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Abstract 

 This study was designed to assess spring wheat accessions found in the USDA-ARS 

National Small Grains Collection using a combination of genetic markers, agronomic 

characteristic, and a novel spectrometer based high-throughput phenotyping platform.  The 

panel of spring wheat accessions selected for this study originated from six continents and 81 

countries.  This panel included wheat accessions classified by the USDA as ‘Cultivars’, 

‘Breeding lines’, ‘Landraces’ and ‘Uncertain’.  Cultivars and breeding lines were developed 

through modern breeding techniques, while landraces developed through farmer selections.  

In the present study, the following measurements were made in irrigated and water stressed 

environments:  yield, grain protein, grain volume by weight (test weight), plant heights, and 

days to heading.  Spectrometer readings were made throughout the growing season and 

markers were used to map genes influencing traits of interest.  Selection of accessions using 

genetic markers and spectral reflectance found that each of these methods was able to identify 

a significant proportion of the highest yielding accessions each year.  Several of the landrace 

accessions selected by markers, spectral reflectance and yield, were found to have relatively 

high yields that were consistent across both years and irrigations regimes.  The accessions 

identified here may contain novel genes not currently found in modern cultivars and could be 

used to introduce genetic variation into current breeding programs.  
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Chapter I: 

 Literature Review  

 

WHEAT PRODUCTION 

 Wheat (Triticum aestivum L.) is one of the most widely grown crop plants world-wide.  

It has been cultivated for the past 8,000 to 12,000 years since its origin in the fertile crescent 

(Abbo et al., 2006; Cavanagh et al., 2013).  Wheat accounts for nearly 20% of human daily 

caloric intake and occupies 17% of the world crop production acreage (Gupta et al., 2008).  In 

the United States, six classes of wheat account for most of the wheat grown.  In general, 

specific regions of the US will grow certain classes of wheat.  Hard red winter and spring 

wheat cultivars are grown in the Great Plains region and used for leavened bread.  Soft red 

winter wheat is grown east of the Mississippi and soft white wheat is grown in the Pacific 

Northwest, both are used for cereals, flat breads, pastries and crackers.  Durum wheat 

(Triticum durum) is grown in the same regions as hard red spring wheat and is used for pasta.  

The most recent class of wheat to be grown in the USA is hard white.  Hard white wheat has 

similar quality characteristics to hard red, but without the colored outer seed coat.  While hard 

white wheat has been grown in Asia and Australia, it has not been widely grown in the United 

States until the past 10 to 15 years (Clay et al., 2012, Ransom et al., 2006).   

Wheat yields have increased significantly since the introduction of modern breeding 

techniques in the mid-20
th

 century.  The Green Revolution began in the mid-1960s, and since 

then the human population has more than doubled, thanks in part to the increased availability 

of food.  Small grain production allowed for populations to increase without a decrease in 
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available food supplies by tripling production with only a 30% increase in crop land, 

amounting to a 200% increase in yield per hectare (Pingali, 2012).  International organizations 

have been created around the world to support continued small grains improvement.  The 

success of the International Center for Wheat and Maize Improvement in Mexico (CIMMYT) 

and the International Rice Research Institute (IRRI) in coordinating research in their 

respective crops spurred the creation of new international agricultural research centers that 

now fall under the Consultative Group for International Agricultural Research (CGIAR).  

These international institutes allowed for access and exchange of germplasm and breeding 

methods between researchers from around the world (Evenson and Gollin, 2003).  The 

dissemination of knowledge and technologies from developed nations and the adoption of 

modern cultivars reduced poverty in developing countries.  It has been estimated that for 

every 1% increase in crop yields the number of impoverished people was reduced by 0.5% in 

eastern Asia and 1.9% in India (Pingali, 2012). 

 

ISSUES IN MODERN WHEAT BREEDING 

The largest genetic gains in wheat yield have been attributed to the introduction of 

dwarfing genes, deployment of disease resistant cultivars, and the development of regionally 

adapted varieties  (Fischer and Edmeades, 2010).  In addition to genetic gains, past yield 

increases have also been attributed to management practices such as weed control, precise 

fertilizer applications and minimal tillage (Fischer and Edmeades, 2010).  The USDA 

monitored genetic gains in wheat through the implementation of regional trials starting in 

1930.  New cultivars were compared to a historic wheat cultivar Kharkof.  Comparisons to 
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Kharkof allowed for increases in yield that are due to genetic gain to be distinguished from 

yield increases due to management practices (Graybosch and Peterson, 2010).  Genetic 

improvement in grain yield from 1932 to 1959 are estimated to be 30% and between 1959 and 

1984 to be 49% (Graybosch and Peterson, 2010).  These yield gains have, until recently, 

allowed wheat production to keep pace with increasing world demand.  Since the mid-1980s, 

annual yield increases have fallen off from 3-4% before 1984 to the current estimate of less 

than 1% (NASS, 2010).   

The decline in the rate of annual yield increase has become a concern as the current 

rate is insufficient to meet the projected 1.4% to 2.4% annual production increase needed to 

keep pace with the growing world population (NASS, 2010; Ray et al., 2013).  It is estimated 

that global crop production must increase by 60% to 110% by the year 2050 to ensure 

adequate food for human populations.  Corn, rice, soybean and wheat are the most widely 

grown crops worldwide, but each are failing to achieve annual yield gains sufficient to double 

production in the next 40 years.  Current yield increases in wheat will only meet 38% of the 

expected global demand by the year 2050, and the United States has the lowest projected 

annual yield gains at 0.8% when compared to other top wheat producing countries (Ray et al., 

2013).   

 Achieving the yield gains, comparable to those seen during the Green Revolution is a 

challenging task.  The problems facing modern breeders are formidable.  Global warming and 

reduced availability of water for irrigation likely will cause the amount of arable land to 

decrease significantly over the next few decades.  Wheat is potentially the most critical crop 

for world food security as it is the most widely grown (Reynolds et al., 2012).  In addition to 
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climate changes, breeders are restricted by the low genetic diversity in modern wheat 

cultivars.  Combating these problems will require an understanding of the physiological and 

genetic factors underlying yield potential and their responses to water limited environments, 

increasing the genetic resources available to breeders, efficient screening of physiological 

traits and increased use of molecular breeding practices. 

 

CLIMATE AND YIELD POTENTIAL         

Climate change is possibly the biggest threat to food security worldwide.  Many of the 

issues facing wheat production are linked to the projected climate change.  Access to clean 

water is a concern for around 800 million people worldwide.  Drinking water and water used 

for industrial manufacturers are beginning to compete with the water available for crop 

irrigation (Stamp and Visser, 2012).  Drought conditions due to a changing climate would put 

further stain on the amount of available water.  Crop development over the past 100 years has 

been able to keep pace with climate changes due to the small steady increases in temperature 

and carbon dioxide.  Adapting wheat to more extreme changes in the environment would be 

difficult for breeders, even with access to the most up-to-date technologies (Stamp and Visser, 

2012).  In addition, the amount of arable land in the world is finite.  Each year, 70 to 140 

thousand square kilometers of arable land is lost due to erosion and urban expansion.  

Extreme examples of the loss of arable land can be found in eastern Asia where Japan and 

South Korea have lost an estimated 50% of their crop land over the past 100 years  (Stamp 

and Visser, 2012).  Currently the loss of crop land has been offset by increased yields.  

Climate change is projected to increase the rate of farm land loss.  An estimated 10% of 
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current crop land may become unusable in the future due to climate change (Zhang and Cai, 

2013).   

A heat-wave in 2003 gave a glimpse of what wheat growers could face in the future if 

the predicted climatic changes occur.  An increased in temperatures 3.5
0
C above average in 

much of Europe caused a 20% to 36% decrease in grain and fruit yields.  Climate experts 

predict that global temperatures will continue to rise in the future (Fedoroff et al., 2010).  

Climate change in the United States is predicted to have the largest effect on annual 

precipitation patterns.  Southern regions of the US are likely going to see the most drastic 

changes.  Northern and Corn Belt regions will be less affected, but will see the most 

substantial economic loss of up to $3 billion per year due to climate change and shifting pest 

populations (Malcolm et al., 2012).   

The susceptibility of wheat production areas worldwide to drought is because most 

wheat is grown in water-limited environments (Fleury et al., 2010).  The United States has 

125.3 million hectares of arable land under cultivation, with over 80 percent of the area reliant 

on rainfall to provide water for the crops being grown (Schaible and Aillery, 2012; Karl et al., 

2012; Johnson, 2013).   Several forecasting models  project that wheat crop area will decrease 

by up to 8% by the year 2030 (Malcolm et al., 2012).  In addition, extreme heat exposure 

during the reproductive stage of wheat will likely increase in most growing areas worldwide, 

increasing yield loss potential in drought-prone environments (Gourdji et al., 2013).  

Currently, 75 to 95 percent of wheat in the Western United States is grown in rainfed 

environments and vulnerable to drought induced yield loss (Malcolm et al., 2012; Schaible 

and Aillery, 2012; Al-Kaisi et al., 2013).  Identifying new sources of germplasm and alleles 
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that can improve the drought tolerance of current wheat cultivars is essential for ensuring 

adequate yields in water-limited environments.  Increasing yield potential while taking 

climate change in consideration will be complicated, but researchers have identified several 

areas of focus that would improve both yields and tolerance in hotter, dryer climates.  

 

DROUGHT TOLERANCE 

Developing drought tolerant wheat cultivars could increase both yields and yield 

stability in much of the world’s wheat producing area (Dodig et al., 2012).  There are specific 

plant traits that researchers are focusing on to increase yield in wheat.  Yield potential in 

wheat can be thought of as a function of light interception, radiation use efficiency and 

partitioning of assimilates (Reynolds et al., 2012).  The traits that affect yield potential are 

dynamic and interconnected.  Each has its own set of constituents that can positively or 

negatively affect yield directly or indirectly through its effects on other yield related traits 

(Witcombe et al., 2008).  

Light interception is influenced by the amount of above ground biomass, the amount 

of phytochemicals, mainly chlorophyll, and canopy architecture.  Canopy architecture is 

probably the most straight forward trait to manipulate.  The photosynthetic machinery 

saturates at about 50% of the normal intensity of sunlight.  Therefore wheat plants that have 

vertical leaves decrease the intensity of the sunlight on these leaves while allowing more light 

to permeate the canopy to lower leaves, raising the overall area of light interception.  In 

contrast, horizontal leaves absorb too much light, saturating the photosynthetic machinery of 
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leaves near the canopy top and blocking sunlight from lower leaves (Araus et al., 2002; 

Reynolds et al., 2012).   

Radiation use efficiency is a measure of how effectively the plant as a whole and on a 

cellular level can utilize the light intercepted by the canopy.  Plants, in general, lose a large 

percentage of the potential energy from light due to the inability of photochemicals to absorb 

certain wavelengths (~50% of the light spectrum), reflection of useful wavelengths, saturation 

of the photosynthetic machinery, and photoinhibition (Condon et al., 2004; Parry et al., 2011; 

Reynolds et al., 2012).   

