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ABSTRACT 

 

Occupancy modeling is becoming increasingly popular in wildlife management as a 

method of monitoring trends in wildlife populations.  One of the primary motivations for the 

use of occupancy modeling is the ability to make inferences about large landscape patches 

with a reduced number of surveys.  However, this increased versatility comes at the risk of l.  

Previous research (Hubbard 2014) has explored the presence of inherent identifiability 

issues in occupancy models, little work has been done on the estimability the key parameters 

of these models: detection probability (p) and occupancy probability (psi). 

Using maximum likelihood estimation, a combination of bootstrapped profile 

likelihoods, data simulation and the data cloning techniques of Lele et al. 2010 were used to 

diagnose estimability issues across a spectrum of parameter values for p and psi, sites and 

surveys.  Preliminary results suggest estimability issues are present at smaller sample sizes 

or fewer repeat surveys as either p or psi approaches the boundaries (0 or 1).  The potential 

use of Bayesian methods to mitigate these issues is still under exploration.  
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INTRODUCTION 

 

Occupancy modeling has rapidly become one of the most widely used statistical techniques 

in wildlife ecology and management.  The appeal of occupancy modeling lies in its 

applicability to the study of more challenging species, those that are cryptic, elusive, or 

sparsely distributed on the landscape.  Rather than attempting to estimate abundance or 

habitat preferences of individuals in a population, occupancy modeling seeks to make 

inferences regarding the proportion of a landscape occupied or used by the species.  Habitat 

preferences can be further explored through the inclusion of site specific covariates and 

comparison of occupied versus unoccupied sites (Ball et al., 2005; Saracco et al., 2011). 

In a typical occupancy study, each member of a group of randomly selected sites is surveyed 

multiple times throughout the course of a season for the presence of one or more target 

species.  Sites can be any subdivision of the landscape either user-defined (grid cells, 

transects) or natural divisions of the landscape (habitat patches, water bodies).  Repeated 

surveys of each site are necessary to obtain estimates of detectability (Mackenzie et al., 

2003). 

As the popularity of occupancy modeling grows, so does the complexity of the models being 

used.  Occupancy models have been expanded to encompass multi-season models, multi-

species and species co-occurrence models, multi-state models (breeding/non-breeding, age 

structure, etc; (Nichols et al., 2007; Mackenzie et al., 2009; Martin et al., 2009) and even 

combinations of these models (Jensen and Vokoun, 2013).  Although a wide variety of work 
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has been done on the construction and analysis of more complex models, little work has 

been done regarding the limits of statistical applicability of this family of models. 

One such topic is the statistical estimability of the model parameters.  Hubbard (2014) 

conducted an exploration of analytical estimability issues in the form of parameter 

redundancy for the basic occupancy model.  Lele et al. (2012) developed a method of using 

covariates to overcome the estimability problems of a single visit occupancy model. 

However, we can find no work regarding the estimability of the most common form of 

occupancy model: repeated visits to randomly selected sites.  The lack of information about 

estimability for the occupancy model is concerning because the ability to make reliable 

inferences for any model depends on all relevant parameters being uniquely identifiable 

(Lele et al. 2010).  Ideally, estimability of parameters should be confirmed for any model.  

Ecologists attempting to fit increasingly realistic models to data should be aware that 

estimability problems typically become more prevalent as complexity of a model increases.   

In this paper, we explore the estimability of the simple occupancy model that forms the 

foundation for many of the more complex occupancy models.  We use a recently developed 

technique called data cloning to evaluate estimability for this model.  Data cloning takes 

advantages of the computational capabilities of a Bayesian Markov chain Monte Carlo 

(MCMC) to simulate maximum likelihood estimates (MLEs) from a posterior distribution.  

Data cloning is a particularly useful technique when the model involves complex 

likelihoods. Maximizing a complex likelihood analytically can be difficult or impractical. 
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ESTIMABILITY IN ECOLOGICAL MODELS 

 

Types of Estimability Problems: 

In general, estimability issues occur when multiple combinations of parameters can yield the 

same likelihood value.  Estimability problems with a model can vary in both cause and 

severity and may manifest in different ways.  Terminology for these issues varies between 

authors and disciplines and in some cases the same terminology can have different 

meanings.    Here we have grouped estimability problems into two types distinguished by 

the underlying cause of the problem. 

