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Abstract 

While difficult to characterize, drought has been defined as a period of water shortage 

compared to normal conditions. Soil water availability has a larger impact on agricultural productivity 

than any other abiotic factor. It is critical to develop research which tracks the spatial and temporal 

patterns of drought as droughts become more frequent and severe, particularly in regions of high 

agricultural productivity. Traditional drought monitoring indices are based on point measurements of 

weather conditions from weather station instruments, which increase in uncertainty when extrapolating 

the measurements to spatially delineate the drought event, especially in data sparse regions. Satellite-

based measurements, such as rainfall, evapotranspiration (ET), soil moisture, or vegetation health have 

increased in use to gap-fill the uncertainty from point-based measurements and increase the scale of 

drought monitoring. The spatial and temporal requirements for farm-level agricultural monitoring, 

however, create challenges when implementing remote sensing technology for drought and yield 

monitoring.  

The research in this dissertation proposes a transferable method for using moderate resolution 

satellite imagery in physical-based radiative transfer model (RTM) inversion methods for retrieving 

cropland canopy water content (CCWC) as a direct indicator of crop water status for predicting yield. 

The method aims to alleviate the “ill-posed” nature of inversion problem solving by using phenology 

and crop species a priori information to dynamically constrain the inversion of the RTM, PRO4SAIL, 

for estimating CCWC at the 30-m pixel level. The 30-m CCWC product is integrated into a framework 

for predicting drought stress and yield loss by combining a previously published relationship between 

leaf water content (LWC) and available soil water content (ASWC) with the crop water use definitions 

outlined in Food and Agriculture Organization (FAO) Irrigation and Drainage paper 56 . 

The leaf structure parameter (Ns) accounts for a large proportion of uncertainty in PRO4SAIL 

inversion problems as it is the only biophysical parameter that is not physically measurable. Chapter 1 

examined whether there is statistically significant variation in Ns as a function of phenology, crop 

species type, and water status with the purpose of generating reference values of Ns to be used as a 

priori information in subsequent research. A total of 230 spectral measurements were taken from three 

monocotyledon species (hard red wheat, soft white wheat, and upland rice) and one dicotyledon species 

(soy) over two full growth seasons at the University of Idaho Pitkin’s Nursery. The spectral 

measurements were used to characterize Ns over phenology, crop species type, and water status. The 

study demonstrated that a significant relationship exists between phenology and Ns as well as a 

significant relationship between crop species type and Ns. No significant relationship was found 
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between the water treatments of the study and Ns , providing evidence that water status and Ns are 

independent. 

In chapter 2, a novel PRO4SAIL inversion approach was proposed and tested using the 

Harmonized Landsat-Sentinel (HLS) surface reflectance product to estimate CCWC in wheat, barley, 

and garbanzo fields outside of Genesee, Idaho over three growing seasons. The inversion strategy used 

information about phenology and crop species to generate a set of Look-up Tables (LUTs) for each 

overpass date. A set of 225 leaf measurements were used to train the LUTs, and 102 independent field 

measurements were used to validate the inversion. The novel crop and time dependent strategy had the 

best performance when compared to a phenology specific LUT strategy, and single nominal range LUT 

inversion strategy. The results showed the potential of an operational HLS-based CCWC product which 

may serve as the basis for further improvement.  

Chapter 3 presents a study which examines the feasibility of using a satellite derived time series 

of CCWC to predict the yield ratio in maize, defined as the ratio between actual harvested yield and 

maximum potential yield. The paper establishes the relationships between CCWC, drought stress, and 

yield ratio by combining a logistic relationship between LWC and ASWC with FAO-56 definitions of 

water balance, drought, and yield. Using these definitions, and known relationships between 

PRO4SAIL biophysical parameters, CCWC, NDVI, and yield ratio were modeled for different 

treatments of an independent irrigation experiment which created late drought conditions in Inner 

Mongolia, China. Coincident Landsat-8 Operational Land Imager (OLI) scenes were used to create the  

PRO4SAIL estimated CCWC and observed NDVI time series. The results demonstrated the first steps 

towards s farm-level yield ratio prediction using physical-based estimation of CCWC with FAO-56 soil 

water balance methods. The implications of the study highlight a potential for using CCWC in yield 

ratio prediction and justify future field-level irrigation treatment research with ground measured yield 

for testing the CCWC-yield relationship. 
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Introduction 

Water is a vital component in all plant physiological processes, including photosynthesis, 

nutrient transportation, transpiration, and cellular growth. These processes are tailored to the specific 

climatic regimes unique to the plant’s region for increasing survivability and competitiveness. Deficit 

in water availability may induce stress responses to mitigate the impact of water scarcity, such as 

constrained plant growth and cellular metabolism, while an overabundance of water creates anoxic 

conditions which limit plant physiological processes and promotes disease. 

The availability of water restricts terrestrial plant productivity more than any other factor 

(Lambers et al. 2008). In the context of agriculture, drought-induced crop losses exceed losses by all 

other factors combined (Boyer 1982). The simplest definition of drought is a period where a deficit of 

water is experienced relative to normal conditions (Lloyd-Hughes 2014). In agriculture, drought 

represents a deficit in available soil water content for uptake by the crops which results in yield 

reductions or failure. This is especially important in vulnerable agricultural regions where food security 

and primary source of income are dependent on agricultural yield. Increasing food demands driven by 

a growing population is intensified by limited water supply needed for agricultural use (Amprako 2016; 

Somerville and Briscoe 2001). Increasing weather pattern variability brought on by climate change, 

resulting in more frequent and severe occurrences of extreme heat and drought are projected to increase 

during the twenty first century over most of the global land surface, with a global increase of 1.5˚C 

resulting in double the frequency of 50-year drought events over 58% of the land surface (Gu et al. 

2020). A drying trend has also been observed in central equatorial Africa where rainfall associated with 

the observed growing seasons decreased by 20% from 1983-2012 (Diem et al. 2014). Given that the 

latest IPCC report project rising temperatures and shifting regional precipitation in the coming decades 

as a result of global climate change (Kirtman et al. 2013), research that seeks to improve scalable 

drought monitoring for yield loss prediction is of paramount importance.  

Droughts are characterized as being difficult to quantify and analyze due to their slow 

development and prolonged impacts (West et al. 2019). Up until the end of the 20th century, drought 

monitoring approaches were primarily based on computed indices like the Palmer Drought Severity 

Index (PDSI; Palmer (1965)) and Standardized Precipitation Index (SPI; McKee et al. (1993)) using 

in-situ station measurements of key meteorological variables. The difficulty of in-situ station data for 

capturing the complex dynamics and heterogeneity of drought events in data sparse regions, coupled 

with recent advancements in remote sensing technology, and increasing richness of Earth observation 

(EO) data, remote sensing has become a viable solution for monitoring key drought-related variables 

over larger temporal and spatial scales than what was previously possible. Common types of remote 
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sensing datasets used for drought monitoring include rainfall (e.g. (Hou et al. 2014; Islam and Uyeda 

2007; Kummerow et al. 1998)), evapotranspiration (e.g. (Miralles et al. 2011; Van Dijk et al. 2018; 

Vinukollu et al. 2011)), soil moisture (e.g. (Eswar et al. 2018; Martínez-Fernández et al. 2016)), and 

vegetation health response to drought conditions (e.g. (Ahmed et al. 2017; Kogan and Sullivan 1993; 

Wang et al. 2007)).  

Still, the temporal and spatial resolutions of remote sensing datasets are often inadequate for 

agricultural monitoring (Whitcraft et al. 2015b). Temporal resolution is an important consideration, 

since droughts are not only complex in both the timeline of their initialization and duration (Parry et al. 

2016), but the timing of a drought event relative to the crops’ phenology, which rapidly changes 

throughout the season, is extremely significant when monitoring for yield prediction (Sah et al. 2020; 

Steduto et al. 2012). As a result, yield prediction requires one clear observation made at least biweekly 

throughout the growing season (Johnson 2014; Zaks and Kucharik 2011). Due to this requirement, a 

tradeoff decision is often made to use data with coarse spatial resolution (Lavender and Lavender 2015), 

defined by the Global Agricultural Monitoring Community (GEOGLAM) as greater than 100 m 

(Whitcraft et al. 2015a). For example, the Tropical Rainfall Measuring Mission (TRMM) microwave 

precipitation radar (Kummerow et al. 1998) and Global Precipitation Measurement (GPM) mission 

(Hou et al. 2014) are able to be combined to generate sub-daily rainfall estimates at 0.1 - 0.25 degree 

spatial resolution and makes up a significant dataset used in global rainfall and drought pattern studies 

(e.g. (Alizadeh and Nikoo 2018; Zhang et al. 2017)). Both active and passive instruments may also be 

used to derive surface soil moisture conditions, such as the Soil Moisture and Ocean Salinity (SMOS) 

(Kerr et al. 2010), Soil Moisture Active Passive (SMAP) (Entekhabi et al. 2010), or  Advanced 

Microwave Scanning Radiometer – Earth Observing System (AMSR-E) (Njoku et al. 2003), at revisit 

frequencies ranging from 2 to 3 days and spatial resolutions ranging from 3 to 50 km. Passive 

multispectral observations at 250-500 m from MODIS-class sensor also have an excellent temporal 

resolution of two images every day and have traditionally been the primary data source for computing 

indices related to vegetation health (e.g. (Duveiller et al. 2011; Pan et al. 2012)). Coarse resolution 

datasets like these, however, are often inadequate due to issues from sub-pixel heterogeneity within 

agricultural landscapes (Duveiller and Defourny 2010). 

Multispectral EO data are continuing to become more available at the moderate spatial 

resolution (defined by GEOGLAM as 10 - 100 m) scale suitable for crop monitoring applications 

(Duveiller and Defourny 2010; West et al. 2019; Whitcraft et al. 2015a). The successful launch of the 

Landsat-8 Operational Land Imager (OLI) in 2012, Sentinel-2A Multi-Spectral Instrument (MSI) in 

2015, and Sentinel-2B MSI in 2017, the systematic acquisition schedule and free data distribution 
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policy of both missions provide the opportunity for measurements at a spatial and temporal scale that 

can meet the demands of potential operational users: combined, these polar-orbiting systems provide 

10 m to 30 m multi-spectral global coverage up to every 2-3 days (Whitcraft et al. 2015a). The launch 

of Landsat-9 OLI-2 (Masek et al. 2020) in 2021 and Sentinel-2C MSI (Toulemont et al. 2019) scheduled 

for 2024 further enable the envisioning of an operational agricultural monitoring system (Fritz et al. 

2019), thereby lessening the challenges related to resolution when using remote sensing technology.  

Most common approaches to crop yield forecasting are based on empirical regression models 

using multispectral EO-derived vegetation indices inputs like maximum Normalized Difference 

Vegetation Index (NDVI) (Tucker 1979) over the season (Becker-Reshef et al. 2010) or temporal NDVI 

integration (Doraiswamy et al. 2005; Meroni et al. 2013). Since NDVI is sensitive to changes in 

photosynthetic activity, vegetation health, and vegetation abundance, NDVI is thought to reflect the 

variables affecting crop distress and production (Chantarat et al. 2009; Rowley et al. 2007). NDVI has 

been found to correlate well with precipitation, extreme heat, and yield in a number of regional 

experiments (Carter 2009; Chantarat et al. 2009; Ward et al. 2008), however, a study which examined 

the relationships between yield and NDVI over 60 locations between 1982 and 2003 found the 

relationships were inconsistent and highly dependent on location specific characteristics (Turvey and 

Mclaurin 2012). The relationship between NDVI and yield is also known to be weakened during 

seasons with ideal conditions during early growth stages, which create full establishment of vegetation, 

and drought conditions after full development during reproductive stages (Rowley et al. 2007). 

Challenges with the transferability of remote sensing methods typically arise when relationships from 

empirical approaches are highly dependent upon field sampling methods, imagery preprocessing 

quality, statistical model chosen and when the measurements used to characterize the relationship are 

not representative of the target region (Grossman et al. 1996; Li and Wang 2011; Yebra et al. 2013).  

The biophysical parameter, cropland canopy water content (CCWC), defined as the total 

amount of water stored in the canopy per unit ground area [g m-2], has successfully been estimated to 

provide agricultural producers cost-effective key knowledge for improving production capacity and 

resiliency in agricultural systems (Anderson et al. 2016; Yi et al. 2014; Zhang and Zhou 2019). CCWC 

has an advantage over NDVI in that, because it represents the physical quantity of water in the canopy, 

it may be estimated through physical-based radiative transfer model (RTM) inversion methods to 

alleviate the transferability challenge inherit with empirical methods (Cernicharo et al. 2013; Gerber et 

al. 2011; Jurdao et al. 2013) and represents a more direct estimate of the crop’s water status. RTMs 

describe the absorption, emission, and scattering processes of radiation through a medium with known 

physical properties. Due to the physical nature of the approach, the technique has the advantage of 
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transferability over empirical-based approaches (Fourty et al. 1996; Liang et al. 2015; Schlerf and 

Atzberger 2006). The combination of leaf model, Propriétés Spectrales (PROSPECT) (Jacquemoud 

and Baret 1990), and canopy model, the Scattering by Arbitrary Inclined Leaves (4SAIL) (Verhoef 

1984), have been successfully coupled, PRO4SAIL (Jacquemoud et al. 2009), and inverted using 

remotely sensed data to retrieve biophysical and canopy parameter estimates (Croft et al. 2015; 

Darvishzadeh et al. 2008; Jacquemoud et al. 2009; Vohland et al. 2010).  

RTM inversion is achieved by minimizing the difference between the observed and modeled 

spectra: the biophysical values used for generating the modeled spectra with the minimum difference 

to the observed spectra are assigned as the values retrieved. Since very similar reflectance spectra can 

be obtained from a range of biophysical parameters with different combinations, the inversion problem 

has been referred to as being an “ill-posed” problem (Baret and Buis 2008; Combal et al. 2003; Yebra 

and Chuvieco 2009). The leaf structure parameter (Ns), a hypothetical parameter in the PROSPECT 

RTM relating to the number of plates in the conceptual plate model within PROSPECT (Allen et al. 

1969), has been cited as the parameter with highest uncertainty since it is the only parameter with no 

measurable physical trait (Ceccato et al. 2001; Ollinger 2011). Combal et al. (2003) recommended the 

use of a priori information to alleviate the “ill-posed” problem. Several studies have reported 

significant improvements to biophysical parameter retrieval using a priori information to constrain the 

approach (Danson and Bowyer 2004; Koetz et al. 2005; Lavergne et al. 2007). Still, the need to advance 

knowledge of uncertainties related to measurements and modeling exists, especially with the 

relationships between Ns , species, stress, and phenology, as it would improve the quality and 

application of a priori information (Combal et al. 2003; Laurent et al. 2014; Qu et al. 2008).  

The remaining challenge of transferring a physical-based CCWC estimates for informing yield 

prediction models requires an investigation into the link between CCWC and yield. While limited, the 

existing research which aims to inform agricultural managers about yield using remotely sensed 

CCWC, retrieved through either empirical or physical-based methods, still rely on empirical 

relationships between drought stress, yield, and CCWC (Elmetwalli et al. 2020; Mwinuka et al. 2021) 

which may not transfer effectively across a diverse range of locations or crops. This is especially true 

when phenology is not considered since water stress during various phenological stages has different 

impacts on crop growth, development, and yield for various crops (Sah et al. 2020; Steduto et al. 2012; 

Yavuz et al. 2021). It is imperative that a connection be made and explored between the physical 

quantity of water in the canopy to drought stress and yield. 

This research proposes a new approach to estimating the yield loss ratio using CCWC estimates 

derived from RTM inversion of moderate resolution multi-spectral EO data. The first objective of the 
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dissertation was to characterize the relationship of the Ns parameter in PROSPECT with phenology, 

species type, and leaf water status. To our knowledge, no other study has examined the relationship 

between the Ns parameter phenology and leaf water status, which are both critical leaf state information 

for the main thesis objective of estimate a yield loss ratio. The lessons from the first objective will be 

considered and applied to subsequent components of the dissertation. The second objective was to use 

the 30-m Harmonized Landsat-Sentinel (HLS) multispectral EO product (Claverie et al. 2018) as the 

input in PRO4SAIL inversion for CCWC estimation. The HLS product, which combines Landsat-8 and 

Sentinel-2 observations, offers strong temporal and spatial resolutions for monitoring agricultural 

landscapes. The HLS product has not been evaluated for CCWC estimation through RTM inversion 

over the entire growing season of multiple years. Lastly, the third objective of the dissertation was to 

transfer the CCWC estimation methods from the second objective to another study region with known 

water balance information (Zhang et al. 2019) and examine a new method which exploits a previously 

published relationship between leaf water content and soil water content (Zhou et al. 2021) and using 

the Food and Agriculture Organization (FAO) Irrigation and Drainage paper 56 yield ratio prediction 

equations (Allen et al. 1998) for estimating the yield loss of crops in the study throughout the growing 

season. Combined, the dissertation presents the first steps towards a new approach to estimating yield 

ratio changes from physical-based and moderate spatial resolution EO-data derived CCWC. 

To this end, the dissertation is divided into three chapters that develop the three main goals of 

the research: 1) assess whether there is a statistically significant variation in Ns as a function of 

phenology and water status, and to provide reference values of Ns to be used as a priori information for 

the inversion of PRO4SAIL in subsequent research; 2) propose and test a phenology driven 

methodology for the generation of a multi-temporal CCWC product from the time series of HLS 

reflectances, through look-up table (LUT) inversion of PRO4SAIL; and 3) estimate the yield loss ratio 

of a previously published irrigation experiment using the CCWC estimation methods from the second 

objective and an logistic regression model linking CCWC to soil water content (Zhou et al. 2021) which 

can be used as the input to FAO-56 yield ratio equations (Allen et al. 1998) for predicting yield. 
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Chapter 1: Characterizing the variability of the structure parameter in 

the PROSPECT leaf optical properties model 
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Abstract 

Radiative transfer model (RTM) inversion allows for the quantitative estimation of vegetation 

biochemical composition from satellite sensor data, but large uncertainties associated with inversion 

make accurate estimation difficult. The leaf structure parameter (Ns) is one of the largest sources of 

uncertainty in inversion of the widely used leaf-level PROSPECT model, since it is the only parameter 

that cannot be directly measured. In this study, we characterize Ns as a function of phenology by 

collecting an extensive dataset of leaf measurements from samples of three monocotyledon species 

(hard red wheat, soft white wheat, and upland rice) and one dicotyledon (soy), grown under controlled 

conditions over two full growth seasons. A total of 230 samples were collected: Measured leaf 

reflectance and transmittance were used to estimate Ns from each sample. These experimental data were 

used to investigate whether Ns depends on phenological stages (early / mid / late), and/or irrigation 

regime (irrigation at 85%, 75%, 60% of the initial saturated tray weight, and pre-/post-irrigation). The 

results, supported by the extensive experimental data set, indicate a significant difference 

between Ns estimated on monocotyledon and dicotyledon plants, and a significant difference 

between Ns estimated at different phenological stages. Different irrigation regimes did not result in 

significant Ns differences for either monocotyledon or dicotyledon plant types. To our knowledge, this 

study provides the first systematic record of Ns as a function of phenology for common crop species. 

Introduction 

Terrestrial biogeochemical cycles are primarily driven by plant physiological and ecological 

processes involving the exchange of matter and energy, such as photosynthesis and evapotranspiration 

(Bonan 2008; Reichstein et al. 2014; Running and Coughlan 1988). Knowledge of plant canopy 

biochemical composition provides critical information towards understanding and predicting the flow 

of energy and matter within terrestrial biogeochemical cycles (Schimel et al. 1991; Trumbore 2006). 

However, generalizing field measured plant or canopy biochemical processes, albeit locally accurate, 

is not a feasible method for inferring larger landscape ecosystem processes. 

Spaceborne radiometric remote sensing measurements of solar electromagnetic radiation, 

reflected by the Earth’s surface, can be used to monitor physical interactions between leaf properties 
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and canopy structure, thereby delivering valuable information relevant to terrestrial biogeochemical 

cycles (Justice et al. 1998; Running et al. 2004; Ustin et al. 2004). Empirical methods, which rely on 

statistical relationships of observed phenomena with remote sensing measurements, are widely applied 

as being simple and computationally efficient. Typically, with this approach, multispectral reflectances 

are combined into vegetation indices, designed to maximize the sensitivity to parameters of interest 

while minimizing the influence of unrelated factors, including soil or atmospheric effects (Baret and 

Guyot 1991; Pinty and Verstraete 1991). The vegetation indices are subsequently correlated to 

biochemical variables such as photosynthetically active pigments, water, and biomass. 

The systematic application of vegetation indices for quantitative biochemical component 

estimation, however, is hampered by large uncertainties. Spectral indices are inevitably sensitive to 

multiple biochemical and structural characteristics of vegetative canopy systems, and are constrained 

by the representativeness of the training data needed by this approach (Baret and Buis 2008; 

Jacquemoud et al. 2000; Zhang et al. 2017). Alternatively, physical-based approaches may be applied 

to overcome transferability problems that arise during systemic application (Darvishzadeh et al. 2011). 

Physical-based approaches are used to estimate canopy biochemical and structural 

characteristics through radiative transfer modeling by simulating the interactions of electromagnetic 

energy with leaf and canopy surfaces based on the laws of physics (Goel 1988; Jacquemoud and Baret 

1993). Among these, leaf optical spectral properties are critical indicators of plant physiology (Carter 

and Knapp 2001; Serbin et al. 2011; Ustin et al. 2009), which affect other functional processes up to 

ecosystem levels (Reichstein et al. 2014). Leaves also act as the primary scattering and absorbing 

elements of plant canopy systems (Baret et al. 1994; Govaerts and Verstraete 1995). 

The leaf Propriétés Spectrales radiative transfer model (PROSPECT), which simulates 

hemispherical reflectance and transmittance of a leaf in reflective wavelengths in the 400–2500 nm 

spectral region (Jacquemoud and Baret 1990), is one of the most widely applied physical-based models 

for leaf trait estimation (Jacquemoud et al. 2009; Sun et al. 2018). The model has been successfully 

used to estimate leaf biochemical components by inverting leaf reflectance measurements (Sun et al. 

2018; Zhang et al. 2017; Zhao et al. 2014). 