The partitioning of assimilates is the end result of light energy converted into a grain 

yield.  Harvest index, the ratio of grain yield to above ground biomass, is a measurement used 

by breeders to determine the efficiency of grain production without that direct measurements 

of traits that affect grain yield.  Genes for dwarfing (Rht), photoperiodism (Ppd), and 

vernalization (Vrn) have been deployed in modern cultivars that directly affect the harvest 

index (Gupta et al., 2008; Kiss et al., 2014).  While the wheat plant grows, flowers, and 

matures, various parts of the plant are competing for finite resources.  This competition is the 

main cause of complexity when breeding for yield potential.  Ideally all available assimilates 

would be converted into grain, but this is not possible.  Roots need nutrients to grown and 

access water in the ground, the canopy needs to have enough biomass to capture optimal 

amounts of light, and flowering needs to occur at the correct time to make efficient use of 

resources.  Each of these processes removes assimilates available for grain production.  The 

dwarfing genes, Rht, decrease plant height allowing assimilates to be used elsewhere without 

reducing photosynthetic biomass, and a large part of the success of Rht gene deployment is 
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the reduction of lodging which can reduce yields up to 80% (Reynolds et al., 2012).  The Ppd 

and Vrn genes allow for adaption of cultivars to specific regions based on the length of 

daylight and winter temperatures.  This allows for adapted lines to have optimal flowering 

time and efficient use of the growing season (Reynolds et al., 2012).   

 

GENETIC RESOURCES 

Molecular marker and genomic sequence data all indicate that during the 

domestication of wheat some of the genetic diversity found in Triticum aestivum was lost.  

Domestication puts significant selective pressure on the adaption of crops (Doebley, et al.,  

2006; Gross and Olsen, 2010).  Usually, a small number of founder genotypes form a base for 

the majority of the genetic variation found within a crop.  The reduction in genetic diversity 

during the development of crops has been termed the domestication bottleneck (Doebley et 

al., 2006).  In wheat it is estimated that the shift from progenitor genomes to landrace 

genomes caused a 19% to 69% reduction in genetic diversity, based on sequence analysis of 

21 loci and genome wide molecular markers (Reif et al., 2005; Haudry et al., 2007).  Reif et 

al. (2005) also reported a 5% reduction in genetic diversity between landrace and modern 

cultivars, but an increase in genetic diversity since the advent of international agricultural 

research centers.  Lower levels of linkage disequilibrium in landrace accessions, when 

compared to modern cultivars, is also indicative of  a decrease in genetic diversity (Cavanagh 

et al., 2013).    

The genetic resources available to breeders can be divided into improvement 

categories.  Modern cultivars are the easiest source of genes to incorporate into a breeding 
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program as there is a reduced chance of linkage drag compared to others genetic sources.  

Obsolete or historic cultivars have similar advantages as modern cultivars but are slightly less 

desirable.  Landraces are wheat genotypes that were developed through natural selection or 

farmer selection and usually adapted to localized regions and often carry deleterious alleles 

(Jaradat, 2011). Closely related Triticum species, more distantly related Aegilops spp. and rye 

substitution lines are all potential donors of novel alleles, albeit not as easily integrated into 

modern breeding programs (Feuillet et al., 2008).  Worldwide, there are more than 640,000 

accessions available that could potentially serve as sources of genetic material for wheat 

breeders (Reynolds et al., 2001).  

 The United States Department of Agriculture’s (USDA) National Small Grains 

Collection (NSGC) is a source of genetic variation that breeders and researchers could exploit 

to develop new and improved wheat cultivars.  The NSGC contains over 54,000 wheat 

accessions developed by farmers and plant scientists from around the world.  Landrace 

accessions make up around 36% of the collection.  Primary cultivars or breeding lines account 

for the remainder and these accessions were derived by plant breeders through systematic 

hybridization of specific wheat genotypes to combine or improve traits of interest (Bonman et 

al., 2005, 2006).  Landrace accessions were not developed by modern breeding practices 

(Newcomb et al., 2013).  Characterization of wheat genotypes found in the NSGC for 

agronomic and phenotypic traits has been ongoing for the past 30 years.  Information on 

individual accessions and data collected is available through the USDA-ARS Germplasm 

Resources Information Network (GRIN) at www.ars-grin.gov/npgs. 
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 The NSGC is a particularly promising source of new alleles or novel genes. Disease 

resistance has been found among accessions in the NSGC, including resistance to 

Stagonospora nodorum blotch (Adhikari et al., 2011), spot blotch (Gurung, et al., 2012) 

common and dwarf bunt (Bonman et al., 2006), tan spot (Gurung et al., 2009) and stem rust 

(Bonman et al., 2007; Newcomb et al., 2013).  Landrace accessions, by definition, have not 

benefitted from modern breeding techniques such as marker-assisted-selection (MAS) but 

may likely possess new sources of genetic diversity. In addition, the multitude of regional 

environments from which landrace accessions originated increase the likelihood of finding 

novel gene alleles.   

A recent example of large scale screening of germplasm collections, including the 

NSGC, is the search for new sources of resistance to the stem rust strain UG99, first identified 

in Uganda in 1998 (Pretorius et al., 2000).  UG99 and related new races of the pathogen 

overcome most of the stem rust resistance deployed in modern wheat cultivars.  The prospects 

of a global stem rust epidemic spurred the formation of the Borlaug Global Rust Initiative 

(http://www.globalrust.org), and the concerted efforts of wheat breeders, plant pathologists, 

and research organizations, such as CIMMYT or the USDA, to identify additional sources of 

resistance to UG99.  Over 200,000 wheat genotypes (Triticum sp.) as well as related species, 

such as barley, Aegilops sp., Thinopyrum sp. and Secale sp., have been evaluated for 

resistance to UG99 since 2005 (Singh et al., 2011; Periyannan et al., 2013; Saintenac et al., 

2013b).  For example, 2500 landrace accessions and 700 cultivars or breeding lines from the 

NSGC were screened for resistance to UG99 (Newcomb et al., 2013, Rouse et al., 2011).  

Newcomb et al. (2013) found 278 (11%) of the landrace accessions tested showed resistance 
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to UG99 and Rouse et al. (2011) found 88 (13% of those tested) resistance cultivar or 

breeding line accessions.  The results of these two studies show the value of the NSGC.   

Rouse et al. (2011) identified advanced lines that could be used immediately as sources of 

stem rust resistance with minimal linkage drag, and Newcomb et al. (2013) identified 

resistance that likely has not been deployed in modern cultivars. 

 

HIGH-THROUGHPUT PHENOTYPING 

 Canopy spectral reflectance (CSR) is a high-throughput phenotyping platform for field 

assessment of crops (Aparicio et al., 1999).  CSR measures light reflectance from the wheat 

canopy at photosynthetically active wavelengths (400-700 nm) and infrared wavelengths (700 

- 1000 nm).  The intensity of light reflections at specific wave lengths has been shown to be 

related to important plant characteristics that affect yields or other agronomic traits.  Directly 

measuring plant biomass (van Ginkel et al., 1997), chlorophyll content, water status (McCaig 

and Romagosa, 1989) and leaf nitrogen (Feng et al., 2011) is time consuming, expensive and 

potentially destructive.  CSR is a non-destructive method and is able to assess these 

characteristics quickly and in a field environment (Babar et al., 2006; Penuelas et al., 1997; 

Wright et al., 2001;  Zhu et al., 2008b).  More importantly, CSR indices have been found to 

be predictors of yield in several crop plants including wheat (Aparicio et al., 1999; Babar et 

al., 2006; Gutierrez, et al., 2010; Hansen, et al., 2002; Prasad et al., 2007) barley (Hansen, 

2002), rice (Inoue et al., 1998), and corn (Teal et al., 2006).  CSR has the potential to be 

useful to breeders because it could simultaneously measures multiple traits in diverse 

genotypes before grain harvest.  
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MARKER ASSISTED BREEDING 

Current wheat breeding techniques are insufficient for keeping pace with projected 

global population increases.  The cyclic breeding practiced by most breeders relies on small 

yield increases achieved by traditional breeding techniques within the gene pools of modern 

cultivars.  The recently sequenced wheat genome will aid researchers in determining 

combination of genes that complement one another to increase yields and optimize adaption 

to targeted environments (Reynolds et al., 2012; Cavanagh et al., 2013).  Currently there are 

hundreds of thousands of molecular markers in wheat.  Efficient use of molecular marker 

technologies in breeding will be essential to the success of increasing wheat yields.  

Association mapping and genomic selection are two methods that can be applied to wheat 

genetic analysis and wheat improvement, respectively.  The use of these techniques could aid 

in broadening the genetic base of wheat and in identifying new alleles and allelic 

combinations.   

 Molecular markers function as a means to artificially select for traits of interest based 

on a molecular fingerprint or signpost.  In some instances, the use of molecular markers is less 

expensive, faster, and more reliable than phenotypic assays. There have been several types of 

molecular markers used for artificial selection in wheat, each with their own set of strengths 

and weaknesses.  Restriction fragment length polymorphism (RFLP) were the first class of 

markers used for MAS in wheat (Anderson et al.,1992).  RFLP markers were replaced with 

polymerase chain reaction (PCR) markers, due to the large amounts of DNA needed and the 

time required.  PCR based random fragment length polymorphism markers (RAPDs), 

amplified fragment length polymorphism markers (AFLP), and sequence tag sites (STS) have 
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been used for MAS but each have their own set of advantages and disadvantages.  RAPDs had 

low levels of polymorphisms and were inconsistent, AFLPs are time consuming, and STS are 

developed from existing RFLPs, RAPDs, or AFLPs.  Simple sequence repeat (SSR) have, 

until recently been the marker of choice for MAS.  SSRs are easy to manipulate, automate and 

relatively frequent within the wheat genome.  

 Currently SSR, diversity arrays technology (DArT) and genotype by sequencing 

(GBS) derived single nucleotide polymorphism (SNP)markers are the markers of choice.  

These groups of markers show a shift in focus from single genes to genome wide analysis.  

DArTs, a propriety marker, were the first genome wide platform for large scale, high 

throughput genotyping in wheat.  DArTs have been used for identifying wheat resistance 

genes (Adhikari et al., 2011; Bhavani et al., 2011), quality traits (Emebiri et al., 2010; Kulwal, 

et al., 2012), and genome wide diversity analyses (Rong et al., 2005; Saintenac et al., 2013a).  

SNPs and GBS markers are the most recent advancement in MAS technologies and are an 

improvement on DArT because they are significantly more numerous within the wheat 

genome and derived from genes or sequenced regions.  The ability to automate GBS-SNP 

assays with next-generation sequencing and convenient chip arrays has expedited the 

collection of genetic marker data (Deschamps et al., 2012). 

The final goal of any MAS study is the identification of markers that can be used to 

select traits of interest without tedious phenotypic, biochemical, or physiological assays.  

MAS Wheat (http://maswheat.ucdavis.edu/Education/) is a source of information on genetic 

markers identified in wheat, as well as markers specifically described Functional Markers 

(FM). FM are able to distinguish specific allelic variations found in the wheat genome.  There 
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are 97 FMs identified for 30 loci in wheat.  FMs are different from the majority of markers 

because they are considered to be gene-specific or ‘perfect’ makers instead of being linked to 

loci of interest.  While the usefulness of other marker types depends on their genetic distance 

from loci of interest, FMs are developed from the targeted genes themselves.  As a result, 

FMs are more efficient at MAS than are linked markers (Liu et al., 2012). 