 

Type I:  

A Type I estimability problem is often referred to as non-identifiability (Catchpole and 

Morgan, 1997), intrinsic non-estimability (Viallefont et al., 1998; McCullagh and Nelder, 

1989), structural estimability (Raue et al., 2007) or parameter redundancy (Hubbard, 2014; 

Gimenez et al., 2004).  A Type I estimability problem occurs when a model is built such that 

two or more parameters appear only as a combination. Such parameters are referred to as 

non-separable and can only be estimated as a unit. A simple example of this problem is a 

hierarchical model where X is distributed normally with mean μ and variance 𝜎2 + 𝜏2.  In 

this case, value of  𝜎2 + 𝜏2  can be estimated from the data, but no unique MLE can be 

obtained for 𝜎2 or 𝜏2  individually.  This form of estimability problem is the most severe 

because it is inherent in the model.  Even with unlimited amounts of available data, it would 
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remain impossible to obtain MLEs of these parameters (Hubbard, 2014).  A Type I 

estimability problem can only be addressed by reformulating the model. 

A simple occupancy model with no repeat surveys is an example of a model with a Type I 

estimability problem. Without the additional information provided by a repeat survey, there 

is no way to distinguish between the true absence of the species at a site and the presence, 

but non-detection, of the species.  Lele et al. (2012) developed an alternative solution to this 

problem using covariates to provide the additional information needed to determine absence 

vs. non-detection.  However, occupancy models with repeated surveys remain the gold 

standard in ecology. 

 

Type II: 

A Type II estimability problem is referred to as nonestimable (Lele et al., 2010 a), 

inestimable (Campbell and Lele, 2014) extrinsically non-identifiable (Viallefont et al., 1998; 

McCullagh and Nelder, 1989), practical estimability (Raue et al., 2007) or nearly non-

identifiable (Dennis et al., 2006).  Unlike a Type I estimability problem, a Type II 

estimability problem is attributable to underlying issues in the data, not the model.  With this 

type of estimability problem, all parameters can be estimated under the chosen model given 

a hypothetically infinite amount of data.  However, the realized data contains insufficient 

information to separate the influence of an individual parameter from the others.   

A Type II estimability problem can be solved by increasing the sample size, but the need for 

a larger sample is often not known prior to sampling.   An unusual or unrepresentative 
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sample, the relationship between parameters and the actual parameter values can all cause 

estimability issues to occur, even with a seemingly sufficient sample size.   

For an occupancy model, an observed set of data might have come from a population with 

high occupancy, but low detectability or moderate occupancy and moderate detectability.  

Without enough repeat surveys to tease apart the effects of both parameters, there is no way 

to know which combination of parameter values best approximates the true state of the 

population.  A computer algorithm may still obtain a single MLE, but if the data are 

insufficient, the resulting estimate will have a high estimated variance. 

 

Diagnosing Estimability Problems: 

Estimability problems are commonly diagnosed by maximizing the likelihood across a range 

of fixed parameter values creating a profile likelihood plot.  If the profile likelihood plot has 

a flat or ridge-like shape, it indicates an estimability problem is occurring.  A perfectly flat 

profile-likelihood could indicate a Type I estimability problem, while a profile-likelihood 

that is locally flat or slightly jagged would indicated a Type II estimability problem.  A 

contour plot is a combination of profile likelihoods used to visualize the joint likelihood of 3 

parameters.  With more than 3 parameters, a profile plot cannot be used to visualize the joint 

likelihood of parameters.  A simulation study can be used to identify the cause of the 

problem.  In a simulation study, multiple datasets are generated from the model across a 

spectrum of parameter values and sample sizes.  These simulated datasets are then 

independently analyzed for estimability.  If some of the simulated datasets are fully-

estimable, the estimability problem observed is caused by some property of the specific data 
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used and a Type II estimability problem is occurring.  However, if none of the simulated 

datasets are fully-estimable, the problem lies in the structure of the model itself and a Type I 

estimability problem should be suspected. 

Other techniques for diagnosing estimability include: the symbolic methods used by 

Catchpole and Morgan (1997) to confirm Type I estimability, the Hessian matrix method 

(Gimenez et al., 2004) which can identify estimability problems using the condition number, 

but only when there is a clearly defined likelihood function and data cloning (Lele et al., 

2007), which can identify both Type I and Type II estimability problems separately and does 

not require a closed-form likelihood. 

  



7 
 

USE OF DATA CLONING TO DIAGNOSE ESTIMABILITY 

 

Simple Occupancy Model: 

We investigated estimability for the simplest model for site occupancy with imperfect 

detection.  The simplest model is for a single species over a single sampling season for 

which occupancy is assumed to be closed and the probability of detecting the species was 

constant across all sites and surveys. Sites were assumed to have been randomly selected 

from the landscape with no preference towards sites with known presence and surveys were 

assumed to be independent.  In practice, the simple occupancy models is often expanded to 

include multiple species and/or seasons and a variety of covariates of interest. Any 

estimability problems in the underlying base model potentially have wide ranging 

consequences. The long-run goal of assessing estimability of occupancy models is best 

commenced at the base, where any lack of statistical performance will have to be corrected 

before incorporating realistic complexity.  