PROSPECT is based on the plate theory model (Allen et al. 1969), where a leaf is 

conceptualized as one or multiple compact absorbing plates with rough surfaces. The model calculates 

the radiative transfer of energy at the surface and inside the leaf as a function of: (1) the angle of 

incidence of incoming radiation α, (2) the refractive index n(λ), (3) a dimensionless leaf structural 

parameter that represents the number of homogenous layers (or plates) Ns, and airspaces Ns – 1, 
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specifying the number of cell wall/air space interfaces within the plant leaf mesophyll, and (4) the 

contents of biochemical components per leaf area Cspe, multiplied by the corresponding absorption 

coefficients kspe(λ). 

Several versions of the model have been published since first introduced in 1990 (Jacquemoud 

et al. 2000; Jacquemoud and Baret 1990; Jacquemoud et al. 1996; Le Maire et al. 2004): the most recent 

version being PROSPECT-5 (Féret et al. 2008) and PROSPECT-D (Féret et al. 2017). The biochemical 

components used in PROSPECT-5 are presented in Table 1. 

In the PROSPECT-5 version of the model, the incidence of incoming radiation α, refractive 

index n(λ), and specific absorption coefficients kspe(λ) have been estimated and fixed in the model (Féret 

et al. 2008). Therefore, the estimation of a single leaf’s reflectance and transmittance in PROSPECT-5 

is driven by user inputs: The Ns parameter and contents of the biochemical components per leaf area 

Cspe. The spectral absorption coefficient k(λ) is estimated as: 

𝑘(𝜆) =
(𝐶𝑐𝑎𝑏∗ 𝑘𝑐𝑎𝑏(𝜆))+(𝐶𝑐𝑎𝑟 ∗ 𝑘𝑐𝑎𝑟(𝜆))+(𝐶𝑚∗ 𝑘𝑚(𝜆))+(𝐶𝑤∗ 𝑘𝑤(𝜆))

𝑁𝑠
, (1) 

Leaf transmittance () and reflectance () are subsequently derived from the spectral absorption 

coefficient k(λ), angle of incidence of incoming radiation α, refractive index n(λ), and number of 

airspaces Ns – 1 following the methods introduced by Jacquemoud and Baret (Jacquemoud and Baret 

1990). 

The inversion of a model for the retrieval of biophysical variables is inherently an “ill-posed” 

problem (Combal et al. 2003): In many cases, it is likely that more than one set of values of the variables 

would satisfy the inversion. Combal et al. (2003) recommended the use of a priori information to 

address the “ill-posed” nature of the problem by constraining the range of biophysical values resulting 

from the inversion, thereby eliminating unrealistic solutions. Several studies have reported significant 

improvements to biophysical parameter retrieval by using a priori information to constrain the 

inversion (Danson and Bowyer 2004; Koetz et al. 2005; Lavergne et al. 2007). There is still a need, 

however, to advance our knowledge of the range of key biophysical variables and of associated 

uncertainties (Combal et al. 2003; Laurent et al. 2014; Qu et al. 2008). 

The Ns parameter is a major source of uncertainty in the inversion of the PROSPECT model as 

it is the only parameter that is based on a conceptual quantity (i.e., number of plates) rather than a 

measurable physiological trait. Theoretically, Ns is connected to leaf characteristics such as thickness 

and intercellular properties, including fraction of airspace and mesophyll cell structural dimensions 

(Govaerts et al. 1996; Jacquemoud and Baret 1990). The internal structural properties and cell types 
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(i.e., epidermis, palisade, and spongy mesophyll) of leaves play a key role in regulating internal light 

for maximizing photosynthetic activity, especially with regard to energy not easily absorbed at the leaf 

surface (Oguchi et al. 2018; Smith et al. 1997). For example, upper epidermis cell shape (spherical vs 

elliptical) dictates the distribution of intercepted energy within the leaf while palisade mesophyll cells 

act as a conduit for photons to enter the spongy mesophyll. Spongy mesophyll cells and interior air 

spaces (many air–water interfaces) induce a scattering effect to maximize absorption by chloroplasts. 

Since the visible (400–750 nm) and mid-infrared (> 1400 nm) regions are governed by the two primary 

absorbers in leaf tissue (pigments and water, respectively), the NIR wavelengths (750–1400 nm) 

represents the region in which leaves are most optically transparent and is primarily influenced by leaf 

structural properties (Ollinger 2011). In PROSPECT, these intercellular characteristics are lumped into 

the Ns parameter. Previous approaches to link Ns with physical traits, like specific leaf area (SLA), are 

based on empirical relationships that are difficult to transfer (Ceccato et al. 2001). As a result of the 

simplification of leaf structural properties, Ns cannot be easily connected to any corresponding physical 

traits (Ollinger 2011). 

The sensitivity analysis conducted by Ceccato et al. (2001) demonstrated that Ns is a key 

parameter within PROSPECT. When applying the model in direct mode to estimate leaf reflectance at 

1600 nm, Ns has the greatest influence on the uncertainty of the model output (41.1%), as compared to 

leaf water content (36.4%) and dry matter content (22.5%). Consequently, when applying the model in 

inverse mode, constraining the range of possible Ns values would greatly reduce the uncertainty in 

estimating other biophysical variables of interest. 

Jacquemoud and Baret (1990) indicated that the different structural properties of 

monocotyledon and dicotyledon species cause differences in estimated Ns values, with monocotyledon 

leaves ranging between 1 and 1.5 and the thicker and structurally more complex leaves of dicotyledon 

leaves resulting in Ns values between 1.5 and 2.5. Processes driven by leaf growth are also important 

when considering the scattering of energy. Demarez (1999) observed seasonal variation of Ns in select 

temperate deciduous forest species and linked the change of Ns throughout time to the development of 

the leaves. In that study, Ns increased gradually during leaf tissue development in the initial growth 

stages, plateaued during most of the summer months, then rapidly increased during senescence. The 

rapid increase of Ns at the end of the study period was linked with an amplified scattering effect caused 

from degradation of leaf structural features resulting from the reduction of leaf water content. This link 

was made because, as leaves approach fully turgid or wilted states, leaf cell size, shape, and distribution 

are altered resulting in changes in scattering properties (Gausman et al. 1969). Despite this, we are not 

aware of any studies that examine the effect of water stress on Ns, regardless of the fact that several 
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studies used PROSPECT inversion to estimate vegetation water content (Baret and Fourty 1997; 

Ceccato et al. 2001; Gerber et al. 2011; Jurdao et al. 2013; Zarco-Tejada et al. 2003). 

A few studies exist that examine the variation of Ns as a function of vegetation physiological 

status (i.e., water stress) and phenology (Demarez 1999; Jacquemoud and Baret 1990; Jacquemoud et 

al. 1996; Zhang et al. 2017), but no prior study presents a comprehensive analysis of this relationship. 

Zhang et al. (2017) established an indirect relationship between leaf reflectance and copper stress 

through the Ns parameter in two crop species at two vegetative growth stages. Jacquemoud and Baret 

(1990) used a limited set of greenhouse measurements to state that a difference exists between estimated 

Ns in monocotyledon and dicotyledon leaves; Jacquemoud et al. (1996) found that this difference might 

not be observed on leaves grown outdoors, but neither study took phenology into consideration. Finally, 

Demarez (1999) reported estimated Ns from leaves at various stages throughout leaf development, but 

this study was limited to temperate tree species grown in a deciduous forest under the same 

environmental conditions. Furthermore, to the best of our knowledge, no published dataset reports 

reference Ns values of common monocotyledon and dicotyledon crop species throughout the growing 

season. 

The present study is designed to assess whether there is a statistically significant variation in 

Ns as a function of phenology and irrigation, and to provide reference values of Ns to be used as a priori 

information for the inversion of PROSPECT in future research. 

The present study involved three main components: (1) a large data collection experiment was 

performed over two growing seasons to collect a comprehensive dataset of leaf optical spectral 

measurements for use in Ns estimation; (2) PROSPECT-5 was inverted to estimate Ns using the leaf 

optical spectral dataset; (3) the distribution of estimated Ns values was analyzed statistically as a 

function of phenological class and irrigation regime. 

Methods and Materials 

Data collection 

An extensive experiment was conducted in which plants (monocotyledon and dicotyledon) 

were grown under controlled conditions to collect a representative dataset of leaf optical spectral 

measurements over a period of 90 days, to cover the full phenological cycle of the plants. Additionally, 

the plants were subjected to different irrigation regimes to create controlled water stress conditions. 

Measurements were performed throughout the entire growing season. The phenological stages of the 

plants grown were aggregated into three main phenological classes, defined to delimit periods in which 

plants are most temperature and water sensitive. 
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Experimental design 

Pitkin’s forest research nursery during the summers of 2015 and 2016 contained three 

monocotyledons (hard red wheat—Triticum durum Desf., soft white wheat—Triticum aestivum L., and 

upland rice—Oryza sativa L.) and one dicotyledon (soy—Glycine max L.). All four were grown in 

2015, and two were also grown in 2016 (hard red wheat and soy). The plants were grown outdoors in 

45-well foam trays. Watering was controlled, following the procedures detailed below. Other 

environmental variables, such as temperature, sunlight, and exposure to wind were not controlled. 

Each tray contained 45 plants of the same species (one plant for each well); 2–3 seeds per well 

were initially planted. After plant emergence, if more than one seed had germinated in the same well, 

the additional plants were removed to ensure one seedling per well. Plants were watered through sub-

irrigation methods, allowing for direct control over the amount of water administered while limiting 

tissue disease. The water for sub-irrigation contained a mixture of starter fertilizer to obtain a nitrogen 

content of 50 ppm. To water a tray, an 18-gallon bin was filled with approximately 3 gallons of the 

nitrogen starter mixture. The tray was placed in the bin to allow the starter mixture to soak the tray up 

from the bottom. The tray would remain in the starter mixture for 30 minutes before being removed. 

To determine whether sub-irrigation was necessary, each tray was weighed every day. The tray was 

irrigated only if on that day its weight had dropped below a given percentage of the initial tray saturation 

weight. 

Plant extraction for performing the measurements began approximately 27 days after planting 

to allow the plants to establish. For the plants grown in 2015, plant extraction and leaf optical 

measurements occurred regularly once a week and three plants were removed from each tray during 

the extraction. In 2016, plant extraction and measurements were dependent on watering frequency. Two 

plants were extracted and sampled immediately before watering occurred and again 24 hours after 

watering occurred. 

The life cycle stages of the plants were aggregated into three main phenological classes (early, 

mid, late), reported in Figure 1.1. These three phenological classes were defined based on the sensitivity 

to drought (water deficit) and temperature of each growth stage for each crop. The ‘early’ class was 

defined to include the vegetative periods, where extreme temperatures and water deficit have 

consequences that slow or stop development and reduce yield in later life cycle stages (Doorenbos and 

Kassam 1979). The ‘mid’ and ‘late’ classes encompass the flowering and yield formation phases of the 

crop’s life cycle, respectively. In terms of successful yield, these periods are the most sensitive to water 

and temperature extremes (Doorenbos and Kassam 1979). The crops used in this study are less 
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susceptible to drought or extreme temperatures when full maturity is achieved. Therefore, life cycle 

stages after the ‘late’ phenological class were not considered, and plants were no longer sampled. 

Since the plants were grown outdoors, the samples were subjected to the same temperature and 

sunlight conditions. The upland rice plants did not grow past the flowering growth stages as the local 

outdoor conditions slowed development in the early and mid-phenological classes. As the experiment 

ended after 90 days, before the upland rice plants reached the ripening growth phase, the upland rice 

samples were aggregated into two phenological classes only (early and mid). 

In 2015, plants were separated into three separate irrigation regimes resulting in three groups 

of four trays (four species)—for a total of 12 trays. The trays were weighed daily at approximately the 

same time of day to determine if watering should occur. Irrigation occurred when the tray reached 85%, 

75%, and 60% of the initial saturated weight measured at the beginning of the growing season for 

regimes 1, 2, and 3, respectively. 

In 2016, all plants were watered following the same regime, hence only one tray per species 

was grown. As in the 2015 experiment, the trays were weighed daily at approximately the same time 

of day to determine if irrigation would occur. Irrigation occurred when the tray reached 60% of the 

initial saturated weight measured at the beginning of the growing season. 

Measurement protocol 

Extraction occurred by cutting the plant at the base, just above the soil line, and immediately 

placing it in a plastic bag to minimize water loss. Bags were put in a cooler until processing in the lab 

approximately an hour after extraction. Leaf sample water loss was assumed to be minimal during 

transportation to the lab for measurements. Extraction and leaf measurements occurred at 

approximately the same time each day. 

Leaf bidirectional reflectance factor (BRF ) [dimensionless] and transflectance 

[dimensionless] were measured with a PSR-3500 field spectroradiometer (Spectral Evolution, Inc). The 

instrument collects measurements on a full spectral range of wavelengths, from 350 nm to 2500 nm, 

with a spectral resolution of 3 nm at 700 nm, 8 nm at 1500 nm, and 6 nm at 2100 nm. All data were 

interpolated to 1 nm sampling interval before further processing, resulting in 2151 bands. The field 

spectroradiometer was equipped with a pistol-grip contact probe with leaf clip, using a 5-watt tungsten 

halogen source at 12-degree incidence zenith to the target for spectral measurements. The leaf clip 

attachment for the contact probe includes a two-sided reversible plate that holds the leaf sample during 

measurement and excludes ambient direct and scattered light from the sensor. One side of the plate is 
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a near 100% reflective Lambertian Spectralon panel (Labsphere Inc., North Sutton, NH) and the 

opposite side is a black surface with near 0% reflectance. Radiance measurements were calibrated using 

the Spectralon panel before scanning each leaf. The instrument was set to acquire and average 10 

spectra per scan to reduce noise and was considered the optimal compromise between time required for 

spectra collection and noise reduction. Measurements were performed on five points of the leaf and 

subsequently averaged. The black plate was used to measure BRF  as it ensures that only 

electromagnetic radiation directly reflected by the leaf is measured by the sensor, as any radiation 

transmitted through the leaf is absorbed by the plate. The white plate was used as the background to 

measure leaf transflectance, defined as the sum of leaf reflectance and double transmittance: The 

spectroradiometer acquires the energy directly reflected by the leaf, plus the energy that is transmitted 

through the leaf, reflected by the Spectralon panel, and transmitted through the leaf a second time (Lam 

and Rotman 2010). While leaves from all plants sampled after the 27-day establishment period were 

measured with the leaf clip, only leaves that fully covered the leaf clip field of view area were 

considered in the present study. 

Spectral data processing 

A function based on the Kubelka-Munk theory of light scattering and absorption was applied 

to measured leaf transflectance to estimate leaf transmittance (τ) [dimensionless]: 

𝜏𝜆 = √(𝜌𝑇𝐹𝜆 − 𝜌𝐵𝑅𝐹𝜆)(
1

𝜌𝑤𝜆
− 𝜌𝐵𝑅𝐹𝜆), (2) 

where 𝜏𝜆 is the estimated transmittance, 𝜌
𝑇𝐹𝜆

 is the measured transflectance of the leaf using the 

white plate background, 𝜌
𝐵𝑅𝐹𝜆

 is the measured reflectance of the leaf using the black plate 

background, and 𝜌
𝑤𝜆

 is the measured reflectance of the white plate. Transmittance estimated from 

Equation 2 has been used in PROSPECT inversion problems with success in previous research 

(Arellano et al. 2017) and is used in the estimation of Ns for this study due to the unavailability of an 

integrating sphere for collecting the spectral measurements 

Since the PROSPECT models were originally calibrated on directional hemispherical 

reflectance spectra (DHRF ) measured with an integrating sphere (Féret et al. 2008; Jacquemoud and 

Baret 1990), inverting the PROSPECT-5 model using leaf clip BRF  measurements would not be 

appropriate (Jay et al. 2016). 

Both BRF  and DHRF  result from the combination of a leaf surface reflectance component, 

which accounts for the electromagnetic radiation that does not penetrate the leaf and is directly 
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reflected, and a diffuse reflectance component, which is the result of intercellular physical and 

biochemical constituents (Bousquet et al. 2005). By separating surface reflectance from the diffuse 

reflectance, it is possible to correct, prior to the radiative transfer model (RTM) inversion, BRF  

measured with a leaf clip (Li et al. 2018). Bousquet et al. (2005) and Jay et al. (2016) summarized and 

demonstrated the principles, which connect integrating sphere measured DHRF  and leaf clip measured 

BRF , assuming a small incidence zenith, resulting in the characterization of the surface component, 

which can be used to account for the differences in physical properties between DHRF  and BRF : 

𝜌𝐵𝑅𝐹𝜆  − 𝜌𝐵𝑅𝐹𝑠𝑢𝑟𝜆 = 𝜌𝐷𝐻𝑅𝐹𝜆  − 𝜌𝐷𝐻𝑅𝐹𝑠𝑢𝑟𝜆, (3) 

At a wavelength of 445 nm, where strong absorption of leaf pigments occurs, it is possible to 

assume only direct reflectance to occur at the leaf surface (Sims and Gamon 2002), thus estimating a 

simple function, known as PROREF (Li et al. 2018), is used to correct the BRF  measurement of each 

leaf sample: 

𝜌′𝑚𝑒𝑎𝑠𝜆 = 𝜌𝐵𝑅𝐹𝜆  − (𝜌𝐵𝑅𝐹445 − 𝜌𝑚𝑜𝑑445), (4) 

where 𝜌′
𝑚𝑒𝑎𝑠𝜆

 is the adjusted spectral reflectance, and BRF, and mod are the measured and modeled 

leaf reflectance at 445 nm. mod was generated and Equation 4 was computed with each iteration of 

the Ns inversion step described in Section 2.2, with constant values set for Ccab and Ccar at 47.28 µg 

cm-2and 10.31 µg cm-2, respectively, and the Ns value from the iteration. The solution to Equation 5 

was computed with each iteration of Ns inversion until minimization was reached. The method for 

minimization is described in more detail in the data analysis section. 

The pigment parameter values were determined by taking the average of Ccab and Ccar from all 

of the leaves in the LOPEX leaf dataset (Hosgood et al. 1995). Using only pigment values from soybean 

and rice leaf, LOPEX samples did not significantly change mod  (less than a tenth of a percent). 

Similarly, the difference in mod  generated with Ns = 1 and Ns = 3 was less than a half percent. An 

example of the PROREF function being applied in the NIR region of measured mature soy leaf spectra 

is presented in Figure 1.2. 

Data analysis 

The PROSPECT-5 model was inverted to estimate Ns for each leaf sample, using the three-

wavelength inversion method proposed by Féret et al. (2008). The method uses reflectance and 

transmittances measured at three wavelengths in the NIR plateau, where the leaf spectral response is 

more sensitive to the Ns parameter, rather than to the concentration of the biochemical components. The 
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three wavelengths are identified based on the measured reflectance and transmittance of each leaf 

sample in the 800–1300 nm range, as: 

• 1: Wavelength of minimum absorbance (i.e., the maximum of the sum of measured transmittance 

and reflectance). 

• 2: Wavelength of maximum measured reflectance. 

• 3: Wavelength of maximum measured transmittance. 

The approximate location of these three wavelengths are illustrated in Figure 1.3 on the same 

example spectra as Figure 1.2. 

The inversion is performed by minimizing a merit function, defined as: 

𝐽(𝑁𝑠, 𝑘𝑖(𝜆𝑖)) =  ∑ (𝜌𝑚𝑒𝑠(𝜆𝑖) − 𝜌𝑚𝑜𝑑(𝑁𝑠, 𝑘(𝜆𝑖)))23
𝑖=1 +(𝜏𝑚𝑒𝑠(𝜆𝑖) − 𝜏𝑚𝑜𝑑(𝑁𝑠, 𝑘(𝜆𝑖)))2, (5) 

where i = (1, 2, 3) are the three wavelengths defined above, mes (i) and mes (i) are the measured 

reflectance and transmittance, mod (i) and mod (i) are the reflectance and transmittance simulated by 

applying the model in forward mode, and k(i) is the absorption coefficient of an elementary layer Ns 

at the three wavelengths. The function J was minimized using the Nelder-Mead downhill simplex 

method (Nelder and Mead 1965), setting an arbitrary starting value for the numerator of Equation 1 and 

Ns, and iteratively searching in the parameter space for the solution resulting in the minimum difference 

between modeled and measured leaf spectra. 

The population of Ns resulting from inversion of the measurements of each leaf sample was 

analyzed through an ANOVA test to determine whether the range of variation of Ns can be explained 

by considering plant type (monocotyledon vs. dicotyledon), phenological class (early / mid / late), and 

irrigation regime (irrigation at 85%, 75%, and 60% of the initial saturated weight, and pre-/post-

irrigation). The statistical analysis was conducted as follows: 

1. The population of estimated Ns values was stratified into sub-populations according to the 

criteria defined in Section 2.1. 

2. A Welch’s two-sample t-test was performed to determine if the estimated means of 

monocotyledon and dicotyledon Ns differed significantly from one another. 

3. A Welch’s two-sample t-test was run to determine whether there was a significant 

difference between the estimated means of pre- and post-irrigation Ns for each plant type.  
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4. Welch’s one-way ANOVA tests were run to test whether the variation of Ns in each plant 

type can be explained by phenological class (early / mid / late) and irrigation regime 

(irrigation at 85%, 75%, and 60% of the initial saturated weight) 

If the ANOVA test was significant at P ≤ 0.05, then Welch’s two-sample t-tests were carried 

out to compare the means of classes within the sub-population of the plant type. For example, if 

phenological class returned a significant result as an explanatory variable for Ns in the sampled 

monocotyledon leaves, then the means of ‘early’, ‘mid’, and ‘late’ monocotyledon Ns would be 

compared. 

Results 

In total, 230 independent estimates of Ns were retrieved from the spectral measurements: 158 

from the 2015 experiment and 72 from the 2016 experiment. The timeseries of estimated Ns from the 

2015 and 2016 nursery experiments are presented in Figure 1.4 and 1.5, respectively. A summary of 

the estimated Ns, stratified by plant type and phenological class, is presented in Table 1.2. 

The summary in Table 1.2 illustrates monocotyledon Ns values primarily fit within the range 

1.3–1.7 (µ = 1.46, σ = 0.29) and dicotyledon Ns values exhibited a distribution primarily between 1.9 

and 2.2 (µ = 2.07, σ = 0.27). Overall, a pattern of Ns increasing with days after seeding was observed 

with the sampled monocotyledon plants, with lower values in the ‘early’ stage (µ =1.35, σ = 0.28) and 

higher values in the ‘mid’ and ‘late’ stages: (µ = 1.50, σ = 0.23) and (µ = 1.66, σ = 0.25), respectively. 