 

MARKER ASSISTED SELECTION  

 Since their advent, molecular markers have been touted as a means to increase the rate 

of cultivar development.  Unfortunately molecular markers are underutilized by modern 

breeders and phenotypic traits are used most often for selection (Paux, et al., 2012).  In most 

cases, markers are used to select for traits that are fairly easy to select for phenotypically, 

reducing the potential impact of the markers used.  A gap between breeders and genomic 

research scientists is found in the rationale behind developing new markers for MAS.  In a 

majority of published genetic mapping publications, the researchers validate their study by 

stating the utility of new markers for MAS.  This rationale is accepted by both breeders and 

research scientists, even when it is widely acknowledged that MAS has the potential to 

expedite breeding efforts, but has had minimal impact on cultivar development in wheat (Xu 

and Crouch, 2008; Gupta et al., 2008; Collard and Mackill, 2008; Paux et al., 2012; Stamp 

and Visser, 2012).  Theoretical MAS models show the time needed to develop a new cultivar 

can be reduced by several generations when using ‘background’ markers that are linked or 

unlinked to traits of interest (Xu and Crouch, 2008).  Therefore, even in the absence of tightly 

linked markers to genes of interest, background markers could facilitate reducing 
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heterogeneity and selecting for the genetic background of the more desirable parent.  In 

addition, the focus of research scientists is on developing new markers, not validating the 

utility of markers in validation studies.  Fortunately, there are large scale efforts in the United 

States (Wheat MAS Consortium), Mexico (CIMMYT) and Australia to increase the 

usefulness of molecular markers and integrate markers in public breeding programs (Gupta et 

al., 2008).  

While artificial selection for single gene traits such as insect (Gb3, H23 and Dnx) or 

disease resistance (LR34, Yr18, Pm38 and Pm3a), dwarfing (Rht-B1, Rht-D1), and 

photoperiodism (Ppd-D1) is relatively simple, selecting for complex traits such as yield is 

difficult.  Identification of complex loci has been limited to main effect QTLs through single 

marker regression and interval mapping.  Much of the problem with MAS of complex traits is 

that there are many small effect loci that contribute to the trait of interest but most are highly 

affected by environmental interactions (Gupta et al., 2008; Jannink et al., 2010).  Recent 

advancements in marker technologies have allowed researchers to saturate genetic linkage 

maps and undertake genome wide analysis of complex traits that was not possible in the past.   

 

ASSOCIATION MAPPING   

 Genome wide association studies (GWAS) are a recent advancement in the analysis of 

complex traits in many plant species (Murray et al., 2009; Jin et al., 2010; Roy et al., 2010; 

Kloth et al., 2012; Mandel et al., 2013; Zhang et al., 2014).  The first association studies 

attempted to find the limits of this type of analysis.  It was found that GWAS is applicable for 

identifying large effect QTLs that control complex traits such as yield (Breseghello and 
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Sorrells, 2006) and quality traits such as kernel weight, grain protein content, flour 

sedimentation, falling numbers and starch content (Reif et al., 2011; Zhang et al., 2014).  In 

addition, meta-analyses found historic trait data collected over ten years could be used to 

identifying important loci associated with their traits of interest (Neumann et al., 2010).  

These studies showed that GWAS has a broad range of applications for analysis of many 

traits. 

 GWAS relies on linkage disequilibrium for identifying significant marker-trait 

associations.  Linkage disequilibrium is based on the assumption that in a population that is 

not affected by selection pressure, genes will be randomly distributed across individual 

genotypes.  This means that in randomly mating populations, gene frequencies and 

combinations are at equilibrium. Gene combinations or molecular markers that are found 

together at a rate higher than expected are said to be in linkage disequilibrium.  While linkage 

disequilibrium can occur because of population stratification or admixture, GWAS accounts 

for these through the use of mixed linear models.  When identifying marker-trait associations 

population structure or groups of related genotypes and the relationship between all 

individuals are accounted for in the statistical analysis (Yu et al., 2006; Zhu et al., 2008a).  

The genetic Q (structure) + K (kinship) model was designed to prevent spurious associations 

(Yu et al., 2006).  In addition to population structure, the success of association studies is 

often limited by the density of molecular markers available to researchers.  But, with the 

recent increase in availability of genome-wide markers, adequate marker coverage has 

become less of a concern.   
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 The largest problem with GWAS is that the identification of novel alleles is limited by 

their occurrence within the mapping panel.  Important, highly effective loci may be missed by 

GWAS due to their low frequency within the mapping panel, or the relationship of superior 

alleles to the population structure.  For example, highly effective yield loci that are found only 

in lines from a specific region or in groups of related genotypes may be missed by GWAS.  

The identification of new loci may still require biparental population development and QTL 

mapping (Yu et al., 2006; Zhu et al., 2008a). 

 

GENOME SEQUENCE 

Wheat has one of the most complex genomes to be sequenced to date, with over 

124,000 genes distributed across 17 gigabases (Marcussen et al., 2014).  The recent 

sequencing of wheat has opened new avenues by which researchers can characterize 

important agronomic traits.  Wheat has a hexaploid genome with three progenitors, T. urartu 

(AA), Aegilops speltoides (BB) and Ae. tauschii (DD)  (Ling et al., 2013; Marcussen et al., 

2014).  The wheat genome has a complex lineage that started 5.5 million years ago.  The first 

hybridization event occurred between ancient Triticum and Aegilops species, which 

eventually gave rise to the DD genome of Ae. tauschii.  T. urartu (AA) and Aegilops 

speltoides (BB) hybridized to give the allotetraploid Emmer wheat (T. turgidum; AABB), 

which then hybridized with Ae. tauschii (DD) to give modern bread wheat (T. aestivum; 

AABBDD) (Marcussen et al., 2014). 

The complexity of the wheat genome has made the identification of important genes 

difficult.  In the past, cytogenetic stocks that have either missing, duplicated, or altered 
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chromosomes were used to identifying loci (Gupta et al., 2008).  A problem with cytogenetic 

stocks is that in most cases the resolution is extremely low.  Molecular markers helped 

increase the resolution of characterized loci, but large regions of the wheat genome remained 

inaccessible to wheat breeders.  Sequencing the wheat genome opens a myriad of possibilities 

for breeders and researchers.  A good example of using sequenced genomes for investigating 

traits is found with soybean (Schmutz et al., 2010).  When the unassembled soybean genome 

was published in 2008, several studies utilized the sequence data to identify genes of interest 

for various traits (Maroof et al., 2010; Schmutz et al., 2010; Suh et al., 2011).  In addition, the 

wheat genome will allow additional gene-specific functional markers to be developed.  Wheat 

breeders and researchers will now be able to look at the sequence underlying QTLs of 

interest, and developed better markers or identify candidate genes. 

 

GENOMIC SELECTION 

Genomic selection (GS), like GWAS, relies on linkage disequilibrium between 

markers and traits but takes genome wide analysis of genetic markers to a higher level.  GS 

assigns a breeding value to a genotype based on the additive genetic value of markers across 

the entire genome regardless of how large or small the effect (Meuwissen et al., 2001).  GS 

models are developed through the use of training panels that contain both phenotypic and 

genotypic data.  The developed models are then applied to the test populations.  Until 

recently, the markers available to breeders made GS difficult to practice on a large scale.  GS 

addresses some of the disadvantages of GWAS and QTL mapping.  GWAS identifies 

significant marker trait associations but is limited to identifying large effect QTLs that are 
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highly significant.  The problem with GWAS is the markers that are nearly significant often 

get ignored by the analysis (Meuwissen et al., 2001).  Linkage mapping of QTLs often find 

that important loci can vary in significance from year to year and environment to 

environment.  Researchers have circumvented this problem by combining data sets or raising 

the significance level used for identifying QTLs.  While the marker significance levels can be 

changed in GWAS, it is probable that many small effect QTLs are still missed.  

One of the first studies in simulating genomic selection for crop breeding was in corn 

and barley (Lorenzana and Bernardo, 2009).  Biparental populations of corn and barley were 

evaluated to generate genome wide breeding values based on different levels of genome 

coverage and population sizes.  Accuracy increased with higher numbers of molecular 

markers and progeny, and identifying the most beneficial progeny based on genome wide 

markers was possible.  The methods of analyzing thousands of markers in GS studies posed 

additional problems for researchers.  In traditional linkage mapping, QTL identified through 

interval mapping often over or under estimates the effects of loci (Jannink et al., 2010; 

Reynolds et al., 2011).  Much work has gone into developing models for GS that accurately 

estimate the effects of loci on a genome wide level and not limited to within single biparental 

populations (Crossa et al., 2010; De los Campos et al., 2009).  CIMMYT has put significant 

efforts into generating GS models, using historical maize and wheat data sets, for breeding 

efforts worldwide (Crossa et al., 2014).  The advantages of GS are, like GWAS, important 

loci will likely be applicable across a wide range of genotypes, but significance levels of 

maker trait associations are not as important as in GWAS (Cabrera-Bosquet et al., 2012).  In 
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addition, GS identifies the most beneficial genotypes for inclusion in breeding programs and 

reduces costs (Bernardo and Yu, 2007).    

 Recently, the accuracy of GS was empirically tested in elite hybrid rye populations 

across multiple years and locations.  Wang et al. (2014) found that GS significantly out 

preformed MAS in accuracy of predictions of yield, plant height, and quality traits.  In 

addition, combining test populations increased both the genetic diversity and accuracy of 

prediction (Wang et al., 2014).  The results in rye show that GS has the potential to increase 

the genetic gains realized by breeders.  For genomic selection to become a feasible method for 

breeders to use to make selections, comprehensive analysis of the entire wheat genome and 

available germplasm will be needed to develop genome-wide selection models.  Studies such 

as the one presented here could provide data for the development of genomic selections 

models.   
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Chapter II: 

Evaluation of Grain Yield and Agronomic Characteristics of NSGC Spring Wheat 

Accessions  

 

ABSTRACT 

 Tolerance to water stress is an important trait of wheat (Triticum aestivum L.) in water 

limiting environments of the world.  A total of 540 spring wheat accessions from the NSGC 

core subset were evaluated for grain yield, grain test weight, grain protein content, days to 

heading and plant height under irrigated (IR) and terminal drought (DR) environments in 

2012 and 2013.  The objectives of this study were: 1) to evaluate grain yield and agronomic 

characteristics of spring wheat accessions in the National Small Grain Collection (NSGC); 2) 

to compare wheat quality classes and accession improvement status groups, and 3) identify 

high yielding drought tolerant materials in the NSGC.  The panel of accessions comprised 

three improvement status groups, cultivars or breeding lines, landraces, and accessions of 

uncertain status, and four market classes, hard red (HR), hard white (HW), soft red (SR) and 

soft white (SW) spring wheat.  Drought effects on yield were quantified using the drought 

susceptibility index (DSI) and the effect of drought on grain protein, test weight, height and 

days to heading was quantified using the DSI equation.  Agronomic traits explained from 15 

to 25% of the yield variation and indexed traits explained 44% of DSI in 2011 and 34% in 

2012.   Drought responses were compared among the three improvement groups and the four 

market classes.  We found, in general, few statistical differences in yield, grain protein or test 

weight between wheat improvement status groups or market classes.  But, we were able to 
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identify 39 accessions with low drought susceptibility and yielding greater than treatment 

means in DR and IR treatments in 2011 and 2012.   

