and

Sesonske, (1969)):

 keff < 1 (subcritical): The system cannot sustain a chain reaction, and any

beginning of a chain reaction dies out over time. The rate of production of

neutrons would be less than the rate of neutron loss.

 keff = 1 (critical): A steady state is achieved and just as many neutrons are

produced as lost.

 keff > 1 (supercritical): More neutrons are being produced than are lost, and so the

density (and fission rate) will increase continuously. Nuclear weapons are

designed to operate under this state.

The keff is thus a value that classifies whether a system design is a critical system.

MCNP is a software application that can run a series of calculations and then tally the

results to determine a statistical value for keff.

2.7 Summary

 In summary, neutrons are of major interest when studying or creating nuclear

power. Cross sections are dependent on the material in which the neutron is traveling and

the neutron’s energy. The interaction events each have a cross section associated with

them that together can add up to the total cross section.

11

Chapter 3: Monte Carlo N-Particle

3.1 Introduction

As found in the manual for Monte Carlo N-Particle (MCNP) written by X-5

Monte Carlo Team, (2003): The Monte Carlo N-Particle code is a general purpose

program that can be used for modeling and calculating neutron, photon, electron, or

coupled neutron/photon/electron transport. MCNP was written and developed by Los

Alamos National Laboratory since at least 1957. The program is written in ANSI-

Standard Fortran 90 software language. The program uses the Monte Carlo method,

which is a numerical analysis technique that uses random sampling to estimate the

solution of a physical or mathematical problem.

MCNP uses continuous-energy nuclear and atomic data libraries. The primary

source of the nuclear data are evaluations from the Evaluated Nuclear Data File (ENDF)

system, Advanced Computational Technology Initiative (ACTI), the Evaluated Nuclear

Data Library (ENDL), Evaluated Photon Data Library (EPDL), the Activation Library

(ACTL) compilations from Livermore, and evaluations from the Nuclear Physics (T–16)

Group at Los Alamos. Evaluated data is processed into a format appropriate for MCNP

by codes such as NJOY. The processed nuclear data libraries retain as much detail from

the original evaluations as is feasible to faithfully reproduce the evaluator’s intent.

3.2 MCNP Input Cards

The MCNP program requires an input file from the user where the user defines

the problem geometry, specifies the materials and source, and states the results desired

from the calculation. The geometry is determined by identifying cells that are bound by

surfaces. Within these surfaces the cell can be either filled with a material or a void.

The input file consists of three major sections: cell cards, surface cards, and data

cards. Note that “card” is used to describe a single line of input up to 80 characters and

refers back to the usage of punch cards which were created to store data and program

12

code. However, today the program uses an electronic file, which makes it easier to

design the problem. A section in the input file is made up of one or more cards and is

delimited by a blank line to distinguish between sections.

The cell cards are used to define the shape and material content of the physical

space. This is done by joining the surface cards in the next section of the input file. The

data cards hold the information that describes the materials and source, which are both

important for criticality calculations. These are only two of the many cards available in

MCNP. For a full list, usage of, and formatting requirements for these cards can be

found in the MCNP manual.

Appendix A has an example of an input card. It is the input card used for the

testing of the optimizations used in this discussion.

3.3 KCode Calculation

MCNP can perform many types of calculations. The KCode calculation is of

particular interest for this paper. This calculation determines the average k effective (keff)

value for the given inputs to the program. This helps provide the criticality of the model

described in the input file. These calculations can run for a very long time. The test case

used in this discussion is a KCode calculation and the base run time is about 15 ½ hours.

As you might expect that can cause delay for trying to study various reactor models.

The KCode information is found in the input card. It lists the amount of source

particles wanted and how many cycles, or iterations, are wanted to repeat the problem in

order to provide the average value of keff for a given configuration.

3.4 Cross Section Data

The input file holds a list of the material make-up of the different parts of the

reactor. This list states the elements and their reference to the data libraries that contain

the characteristics of the elements. These characteristics are what determine cross section

groupings.

13

The data libraries containing this information have been determined and gathered

through actual experimental processes. The data they store are the probability values for

the various types of events that can occur between a neutron and another nucleus and is

called a cross section.

 At the initialization of the MCNP program it reads in the cross section data that is

needed based on what is listed in the materials list. MCNP stores all the data it needs into

a data array. At this point MCNP has a smaller amount of information to work with

compared to having to store all the cross section data in the full library.

3.5 MCNP Flow

 Once MCNP begins the actual calculation processes it begins by generating a

source neutron. This neutron is then followed through its “lifetime” until it is either

absorbed into a nucleus without a fission event or it leaks out of the system. This process

of following the neutron is called the particle’s history. See Figure 3-1 for a simplified

flow of how the MCNP program works.

14

Figure 3-1: Overview MCNP Process Flow

 The first thing that is done in the neutron history is the calculation of the cross

section data for the given material and energy of the neutron. The program has to access

the cross section data it has stored and make the calculation. The program makes the

adjustments for energy (erg) and the cell / material (icl) that the neutron is currently in

when making calculations with the cross section data.

 The neutron is then advanced a random distance. The neutron position is

measured to determine if the neutron has moved far enough to have entered into a new

cell or material. If it has, then the process starts again of calculating the new cross

section data. If, however, the neutron has not reached a boundary, it is now time to

determine which interaction event, if any, will occur. The calculated cross section is used

to determine which interaction occurs, because as was stated earlier the cross section data

is a set of probabilities of which event is most likely to occur.

 If an event occurs then the resultant effect is calculated. Scattering events change

the direction and energy level of the neutron. Absorption ends the life of the neutron,

15

however if fission occurs, new neutrons are generated. All but one neutron is stored in a

process called banking and then that neutron is followed through its history. After the

current neutron finishes its history the program retrieves a banked neutron and starts

processing its history and repeats the process stated above. This continues until all

banked particles have either been absorbed or leak out of the system. Once the banked

particles are used up the program generates another source neutron and begins the history

again. This process continues until the numbers of desired source neutrons have been

processed.

 Each event is recorded and a running tally is kept so that the keff value can be

calculated. Once the source neutron count has been reached and all neutron histories

tracked, the cycle is finished and the keff value is determined. The program will continue

until all cycles have been completed.

16

Figure 3-2: Detailed MCNP Flow

Generate Source

Neutron

Advance the neutron a random

distance

Lookup material and cross

section data and calculate

total cross section

All materials at

current position

processed?
No

Yes

Evaluate Neutron Interaction

Has neutron reached

edge of system and

leaked out?

No

Yes

Scatter

Update neutron

energy and direction

Fission Absorption

Tally Values / Calculate keff

Store all but

one resultant

neutron

Start Flow

17

The history flow can be shown using high level pseudo code to show the process

and how it loops in the program. See Figure 3-3 below.

MCNP Process Pseudo Code

1: for each count in desired particle do

2: generate particle or retrieve stored particle if available

3: repeat

4: advance particle random distance in material

5: lookup material at particle position

6: for each type of material in current position do

7: for each interaction event do

8: lookup x-section data

9: calculate addition to total x-section

10: end for

11: end for

12: randomize interaction

13: update particle properties (position and energy)

14: if fission, store all but one particle

15: until particle is absorbed or leaks

16 tally results for particle

17: end for

Figure 3-3: MCNP Process Pseudo Code

18

Chapter 4: Improvement of Memory Locality Techniques

4.1 Introduction

 Various methods of optimization are discussed in this chapter. The methods used

in this research code are based on compiler optimization techniques.

4.2 Memory

 Memory consists of a hierarchy of locations that all have different speeds at

which a program can access them. This hierarchy ranges from the slowest being

accessing the data on the hard drive to next being main memory increasing speed by 10k

and then the CPU cache-memory which is yet generally 100 times faster than that.

Hennesy and Patterson (2007) describe the most important property that is

regularly exploited for memory as the principle of locality: Programs tend to reuse data

and instructions they have used recently. A widely held rule of thumb is that a program

spends 90% of its execution time in only 10% of the code. An implication of locality is

that we can predict with reasonable accuracy what instructions and data a program will

use in the near future based on its accesses in the recent past. The principle of locality

also applies to data accesses, though not as strongly as to code accesses.

Two different types of locality are defined. Temporal locality states that recently

accessed items are likely to be accessed in the near future. Spatial locality says that items

whose addresses are near one another tend to be referenced close together in time.

When the processor finds a requested data item in the cache, it is called a cache

hit. When the processor does not find a data item it needs in the cache, a cache miss

occurs. A fixed-size collection of data containing the requested word, called a block or

line run, is retrieved from the main memory and placed into the cache. Temporal locality

tells us that we are likely to need this word again in the near future, so it is useful to place

it in the cache where it can be accessed quickly. Because of spatial locality, there is a

high probability that the other data in the block will be needed soon.

19

 In order to utilize this optimization involving more efficient use of temporal and

spatial locality computer code needs to be written in such a way that it stores and

organizes the data with these locality references in mind.

Weinberg, (2005) confirmed the importance of memory organization in HPC

when he mentioned that some concrete and arbitrary choices have to be made when

implementing the formal definitions about how to count locality statistics, and some

approximations have to be made to make the data acquisition process tractable for HPC

applications.

A big issue to overcome in MCNP is the amount of data that exists in the cross section

calculations and the method and speed in which it is accessed. A commonality

mentioned in using GPUs to program was memory management. Nelson, (2009) stated

that the cross-section lookup routine takes approximately 33% of the computation time.

As well, Brown, et al. (2012a) had to pay close attention to where they needed to store

the cross section data in order to not slow down their process.

4.3 Compiler Optimizations

 The compiler can perform optimizations on the machine level code it creates.

Compiler optimization is generally implemented using a sequence of optimizing

transformations, which take a program and transform it to produce a semantically

equivalent output program that now utilizes fewer resources [e.g., registers, cache lines,

data accesses, etc.].

 Most compilers have preset groupings of optimizations that can be performed by

setting the appropriate flag. They are generally setup in a hierarchical manner with a

base group and each group after that adds on new optimizations to those of the previous

group.

 Programs written in high-level languages, such as Fortran 90, do not efficiently

map the access of operands or the utilization of the cache to the underlying computer

hardware optimally. The compiler, in addition to translating the written program into

20

machine language, schedules the compiled instructions in such a way as to maximize the

locality of operand references with prolonged temporal usage over as long a period as

possible. The primary goal is to achieve minimal movement of the same date (operands

and instructions) in and out of the CPU. Wadleigh and Crawford, (2000), and Levesque

and Wagenbreth, (2011) discuss techniques used in order to achieve an optimized state.

They are Inlining, Register Utilization, Prefetching Operands, Loops (Unrolling,

Interchange, and Code Motion), Scalar Optimizations, and Vectorization.

4.4 Inlining

 Programs are usually written with functions or subroutines that are used as

reusable code. If a function is to be called several times then it usually written in a way

that other code can call the function and get the expected outcome every time. Any

changes to that function can be made in only one location where the code resides. All

calls to this function automatically use the same updated code without ambiguities. This

provides a much cleaner and easier code for upkeep.

Functions are typically much simpler in the number of lines of code and the

required data arrays as compared by a subroutine (or procedure). When calling a

function or a subroutine, the operating system must set aside a stack area and temporary

registers sets, along with a pointer back to the program's calling-site. For a function, this

overhead can be more costly in setup time than the actual execution time. For this

reason, the compiler may copy the body of the function at the point of the function call

and remove the call altogether. This inclusion of the code is referred to as function

inlining.