Soy began with higher estimated values of Ns (µ = 2.17, σ = 0.19), lower ‘mid’ stage (µ = 1.96, σ = 

0.25), and finally increased during the ‘late’ stage (µ = 2.14, σ = 0.29). The progression of distributions 

for each plant type over time is illustrated in the box plots of Figure 1.6, again illustrating the high-low-

high pattern for dicotyledon soy and increase over time for the monocotyledon plants. The results from 

statistical analyses described in the data analysis section are presented in Table 1.3. 

The Welch’s two-sample t-test run for the whole dataset (‘all’) comparing Ns means by plant 

type shows a significant difference (P < 0.001) between the means of monocotyledon and dicotyledon. 

It was also determined that phenological classes influence the variation of estimated Ns within each 

plant type, with F(2,115) = 13.40, P < 0.001 for monocotyledon phenological classes and F(2,109) = 

7.10, P = 0.001 for dicotyledon phenological classes. Finally, no significant differences were observed 

between the irrigation regime Ns means for either 2015 or 2016. 

Since it was determined that phenological classes were a significant source of variance in 

estimated Ns, Welch’s two-sample t-tests were run to intercompare the phenological classes sub-

population means of Ns (early / mid / late) within each plant type. The results from those analyses are 
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presented in Table 4. Significant differences between sub-population means of Ns in every consecutive 

phenological class were observed. 

Discussion 

Our analysis relied on an extensive experimental dataset, collected over two growing seasons 

with a rigorous data collection protocol. The distribution of estimated Ns was consistent with expected 

values for monocotyledon and dicotyledon plant types: monocotyledon Ns primarily ranged between 

values of 1.0–1.5, and dicotyledon Ns primarily ranged between values of 1.5 and 2.5 (Jacquemoud et 

al. 1996). The statistical analysis performed on the population of estimated Ns indicated that there was 

a significant difference between plant types, and that there was a significant difference by broad 

phenological class. There was instead no significant difference between Ns estimated from plants 

subject to different irrigation regimes. 

The results align with previous literature reporting that structural changes, driven by growth 

and maturation, influence Ns (Demarez 1999; Jacquemoud et al. 2009). In particular, we observed a 

pronounced increase of Ns over time in monocotyledon leaves and a less pronounced dicotyledon 

seasonality, with higher Ns in the early and late phases, than in the mid growing phase. While the 

monocotyledon seasonality is in line with previous results derived from measurements on broadleaved 

plants (Demarez 1999), to the best of our knowledge, the reduced sensitivity of Ns to phenology in 

certain dicotyledon leaves has not been reported in the available literature. Higher mean Ns in the ‘early’ 

phenological stages of the dicotyledon plants may be attributed to a change of leaf properties as the 

leaves begin to mature, i.e., leaf thickness decreasing or the wider spatial distribution of trichomes per 

unit leaf area as the leaves mature, which affect the transmission of NIR energy. A more detailed 

investigation of Ns as a function of phenology in dicotyledon species, which will examine a wider 

variety of species, will be conducted in the future. For monocotyledon Ns, while samples were rejected 

if the leaf material did not cover the full leaf clip field of view, the strong variation in data points derived 

from measurements performed less than 60 days after seeding may be attributed to errors with the 

leaves sampled during the early tillering stages, when in some cases the leaves were still too small for 

a reliable spectral measurement. 

The irrigation regime did not explain the variation estimated Ns. The presence of water either 

has a direct influence on the spectral signal of leaves, through the rotation-vibration features of water 

in the mid-infrared region, or an indirect influence, through the structural and physiological 

biochemical responses of leaves to hydration or dehydration. The result that irrigation regime did not 

influence the estimation of Ns is consistent with the fact that the estimation of Ns is independent of both 

direct (i.e., mid-infrared absorption characteristics of water) and most indirect (i.e., changing pigment 
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content) water content influences. Leaf wilting does influence the estimation of Ns, but only when water 

loss has developed sufficiently enough to result in severe leaf dehydration, causing a significant 

response in the NIR spectral region (Suplick-Ploense et al. 2011). Although the irrigation regime did 

not have a significant influence over the variance of the Ns parameter in our study, water still has the 

potential to affect the structural components of leaves and should be considered on an individual species 

and ecosystem basis along with other environmental factors, such as toxicity, nutrient availability, and 

disease. Future studies, which examine the influence of wilting or fully turgid cellular properties on the 

estimation of Ns in more extreme cases, will need to account for irrigation regimes on an individual 

species basis. Notwithstanding these limitations, the finding that the irrigation regimes used in the 

current study do not significantly influence Ns has particular relevance as it implies that a priori Ns 

values, tabulated solely as a function of plant type and phenology (i.e., Table 2), can be used to constrain 

the inversion of PROSPECT. A common use of PROSPECT is the estimation of canopy water content, 

and in such case the leaf water content is evidently unavailable to inform the a priori selection of Ns. 

A few caveats should be considered if using a priori Ns values, estimated in this study through 

leaf-level inversions, for canopy level studies. First, the heterogeneity of the canopy should be 

considered, as different plant types and different phenological stages might be present. Second, Ns may 

vary within a single species depending on other factors besides phenology, such as environmental 

conditions (Zhang et al. 2017) and illumination (sun vs shade) (Demarez 1999). Future research will 

be focused on coupled radiative transfer model inversion for estimating canopy traits in an agricultural 

setting where species, environmental conditions, illumination, and phenology are relatively uniform, 

and on the evaluation of the reduction of canopy water content uncertainty that can be attained by 

constraining the range of variation of Ns. 

Conclusion 

This paper presents the results of an extensive experiment aimed at the assessment of the 

PROSPECT radiative transfer model leaf parameter (Ns) as a function of phenological class, and 

whether water content would indirectly influence the estimation of the Ns parameter. While several 

datasets of leaf spectral and biophysical properties are available (Féret et al. 2008; Gitelson and 

Merzlyak 1994; Hosgood et al. 1995; Richardson et al. 2002), our results, obtained over the full extent 

of the growing season and accounting for a range of irrigation regimes, provide the first detailed 

phenology dependent record of Ns values for two common crop species. The results indicate a 

significant difference between Ns estimated on the considered monocotyledon and dicotyledon plants, 

and new findings of a significant difference between Ns estimated at different phenological stages. The 

results also indicate other new findings, namely that irrigation regimes did not result in significant Ns 
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differences for either monocotyledon or dicotyledon plant types. Since only four plant species (three 

monocotyledons and one dicotyledon) were considered in this study, further research will be needed to 

assess whether these results can be generalized to different species. A second priority for future research 

will be on the quantitative assessment of the reduction of uncertainty in estimating plant biophysical 

variables when applying a priori Ns values in PROSPECT inversions and whether constraining the 

range of variation of Ns can reduce the uncertainty of retrieving certain canopy variables in coupled 

radiative transfer model inversion. 
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Table 1.1. Biochemical parameters used by the PROSPECT-5 model. 

Symbol Biochemical Parameter Units 

Ccab Leaf chlorophyll content µg cm-2 

Ccar Leaf carotenoid content µg cm-2 

Cw Equivalent water thickness g cm-2 

Cm Dry matter content g cm-2 

 

Table 1.2. Summary of leaf structure parameter (Ns) metrics1. 

Plant type Total Early Mid Late 

Monocotyledon (n = 118)     

µ 1.46 1.35 1.5 1.66 

σ 0.29 0.28 0.23 0.25 

Max/Min 2.23/1.00 1.92/1.00 1.84/1.00 2.23/1.15 

Upper/Lower IQ 1.68/1.27 1.57/1.03 1.70/1.39 1.73/1.52 

Dicotyledon (n = 112)     

µ 2.07 2.17 1.96 2.14 

σ 0.27 0.19 0.25 0.29 

Max/Min 2.96/1.61 2.54/1.91 2.89/1.61 2.96/1.64 

Upper/Lower IQ 2.21/1.86 2.26/2.05 2.04/1.81 2.36/1.96 

1Stratified by species and phenological class. The 75th and 25th percentiles are the upper and lower 

interquartile (IQ) limits, respectively. 

 

 

 

 

 

 

 

 

Table 1.3. Welch's two-sample t-test and analysis of variance. 1. 



37 

 

Data Independent variable F-value T-statistic 

All Species*   10.93 (< 0.001) 

Monocotyledon Season period* 10.227 (< 0.001)  

 2015 Irrigation regime 0.896 (0.413)  

  2016 Irrigation regime   -1.122 (0.271) 

Dicotyledon Season period* 4.46 (0.017)  

 2015 Irrigation regime 2.422 (0.101)  

  2016 Irrigation regime   -1.251 (0.22) 

1Welch's two-sample t-test and analysis of variance for species, phenological class, and irrigation 

regime sub-populations. ANOVA results are presented in the first two columns after the independent 

variable column. Two-sample t-test results are presented in the last two columns. The independent 

variable name is asterisked if the difference between population means are significant (P < 0.05). 

 

Table 1.4 Welch's two-sample t-test. 1. 

Population Independent variable T-value df Probability of > T 

Monocotyledon Early vs Mid* -2.486 88 0.015 

 Mid vs Late* -2.626 58 0.011 

 Early vs Late* -4.912 84 <0.001 

Dicotyledon Early vs Mid* 3.002 59 0.004 

 Mid vs Late* -3.3 95 0.001 

  Early vs Late 0.373 64 0.71 

1Results from Welch's two-sample t-test. The independent variable name is asterisked if the difference 

between population means are significant (P < 0.05). 
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Figure 1.1. Phenological aggregation into three classes for the species considered in this study. For each 

species, the top line reports the observed crop growth stage recorded using commonly used growth stage 

identification protocols. Growth phases and durations, outlined by Arraudeau and Vergara (1988), were used 

for identifying phenological stages of upland rice. The soy was identified using the protocol outlined by 

Pedersen et al. (2004). Both red and white varieties of wheat followed the Zadok’s code (Zadoks et al. 1974). 

The bottom row of each species row reports the phenological aggregation. 

 

 
(a) (b) 

Figure 1.2.  Comparison between measured and modeled leaf spectra in the NIR region (850–1150 nm): (a) 

before PROREF adjustment; (b) after PROREF adjustment. The dashed red line represents the modeled leaf 

spectra as output from PROSPECT-5. The solid black line represents the measured wheat leaf spectra. The 

modeled leaf spectra were generated for this example figure with the biochemical input parameters measured 

from a wheat leaf sample: Cw = 0.016, Cm = 0.004, and N = 1.38. 
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Figure 1.3.  Comparison between measured reflectance and transmittance, and estimated absorptance (absolute 

difference between reflectance and transmittance) in the NIR region (850–1150 nm) of the wheat leaf from Figure 

1. The black ‘X’s mark the approximate locations of maximum reflectance (1 = 880 nm) and transmittance (2 = 

1071 nm), and minimum absorptance (3 = 853 nm) in the NIR region. 
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(a) (b) 

 

(c) (d) 
Figure 1.4.  Estimated Ns for the entire sample of the four species grown in the 2015 experiment: (a) white wheat; 

(b) red wheat; (c) soy; (d) upland rice. In all four plots, the symbol indicates the three different irrigation regimes: 

Treatments 1, 2, and 3 indicate respectively watering when the plant tray reached 85%, 75%, and 60% of the 

initial saturated weight. 
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(a) (b) 
Figure 1.5. Estimated Ns for the entire sample of the two species grown in the 2016 experiment: (a) red wheat; 

(b) soy. In each plot, the symbol indicates the two different irrigation regimes: Pre-water samples indicate 

estimated Ns before the trays were watered and post-water samples indicate estimated Ns 24-hours after the plants 

were watered. 

 

 

Figure 1.6. Box plots of the distribution of Ns as a function of plant type and phenological class: (a) dicotyledon 

soy during the 2015 and 2016 experiments for each phenological class; (b)  monocotyledon wheat (hard red, soft 

white) and upland rice during the 2015 and 2016 experiments for each phenological class; (c) both dicotyledon 

and monocotyledon plant types during both 2015 and 2016 experiments for the entire season period. The box 

plots report median, interquartile range (IQR), whiskers (defined by: Q3 + 1.5 *IQR and Q1-1.5*IQR), and 

outliers (dots). 
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Chapter 2: Landsat-8 and Sentinel-2 canopy water content estimation in 

croplands through radiative transfer model inversion 

Published in Remote Sensing as: 

Boren, E.J. and Boschetti, L., 2020. Landsat-8 and Sentinel-2 Canopy Water Content Estimation in 

Croplands through Radiative Transfer Model Inversion. Remote Sensing, 12(17), p.2803. 

Abstract 

Despite the potential implications of a cropland canopy water content (CCWC) thematic product, no 

global remotely sensed CCWC product is currently generated. The successful launch of the Landsat-8 

Operational Land Imager (OLI) in 2012, Sentinel-2A Multispectral Instrument (MSI) in 2015, followed 

by Sentinel-2B in 2017, make possible the opportunity for CCWC estimation at a spatial and temporal 

scale that can meet the demands of potential operational users. In this study, we designed and tested a 

novel radiative transfer model (RTM) inversion technique to combine multiple sources of a priori data 

in a look-up table (LUT) for inverting the NASA Harmonized Landsat Sentinel-2 (HLS) product for 

CCWC estimation. This study directly builds on previous research for testing the constraint of the leaf 

parameter (Ns) in PROSPECT, by applying those constraints in PRO4SAIL in an agricultural setting 

where the variability of canopy parameters are relatively minimal. In total, 225 independent leaf 

measurements were used to train the LUTs, and 102 field data points were collected over the 2015–

2017 growing seasons for validating the inversions. The results confirm increasing a priori information 

and regularization yielded the best performance for CCWC estimation. Despite the relatively low 

variable canopy conditions, the inclusion of Ns constraints did not improve the LUT inversion. Finally, 

the inversion of Sentinel-2 data outperformed the inversion of Landsat-8 in the HLS product. The 

method demonstrated ability for HLS inversion for CCWC estimation, resulting in the first HLS-based 

CCWC product generated through RTM inversion. 

Introduction 

Agricultural drought, defined as the deficiency of soil moisture required for proper plant growth 

resulting in plant stress and yield reduction (Hazaymeh and Hassan 2016), is primarily monitored using 

agricultural drought indices (Zargar et al. 2011). Along with temperature, precipitation, and soil 

moisture content, vegetation (cropland) canopy water content (CCWC) is a known key parameter for 

monitoring agricultural drought due to its close relation to vegetation stress, biomass productivity, and 

nutrient transportation (Peñuelas et al. 1993; Peñuelas et al. 1994; Yi et al. 2014). Although agricultural 

drought monitoring is important throughout the entire growing season (Hazaymeh and Hassan 2016), 

it is especially critical during growth periods where water shortages could result in significant loss of 
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yield (Hu et al. 2008; Zhang et al. 2017). In irrigation-fed agricultural regions, CCWC is critical 

information for implementing flexible precision irrigation practices (Peñuelas et al. 1993; Ustin et al. 

2004). This is increasingly relevant, as growers seek to improve efficiency through the adoption of 

advanced irrigation technologies, which rely on precise, geographically distributed monitoring of water 

in- and out-flows from farm to basin scale (Grafton et al. 2018). The spaceborne remote sensing of 

CCWC eliminates the need for expensive, labor intensive field measurements, and minimizes 

uncertainties caused by within-field variations in soil type and microtopography (Liu et al. 2008; Rud 

et al. 2014). Further development of remote sensing methods for CCWC assessment, is therefore of 

paramount importance. 

Remote sensing techniques for the estimation of CCWC have been proposed relying on 

thermal, microwave, and optical data (Carlson et al. 1994; Peñuelas et al. 1993; van Emmerik et al. 

2015). The detection of apparent thermal inertia through remote sensing by measuring surface albedo 

and the diurnal temperature range has been observed to have a proportional relationship with water 

content (Claps and Laguardia 2004; Verstraeten et al. 2006), although these methods perform poorly in 

heavily vegetated regions (Peters et al. 2011). Microwave remote sensing methods for land surface 

water detection (Entekhabi et al. 2010; Jackson et al. 1982; Meesters et al. 2005) show promising results 

for the detection of water content in agricultural drought monitoring applications (Anderson et al. 2010; 

Zhang and Jia 2013), albeit lacking the combined temporal and spatial resolution required for 

operational agricultural applications (Hazaymeh and Hassan 2016). The use of optical data relies 

primarily on the strong water absorption features in the 700–2500 nm spectral range. The increasing 

availability of moderate resolution (10–30 m) optical data, the development of data assimilation 

techniques for filling data gaps and decreasing space-borne product uncertainty (Kumar et al. 2015; 

Kumar et al. 2018), open the possibility of developing CCWC thematic products to meet the needs of 

operational users (Belward et al. 2016; Djamai et al. 2019; Zhang et al. 2013). 

Optical-based estimation of water content typically involve empirical methods, relying on 

statistical relationships between field measured CCWC and water sensitive spectral indices 

(Bandyopadhyay et al. 2014; Cheng et al. 2008; Ullah et al. 2014). The normalized difference water 

index (NDWI) (Gao 1996) has been found to be one of the most robust indices for detecting variations 

in vegetation water content and biomass (Cosh et al. 2010). A major limitation of these approaches is 

the fact that the relationship between CCWC and spectral indices is highly dependent upon field 

sampling methods, imagery preprocessing quality, and on the choice of the statistical model used 

(Grossman et al. 1996; Li and Wang 2011; Yebra et al. 2013). Transferability of empirical methods, 

required for systematic large-scale application, is further limited due to region-specific variations in 
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vegetation species, canopy properties, and soil properties (Baret and Guyot 1991; Jacquemoud et al. 

2009; Verger et al. 2011). 

The inversion of radiative transfer models (RTM) provides a physically-based alternative to 

the empirical methods. RTMs can potentially be transferred among different regions, since they 

explicitly model the interaction between electromagnetic energy and vegetation biophysical 

components; thereby, limiting the uncertainty caused from variations in surface properties 

(Darvishzadeh et al. 2008b; Houborg et al. 2007; Si et al. 2012). The PROSAIL coupled RTM (Baret 

et al. 1992), is an extensively used model (Duan et al. 2014; Jay et al. 2017; Rivera et al. 2013) which 

generates top-of-canopy bidirectional reflectance and is known for representing homogenous 

landscapes well (Jacquemoud et al. 2009). PROSAIL is the result of combining the leaf Propriétés 

Spectrales model (PROSPECT) and the Scattering by Arbitrarily Inclined Leaves model (SAIL), where 

the output of PROSPECT is used as an input in SAIL (Figure 2.1). 

The PROSPECT model, which simulates hemispherical reflectance and transmittance between 

400–2500 nm of a leaf (Jacquemoud and Baret 1990), is based on the plate theory model (Allen et al. 

1969) where a leaf can be conceptualized as one or multiple compact absorbing plates. The model 

calculates the radiative transfer of energy at the surface and inside the leaf with two classes of user 

input variables: 1) the leaf structure parameter (Ns) which is the number of homogenous layers (or 

plates) specifying the number of cell wall interfaces within the plant leaf mesophyll and 2) the 

biochemical components of the leaf: the properties which the absorption coefficient of each plate is 

derived. Several versions of the model have been published since first introduced in 1990 (Jacquemoud 

et al. 2000; Jacquemoud and Baret 1990; Jacquemoud et al. 1996; Le Maire et al. 2004); the most recent 

improvements with the release of PROSPECT-5 (Féret et al. 2008) and PROSPECT-D (Féret et al. 

2017), which separates total carotenoids and anthocyanins from total pigment content, respectively. 

The input parameters to PROSPECT-5 are leaf structure parameter Ns (unitless), leaf chlorophyll a + b 

concentration Ccab (µg cm-2), carotenoid concentration Ccar (µg cm-2), equivalent water thickness Cw (g 

cm-2), and dry matter content Cm (g cm-2). 

SAIL is a one-dimensional RTM which simulates canopy bidirectional reflectance as a function 

of leaf reflectance and transmittance, soil reflectance, canopy architectural properties, and 

illumination/viewing geometries (Verhoef 1984). SAIL considers the canopy as a horizontal, turbid 

medium made up of randomly distributed leaves; where the azimuth angle of the leaves is assumed to 

be randomly distributed, and their zenith angle characterized by a mean leaf inclination input. Like 

PROSPECT, SAIL has been numerically optimized resulting in the 4SAIL model (Verhoef et al. 2007). 

The input parameters to 4SAIL are leaf reflectance and transmittance, leaf area index (LAI) (m2 m-2), 
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canopy background reflectance, (i.e., soil reflectance scale parameter), leaf angle distribution from 

average leaf angle ALA (unitless) [54], fraction of diffuse incoming solar radiation skly (unitless), sun 

zenith angle θs (deg), sensor viewing angle θv (deg), relative azimuth angle between the sensor and sun 

φ (deg), and the hot-spot size parameter HotS (m m-1) (Kuusk 1995). 

PRO4SAIL inversion is performed by using known values of surface reflectance (i.e., the 

satellite observations) to estimate the values of the unknown leaf biochemical parameters and/or canopy 

structural parameters. PRO4SAIL inversion for estimating CCWC (calculated as the product of Cw and 

LAI) is most commonly utilized in agricultural (Yang and Ling 2004; Zhang et al. 2017) and fire danger 

assessment applications (Colombo et al. 2008; Yebra et al. 2013; Zarco-Tejada et al. 2003). The 

systematic generation of agricultural monitoring thematic products derived from RTM inversion, 

however, has been limited in the past both by the ill-posed nature of the inversion problem (Baret and 

Buis 2008; Combal et al. 2003; Yebra and Chuvieco 2009) and by the lack of optical space-borne 

instruments with spatial, temporal, and spectral resolution adequate to meet the needs of operational 

agricultural monitoring (Atzberger 2013; Becker-Reshef et al. 2010). 

Inversion problems are ill-posed as more than one solution typically exists (Baret and Buis 

2008; Combal et al. 2003), primarily due to the number of unknown variables exceeding the number of 

observed variables (Jacquemoud et al. 1995). Specifically, model parameters which influence the same 

spectral region contribute to this uncertainty, causing more than one combination of parameters to 

produce very similar spectral outputs (Weiss et al. 2000). In the case of Cw retrieval in PROSPECT 

inversion, Ceccato, et al. (2001) demonstrated the coupled influence of Cm and Ns with Cw in the SWIR 

region; thereby, illustrating that the observed SWIR reflectance alone does not provide sufficient 

information to invert the model and estimate Cw. PRO4SAIL inversion solving is further complicated 

by the fact that SAIL introduces additional parameters to model the top-of-canopy reflectance (Figure 

2.1). 