Data are collected as a series of 1s and 0s indicating presence or non-detection respectively 

for each site at each survey period (𝑥𝑖𝑗).  Occupancy data are typically compiled into a table 

of detection histories for each site as shown in Table 1.   
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 Survey   

Site 1 2 3 

1 0 0 0 

2 0 1 0 

3 0 0 1 

4 1 1 1 

5 1 0 0 

 

Table 1: Example of an occupancy detection history with sites (𝑖) as rows and surveys (𝑗) as 

columns.  A 1 indicates the species was observed at that site during the survey.  A 0 

indicates the species was not observed. 
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The base occupancy model assumes a constant detection probability, so the order of 

detections and non-detections becomes irrelevant. Data for the base occupancy model can be 

condensed into two variables:  

 𝑥𝑖. =  the total number of detections at the 𝑖𝑡ℎ site (summed across all 𝑗 surveys) 

 𝑚𝑖 = the number of surveys conducted the 𝑖𝑡ℎ site 

  where i ranges from 1 to n (the total number of sites surveyed) 

A simple model of species occupancy with imperfect detection seeks to estimate two 

parameters: 

- 𝜓: the probability that a randomly selected site is occupied, 

- 𝑝: the probability of a species being detected at a site given that the site is occupied. 

For any site (𝑖), the occupancy is a Bernoulli random variable where site (𝑖) is occupied 

with probability 𝜓 or unoccupied with probability 1 − 𝜓.  Within an occupied site, detection 

for each survey (𝑗 = 1 𝑡𝑜 𝑚𝑖), is also a Bernoulli random variable where the species is 

detected on survey (𝑗) with probability 𝑝 and not detected with probability 1 − 𝑝.  

Combining the two yields the joint probability of observing a detection history where 𝑋𝑖 =

𝑥𝑖. at the 𝑖𝑡ℎ  site over 𝑚𝑖 surveys. 

When the species is detected at least once (𝑥𝑖. > 0), the probability distribution is given by 

Pr(𝑋𝑖. = 𝑥𝑖.) =  𝜓 (
𝑚𝑖

𝑥𝑖 .) 𝑝𝑥𝑖.  (1 − 𝑝)(𝑚𝑖−𝑥𝑖.) 

                (Eq. 1) 
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For sites with no detections, (𝑥𝑖. = 0) there exists two possibilities: either the species was 

absent (with probability 1 − 𝜓 ) or the species was present and not detected on any of the 

surveys yielding a two part equation.   

Pr(𝑋𝑖. = 0) = (1 − 𝜓) + 𝜓 (
𝑚𝑖

𝑥𝑖.
) 𝑝𝑥𝑖.  (1 − 𝑝)(𝑚𝑖−𝑥𝑖.) 

           (Eq. 2) 

Using an indicator variable, 𝜃𝑖, where 𝜃𝑖 = 1 if the species was detected at least once at site 

𝑖; else 𝜃𝑖 = 0, allows us to combine Eq. 1 and Eq. 2 into a single equation. 

Pr(𝑋𝑖. = 𝑥𝑖.) = (1 − 𝜓)(1 − 𝜃𝑖) + 𝜓 (
𝑚𝑖

𝑥𝑖.
) 𝑝𝑥𝑖.  (1 − 𝑝)(𝑚𝑖−𝑥𝑖.)𝜃𝑖 

          (Eq. 3) 

If the sites where selected at random, they are assumed to be independent and probability of 

observing the complete set of 𝑥𝑖 values (written as vector 𝑥 ) across all sites, is simply the 

product of the probability for each individual site. 

Pr(𝑋 = 𝑥 | 𝜓, 𝑝, 𝑚𝑖) = ∏ [(1 − 𝜓)(1 − 𝜃𝑖) + 𝜓 (
𝑚𝑖

𝑥𝑖.
) 𝑝𝑥𝑖. (1 − 𝑝)(𝑚𝑖−𝑥𝑖.)𝜃𝑖]

𝑛

𝑖=1

 

(Eq. 4) 

This equation represents the probability of obtaining the observed data given values of 𝜓, 𝑝 

and 𝑚𝑖.  It can also be considered as the likelihood of any estimates of 𝜓 and 𝑝 given the 

observed data 
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L(𝜓, 𝑝|𝑚𝑖, 𝜃𝑖 , 𝑋 = 𝑥 ) = ∏ [(1 − 𝜓)(1 − 𝜃𝑖) + 𝜓 (
𝑚𝑖