4.5 Register Utilization

As described earlier, performance is tied to data access and latency. Registers are

placed in the close proximity of the processor's CPU limited in numbers and capacity but

has low access latencies, and reside in the close proximity of the processor's CPU. The

closest (and smallest) storage areas are registers that are contained in the processor.

These registers have little latency and provide additional high speed memory for

21

multiple, independent instruction streams. This allows the compiler to schedule

instructions so that pipelining is more efficient.

4.6 Prefetching Operands

 Prefetching upcoming operands, or values, during the processing of current code

and data blocks can provide optimization since the latency of fetching operands to the

cache is so much longer than fetching them from memory. This means the code needs to

be written or the compiler needs to be able to interpret the code in order to guess what

will be needed next.

 A difficulty can arise in doing this as the operands have to be placed in to the

same cache that is being used to hold the data that is currently being processed.

4.7 Loops

 Most of the optimizations for loops are related to increasing the amount of data

reuse – taking advantage of the spatial and temporal locality of the data in memory.

 Loop unrolling is when the value of the loop index is known and constant, the

loop may benefit from flattening the loop and getting rid of it entirely. Consider a simple

loop that loops four times to add values together. It might be beneficial to just write the

four lines of code to add them as opposed to creating the overhead to handle the loop.

 Nested loops appear in most significant computational-intensive codes. Since

there are many optimizations that can be done to loops, most compilers avoid attempts to

optimize nested loops unless told to specifically by the user.

 In nested loops the loops can oft times be interchanged to increase the number of

unit stride array references. This helps performance due to cache reuse.

 Nested loops can also undergo an Unroll and Jam technique. This refers to

unrolling multiple loops and jamming them back together in ways to reduce the number

of memory operations.

22

 Code Motion is a term that describes the action of the compiler to move

(reschedule) instructions in such a way as to make the utilization of registers more

efficient. Code Motion can guarantee the availability of operands at the moment an

instruction is to be executed or to hoist loop invariant operands and instructions before

the beginning of the loop as a means to avoid multiple fetches from memory. In addition,

the compiler applies code motion in such a way that the resulting code is still executed

correctly. The example below shows that the loading of the scale variable Y takes place

inside the Do loop. However, notice that value of Y is never updated during the

execution of the loop body. We refer to Y in this situation as a loop 'invariant'. In Fig. 4-

1 the Original Loop fetches Y from memory during each loop iteration. In the Optimized

Loop the value of Y is stored in register 1 and becomes part of the instruction sequence

within the loop:

Original Loop

Do i= 1,N

 X(i) = X(i) * Y

End Do

Optimized Loop

Load y into register 1

Do i = 1,N

 X(i) = X(i) * register 1

End Do

Figure 4-1: Loop Code Motion

4.8 Scalar Optimizations

 Compilers can often replace an explicit use of an operation with a less expensive

iterative operation in a loop. In particular, a multiplication can be replaced with an

addition, and an exponential can be replaced with a multiplication.

Below is an example of an exponentiation being replaced by a multiplication:

Original Exponentiation

Do i= 1,10

 A(i) = X**i

End Do

Compiler Optimized Equivalent

XTemp = X

Do i = 1,10

 A(i) = XTemp

 XTemp = XTemp*X

End Do

Figure 4-2: Exponentiation Replaced by Multiplication

23

 Similarly, the compiler can replace a multiplication with an addition:

Original Exponentiation

Do i= 1,10

 A(i) = X*I

End Do

Compiler Optimized Equivalent

XTemp = X

Do i = 1,10

 A(i) = XTemp

 XTemp = XTemp + X

End Do

Figure 4-3: Multiplication Replaced by Addition

4.9 Vectorization

 This optimization is where a program is converted from a scalar implementation,

which processes a single pair of operands at one time, to a vector implementation which

then processes one operation on multiple pairs of operands at once. The code is written

to group and organize the data so that it can take advantage of the vector implementation.

 The vector implementation takes advantage temporal and spatial locality as the

same operation is used multiple times and does not have to be fetched for each pair of

operands.

 Brown and Martin (1984) demonstrated in their research the benefits of

vectorization in their discussion on vectorized Monte Carlo calculations. They structured

the code to extract long vectors of particles that could be executed in a single loop. Their

results in all cases, for sufficiently large batch sizes, show speedups of at least 20-40x

over non-vectorized calculations.

24

Chapter 5: Application of Neutron Groupings

5.1 Introduction

 The changes in the MCNP code flow made by applying the optimizations

mentioned earlier and their various results will be discussed in this section. The main

ideas behind the modifications used in this study are to improve of memory locality, both

temporal and spatial.

5.2 Source Generation Modifications

 The first change made to MCNP was the source generation. As discussed earlier

in Chapter 3, MCNP source neutrons are generated in a random pattern. The Monte

Carlo method requires a significantly large number of source neutrons to achieve

acceptably accurate results.

 The code is modified to generate all source neutrons and store them for later use.

The original code generates a single neutron that is then tracked through a history of

events. After the completion of a neutron's history, the next source neutron is generated

and its history tracked. The loop continues until all source neutrons have been tracked.

The new code can be seen in Appendix B.2.

 This new loop created a structure that the complier can take advantage of. In

condensing the loop around a smaller section of the code the compiler used the

techniques for inlining on the function calls to generate the neutron. Also, the compiler

could use the prefetching optimization to move the data necessary to generate the

pseudorandom values for the neutron into cache. This allows the program faster access to

the values.

 Each neutron is stored after generation so they can be accessed when it is time to

run through each of their life cycle histories. This call is made in the code found in

Appendix B.3. After all source neutrons have been generated the program can proceed

25

with the rest of the process. This optimization is a common optimization used in all

variants of the code sets developed in this research.

5.3 Material Bins

 As discussed earlier cross sections are dependent on the material that the neutron

is traveling through. A grouping of neutrons by like material, in which they are traveling

through, would allow the reuse of the cross section data for the current material that is

already in the cache. Further dividing the material groups into respective energy groups

uses the spatial locality aspect of memory optimization. If all the neutrons being

processed at that time are of the same material and energy then the cross section data

should be in cache and can be accessed faster.

The code modifications that were done to the MCNP code, groups the source

particles as they are generated into groups of the same material. This is done during the

source particle generation as the source will be located in one location for most

calculations. In some instances you have multiple source locations and so the particles

are grouped into their respective bins.

 Looking at the MCNP input cards you will see that the critical configuration

being modeled for the calculation is made up of material cells. All cell regions of the

same material are grouped into the same bin.

 In the configuration used during the test case for this research it was determined

that there were nine groups. These nine groups make up the material cells in the design

configuration. The ninth group being the void area where there is no material.

 As mentioned this is done at the beginning of each cycle during the source

particle generation. However, as the cycle is processed new particles are generated

during fission events. As the new particles are generated they are stored or “banked,” as

the code states, into the material groups until it is time to process them.

26

5.4 Energy Bins

 Another factor that affects the cross section data needing to be accessed and

stored in cache is the energy of the neutron. The MCNP code is modified to group the

neutrons into subgroups based on their energy levels. The energy bins handled a range of

energy levels.

The spread in energy ranges invoke the principle of spatial locality. The ranges

being accessed at the given time provides the program better access to the data as it is

small enough to be stored in cache.

The energy bins used are related to the supergroups introduced by Brown and

Martin, (1987) that closely match the energy ranges within the cross section data. The

subroutine used to determine the energy bin to which the neutron belongs is illustrated in

Figure 5-7 showing the use of 5 bins of energy ranges. When 10 bins were used the

energy bins classify the neutrons into thermal (< 0.1 eV), epithermal (0.1 eV to 1 eV),

and resonance (1 eV to 100keV) ranges. The other bins break up the fast neutrons into

smaller groups. This code was used in all code combinations as each test code used

energy bins.

Figure 5-1: Energy Group Determination

Energy Group Determination

!code found inbanked_particle_mod.F90 – Appendix B.4

subroutine getErgGrp(tmpErgGrp)

 implicit none

 integer, intent(out) :: tmpErgGrp

 if(erg < 1.0) then

 tmpErgGrp = 1

 else if(erg >= 1.0 .and. erg < 2.0) then

 tmpErgGrp = 2

 else if(erg >= 2.0 .and. erg < 3.0) then

 tmpErgGrp = 3

 else if(erg >= 3.0 .and. erg < 4.0) then

 tmpErgGrp = 4

 else

 tmpErgGrp = 5

 end if

end subroutine getErgGrp

27

The groups were arbitrarily decided in an attempt to match how the cross section data

might be organized. As the organization of the data was unknown and again not wanting to have

to rewrite the data in order to organize and know the exact groupings, the 2 sets of groups were

chosen to prove that neutron groups could be used to optimize MCNP.

The ability to go back to the cache data for each neutron in the current group

allows for the principle of temporal locality. The program now has a better chance of

finding the data it needs for the current neutron in the cache and doesn’t spend time

retrieving more data from the slower memory.

5.5 New MCNP Flow

 MCNP’s original code would generate a neutron and then follow it through its life

cycle and store any particles created during fission events. Then once the source neutron

was absorbed or allowed to leak out of the system the stored particles would be processed

until all were done. At that time a new source particle was generated. See figure 2 for

the diagram of the flow.

 The changes made to the original code resulted in a change to the flow of the

MCNP process.

28

Figure 5-2: New Overview MCNP Process Flow

 This new flow differs from the original flow in that all the source particles are

generated at once in the first section. Then a neutron is retrieved from the highest energy

level in the current group that still has neutrons stored. The neutron life cycle is then

processed in the same manner as before with the exception that the neutrons that are

generated in fission events are stored back into the same bins that already exist and are

processed when they are retrieved after determining the current material and energy

group.

The other change you can notice in figure 5-1 is that the flow has a back and forth

process between section 2 and 3. This is to represent that after tallying up the results

from each neutron the code just goes back to the storage bins and gets the next neutron.

It only goes back to section 1 when all neutrons have been processed so it can start the

whole process again in the new cycle.

29

Figure 5-2 displays the more detailed flow with the changes in the flow marked in

bold. The flow starts off by generating all source neutrons that the test configuration

states. Once each neutron is generated it is stored in its energy group. Then once all

neutrons have been stored it proceeds to grab the neutron from the first energy group.

The flow then proceeds in the normal method that the original MCNP follows. The next

difference occurs when an interaction event occurs. If there is fission all but one neutron

is stored in their respective energy groups. After returning from the interaction code the

neutron is checked to see if it has the same energy group as the current group being

processed. If it does it continues on, if not it is stored and the next neutron in the current

energy group is retrieved and the process continues until all neutrons have been absorbed

or leaked.

30

Figure 5-3: New Detailed MCNP Flow

Generate Source
Neutron and store in

group

Advance the neutron a random

distance

Lookup material and cross

section data and calculate

total cross section

All materials at

current position

processed?
No

Yes

Evaluate Neutron Interaction

Has neutron

reached edge

of system and

leaked out?

No

Yes

Scatter

Update neutron

energy and direction

Fission Absorption

Tally Values / Calculate keff

Store all but

one resultant

neutron in the

correct group

Retrieve stored

neutron from current

energy group

All source

neutrons

generated?

Yes

No

Is neutron energy

still in range of

current energy

group?

Yes

Store neutron

in the correct

group

No

Start Flow

31

The new flow can also be shown using high level pseudo code to show the

process and how it loops in the program. See Figure 5-4 below.