Various strategies have been proposed and implemented to constrain the number of viable 

solutions; thereby, alleviating the ill-posed nature of the inversion. Spatial constraints have been applied 

by splitting the inversion problem into separate landcover sub-domains (Dorigo et al. 2009; Laurent et 

al. 2013; Verrelst et al. 2012). Temporal constraints have also been utilized when a time series of images 

are available (Houborg et al. 2007; Lauvernet et al. 2008), and have demonstrated to improve inversion 

performance by constraining parameter variability through accounting of image acquisition periods 

(Koetz et al. 2007). Finally, statistical constraints, which consider typical parameter ranges and 

distributions (Darvishzadeh et al. 2008a; Si et al. 2012), as well as their intercorrelations (Féret et al. 
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2011; Quan et al. 2015), have been utilized to lower inversion uncertainty through the collection of a 

priori information (Combal et al. 2003). 

The Ns parameter in PROSPECT has been identified as a primary source of uncertainty in 

estimating leaf reflectance and transmittance (Ceccato et al. 2001) as it is the only parameter that cannot 

be directly measured, or easily correlated to other measurable parameters (Ceccato et al. 2001; Ollinger 

2011), yet little has been done to constrain the parameter in PRO4SAIL inverse problems for a few 

reasons. First, constraining the Ns parameter would likely prove to be fruitless in areas where species 

composition and canopy architectures are diverse since the distribution of leaf-level Ns within the 

canopy would likely be highly variable. Second, overall PRO4SAIL top-of-canopy reflectance has been 

demonstrated to be less sensitive to variations of Ns as compared to LAI, ALA, and the soil reflectance 

parameter (Jacquemoud et al. 2009). Because croplands have a relatively homogenous species 

composition and canopy architecture, however, the range of possible LAI and ALA values is narrower 

than in natural vegetation; thereby, limiting their overall impact on the model output. Similarly, other 

characteristics of croplands may translate into limited sensitivity to LAI in PRO4SAIL. Most notably, 

there is some saturation, especially in the near infrared (NIR) and short wave infrared (SWIR) spectral 

regions, for LAI greater than two (Bacour et al. 2002a), which is not uncommon in croplands. Further 

relevant for the inversion of PRO4SAIL in croplands, is the fact that in dense vegetation (i.e., LAI 

greater than two) the background reflectance from soil is completely masked (Bacour et al. 2002b). 

In addition to the specific model inversion issues, agricultural monitoring through remote 

sensing requires the availability of data acquired with adequate spatial and temporal resolution (Asner 

et al. 2011; Baret et al. 2007; Martin et al. 2008; Whitcraft et al. 2015a; Whitcraft et al. 2015b). Because 

of the rapid changes in plants during the growing season, coarse spatial resolution instruments with 

daily or near-daily temporal resolution, such as the moderate resolution imaging spectroradiometer 

(MODIS) or the medium resolution imaging spectrometer (MERIS), were until recently the only 

potential data source for operational crop monitoring, even though their spatial resolution, much coarser 

than the average field size in most countries, was a severe limitation to their practical use (Atzberger 

2013; Fritz et al. 2015). Similarly, the potential for operational agricultural applications of the ocean 

and land colour instrument (OLCI) onboard Sentinel-3, designed as the successor to MERIS, is limited 

by the coarse spatial resolution. 

The successful launch of the Landsat 8 Operational Land Imager (OLI) in 2012, Sentinel 2A 

multispectral instrument (MSI) in 2015, Sentinel 2B MSI in 2017, and the systematic acquisition 

schedule and free data distribution policy of both missions create unprecedented opportunities for 

meeting the demands of agricultural monitoring, especially when assimilated with other remote sensing 
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products. The newly available NASA Harmonized Landsat-Sentinel (HLS) product is the combination 

of both data sets through atmospheric, radiometric, and geometric corrections (Claverie et al. 2018; 

Claverie et al. 2016), and has the advantage of frequent revisits (2–3 days over the entire globe) (Li and 

Roy 2017) while maintaining a spatial resolution (30 m resolution), both of which are necessary for 

capturing short-term environmental conditions. Thanks also to constantly increasing computing power, 

these new data sources make it possible to envision moderate resolution operational agricultural 

monitoring systems (Fritz et al. 2019), placing a greater emphasis on the development of methods and 

algorithms for the systematic generation of physically-based remotely sensed thematic products. 

In this study, we propose and test a methodology for the generation of a multi-temporal CCWC 

product from the time series of Landsat-8 and Sentinel-2 HLS reflectances, through look-up table 

(LUT) inversion of PRO4SAIL. The uncertainty of the CCWC retrievals is reduced by constraining the 

possible values of PRO4SAIL parameters combining spatial, temporal, and statistical ancillary and a 

priori information, including crop types from the USDA Crop Data Layer (CDL) product, LAI from 

the MODIS MCD15A2 product, and crop-specific ranges of Ns, Cw, and Cm values from field 

measurements (Boren et al. 2019). In order to establish a baseline for the assessing the performance of 

the proposed methodology (henceforth, "Strategy 3"), two alternative inversion strategies were also 

considered: a minimally constrained inversion, where no crop-specific information is used and the 

possible range of all parameters is derived from literature (henceforth, "Strategy 1"), and a partially 

constrained inversion, where values of Ns values from Boren et al. (2019) are used (henceforth, 

"Strategy 2"). This paper therefore also assesses whether the use of Ns values stratified by phenology 

(early, mid, and late season) and crop type (monocotyledon and dicotyledon) improves the inversion of 

CCWC in croplands. 

The results are validated by comparing the estimated CCWC with a new, extensive set of field 

measurements acquired over three growing seasons. The validation data are more representative of the 

complete phenological cycle of multiple crops species than those used in previous PRO4SAIL inversion 

validation studies. The results and implications for systematic CCWC retrieval using the HLS-product 

are presented and discussed, including the future directions for CCWC HLS-product incorporation into 

the existing agricultural monitoring framework. 

Methods and Materials 

Study area 

The study area, covering an extent of 8 km x 8 km, is located south of Genesee (Idaho) in the 

Palouse Prairie bioregion of the Western United States (Figure 2.2). The bioregion covers a large area 



48 

 

(~16,000 km2) in southeastern Washington, west central Idaho, and northeastern Oregon, and is 

characterized by a series of loess-covered basalt tablelands with moderate to high relief ranging in 

altitude from 370 to 1800 m (Bailey 1995). The study region is agriculturally productive, with wheat 

yields occasionally exceeding 7000 kg ha-1 (Papendick 1996). The climate is characterized by hot, dry 

summers followed by wet and relatively warm winters: typically, between 60% and 70% of the annual 

precipitation occurring between November and April (Cox et al. 2001). Once a widespread prairie 

composed of perennial grasses such as Blue bunch wheatgrass (Pseudoroegneria spicata) and Idaho 

fescue (Festuca idahoensis), today it is virtually entirely converted to croplands. Three full growing 

seasons (2015–2017) are considered in the study. 

Remotely sensed data and ancillary products 

Harmonized Landsat Sentinel surface reflectance data 

The Harmonized Landsat Sentinel product (HLS) consists of surface reflectances from the 

Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multispectral Instrument (MSI) virtual 

constellation of moderate resolution satellite systems. The most recent HLS version 1.4 product was 

used as input data for the PRO4SAIL inversion. The "harmonization" of Landsat-8 and Sentinel-2 

occurs through a set of algorithms which involves re-gridding the data to a common 30 m georeferenced 

grid, atmospheric correction, bidirectional reflectance distribution function (BRDF) correction and 

normalization to nadir viewing geometry, and spectral bandpass adjustment (Claverie et al. 2018). 

The images were accessed through the NASA Harmonized Landsat Sentinel-2 FTP (accessed 

via: hls.gsfc.nasa.gov). The spectral bands included in the HLS product are presented in Table 2.1. The 

HLS product is distributed in the Sentinel-2 tiling geometry; the 8 km by 8 km study area is located 

within the 11TNM HLS tile. Every available HLS product for the study area was acquired for 2015–

2017. 

PRO4SAIL illumination and viewing geometry parameters 

PRO4SAIL requires illumination and viewing parameters (Figure 2.1), that were extracted 

from the HLS metadata of each image. The Sun zenith angle (θs), provided in the HLS metadata for the 

center of the tile (Zhang et al. 2016), was kept constant throughout the study area; this is a reasonable 

approximation given the negligible variation of θs in a tile. The viewing zenith angle (θv) was set to 90˚, 

because the HLS product is normalized to nadiral conditions. Because azimuthal geometry is 

inconsequential on BRDF for a nadir viewing angle (Roy et al. 2016), the sun-sensor azimuth parameter 

(φ) was set to a fixed value of 0. Previous analysis has established that the hotspot is always located 
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outside the Landsat-8 and Sentinel-2 swath for overpasses at the latitude of the study region (Li et al. 

2017; Zhang et al. 2016). Because our plots were located well outside of the hotspot configuration, and 

in the interest of limiting free parameters in the inversion, the model was applied by assuming non-

hotspot conditions. In this study we used the default value of fraction of diffuse incoming solar radiation 

(skyl) recommended in PRO4SAIL, namely the value proposed by François et al. (2002). 

MCD15A2H LAI product 

The Collection 6 MODIS MCD15A2H LAI 8-day composite product at 500-m resolution 

(Myneni et al. 2015) was used for to constrain the range of LAI values for the LUT generation. The 

MCD15A2H product is derived exploiting the MODIS red (648 nm) and near-infrared (858 nm) bands 

using a LUT-based procedure which is generated with a three-dimensional radiation transfer equation 

(Knyazikhin et al. 1998). The product is generated daily at 500 m spatial resolution and composited 

using the most suitable pixels available within the 8-day acquisition periods of both MODIS sensors, 

Terra, and Aqua. All MCD15A2H LAI products for tile h09v04 that encompasses the study area were 

downloaded for the 2015–2017 growing seasons. 

Cropland Data Layer (CDL) product 

The United States Department of Agriculture (USDA) National Agricultural Statistics Service 

(NASS) geospatial Cropland Data Layer (CDL) product is a 30 m resolution, geo-referenced, crop-

specific landcover classification layer which is annually updated and publicly available. CDL 

production is performed using decision tree supervised classification of satellite imagery, including 

Landsat-8 and Disaster Monitoring Constellation satellite data, for all 48 conterminous states. The 

thematic landcover map includes over 110 different crop categories with mapping accuracies for major 

crops in large production states ranging from 85% to 95% (Boryan et al. 2011). The CDL product and 

crop mask is distributed through the NASS online CropScape tool for 2015–2017 (Han et al. 2012). 

Field sampling dataset 

Leaf-level parameters 

An extensive experimental data collection was conducted to acquire leaf measurements 

(Boren et al. 2019) used for constraining Ns, Cw, and Cm. Detailed information about the controlled 

experiment and sampling relevant to Ns is reported in Boren et al. (2019). The sampling methodology 

for Cw and Cm is summarized in this section. 

Four crop species were grown at the University of Idaho Pitkin’s forest research nursery 

during the summers of 2015 and 2016: three monocotyledons (hard red wheat, Triticum durum Desf., 
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soft white wheat Triticum aestivum L., and upland rice, Oryza sativa L.) and one dicotyledon (soy, 

Glycine max L.). Leaf area, fresh weight, and dry weight measurements were taken at the same 

frequency of spectral measurements and from the same samples in Boren et al. (2019). The leaf area 

measurement protocol was adapted from (Fladung and Ritter 1991), scanning all the leaves of the 

sample with a flatbed scanner (Epson 4490 Photo Scanner) to measure the total leaf area [cm2]. The 

total fresh weight (g) of all the leaves was measured immediately after measuring the leaf area, and 

the total dry weight (g) was measured after drying at 60 ºC for 48 h. Cw (g cm-2) for each leaf sample 

was measured using Equation (1), and Cm (g cm-2) was measured using Equation (2): 

C𝑤  =  
FW − DW

LA
, (1) 

C𝑚  =  
DW

LA
, (2) 

where FW (g) and DW (g) are the average fresh and dry weights of the leaves, and LA (cm2) is the 

corresponding plot average leaf area. The distributions of Cw and Cm from the leaf measurements are 

presented in Figure 2.3. 

LAI and leaf water content 

Field measurements of LAI and Cw were collected on a number of 30 m × 30 m plots, over the 

course of three years (2015 to 2017) during the entire crop season of the study area (April–September); 

thus, ensuring that the dataset captures the full range of water content and phenological stages of the 

vegetation. Samples were collected from crops which were aggregated into three crop type groups: 

dicotyledon (Garbanzo fields), spring monocotyledon (Barley), and winter monocotyledon (Winter 

Wheat). 

Each plot corresponds to a single 30 m × 30 m pixel in the HLS product grid; all field 

measurements were conducted on Landsat-8 and Sentinel-2A overpass days, within 1 h of the overpass 

time. Because the study area is located in the overlap region of neighboring Landsat-8 and Sentinel-2A 

paths, up to two Landsat-8 acquisitions were available every 16 days (every 7 and 9 days) and two 

Sentinel-2A acquisitions every 10 days. 

To ensure that field measurements could be meaningfully compared to remotely sensed data, 

the site sampling followed a "scaled up" approach adapted from the sampling methods used in the 

VALERI field campaigns (Baret 2016). For each plot, 17 sample locations were established along the 

perimeter and on two transects, as illustrated in Figure 2.4. 
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At each sample location, LAI was estimated, and fresh leaf material was destructively 

extracted; for wheat and barley, one stem was removed, while for garbanzo, one average leaf was 

extracted from the top of the plant. Leaf quality, size, and health were considered when selecting for an 

average leaf. After extraction, leaf material was bagged, and put in a cooler for further processing in 

the lab. 

The PocketLAI® smartphone app was used for the estimation of LAI. A Samsung Galaxy 

Rugby Pro™ 5-megapixel camera was used for image collection below the canopy at each sampling 

location; LAI was estimated from the images using the 57.5˚ gap fraction algorithm (Francone et al. 

2014). 

Upon returning to the lab, garbanzo leaves were scanned using a leaf scan protocol adapted 

from Fladung and Ritter (1991) to calculate the average leaf area. Wheat and barley average leaf area 

was determined instead by dividing LAI by the plant population density (# plants m-2) using the density 

information provided by the grower. The fresh leaf weight was recorded and divided by the number of 

samples for an average fresh leaf weight. Leaves were dried in an oven at 60 ˚C for 48 h and weighed 

again to determine average dry leaf weight. Average plot Cw was calculated using Equation (1). CCWC 

was calculated using: 

CCWC = Cw x LAI (3) 

where Cw is leaf water content calculated from (1) and LAI (m2 m-2) is leaf area index. The units for 

CCWC are (g m-2). 

Field plot data points corresponding to missing, poor quality or cloudy HLS acquisitions were 

discarded using the HLS data quality assessment (QA) band (Claverie et al. 2016) and excluded from 

further analysis. Observations with low, average, and high aerosol quality were retained, while 

observations labeled as cloud shadow, adjacent cloud, cloud, or cirrus were rejected. A summary of the 

field sampling plots is presented in Tables 2 and 3. In total, 102 CCWC field data points were retained. 

Methods 

An integrated (spatial, temporal, and statistical) PRO4SAIL inversion strategy workflow was 

designed and implemented using HLS reflectances as the primary input, and the accuracy of the 

resulting CCWC product was validated using the CCWC field reference dataset. A conceptual diagram, 

which illustrates the processing flow of the integrated strategy, is presented in Figure 2.5. 

The inversion is performed adopting a LUT approach, which is conceptually simple and widely 

used in RTM inversion (Combal et al. 2002; Darvishzadeh et al. 2008b; Weiss et al. 2000). In the first 
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step, a comprehensive database of possible values of the input variables is compiled, based on a priori 

information, and the model is run in forward mode to generate corresponding modeled reflectance 

values (i.e., the look-up table). The inversion is then performed by minimizing the difference between 

the observed and modeled reflectance using a cost function, then retrieving the corresponding value of 

the biophysical parameters from the table. 

To determine the effectiveness of the proposed integrated LUT inversion strategy, two other 

LUT generation strategies were carried out and analyzed. The various strategies are outlined in detail 

in the LUT generation section. Details about the spectral pre-processing and inversion cost-function is 

presented in the spectral pre-processing and LUT inversion section. Finally, the metrics of success for 

validation of the various strategies are presented in the validation section. 

While the individual components of the constraining and inversion strategies used in this paper 

have been used in previous studies, this is the first study to comprehensively compare them on the same 

dataset, and the first study to perform CCWC inversion using HLS data. Furthermore, this study directly 

builds on the results of Boren et al. (2019), evaluating the effectiveness of constraining LUT inversion 

of field-level parameters by stratifying Ns as a function of crop type and phenology. 

LUT generation 

In this study, a LUT size of 100,000 was selected as a compromise between computing resource 

requirement and inversion accuracy (Weiss et al. 2000). Probability distributions were used to generate 

a range of parameter values for running the coupled model in the forward mode, using three strategies 

that increasingly incorporate a priori knowledge and ancillary datasets to constrain the possible values 

of the parameters. The three strategies, including the key elements of constraint, are summarized in 

subsections 1, 2, and 3, respectively. All the relevant parameter value constraints for each strategy is 

presenting in Table 4. Additional relevant information related to constraints of strategy 2 and strategy 

3 are presented in Tables 2.5 and 2.6. 

For each realization of the set of input parameters, the PRO4SAIL model was run in forward 

mode, resulting in simulated spectral reflectances. The coastal aerosol, water vapor, and cirrus HLS 

bands were excluded from LUT generation and inversion because they do not contain relevant spectral 

information for the retrieval of CCWC. 

Strategy 1: Single LUT from nominal range of the parameters: 

A single LUT, of a size of 100,000, with gaussian distributions of inputs for leaf-level Ccab, 

Ccar, Cw, and Cm was generated for strategy 1. The probability distributions of the pigment parameters, 
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Ccab and Ccar, were characterized using basic statistics retrieved from 17 independent leaf datasets, 

which contain biophysical information from a large range of species, growing conditions, and 

developmental stages (Féret et al. 2011). The gaussian probability distributions of Cw and Cm were 

generated using the leaf measurements described in Section 2.1.3. ALA was minimally constrained 

using nominal a priori knowledge for the study region and plants. Ns values were generated in a uniform 

distribution using a previously characterized reasonable range between 1.0 and 4.0 (Ceccato et al. 

2001). 

In PRO4SAIL, the soil reflectance for 4SAIL is governed by a user input soil coefficient (value 

between 0 and 1) which scales two archived soil reflectance endmember signatures (400–2500 nm), 

dry and wet soil, in a linear mixture model: 

ρsoil(λ) = αsoil x ρsoildry(λ) + (1 − αsoil ) x ρsoilwet(λ) (4) 

where ρsoil is the soil reflectance at wavelength λ, αsoil is the user input soil coefficient, ρsoildry and 

ρsoilwet is the reflectance of dry and wet soil, respectively. In this study, the wet and dry soil endmember 

spectral data provided with the model was used (accessed via: teledetection.ipgp.jussieu.fr). 

Strategy 2: Phenology-specific LUTs with constrained Ns: 

The second strategy uses the same probability distribution of Ccab, Ccar, Cw, Cm, ALA, and αsoil 

as strategy 1 but uses crop type and phenological stage dependent values for the Ns parameter. Since it 

is known that the Ns parameter varies with species and phenology (Boren et al. 2019; Jacquemoud et 

al. 1996), strategy 2 is designed to assess the effectiveness of constraining the Ns parameter based on 

crop species and phenological class. The Ns parameter was constrained by using the values, stratified 

by crop type and phenological stage, presented in Boren et al. (2019). Three separate LUTs, with 

100,000 realizations each, were generated, based on the observed range of the Ns parameter (Table 6): 

one LUT for monocotyledons in the early development stage (Ns between 1.0 and 1.5), one for 

monocotyledons in the mid and late development stages (Ns between 1.5 and 2.0), and one for 

dicotyledons in all stages (Ns between 2.0 and 2.5). 

To spatially stratify the study area for constraining the inversion based on crop type, the USDA 

CDL landcover classes were aggregated into the three crop type classes (spring monocotyledon, winter 

monocotyledon, and dicotyledon) for each year to create a cropland landcover thematic map. The 

cropland landcover map was used to assign each pixel a class which was used to identify the appropriate 

LUT for inversion. The USDA CDL landcover layer was determined to be an accurate layer for spatial 

segmentation of the study area based on observations made in the field between 2015 and 2017. 
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The study periods were segmented using normalized difference vegetation index (NDVI) 

calculated from the HLS product and the 50% threshold method (White et al. 1997) adapted from Rojas 

et al. (2011) to temporally aggregate days of the study period into phenological stages for each crop 

type. The NDVI (Tucker 1979) was calculated using the HLS surface reflectance values extracted for 

each overpass and field plot location as: 

NDVI =
ρNIR − ρRed

ρNIR + ρRed
 (5) 

where ρNIR is the near-infrared band 5 and 8A for Landsat-8 and Sentinel-2, respectively, and ρRed is 

the red band 4 for both Landsat-8 and Sentinel-2. 

For each plot pixel, the maximum and preceding minimum NDVI values were identified to 

determine the start-of-season (SOS) and end-of-season (EOS). SOS is the moment when NDVI reached 

the average between maximum and minimum NDVI for the year. EOS was identified as the moment 

when NDVI returns to the average between maximum and minimum. The growing season period, 

defined as the time between SOS and EOS, was subsequently divided into three phenological classes 

for each crop type using knowledge of the local growing season: early, mid, and late, corresponding to 

vegetative development, flowering, and yield formation and ripening, respectively. SOS generally 

coincided with the onset of the early phenological class for all pixels. The mid phenological class was 

determined using observations made in the field during measurements. The remaining days before EOS 

were classified as the late phenological class (Figure 2.6). 

The plots were aggregated into crop types. An average NDVI threshold was calculated for each 

crop type using the pixels of each plot. The averaged NDVI thresholds were then applied to all pixels 

in an image for each crop type. Each pixel was assigned a phenological period depending on the crop 

type landcover class. This step was repeated for each year. 