𝑥𝑖
 ) 𝑝𝑥𝑖(1 − 𝑝)(𝑚𝑖−𝑥𝑖)𝜃𝑖]

𝑛

𝑖=1

 

(Eq. 5) 

The likelihood given in Eq. 5 is used to calculate maximum likelihood estimates for 𝜓 and 𝑝 

and is the foundation for the Markov chain Monte Carlo (MCMC) simulation used to 

diagnose estimability. The value of the combinatorial constant (
𝑚𝑖

𝑥𝑖
) does not affect 

maximum likelihood parameter estimation. The combinatorial constant equals 1 in the 

likelihood terms where 𝑥𝑖 = 0, and it is just a multiplicative constant that does not contain 

the parameters in the likelihood terms where 𝑥𝑖 > 0. 

 

Data Cloning Process: 

Data cloning is a method of computing maximum likelihood estimates (MLEs) for complex 

models in which calculating the likelihood function requires high dimensional integration 

(Lele et al. 2007). Hierarchical models for random effects and latent variables are examples 

of models with likelihood functions that are difficult if not impossible to calculate. Data 

cloning utilizes a standard Bayesian framework using MCMC to generate a posterior 

distribution from prior distributions for each parameter and the joint likelihood of the data 

given parameters as shown in Eq.6 
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α 𝑃𝑟(𝑋 = 𝑥 | 𝜓, 𝑝, 𝑚𝑖) 𝑔(𝑝, 𝜓)        𝑃𝑟(𝜓, 𝑝|𝑚𝑖, 𝜃𝑖 , 𝑋 = 𝑥 ). 

    where 𝑔(𝑝, 𝜓)  is the prior distribution, 

    𝑃𝑟(𝑋 = 𝑥 | 𝜓, 𝑝, 𝑚𝑖) is the joint likelihood of the data, 

    and 𝑃𝑟(𝜓, 𝑝|𝑚𝑖, 𝜃𝑖 , 𝑋 = 𝑥 ) is the posterior probability 

              (Eq. 6) 

However, instead of just using the likelihood of the original data, one creates k copies of the 

original data (termed clones) and uses the likelihood of the cloned data.  One can think of 

these clones as independent repetitions of the same experiment, which by random chance 

obtained the same results.  According to Lele et al.’s (2007) modification of Walker’s 

Theorem (Walker, 1969), as the number of clones increases, the data will overwhelm the 

priors and the means of the posterior distributions for the parameter estimates obtained 

through MCMC will converge to the MLEs. 

The first step towards assessing estimability using data cloning is to set up a Bayesian 

MCMC simulation for the model in an appropriate software.  For this study, we used the 

open source software, WinBUGS (Lunn et al. 2000).  However, WinBUGS is only 

programmed for a few common distributions, so it was necessary to create a custom 

distribution corresponding to the desired likelihood function.  The customized distribution 

was accomplished using what the WinBUGS manual refers to as the “zero-trick.”  The 

“zero-trick” uses as the primary data a vector of all zeros which are purported to arise from a 

Poisson distribution with parameter 𝜆.  An observation of zero from a Poisson(𝜆) 

distribution will have a likelihood equivalent to 𝑒−λ.  Therefore, we set λi equal to the 

negative log of our desired likelihood function for the 𝑖𝑡ℎ  observation (Spiegelhalter et al., 
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1999).  The likelihood for one observation under the occupancy model is given by (Eq. 3). 

Numerical problems that can arise from calculating the binomial term in (Eq. 3) were 

avoided by taking its logarithm, summing the log terms, and then taking the antilogarithm of 

the sum, resulting in the equation below. 

𝜆𝑖 =  −log (𝑒(log(𝜓)+𝑥𝑖 log(𝑝)+(𝑚𝑖−𝑥𝑖) log(1−𝑝)) +  (1 − 𝜃𝑖)(1 − 𝜓))          

         (Eq. 6) 

In (Eq. 6) we have omitted the combinatorial constant in the binomial distribution because 

its calculation is unnecessary.  The observed data, summarized into 𝑥𝑖, 𝑚𝑖 and 𝜃𝑖 for each 

site, are then read into WinBUGS and an MCMC was performed.   

 

Simulation Study: 

We used program R (R Core Team, 2015) to generate simulated occupancy datasets for each 

parameter combination of 𝜓 and 𝑝 in increments of 0.1.  Each dataset consisted of presence 

(𝑥𝑖𝑗  = 1) or non-detection (𝑥𝑖𝑗  = 0) data for 25 hypothetical sites with 5 surveys per site.  