 

INTRODUCTION 

Worldwide, most wheat (Triticum aestivum L.) is grown in water-limited 

environments where drought is the leading environmental stress affecting yield  (Fleury et al., 

2010).  The United States has 125.3 million hectares of arable land under cultivation, with 

over 80 percent of the area reliant on rainfall to provide water for the crops being grown 

(Schaible and Aillery, 2012; Karl, et al., 2012; Johnson, 2013).   It is projected that extreme 

heat exposure during the reproductive stage of wheat will likely increase in most growing 

areas worldwide, increasing yield loss in drought-prone environments (Gourdji et al., 2013).  

Currently, 75 to 95 percent of wheat in the Western United States is grown in rainfed 

environments and vulnerable to drought induced yield loss (Malcolm et al., 2012; Schaible 

and Aillery, 2012; Al-Kaisi et al., 2013).  Developing drought tolerant wheat cultivars could 

increase both yields and yield stability in much of the world’s wheat producing areas (Dodig 

et al., 2012).  Identifying new sources of alleles that can improve the drought tolerance of 

current wheat cultivars is essential for ensuring adequate yields in water-limited 

environments.   

Drought tolerance is a complex trait and phenotypic responses to drought can differ by 

year, genotype, and environment (Saint Pierre et al., 2010a,b) .  Drought resistance, drought 

tolerance, drought susceptibility, yield potential, transpiration efficiency, and water use 

efficiency have been used independently or in combination to describe drought response in 
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wheat (Condon et al., 2004,; Blum et al., 2005; Lopes and Reynolds, 2010; Richards et al., 

2010; Saint Pierre et al., 2010a,b).  The drought susceptibility index (DSI) is a commonly 

accepted method to evaluate response to drought, and is an estimate of relative yield stability 

in water limited environments (Ahmad et al., 2003; Bahar and Yildirim, 2010; Li et al., 2011, 

2012; Maccaferri et al., 2011; Li et al., 2011, 2012).  DSI quantifies the effects of drought by 

comparing the percentage of yield loss due to drought by a single line grown in irrigated and 

drought treatments to the percent yield loss of all lines grown in irrigated and drought 

treatments.   In addition to yield based DSI values, the change in grain protein (GP), test 

weight, (TW), days to heading (DH) and plant height (Ht) can also be indicators of drought 

tolerance (Gebeyehou et al., 1980; Nezhadahmadi et al., 2013; Sinoh et al., 1973).   

Germplasm repositories such as the National Small Grains Collection (NSGC) are a 

source of new alleles for plant breeders, and have been exploited by small grains researchers 

to identify new forms of disease resistance and tolerance to some abiotic stresses (Bonman et 

al., 2006; Bonman, et al., 2005; Gurung, et al.,2009, 2012; Gutierrez et al., 2010; Maccaferri 

et al., 2011).  Previous research indicates that wheat landraces can have higher, more stable 

yields over a wider range of environmental conditions than many elite cultivars (Dencic et al., 

2000; Blum et al., 2005).  The genetic diversity found within the NSGC makes this collection 

a valuable resource to breeders and researchers who seek to increase drought tolerance in crop 

plants. 

The purpose of this study was to assess the drought tolerance of accessions from the 

NSGC and the response of grain yield and agronomic traits to water stress applied at 

reproductive growth stages.  The DSI was used to quantify drought tolerance and the DSI 
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equation was applied to quantify the effects of drought on GP, TW, DH, and Ht.  

Comparisons were made between accessions of different improvement status and accessions 

of different quality classes to determine if any category of accessions exhibited significantly 

higher levels of drought tolerance than others.    

 

MATERIALS AND METHODS 

Plant Material 

Spring wheat accessions were selected from the USDA-ARS National Small Grains 

Collection wheat core subset, which represents 10% of the T.  aestivum accessions in the 

collection.  Accessions from a 2010 trial with uniform appearance, little to no lodging and 

heading between 58 and 78 days after planting were selected for further evaluations. In total, 

540 accessions from 81 countries of origin were selected.  This panel contained 254 cultivars 

or breeding lines, 183 landraces, and 103 accessions of uncertain improvement status.  In this 

study cultivars and breeding lines are considered to be ‘Advanced’ (Adv) accessions, having 

been developed through breeding programs, ‘Landrace’ (LR) accessions are considered to be 

the least improved, having been developed in traditional farming systems without modern 

plant breeding practices (Jaradat, 2011), and some accessions are designated as ‘Uncertain’ 

(Unc) as their improvement status is unknown (Table 2.1).  All accessions, except for seven, 

were placed in wheat quality classes by the Idaho Wheat Quality Laboratory with 

measurements of seed hardness and visual classification of seed color.  In total, 194 hard red, 

133 hard white, 100 soft red and 106 soft white accessions were identified (Table 2.1). 
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Three locally developed lines IDO599, IDO686, IDO702, and two cultivars, Agawam 

and Alpowa were used as checks in 2011.  These check lines have been used in previous 

drought studies at the same field location and have described responses to drought 

environments (Li et al., 2011, 2012).  In 2012, IDO702 and PI648027 were replaced by 

accessions PI428506 and PI520108 from Netherlands and Mexico, respectively.  Neither of 

the replacement check lines used in 2012 had previously been evaluated at the experimental 

site, except in the t 2011 trialb.  IDO702 and PI648027 were removed from subsequent trials 

in order to include checks from the NSGC, and so as not to have an over-representation of 

checks that originated in Idaho or surrounding states. 

 

Field Design and Experimental Conditions 

Experiments were conducted in the 2011 and 2012 growing seasons at the University 

of Idaho Aberdeen Research and Extension Center in Aberdeen, Idaho (42°57’36’’ N, 

112°49’12’’ W, and elevation 1342 m).  The field soils are Declo-loam (coarse-loamy, mixed, 

superactive, mesic Xeric Haplocalcids) with 0 to 2% slopes and pH of 8.1. Historical 

information on climate conditions for Aberdeen Idaho is available through AgriMet 

(http://www.usbr.gov/).  The 540 accessions and 60 check plots were planted side by side in 

two irrigation regimes (treatments), irrigated (IR) and terminal drought (DR). Treatments of 

600 plots were arranged in an un-replicated augmented complete block design, 20 plots wide 

by 30 plots deep, with replicated checks in each treatment (Federer and Ragavarao, 1975).  

Within each treatment, accessions were classified into early, medium, and late maturity 

groups.  The maturity groups were determined by days to heading:  Early (E, 58-66 days), 
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Medium (M, 66-70 days), and Late (L, 70-75 days) within 180 lines and five checks 

replicated 4 times in each group.  Maturity groups were further divided into four sub-blocks 

of 50 plots which included each of the 5 checks to ensure uniform distribution through the 

field.  Across an entire treatment, checks were arranged with two unique checks in each of the 

30 rows and three unique checks in each of the 20 columns.  All plots had seven-rows of 1.83 

m by 1.5 m and a seeding density of 225 seeds m
-2

.  Check plots were used to detect and 

correct field variation within each treatment as described in data analysis. 

Precipitation between planting and physiological maturity was 66.3 mm in 2011 and 

46.2 mm in 2012.  Precipitation, high temperature averages, and irrigation regime are shown 

in Table 2.2.  Plots were planted in April and harvested in August in both 2011 and 2012.  

Average monthly temperatures ranged from 5.2 to 23.0 ˚C in 2011 and 6.5 to 25.4 ˚C in 2012.  

Detailed weather data for Aberdeen Idaho are available through the National Oceanic and 

Atmospheric Administration or Agrimet (http://www.usbr.gov/pn/agrimet/webarcread.html).   

A drip tape irrigation system was used for precise water application to each treatment.  

Irrigation was provided from canopy closure to physiological maturity for irrigated 

treatments.  Terminal drought conditions were simulated by shutting off drip irrigation when 

95% of the plots in a maturity group were at heading or anthesis.  In each year, the early, 

medium, and late maturing plots in the terminal drought treatments received respectively 354, 

236, and 117 mm less irrigation than the irrigated plots.  Irrigated trials received an average of 

1,063 mm of irrigation in addition to natural precipitation (Table 2.2).  The irrigation rate 

used exceeded the evapotranspiration each year.  Nitrogen fertilizer was applied (N = 280 

kg/ha) before planting at suggested rates for target yields of 6.7 tons/hectare. 
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Phenotypic Measurements 

In both years, individual plots were harvested using a Wintersteiger Classic Plot 

Combine (1998 Wintersteiger Elite, Wintersteiger Seedmech, Salt Lake City, UT).  Plot 

harvest weights were recorded using a HarvestMaster HM400 Plot Harvest Data System 

Classic Graingage (Juniper Systems; Logan, UT) and converted to kg/ha for further analysis.  

Whole grain protein was measured by a Foss 6500 NIR Spectrometer and test weights were 

measured using certified dry pint container and Boehmer funnel.  Heading dates were 

recorded daily from the onset of booting until all plots had headed.  Heading dates were 

determined once 50% of individual plants within a plot had complete head emergence from 

the flag leaf sheath.  Plant height was measured at physiological maturity from the ground to 

the top of the spike, not including awns. 

 

Drought Susceptibility Index 

Accessions were evaluated for drought tolerance based on yield stability using the 

drought susceptibility index (DSI) described by Fischer and Maurer (1978).  The DSI is 

defined as (1-Yd/Yi)/(1-µYd/µYi), where Yd = plot yield under drought, Yi = plot yield 

under irrigation, µYd = mean treatment yields under drought and µYi = mean treatment yields 

under irrigation, excluding checks.  This calculation allows the yield stability across irrigated 

and water stressed environments of individual accessions to be compared to the average 

change in yield of all genotypes evaluated (Ahmad, 2003; Li et al., 2011).  To quantify 

drought effects on other characteristics, the DSI equation was applied to GP, TW, DH, and 

Ht.   Here, the response of agronomic traits to drought will be shown as a drought index (DI) 
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values, GPDI, TWDI, DHDI and HtDI.  Values closer to 1 indicate smaller effects of drought.  

The percent change in yield, GP, TW, HT and DH was also calculated to show the difference 

between treatments for individual quality classes and improvement status groups.  DSI values 

for individual lines were compared in 2011 and 2012.  The distribution of low DSI accessions 

was evaluated across market classes and improvement status groups. 

 

Statistical Analysis 

Best linear unbiased predictors (BLUPs) were calculated for each trait in each 

treatment using lines as random effects in JMP Version 9.0 (JMP, Version 9.0 SAS Institute 

Inc., Cary, NC, 1989-2012) statistical software from SAS.  The spatial adjustment model 

included maturity blocking effects and days to heading by restricted maximum likelihood 

(REML).  A generalized heritability was computed using the predicted error variance from the 

mixed model or the mean variance of a difference between BLUPs (Table 2.3).   

Analysis of variance (ANOVA), Student’s t-test, single or multiple regression, and 

correlation coefficients were calculated using JMP statistical software.  Comparison of 

treatments within a single year and between years was performed using ANOVA or t-tests (p 

< 0.05) where appropriate.  Single and multiple regressions were performed using JMP within 

individual treatments and combined treatments within years.  BLUPs were used for analyses 

within treatments and uncorrected data used for comparisons between treatments.   
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RESULTS 

Analysis of Variance  

 Significant differences between irrigated and drought environments were found each 

year.  Irrigated treatments had significantly higher yield and TW, lower GP, and shorter Ht.  