Strategy 3: Crop and time dependent LUTs with constrained Ns, LAI, and ALA: 

The third strategy adopts an integrated LUT generation approach where ancillary information 

and a priori knowledge is used for constraining LAI and ALA. The field boundaries and crop 

information from the CDL were combined with the MCD15A2H product to generate LAI probability 

distributions, for each crop and 8-day period. The MCD15A2H product, with the minimum time 

difference to the HLS overpass used in the inversion, was resampled, using B-spline interpolation, to a 

30 m spatial resolution, and was used to extract LAI statistics for each CDL field boundary area within 

the entire HLS scene (Figure 2.7). 



55 

 

The CDL map was also used to inform the selection of reference ALA values. The SAIL presets 

for erectophile leaf distribution was used for the inversion of monocotyledon crops, and the uniform 

leaf distribution was used for pixels classified as dicotyledon. 

Multivariate log-gaussian distributions were used for Cw, and Cm based on the data collection 

presented in the field sampling dataset section (Tables 2.4 and 2.5). The leaf measurements from Boren, 

et al. [88] were used to further constrain the Ns parameter based on estimated Ns for different crop types 

and phenological stages; generating different gaussian probability distributions for monocotyledon and 

dicotyledon plants at various growth stages are listed in Table 2.6. The soil parameter was constrained 

to the 0.3 to 0.7 range, to reflect realistic canopy closure conditions for the study area. 

Spectral pre-processing and LUT inversion 

After the LUTs were generated by forward model computation, reflectance spectra were 

converted to Landsat-8 and Sentinel-2 band reflectance as an integral product of the spectra with each 

Landsat-8 (Zhang and Roy 2016) and Sentinel-2 (ESA 2015) band spectral response functions. As per 

the HLS product (Claverie et al. 2018), spectral band pass adjustments were made to the Sentinel-2 

bands to reflect the HLS Sentinel product more closely. 

Finding the solution for LUT inversion consists of selecting the reflectance realization, the 

difference of which from measured reflectance is minimal and identifying the corresponding set of 

input variables. The choice of a cost function is critical when running an inversion problem, since it 

may dictate the quality of the inversion given the unknown distribution of errors and nonlinearity on 

the model (Rivera et al. 2013; Verrelst et al. 2014). In accordance with the results of the comparison of 

cost functions presented in Rivera et al. (2013), the absolute error cost function was used in the present 

study, defined as: 

D(P, Q) =  ∑|p(λl) − q(λl)|

λn

i=1

 (6) 

where D(P,Q) is the distance between the satellite observed reflectances (P) and LUT reflectances (Q), 

p(λi) is the satellite observed surface reflectance and q(λi) is the LUT retrieved surface reflectance at 

wavelength λi, and n is the number of available spectral bands. 

For strategies 1 and 2, the inversion was performed by selecting the spectral realization which 

had the lowest absolute difference compared to the measured spectra across all bands of interest. The 

inversion of the strategy 3 LUT instead used spectra normalization. 
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Spectra normalization has shown to improve performances of inverse problem solving by 

compressing dataset; thereby, increasing the probability of matching observed and simulated spectra 

(Rivera et al. 2013). This is especially useful in spectral regions where variation is narrow, such as the 

visible region with Ccab (Rivera et al. 2013 ). To our knowledge, normalization has not been applied to 

solve LUT inversion problems for retrieving Cw. Lastly, it has been found that the non-linear correlation 

between parameters can be better handled when applying regularization methods on the individual 

variables, rather than simultaneously on the combined synthetic variable (Bacour et al. 2006; Dorigo et 

al. 2007; Rivera et al. 2013). Often, inversions for a combined synthetic variable (i.e., CCWC) are 

successful, but due to a compensation effect between the individual parameters (i.e., high Cw and low 

LAI or vice versa), the results are poor for the individual parameters which make up the synthetic 

canopy parameter. 

Since it is better to have balanced successful performance in retrieving all individual 

parameters in an operational setting (Verrelst et al. 2014), we treated the inversion of each single 

variable of interest (Cw and LAI) separately in the third strategy. The inversion of Cw was also spectrally 

constrained to the NIR and SWIR bands for both Landsat-8 and Sentinel-2 retrievals. For inversion of 

LAI, we spectrally constrain the inversion to exclude only the coastal aerosol, water vapor, cirrus bands 

as mentioned above. Since it was recommended in a previous study that normalization not be applied 

to solve for LAI due to the broad range of spectral variation (Rivera et al. 2013), normalization was 

exclusively used for the retrieval of Cw. 

Finally, instead of using the single best solution, the mean of top solutions has improved the 

robustness of inversion problems in the past (Koetz et al. 2005; Richter et al. 2011). The mean of the 

top 1% of inversion solutions with the lowest difference from the observation was used as the solution 

in strategy 3. 

Validation 

A quantitative comparison between estimated and measured leaf and canopy parameters was 

completed through linear regression analysis, and calculation of the root-mean-square error (RMSE), 

mean absolute error (MAE), and the Nash–Sutcliffe efficiency (NSE), Equations (7), (8), and (9): 

RMSE = √
∑ (yi

′ − yi)
2n

i=1

n
, (7) 

MAE =
∑ |yi

′ − yi|
n
i=1

n
, (8) 
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NSE = 1 −  
∑ (yi − yi′)

n
i=1

2

∑ (yi − y̅)n
i=1

2 , (9) 

where yi and yi’ are the measured and estimated CCWC values, respectively, and n the number of 

measurements. 

These measures are commonly used as goodness-of-fit measures for biophysical parameter 

retrieval (Richter et al. 2012). MAE was used together with RMSE to characterize variation in the errors 

of predicted parameters, the greater the difference between the measures, the greater the variance in the 

individual errors. The NSE score ranges between -∞ to 1, where a score of 1 indicates a perfect match 

between estimated and observed data. An NSE score of 0 corresponds to an outcome where the 

observed mean is a better predictor than the model (Nash and Sutcliffe 1970). 

Results 

The HLS LUT inversion strategies were applied to the 8 km by 8 km study area (Figure 2.1) 

throughout the 2015–2017 growing seasons, using all the HLS images (Table 2.3) that were retained 

after the QA screening described in the field sampling dataset section. Figure 2.8 illustrates a 

comparison of inversion strategy results for four dates during the 2016 growing season (May 2, June 1, 

June 20, and July 15); for each crop type. Table 2.7 presents the phenological stages at these four dates. 

Qualitatively, the inversion results are consistent with the typical CCWC patterns observed 

throughout the growing season: increase in water content during emergence to peak dates in June, to 

then decrease during senescence and maturation in mid-July. Figure 2.8 also shows that the within-field 

variability and the salt-and-pepper noise in the maps of estimated CCWC is greatly reduced by the 

introduction of constraints of biophysical parameters in strategy 3, compared to strategies 1 and 2. This 

is also evident from Figure 2.9, reporting the boxplots of the estimated CCWC for each inversion 

strategy and crop-type for the same dates as the images in Figure 2.8, and showing that the spread of 

the estimated values is greatly reduced by Strategy 3, compared to Strategies 2 and 3. 

The estimated CCWC spatial variation and temporal progression are consistent with the 

retrieved NDWI spectral index derived from the coincident HLS imagery for each of the dates from 

Figure 2.8 (Figure 2.10). 

Figure 2.11 compares the time series of values of CCWC estimated through the three inversion 

strategies, with the coincident measurements acquired on the five field plots in the 2016 growing 

season. Overall, CCWC estimated through all three strategies are consistent with the field 

measurements; however, there is an evident underestimation by strategies 1 and 2 of the peak water 

content in wheat and barley plots (plots A, B, and C), and a slight overestimation of the peak water 
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content by strategy 3 in one of the garbanzo plots (plot E). The correlation between measured and 

estimated CCWC increases progressively with each strategy, as more ancillary information is used: R2 

= 0.73, R2 = 0.74, and R2 = 0.81, for strategies 1, 2, and 3, respectively. 

The scatterplots of estimated and measured Cw, CCWC, and LAI, obtained using all points 

acquired in the three years of field data collection campaigns, are presented in Figure 2.12, and the 

relevant regression metrics (slope, offset, and linear correlation coefficient) and validation metrics 

described in the validation section are presented in Table 2.8. 

In all three strategies, the retrieval of LAI and Cw were considerably less accurate than the 

retrieval of CCWC. Apart from strategy 2, CCWC estimation using Sentinel-2A imagery, all strategies 

yielded NSE scores greater than 0.5 for retrieving CCWC. Retrieval of LAI yielded NSE scores less 

than 0 for all strategies with exception to strategy 3 using Landsat-8 imagery. Cw retrieval was slightly 

better than LAI retrieval, but unable to yield an NSE score over 0.5 in any of the strategies. The 

coefficient of determination shows a similar behavior. 

Considering CCWC, which is the primary objective of the current study, the best performance 

for CCWC retrieval was achieved using the Sentinel-2A dataset with strategy 3 constraints, yielding a 

R2 of 0.82, NSE score of 0.73, and RMSE of 0.41 x 103g m-2. The highest error in CCWC retrieval was 

observed using Landsat-8 imagery with strategy 2 constraints, yielding a R2 of 0.71, NSE score of 0.56, 

and RMSE of 0.59 x 103g m-2. In inverting the combined HLS imagery dataset for CCWC retrieval, 

strategy 3 yielded the best performance (R2 = 0.76, NSE = 0.71, RMSE = 0. 46 x 103g m-2) while 

strategy 2 had slightly higher errors than strategy 1, but slightly higher coefficient of determination 

than strategy 1 (R2 = 0.70, NSE = 0.53, RMSE = 0. 58 x 103g m-2). 

Finally, a comparison between retrieved CCWC from Landsat-8 and Sentinel-2A imagery 

indicated better CCWC retrieval using the Sentinel-2A imagery than Landsat-8 in each of the three 

strategies. The CCWC retrieval using Sentinel-2A imagery was also more negatively impacted by the 

additional constraint of the Ns parameter, showing an increase in RMSE from strategy 1 to strategy 2 

of about 0.11 x 103g m-2, compared to the 0.03 x 103g m-2 increase from strategy 1 to strategy 2 using 

Landsat-8 imagery. 

Discussion 

Among the three approaches considered in this study, inversion strategy 3, which constrained 

the possible values of the PRO4SAIL parameters through the use of a priori information and ancillary 

data, resulted in the best performance in the estimation of CCWC, as reflected by all the validation 

metrics and by the analysis of the time series of estimated values. A major benefit of the validation 



59 

 

dataset assembled for the present study, and encompassing the full phenological cycle of wheat, barley, 

and garbanzo crops, is the ability to assess the stability of the inversion throughout the growing season. 

These results are in agreement with past studies, showing improved PRO4SAIL inversion 

results by imposing spatial, temporal, and spectral constraints (Dorigo et al. 2009; Lauvernet et al. 

2008; Rivera et al. 2013), and by using optimization techniques (Koetz et al. 2005; Richter et al. 2011; 

Richter et al. 2009), and normalization (Rivera et al. 2013). 

The compensation between Cw and LAI for CCWC retrieval is well known (Verrelst et al. 2014) 

and evident in the results of this paper, with considerably less accurate retrieval for Cw and LAI than 

for CCWC across each strategy. 

There are a few known issues with PRO4SAIL inversion for estimating canopy biochemical 

and physical properties that can explain the presence of data points with high errors, evident in the 

scatterplots of Figure 12, corresponding to observations acquired either at the beginning or at the end 

of the growing season. It is known that the PRO4SAIL model is more sensitive to small variations in 

LAI and soil background reflectance during periods of low canopy closure (Bacour et al. 2002a). 

Anisotropic effects are also critical when considering the sensitivity of PRO4SAIL to LAI, ALA, and 

soil background; viewing angles close to nadir show the largest sensitivity to ALA and soil background 

as compared to LAI, while off nadir angles display more sensitivity to LAI (Jacquemoud et al. 2009). 

Finally, spectral endmembers characterizing typical wet and dry soil signatures were used throughout 

the entire study period. It has been found in other similar studies that parameter retrieval may be 

improved in late season periods by replacing the original soil spectral profile with the spectral signature 

of non-photosynthetic vegetative material (crop residue) (Danner et al. 2017). 

To some extent, some of the errors could be attributed to limitations of the adopted model. The 

canopy system within the 30 m pixel, as modeled by SAIL, is assumed to a homogenous turbid medium 

and does not account for leaves at various positions within the canopy with different water content, i.e., 

leaves having higher water content being more distributed near the top of the canopy. Furthermore, 

multiple-scattering effects within the canopy were not taken into account, potentially resulting in an 

overestimation of water content in some cases. 

The intrinsic limitations of the HLS dataset should also be considered. The spectral resolution 

of the OLI and MSI instruments is not optimal for canopy water retrieval, as both instruments lack 

specific liquid water absorption bands at 970 nm and 1200 nm. Future missions with improved spectral 

capabilities may have better performance in CCWC retrieval under the same inversion techniques. The 

HLS reflectances are atmospherically corrected and normalized for BRDF, but no topographic 
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correction is currently performed, and slope effects could potentially translate into errors in the RTM 

inversion. Because all the validation data were acquired on relatively flat portions of the study area, we 

could not assess the occurrence of such errors. Further evaluation of the HLS atmospheric correction 

would be also needed, to assess whether there is any residual effect due to the atmospheric water vapor 

absorption, which would impact the precision of the canopy water retrieval. 

It is worth noticing that use of the MCD15A2H product to define a priori probability 

distribution in for LAI in Strategy 3 resulted only in a very modest improvement in LAI retrieval 

accuracy compared to the other strategies (e.g., using both Landsat-8 and Sentinel-2 data, RMSE = 1.87 

m2 m-2 and R2 = 0.25 in Strategy 1, RMSE = 1.69 m2 m-2 and R2 = 0.22 in Strategy 2, RMSE = 1.43 m2 

m-2 and R2 = 0.33 in Strategy 3). Arguably, this is due to the coarse spatial resolution of the MODIS 

product relative to the field size in the study area (evident in Figure 2.7), which resulted in inaccurate 

a priori values for a large proportion of the image. The availability of higher resolution LAI products 

would likely result in a large improvement of the retrievals. 

Future research is required to investigate the characterization of ALA, as it is one of the most 

important canopy structure parameters affecting canopy radiation scattering and least studied in 

PRO4SAIL research (Berger et al. 2018). 

The comparison of the results of Strategy 1 and 2 shows that constraining the Ns parameter was 

not sufficient to significantly improve the accuracy of the retrievals; strategy 2 resulted in slightly better 

estimation of LAI and slightly worse estimation of Cw and CCWC. The inversion results hence imply 

that Ns does not impact the output of PRO4SAIL as much as canopy structural parameters like LAI or 

ALA, as indicated from previous theoretical studies (Jacquemoud et al. 2009). The slight increase in 

accuracy in LAI estimation when constraining Ns may warrant further investigation in future studies 

which explore the sensitivity of Ns to LAI, with an emphasis on the need to collecting a more exhaustive 

field dataset during periods of increasing LAI, i.e., at the beginning of the growing season. Finally, the 

inversion of Cw did not substantially improve with the added ancillary information of strategy 3. 

Conclusion 

In this paper, we developed and demonstrated a new methodology for the retrieval of cropland 

canopy water content (CCWC) through inversion of the PRO4SAIL radiative transfer model (RTM), 

constraining the possible values of the model parameters by using a priori information derived from 

lab measurements, previously published literature, and operational remotely sensed products. The 

validation data from field measurements were taken throughout the growing season for wheat, barley, 

and garbanzo fields over three growing seasons and capture a complete representation of biophysical 
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characteristics over each phenological growth stage. The method was demonstrated by inverting 

reflectances from the Harmonized Landsat Sentinel (HLS) Landsat-8 and Sentinel-2A product, 

resulting in the first HLS-based CCWC product generated through radiative transfer model inversion. 

The results were validated with field measurements collected over three growing seasons. 

Comparison with unconstrained PRO4SAIL inversions, demonstrate that the proposed method is 

effective in reducing the uncertainty of the estimates. 

The results also illustrated that crop type and phenology may play a significant role in which 

parameters are more sensitive for PRO4SAIL top-of-canopy reflectance modeling. Retrievals on early 

and late stage crops had larger errors, due to known issues in PRO4SAIL inversion at low LAI values 

when the soil is partially exposed. 

Combining Landsat-8 and Sentinel-2 sensors in a seamless and regridded form, the HLS 

product affords the opportunity for cropland monitoring with sufficient temporal and spatial resolution 

to meet the requirements of operational users. The slope close to unity, low intercept and high 

coefficient of determination (0.78, 0.07, and 0.76, respectively) of the regression between the estimated 

CCWC and the field validation dataset clearly indicate the potential of the proposed approach; while 

the present prototype was developed on a limited study area, the methods proposed are general ones, 

and could potentially path-find the systematic generation of regional to continental HLS-based CCWC 

products. Future work will investigate the scalability of the proposed approach, with a priority on 

testing the prototype on different agricultural regions. 
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Table 2.1. Harmonized Landsat Sentinel (HLS) product spectral bands. Table was adapted from Claverie et al. 

(2016). 

Band name OLI Band Number MSI Band Number Wavelength (µm) 

Coastal Aerosol 1 1 0.43–0.45 

Blue 2 2 0.45–0.51 

Green 3 3 0.53–0.59 

Red 4 4 0.64–0.67 

Red-Edge1 - 5 0.69–0.71 

Red-Edge 2 - 6 0.73–0.75 

Red-Edge 3 - 7 0.77–0.79 

NIR Narrow 5 8A 0.85–0.88 

NIR Broad - 8 0.78–0.88 

SWIR 1 6 11 1.57–1.65 

SWIR 2 7 12 2.11–2.29 

Water vapor - 9 0.93–0.95 

Cirrus 9 10 1.36–1.38 

Thermal Infrared 1 10 - 10.60–11.19 

QA       
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Table 2.2.  Summary table of field sampling plots for each year. 

Year Plot Crop 
Number of Field 

Measurements 

2
0

1
5
 

A Barley 4 

B Barley 3 

C Barley 4 

D Barley 4 

E Garbanzo 3 

2
0

1
6
 

A Winter Wheat 13 

B Winter Wheat 12 

C Barley 8 

D Garbanzo 11 

E Garbanzo 11 

2
0

1
7
 

A Barley 5 

B Winter Wheat 6 

C Winter Wheat 6 

D Garbanzo 6 

E Garbanzo 6 

 

Table 2.3. Summary table of field sampling plots for each year, crop type, and sensor overpass. 

 

  Total Dicot 
Mono. 

Winter 

Mono. 

Spring 

L8 

observations 

S2 

observations 
L8 S2 

2015 18 3 0 15 18 0 5 0 

2016 55 22 25 8 33 22 12 7 

2017 29 12 12 5 15 14 3 4 

Total 102 37 37 28 66 36 20 11 
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Table 2.4. Parameterization of the PRO4SAIL radiative transfer model. The distributions used during LUT 

generation for each parameter are listed along with fixed values. The asterisk indicates that water thickness and 

dry matter content log-gaussian distributions in Strategy 3 were generated using a covariance matrix to simulate 

the correlation between water thickness and dry matter content. The covariances are presented in Table 2.5. 

  Strategy 1 Strategy 2 Strategy 3 

Model 

Parameters 
Symbol Units Parameter values 

Leaf Parameters 

PROSPECT-5 
          

Leaf chlorophyll 

content 
Ccab 

µg cm-

2 

Gaussian µ = 

32.81, σ = 18.87 

Gaussian µ = 

32.81, σ = 

18.87 

Gaussian µ = 

32.81, σ = 

18.87 

Leaf carotenoid 

content 
Ccar 

µg cm-

2 

Gaussian µ = 

8.51,  

σ = 3.92 

Gaussian µ = 

8.51,  

σ = 3.92 

Gaussian µ = 

8.51, σ = 3.92 

Water thickness Cw g cm-2 
Gaussian µ = 

0.027, σ = 0.018 

Gaussian µ = 

0.027, σ = 

0.018 

Log-Gaussian* 

µ = 0.027, σ = 

0.018 

Dry matter 

content 
Cm g cm-2 

Gaussian µ = 

0.013, σ = 0.01 

Gaussian µ = 

0.013, σ = 0.01 

Log-Gaussian* 

µ = 0.013, σ = 

0.01 

Leaf structure 

index 
Ns - Uniform: 1.0–4.0 

Uniform: plant 

type and 

phenological 

stage dependent 

(Table 6) 

Gaussian: plant 

type and 

phenological 

stage 

dependent 

(Table 6) 

Canopy 

variables 4SAIL 
         

Leaf area index LAI m2 m-2 Uniform: 0.0–8.0 
Uniform: 0.0–

8.0 

Gaussian: plant 

type and date 

dependent 

Average leaf 

angle 
ALA degree Uniform: 30–70 Uniform: 30–70 

Plant type 

dependent: 

Erectophile 

and Uniform 

Soil coefficient αsoil unitless Uniform: 0–1 Uniform: 0–1 
Uniform: 0.3 – 

0.7 
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Table 2.5. Covariance matrix of Cw and Cm parameters used for LUT generation in strategy 3. 

 
Cw Cm 

Cw 3.2 x 10-4 1.5 x 10-4 

Cm 1.5 x 10-4 1.0 x 10-4 

 

Table 2.6. Parameterization of the Ns parameter in PRO4SAIL. Values in the strategy 2 column were used as the 

minimum and maximum range bounds for generating uniform Ns values while the values in strategy 3 were used 

as the mean and standard deviation values for generating gaussian Ns values. Values based on Table 2.2 results in 

Boren et al. (2019). 

  Strategy 2 Strategy 3 

Phenological 

stage 
Monocotyledon Dicotyledon Monocotyledon Dicotyledon 

Early 1.0–1.5 2.0–2.5 µ = 1.35, σ = 0.28 µ = 2.15, σ = 0.27 

Mid 1.5–2.0 2.0–2.5 µ = 1.5, σ = 0.23 µ = 1.96, σ = 0.25 

Late 1.5–2.0 2.0–2.5 µ = 1.66, σ = 0.25 µ = 2.15, σ = 0.27 

 

Table 2.7. Phenological stages used for inversion strategies 2 and 3 for each crop type in Figure 2.8 images; early, 

mid, and late phenological stages correspond to emergence, establishment, and maturation. 