 New MCNP Process Pseudo Code

1: for each count in desired particle do

2: generate particle

3: store particle in material/energy group

4: end for

5: for each material/energy group do

6: for each particle in group do

7: repeat

8: retrieve stored particle

9: advance particle random distance in material

10: lookup material at particle position

11: for each type of material in current position do

12: for each interaction event do

13: lookup x-section data

14: calculate addition to total x-section

15: end for

16: end for

17: randomize interaction

18: update particle properties (position and energy)

19: if fission, store all but one particle stored corresponding

group

20 if material/energy has changed, store particle in new group

and retrieve next particle

21: until particle is absorbed or leaks or leaves current processing

group properties

22 tally results for the particle and calculate keff

23: end for

24: end for

Figure 5-4: New MCNP Process Pseudo Code

32

5.6 Neutron Groups and Cache Effects

 The organization of the neutrons into groups allows data in the cache to be reused.

When an application looks up data it will first look in the cache. If the data is there,

known as cache hit, it is used. If the data is not there, a cache miss, then the application

must spend time to go out to other memory locations to read and retrieve the data that is

needed.

Figures 5-5, 5-6, and 5-7 show a representation of how the original MCNP code

accessed the cross section data in cache. The first neutron accesses the cross section in

cache (X-Sec 2) but the next neutron needs different data for its calculations.

Figure 5-5: MCNP Cache Hit/Miss 1

 The cache miss will cause the program to need to read in the new cross section

data (X-Sec 3) and swap out X-Sec 2. Overhead is created having to spend time reading

in the new cross section and swapping out the old.

Figure 5-6: MCNP Cache Hit/Miss 2

33

Since MCNP is not sorted the next neutron could need X-Sec 2 data and again the

program has to spend time swapping out the information.

 Figure 5-7: MCNP Cache Hit/Miss 3

The time spent can be considerable as each neutron using the Monte Carlo

method is going to have random attributes and is very unlikely that it will be similar to

the previous neutron or the next. In order to optimize the time spent in memory and help

keep each access to the cache as a cache hit, the neutrons are organized in to groups.

The neutron groups force the data of each neutron to fit into a small range and

thus the cross section data needed for each neutron can be found more often in the cache

and save time from not having to read in the new cross section data for each neutron.

This is show in Figures 5-8 and 5-9 where the neutrons in the first group can use the same

X-Sec 2 data for their calculations. Then when the first group is processed the program

moves on to the second group. The X-Sec data is swapped out but only once and then the

second group can reuse that data for each of its neutrons.

34

Figure 5-8: Neutron Group Cache Hit/Miss 1

Figure 5-9: Neutron Group Cache Hit/Miss 2

 A large number of bins can force more of the neutrons into the cross section table

loaded into the cache. As the number of bins decrease, the number of neutrons increases

35

per bin and can result in a greater chance of a retrieved neutron that requires a cross

section table that is not in the cache.

5.7 Code Changes and Results for Energy Groups

 Several code changes were done in this thesis to achieve the best speedups with

the least amount of changes. Special attention was paid during design to the knowledge,

stated in Chapter2, that material and energy affect cross sections. The changes were done

in order to maximize the temporal and spatial locality of the data to utilize the data most

often in cache to provide the fastest access times. Small examples of the code changes

are included in this section but to see where the code is used refer to Appendix B.

 The original MCNP code was compiled using the delivered compiler optimization

flag of O1. The results from this implementation form the basis for comparisons made to

results reported here. The results of Base for the test design took 924.58 minutes. The

resultant keff value was 0.99571. The keff is consistent with the value that is expected for

the test design delivered by the MCNP team to test the installation of the MCNP

program.

 The new code was tested with eight different code sets each exploring different

combinations of groupings for the neutrons. Each test was an attempt to find the most

optimal method to arrange the neutrons so that the data for the cross section data needed

for the current neutron and the next neutron would be available in the cache.

5.7.1 Store Neutron in Energy Group

 The eight code sets are divided into two major grouping types. The first set of

tests only takes into account the energy of the neutron and creates the groups based on a

range of energy. The next major grouping type was to group the neutrons by the material

they were in and then divided those further into energy bins. These bins were handled by

data arrays.

 In order to store the neutrons in their respective bins their attributes needed to be

gathered and stored. MCNP makes use of global common block memory in the Fortran

36

code to store the attributes (energy, location, etc.) of the current neutron being processed.

This works, as the Base code only runs one neutron from source generation to

termination. In order to store the neutrons into their groups the use of a Fortran complex

type was used. The complex type is equivalent to object oriented classes that exist in

other languages such as Java, C#, etc. The complex type used was called a

banked_particle and can be seen in part in Figure 5-10. It is just a collection of attributes

that define the neutron.

The banked_particle has all the attributes that MCNP keeps track of for a neutron.

Some of the attributes are stored in arrays. These arrays are of unknown length at

compile time. First attempts were made to guess at the size of the arrays to make them

static in an attempt to avoid the time it requires for the program to dynamically allocate

the arrays. However, the memory space required by the banked_particle was big enough

that the static arrays caused the group arrays to be bigger and thus they weren’t able to be

Banked_Particle Complex Type

!code found in banked_particle_mod.F90 – Appendix B.4 and Appendix B.7

type banked_particle

 …

 real(dknd), dimension(:,:),pointer :: bprtc

 real(dknd), dimension(:,:),pointer :: bpudt

 real(dknd), dimension(:,:),pointer :: bpptb

 real(dknd), dimension(:,:,:),pointer :: bpuran_trf

 integer, dimension(:,:),pointer :: bpktc

 real(dknd) :: xxx != X-coordinate of the particle position.

 real(dknd) :: yyy != Y-coordinate of the particle position.

 real(dknd) :: zzz != Z-coordinate of the particle position.

 real(dknd) :: uuu != Particle direction cosine with X-axis.

 real(dknd) :: vvv != Particle direction cosine with Y-axis.

 real(dknd) :: www != Particle direction cosine with Z-axis.

 real(dknd) :: erg != Particle energy.

 real(dknd) :: wgt != Particle weight.

 …

end type banked_particle

Figure 5-10: Banked_Particle Complex Type

37

read into cache efficiently. Thus causing the data access reads for the neutrons to take

more time. The use of dynamic arrays provided a tradeoff that resulted in smaller overall

memory use of the bin arrays.

 When a neutron is stored the attributes of the neutron are copied into the

banked_particle object. The object is then stored into its respective bin to be retrieved

when its bin is processed.

The four combinations of groupings that only used energy bins were stored in five

or ten arrays depending on how many groups were used. The groupings were done with

arrays of the structure shown in Figure 5-11.

Energy Group Arrays

!code found in banked_particle_mod.F90 – Appendix B.4

…

type bpErgArrayType

 integer :: bpErgTotal = 0

 type(banked_particle), dimension(:),pointer :: bpArray

 end type bpErgArrayType

 type(bpErgArrayType), allocatable :: bpErgArray(:)

…

subroutine bpInit

 implicit none

 allocate(bpErgArray(5))

 bpErgArray(1)%bpErgTotal = 0

 allocate(bpErgArray(1)%bpArray(10000))

 bpErgArray(2)%bpErgTotal = 0

 allocate(bpErgArray(2)%bpArray(10000))

 bpErgArray(3)%bpErgTotal = 0

 allocate(bpErgArray(3)%bpArray(5000))

 bpErgArray(4)%bpErgTotal = 0

 allocate(bpErgArray(4)%bpArray(5000))

 bpErgArray(5)%bpErgTotal = 0

 allocate(bpErgArray(5)%bpArray(5000))

end subroutine bpInit

…

Figure 5-11: Energy Group Arrays

38

The neutrons were stored in the arrays with code shown in Figure 5-12. For

storage the code first determine the energy bin, add 1 to the bin total and then add the

neutron to the array bin.

Figure 5-12: Neutron Storage in Groups

To retrieve the neutron, when needed, MCNP checks to see if the current energy

group is empty and if so, it moves to the next energy group down and retrieves the

neutron. Figure 5-13 demonstrates the retrieval.

39

Figure 5-13: Neutron Retrieval from Groups

The code that used Energy Bins (5 Bins) had a resultant run time of 887.44

minutes on the O1 compiler level. The keff achieved was 0.99575. This was a 4% speed

up from the Base code. The same code using Energy Bins (10 Bins) resulted in a run

time of 895.30 minutes on the O1 compiler level. The keff achieved was 0.99577. The

speed up was only 3.2% from the Base code. The difference can be attributed to the fact

that in the 10 bin code there is more calls to the storing and retrieving of the neutron in

the fast energy ranges as the neutron loses energy and doesn’t fit the current energy

group.

The Energy Bin codes were then run using the O2 compiler level to determine if

the compiler could improve on the code by applying its optimizations where it could.

The Energy Bin (5 Bins) code had a resultant run time of 774.53 and keff of 0.99583.

This provided a speed up of 16.2% over the Base code. The Energy Bin (10 Bins) code

resulted in a run time of 799.28 and keff of 0.99583, providing a speed up of 13.6 over

40

Base. The same conclusions on run times difference in O2 are the same as stated

previously for O1.

5.7.2 Arrays of Memory Pointers

Brown and Martin, (1987) discussed that more speed up could be achieved with

the use of arrays that held pointers to give a location in memory where the neutron

needing to be stored or retrieved was. This the allowed manipulation of the pointers in

the array groups without having to actually move the neutron data around from group to

group.

This use of pointers was applied to the Energy Bin code. The storage code of the

neutron changed while the retrieval remained the same. An array was used to store all

the neutrons in memory and the pointers in the energy groups held the address of where

the neutron was stored in memory in the array. The code in Figure 5-14 shows how the

storage was accomplished.

Figure 5-14: Neutron Storage with Pointers

The results for the O1 compiler level of the Energy Bins w/ Pointers (5 Bins)

showed a run time of 882.15 minutes and keff of 0.99575, achieving a speed up of 4.6%

over the Base code. The Energy Bins w/ Pointers (10 Bins) resulted in a run time of

879.27 minutes and keff of 0.99574, giving it a speed up of 4.9% over Base. The increase

41

in speed up over the Energy Bin code without pointers shows that the program was able

to spend less time in accessing and moving the neutron pointer when it didn’t have to

move the actual neutron data within the groups.

 The O2 compiler level results for the Energy Bins w/ Pointers, however, didn’t

achieve faster results. The Energy Bins w/ Pointers (5 Bins) had a run time of 776.19 and

keff of 0.99583. The speed up was 16.1% over Base. The Energy Bins w/ Pointers (10

Bins) had a run time of 769.89 minutes and keff of 0.99583. The speed up was 16.7%

over Base and achieved the fastest run time of all the code sets.

 The application of pointers to the code did not have as much an increase in speed

as expected. With no need to move the whole neutron data around in the various energy

group arrays the results in theory and according to Brown and Martin should have had a

much higher impact. One reason the impact was not as high is because the code in this

research was not written for a vector machine like the one that Brown and Martin used.

Vector machines have specialized hardware that can perform Gather/Scatter functions.

Gather/Scatter occurs when data is not arranged in memory in a sequential, single

stride fashion (for example using pointers to access and update operands in memory). On

a vector machine special hardware is provided to access (Gather) data for a vector

operation and write back (Scatter) data to their corresponding memory locations. On a

typical dual core machine such hardware is not available; however, it is possible to use

one of the cores to dedicate it to gather operands before the data is needed and scatter

operands after the data has been updated and written back to memory. Although to

implement that on a dual core machine the MCNP code would have to be rewritten to

dedicate one of the cores to do the Gather/Scatter of the operands. See Figure 5-15 that

illustrates how the pointers in the array can perform Gather/Scatter functions.