We used the data-cloning procedure detailed above to obtain summary statistics for each 

simulated dataset for 𝑘 = 1, 5, 10, 25, and 50 clones of the data.   For the MCMC analysis, 

we used a burn-in period of 10,000 followed by an additional 70,000 updates. The MCMC 

approximation was checked for convergence using trace and history plots.  Summary 

statistics were obtained for 𝜓 and 𝑝 including MLEs, SEs and the correlation between 𝜓 and 

𝑝.  The standard errors and correlations were combined in a variance-covariance matrix for 

each parameter combination and number of clones.  We plotted the largest eigenvalue of the 

variance-covariance matrix against the number of clones to create a diagnostic plot for each 
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parameter combination as described in Lele et al. (2010).  The eigenvalues for these plots 

were standardized to equal 1 when 𝑘 =  1. 

Code for simulating data from a simple occupancy model in R can be found in Appendix A.  

Code to calculate MLEs, SEs, and correlations for the simple occupancy model using 

WinBUGS is in Appendix B. Eigenvalue diagnostic plots can be generated from MLEs, 

SEs, and correlations using the R code found in Appendix C. 

  



15 
 

RESULTS 

 

When there are no estimability problems occurring, the eigenvalue diagnostic plots will 

show an exponentially decreasing trend, converging to zero at a rate of approximate 1 / 𝑘 

(Figure 1) .  See Lele et al. (2010) for proofs. All simulated datasets where the values of 

both 𝜓 and 𝑝 used in simulation were >0.3  had no evidence of an estimability problem as 

shown by the eigenvalue plots located in Appendix D. 

When 𝑝 = 0.1 and 𝜓 <  0.8, the diagnostic plots tended to show a decreasing, yet concave 

down trend (Figure 2) or a decrease at a rate much slower than 1 / 𝑘 (Figure 3).  These plots 

still converge to zero indicating both 𝜓 and 𝑝 are estimable.  However, the shape and speed 

of decrease suggests that the parameters are nearly non-estimable at these parameter values. 

When either 𝜓 or 𝑝 <  0.3, the diagnostic plots show more signs of near estimability 

problems. Additional simulations (not shown) suggest that 𝜓 and 𝑝 in this range can often be 

estimated, but that the risk of drawing individual data sets with estimability problems is 

large (Figure 4). 
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Figure 1: Eigenvalue diagnostic plot for 𝜓 =  0.8 and 𝑝 =  0.4 showing an exponentially 

decreasing trend converging to zero at a rate of approximate (1 / 𝑘 ) indicating no 

estimability problems. 
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Figure 2: Eigenvalue diagnostic plots for 𝜓 =  0.1 and 𝑝 =  0.4 showing a concave down 

decreasing trend indicating near non-estimability of parameters. 
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Figure 3: Eigenvalue diagnostic plots for 𝜓 =  0.7 and 𝑝 =  0.1 showing a concave down 

decreasing trend indicating near non-estimability of parameters. 
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Figure 4: Eigenvalue diagnostic plots for 𝜓 and 𝑝 values between 0.1 and 0.3 showing 

abnormal trends indicating near non-estimability of parameters. 
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DISCUSSION 

 

Importance of Assessing Estimability:  

Failure to diagnose or account for estimability can lead to improper or misleading inferences 

about parameters.  An estimate for a parameter can be obtained if a Type II estimability 

problem is occurring, but the estimate may not be valid or may have an impractically large 

variance.  Ecological modeling studies are often intended to inform resource management 

decisions.  Making decisions on an invalid parameter estimate due to an undiagnosed 

estimability problem could have serious consequences for management.  

Estimability should be checked for any model regardless of its complexity.  Although more 

complex models, especially hierarchical models, can be more prone to estimability issues, 

simple models can have estimability problems as well.  In some cases, some parameters may 

be inestimable in a simple model but become entirely estimable when additional parameters 

are added (Gimenez et al., 2004; Lele et al., 2012).   

 

Estimability of a Simple Occupancy Model: 

Type I estimability problems in an occupancy model typically occur when the model is 

constructed in such a way that the parameters can only be estimated as a single unit (𝜓 ∗ 𝑝), 

making it impossible to separate the effects of detectability and occupancy.  Type I 

estimability problems can be eliminated through the use of repeat surveys (Hubbard, 2014) 
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or the methods of Lele et al. (2012) for dealing with detection error in occupancy studies 

with only one observation per site. 