Crop type 2-May 1-Jun 20-Jun 15-Jul 

Dicotyledon Early Early Early Late 

Spring Monocotyledon Early Early Mid Late 

Winter Monocotyledon Early Mid Mid Late 
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Table 2.8. Regression and validation metrics for LAI, Cw, and CCWC estimated through the three inversion 

strategies. The table presents the results obtained considering Landsat-8 (L8) data only, Sentinel-2A (S2) data 

only, and both sensors (L8/S2). 

Cw (10-2g cm-2) 

    RMSE MAE NSE Slope Intercept R2 

L8 

Strategy 1 1.90 1.50 0.19 0.35 1.89 0.30 

Strategy 2 2.01 1.56 0.07 0.29 1.97 0.24 

Strategy 3 1.90 1.50 0.18 0.27 2.62 0.21 

S2 

Strategy 1 2.30 1.70 -0.39 0.17 1.80 0.10 

Strategy 2 2.20 1.57 -0.26 0.19 1.77 0.16 

Strategy 3 2.05 1.55 -0.10 0.17 2.36 0.10 

L8/S2 

Strategy 1 2.04 1.56 0.00 0.30 1.80 0.22 

Strategy 2 2.07 1.57 -0.04 0.26 1.87 0.21 

Strategy 3 1.95 1.53 0.09 0.24 2.49 0.17 

LAI (m2 m-2) 

    RMSE MAE NSE Slope Intercept R2 

L8 

Strategy 1 1.58 1.25 -0.17 0.57 1.51 0.26 

Strategy 2 1.67 1.31 -0.30 0.47 1.65 0.18 

Strategy 3 1.42 1.14 0.06 0.61 0.86 0.33 

S2 

Strategy 1 2.30 1.79 -2.07 1.01 1.04 0.30 

Strategy 2 1.73 1.32 -0.73 0.86 0.80 0.31 

Strategy 3 1.44 1.12 -0.19 0.76 0.61 0.34 

L8/S2 

Strategy 1 1.87 1.44 -0.75 0.71 1.41 0.25 

Strategy 2 1.69 1.31 -0.43 0.59 1.41 0.22 

Strategy 3 1.43 1.14 -0.02 0.66 0.79 0.33 

CCWC (103g m-2) 

    RMSE MAE NSE Slope Intercept R2 

L8 

Strategy 1 0.56 0.43 0.59 0.66 0.28 0.63 

Strategy 2 0.59 0.44 0.56 0.57 0.24 0.71 

Strategy 3 0.49 0.35 0.69 0.78 0.09 0.74 

S2 

Strategy 1 0.46 0.37 0.66 0.66 0.21 0.73 

Strategy 2 0.57 0.43 0.48 0.57 0.16 0.69 

Strategy 3 0.41 0.33 0.73 0.78 0.03 0.82 
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L8/S2 

Strategy 1 0.53 0.40 0.62 0.66 0.25 0.66 

Strategy 2 0.58 0.44 0.53 0.57 0.21 0.70 

Strategy 3 0.46 0.34 0.71 0.78 0.07 0.76 
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Figure 2.1. Conceptual diagram of PRO4SAIL forward use. The input parameters are listed in the light green 

boxes with the respective units. The leaf biophysical acronyms definitions: internal leaf structure (Ns), dry matter 

content (Cm), water content (Cw), chlorophyll content (Ccab), and carotenoid content (Ccar). PROSPECT produces 

leaf reflectance (ρ) and transmittance (τ) which are used as inputs in SAIL, along with the SAIL canopy 

architectural inputs: leaf area index (LAI), a soil reflectance scale parameter (αsoil), average leaf angle (ALA), 

fraction of diffuse incoming solar radiation (skyl), sun zenith angle (θs), sensor viewing angle (θv), relative azimuth 

angle between the sensor and sun (φ), and the hot-spot size parameter (HotS) to produce an estimated bidirectional 

surface reflectance (surface ρ). 

 

 

Figure 2.2. Location of the Palouse bioregion within the conterminous United States (top left) and location 8 km 

by 8 km study area within the Palouse bioregion (bottom left). Biophysical and top of canopy spectral data were 

collected from plots located in wheat, barley, and garbanzo fields (right). Sentinel-2 HLS product reflectances 

during early phenological stages for wheat, garbanzo, and barley on 2 May 2016, with crop mask, are used to 
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provide geographic context and displayed as false color composition: R = SWIR 1.6 (1.57–1.65 µm), G = NIR 

(0.85–0.88 µm), and B = Blue (0.45–0.51 µm). 

 

 

 

 

 

 

Figure 2.3. Histogram of Cw (a) and Cm (b), measured on 225 leaf samples grown in controlled conditions. 

 

 

Figure 2.4. Sampling scheme. Measurements were acquired at 17 locations (black dots) within the 30m × 30m 

plot. 

 

(a) (b) 
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Figure 2.5. Conceptual diagram of PRO4SAIL inversion optimization using a priori information and HLS 

product. Input datasets are presented in the blue ovals while processing steps and intermediate data are presented 

in the green and white rectangles, respectively. Finally, the final cropland canopy water content (CCWC) output 

is presented in the yellow diamond. 

 

 

 

 

 

 

 

 

Figure 2.6. Temporal profile of normalized difference vegetation index (NDVI) for a garbanzo plot (a) and winter 

wheat plot (b) from 2016. The red dashed line indicates the average between maximum and minimum NDVI 

observed for each plot during 2016. The value is indicated in the plot. NDVI values are from pixels which passed 

the QA filter described in the methods section. 

 

(a) (b) 
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Figure 2.7. Extraction of LAI pdf for each crop type (upper right), obtained by combining the resampled 

MCD15A2H product from June 1st, 2016 (lower left) and the aggregated CDL product from 2016 (lower right). 

The resampled MCD15A2H was masked to exclude any area not been identified as cropland by the USDA CDL 

product. 
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Figure 2.8. HLS-CCWC inversion results on 8 km by 8 km subsets of both Sentinel-2 and Landsat-8 HLS data 

for each inversion strategy (presented as columns). The inversions were performed during the 2016 growing 

season for May 2 (top), June 1 (second from top), June 20 (second from bottom), and July 15 (bottom) overpasses. 

The sensor during overpass as is labeled next to the date as S2 and L8 for Sentinel-2 and Landsat-8, respectively. 

The corresponding crop-type CDL land cover field boundaries are present on the right. 
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Figure 2.9. Box plots of the distribution of estimated CCWC in the 8 km x 8 km study area for May 2, June 1, 

June 20, and July 15 during the 2016 growing season. Results are aggregated into CCWC values for each crop-

type: dicotyledon (left column), spring monocotyledon (middle column), and winter monocotyledon (right 

column). Mean and standard deviations are plotted above each respective box plot for each strategy, labeled S-1, 

S-2, and S-3 for strategy 1, 2, and 3, respectively. 
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Figure 2.10. Comparisons of strategy 3 CCWC product (top) for each labeled date and sensor (S2 and L8 for 

Sentinel-2 and Landsat-8, respectively) with the coincident normalized difference water index (NDWI) derived 

image (bottom) for the 8 km x 8 km study area. 

 

 

Figure 2.11. Time series of measured (black crosses) and estimated (red dots) CCWC for each inversion strategy 

(#1: left, #2: middle, and #3: right) during the 2016 growing season. Plots A and B were located in winter wheat 

fields. Plot C was located in a barley field. Plots D and E were located in from garbanzo fields.  
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Figure 2.12. Scatter plots of measured and estimated Cw, LAI, and CCWC (Left, middle, and right, respectively), 

presented for strategies 1, 2, and 3 (top, middle, and bottom, respectively). The regression lines are plotted as a 

dashed line, the solid 1:1 line is shown for reference. The red dots and green triangles correspond to Landsat-8 

and Sentinel-2 HLS derived observations, respectively. 
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Chapter 3: Using cropland canopy water content (CCWC) to predict 

drought stress induced yield loss 

Abstract 

Drought stress inhibits agricultural productivity more than any other abiotic factor. Traditional methods 

for monitoring drought require measurements of meteorological variables from weather stations to be 

used as inputs in drought stress indices but lack the spatial resolution for farm-level yield prediction, 

especially in data sparse regions. Research, which contributes to mapping and predicting the outcomes 

of drought stress at the spatial and temporal scales necessary for agricultural monitoring, is of 

paramount importance, especially when considering the growing availability of 10-30 m moderate 

resolution satellite products made available by the Landsat and Sentinel satellite missions. The 

normalized differenced vegetation index (NDVI) is used with success to predict yield in major crops 

but is limited by its transferability across different regions and during late drought events after the crop 

has fully established. Cropland canopy water content (CCWC) is the biophysical quantity of water in 

the canopy which has known relationships with plant health status and may be estimated through 

inversion of the couple radiative transfer model, PRO4SAIL. In this study, the link between CCWC 

and yield was explored by combining a previously published logistic relationship between leaf water 

content (LWC) and available soil water content (ASWC) with the Food and Agricultural Organization 

(FAO) Irrigation and Drainage 56 definitions of water balances, drought stress, and yield. Using a new 

framework proposed in this study, which links a time series of satellite-derived CCWC to yield loss 

through the FAO-56 crop water use framework, yield loss was estimated from Landsat-8 Operational 

Land Imager (OLI) data for different treatment plots of an independent irrigation study which created 

late drought during the late vegetative, reproductive, and maturation growth stage in maize (Zea mays). 

The modeled and estimated yield loss from the CCWC time series both corresponded to the treatment 

amounts of the experiment. The comparison between CCWC and NDVI time series demonstrated 

CCWC being more sensitive to the different irrigation treatments than NDVI. Finally, the satellite based 

CCWC estimates were used to predict yield for each of the treatments.  

Introduction 

Two-thirds of the world’s population live under severe water scarcity conditions at least 1 

month of the year, while more than a half billion people experience severe water scarcity throughout 

the year in regions of dense population and intense irrigated agriculture (Mekonnen and Hoekstra 

2016). Water-demand, driven by an increasing world population and food demand (Amprako 2016), is 

projected to be more pronounced in low-latitude regions where more frequent and severe occurrences 

of extreme heat, drought, and flooding take place (Easterling et al. 2007; Mahlstein et al. 2011). Small-
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scale rural agricultural regions, where the agricultural sector is characterized as the primary economic 

driver, are at the highest risk due to poor infrastructure and farming systems being unable to withstand 

extreme events (Mthembu and Zwane 2017).  

Drought is a meteorological term which is frequently defined as a period without significant 

rainfall. Drought stress in plants occurs when the rate of transpiration is higher than the rate of water 

uptake from the soil, resulting in an imbalance in the water supply. Light to moderate drought stress 

can result in stomatal closure, reduced gas exchange, and reduction in cell enlargement and growth 

(Jaleel et al. 2009). Prolonged drought stress can lead to the reduction of photosynthesis, metabolic 

pathway disruption, and cell tissue death. In agriculture, drought stress is the most prominent abiotic 

factor for yield loss (Boyer 1982; Solomon et al. 2007).  

The temporal and spatial distributions of rainfall, evapotranspiration (ET), and soil water 

holding capacity dictate crop yield and production, and therefore require effective monitoring to 

characterize drought risk and response actions for mitigating the negative impacts of drought stress on 

yield. The most historic and accurate methods for monitoring the hydro-climatic drivers of drought 

stress is through in-situ based indices (Hazaymeh and Hassan 2016). The Palmer Drought Severity 

Index (PDSI) (Palmer 1965), Crop Moisture Index (CMI) (Palmer 1968), and the Standardized 

Precipitation Index (SPI) (McKee et al. 1993) are a few examples of the most commonly used in-situ 

based agricultural drought monitoring indices and are known to provide a comprehensive and accurate 

view of drought conditions at point locations where the input variables are acquired. The methods 

presented in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 have also 

provided crop water use and yield prediction guidelines and recommendations for landowners, 

managers, and irrigation consultants for many years and presently (Jovanovic et al. 2020). The FAO-

56 paper outlines simple and transferrable methods, based on simple water balancing, crop phenology, 

and the FAO Penman-Monteith definition of ET, for approximating crop water use and yield for a suite 

of commonly grown crops (Allen et al. 1998). The strength of the approach is in its ability to be scaled 

easily and dynamically track yield throughout the season. For any in-situ based drought index, including 

the FAO-56 crop water use method, uncertainty in the spatial delineation of drought conditions exist in 

landscapes where the distribution of meteorological stations, to collect the input data, is sparse 

(Hazaymeh and Hassan 2016; Li and Heap 2014). Remote sensing technology have been widely used 

to monitor the hydro-climatic drivers of drought stress and yield loss in agricultural landscapes as a 

solution to lowering the spatial uncertainty of in-situ based indices (Hazaymeh and Hassan 2016).  

Satellite-based rainfall estimates are primarily retrieved using thermal infrared imaging 

methods from geosynchronous satellites. Most rainfall estimate products are 4 to 25 km in spatial 
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resolution and available daily over 30 years in record (Coleman et al. 2017). This approach uses a 

technique to estimate cloud height through thermal measurements of the cloud (i.e. clouds at higher 

altitudes having cooler temperatures) and relies on the assumption that more rain results from clouds 

with a deeper vertical extent. The main strengths of satellite-based rainfall are the length of record and 

complete spatial coverage over remote areas (Coleman et al. 2017). Thermal infrared imaging does not 

measure variation in spatial intensity, which is especially significant in regions where rainfall may be 

influenced by coastal or mountainous features (Dinku et al. 2011; Sun et al. 2018). A study in Senegal, 

which examined total seasonal satellite-based rainfall as a metric of crop success, resulted in two 

villages a few kilometers apart having similar rainfall estimates but reported very different rainfall 

amounts over the growing season (Coleman et al. 2017). Because the timing of phenology and water 

deficit is crucial to estimating crop yield loss (Sah et al. 2020; Steduto et al. 2012; Yavuz et al. 2021), 

characterizing rainfall at a fine temporal resolution during the growing season is critical. This 

emphasizes the importance of daily rainfall estimates. Daily estimates, however, are cited as having 

higher uncertainty than monthly estimates (Coleman et al. 2017). 

Satellite-based soil moisture products may also be used to track crop water status through 

change detection of wetness in the soil. Observations from both active and passive microwave sensors 

are limited to the detection of soil wetness in the upper soil layer (2-5 cm) (Srivastava et al. 2016) with 

most products being available daily, between 3 km and 50 km in spatial resolution. An advantage of 

active and passive microwave sensors is the ability to penetrate cloud cover, which is critical in 

agricultural regions with frequent cloud presence. Since water uptake by the roots occur below the 

surface, however, additional methods, which require information about the soil properties, are 

necessary to estimate coincident root-zone soil moisture (Albergel et al. 2008; Wagner et al. 1999). The 

natural variability of rainfall, topology, soil properties, and even canopy water content also affect the 

geographic consistency of global soil moisture products (Dorigo et al. 2015).  

The optical domain may also be used to retrieve information about the crop’s health. The most 

widely used optical index, NDVI, is recognized as an excellent indicator of the abundance and condition 

of vegetation (Carlson and Ripley 1997; Magney et al. 2016; Pettorelli et al. 2005), which is especially 

effective in cases where drought has impacted growth. NDVI and other optical vegetation health indices 

have the benefit of moderate spatial resolution products (10 m – 1 km), which separates it from most 

rainfall and soil moisture monitoring methods. The link between NDVI and yield has also been found 

to be strong in some cases (Duan et al. 2017; Marti et al. 2007), even showing a stronger relationship 

with yield than rainfall in a pilot study which examined historical crop yield data in Zimbabwe 

(Makaudze and Miranda 2010). NDVI has also been used in the past to estimate the crop coefficient 
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(Kc) which is used to link phenology and total leaf area to ET and separates the reference crop from a 

specific crop in the FAO-56 method (Jovanovic et al. 2020). 

Nonetheless, a broader examination of NDVI revealed the relationship between NDVI, rainfall, 

temperature, and crop yield were still shown to be highly site-specific and, as a result, required 

calibration for each location (Turvey and Mclaurin 2012). NDVI is also cited as being less straight 

forward for certain crops where average ‘greenness’ over a period does not necessarily relate to yield 

as well as nutrient and water availability during critical growth periods (Hellmuth et al. 2009). The 

timing of the stress event is often a challenge in connecting remote sensing datasets to yield. In many 

major crops, including maize, the most important phenological stages related to yield occur later in the 

season after vegetative growth and during yield formation (Sah et al. 2020). A drought event during the 

early vegetative or maturity stages would result in relatively little yield loss compared to an event which 

occurred during late vegetative or reproductive stages. As a result, NDVI is known to have a weaker 

relationship with yield during seasons with ideal conditions early in the season and drought occurring 

later in the season before yield formation (Rowley et al. 2007), since growth was able to occur early 

without being stunted, resulting in full development of the canopy, and in the case of FAO-56, fully 

established Kc.  

Cropland canopy water content (CCWC), defined as the total amount of water stored in the 

canopy [g m-2], is a biophysical parameter which has been successfully estimated and monitored as an 

indicator of plant stress in agricultural drought assessment and irrigation decision studies (Yi et al. 

2014; Zhang et al. 2017; Zhang and Zhou 2019). Unlike NDVI or other band ratio indices, CCWC 

represents the physical quantity of water in the canopy, which is a direct indicator of crop water status. 

Using CCWC as an indicator of crop water status also enables the use of the physical-based radiative 

transfer model (RTM) inversion methods, which has a known advantage over empirical-based 

approaches in transferability (Grossman et al. 1996; Li and Wang 2011; Yebra et al. 2013). Finally, to 

our knowledge, no study exists which examines the link between CCWC and FAO-56 definitions of 

crop water use, drought, and yield loss. The development of a remotely sensed biophysical estimate, 

which can be assimilated into the FAO-56 crop water use framework, may enable FAO-56 application 

for farm-level water mapping and precision irrigation (Pereira et al. 2020). 

The goal of this study was to develop the first steps towards a novel method which exploits a 

time series of satellite estimated CCWC to predict the yield loss in maize. To do this, two objectives 

were met: 1) establish the theoretical link between CCWC, drought stress, and yield loss using well 

known crop water use equations from the FAO-56 paper and previously established relationships 
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between leaf water content (LWC) and available soil water content (ASWC), and 2) evaluate the 

method using a published irrigation experiment dataset with known water control inputs, 

meteorological conditions, and phenological information.  

Methods and Materials 

Theoretical link between CCWC, drought stress, and yield loss 

In this section, we define the theoretical link between CCWC and yield loss using previously 

published definitions and relationships. In the following subsections, we first define drought stress and 

resulting yield loss using the FAO-56 crop water use and soil water balance equations. Second, we 

establish a link between CCWC, and the FAO-56 crop water use and soil water balance framework.  

FAO Irrigation and Drainage paper 56 drought stress and yield loss 

The FAO-56 definition of drought stress in crops is characterized by a crop water use approach: 

calculated using daily ET, water inputs through rainfall and irrigation, and various field specific 

information related to crop species, phenology, and soil properties (Allen et al. 1998). The FAO-56 

crop water use approach was developed and intended to provide guidance to land managers and 

researchers for approximating crop water requirements for both rainfed and irrigated agricultural 

systems. In this study, the FAO-56 crop water use approach was used to define the moment in which 

drought stress occurs. There are several FAO-56 terms and definitions which require explanation. First, 

the reference ET (ETo) [mm day-1] is calculated using the FAO Penman-Monteith method (Allen et al. 

1998; Monteith 1965) and is defined as the amount of water that would be lost through the combined 

process of evaporation and transpiration by a hypothetical reference grass surface with unlimited water 

supply. ETo is expressed below: 

ET𝑜  =  
0.408Δ(𝑅𝑛 − G) + γ

900
𝑇 + 273 𝑢2(𝑒𝑠 − 𝑒𝑎)

∆ + γ(1 + 0.34𝑢2)
 , (1) 

where Rn is net radiation at the crop surface [MJ m-2 day-1], G is soil heat flux density [MJ m-2 day-1], T 

is air temperature at 2 m height [˚C], u2 is wind speed at 2 m height [m s-1], es is saturation vapor pressure 

[kPa], ea is actual vapor pressure [kPa], Δ is slope vapor pressure curve [kPa ˚C-1], and γ is 

psychrometric constant [kPa ˚C-1]. 

Next, the potential ET (ETc) [mm day-1] is defined as the amount of water that would evaporate 

and transpire by a specific crop surface (i.e. maize, soy, wheat, etc.) with unlimited water supply. ETc 

is calculated using the single crop coefficient method and is expressed below: 
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ET𝑐  =  𝐸𝑇𝑜 ∗ 𝐾𝑐  , (2) 

where Kc is the dimensionless crop coefficient term. Kc represents an integration of four properties that 

distinguish a specific crop from the reference grass: 1) crop height, 2) albedo, 3) canopy resistance, and 

4) evaporation from the soil (Allen et al. 1998). Consequently, Kc primarily varies by crop species and 

growth period. A table of Kc values for different crops and growth stages are available in the FAO-56 

paper (Allen et al. 1998). There are two growth periods where Kc remains constant: Kc ini [initial season], 

and Kc mid [mid-season]. The period between Kc ini and Kc mid growth period is called Kc dev. The 

approximation of Kc between each of the three growth periods, as well as the Kc end [late season],  is 

expressed as: 

K𝐶 𝑖  =  𝐾𝑐 𝑝𝑟𝑒𝑣 + [
i −  ∑(𝐿𝑝𝑟𝑒𝑣)

𝐿𝑠𝑡𝑎𝑔𝑒
] (𝐾𝑐 𝑛𝑒𝑥𝑡 − 𝐾𝑐 𝑝𝑟𝑒𝑣), (3) 

where i is the day number within the growing season, Kc i is the crop coefficient on day i, Lstage is the 

length of the stage under consideration [days], and Σ(Lprev) is the sum of lengths of all previous stages 

[days]. Similar to the Kc values of different crops and periods, a table of reference Lstage values may be 

retrieved from the FAO-56 paper for approximating a seasonal Kc curve. An example of the Kc curve 

for maize plotted over time (days in season) is presented in Figure 3.1. 