Irrigated treatments yielded 5795.22 kg/ha in 2011 and 4503.95 kg/ha in 2012.  Drought 

treatments yielded 5376.78 kg/ha in 2011 and 3697.30 kg/ha in 2012 (Table 2.3).  GP was 

0.97 lower in 2011 IR than 2011 DR and 0.32 lower in 2012 IR than 2012 DR.  There was a 

14.91 (kg/m3) difference between treatment test weights in 2011 and 18.22 g difference in 

2012. Plant heights were 2.4 cm and 3.6 cm taller in DR treatments than IR in 2011 and 2012, 

respectively.  Between treatments, there were 0.33 days to heading difference in 2011 and a 

0.93 difference in 2012 (Table 2.3).   

 

Treatment Correlations and Heritability 

 Yield heritabilities were always the highest in the IR treatments both years at 0.64 in 

2011 and 0.30 in 2012.  The highest heritabilities for TW were for 2011 IR at 0.90 and 2012 

DR at 0.58.  Irrigated treatments had the highest heritabilities for GP at 0.77 and 0.65 and for 

DH at 0.88 and 0.32 in 2011 and 2012, respectively (Table 2.3).   

Correlations between treatments each year and between years were significant for all 

traits at p < 0.001.  Correlation of yields between IR and DR was 0.46 in 2011 and 0.36 in 

2012.  GP was correlated at 0.67 in 2011 and 0.29 in 2012.  For TW, correlations between 

treatments were 0.49 and 0.52 in 2011 and 2012, respectively.    Plant heights were correlated 

at 0.85 in 2011 and 0.64 in 2012.  DH had the highest correlation coefficients for all 
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comparisons with values between treatments at 0.85 and 0.86 in 2011 and 2012, respectively 

(Table 2.4).  Correlations between years were highest in IR treatments for all traits.  Yield had 

correlation coefficients at 0.28 in IR and 0.27 in DR.  GP had correlations of 0.51 and 0.21, 

TW had correlations at 0.41 and 0.25, and HT was correlated at 0.73 and 0.70 in IR and DR 

treatments, respectively.   DH correlations between years were 0.80 for both treatments (Table 

2.4). 

 

Yield Response to Drought 

Across treatments there was a 7.8% decrease in yield in 2011 and a 21.8% yield 

decrease in 2012 attributed to accessions being grown in drought conditions.  Significant 

effects of drought were found in each improvement status group and market class, in both 

years.  Cultivars showed an 8.28% decrease in yield in 2011 and a 22.2% decrease in 2012 

(Table 2.3 and Table 2.5).  Landrace accessions had a 6.79% yield decrease due to drought in 

2011 and a 24.7% decrease in 2012.  Yield loss due to drought was 5.39%, 8.61%, 9.45 % and 

7.5% for SWS, SRS, HWS and HRS, respectively in 2011 and 27.51%, 18.58%, 21.77% and 

20.65% in 2012 (Table 2.5 and Table 2.6).   

No significant differences in DSI were found for accessions of different improvement 

status groups or market classes.  The drought susceptibility index (DSI) value for Lr 

accessions was 0.66 and for Adv accession DSI was 0.77 in 2011.  In 2012, LR had DSI 

values of 0.7 and Adv accessions had a DSI value of 0.92.  In 2011, DSI values for HRS, 

HWS, SRS and SWS were 0.63, 1.02, 0.85 and 0.46, respectively.  In 2012 DSI values for the 

same market classes were 0.72, 0.65, 0.57 and 0.95, respectively (Table 2.7).   
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Grain Protein Response to Drought 

Significant effects of drought were found in both 2011 and 2012.  Improvement status 

groups and market classes showed significant increases in GP due to drought each year.  GP 

was 7.4% lower in 2011 IR than 2011 DR, and 2.1% lower in 2012 IR than 2012 DR (Table 

2.3).  Cultivars had a 7.31% increase in GP and LR had a 6.95% increase in GP due to 

drought in 2011.  In 2012, cultivars experienced a 2.32% increase in GP and LR had a 3.16% 

increase in GP.  SWS, SRS, HWS and HRS experienced 5.3%, 5.9%, 8.2% and 9.1% increase 

in GP due to drought in 2011 and in 2012 these market classes had a 2.6%, 4.6%, 4.8% and 

4.0% increase, respectively (Tables 2.5 and 2.6).   

 Significant differences in drought response between market classes were found in 

2011 but not 2012. HR and HW accessions had, on average, significantly larger increases in 

protein (GPDI) than SR or SW in 2011, when compared to the average loss of all accessions.  

Landrace and cultivar or breeding line accessions showed similar levels of drought response 

in terms of the change in GP (Table 2.7).  

 

Test Weight Response to Drought 

  Significant differences in TW between treatments were found each year.  

Improvement status groups and market classes all showed significant effects of drought on 

TW (TWDI).  In 2011 drought caused a 1.6% decrease in TW and in 2012 drought was 

responsible for a 2.1% decrease in TW (Table 2.3).  Adv accessions showed a 1.88% decrease 

in TW in 2011 and a 2.13% decrease in 2012.  LR accessions had a 1.1% decrease in TW in 

2011 and 2.61% decrease in 2012.  Market classes had a 0.9% to 1.9% decrease in TW in 
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2011 and a 1.4% to 3% decrease in 2012 (Tables 2.5 and 2.6).  Market classes showed similar 

levels of TW drought index.  Adv had significantly higher loss in TW than LR in 2011 but not 

2012, when compared to the mean reduction of TW each year (Table 2.7). 

 

Hd and Ht Response to Drought 

 Between treatments, plots experienced less than 1% change in DH in 2011 and a 1.3% 

increase in DH for 2012.  A 2.2% and 4.2% increase in height from IR to DR was found 

between treatments in 2011 and 2012, respectively.  No significant difference in DH was 

found for LR or Adv accessions in 2011, but a 1.6% and 1.4% increase in DH was found in 

2012, respectively.  Landrace accessions showed a 2.4% increase in height from IR to DR in 

2011 and a 5% increase in 2012.  Adv accessions had a 2.3% increase in height in 2011 from 

IR to DR and 2.7% increase in 2012 (Table 2.5).  No significant changes in HT or DH were 

found for any of the four market classes in irrigated treatments either year.  Soft white 

accessions were the only quality class to show significant differences in DH, 1.8%, due to 

drought conditions in 2012.  HRS, HWS and HWS showed significant differences in HT 

between treatments in 2012 DR, ranging from a 4% increase to 4.76% increase (Table 2.6). 

 Both years, advanced accessions showed significantly lower increases in height due to 

drought, quantified by height drought index (HtDI) than LR accessions, but no significant 

differences between LR and Adv accessions were found days to heading drought index 

(DHDI) either year.  No significant difference in HtDI response was found between quality 

classes in 2011 or 2012, and the only significant differences in DH between quality classes 

were found in 2011.  In 2011, SW had the lowest DHDI due to drought (Table 2.7). 
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Trait Regression and Correlations 

Plot yields each year were positively correlated with DH and TW (p < 0.01) and 

negatively correlated with GP (Table 2.8).  Plant heights were negatively correlated with yield 

in 2011 IR, not significantly correlated with yield in 2011 DR and positively correlated with 

yield in 2012 IR and 2012 DR.  Correlation coefficients with yield were higher in 2012 than 

2011 for all traits except DH in the 2012 terminal drought treatment (Table 2.8).   

GP had the highest correlation with yield in each treatment both years, ranged from     

-0.31 to -0.63. TW correlation with yields ranged from 0.12 in 2011 to 0.34 in 2012.  DH 

correlation with yield was from 0.10 to 0.38.  HT correlation with yield was 0.27 and 0.35 in 

2012 IR and DR, respectively.  Ht was negatively correlated with yields in 2011 IR and not 

significantly correlated with yield in 2011 DR (Table 2.8).  

Regression analysis of GP, TW, DH, and Ht on yield was significant each year, except 

for TW in 2011 DR (Table 2.9).  GP explained 23% of the yield variation in 2011 IR, 14% in 

2011 DR, 14% in 2012 IR and 11% in 2012 DR.  TW explained 1% of the yield variation in 

2011 IR, 2011 DR, and 2012 IR trials, and 7% in 2012 DR.  DH explained 3% of the yield 

variation in irrigated treatments and 1% in DR each year.  HT explained 3% of the yield 

variation in 2011 and 1% to 2% in 2012.  Multiple regression of all agronomic traits on yield 

explained 25% of the yield variation in 2011 IR, 16% in 2011 DR, 15% in 2012 IR and 19% 

in 2012 DR (Table 2.9).  Regression of GPDI, TWDI, DHDI, and HtDI onto DSI explained 

44% of the yield loss to drought in 2011 and 34% in 2012 (Table 2.9). 
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Status and Market Class DSI 

Significant differences in yield were found for DSI groups in all improvement status 

groups and market classes.  Individual accessions were selected for drought tolerance by DSI 

either zero, one or two times.  In irrigated treatments, accessions that were never selected 

always had significantly higher yields than those selected twice and in DR treatments 

accessions selected twice had statistically higher yields that those never selected (Table 2.10).  

Between improvement status groups, LR and Adv accessions selected both years did not have 

significant differences in yield, protein, or test weight (Data not shown).  

In total, 141 accessions had DSI values less than one in both years, 271 had DSI 

values below one in a single experiment and 145 did not have DSI values below one either 

year.  Among status groups, 72 Adv (28.5%) and 42 LR accessions (23.5%) had DSI values 

below one.  Among market classes, HR had 52 accessions (26.8%) with DSI values below 

one, HW had 33 (24.8%), SR had 32 (32%) and SW had 23 (21.7%) (Table 2.10).   

 

Yield and DSI Selections 

 Analysis of yields and DSI found that there was a negative relationship between yields 

and DSI in DR treatments and a positive relationship in IR treatments.  In the IR treatments, 

the correlation coefficient between yields and DSI was 0.54 in 2011 and 0.56 in 2012.  In the 

DR treatments, yields were correlated with DSI at -0.48 both years (Table 2.8).    

Low DSI accessions (DSI < 1.0) were further filtered to remove accessions with 

average yields lower than the mean yield of combined IR and DR each year.  In 2011, the 

average yield of both IR and DR was 5586 kg/ha and in 2012 the average yield was 4100.63 
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kg/ha (Table 2.3).  Of the 141 accessions with DSI values below one, 39 were found to yield 

higher than the average yields of combined treatments each year.  Within this group of high 

yielding and drought tolerant accessions, 25 were cultivars or breeding lines, 10 were 

landraces and 4 were of uncertain improvement status (Supplemental Table 1). 

 

DISCUSSION  

 Water stress is one of the most common and detrimental abiotic stresses to affect 

wheat worldwide.  Here we report the difference in yield, grain protein, test weight, days to 

heading and plant height attributed to drought by comparing accessions grown in IR and DR 

treatments.  Each year, significant differences were found for yield and agronomic traits 

between irrigated and drought treatments.  The effects of drought on wheat market classes and 

in improvement status groups were calculated to determine if higher levels of drought were 

associated with different groups of wheat.  No significant differences were found between 

improvement status groups or market classes in response to drought both years, except in Ht.   