Most middle range parameter combinations for 𝜓 and 𝑝 produced no Type II estimability 

problems under the sample sizes simulated.  However, several parameter combinations near 

the parameter range boundaries were only weakly estimable.  When detectability was low 

(𝑝 ≤  0.1) decreasing the number of sites sampled or decreasing the number of surveys per 

site for populations with these characteristics could cause estimability problems to appear.  

When the target species is very difficult to detect or believed to be sparsely distributed 

throughout the study area, extra care should be taken to ensure parameter estimates are 

reliable.  For species which are not exceedingly rare or cryptic, a sample size of 25 with 5 

repeat surveys per site should be sufficient to estimate both 𝜓 and 𝑝.  In general, we 

recommend increasing the number of sampled sites and/or number of repeat surveys when 

detectability and/or occupancy are assumed to be low (<  0.3). 

 

Advantages and Disadvantages of Data Cloning: 

Data cloning is a versatile technique which can be used to assess estimability for almost any 

model.  Data cloning works by using MCMC on the likelihood of a cloned dataset to provide 

the MLEs and standard errors for the original data.  Data cloning can be performed using 

readily-available, free software such as WinBUGS, JAGS or OpenBUGS.  Using the “zero 

trick” to coerce the model to a Poisson distribution, almost any model can be programmed 

into the modeling software.  In fact, if the analysis is being conducted in a Bayesian 

framework, data cloning can be used to check estimability simply by duplicating the dataset 
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(Lele et al., 2010).  The only difference is in computational power and time necessary to run 

the model, which can be significant for large datasets at large numbers of clones (𝑘). 

One limitation of data cloning is that it only yields the MLEs, not the actually value of the 

likelihood function at the maximum.  The maximum likelihood value is used in computing 

profile likelihood confidence intervals, conducting hypothesis tests (comparing full vs. 

reduce model) and performing model selection using information criteria such as AIC and 

BIC (Ponciano et al., 2009).  The standard errors obtained using data cloning can be used to 

generate Wald confidence intervals for the parameter estimates (Ponciano et al., 2009).  

However, Wald intervals often have incorrect coverage and are generally considered inferior 

to other techniques for developing confidence intervals such as profile likelihood-based 

intervals (Meeker and Escobar, 1995).  Ponciano et al. (2009) developed a means of 

calculating the likelihood ratio using data cloning, which can be used in place of the 

maximized likelihood to construct profile likelihood-based confidence intervals, conduct 

likelihood ratio hypothesis tests or perform model selection in a frequentist framework.  It is 

important to note that data cloning only uses the information contained in the original 

dataset.  It does not increase the sample size or compensate for sparsity of data in any way 

(Lele et al. 2007). 

 

Estimability in a Bayesian Framework: 

Another growing trend in ecological research is the use of Bayesian methods to model 

complex ecological systems.  The Bayesian approach is especially popular in uses of 

hierarchical models in ecology including in occupancy models.  In a hierarchical occupancy 

model, parameters such as 𝜓, 𝑝, habitat covariates, etc can each be nested within the 
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hierarchy and each is represented with its own prior distribution.  However, hierarchical 

models experience problems with estimability.  Estimability problems in a Bayesian 

framework often result in the excessive influence of the prior in the posterior distribution. 

Alternatively, if an uninformative prior is used, the model can drift towards the bounds of 

the parameter (Gelfand and Sahu, 1999).  In extreme cases (Type I estimability issues), the 

posterior distribution for the inestimable parameter simply returns the prior distribution.   

Computationally, the analysis of a hierarchical model in a Bayesian framework is equivalent 

to the data cloning analysis for the original data (𝑘 = 1).  Once the model is programmed 

into WinBUGS or any software using MCMC, data cloning is simply a matter of copying 

the data and repeating the analysis. The downside to this method is an increase in time and 

possible computational power necessary to run the analysis with larger number of clones.  

However, once the MCMC results are obtained, it is relatively simple to generate the 

eigenvalue plots and assess estimability using the methods of Lele et al. (2010). 

The additional time and effort spent using data cloning to diagnose estimability problems 

can help ensure that results of fitting a realistic model to ecological data are reliable. 
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SUPPLEMENTAL MATERIAL 

 

Appendix A:  

Simulation and Replication R Code: 

#### R Program for Simulating and Replicating Data from a 

####  Simple Single-Season Occupancy Model 

####  A. Bowe - M.S. Candidate in Statistical Science: University of Idaho 

####  Version 5.0 - April 11, 2016 

 

#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~# 

 

#~#~#~#~#~# Create Function for Generating Simulated Datasets #~#~#~#~#~# 

 

GenSimData = function(n,m,psi,p) { 

 Sites=rbinom(n,1,psi) 

  