42

Figure 5-15: Array of Pointers Showing Gather/Scatter

Another reason why this did not happen is due to the fact that the pointers were

only implemented in the new code sections that were added. In order to fully implement

the pointers the common memory block where MCNP stores the current neutron

attributes would have to be modified to include the pointers. This would require a rewrite

of the majority of the MCNP code in order to utilize the new pointers in the common

block. As it was the purpose of this research to avoid a rewrite of MCNP it was not fully

implemented, but was used in a partial state that did provide speed improvement.

5.8 Code Changes and Results for Material/Energy Groups

 The second major grouping of tests involved the organizing of the neutrons into

the current material they are in and then into energy groups within those material groups.

This takes into account that both material and energy affect the cross section. The

advantage being that the cross section data needed for the neutrons would be even more

 Memory

Array of Pointers

Gather

Scatter

43

specific and reused. This organization would provide better temporal and spatial locality

of the data in memory.

 The banked_particle object is the same as used in the other tests to describe the

neutrons and their attributes. The energy group ranges were kept the same. The material

bins are determined by the surface cards in the MCNP input card. Figure 5-16 illustrates

what the design configuration looks like for this research.

Figure 5-16: Geometry of Criticality Design used in Research

Figure 5-17 shows how it is written in the cell card. The first two columns are the

important columns for looking up the material bins. The first column is the cell index;

the second is the material index.

44

The code to handle the lookup of the material group in the program was an array

containing the material group number by giving the cell number. This can be seen in

Figure 5-18. The lookup was created to combine each cell index found in configuration

design into groups of the same material. For example cell index 2 and 3 are the bottom

and top plates of the configuration design and are both made of the same stainless steel

material and therefore are given the same group, in this case group 2.

Material Cells

!found in cell card of input card – Appendix A

…

1 10 -7.8894 2 -1 4 -5 $ Top tank (#1) wall thickness

2 20 -7.883 -4 3 -1 $ Bottom plate of top tank

3 20 -7.883 5 -6 -1 $ Top plate of top tank

4 70 -7.8297 -7 -5 4 $ Top tank support post

5 40 -1.5542 4 -2 -5 7 $ Tank #1 Uranyl-nitrate Solution

6 30 -7.8932 -11 -8 9 12 $ Bottom tank (#2) wall thick

7 20 -7.883 11 -10 -8 $ Top plate of bottom tank

8 20 -7.883 -12 13 -8 $ Bottom plate of bottom tank

9 70 -7.8297 -7 12 -11 $ Bottom tank support post

10 50 -1.5551 -11 -9 12 7 $ Tank #2 Uranyl-nitrate Solution

11 60 -2.69 -13 55 -15 19 $ Bottom Support leg

12 60 -2.69 -13 56 -16 19 $ Bottom Support leg

13 60 -2.69 -13 57 -17 19 $ Bottom Support leg

14 60 -2.69 -13 58 -18 19 $ Bottom Support leg

15 60 -2.69 -19 20 -21 22 -23 24 $ Aluminum Support Plate

16 60 -2.69 -25 26 -35 36 30 -31 $ Top X-axis Plate - A

17 60 -2.69 -25 26 33 -34 30 -31 $ Top X-axis plate - B

18 60 -2.69 -25 26 -27 28 29 -30 $ Top Y-axis plate - C

19 60 -2.69 -25 26 -27 28 31 -32 $ Top Y-axis plate - D

20 60 -2.69 -26 37 -27 38 40 -41 $ Top X-axis plate - E

21 60 -2.69 -26 37 28 -39 40 -41 $ Top X-axis plate - F

22 80 -7.8849 10 -42 -43 $ SS - Bottom

23 0 28 -27 40 -41 20 -6 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Figure 5-17: Material Cells

45

The groupings were done with arrays of the structure shown in Figure 5-19. The

arrays represented the material and each contained 5 or 10 sub arrays that represented the

2 sets of energy groups being used.

Material Group Lookup

!code found in banked_particle_mod.F90 – Appendix B.7

…

 allocate(IclGrpLookup(25))

 IclGrpLookup(1) = 1

 IclGrpLookup(2) = 2

 IclGrpLookup(3) = 2

 IclGrpLookup(4) = 7

 IclGrpLookup(5) = 4

 IclGrpLookup(6) = 3

 IclGrpLookup(7) = 2

 IclGrpLookup(8) = 2

 IclGrpLookup(9) = 7

 IclGrpLookup(10) = 5

 IclGrpLookup(11) = 6

 IclGrpLookup(12) = 6

 IclGrpLookup(13) = 6

 IclGrpLookup(14) = 6

 IclGrpLookup(15) = 6

 IclGrpLookup(16) = 6

 IclGrpLookup(17) = 6

 IclGrpLookup(18) = 6

 IclGrpLookup(19) = 6

 IclGrpLookup(20) = 6

 IclGrpLookup(21) = 6

 IclGrpLookup(22) = 8

 IclGrpLookup(23) = 9

 IclGrpLookup(24) = 9

 IclGrpLookup(25) = 9

!Found in bankit.F90 – Appendix B.9

…

tmpIclGrp = IclGrpLookup(icl)

Figure 5-18: Material Group Lookup

46

Material/Energy Group Arrays
!found in banked_particle_mod.F90 – Appendix B.7

…

 type bpErgArrayType

 integer :: bpErgTotal = 0

 type(banked_particle), dimension(:),pointer :: bpArray

 end type bpErgArrayType

 type bpIclArrayType

 integer :: bpIclTotal = 0

 type(bpErgArrayType), dimension(:),pointer :: bpErgArray

 end type bpIclArrayType

 type(bpIclArrayType), allocatable :: bpIclArray(:)

…

 allocate(bpIclArray(iclGrpCnt))

 do i = 1, iclGrpCnt, 1

 allocate(bpIclArray(i)%bpErgArray(ergGrpCnt))

 bpIclArray(i)%bpIclTotal = 0

 bpIclArray(i)%bpErgArray(1)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(1)%bpArray(7000))

 bpIclArray(i)%bpErgArray(2)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(2)%bpArray(7000))

 bpIclArray(i)%bpErgArray(3)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(3)%bpArray(5000))

 bpIclArray(i)%bpErgArray(4)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(4)%bpArray(5000))

 bpIclArray(i)%bpErgArray(5)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(5)%bpArray(5000))

 if (ergGrpCnt == 10) then

 bpIclArray(i)%bpErgArray(6)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(6)%bpArray(5000))

 bpIclArray(i)%bpErgArray(7)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(7)%bpArray(5000))

 bpIclArray(i)%bpErgArray(8)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(8)%bpArray(5000))

 bpIclArray(i)%bpErgArray(9)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(9)%bpArray(5000))

 bpIclArray(i)%bpErgArray(10)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(10)%bpArray(5000))

 end if

 enddo

Figure 5-19: Material/Energy Group Arrays

47

The lookup provided the 9 material bins needed to group the neutrons together in

the correct material. The storage and retrieval of the neutrons had to be modified to

allow for the material bins and energy bins. This can be seen in Figure 5-20.

Material/Energy Group Neutron Storage and Retrieval
!code found in banked_particl_mod.F90 – Appendix B.7

…

!storage

 call getErgGrp(tmpErgGrp)

 tmpIclGrp = IclGrpLookup(icl)

 tmpIclTot = bpIclArray(tmpIclGrp)%bpIclTotal + 1

 tmpErgTot = bpIclArray(tmpIclGrp)%bpErgArray(tmpErgGrp)%bpErgTotal + 1

 bpIclArray(tmpIclGrp)%bpIclTotal = tmpIclTot

 bpIclArray(tmpIclGrp)%bpErgArray(tmpErgGrp)%bpErgTotal = tmpErgTot

 bpIclArray(tmpIclGrp)%bpErgArray(tmpErgGrp)%bpArray(tmpErgTot) = curbp

!new pointer code

! bpIclArray(tmpIclGrp)%bpErgArray(tmpErgGrp)%bpArray(tmpErgTot)%p_bp =>

bpMasterArray(srcMasterTot)

!new pointer code

…

!retrieval

 if(bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpErgTotal <= 0) then

 do i = ergGrpCnt, 1, -1

 if(bpIclArray(curIclGrp)%bpErgArray(i)%bpErgTotal > 0) then

 curErgGrp = i

 goto 120

 else

 do j = iclGrpCnt, 1, -1

 if(bpIclArray(j)%bpIclTotal > 0) then

 curIclGrp = j

 do k = ergGrpCnt, 1, -1

 if(bpIclArray(curIclGrp)%bpErgArray(k)%bpErgTotal > 0) then

 curErgGrp = k

 goto 120

 end if

 enddo

 end if

 enddo

 end if

 enddo

 end if

120 continue

 tmpIclTot = bpIclArray(curIclGrp)%bpIclTotal

 tmpErgTot = bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpErgTotal

 curbp = bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpArray(tmpErgTot)

!new pointer code

! curbp = bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpArray(tmpErgTot)%p_bp

!new pointer code

 bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpErgTotal = tmpErgTot - 1

 bpIclArray(curIclGrp)%bpIclTotal = tmpIclTot – 1

Figure 5-20: Material/Energy Group Neutron Storage and Retrieval

48

The addition of the Material groups takes more code to look up neutrons in the

groups. This extra overhead, as will be discussed, causes the Material Bin code sets to

not achieve competitive speedups.

The Material/Energy Bins (5 Bins) code used the 9 material groups and 5 energy

groups. The material groups were those mentioned above and the energy groups where

the same as the ones used in the Energy Bins code. The results from the O1 compiled

code was a run time of 945.72 minutes and keff of 0.99588. This is a 2.2% decrease in

speed from Base. It also is a decrease from the Energy Bins (5 Bins) code. The reason

that was determined to be the cause of the slowdown was the size of the array structure

that made up the groups. Since the array structure was large and 3 dimensional, it wasn’t

able to fit into the cache entirely. So the program would have to load up sections of the

array and see if it contained the neutron to process and if not then it would have to go

back to the memory and pull the next section of the array and look again. This shifting in

and out the data from the cache caused the slowness.

 The Material/Energy Bins (5 Bins) compiled at the O2 level gave a run time of

841.29 minutes and keff of 0.99593. This gave a speed up of 9% faster than Base code.

However, it is still slower than just using energy bins.

 The code was then changed to Material/Energy Bins (10 bins) and compiled at the

O1 optimization level. The result was a run time of 952.56 minutes and keff of 0.99593.

This was another decrease in speed of 3.0% from Base. At the O2 level the same code

gave a run time of 842.42 minutes and keff of 0.99588. Speed up of 8.9% over Base.

These times also are a resultant of the struggle with the large array structure.

 In order to cut down on the size of the array structure and moving the data around

in the array and thus cut down the memory access time the array of pointers was applied

to these sets of code.

 First the Material/Energy Bins w/ Pointers (5 Bins) was compiled at the O1 level.

The results were a run time of 938.82 minutes and keff of 0.99593. This was still a

decrease of 1.6% from Base but an increase of the same code without pointers. At the O2

49

level of compiler optimization the resultant run time was 840.08 minutes and keff of

0.99593. The speed up achieved was 9.2% over Base. Still the array size is an issue.

 Next the Material/Energy Bins w/ Pointers (10 Bins) was compiled at the O1

level. The run time was 939.31 minutes and keff 0.99585. The speed decreased by 1.6%

from Base. However, at the O2 level of compiler optimization the run time was 836.28

minutes and keff of 0.99578. The speed up was 9.6% over Base. The 10 Bins w/ Pointers

at O2 achieved the best result for the Material/Energy Bins code set.

5.9 Side by Side Comparison of Code Set Results

The following table provides a quick side by side comparison.