 Height was not found to respond to drought conditions as expected.  Treatment height 

averages were larger in DR than IR both years, and within LR, Adv, HR, HW, SR or SW 

groups.  A possible explanation for this is that lodging of plots was much more prevalent in 

the irrigated treatments each year.  When measuring heights, the lodged plots would be 

propped up by hand to take each measurement.  In addition, plots that lodged earlier in the 

season may have experienced stunted growth, lowering the IR treatment averages.   

 It is generally accepted that there is an inverse relationship between grain yield and 

grain protein content.  While this was found in our study, the degree of change in grain yield 
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and grain protein between treatments was not consistent each year. In 2011, there was a 

higher change in grain protein content per change in yield than in 2012.  It is possible that 

earlier induction of terminal drought in 2012 and higher average temperatures in May, June 

and July could be responsible.   It has been suggested that while environmental conditions 

affect both grain yield and grain protein, there may not be an intrinsic pleotropic interaction 

between grain protein and yields (Groos et al., 2003). 

The DSI and average yields were used to identify high yielding drought tolerant 

accessions.  Average yield is the average of the stressed and unstressed treatments.  The DSI 

is able to identify lines with relatively stable yields within the context of the panel of lines that 

make up the trial and environments in which they are evaluated. Values below ‘1’ indicate a 

specific accession lost a smaller fraction of yield due to drought stress than the average lost 

fraction.  The drawback of using just DSI values to identify interesting lines is that there is no 

differentiation between high and low yielding genotypes.  Average yields account for both 

stressed and unstressed environments and can distinguish between high and low yielding 

accessions, but does not account for yield loss due to drought stress.  By combining these two 

measurements we are able to select both high yielding and drought tolerant accessions.     

 Correlation coefficients were unable to determine if IR or DR treatments had higher 

correlations between traits.  There were no consistent trends within the data analysis. 

Regression analysis also failed to determine in which environment traits explained the largest 

amount of yield variation.   
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Status Groups and Market Classes 

While drought had significant effects on grain yield, grain protein, grain test weight, 

days to heading and plant height each year, days to heading showed less than a single day 

difference between irrigated and terminal drought treatments each year.  We concluded that 

less than a single DH difference was irrelevant on a biological level.   

  In general LR, Adv, as well as the four wheat market classes, had comparable yields 

and agronomic traits in each year and in each treatment.  Adv accessions yielded more than 

LR each year and in each treatment, but not significantly.  DSI values and percentage of yield 

loss were higher in breeding lines and cultivars than LR in 2011 but lower in 2012.  Similarly, 

the protein drought index (GPDI) gave similar results with a greater increase in GP for Adv 

than IR in 2011, but not in 2012.  TWDI and DHDI did not find LR or Adv to have higher 

levels of drought tolerance in both years.  While TWDI did indicate LR accessions had higher 

levels of drought tolerance in 2011, landrace accessions showed lower levels of drought 

tolerance in 2012.  Plant height was the only trait that indicated LR were more affected by 

drought than cultivars or breeding lines both years.  Market classes also had similar responses 

to drought each year.  No statistical difference between classes was found in 2012.  Only 

GPDI and HDDI indicated that soft white spring wheat was the least susceptible to drought 

when compared to other market classes.   

When considering the response to drought for improvement status groups and market 

classes, we found that there was little to no difference between groups of accessions.  This 

result indicates that there is no advantage to using landrace or advanced accessions, nor a 

specific market class of wheat as sources for drought tolerance from this study.  Our study 
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was not in agreement with previous work that have indicated landrace accessions are more 

likely to have higher levels of drought tolerance than cultivated lines (Blum et al,. 2005; 

Dencic, 2000).  Dencic et al. (2000) found that cultivars were more sensitive to water stress 

than landrace wheat types.  The cultivars used in their study showed significant differences in 

yield and other agronomic characteristics between irrigated and drought environments.  

Landraces, in contrast, did not have significant changes in yields due to drought conditions.   

A possible explanation for the differences between Dencic et al.(2000) and the present study 

is the severity of water stress.  Here we induced drought conditions by denying supplemental 

irrigation to plots.  The Dencic et al. (2000) study covered plots to prevent precipitation from 

reaching plots.  The location of our study is naturally drought prone and requires irrigation; 

while the previous study had sufficient rainfall to grow plants.  Each year, our trials received 

precipitation after induction of terminal drought conditions.  

 

Selections 

Of the 540 unique accessions evaluated in this experiment, 10 landrace accessions 

were found to have DSI values < 1.0 and average yields greater than the average yields of 

both IR and DR treatments each year.  As it is assumed that these landrace accessions have 

not been used in modern breeding programs, there is a high probability that this group of lines 

contain agronomically important alleles that can help growers increase yields and dampen the 

effects of drought.  Further study of the landrace accessions identified in this study may 

identify additional agronomically important alleles. 
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The inverse relationship between DSI and yields in irrigated treatments indicate that to 

select for drought tolerance in IR conditions, the lowest yielding lines are the most likely to 

have the highest levels of drought tolerance.  However, selecting the highest yielding 

accessions in DR conditions is most likely to identify lines with the highest levels of drought 

tolerance.  The contrast in selecting higher yielding accessions in drought conditions 

compared to lower yielding accesses in irrigated environments indicates that evaluating 

accessions under drought conditions may be the most efficient use of time and resources 

available to breeders when selecting for drought tolerance.  But, when selecting for both 

drought tolerance and high yield additional irrigated trials are need for comparison.   

 

CONCLUSIONS 

Much work has gone into identifying and deploying drought tolerant cultivars to water 

limiting production areas.  Here we evaluated 540 diverse spring wheat genotypes to identify 

accessions with high levels of drought tolerance and relatively high yields.  We found when 

selecting for drought tolerance, that the highest yielding accessions in DR and the lowest 

yielding accessions in IR were the most drought tolerant.  When selecting for drought 

tolerance and high yields, a single trial was inadequate.  Comparison of improvement status 

groups and wheat market classes was unable to find significant differences between these 

groups in terms of drought tolerance or yield.  This finding has both positive and negative 

aspects.  We found that landrace and cultivar accessions had nearly identical yields and levels 

of drought tolerance, meaning that introducing a LR accessions into a breeding program will 

not negatively affect current levels of drought tolerance found in modern cultivars and would 
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increase the genetic diversity.  But, this also indicates that improving drought tolerance 

through the use of landrace accessions may be difficult, unless the alleles responsible for the 

drought tolerance are novel.  If it is found that the landrace accessions identified here have 

novel forms of drought tolerance, pyramiding drought tolerance loci may result in increased 

drought tolerance.  Further characterization of the drought tolerant landrace accessions will be 

needed to determine if they contain new forms of drought tolerance.  
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Table 2.1:  Number of accessions categorized as breeding lines and cultivars, landraces, and 

uncertain improvement status, and the number of accessions determined to be hard red (HR), 

hard white (HW), soft red (SR) or soft white (SW).  Three breeding lines and cultivars and 

four landrace accessions could not be placed in a specific quality class.   

Class 

Cultivars and 

breeding lines Landraces Uncertain Total 

HR 109 53 32 194 

HW 51 50 32 133 

SR 46 37 17 100 

SW 45 39 22 106 

Total 251 (3) 179 (4) 103 533 
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Table 2.2:  Average monthly temperatures (o 
C) and irrigation (mm) in 2011 and 2012 

experiments for early, medium, and late maturity groups of wheat accessions.  Irrigation was 

provided for a single 12 hour increment weekly for the months indicated.  Precipitation 

received from planting until harvest is shown in the weather column. 

 

2011 Month: 
Precipitation 

(mm) 
May June July  August 

Total 

Irrigation 

(mm) 

Irrigated Early 66.3 / 472 590 / 1063 

 
Medium 66.3 / 472 590 / 1063 

  Late 66.3 / 472 590 / 1063 

Terminal Drought Early 66.3 / 472 236 / 708 

 
Medium 66.3 / 472 354 / 827 

  Late 66.3 / 472 472 / 945 

Average High 

Temp. (
o
C) 

  
 

16.5 23.5 30.8 31.6   

        

2012 Month: 
Precipitation 

(mm) 
May June July August 

Total 

Irrigation 

(mm) 

Irrigated Early 46.2 354 590 118 / 1063 

 
Medium 46.2 354 590 118 / 1063 

  Late 46.2 354 590 118 / 1063 

Terminal Drought Early 46.2 354 354 / / 708 

 
Medium 46.2 354 472 / / 827 

  Late 46.2 354 590 / / 945 

Average High 

Temp. (
o
C) 

  
 

19.8 25.4 31.9 31.9   
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Table 2.3:  Mean yield, test weight, whole grain protein, days to heading and plant height for 

2011 and 2012 irrigated (IR) and terminal drought (DR) treatments.  Broad sense heritability 

(H) is shown for each trait in each experiment.  

(A)    Trait Treatment 2011 Mean 2011 H 2012 Mean 2012 H 

Yield (kg/ha) IR 5795.22a 0.64 4503.95a 0.30 

 DR 5376.78b 0.54 3697.3b 0.25 

Test weight (w/v) IR 926.5a 0.9 890.0a 0.51 

 DR 911.61b 0.31 871.73b 0.58 

Protein (%) IR 13.04a 0.77 15.14a 0.65 

 DR 14.01b 0.77 15.46b 0.37 

Days to heading (d) IR 69.66a 0.88 70.96a 0.32 

 DR 69.33b 0.78 70.03b 0.2 

Plant height (cm) IR 107.2a 0.67 105.8a 0.63 

 DR 109.6b 0.69 110.0b 0.73 

*Values not connected by letters indicate significant differences  p < 0.05  

*Test weight shown as weight per volume 
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Table 2.4:  Correlation coefficient between 2011 and 2012 irrigated (IR) and terminal 

drought (DR) treatments for yield, grain protein (GP), test weight (TW), days to heading (DH) 

and plant height. 

 

Yield 2011 IR 2011 DR 2012 IR 2012 DR 

2011 IR 1.00 

   2011 DR 0.46 1.00 

  2012 IR 0.28 0.40 1.00 

 2012 DR 0.20 0.27 0.36 1.00 

     GP 2011 IR 2011 DR 2012 IR 2012 DR 

2011 IR 1.00 

   2011 DR 0.67 1.00 

  2012 IR 0.51 0.62 1.00 

 2012 DR 0.28 0.21 0.29 1.00 

     TW 2011 IR 2011 DR 2012 IR 2012 DR 

2011 IR 1.00 

   2011 DR 0.49 1.00 

  2012 IR 0.41 0.57 1.00 

 2012 DR 0.47 0.25 0.52 1.00 

     DH 2011 IR 2011 DR 2012 IR 2012 DR 

2011 IR 1.00 

   2011 DR 0.85 1.00 

  2012 IR 0.80 0.84 1.00 

 2012 DR 0.80 0.80 0.86 1.00 

     HT 2011 IR 2011 DR 2012 IR 2012 DR 

2011 IR 1.00 

   2011 DR 0.85 1.00 

  2012 IR 0.73 0.71 1.00 

 2012 DR 0.68 0.70 0.64 1.00 
*p < 0.001  
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Table 2.5:  Comparison of yield, grain protein (GP), test weight (TW), days to heading (DH), 

plant height (Ht) and the percent change in each trait due to drought (Δ%) for breeding lines 

and cultivars (Adv) and landrace (LR) accessions. 