  Det= matrix(NA, nrow = length(Sites), ncol = m) 

    for(row in 1:n){Det[row,] = rbinom(m,1,p) } 

     His=Sites*Det 

   x=vector(length=n) 

  for (i in 1:n){x[i] = sum(His[i,]) } 

   M=rep(m,n) 

   theta=ifelse (rowSums(His)>=1,1,0) 

 

   Data=cbind(His,x,M,theta) 

   WinData=cbind(x,M,theta) 

 

 result=list(Data,WinData) 

 return(result) 

} 

 

#~#~#~#~#~# Simulate data using the function #~#~#~#~#~# 

 

n=25   # number of sites 

m=5  # of surveys 

psi=.7 # simulated value of psi 

p=.9  # simulated value of p 

 

Sim<-GenSimData(n,m,psi,p) 

 

# Sim[1] is the first component of the result, this is the complete set of 

data 

# simulated, including the detection histories 

# Sim[2] is the simulated data in the format need to enter into WinBUGS 

 

 

#~#~#~#~#~# Write Simulated Data to Text Files #~#~#~#~#~# 
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write.table(Sim[1],file="C:/Users/.../F_n25m5psi7p9k1_2.txt") 

write.table(Sim[2],file="C:/Users/.../W_n25m5psi7p9k1_2.txt",row.names=FAL

SE,col.names=TRUE) 

 

 

# File names are interpreted as: 

# F    = full data (Sim[1]) 

# W    = data in WinBUGS format 

# n25  = simulated using samplel size n = 25 

# m5   = simulated number of surveys m = 5 

# psi7 = simulated using a psi = 0.7 

# p    = simulated using a p = .9 

# k    = number of replications of the data (clones) 

# _2   = 2nd dataset simulated from these parameters 

  

 

#~#~#~#~#~# Generate Clones of Dataset #~#~#~#~#~#~# 

 

# Read in dataset to be replicated 

Data = read.table("C:/Users/.../W_n25m5psi7p9k1_2.txt",header=TRUE) 

 

K5=rbind(Data,Data,Data,Data,Data) 

K10=rbind(K5,K5) 

K25=rbind(K5,K5,K5,K5,K5) 

K50=rbind(K10,K10,K10,K10,K10) 

 

write.table(K5,file="C:/Users/.../W_n25m5psi7p9k5_2.txt",row.names=FALSE,c

ol.names=TRUE) 

 

write.table(K10,file="C:/Users/.../W_n25m5psi7p9k10_2.txt",row.names=FALSE

,col.names=TRUE) 

 

write.table(K25,file="C:/Users/.../W_n25m5psi7p9k25_2.txt",row.names=FALSE

,col.names=TRUE) 

 

write.table(K50,file="C:/Users/.../W_n25m5psi7p9k50_2.txt",row.names=FALSE

,col.names=TRUE) 
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Appendix B:  

WinBUGS Code for Obtaining Estimates from the Simple Occupancy Model: 

This section contains code for calculating MLEs, standard errors and correlations from the 

simple occupancy model.  The model statement is written using the “zero trick” setting 𝜆𝑖 = 

to the log-likelihood of the data given in Eq. 5.  Initial values for psi and p were set to 0.5 

and 0.5 and a 𝐵𝑒𝑡𝑎(2,2) prior was used for both.  The sample data shown was simulated 

with parameters 𝑛 = 25, 𝑚 = 5, 𝜓 =  0.6, and 𝑝 =  0.4 and is shown with 𝑘 =  1 clones. 

model { 

   for (i in 1:N) { 

      zeros[i]<-0 

      lambda[i]<--log(exp(log(psi)+x[i]*log(p)+(k[i]-x[i])*log(1-p))+ 

         (1-theta[i])*(1-psi)) 

   zeros[i]~dpois(lambda[i]) 

} 

   psi~dbeta(2,2) 

   p~dbeta(2,2) 

} 

 

 

DATA 

list(N=25) 

x[] k[] theta[] 

0 5 0 

0 5 0 

0 5 0 

3 5 1 

2 5 1 

0 5 0 

1 5 1 

2 5 1 

3 5 1 

0 5 0 

0 5 0 

0 5 0 

3 5 1 

1 5 1 

2 5 1 

3 5 1 

0 5 0 

0 5 0 

2 5 1 

3 5 1 

0 5 0 

1 5 1 

2 5 1 

2 5 1 

0 5 0 

END 

 

INITS 

list(p = .5, psi = .5)  
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Appendix C:  

R Code for Creating Eigenvalue Diagnostic Plots: 

#### R Program for Generating Eigenvalue Diagnostic Plots for Statistics 

# Obtain through Data Cloning 

####  A. Bowe - M.S. Candidate in Statistical Science: University of Idaho 

####  Version 6.0 - April 12, 2016 

 