Table 5-1: Run Time Comparisons

Code Compiler O1

(mins)

± 5 mins

O1 Speedup

from Base O1

± 0.5%

Compiler O2

(mins)

± 5 mins

O2 Speedup
from Base O1

± 0.5%

Base 924.58
(15.4 hours)

 830.05
(13.8 hours)

10.2%

Energy Bins

(5 Bins)

887.44
(14.8 hours)

4% 774.53
(12.9 hours)

16.2%

Energy Bins

(10 Bins)

895.30
(14.9 hours)

3.2% 799.28
(13.3 hours)

13.6%

Energy Bins w/

Pointers (5 Bins)

882.15
(14.7 hours)

4.6% 776.19
(12.9 hours)

16.1%

Energy Bins w/

Pointers (10 Bins)

879.27
(14.65 hours)

4.9% 769.89
(12.8 hours)

16.7%

Material/Energy

Bins (5 Bins)

945.72
(15.8 hours)

-2.2% 841.29
(14.0 hours)

9%

Material/Energy

Bins (10 Bins)

952.56
(15.9 hours)

-3.0% 842.42
(14.0 hours)

8.9%

Material/Energy

Bins w/ Pointers

(5 Bins)

938.82
(15.6 hours)

-1.6% 840.08
(14.0 hours)

9.2%

Material/Energy

Bins w/ Pointers

(10 Bins)

939.31
(15.7 hours)

-1.6% 836.28
(13.9 hours)

9.6%

50

We compared the accuracy of the calculated keff. Table 5-2 compares keff

calculated by the various code modifications and the Base code. As can be seen in this

table the O2 compiler introduced a higher error when compared to the Base code.

However if the O2 results are compared with the Base O2 results there isn’t much error

introduced by the new code sets.

The small differences in keff can be explained by the fact that in changing the code

to group and order the neutrons, we have changed the behavior of the MCNP code and its

use of random numbers. MCNP uses a sequence of random numbers throughout the

history of the cycle and neutron history. Therefore when the new code sets change the

order of neutrons, the neutrons use different random numbers they would have used in

the original order. This may not appear to be a problem but the neutron history is based

on several factors and one of them is the random number. Thus a neutron using a

different random number can easily take a different path in history and result in a slightly

different statistical behavior.

As the keff can be affected by many factors any slight changes to the code will

cause a variation. In fact the keff can be different from computer to computer. Part of the

install process of the MCNP program has you run test programs to verify that your

installed program results in a keff value that is statistically close to the expected accepted

value. In the case of the different code sets researched here, all are close to the accepted

value and thus provides a measure of confidence that the new code sets have achieved an

acceptable keff value.

51

Table 5-2: keff Comparisons

Code Compiler O1

keff

σ = 0.00004

Reactivity ρ Compiler O2

keff

σ = 0.00004

Reactivity ρ

Reactor Period

τ

Reactor Period τ

Base 0.99571 $-0.00431 0.99582 $-0.00420

-31.35s -31.85s

Energy Bins

(5 Bins)

0.99575 $-0.00427 0.99583 $-0.00419

-31.53s -31.89s

Energy Bins

(10 Bins)

0.99577 $-0.00425 0.99583 $-0.00419

-31.61s -31.89s

Energy Bins w/

Pointers

(5 Bins)

0.99575 $-0.00427 0.99583 $-0.00419

-31.53s -31.89s

Energy Bins w/

Pointers

(10 Bins)

0.99574 $-0.00428 0.99583 $-0.00419

-31.48s -31.89s

Material/Energy

Bins (5 Bins)

0.99588 $-0.00414 0.99593 $-0.00409

-32.13s -32.37s

Material/Energy

Bins (10 Bins)

0.99583 $-0.00419 0.99588 $-0.00414

-31.89s -32.13s

Material/Energy

Bins w/ Pointers

(5 Bins)

0.99588 $-0.00414 0.99593 $-0.00409

-32.13s -32.37s

Material/Energy

Bins w/ Pointers

(10 Bins)

0.99585 $-0.00417 0.99578 $-0.00424

-31.98s -31.66s

Comparing the reactor period τ between the code sets, the differences in the

outcome of the various code sets are within about ½ second of the Base code set and

show that the new code modifications deliver acceptable results.

5.10 Complex Configuration Designs

 The results as discussed are for the design slab tank experiment. As shown, the

material code sets actually produced a slight slowdown of speed. Therefore, the

groupings to choose would be the energy groups for this design. This design when

compared to a full reactor design is considered a simple design. As material is still a

factor in cross section data, the concern arises that if a more complex design is tested

with thousands of materials will the energy groupings achieve the same speed up. Also

as the reactor fuel is depleted during different stages of burnup the material composition

in the reactor changes and the different materials present in the reactor again increases.

52

 Regardless of configuration and material composition energy of the neutron still

affects the cross section data needed in the calculation. Therefore, the groupings by

energy will still have an effect on the application run time for the more complex designs.

The effective speed up may not be as significant as that found in this less complex design

but a speed up is expected. The act of creating the groups and sorting them provides

order from the pseudo-random neutron sample provided using the Monte Carlo method.

This order improves the spatial and temporal locality of the cross section data and will

increase the speed up.

53

Chapter 6: Conclusion

The objective of this thesis was to demonstrate that a more optimal sequential

MCNP performance can be obtained with minimal programming effort by organizing the

neutrons into groups. The unmodified MCNP process took 15 ½ hours to perform the

criticality calculations for the two slab tank experiment. The improved memory locality,

by using 10 groups of energy bins with pointer arrays, was able to achieve a 16.7% ±

0.5% speedup and results in 2 ½ hours being removed from the run time taken to perform

the criticality calculations.

Research discovered a slowdown may occur if one does not take care in

structuring the group sizes. Some groups may be unable to fit in memory and have to

push out the cross section data from cache. This is inherent in the use of the

Material/Energy Group code sets discussed in that the group array structure was a large

three dimensional array (material x energy x neutron). This array structure was not able

to fit in the cache during stored neutron data retrieval and required extra time to read

from the slower memory sections when data was swapped out of cache to provide room.

It was shown that the time savings of the MCNP code can be achieved without

completely rewriting the code. As stated in the thesis research, previous investigators

have rewritten the code to take advantage of new computer hardware, like GPUs, in order

to achieve speed ups. This however, according to the investigators, takes significant

effort and the end results are often a completely new program.

 Creating groups based on the neutron energy increases the efficiency of the reuse

of data located in the cache. The cross section data in the cache used by a neutron in a

group is already loaded and can be used by the next neutron in the same group due to the

similar energy levels of the neutron. The reuse of data is an efficient use of the temporal

locality principle.

 Several sets of code modifications were tested to determine the makeup of the

neutron groups to coincide with the energy ranges found in the ENDF/B VI cross section

54

data. This allowed the cross section data in the cache to be reused allowing the program

to take advantage of the temporal and spatial locality of the data to increase its efficiency

and not spend more time than necessary outside the cache retrieving information for its

calculations.

 The modifications to the MCNP code consisted of rearranging the main functional

loop of tracking the history of the neutron, from source generation through its lifecycle,

in the program to break it out into two separate loops: generation of source neutrons and

tracking the history of each neutron. All the neutrons were generated from the source and

stored into groups based on their energy levels. Then each neutron history was tracked as

in the normal MCNP flow until it was absorbed, leaked out of the system, or moved into

another energy range encompassed by another energy group.

 As stated, this research showed that a speedup is achieved for the two slab tank

design by grouping neutrons by their energy levels to optimize the reuse of the cross

section data in the cache. It gives results that are promising and with thorough

verification and validation the additions can be used for further study in all system

designs. For example, further study can be done to determine the speedup results that can

be achieved using more complex designs like a full reactor model. Organization of

neutron into groups offers potential MCNP improvements and valuable time savings for

future engineers.

55

References

Brown, F., Liu, T., Ding, A., Jib, W., Xu, X., and Carothers, C., 2012a. A Monte Carlo

Neutron Transport Code For Eigenvalue Calculations on a Dual-GPU System and CUDA

Environment. PHYSOR 2012 – Advances in Reactor Physics.

Brown, F., Ding, A., Liu, T., Liang, C., Ji, Shepard, M., W., and Xu, X., 2012b.

Evaluation of Speedup of Monte Carlo Calculations of Two Simple Reactor Physics

Problems Coded For the GPU/CUDA Environment (2012) PHYSOR 2012 – Advances in

Reactor Physics.

Brown, F., and Martin, W., 1984. Monte Carlo Methods for Radiation Transport Analysis

on Vector Computers.

Brown, F., and Martin, W., 1987. Status of Vectorized Monte Carlo for Particle Transport

Analysis, International Journal of High Performance Computing Applications 2(1): 11-32

Carstens, N., 2004. “Speedup of MCNP(X) Parallel KCODE Execution Via

Communication Algorithm Development and Beowulf Cluster Optimization”

Massachusetts Institute of Technology Master Of Science in Nuclear Engineering

Candidate thesis.

Glasstone, S., and Sesonske, A., 1969. Nuclear Reactor Engineering 3
rd

 Edition, Van

Nostrand Reinhold Company. ISBN 0-442-02725-7

Gong, C., Liu, J., Yang, B., Deng, L., Li, G., Li, X., Hu, Q., and Gong, Z., 2011.

Accelerating MCNP-based Monte Carlo Simulations for Neutron Transport on GPU,

National University of Defense Technology 410073, China, Institute of Applied Physics

and Computational Mathematics, 100088, China.

Hadjidoukas, P., Bousis, C., and Emfietzoglou, D., 2010. Parallelization of a Monte Carlo

particle transport simulation code, Computer Physics Communications,

www.elsevier.com/locate/cpc.

Hennessy J., and Patterson, D., 2007. Computer Architecture – A Quantitative Approach

4
th

 Edition, Morgan Kaufmann Publishers. ISBN 0-123-70490-1

Levesque, J., and Wagenbreth, G., 2011. High Performance Computing: Programming

and Applications, CRC Press. ISBN 1-420-07705-8

Martin, W., 2007. “Advances in Monte Carlo Methods for Global Reactor Analysis,”

Invited lecture at the M&C 2007 International Conference, Monterey, CA, USA, April

15-19.

McKinney, G., and West, T., 1993. Multiprocessing MCNP on an IBM RS600 Cluster

LANL LA-UR-93-463.

56

Nelson, A., 2009. Monte Carlo Neutron Transport on Graphics Processing Units Using

CUDA, Master’s Thesis Pennsylvania State University.

Rinard, P., 1991. Neutron interactions with matter. Passive Nondestructive Assay of

Nuclear Material, Los Alamos Technical Report NUREG/CR-5550, LA-UR-90732: 357-

377.

Siegel, A., Smith, K., Felker, K., Romano, P., Forget, B., and Beckman, P., 2013.

Improved Cache Performance in Monte Carlo Transport Calculations Using Energy

Banding, Computer Physics Communications,

http://dx.doi.org/10.1016/j.cpc.2013.10.008

Smith, K., 2003. “Reactor Core Methods,” Invited lecture at the M&C 2003 International

Conference, Gatlinburg, TN, USA, April 6-10.

Wadleigh, K., and Crawford, I., 2000. Software Optimization for High Performance

Computing: Creating Faster Applications, Prentice Hall. ISBN 0-130-17008-9

Weinberg, J., 2005. Quantifying Locality in the Memory Access Patterns of HPC

Applications University of California Master of Science in Computer Science Candidate

thesis.