 

Trait Treatment Adv Δ% LR Δ% 

Yield 2011 

(Kg/ha) 
IR 5943.45a -8.28 5741.81a -6.79 

DR 5489.06b   5376.51b   

Yield 2012 

(Kg/ha) 
IR 4590.56a -22.20 4563.97a -24.70 

DR 3756.39b   3660.07b   

GP 2011 

(%) 
IR 12.59b 7.31 13.52b 6.95 

DR 13.51a   14.46a   

GP 2012 

(%) 
IR 15.1b 2.32 15.19b 3.16 

DR 15.45a   15.67a   

TW 2011 

(kg/m
3
) 

IR 929.08a -1.88 922.4a -1.11 

DR 911.96b   912.26b   

TW 2012 

(kg/m
3
) 

IR 884.55a -2.13 894.15a -2.61 

DR 866.12b   871.43b   

DH 2011 

(days) 
IR 70.08a -0.49 69.68a -0.43 

DR 69.74a   69.38a   

DH 2012 

(days) 
IR 71.39a -1.59 71.4a -1.43 

DR 70.27b   70.39b   

Ht 2011 

(cm) 

 

IR 107.5a 2.33 107.3b 2.42 

DR 110.0a   109.9a   

Ht 2012 

(cm) 
IR 107.0b 2.71 107.9b 5.00 

DR 109.9a   113.3a   

*Values not connected by letters indicate significant differences (p < 0.05) 
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Table 2.6:  Comparison of yield, protein (GP), test weight (TW), days to heading (DH), plant 

height (Ht) and the percent change in each trait due to drought (Δ%) for hard red (HR), hard 

white (HW), soft red (SR) or soft white (SW) quality classes in irrigated and drought 

treatments. 

 

Trait TRT SW Δ% SR Δ% HW Δ% HR Δ% 

Yield 2011 

(Kg/ha) 
IR 5689.08 a -5.39 5748.07 a -8.61 6037.75 a -9.45 5706.95 a -7.5 

DR 5397.99 b   5292.39 b   5516.48 b   5308.68 b   

Yield 2012 

(Kg/ha) 
IR 4607.3 a -27.51 4342.95 a -18.58 4643.55 a -21.77 4430.46 a 

-

20.65 

DR 3613.35 b   3662.36 b   3813.44 b   3672.19 b   

TW 2011 

(kg/m
3
) 

IR 919.94 a -0.89 923.09a -1.76 928.01a -1.94 929.25a -1.77 

DR 431.75b   907.1b   910.31b   913.06b   

TW 2012 

(kg/m
3
) 

IR 886.34a -2.98 885.94a -2.01 894.51a -2.45 889.61a -1.43 

DR 860.72b   868.5b   873.12b   877.11b   

GP 2011 

(%) 
IR 13.02 b 5.3 13.52 b 5.92 12.88 b 8.15 12.91 b 9.06 

DR 13.71 a   14.32 a   13.93 a   14.08 a   

GP 2012 

(%) 
IR 14.97 b 4.34 15.52 a 1.1 14.89 a 2.15 15.22 a 1.45 

DR 15.62 a   15.69 a   15.21 a   15.44 a   

Ht 2011 

(cm) 

 

IR 110.62 a 1.72 107.95 a 1.79 105.79 a 2.84 105.89 a 2.21 

DR 112.52 a   109.88 a   108.79 a   108.23 a   

Ht 2012 

(cm) 
IR 111.63 a 2.64 106.30 b 4.56 106.05 b 4.76 105.71 b 4.02 

DR 114.58 a   111.15 a   111.10 a   109.96 a   

DH 2011 

(days) 
IR 69.8 a 0.09 69.76 a -0.79 69.37 a -0.51 69.73 a -0.65 

DR 69.86 a   69.21 a   69.02 a   69.28 a   

DH 2012 

(days) 
IR 72.03 a -1.82 70.72 a -1.27 70.26 a -1.22 70.95 a -1.14 

DR 70.74 b   69.83 a   69.41 a   70.15 a   

*Values not connected by letters indicate significant differences (p < 0.05) 
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Table 2.7:  Comparison of yield based drought susceptibility index (DSI), grain protein 

drought index (GPDI), test weight drought index (TWDI), days to heading drought index 

(DH), and height drought index (HtDI), for (A) wheat improvement status groups breeding 

lines and cultivars (Adv) and Landraces, or (B) the wheat quality classes hard red (HR), hard 

white (HW), soft red (SR) or soft white (SW) quality classes. 

 
 (A) 

Year Status DSI GPDI TWDI DHDI HtDI 

2011 Adv 0.77 a 1.08 a 1.15 a 1.16 a 0.62 b 

 
Landrace 0.66 a 1.05 a 0.66 b 0.88 a 1.60 a 

2012 Adv 0.70 a 1.20 a 1.77 a 1.13 a 0.84 b 

 
Landrace 0.92 a 1.73 a 2.34 a 1.02 a 1.50 a 

*Values not connected by letters indicate significant differences (p < 0.05) 

(B) Year Class DSI GPDI TWDI DHDI HtDI 

2011 HR 0.63 a 1.30 a 1.09 a 1.32 ab 1.15 a 

 
HW 1.02 a 1.20 ab 1.14 a 1.13 ab 1.34 a 

 
SR 0.85 a 0.93 ab 1.07 a 1.63 a 0.91 a 

 
SW 0.46 a 0.79 b 0.54 a 0.07 b 0.86 a 

2012 HR 0.72 a 0.94 a 2.41 a 0.79 a 1.18 a 

 
HW 0.65 a 1.28 a 2.30 a 0.86 a 1.46 a 

 
SR 0.57 a 0.23 a 0.93 a 0.88 a 1.31 a 

  SW 0.95 a 1.78 a 2.32 a 1.33 a 0.91 a 

*Values not connected by letters indicate significant differences (p < 0.05) 
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Table 2.8:  A) Correlations between yield, GP, TW, DH and Ht recorded in 2011 and 2012, 

irrigated and drought, treatments.  B) Correlation between yields and DSI in both IR and DR 

each year. 

2011 Trait Yield GP TW DH Ht 2012 Trait Yield GP TW DH Ht 

IR Yield 1 / / / / IR Yield 1 / / / / 

 
GP -0.32 1 / / / 

 
GP -0.63 1 / / / 

 
TW 0.12 ns 1 / / 

 
TW 0.34 -0.23 1 / / 

 
DH 0.1 -0.26 -0.16 1 / 

 
DH 0.38 -0.29 ns 1 / 

 
Ht -0.16 0.2 ns 0.23 1 

 
Ht 0.35 -0.13 0.36 0.48 1 

DR Yield 1 / / / / DR Yield 1 / / / / 

 
GP -0.31 1 / / / 

 
GP -0.43 1 / / / 

 
TW 0.32 ns 1 / / 

 
TW 0.39 -0.44 1 / / 

 
DH 0.28 -0.42 0.22 1 / 

 
DH 0.13 0.25 -0.36 1 / 

 
Ht ns 0.24 0.18 0.16 1 

 
Ht 0.27 0.09 0.1 0.33 1 

 *Significance levels of p < 0.01 

 

 

 *Significance of p < 0.01 

  

B) 

Yield 

2011 

DSI 

2012 

DSI 

IR 0.54 0.56 

DR -0.48 -0.48 
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Table 2.9:  Regression analysis between single and multiple traits with grain yield in   

irrigated (IR) and terminal drought treatments (DR) over two years.  And, regression of 

indexed traits with the drought susceptibility index (DSI) each year. 

 
Experiment Trait Regression Equation R

2
 Probability  

2011 IR 

    
 

GP -202.3 Prot + 8249.09 0.23 <0.0001 

 
TW 6.83 TW + 2602.53 0.01 0.0156 

 
DH 45.15 DH + 2445.17 0.03 <0.0001 

 
HT -18.94 HT + 6389.7 0.03 0.0001 

 

GP, TW, DH, 

HT 

-177.85 Prot + 4.27 TW + 29.47 DH + -9.98 HT + 

4433.48 0.25 <0.0001 

2011 DR 

    
 

GP -139.37 Prot + 7770.88 0.14 <0.0001 

 
TW 3.95 TW + 4096.78 0.01 0.113 

 
DH 18.23 DH + 4550.59 0.01 0.026 

 
HT -17.56 HT + 6572.18 0.03 <.0001 

 

GP, TW, DH, 

HT 

-128.11 Prot + 6.27 TW + 12.03 DH + -7.44 HT + 

4371.57 0.16 <0.0001 

2012 IR 

    
 

GP -173.11 Prot + 6912.79 0.14 <0.0001 

 
TW 4.79 TW + 2283.08 0.01 0.0274 

 
DH -16.34 DH + 5462.8 0.03 <0.0001 

 
HT -7.76 HT + 4629.27 0.01 0.0156 

 

GP, TW, DH, 

HT 

-163.08 Prot + 2.99 TW + -12.89 DH + 1.37 HT + 

6357.83 0.15 <0.0001 

2012 DR 

    
 

GP -157.59 Prot + 5912.3 0.11 <0.0001 

 
TW 5.05 TW + 1413.72 0.07 <.0001 

 
DH -5.58 DH + 3875.2 0.01 0.0232 

 
HT 6.04 HT + 3220.42 0.02 0.0005 

  

GP, TW, DH, 

HT 

-148.7 Prot + 3.78 TW + -4.89 DH + 6.87 HT + 

4267.38 0.19 <0.0001 

2011 DSI 

GPDI, TWDI, 

DHDI, HtDI 

 

-DHDI 0.03 - HtDI 0.06 - GPDI 0.57 + TWDI 0.96 + 

0.51 0.44 <0.0001 

2012 DSI 

GPDI, TWDI, 

DHDI, HtDI 

 

DHDI 0.07 - HtDI 0.15 + GPDI 0.09 + TWDI 0.06 + 

0.66 0.34 <0.0001 

*Grain protein, GP; Test weight, TW; Days to heading, DH; Height, Ht; Indexed grain protein, GPDI; 

Indexed test weight, TWDI; Indexed days to heading, DHDI; and Indexed height, HtDI.   
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Table 2.10:  (A) Number of accessions categorized as breeding lines and cultivars (Adv), 

landraces (LR) or of uncertain (Unc.) improvement status, and market classes: hard red (HR), 

hard white (HW), soft red (SR) or soft white (SW) having DSI value <1 both year (2), in one 

year (1) or never (0), and the percentage of accessions selected in both 2011 and 2012 (% 

selected).  (B) Mean yields for selection groups by improvement status groups and market 

classes. 