Lastly, the actual ET (ETc adj) [mm day-1] is defined as the actual amount of water that would 

evaporate and transpire by a specific crop surface through considering soil water supply and crop stress 

conditions. ETc adj is expressed below: 

ET𝑐 𝑎𝑑𝑗  =  𝐸𝑇𝑜 ∗ 𝐾𝑐 ∗ 𝐾𝑠 , (4) 

where Ks is a dimensionless transpiration reduction factor dependent on available water content in the 

soil [0 – 1]. Ks may be calculated through a simple water balance approach: 

K𝑠  =  
TAW − 𝐷𝑟

𝑇𝐴𝑊 − 𝑅𝐴𝑊
 , (5) 

where Dr is the root-zone depletion [mm], TAW is the total available soil water in the root-zone [mm]: 

𝑇𝐴𝑊 =  1000 ∗ (𝜃𝐹𝐶 − 𝜃𝑊𝑃) ∗ 𝑍𝑟  , (6) 

where θFC is the water content at field holding capacity [m3 m-3], θWP is the water content at wilting 

point [m3 m-3], and Zr is the rooting depth [m]. RAW from equation 5 is the readily available soil water 

in the root-zone [mm]: 
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𝑅𝐴𝑊 =  p ∗ TAW , (7) 

where p is the average fraction of total available soil water (TAW) that can be depleted from the root-

zone before moisture stress (reduction in ET) occurs [0 – 1]. A conceptual diagram of the water balance 

terms above is presented in Figure 3.2. The Ks value curve, plotted over the amount of water 

approximated in the balance, is presented in Figure 3.3. 

Root-zone water content may be expressed by depletion (Dr) (i.e. the water shortage relative to 

field holding capacity). As water is removed from the soil, Dr increases. When Dr becomes equal to or 

exceeds RAW, drought stress will be induced, stomatal closure on the leaves will begin to conserve 

water, and Ks will begin to decrease until reaching the wilting point and total crop failure is achieved. 

Any period where Ks is less than one is a period where the crops are defined as experiencing drought 

stress. The simple water balance computation for the root-zone, which approximates daily Dr, is done 

through the means of a “container-like” system in which water may fluctuate: subtracting water through 

daily ET and adding water through daily precipitation or irrigation. It is assumed that water may be 

stored in the container until field holding capacity is reached, with any additional water added to the 

container through heavy rain or excessive irrigation being lost the same day by deep percolation and 

runoff. Likewise, it is assumed depletion cannot exceed the wilting point, as no more water will be left 

for evapotranspiration in the root-zone. 

Finally, the FAO introduced a set of rules in the FAO Irrigation and Drainage paper 33 for 

predicting yield loss depending on the phenological period and the number of days with drought stress 

which were presented in FAO-56 (Doorenbos and Kassam 1979). The yield loss ratio (
𝑌

𝑌𝑚
), opposed to 

a quantity of yield, may be estimated using: 

𝑌

𝑌𝑚
=  ∏[1 − 𝐾𝑦 𝑛(1 −  𝐾𝑠 𝑛)]

𝑁

𝑛=1

, (8) 

where Y is the actual yield, Ym is the maximum yield, Ky is the yield response factor, n is an index 

representing each growth stage, and N corresponds to the number of functions between the square 

brackets (Doorenbos and Kassam 1979). 

The Ky factor describes the reduction in relative yield according to the reduction in ETc adj 

caused by soil water shortage. The Ky values are crop specific and vary depending on the growth stage. 

In general, a decrease in yield from drought stress during early vegetative development will be 

relatively small, while drought stress during flowering and yield formation stages will be large. Crop 

and growth stage specific values are available in the FAO Irrigation and Drainage paper 66 (Smith and 
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Steduto 2012). The Ky values used in this study were 0.4, 1.5, 0.5, and 0.2 for vegetative, flowering, 

yield formation, and ripening growth stages, respectively. 

Plant-soil water content relationship 

The relationship between plant and soil water content is critical for characterizing the water-

carbon and energy exchange processes in the soil-plant-atmosphere system (Giménez et al. 2013; 

Ouyang and Zheng 2000). Several methods for modeling the relationship and flow of water from the 

soil to the leaf tissue of a plant exist in varying degrees of complexity (e.g. (Grifoll et al. 2005; Sperry 

et al. 1998)). In this study, a logistic function, which was used in a recent publication (Zhou et al. 2021) 

for linking maize leaf water content (LWC) to available soil water content (ASWC), was used to 

quantify the plant-soil water content relationship. LWC is expressed as: 

𝐿𝑊𝐶 =  
𝐿𝐹𝑊 − 𝐿𝐷𝑀

𝐿𝐹𝑊
∗  100% (9) 

where LFW is the fresh leaf weight and LDM is the dry leaf weight. ASWC is expressed as: 

𝐴𝑆𝑊𝐶 =  
𝑆𝑊𝐶 − 𝑊𝑃

𝐹𝐻𝐶 − 𝑊𝑃
∗ 100%, (10) 

where SWC is the soil moisture content [mm], FHC is the field holding capacity [mm], and WP is the 

wilting point [mm]. The logistic function to link LWC to ASWC used in Zhou et al. (2021) is expressed 

as:  

𝐿𝑊𝐶 =  𝐿𝑊𝐶𝑚𝑎𝑥 +
𝐿𝑊𝐶𝑚𝑖𝑛 − 𝐿𝑊𝐶𝑚𝑎𝑥

1 + (
𝐴𝑆𝑊𝐶

𝑏
)

𝑎 , (11) 

where LWCmax and LWCmin represent the maximum and minimum leaf water content, respectively. 

The parameter a represents a value that is proportional to the sensitivity of LWC in response to changing 

ASWC, and parameter b represents the ASWC value when LWC is the midpoint between LWCmax 

and LWCmin. LWCmax and LWCmin values were set based on the LOPEX93 leaf data set (Hosgood 

et al. 1995) for maize values: 80.9 % and 65.5%, respectively. Parameters a and b were estimated using 

similar methods as outlined in Zhou et al. (2021). A maximum iteration algorithm (Nelder-Mead) 

(Nelder and Mead 1965) was run until the minimum sum of squares was found. The parameter values 

for a and b were determined to be 4.79 and 51.04, respectively. These values were similar to those used 

in the Zhou et al. (2021) paper.    

The primary objective of this study was to establish and evaluate the link between CCWC 

retrieved from satellite observations and yield loss. Since the relationship between plant and soil water 
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content is expressed as a relationship between LWC and ASWC (eq. 11), necessary conversions were 

made to enable the use of CCWC to estimate soil water content for Ks estimation, and subsequent yield 

ratio estimation. CCWC is converted to LWC through the following equations: 

𝐸𝑊𝑇 =  
𝐶𝐶𝑊𝐶

𝐿𝐴𝐼
, (12) 

where EWT is the equivalent water thickness [g cm-2], which represents the total weight of water over 

a square centimeter of leaf surface area and LAI is the leaf area index [m2 m-2], which represents the 

total leaf area in a square meter of ground area. EWT estimated from CCWC and LAI is used to 

approximate the LWC percentage: 

𝐿𝑊𝐶 =  
𝐸𝑊𝑇

𝐸𝑊𝑇 + 𝐷𝑀𝐶 
∗ 100%, (13) 

where DMC is the dry matter content [g cm-2], which represents the total weight of dry matter over a 

square centimeter of leaf surface area. The LWC is inverted through equation 11 to approximate the 

coincident ASWC. ASWC is used to estimate Ks through Dr: 

𝐷𝑟 = 𝑇𝐴𝑊 − (
𝐴𝑆𝑊𝐶

100
∗ 𝑇𝐴𝑊), (14) 

The Dr is then used as an input in equation 5 which can be used to estimate the yield ratio in equation 

8.   

Evaluation of theoretical link between CCWC, drought stress, and yield loss 

The goal of the evaluation was to test whether the FAO-56 and CCWC-ASWC relationships, 

presented in the first section, can be combined to produce the basis of an approach for monitoring 

changes in yield ratios using a satellite derived CCWC time series. This was performed by 1) modeling 

CCWC and the resulting yield ratio for a set of published experimental irrigation treatment data with 

known environmental controls, soils, and crop phenology using the FAO-56 crop water use framework 

and a simple crop model and, 2) performing RTM inversion using Landsat-8 OLI surface reflectances 

to create the CCWC time series to be used for estimating yield loss in each treatment of the irrigation 

experiment and compare with the modeled CCWC and yield loss. The methods for evaluating the 

theoretical link between CCWC and yield ratio are presented in the following subsections.  

Irrigation experiment  

Published water treatment data, phenology, and soil properties information from an 

independent field-level irrigation experiment in Inner Mongolia, China (Zhang et al. 2019), were used 

to 1) evaluate the applicability of CCWC and NDVI in mapping late drought conditions, and 2) evaluate 



97 

 

the time series of CCWC to predict yield for each irrigation treatment. Briefly, the purpose of the Zhang 

et al. (2019) study was to evaluate methods for mapping water stress in maize using several band ratio 

vegetation indices under various water deficit conditions during late vegetative, reproductive, and 

maturation growth stages. The irrigation experiment was conducted on a 1.13 ha irrigation pivot maize 

research field (40˚ 2600.29” N, 109˚ 36025.99” E, Elev. 1010 m), located in Zhaojun Town, Dalate 

Banner, Ordos, Inner Mongolia, China (Figure 3.4). The maize for the experiment was planted on May 

20, 2017 and harvested as silage 110 days later 

FHC and WP were estimated to be 12.9% and 5.6% volumetric using multiple soil samples 

taken from the research field. Water treatments were designed and based on the crop water use FAO 

definitions. The Kc values reported in the irrigation experiment were 0.55, 1.09, and 0.45 during the 

initial, mid-season, and late season developmental stages. More information about the study areas soils 

and the irrigation system may be retrieved from Zhang et al. (2019). The applied irrigation for each 

treatment is presented in table 3.1. 

According to Zhang et al. (2019) the total crop water requirements of the maize during the late 

vegetation, reproductive, and maturation stages was estimated to be 407 mm, which was approximate 

to the total water applied to the control treatment (402 mm in treatment 1). Each of the other treatments 

were a percentage of the water applied to treatment 1. 

Soil Water Balance and Ks Estimation 

As described in the FAO Irrigation and Drainage paper 56 drought stress and yield loss section 

above, daily Dr is required for estimating daily Ks of each treatment. To do this using the information 

from the Zhang et al. (2019) study, a daily soil water budget was characterized for each treatment 

throughout the study period: 

𝐷𝑟 𝑡 =  𝐹𝐻𝐶 − 𝑆𝑊𝐶𝑡, (15) 

where FHC is the field holding capacity [mm] and SWCt is the soil water content [mm] at time t:  

𝑆𝑊𝐶𝑡 =  𝑆𝑊𝐶𝑡−1 − (𝐸𝑇𝑐 𝑡−1 − 𝑊𝐼𝑡−1), (16) 

where WI is the daily water applied [mm]. Daily ETc was approximated using the values in table 3.1 

over the period of the treatment. For example, the total crop water requirements for the maize plants 

during the late vegetative period (25 days in length) was 188 mm so the estimated daily ETc for the 

period was 7.52 mm. Because treatment 1 was administered based on the total crop water requirement, 

the ETc over the period was equal to the total the amount of water administered to treatment 1, while 
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other treatments received a percentage of this water throughout the treatment period. This daily water 

applied is expressed by: 

𝑊𝐼𝑡 =  𝐸𝑇𝑐 𝑡 ∗ (1 − 𝑇𝑅𝑇𝑡), (17) 

where TRT is ratio between water applied and the total crop water requirement (0 - 1) and ETc t is the 

total daily crop water requirement for day t. It is assumed that the experiment was initialized on planting 

date with the soil water content equal to the field holding capacity (Dr = 0). Finally, daily Ks may be 

estimated using daily Dr in equations 5 and 7 above. The average fraction of TAW (p) is dependent on 

the crop and may change throughout the season dependent on water requirements: 

𝑝𝑡 =  𝑝𝑡𝑎𝑏𝑙𝑒22 + 0.04 ∗ (5 − 𝐸𝑇𝑐 𝑡), (18) 

where ptable22 is a predefined value for a specific crop which may be retrieved from table 22 of the FAO-

56 paper (Allen et al. 1998). ptable22 was set for maize (ptable22 = 0.55).  

Simple Crop Model 

A set of stepwise equations were used to simulate leaf area index (LAI) [m2 m-2], dry matter 

content (DMC) [g cm-2] and equivalent water thickness (EWT) [g cm-2] for maize over the growing 

season of the different treatments of the Zhang et al. (2019) irrigation experiment. The goals of the 

simple crop model were to 1) generate Kc, LAI, and DMC values required to assimilate satellite-derived 

CCWC into the FAO-56 framework, and 2) evaluate the satellite derived yield loss prediction against 

the yield loss prediction through inputting the known water control, soil capacity, and ET conditions 

into the FAO-56 water balance equation. The overall process is expressed as: 

(𝐷𝑀𝐶, 𝐸𝑊𝑇, 𝐿𝐴𝐼, 𝐾𝑐) =  𝑓(𝐷𝑆𝑃, 𝑎𝐺𝐷𝐷), (19) 

where days since planting (DSP), and accumulated growing degree days (aGDD) were used as inputs 

in a function to approximate DMC, EWT, LAI, and Kc parameters. To begin, Kc is approximated using 

DSP and the steps described in the FAO Irrigation and Drainage paper 56 drought stress and yield 

loss section. However, since Kc values and lengths of the growing season and study area were retrieved 

from the Zhang et al. (2019) paper, the only period required for estimation was the end of the Kc ini 

period. According to FAO, Kc ini ends when canopy cover (CC) [%] reaches a value greater than 10% 

(Allen et al. 1998). A FAO approach was used which inputs aGDD to approximate CC. To calculate 

aGDD, the daily maximum and minimum temperature was retrieved from the NASA Project Data 
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Portal (accessed via: http://power.larc.nasa.gov/), between May 20 and September 7, 2017 for the center 

coordinates of the irrigation pivot. Daily aGDD was calculated by: 

𝑎𝐺𝐷𝐷 =  ∑ 𝐺𝐷𝐷𝑡

𝑛

𝑡=1

, (20) 

where GDD was calculated as: 

𝐺𝐷𝐷 =  𝑚𝑎𝑥 (
𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒 , 0), (21) 

where Tmax and Tmin are the maximum and minimum daily temperature [˚C], and Tbase is the base 

temperature for maize which was set to 8 ˚C according to crop tables in Allen et al. (1998). CC is 

estimated by: 

𝐶𝐶 =  𝐶𝐶𝑜 ∗ 𝑒𝑎𝐺𝐷𝐷∗𝐶𝐺𝐶 , (22) 

where CCo is defined as the soil surface covered by an individual seedling at 90% emergence [cm2 

planet -1] and CGC is the canopy growth coefficient [fraction per growing degree day]. CCo and CGC 

were set to nominal values for maize according to Allen et al. (1998): 0.0048 cm2 plant -1 and 0.012 

fraction per growing degree day for CCo and CGC, respectively. Next, LAI is estimated through 

adapting a Kc equation (eq. 2) in Beeri et al. (2020): 

𝐿𝐴𝐼 =  −
−0.3547 + √−0.1132 ∗ 𝐾𝑐 + 0.1345

0.0566
, (23) 

Next, a maize biomass allometric equation (Lemaire et al. 2007; Plénet and Lemaire 1999) was used to 

estimate DMC from LAI: 

𝐷𝑀𝐶 =
𝐿𝐴𝐼

1.234

1.473

∗ 0.001, (24) 

EWT and CCWC were estimated using the theoretical relationship between LWC and ASWC from the 

Zhou et al. (2021) study. To do this, the SWC was estimated on a daily time step using the simple water 

balance output from equation 16 which were input into equation 11 to estimate LWC. The LWC was 

used to compute a daily estimate of EWT using the relationship from equation 13. Finally, CCWC was 

estimated by multiplying LAI and EWT.   
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Landsat-8 OLI Collection 2 Level-2 

Seven cloud-free Landsat-8 OLI Collection 2 Level-2 surface reflectance scenes were accessed 

from the USGS EarthExplorer web GUI (accessed via: http://earthexplorer.usgs.gov/). Collection 2 

includes several improvements to collection 1 including improved radiometric calibration, geometric 

accuracy, digital elevation modeling, and QA band (Hartpence 2021). Level-2 surface reflectance is 

generated from Collection 2 Level-1 data that meet the < 76 degrees solar zenith angle constraint. The 

imagery that pass this constraint are processed using the Land Surface Reflectance Code (LaSRC) 

algorithm for correcting atmospheric effects (Skakun et al. 2019). Scenes were acquired for overpasses 

between June 11 and August 30, 2017. Table 3.2 presents the dates, path, and row imagery used in this 

analysis is presented. 

Surface reflectances values were taken from a single fixed pixel, located near the middle of the 

treatment zone, for each treatment and overpass date. The NDVI was calculated for each treatment 

pixel location and date: 

𝑁𝐷𝑉𝐼 =  
𝜌𝑛𝑖𝑟 + 𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟 − 𝜌𝑟𝑒𝑑
 , (25) 

where red and nir are the red and near-infrared Landsat-8 reflectances, respectively.  

Estimating CCWC using PRO4SAIL Inversion 

CCWC was estimated using Landsat-8 reflectances through PRO4SAIL inversion 

(Jacquemoud et al. 2009). The PRO4SAIL model is the coupled result of the leaf model PROSPECT 

(Jacquemoud and Baret 1990) and canopy model 4SAIL (Verhoef 1984; Verhoef et al. 2007).  

The PROSPECT model generates synthetic leaf directional-hemispherical reflectance and 

transmittance spectra between 400-2500 nm. The model generalizes a leaf as a stack of plates (Ns) with 

absorption properties which are governed by the coefficients of their respective leaf constituents and 

refractive indices. The PROSPECT-5B model was used in the version of PRO4SAIL used in this 

analysis.  

To couple PROSPECT with 4SAIL, the outputs of leaf reflectance, transmission, and 

absorption from PROSPECT is assimilated into 4SAIL and, along with other canopy structure property 

parameters, calculates top-of-canopy surface reflectance between 400-2500 nm. The 4SAIL model 

considers a canopy system as a horizontal one-dimensional turbid medium made up of leaves which 

are randomly distributed with a characterized leaf orientation and density.  
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The PRO4SAIL model has been widely used with success decades after its first release 

(Colombo et al. 2008; Darvishzadeh et al. 2008; Yebra et al. 2013; Zarco-Tejada et al. 2003), but 

particularly in agriculture (Atzberger 2004; Verger et al. 2011; Zhang et al. 2017) as the model assumes 

a turbid homogenous canopy system for surface reflectance calculation. The inversion of PRO4SAIL 

is performed by minimizing the distance between measured and modeled spectra, which in the case of 

Earth observation sensor measurement comparison, spectral resampling is required to make the 

comparison possible. Several methods exist for minimizing distance between measured and modeled 

spectra (Atzberger 2004, 2010; Berger et al. 2018), with Look-Up-Table (LUT) methods as one of the 

more popular methods due to its simplicity and computational requirements (Rivera et al. 2013). The 

LUT method requires the user to generate a large table of spectral realizations, traditionally a size of 

100,000, and then locate the realization with the smallest difference with the measured spectra. LUT 

inversion of Landsat-8 reflectances was used to estimate CCWC following the spectral pre-processing 

and LUT strategy 1 methods outline in Boren and Boschetti (2020). A table of PRO4SAIL parameters 

and constraints are presented in table 3.3. 

Statistical comparison between modeled and satellite derived variables 

 A quantitative comparison was made between the modeled NDVI, CCWC, and yield loss ratio 

values to those that were estimated from Landsat-8 OLI observations through calculation of the root 

mean squared error (RMSE): 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖

′ − 𝑦𝑖)2𝑛
𝑖=1

𝑛
, (26) 

where yi and yi’ are the modeled and satellite derived values, respectively, and n the number of 

measurements. 

Results 

Modeled NDVI, CCWC, and Yield Ratio 

The Kc value was estimated over the entire season using a combination of FAO values and 

published information about the field experiment in Zhang et al (2019). The Kc curve for the maize 

grown in the Zhang et al (2019) experiment and coincident aGDD is shown in Figure 3.5. A description 

of values in figure 3.5 is presented in table 3.4. 

The Kc curve was computed primarily using the published field information from the Zhang et 

al. (2019) experiment, including Kc ini = 0.55, Kc mid = 1.09, Kc end = 0.45, and the lengths of Kc mid and Kc 

end stages, 22 and 18 days respectively. The lengths of Kc ini and Kc dev (the time between Kc ini and Kc mid) 
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was determined using the canopy coefficient equation 3: the estimated time for canopy development to 

reach > 10% was 25 DSP. With the known start days of Kc dev and Kc mid, the length of Kc ini and Kc dev 

was determined to be 25 and 45 days, respectively.   

The Kc values in figure 3.5 were used to begin the step-wise computation of biophysical 

parameters (eq 23 - eq 24). Using the methods outlined in the FAO Irrigation and drainage paper 56 

drought stress and yield loss subsection, the yield ratio for each treatment of the irrigation experiement 

in Zhang et al. (2019) was estimated. Lastly, the biophysical parameters were inputted into the 

PRO4SAIL model to produce Landsat-8 like surface reflectances which were used to calculate a NDVI 

time series at the same time step of actual Landsat-8 overpasses. The modeled CCWC, treatment yield 

ratios, and NDVI times series are presented in figure 3.6. 

Figure 3.6 illustrates peak CCWC is reached (CCWC = 1.16 x 103 g m-2) after the late 

vegetative period ends and the reproductive period begins. During the late vegetative period, treatments 

2-5 began to diverge from treatment 1. At the end of the late vegetative period, there was a modeled 

0.24 x 103 g m-2 difference between treatment 1 and the remaining treatments. During the reproductive 

period, treatment 4 was 69% of the total crop water requirements, while treatments 2, 3, and 5 were 

97%, 95%, and 94%, respectively, according to Zhang et al (2019). Treatment 4 CCWC decreased 0.35 

x 103 g m-2 from July 29 to August 20, while treatments 2,3, and 5 decreased 0.08 x 103 g m-2,0.13 x 

103 g m-2 , and 0.15 x 103 g m-2 , respectively. Following the prescribed treatments to compute the soil 

water balance, treatment 4 reached wilting point by the end of the reproductive period.  