X-5 Monte Carlo Team, (2003) MCNP – A General Monte Carlo N-Particle Transport

Code, Version 5, Volume I: Overview and Theory.

http://dx.doi.org/10.1016/j.cpc.2013.10.008

57

Appendix A

MCNP Input Card

58

Slab Tank Experiment

c Cell Cards

1 10 -7.8894 2 -1 4 -5 $ Top tank (#1) wall thickness

2 20 -7.883 -4 3 -1 $ Bottom plate of top tank

3 20 -7.883 5 -6 -1 $ Top plate of top tank

4 70 -7.8297 -7 -5 4 $ Top tank support post

5 40 -1.5542 4 -2 -5 7 $ Tank #1 Uranyl-nitrate Solution

6 30 -7.8932 -11 -8 9 12 $ Bottom tank (#2) wall thick

7 20 -7.883 11 -10 -8 $ Top plate of bottom tank

8 20 -7.883 -12 13 -8 $ Bottom plate of bottom tank

9 70 -7.8297 -7 12 -11 $ Bottom tank support post

10 50 -1.5551 -11 -9 12 7 $ Tank #2 Uranyl-nitrate Solution

11 60 -2.69 -13 55 -15 19 $ Bottom Support leg

12 60 -2.69 -13 56 -16 19 $ Bottom Support leg

13 60 -2.69 -13 57 -17 19 $ Bottom Support leg

14 60 -2.69 -13 58 -18 19 $ Bottom Support leg

15 60 -2.69 -19 20 -21 22 -23 24 $ Aluminum Support Plate

16 60 -2.69 -25 26 -35 36 30 -31 $ Top X-axis Plate - A

17 60 -2.69 -25 26 33 -34 30 -31 $ Top X-axis plate - B

18 60 -2.69 -25 26 -27 28 29 -30 $ Top Y-axis plate - C

19 60 -2.69 -25 26 -27 28 31 -32 $ Top Y-axis plate - D

20 60 -2.69 -26 37 -27 38 40 -41 $ Top X-axis plate - E

21 60 -2.69 -26 37 28 -39 40 -41 $ Top X-axis plate - F

22 80 -7.8849 10 -42 -43 $ SS - Bottom

23 0 28 -27 40 -41 20 -6 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22

24 0 -28:27:-40:41:-20:6 $ External Void

c Surface Cards

1 cz 37.90696

2 cz 35.81654

3 pz 4.63296

4 pz 5.60095

5 pz 14.50162

6 pz 15.46301

7 cz 1.26873

8 cz 37.95903

9 cz 35.78733

10 pz -5.27050

59

11 pz -6.24434

12 pz -15.15593

13 pz -16.11249

15 c/z 26.4922 26.4922 2.54

16 c/z 26.4922 -26.4922 2.54

17 c/z -26.4922 26.4922 2.54

18 c/z -26.4922 -26.4922 2.54

19 pz -51.67249

20 pz -52.94249

21 px 39.37

22 px -39.37

23 py 39.37

24 py -39.37

25 pz 12.92301

26 pz 5.30301

27 px 58.42

28 px -58.42

29 py -39.2176

30 py -38.5826

31 py 38.5826

32 py 39.2176

33 px 38.5826

34 px 39.2176

35 px -38.5826

36 px -39.2176

37 pz 2.76301

38 px 48.26

39 px -48.26

40 py -58.42

41 py 58.42

42 pz -4.63296

43 cz 38.09619

55 c/z 26.4922 26.4922 1.905

56 c/z 26.4922 -26.4922 1.905

57 c/z -26.4922 26.4922 1.905

58 c/z -26.4922 -26.4922 1.905

mode n

imp:n 1 22r 0

60

c Hoop#1

m10 6000.70c 1.9778-4

 25055.70c 1.6518-3 15031.70c 4.7551-5

 16032.70c 7.4074-6

 14028.70c 1.0453-3 14029.70c 5.2930-5 14030.70c 3.5135-5

 24050.70c 7.2653-4 24052.70c 1.4010-2 24053.70c 1.5887-3

 24054.70c 3.9545-4

 28058.70c 4.5245-3 28060.70c 1.7435-3 28061.70c 7.5767-5

 28062.70c 2.4152-4 28064.70c 6.1544-5

 42092.70c 1.9108-5 42094.70c 1.1910-5 42095.70c 2.0499-5

 42096.70c 2.1477-5 42098.70c 1.2297-5 42098.70c 3.1070-5

 42100.70c 1.2400-5

 29063.70c 1.6027-4 29065.70c 7.1501-5

 7014.70c 2.0352-4

 26054.70c 3.4635-3 26056.70c 5.4772-2 26057.70c 1.3138-3

 26058.70c 1.6720-4

c Tank Plates

m20 6000.70c 1.9762-4

 25055.70c 1.6504-3 15031.70c 4.7512-5

 16032.70c 7.4013-6

 14028.70c 1.0445-3 14029.70c 5.2888-5 14030.70c 3.5108-5

 24050.70c 7.2596-4 24052.70c 1.3999-2 24053.70c 1.5874-3

 24054.70c 3.9514-4

 28058.70c 4.5209-3 28060.70c 1.7421-3 28061.70c 7.5705-5

 28062.70c 2.4133-4 28064.70c 6.1494-5

 42092.70c 1.9092-5 42094.70c 1.1900-5 42095.70c 2.0481-5

 42096.70c 2.1459-5 42098.70c 1.2286-5 42098.70c 3.1043-5

 42100.70c 1.2389-5

 29063.70c 1.6014-4 29065.70c 7.1446-5

 7014.70c 2.0336-4

 26054.70c 3.4607-3 26056.70c 5.4727-2 26057.70c 1.3127-3

 26058.70c 1.6707-4

c Hoop#2

m30 6000.70c 1.9788-4

 25055.70c 1.6526-3 15031.70c 4.7574-5

 16032.70c 7.4109-6

 14028.70c 1.0458-3 14029.70c 5.2953-5 14030.70c 3.5151-5

 24050.70c 7.2688-4 24052.70c 1.4017-2 24053.70c 1.5894-3

 24054.70c 3.9564-4

61

 28058.70c 4.5267-3 28060.70c 1.7443-3 28061.70c 7.5803-5

 28062.70c 2.4164-4 28064.70c 6.1573-5

 42092.70c 1.9117-5 42094.70c 1.1916-5 42095.70c 2.0508-5

 42096.70c 2.1487-5 42098.70c 1.2302-5 42098.70c 3.1084-5

 42100.70c 1.2405-5

 29063.70c 1.6035-4 29065.70c 7.1535-5

 7014.70c 2.0362-4

 26054.70c 3.4652-3 26056.70c 5.4798-2 26057.70c 1.3144-3

 26058.70c 1.6729-4

c Tank#1 Solution

m40 92234.70c 8.7477-6 92235.70c 9.6338-4 92236.70c 2.8747-6

 92238.70c 5.9027-5 8016.70c 3.7675-2 7014.70c 2.2608-3

 1001.70c 5.7842-2

mt40 lwtr.01t

c Tank#2 Solution

m50 92234.70c 8.7673-6 92235.70c 9.6404-4 92236.70c 2.8787-6

 92238.70c 5.9069-5 8016.70c 3.7695-2 7014.70c 2.2622-3

 1001.70c 5.7871-2

mt50 lwtr.01t

c Al Support Plates

m60 14028.70c 3.1918-4 14029.70c 1.6161-5 14030.70c 1.0728-5

 26054.70c 5.8882-6 26056.70c 9.3114-5 26057.70c 2.2334-6

 26058.70c 2.8426-7

 29063.70c 4.4070-5 29065.70c 1.9661-5

 25055.70c 2.2115-5

 12024.70c 5.2648-4 12025.70c 6.6651-5 12026.70c 7.3383-5

 24050.70c 2.7074-6 24052.70c 5.2209-5 24053.70c 5.9201-6

 24054.70c 1.4736-6

 29063.70c 2.1414-5 29065.70c 9.5533-6

 22046.70c 2.0300-6 22047.70c 1.8524-6 22048.70c 1.8727-5

 22049.70c 1.3956-6 22050.70c 1.3703-6

 13027.70c 5.8433-2

c Center Support Bar

m70 6000.70c 1.9628-4

 25055.70c 1.6393-3 15031.70c 4.7191-5

 16032.70c 7.3513-6

 14028.70c 1.0374-3 14029.70c 5.2528-5 14030.70c 3.4869-5

 24050.70c 7.2105-4 24052.70c 1.3905-2 24053.70c 1.5767-3

 24054.70c 3.9247-4

62

 28058.70c 4.4903-3 28060.70c 1.7303-3 28061.70c 7.5193-5

 28062.70c 2.3970-4 28064.70c 6.1078-5

 42092.70c 1.8963-5 42094.70c 1.1820-5 42095.70c 2.0343-5

 42096.70c 2.1314-5 42098.70c 1.2203-5 42098.70c 3.0833-5

 42100.70c 1.2305-5

 29063.70c 1.5906-4 29065.70c 7.0961-5

 7014.70c 2.0198-4

 26054.70c 3.4373-3 26056.70c 5.4357-2 26057.70c 1.3038-3

 26058.70c 1.6594-4

c SS

m80 6000.70c 1.9767-4

 25055.70c 1.6508-3 15031.70c 4.7524-5

 16032.70c 7.4031-6

 14028.70c 1.0448-3 14029.70c 5.2902-5 14030.70c 3.5117-5

 24050.70c 7.2614-4 24052.70c 1.4003-2 24053.70c 1.5878-3

 24054.70c 3.9524-4

 28058.70c 4.5219-3 28060.70c 1.7425-3 28061.70c 7.5723-5

 28062.70c 2.4138-4 28064.70c 6.1509-5

 42092.70c 1.9096-5 42094.70c 1.1903-5 42095.70c 2.0486-5

 42096.70c 2.1464-5 42098.70c 1.2289-5 42098.70c 3.1050-5

 42100.70c 1.2392-5

 29063.70c 1.6018-4 29065.70c 7.1461-5

 7014.70c 2.0340-4

 26054.70c 3.4616-3 26056.70c 5.4740-2 26057.70c 1.3130-3

 26058.70c 1.6711-4

c

kcode 10000 1.0 100 50100

kopts blocksize=10 kinetics=yes precursor=yes

ksrc 15. 0. 9. -15. 0. 9. 15. 0. -9. -15. 0. -9

prdmp j 10000 -1

63

Appendix B

Code

64

B.1 Introduction

 Included here is the code that was written to make the optimizations. Two new

files were added to the MCNP code base called banked_particle_mod.F90 and

newSource.F90. Three files were modified to include references to the new files; they

are trnspt.F90, hstory.F90 and bankit.F90. Code, except where it has been modified and

is my orginal code, has been removed from the three files in accordance with RSICC

Licensing and intellectual propery rights. Also to stay in accordance to the license some

modifications cannot be included as they would publicize the original code.

B.2 trnspt.F90

subroutine trnspt

 /* Code removed to protect Copyright information */

! Optimization Modification Begins

 srcbpmax = nsa

 srcbpproc = 0

 srcbptot = 0

 binCnt = 5

 srcbpcur = nsa

20 continue

 do i = 1,srcbpcur

 ! Run the next history.