#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~

#~#~# 

 

 

#~#~#~#~#~# Read in Table of Maximum Likelihood Estimates, Standard Errors  

#  and Correlations obtained via MCMC 

 

Data <- read.delim("~/R/Thesis/SimResults_15Feb2016.txt") 

attach(Data) 

head(Data) 

 

#~#~#~#~#~# Create a function to generate the Var-Cov matrix and  

#  calculate the Largest Eigenvalue of this matrix 

 

# Intialize Vectors 

n=length(P) 

Vp=vector(length=n) 

Vpsi=vector(length=n) 

Cor=vector(length=n) 

Cov=vector(length=n) 

maxE=vector(length=n) 

 

MaxE=function(pSE,psiSE,Corr){ 

  Vp=pSE^2 

  Vpsi=psiSE^2 

  Cov=pSE*psiSE*Corr 

  VC.mat=matrix(c(Vp,Cov,Cov,Vpsi),ncol=2,nrow=2) 

  VC.mat 

  ee=eigen(VC.mat,symmetric=TRUE) 

  VC.mat 

  ee 

  maxEigen=max(ee$values) 

  return(maxEigen) 

} 

 

#~#~#~#~#~# Use function to Generate a Vector of Maximum Eigenvalues for  

 #For every Parameter Combination at each Number of Clones (k) 

MaxEigen = vector(length=n) 

 

for (i in 1:n){ 

  MaxEigen[i] = MaxE(p_SE[i],psi_SE[i],Correlation[i]) 

} 

MaxEigen 

 

 



30 
 

 

#~#~#~#~#~#  Sort and Standardize with each Parameter Combination  

 

# Place in 5 column matrix; each row will equal one parameter value with 

# each level of cloning (1,5,10,25,50) as a column. 

 

ME=matrix(MaxEigen,nrow=81,ncol=5,byrow=TRUE) 

 

# Standardize this matrix by dividing by dividing by the maximum 

Eigenvalue for  

# each parameter combination 

 

SME=matrix(MaxEigen,nrow=81,ncol=5,byrow=TRUE) 

 

for(i in 1:81){ 

SME[i,1] = ME[i,1]/max(ME[i,]) 

SME[i,2] = ME[i,2]/max(ME[i,]) 

SME[i,3] = ME[i,3]/max(ME[i,]) 

SME[i,4] = ME[i,4]/max(ME[i,]) 

SME[i,5] = ME[i,5]/max(ME[i,]) 

} 

SME 

 

#~#~#~#~#~#  Generate An Eigenvalue Diagnostic Plot #~#~#~#~#~#  

K=c(1,5,10,25,50) 

 

plot(SME[2,1:5],type="l", main="Sim2",xlab="Number of Clones", 

ylab="Maximum Eigenvalue",xaxt="n") 

axis(side = 1, at=c(1,2,3,4,5),labels = K, tck=-.05) 
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Appendix D:  

Additional Eigenvalue Diagnostic Plots: 

 

Figure 5: Eigenvalue diagnostic plots for 𝜓 and 𝑝 values between 0.7 and 0.9 showing 

trends indicating the estimability of parameters. 
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Figure 6: Eigenvalue diagnostic plots for 𝜓 between 0.7 and 0.9 and 𝑝 values between 0.4 

and 0.6 showing trends indicating the estimability of parameters. 
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Figure 7: Eigenvalue diagnostic plots for 𝜓 between 0.7 and 0.9 and 𝑝 values between 0.1 

and 0.3 showing trends indicating the estimability and near non-estimability of parameters. 
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Figure 8: Eigenvalue diagnostic plots for 𝜓 between 0.4 and 0.6 and 𝑝 values between 0.7 

and 0.9 showing trends indicating the estimability of parameters. 
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Figure 9: Eigenvalue diagnostic plots for 𝜓 and 𝑝 values between 0.4 and 0.6 showing 

trends indicating the estimability of parameters. 
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Figure 10: Eigenvalue diagnostic plots for 𝜓 between 0.4 and 0.6 and 𝑝 values between 0.1 

and 0.3 showing trends indicating the estimability and near non-estimability of parameters. 
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Figure 11: Eigenvalue diagnostic plots for 𝜓 between 0.1 and 0.3 and 𝑝 values between 0.7 

and 0.9 showing trends indicating the estimability of parameters. 
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Figure 12: Eigenvalue diagnostic plots for 𝜓 between 0.1 and 0.3 and 𝑝 values between 0.4 

and 0.6 showing trends indicating the estimability and near non-estimability of parameters. 
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