The modeled yield ratio time series for each treatment reflected the amount of water each 

treatment received. The quickest drop in yield ratio was modeled for treatment 4, where the yield ratio 

decreased approximately 0.9 within the first 14 days of the reproductive period and approached zero at 

the end of the reproductive period. This was an expected result of treatment 4, which was 69% crop 

water use during the reproductive period and resulted in the soil water balance reaching wilting point 

at the end of the period.  The modeled yield ratio for treatments 2 and 3 started to decrease during the 

onset of the maturation period. The resulting yield ratios for treatments 2 and 3 were 0.7 and 0.61, 

respectively at the end of the maturation period. The yield ratio began to decrease towards the end of 

the reproductive treatment (yield ratio of 0.99 at the end of the reproductive period) but stabilized during 

the beginning of the maturation period when water treatment was 100% of crop water use. As expected, 

the yield ratio was unchanged for treatment 1 as water treatment was never below 100% of crop water 

use for the entire time series.  
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The resulting shape of the NDVI time series curve was as expected: increasing NDVI during 

the vegetative period corresponding to growing LAI, peaking during the reproductive stage, and 

declining during maturation. The largest modeled NDVI difference between treatments did not surpass 

0.001 for the entire time series and occurred during the maturation stage.  

Observed NDVI and Estimated CCWC and Yield Ratio 

The NDVI, estimated CCWC from PRO4SAIL inversion of Landsat-8 surface reflectances, 

and approximated yield using coincident CCWC estimates is presented in figure 3.7.  

NDVI and CCWC progressed on each date as expected, increasing from June 11 to July 29, 

peaking on July 29, and decreased from August 7 to August 30. Differences between treatment 4 and 

the rest of the treatments were more evident in the CCWC images than with NDVI from August 7th 

onwards. The CCWC image on August 30 clearly shows the contrast in values between treatments 1 

and 4. In general, yield ratio was not observed to decrease until August 7: nine days after the 

reproductive treatments began. Like the CCWC image, clear contrast can be seen in the estimated yield 

ratios between treatments 1 and 4. The sampled pixel time series for each treatment is illustrated in 

Figure 3.8. 

The general trends between modeled CCWC and NDVI values in figure 3.6 and observed 

CCWC and NDVI values in 3.8 show agreement. Very little separation can be seen in the observed 

NDVI between treatments, with a max difference of 0.11 observed between treatment 1 and 4 on the 

last observation date. The RMSE between modeled and observed NDVI was 0.14. Similar to figure 3.6, 

CCWC does show a peak on July 29 for each treatment and the time series ends in the expected order 

of treatment, with highest satellite-dervied CCWC in treatment 5 (CCWC = 1.1 x 103 g m-2) and lowest 

CCWC in treatment 4 (CCWC = 0.8 x 103 g m-2). The RMSE between modeled and satellite-derived 

CCWC was 0.17 x 103 g m-2 . Unlike the values presented in figure 3.6, however, CCWC is shown 

decreasing from July 29 onward for each treatment, including treatment 1. The yield ratio estimated 

using the satellite-derived CCWC time series illustrates a yield ratio loss in order of water treatment at 

the end of the season (1, 0.98, 0.97, 0.4, and 1 for treatments 1, 2, 3, 4, and 5, respectively).  The RMSE 

between modeled and satellite-derived yield ratio was 0.16. 

Discussion 

This study proposed a link between CCWC and drought stress and demonstrated an approach 

to estimate yield loss in drought stressed maize from satellite retrieved CCWC. The modeled NDVI 

and CCWC showed good agreement with the observed NDVI and satellited-derived CCWC (RMSE of 

0.14 and was 0.17 x 103 g m-2, respectively). The time series of NDVI in figure 3.6 and figure 3.8 fit 
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closely except for early dates in the timeseries, where the first observed NDVI was ~0.2 for each 

treatment and modeled was ~0.4 for each treatment. The forward mode of PRO4SAIL was run 

assuming dry soil conditions, whereas the soil was likely wetter during overpass in the early season 

from abundant water application of the irrigation system. After LAI grew > 2 m2 m-2, the overall spectral 

signature of top-of-canopy reflectance produced by PRO4SAIL was no longer sensitive to soil 

background scattering effects (Bacour et al. 2002), bringing observed and modeled NDVI closer in 

agreement.  

The time series of CCWC in figures 3.6 and 3.8 show a general agreement but differ in that 

CCWC is not maintained as constant throughout the reproductive growth stage like it was for modeled 

treatments 1-3 and treatment 5. There are a few weaknesses of the approach presented in this paper 

which may explain the differences. First, the modeled CCWC was generated following the assumption 

of a “container-like” soil profile during the soil water balance steps. In the model, no water was allowed 

to leave the soil profile through any path other than ETc adj, which may have resulted in underestimated 

actual water lost to runoff or surface evaporation. This may also explain the relatively large 

disagreement between modeled CCWC in treatment 1 and the satellite-derived CCWC from Landsat-

8 surface reflectance of all treatments during the onset of the reproductive period (difference of 0.27 x 

103 g m-2 on July 29). Another possible source for the disagreement may be the error in ETc calculations 

used to generate the treatments in the irrigation experiment. Crop water use in the irrigation experiment 

was estimated for the maize using the FAO-56 methods for calculating ETc from local weather 

observations (Zhang et al. 2019). Uncertainty from the Penman-Monteith calculation of ETo or 

estimated Kc, if underestimated, can lead to under watering crops if the goal is to strictly replace only 

the amount for water replacement. It is also possible for the irrigation pivot pressure sensor to 

misrepresent the actual amount of water being pumped (Fanning et al. 2001). 

The modeled and satellite-derived yield ratio also showed general agreement (RMSE = 016). 

The biggest overall contrast between the modeled and satellite-derived yield ratio is the rate in which 

the modeled yield ratio decreases, particularly with treatment 4 during the reproductive stage. The yield 

ratio equation (eq. 8) is the cumulative product of daily water conditions throughout the time series, 

which results in a rapidly decreasing yield ratio during a series of days with poor water conditions, as 

was the case in the current study for the modeled yield ratio values. The FAO-56 soil water balance 

was performed assuming a daily average of water inputs and ET for each treatment during three growth 

phases. If the average daily ET was greater than the average daily water input (as was the case for each 

treatment except for the control treatment), the soil water profile decreased on a consistent daily time 

step. In reality, periods exist when the water input is greater than ET (irrigation or rainfall event) which 
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may allow the soil water content to recharge above the RAW threshold and stunt the decline of the 

yield ratio for the period. As a result, the modeled yield ratios are likely an underestimate of yield 

conditions in reality. Conversely, the satellite derived yield ratios are likely to be overestimated, as the 

current assumption of this approach is Ks = 1 in between Landsat-8 overpasses. A future expansion of 

this study to improve this method and converge both modeled and satellite-derived yield ratios towards 

the true yield ratio could be done in a couple of ways. First, the modeled yield ratio should be computed 

using daily records of water inputs and ET, instead of averaged daily values over entire growth stages, 

which should allow for the soil water balance to recharge for periods after a significant water event. 

Finally, a data assimilation technique, such as a Kalman filter (Welch and Bishop 1995), could be used 

to gap-fill the satellite-derived yield ratio time series using the modeled yield ratio time series. In this 

way, the yield ratio time series is driven by model inputs of watering, soil capacity, and ET, and then 

updated with satellite-derived estimates of the yield ratio when they become available.  

This approach is not meant to replace the use of NDVI for yield estimation. In cases where 

drought is severe throughout the entire year, delayed or stunted crop development is easily detectable 

using NDVI and less computationally expensive than CCWC retrieval. Estimation of CCWC for 

deriving yield ratio can improve yield ratio prediction during seasons with late drought events after full 

vegetation development, which is a known weakness in yield estimation through NDVI. The overall 

strength of an approach which uses CCWC to estimate yield, opposed to empirical models based on 

vegetation indices, is in its transferability and ability to detect drought stress when the canopy is already 

fully developed. Retrieving the physical quantity of water in the canopy also allows for a direct physical 

link to the FAO-56 soil water balance, drought stress, and yield ratio equations to be made.  

The demonstrated approach in this study is limited by the requirements of additional parameters 

Kc, Ky, and stage length for producing CCWC and yield estimates. The FAO-56 paper states that the 

parameters are known to vary between cultivars and regions (Allen et al. 1998b), which hinder the 

transferability of the approach. A current priority in further developing methods which use the FAO-

56 soil water balance approach for yield estimation is to refine and archive the crop and site-specific 

coefficients (Jovanovic et al. 2020). Further research which assimilates phenology timing retrieval 

methods from optical data into this approach may improve the overall transferability, such as a 

satellited-derived LAI or DMC product which could be assimilated into the simple crop model. Finally, 

because no yield data were published in the Zhang et al. (2019) irrigation study, the method presented 

in this study needs to be tested under the configuration of a similar irrigation study with ground 

collected yield data. 
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Conclusions 

In this study, we proposed and demonstrated an approach to estimate yield impact in late 

growth stage drought stressed maize of an independent irrigation experiment (Zhang et al. 2019) using 

satellite retrieved cropland canopy water content (CCWC) which was integrated into the FAO-56 crop 

water use framework. To our knowledge, this is the first study to establish a direct link between CCWC 

and drought stress to bridge the gap between CCWC and yield using FAO-56 definitions of drought 

stress, phenology, and yield. Information from FAO-56 tables, the irrigation experiment, and known 

relationships of biophysical parameters (Allen and Pereira 2009; Allen et al. 1998b; Beeri et al. 2020; 

Hosgood et al. 1995; Lemaire et al. 2007; Zhang et al. 2019) were used in concert to model CCWC, 

NDVI, and yield for each date of cloudless Landsat-8 Operational Land Imager (OLI) imagery over the 

irrigation study field. Coincident Landsat-8 OLI surface reflectances were inverted through PRO4SAIL 

using methods outlined in strategy 1 from Boren and Boschetti (2020) to estimate coincident CCWC 

for each treatment of the irrigation study and date. Using a previously established logistic relationship 

between leaf water content (LWC) and available soil water content (ASWC) (Zhou et al. 2021), 

satellite-derived CCWC was used to approximate the current soil water conditions, and through the 

FAO-56 crop water use approach, estimate the yield ratio at the 30 m pixel level.  

The results indicated good general agreement of overall time series trends between modeled 

and estimated CCWC as well as modeled and observed NDVI. The expected change in modeled and 

satellited-derived CCWC was observed for each treatment throughout the growing season and 

demonstrated better detection ability than NDVI for differentiating between each treatment. Modeled 

and satellite-derived yield ratio using the CCWC time series showed the general expected patterns 

reflecting each irrigation treatment as well, although the underestimation in modeled yield ratio and 

overestimation of the satellite derived yield ratio may be present due to weaknesses of both approaches.  

The main goal of establishing the first steps towards a novel approach to predict yield from 

satellite retrieved CCWC was achieved. Satellite derived CCWC has the potential to contribute to FAO-

56 crop water use model development for yield ratio prediction, through bridging the gap between LWC 

and ASWC, and enabling the development of a field level 30 m FAO-56 derived yield ratio prediction. 

More research is needed to test the approach against field-level ground collected daily meteorological 

measurements and yield data under different irrigation treatments. Data assimilation techniques should 

also be explored to combine modeled FAO-56 yield ratio with the satellite derived yield ratio to gap 

fill information in between satellite overpasses. 
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Table 3.1. Applied irrigation treatments for each treatment 1-5 for each growth 

stage. The range of dates with the observed growth stages are shown under the 

growth stage. The amounts are in [mm] with the percent of treatment 1 shown in 

parentheses.  

Treatment 
Late Vegetative 

7/4 - 7/28 

Reproductive 

7/29 - 8/20 

Maturation 

8/21 - 9/7 
Total 

TRT 1 188 (100%) 132 (100%) 82 (100%) 402 

TRT 2 158 (84%) 128 (97%) 43 (52%) 329 

TRT 3 158 (84%) 125 (95%) 43 (52%) 326 

TRT 4 158 (84%) 91 (69%) 23 (28%) 272 

TRT 5 158 (84%) 124 (94%) 82 (100%) 365 

 

Table 3.2. Landsat-8 OLI Scene 

information.  

Date Path Row 

June 11 128 32 

June 20 127 32 

July 13 128 32 

July 29 128 32 

August 7 127 32 

August 14 128 32 

August 30 128 32 
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Table 3.3. Parameterization for PRO4SAIL model LUT generation. The asterisked 

values are the means retrieved from maize leaf measurements from the LOPEX93 

dataset (Hosgood et al. 1995). 

Model Parameters Symbol Units Parameter values 

Leaf Parameters PROSPECT-5       

Leaf chlorophyll content Ccab µg/cm2 41.42 * 

Leaf carotenoid content Ccar µg/cm2 8.47 * 

Water thickness Cw cm Input Parameter 

Dry matter content Cm g/cm2 Input Parameter 

Leaf structure index Ns - 1.5 

Canopy variables 4SAIL       

Leaf area index LAI m2/m2 Input Parameter 

Average leaf angle ALA degree Erectophile 

Soil coefficient αsoil unitless 1 (dry soil) 

Hot spot parameter HotS m/m 0.01 

Solar zenith angle θs degree 25 

View zenith angle θv degree 0 

Sun-sensor azimuth angle φ degree 0 

 

 

Table 3.4. Seasonal phenology period descriptions, Ky coefficient values and days since planting 

(DSP). The sources for information are shown in the source column. 

Period 

Designation 
Period DSP Value Source 

A Planting 0 -- Zhang et al. (2019) 

B Emergence 12 -- " 

C Kc ini ends 25 -- FAO Irrigation Paper No. 56 

D Flowering 70 -- Zhang et al. (2019) 

E Yield formation begins 79 -- FAO Irrigation Paper No. 56 

F Maturity begins 92 -- Zhang et al. (2019) 

G Harvest 110 -- " 

I Vegetative Ky 0 - 69 0.4 FAO Irrigation Paper No. 56 

II Flowering Ky 70-78 1.5 " 

III Yield Formation Ky 79-91 0.5 " 

IV Ripening Ky 92-110 0.2 " 
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Figure 3.1. An example Kc curve of an annual crop during the growing season. Initial, crop development, mid-

season, and late-season growth periods are shown with respective Kc values. The figure was taken from Allen et 

al. (1998). 

 

 

Figure 3.2. Conceptual diagram of soil water balance water flow as described in Allen et al. (1998). The light 

shaded area represents soil and dark shaded area represents the water level in the soil profile. TAW, RAW, and 

Dr are the total water availability, readily available water, and depletion, respectively.  
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Figure 3.3. Ks coefficient relationship with water level between Dr = 0 and Dr = 1. θFC, θt, and θWP represent the 

field holding capacity, readily available water threshold, and wilting point, respectively. The figure was taken 

from Allen et al. (1998).  

 

 

Figure 3.4. Irrigation study field within Inner Mongolia, China (Zhang et al. 2019). The approximate location of 

the experimental field is shown with the red dot on the map on the right. The map on the left shows the aerial 

view of the experimental treatment field with approximate delineation of each treatment, numbered 1-5. 

Treatments for 1-5 are shown in table 3.1.  
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Figure 3.5. Plotted Kc curve (blue) and aGDD (red) against days since planting (DSP) for the 2017 growing 

season in the irrigation experiment. Blue arrows signify information that was taken from the independent 

irrigation study paper (Zhang et al. 2019). Gold arrows signify information taken from the FAO Irrigation and 

Drainage paper 56. Roman numerals and letters are the period designation keys for table 3.4. 
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Figure 3.6. Modeled daily CCWC (upper left), NDVI (upper right), and yield ratio (bottom left). The symbology 

is presented in the legend for each treatment 1-5. The table (lower right) shows the irrigation treatment percentage 

of treatment 1 (TRT1) reported in Zhang et al. (2019) for each growth period. The range of growth periods are 

represented using the dashed red lines on the plots.   
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Figure 3.7. Estimated CCWC [103 g m-2] (red to blue) (top row), observed NDVI [unitless] (red to blue) (middle 

row), and estimated yield ratio [unitless] (red to green) (bottom) for the study irrigation pivot. The approximate 

delineated treatment boundaries are shown in the upper left hand of the figure. The arrows above present the 

period of growth for the experimental treatments. 
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Figure 3.8. Estimated CCWC (upper left), observed NDVI (upper right), and estimated yield ratio (bottom left) 

for points each Landsat-8 overpass date. The symbology is presented in the legend for each treatment 1-5. The 

table (lower right) shows the irrigation treatment percentage of treatment 1 (TRT1) reported in Zhang et al. (2019) 

for each growth period. The range of growth periods are represented using the dashed red lines on the plots.   
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Conclusion 

A drought is characterized as a period where a deficit of water is experienced relative to normal 

conditions. Water availability restricts agricultural productivity more than any other factor (Boyer 

1982), therefore research that seeks to improve scalability of methods for agricultural drought 

monitoring is of paramount importance. The presented research has demonstrated the feasibility of 

using scalable remote sensing data and techniques in PRO4SAIL inversion (Jacquemoud et al. 2009) 

for estimating cropland canopy water content (CCWC) at the temporal and spatial resolution required 

for effective cropland monitoring. Our research also established a well-characterized link between 

CCWC and the Food and Agricultural Organization (FAO) Irrigation and Drainage paper 56 (Allen et 

al. 1998) definition of yield ratio which may be used to predict yield loss in crops, even during late 

drought conditions after the canopy has reached full and un-inhibited development. The main objective 

of the research, therefore, has been achieved: contribute research towards the first steps of a novel 

approach to estimate yield ratio changes from physical-based and moderate spatial resolution EO-data 

derived CCWC. 

A step-wise approach was carried out to achieve the research goal of this dissertation: 1) assess 

the variation of the leaf structure parameter (Ns) as a function of phenology and irrigation and to provide 

a priori information to improve inversion of PROSPECT, 2) propose and test a methodology which 

uses phenology, species type, and a number of other biophysical and canopy constraints for generating 

a multi-temporal CCWC product from inverting a time series of the Harmonized Landsat-Sentinel 

(HLS) product through PRO4SAIL, and 3) develop the first steps towards a method which links CCWC 

to the FAO-56 framework for predicting yield ratio using a previously established relationship between 

leaf water content (LWC) and available soil water content (ASWC) (Zhou et al. 2021). 

The hypothetical Ns parameter is one of the largest sources of uncertainty for inverting the leaf 

level model, PROSPECT, because it is the only parameter which does not represent a biophysical 

quantity (Ceccato et al. 2001; Ollinger 2011). The results from the leaf-level inversion experiment 

(Chapter 1) showed a significant relationship between crop species type and phenology with Ns. To our 

knowledge, this was the first detailed phenology dependent record of Ns for both monocotyledon and 

dicotyledon leaves. The research in Chapter 1 also illustrated that irrigation regime did not impact Ns, 

which provided important evidence that crop water status and the Ns parameter are independent from 

one another. Further data collection should be done to include a wider range of crop species in both 

monocotyledon and dicotyledon plant types, as the study was limited to four plant species. A 

continuation of research can also be done to test whether constraining the range of variation of Ns can 
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reduce uncertainty in retrieving leaf level variables from PROPSECT inversion of hyperspectral data, 

which may advance research in non-invasive leaf sampling techniques.    

The lessons that phenology and crop species type may be able to improve inversion of 

PRO4SAIL for CCWC estimation was tested in Chapter 2. The inversion of PRO4SAIL for CCWC 

estimation was improved from an RMSE of 0.58 x 103 g m-2 to 0.46 x 103 g m-2 when including 

information about growth timing difference between species types and resulted in the first HLS-based 

CCWC product generated through radiative transfer model inversion. The most constrained approach 

also resulted in a regression slope, intercept, and coefficient of determination of 0.78, 0.07, and 0.76, 

respectively, which demonstrates potential in the retrieval of CCWC using HLS surface reflectance. 

Constraining Ns for canopy level inversions did not improve the inversion of PRO4SAIL, confirming 

previously published outcomes from a PRO4SAIL parameter sensitivity analysis (Jacquemoud et al. 

2009). A major benefit of the field data collected for validation in Chapter 2 is the record of biophysical 

parameters encompassing the full phenological cycle of multiple crops, which enabled the assessment 

of inversion results throughout the entire growing season. It is recommended that future research is 

done to examine the inversion during early and late phenological growth stages through soil reflectance 

constraining strategies and consider ranges of the average leaf angle (ALA) parameter for each growth 

stage.  

In the final chapter, the relationship between CCWC and yield ratio was established using 

FAO-56 crop water use definitions and a previously published relationship between LWC and ASWC 

(Zhou et al. 2021). The theoretical link between CCWC and yield ratio was evaluated using published 

information of an independent irrigation experiment in Inner Mongolia, China. The research 

demonstrated the first steps towards a 30 m yield ratio product which can be produced at any time 

during the growing season. A time series analysis of satellite derived CCWC estimates and NDVI from 

Landsat-8 also showed that CCWC was more sensitive to the different irrigation treatments of the 

experiment, which created drought stress conditions during late vegetative, reproductive, and 

maturation stages in maize and strengthened evidence that NDVI is ineffective to detect drought stress 

during late drought events. The study is limited in that a daily average of water inputs and ET was used 

to model CCWC and yield for each treatment period, which ignores the possibility of soil water 

recharge during watering events. The satellite derived yield ratio was also limited in that days between 

overpasses were ignored during the cumulative yield computation, which may contribute to an 

overestimation of yield. The results of chapter 3 should be used as the preliminary justification for a 

follow-up study which repeats the analysis using daily meteorological measurements and yield data to 
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test the FAO-56 yield ratio framework, and then assimilate satellite derived CCWC into the modeled 

yield ratio time series to produce a 30 m yield ratio map of the experimental field. The implications that 

CCWC may be able to be integrated into the FAO-56 framework would enable integration of remotely 

sensed conditions of surface characteristics, thereby enabling field-level yield prediction meeting the 

spatial requirements for agricultural monitoring.  

Considering the findings of each chapter in this dissertation, research is recommended to 1) 

widen the representation of crop species in published biophysical leaf measurements datasets, including 

representation of leaf measurements taken throughout early, middle, and late growth stages, and 2) test 

the link between CCWC and yield ratio in maize through validation with ground measured yield. 

Limited published data exists which characterize the biophysical properties of a plant throughout the 

growing season. The research from this dissertation has demonstrated that leaf and canopy properties 

have a significant relationship with phenology, and the independent data which is used to characterize 

the a priori information used to constrain PRO4SAIL inversion should include phenology. A large-

scale field experiment study with water treatment control, meteorological measurements, 

comprehensive leaf and canopy measurements through the season, and ground measured yield, would 

also be beneficial for improving inversion of PRO4SAIL for CCWC estimation and testing the link 

proposed in this dissertation for a yield ratio prediction.  
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