 /* Code removed to protect Copyright information */

 call newSource

 enddo

 if(bpErgArray(curErgGrp)%bpErgTotal <= 0) then

 if(bpErgArray(5)%bpErgTotal > 0) then

 curErgGrp = 5

 else if(bpErgArray(4)%bpErgTotal > 0) then

 curErgGrp = 4

 else if(bpErgArray(3)%bpErgTotal > 0) then

 curErgGrp = 3

 else if(bpErgArray(2)%bpErgTotal > 0) then

 curErgGrp = 2

 else

65

 curErgGrp = 1

 end if

 end if

 do while(srcbptot > 0)

 call bankit(101)

 call hstory

 enddo

 if(.not. time_to_stop()) go to 20

/* Code removed to protect Copyright information */

end subroutine trnspt

B.3 newSource.F90

subroutine newSource

 ! Description:

 ! Get New particles from source

 ! Modules:

/* Code removed to protect Copyright information */

 ! Start a particle from the source.

20 continue

/* Code removed to protect Copyright information */

 ! Set particle random number

 call RN_init_particle(int(npstc,i8knd))

 call startp

 !$ call sm_loff(jlock,1)

 npa=1

 call bankit(1)

 return

end subroutine newSource

B.4 Energy Group banked_particle_mod.F90

module banked_particle_mod

 use mcnp_global

 use mcnp_debug

66

 implicit none

 type banked_particle

 integer :: abprtc = 0

 integer :: abpudt = 0

 integer :: abpptb = 0

 integer :: abpuran_trf = 0

 integer :: abpktc = 0

 real(dknd), dimension(:,:),pointer :: bprtc

 real(dknd), dimension(:,:),pointer :: bpudt

 real(dknd), dimension(:,:),pointer :: bpptb

 real(dknd), dimension(:,:,:),pointer :: bpuran_trf

 integer, dimension(:,:),pointer :: bpktc

 real(dknd) :: xxx != X-coordinate of the particle position.

 real(dknd) :: yyy != Y-coordinate of the particle position.

 real(dknd) :: zzz != Z-coordinate of the particle position.

 real(dknd) :: uuu != Particle direction cosine with X-axis.

 real(dknd) :: vvv != Particle direction cosine with Y-axis.

 real(dknd) :: www != Particle direction cosine with Z-axis.

 real(dknd) :: erg != Particle energy.

 real(dknd) :: wgt != Particle weight.

 real(dknd) :: tme != Time at the particle position.

 real(dknd) :: vel != Speed of the particle.

 real(dknd) :: dls != Distance to next boundary.

 real(dknd) :: dxl != Distance to nearest DXTRAN sphere.

 real(dknd) :: dtc != Distance to time cutoff.

 real(dknd) :: elc(mipt) != Energy cutoffs in the current cell.

 real(dknd) :: fiml(mipt) != Importance of the current cell.

 real(dknd) :: fismg != Multigroup importance.

 real(dknd) :: wtfasv != Accumulated weight of adjoint particle.

 real(dknd) :: rnk != RNR at point where new track was created.

 real(dknd) :: spare(mspare) != Spare banked array for user modifications.

 real(dknd) :: totmp != Total cross section for previous track.

 real(dknd) :: ralfp(2) != Eigenvalue by 2nd order perturb method.

 real(dknd) :: zpblcm

 integer :: npa != Number of tracks in the same bank location.

 integer :: icl != Program number of the current cell.

 integer :: jsu != Program number of the current surface.

 integer :: ipt != Type of particle.

 integer :: iex != Index of the current cross section table.

 integer :: node != Number of nodes in track from source to here.

 integer :: idx != Number of the current DXTRAN sphere.

 integer :: ncp != Count of collisions per track.

 integer :: jgp != Neutron: particle energy group number.

 != Electron/photon: generation class for F6:p tally.

67

 integer :: lev != Level of the current particle.

 integer :: iii != First lattice index of particle location.

 integer :: jjj != Second lattice index of particle location.

 integer :: kkk != Third lattice index of particle location.

 integer :: iap != Program number of the next cell.

 integer :: iexp != IEX from previous collision.

 integer :: mtp != Reaction MT from previous collision.

 integer :: nmco != Stores value of NMC as it is updated.

 integer :: i_positron != Flag for positron (when ipt==electron).

 integer :: node_above != Current PHTVR node of the particle

 integer :: branch != PHTVR tree branch of the particle

 integer :: scoring_particle != Flag to indicate that the particle

 != does not contribute to regular tallies.

 integer :: progenitor_id != progenitor id for adjoint weighting in kcode.

 integer :: delayed_group != delayed neutron group

 integer :: mpblcm

 end type banked_particle

 type bpErgArrayType

 integer :: bpErgTotal = 0

 type(banked_particle), dimension(:),pointer :: bpArray

 end type bpErgArrayType

 type(bpErgArrayType), allocatable :: bpErgArray(:)

 integer :: curErgGrp = 0

 integer :: binCnt = 5

 integer :: srcbptot

 integer :: srcbpmax

 integer :: srcbpcur

 integer :: srcbpproc

contains

subroutine bpInit

 implicit none

 allocate(bpErgArray(5))

 bpErgArray(1)%bpErgTotal = 0

 allocate(bpErgArray(1)%bpArray(10000))

 bpErgArray(2)%bpErgTotal = 0

 allocate(bpErgArray(2)%bpArray(10000))

 bpErgArray(3)%bpErgTotal = 0

 allocate(bpErgArray(3)%bpArray(5000))

 bpErgArray(4)%bpErgTotal = 0

 allocate(bpErgArray(4)%bpArray(5000))

 bpErgArray(5)%bpErgTotal = 0

 allocate(bpErgArray(5)%bpArray(5000))

68

end subroutine bpInit

subroutine getErgGrp(tmpErgGrp)

 implicit none

 integer, intent(out) :: tmpErgGrp

 if (ergGrpCnt == 10) then

 if(erg < 0.0000001) then !thermal

 tmpErgGrp = 1

 else if(erg >= 0.0000001 .and. erg < 0.000001) then !epithermal

 tmpErgGrp = 2

 else if(erg >= 0.000001 .and. erg < 0.1) then !resonance

 tmpErgGrp = 3

 else if(erg >= 0.1 .and. erg < 1.0) then !fast

 tmpErgGrp = 4

 else if(erg >= 1.0 .and. erg < 1.5) then

 tmpErgGrp = 5

 else if(erg >= 1.5 .and. erg < 2.0) then

 tmpErgGrp = 6

 else if(erg >= 2.0 .and. erg < 2.5) then

 tmpErgGrp = 7

 else if(erg >= 2.5 .and. erg < 3.0) then

 tmpErgGrp = 8

 else if(erg >= 3.0 .and. erg < 3.5) then

 tmpErgGrp = 9

 else

 tmpErgGrp = 10

 end if

 else

 if(erg < 1.0) then

 tmpErgGrp = 1

 else if(erg >= 1.0 .and. erg < 2.0) then

 tmpErgGrp = 2

 else if(erg >= 2.0 .and. erg < 3.0) then

 tmpErgGrp = 3

 else if(erg >= 3.0 .and. erg < 4.0) then

 tmpErgGrp = 4

 else

 tmpErgGrp = 5

 end if

 end if

end subroutine getErgGrp

end module banked_particle_mod

69

B.5 Energy Group hstory.F90

/* Code removed to protect Copyright information */

/*Return from code that describes collision effects*/

! Optimization Modification Begins

call getErgGrp(tmpErgGrp)

 if(tmpErgGrp == curErgGrp) then

 go to 30

 else

 npa = 1

 call bankit(1)

 go to 290

 endif

! Optimization Modification Ends

 !

 ! ****************** Process terminated particles. ********************

 !

/* Code removed to protect Copyright information */

end subroutine hstory

B.6 Energy Group bankit.F90

 subroutine bank_particle

 ! Description:

/* Code removed to protect Copyright information */

 integer :: tmpErgGrp = 5

 type (banked_particle) :: curbp

/* Code removed to protect Copyright information */

/* Assign curbp attributes from variables recorded in MCNP */

 srcbptot = srcbptot+1

 nbnk = srcbptot

!new pointer code

! srcMasterTot = srcMasterTot+1

! bpMasterArray(srcMasterTot) = curbp

!new pointer code

 call getErgGrp(tmpErgGrp)

 tmpTotal = bpErgArray(tmpErgGrp)%bpErgTotal + 1

 bpErgArray(tmpErgGrp)%bpErgTotal = tmpTotal

 bpErgArray(tmpErgGrp)%bpArray(tmpTotal) = curbp

!new pointer code

! bpErgArray(tmpErgGrp)%bpArray(tmpTotal)%p_bp =>

bpMasterArray(srcMasterTot)

!new pointer code

70

 return

end subroutine bank_particle

 ! --

 subroutine unbank_particle

 ! Description

 type (banked_particle) :: curbp

 if(bpErgArray(curErgGrp)%bpErgTotal <= 0) then

 do i = ergGrpCnt, 1, -1

 if(bpErgArray(i)%bpErgTotal > 0) then

 curErgGrp = i

 goto 120

 end if

 end do

 end if

120 continue

 tmpTotal = bpErgArray(curErgGrp)%bpErgTotal

 curbp = bpErgArray(curErgGrp)%bpArray(tmpTotal)

!new pointer code

! curbp = bpErgArray(curErgGrp)%bpArray(tmpTotal)%p_bp

!new pointer code

 bpErgArray(curErgGrp)%bpErgTotal = tmpTotal – 1

130 continue

 ! Retrieve the particle.

 /* Code removed to protect Copyright information */

 /* Assign MCNP Global variables from curbp attributes */

 srcbptot = srcbptot-1

 nbnk = srcbptot

 if(curbp%abpptb == 1) then

 deallocate(curbp%bpptb)

 end if

 if(curbp%abpudt == 1) then

 deallocate(curbp%bpudt)

 end if

 if(curbp%abprtc == 1) then

 deallocate(curbp%bprtc)

 end if

 if(curbp%abpktc == 1) then

 deallocate(curbp%bpktc)

 end if

71

 if(curbp%abpuran_trf == 1) then

 deallocate(curbp%bpuran_trf)

 end if

 curbp%abprtc = 0

 curbp%abpudt = 0

 curbp%abpptb = 0

 curbp%abpuran_trf = 0

 curbp%abpktc = 0

 return

 end subroutine unbank_particle

B.7 Material/Energy Group banked_particle_mod.F90

module banked_particle_mod

 use mcnp_global

 use mcnp_debug

 implicit none

 type banked_particle

 integer :: abprtc = 0

 integer :: abpudt = 0

 integer :: abpptb = 0

 integer :: abpuran_trf = 0

 integer :: abpktc = 0

 real(dknd), dimension(:,:),pointer :: bprtc

 real(dknd), dimension(:,:),pointer :: bpudt

 real(dknd), dimension(:,:),pointer :: bpptb

 real(dknd), dimension(:,:,:),pointer :: bpuran_trf

 integer, dimension(:,:),pointer :: bpktc

 real(dknd) :: xxx != X-coordinate of the particle position.

 real(dknd) :: yyy != Y-coordinate of the particle position.

 real(dknd) :: zzz != Z-coordinate of the particle position.

 real(dknd) :: uuu != Particle direction cosine with X-axis.

 real(dknd) :: vvv != Particle direction cosine with Y-axis.

 real(dknd) :: www != Particle direction cosine with Z-axis.

 real(dknd) :: erg != Particle energy.

 real(dknd) :: wgt != Particle weight.

 real(dknd) :: tme != Time at the particle position.

 real(dknd) :: vel != Speed of the particle.

 real(dknd) :: dls != Distance to next boundary.

 real(dknd) :: dxl != Distance to nearest DXTRAN sphere.

72

 real(dknd) :: dtc != Distance to time cutoff.

 real(dknd) :: elc(mipt) != Energy cutoffs in the current cell.

 real(dknd) :: fiml(mipt) != Importance of the current cell.

 real(dknd) :: fismg != Multigroup importance.

 real(dknd) :: wtfasv != Accumulated weight of adjoint particle.

 real(dknd) :: rnk != RNR at point where new track was created.

 real(dknd) :: spare(mspare) != Spare banked array for user modifications.

 real(dknd) :: totmp != Total cross section for previous track.

 real(dknd) :: ralfp(2) != Eigenvalue by 2nd order perturb method.

 real(dknd) :: zpblcm

 integer :: npa != Number of tracks in the same bank location.

 integer :: icl != Program number of the current cell.

 integer :: jsu != Program number of the current surface.

 integer :: ipt != Type of particle.

 integer :: iex != Index of the current cross section table.

 integer :: node != Number of nodes in track from source to here.

 integer :: idx != Number of the current DXTRAN sphere.

 integer :: ncp != Count of collisions per track.

 integer :: jgp != Neutron: particle energy group number.

 != Electron/photon: generation class for F6:p tally.

 integer :: lev != Level of the current particle.

 integer :: iii != First lattice index of particle location.

 integer :: jjj != Second lattice index of particle location.

 integer :: kkk != Third lattice index of particle location.

 integer :: iap != Program number of the next cell.

 integer :: iexp != IEX from previous collision.

 integer :: mtp != Reaction MT from previous collision.

 integer :: nmco != Stores value of NMC as it is updated.

 integer :: i_positron != Flag for positron (when ipt==electron).

 integer :: node_above != Current PHTVR node of the particle

 integer :: branch != PHTVR tree branch of the particle

 integer :: scoring_particle != Flag to indicate that the particle

 != does not contribute to regular tallies.

 integer :: progenitor_id != progenitor id for adjoint weighting in kcode.

 integer :: delayed_group != delayed neutron group

 integer :: mpblcm

 end type banked_particle

 type bpErgArrayType

 integer :: bpErgTotal = 0

 type(banked_particle), dimension(:),pointer :: bpArray

 end type bpErgArrayType

 !new pointer

73

! type bpArrayType

! type(banked_particle),pointer :: p_bp

! end type bpArrayType

!

! type bpErgArrayType

! integer :: bpErgTotal = 0

! type(bpArrayType), dimension(:),pointer :: bpArray

! end type bpErgArrayType

!new pointer

 type bpIclArrayType

 integer :: bpIclTotal = 0

 type(bpErgArrayType), dimension(:),pointer :: bpErgArray

 end type bpIclArrayType

 type(bpIclArrayType), allocatable :: bpIclArray(:)

 !type(bpErgArrayType), allocatable :: bpErgArray(:)

!new pointer

! type(banked_particle), allocatable, target :: bpMasterArray(:)

!new pointer

 integer, allocatable :: IclGrpLookup(:)

 integer :: curErgGrp = 10

 integer :: ergGrpCnt = 10

 integer :: iclGrpCnt = 9

 integer :: curIclGrp = 9

! type(banked_particle),allocatable :: arraySrcbp(:)

 integer :: srcbptot

 integer :: srcbpmax

 integer :: srcbpcur

 integer :: srcbpproc

 integer :: particleMaxSet = 0

 integer :: srcMasterTot

contains

subroutine bpInit

 implicit none

 integer :: i,j = 0

 allocate(IclGrpLookup(25))

 IclGrpLookup(1) = 1

 IclGrpLookup(2) = 2

74

 IclGrpLookup(3) = 2

 IclGrpLookup(4) = 7

 IclGrpLookup(5) = 4

 IclGrpLookup(6) = 3

 IclGrpLookup(7) = 2

 IclGrpLookup(8) = 2

 IclGrpLookup(9) = 7

 IclGrpLookup(10) = 5

 IclGrpLookup(11) = 6

 IclGrpLookup(12) = 6

 IclGrpLookup(13) = 6

 IclGrpLookup(14) = 6

 IclGrpLookup(15) = 6

 IclGrpLookup(16) = 6

 IclGrpLookup(17) = 6

 IclGrpLookup(18) = 6

 IclGrpLookup(19) = 6

 IclGrpLookup(20) = 6

 IclGrpLookup(21) = 6

 IclGrpLookup(22) = 8

 IclGrpLookup(23) = 9

 IclGrpLookup(24) = 9

 IclGrpLookup(25) = 9

 allocate(bpIclArray(iclGrpCnt))

 do i = 1, iclGrpCnt, 1

 allocate(bpIclArray(i)%bpErgArray(ergGrpCnt))

 bpIclArray(i)%bpIclTotal = 0

 bpIclArray(i)%bpErgArray(1)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(1)%bpArray(7000))

 bpIclArray(i)%bpErgArray(2)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(2)%bpArray(7000))

 bpIclArray(i)%bpErgArray(3)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(3)%bpArray(5000))

 bpIclArray(i)%bpErgArray(4)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(4)%bpArray(5000))

 bpIclArray(i)%bpErgArray(5)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(5)%bpArray(5000))

75

 if (ergGrpCnt == 10) then

 bpIclArray(i)%bpErgArray(6)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(6)%bpArray(5000))

 bpIclArray(i)%bpErgArray(7)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(7)%bpArray(5000))

 bpIclArray(i)%bpErgArray(8)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(8)%bpArray(5000))

 bpIclArray(i)%bpErgArray(9)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(9)%bpArray(5000))

 bpIclArray(i)%bpErgArray(10)%bpErgTotal = 0

 allocate(bpIclArray(i)%bpErgArray(10)%bpArray(5000))

 end if

 enddo

! allocate(bpMasterArray(100000))

 return

end subroutine bpInit

subroutine getErgGrp(tmpErgGrp)

 implicit none

 integer, intent(out) :: tmpErgGrp

 if (ergGrpCnt == 10) then

 if(erg < 0.0000001) then !thermal

 tmpErgGrp = 1

 else if(erg >= 0.0000001 .and. erg < 0.000001) then !epithermal

 tmpErgGrp = 2

 else if(erg >= 0.000001 .and. erg < 0.1) then !resonance

 tmpErgGrp = 3

 else if(erg >= 0.1 .and. erg < 1.0) then

 tmpErgGrp = 4

 else if(erg >= 1.0 .and. erg < 1.5) then

 tmpErgGrp = 5

 else if(erg >= 1.5 .and. erg < 2.0) then

 tmpErgGrp = 6

 else if(erg >= 2.0 .and. erg < 2.5) then

 tmpErgGrp = 7

 else if(erg >= 2.5 .and. erg < 3.0) then

 tmpErgGrp = 8

 else if(erg >= 3.0 .and. erg < 3.5) then

 tmpErgGrp = 9

76

 else

 tmpErgGrp = 10

 end if

 else

 if(erg < 0.0000001) then !thermal

 tmpErgGrp = 1

 else if(erg >= 0.0000001 .and. erg < 0.000001) then !epithermal

 tmpErgGrp = 2

 else if(erg >= 0.000001 .and. erg < 0.1) then !resonance

 tmpErgGrp = 3

 else if(erg >= 0.1 .and. erg < 3.0) then!fast

 tmpErgGrp = 4

 else

 tmpErgGrp = 5

 end if

 end if

end subroutine getErgGrp

B.8 Material/Energy Group hstory.F90

/* Code removed to protect Copyright information */

/*Code that handles the path of the neutron and determines if it goes to a new cell*/

!if new cell lookup group to store neutron in

 if(IclGrpLookup(Icl) == curIclGrp) then

 go to 50

 else

 npa = 1

 call bankit(1)

 go to 290

 endif

/*Return from code that describes collision effects*/

! Optimization Modification Begins

call getErgGrp(tmpErgGrp)

 if(tmpErgGrp == curErgGrp) then

 go to 30

 else

 npa = 1

 call bankit(1)

 go to 290

 endif

! Optimization Modification Ends

 !

 ! ****************** Process terminated particles. ********************

77

 !

/* Code removed to protect Copyright information */

end subroutine hstory

B.9 Material/Energy Group bankit.F90

 subroutine bank_particle

 ! Description:

/* Code removed to protect Copyright information */

 integer :: tmpErgGrp = 5

 type (banked_particle) :: curbp

/* Code removed to protect Copyright information */

/* Assign curbp attributes from variables recorded in MCNP */

 srcbptot = srcbptot+1

 nbnk = srcbptot

!new pointer code

! srcMasterTot = srcMasterTot+1

! bpMasterArray(srcMasterTot) = curbp

!new pointer code

 call getErgGrp(tmpErgGrp)

 tmpIclGrp = IclGrpLookup(icl)

 tmpIclTot = bpIclArray(tmpIclGrp)%bpIclTotal + 1

 tmpErgTot = bpIclArray(tmpIclGrp)%bpErgArray(tmpErgGrp)%bpErgTotal + 1

 bpIclArray(tmpIclGrp)%bpIclTotal = tmpIclTot

 bpIclArray(tmpIclGrp)%bpErgArray(tmpErgGrp)%bpErgTotal = tmpErgTot

 bpIclArray(tmpIclGrp)%bpErgArray(tmpErgGrp)%bpArray(tmpErgTot) = curbp

!new pointer code

! bpIclArray(tmpIclGrp)%bpErgArray(tmpErgGrp)%bpArray(tmpErgTot)%p_bp =>

bpMasterArray(srcMasterTot)

!new pointer code

 return

end subroutine bank_particle

 ! --

 subroutine unbank_particle

 ! Description

 type (banked_particle) :: curbp

 if(bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpErgTotal <= 0) then

 do i = ergGrpCnt, 1, -1

 if(bpIclArray(curIclGrp)%bpErgArray(i)%bpErgTotal > 0) then

 curErgGrp = i

 goto 120

78

 else

 do j = iclGrpCnt, 1, -1

 if(bpIclArray(j)%bpIclTotal > 0) then

 curIclGrp = j

 do k = ergGrpCnt, 1, -1

 if(bpIclArray(curIclGrp)%bpErgArray(k)%bpErgTotal > 0) then

 curErgGrp = k

 goto 120

 end if

 enddo

 end if

 enddo

 end if

 enddo

 end if

120 continue

 tmpIclTot = bpIclArray(curIclGrp)%bpIclTotal

 tmpErgTot = bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpErgTotal

 curbp = bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpArray(tmpErgTot)

!new pointer code

! curbp =

bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpArray(tmpErgTot)%p_bp

!new pointer code

 bpIclArray(curIclGrp)%bpErgArray(curErgGrp)%bpErgTotal = tmpErgTot - 1

 bpIclArray(curIclGrp)%bpIclTotal = tmpIclTot – 1

130 continue

 ! Retrieve the particle.

 /* Code removed to protect Copyright information */

 /* Assign MCNP Global variables from curbp attributes */

 srcbptot = srcbptot-1

 nbnk = srcbptot

 if(curbp%abpptb == 1) then

 deallocate(curbp%bpptb)

 end if

 if(curbp%abpudt == 1) then

 deallocate(curbp%bpudt)

 end if

 if(curbp%abprtc == 1) then

 deallocate(curbp%bprtc)

 end if

79

 if(curbp%abpktc == 1) then

 deallocate(curbp%bpktc)

 end if

 if(curbp%abpuran_trf == 1) then

 deallocate(curbp%bpuran_trf)

 end if

 curbp%abprtc = 0

 curbp%abpudt = 0

 curbp%abpptb = 0

 curbp%abpuran_trf = 0

 curbp%abpktc = 0

 return

 end subroutine unbank_particle

80

Appendix C

Thesis Defense Presentation

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