 

 

 

(B) 

Treatment 
DSI Count Adv LR HR HW SR SW 

2011 IR 0 6538.39 a 6095.1 a 6149.68 a 6610.8 a 6041.29 a 6542.9 a 

 

1 5969.32 b 5809.4 a 5806.17 a 6118.15 a 5906.83 a 5432.24 b 

 

2 5412.09 c 5235.66 b 5167.08 b 5301.46 b 5314.05 b 5408.71 b 

2011 DR 0 5158.66 c 4809.43 b 4937.05 b 5061.29 b 4704.68 b 5229.9 b 

 

1 5485.49 b 5492.31 a 5319.1 a 5621.77 a 5307.22 a 5339.92 b 

 

2 5765.83 a 5681.65 a 5581.44 a 5761.09 a 5693.96 a 5727.12 a 

2012 IR 0 5045.85 a 4556.02 a 4874.74 a 4887.21 a 4640.29 a 4994.24 a 

 

1 4546.52 b 4752.94 a 4386.64 b 4762.04 a 4496.04 a 4640.97 ab 

 

2 4292.11 b 4144.51 b 4165.27 b 4159.31 b 3913.96 b 4101.82 b 

2012 DR 0 3089.07 c 2991.75 c 3142.12 b 3133.04 c 3041.87 c 2971.03 c 

 

1 3655.04 b 3623.34 b 3513.47 b 3877.4 b 3590.1 b 3598.86 b 

  2 4474.97 a 4411.49 a 4398.43 a 4363.97 a 4209.95 a 4348.06 a 

*Values not connected by the same letter are significantly different at p < 0.05.  

 

  

( A) Grouping 0 1 2 % Selected 

Adv 59 122 72 28 

LR 42 95 42 23 

Unc 44 54 27 26 

HRS 41 101 52 26 

HWS 33 67 33 24 

SRS 23 45 32 32 

SWS 25 58 23 21 
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Chapter III: 

Evaluating Grain Yield in Spring Wheat with Canopy Spectral Reflectance 

 

ABSTRACT 

Worldwide, improving grain yield is the most important target for wheat (Triticum 

aestivum L.) breeders. Fast, cost-effective and non-destructive phenotyping methods for 

important traits are needed to increase the efficiency of cultivar development. The present 

study tests canopy spectral reflectance (CSR) as a potential high-throughput method for 

assessing wheat grain yield in a diverse set of 540 spring-habit accessions from the USDA-

ARS National Small Grains Collection. Plots were grown under irrigated and terminal 

drought treatments over two growing seasons and CSR was measured at several growth stages 

in each year. CSR indices related to canopy water and nitrogen status, biomass, and 

photosynthetic area were evaluated for their relation to grain yield. CSR indices were 

significantly correlated with yield at every growth stage with anthesis of grain-filling being 

the most useful for predicting grain yield in irrigated and drought environments. Single CSR 

indices selected up to 57% of the highest 25% yielding lines in terminal drought conditions 

and the grain yield of accessions selected using CSR was 20% greater than randomly selected 

genotypes. CSR also identified up to 86% of the highest 10% yielding accessions. CSR may 

be valuable as high-throughput means of selecting for yield in large trials of genetically 

diverse wheat genotypes.  
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INTRODUCTION 

Wheat yields have increased over the past few decades due in part to genetic 

improvements such as the incorporation of dwarfing genes, increased disease resistance and 

abiotic stress tolerance, and development of locally adapted cultivars (Reynolds et al., 2009, 

2012). However, from 1959 to 2008 the estimated yield gain has been 1.1% annually, with 

most of the yield increase occurring before 1984 (Graybosch and Peterson, 2010; Pingali, 

2012). Current estimates of annual yield increase for wheat over the past 20 years are <1% 

(Fischer and Edmeades, 2010) and are insufficient to meet the projected 1.7% to 2.4% 

increase needed to keep pace with the growing world population (Reynolds et al., 2012; Ray 

et al., 2013). In addition to the concern of population growth, the threat of world-wide climate 

change and its effects on cropping systems will be an additional challenge for breeders to 

overcome in efforts to improve wheat grain yield (Fedoroff et al., 2010; Malcolm et al., 2012; 

Stamp and Visser, 2012; Arbuckle et al., 2013).  The use of novel germplasm and improved 

phenotyping tools would aid breeders by increasing their efficiency and widening the genetic 

base of wheat. 

Fast, cost-effective, and non-destructive high throughput phenotyping platforms have 

gained interest in recent years for use by breeders to decrease the time and costs required to 

assess new genotypes (Cabrera-Bosquet et al., 2012). While genotyping technologies have 

improved significantly, in-field phenotyping tools have not kept pace (Araus and Cairns, 

2014). A problem when attempting to accurately phenotype large numbers of plants is 

controlling the growing conditions. The use of growth chambers and greenhouses allow for 

the highest levels of environment control but does not reflect actual field conditions whereas 
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field experiments suffer from heterogeneous soil and environmental conditions (Araus and 

Cairns, 2014). Statistical adjustments of spatial variation found in field conditions are 

commonly used to reduce the effects of environmental influences on data analysis.  Canopy 

spectral reflectance (CSR) is one of the first high-throughput phenotyping platforms applied 

to field assessment of crops (Aparicio et al., 1999). While the accuracy of phenotypic data 

taken in-field will most always be affected by heterogeneous environmental conditions to 

some extent, CSR indices have been used to not only assess crop characteristics, but also as 

means of mapping and adjusting for field heterogeneity (Araus and Cairns, 2014).     

CSR is based on the differential pattern of light reflectance on leaves at 

photosynthetically active wavelengths (400-700 nm) and infrared wavelengths (700 - 1000 

nm). CSR indices can be used to estimate plant characteristics such as leaf nitrogen content 

(Wright et al., 2003; 2004; Wei et al., 2008; Zhu et al., 2008; Feng et al., 2011), 

photosynthetic active biomass (Aparicio et al., 1999), leaf chlorophyll content, and plant 

water status (Penuelas et al., 1997a, b; Aparicio et al., 1999; Araus et al, 2002; Babar et al., 

2006b; a; Prasad et al., 2007a; Feng et al., 2008; Gutierrez et al., 2010b).  

Direct measurements of plant biomass, water status, photosynthetic capacity, and leaf 

nitrogen status are associated with agronomic traits such as yield and grain protein, but these 

conventional methods all have disadvantages. Measuring plant biomass requires destruction 

of the entire plant and is impractical for screening large numbers of genotypes (van Ginkel et 

al., 1998).  Assessing plant water status through excised leaves is destructive, requires tedious 

measurements of small changes in leaf weight over time and sufficient time to completely dry 

plant tissue (McCaig and Romagosa, 1989). Similarly, plant nitrogen status measurements are 
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time consuming and require removal of leaf tissue and laboratory procedures to assess 

nitrogen content (Feng et al., 2011).  

Previous studies have shown CSR indices to be predictors of yield in barley (Hansen 

et al., 2002), rice (Inoue and Moran, 1998), corn (Teal et al., 2006), durum wheat (Aparicio et 

al., 1999), winter wheat (Hansen, 2002; Prasad et al., 2007a) and bread wheat (Gutierrez et 

al., 2010b). Babar et al. (2006b) found indices related to photochemical, biomass, and canopy 

water content related indices to be highly correlated (greater than 0.80) with yields and to 

explain upwards of 50% of the yield variation observed across multiple years in a group of 15 

high yielding CIMMYT  bread wheat genotypes.  

CSR has the potential to aid breeding programs where large numbers of individuals 

must be screened in a fast and cost effective manner. CSR could facilitate line development 

by identifying superior genotypes at or before anthesis, allowing for crosses to be made before 

grain yields have been evaluated. Previous studies on CSR relation to yields have used small 

groups (n < 50) of advanced breeding lines (Babar et al., 2006a; Gutierrez et al., 2010b), bi-

parental populations (Babar et al., 2006c; Prasad et al., 2007a) or commercial cultivars (Babar 

et al., 2006c; Prasad et al., 2007a). For a technology to be useful to breeders, it must be 

applicable to a wide range of genotypes and growing conditions. While genotype selection by 

CSR has been successfully implemented in several wheat growing environments (Gutierrez et 

al., 2010a, b), screening of large, genetically diverse panels of wheat genotypes has not been 

reported  previously. 

In the present study, we used CSR as a high throughput phenotyping tool to assess 

grain yield in a diverse collection of genotypes accessions from the USDA-ARS National 
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Small Grains Collection (NSGC). Our goals were to assess CSR indices for predicting grain 

yield under irrigated and water-stressed conditions, and to identify high yielding germplasm 

in a large diverse set of wheat lines from the NSGC using CSR. 

 

MATERIALS AND METHODS 

Plant Material 

The plant material used in this study consisted of 540 spring wheat accessions from 

the NSGC common wheat core subset. The NSGC is a component of the National Plant 

Germplasm System (NPGS) in the United States Department of Agriculture - Agricultural 

Research Service (USDA-ARS). Based on heading dates and uniformity during an initial 

screen in 2010, accessions were selected from the spring wheat accessions among the NSGC 

common wheat core subset. The 540 spring wheat accessions originated from six continents 

and 81 countries and included cultivars, breeding lines, landraces, and accessions of uncertain 

improvement status. Two cultivars, Agawam (PI648027) and Alpowa (PI566596), and three 

breeding lines from the University of Idaho wheat breeding program, IDO599, IDO686 and 

IDO702, were used as checks in 2011. PI428506 and PI520108 were chosen to replace 

IDO702 and PI648027 as checks to better represent the 540 lines from NSGC in the 2012 trial 

(Supplemental Table). Additional information on the plant material used for this study can be 

found at the USDA’s Germplasm Resources Information Network (www.ars-grin.gov) and 

characteristics of the five checks can be found in Li et al. (2011).  
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Field Design and Experimental Conditions 

Trials were arranged in an augmented complete block design 20 plots wide and 30 

plots deep, as previously described (Zhang et al., 2014). In total, 540 unique accessions and 5 

checks were planted in each experiment. Plots were 1.83 m long by 1.5 m wide and planted in 

seven rows at a rate of 364,500 kernels per hectare. Plots were divided into early, medium, 

and late maturity groups, each containing 180 accessions and 20 check plots for a total of 600 

plots per trial. Each maturity group was further divided into four sub-blocks that contained a 

single plot of each of the five checks. The check lines were distributed so that each row 

contained two different checks and each column contained three different checks. Trials were 

planted in adjacent water-level treatments at the University of Idaho Aberdeen Research and 

Extension Center in Aberdeen, Idaho (42°57’36’’ N, 112°49’12’’ W, and elevation 1342 m). 

One treatment was irrigated (IR) throughout the entire growing season and the other was 

subjected to water stress at reproductive growth stages (terminal drought, DR). A drip tape 

system was employed for precise irrigation control and to allow for each plot within the 

treatment to receive the same amounts of water. Individual plots had three 1.83 meter sections 

of drip tape spaced every two rows. All plots were irrigated for a single 12 hour period each 

week until heading at a rate of 2.5 l/h per 30.5 meters of drip tape. Plots in the IR were 

irrigated until physiological maturity. Water stress conditions were induced in the DR 

treatment when 95% of the plots had headed.  

The climate in Aberdeen, ID is conducive to terminal drought research, with annual 

precipitation between 20.3 cm and 27.9 cm, and mean annual temperatures between 7.2 and 

8.3 °C (Li et al., 2011). The least precipitation and highest air temperatures were recorded 
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during June and July each year, and occurred during the heading and flowering growth stages, 

consistent with the onset of terminal drought conditions. The average temperatures and total 

precipitation from June to August were 27.2°C and 3.5 mm in 2011, and 28.7°C with 11.7 

mm in 2012. Trials received 66.3 and 46.2 mm of precipitation between planting and 

physiological maturity (April to August) in 2011 and 2012, respectively. The field soils were 

Declo-loam (coarse-loamy, mixed, superactive, mesic Xeric Haplocalcids) with 0 to 2% 

slopes and pH of 8.1. Historical information on climate conditions for Aberdeen Idaho is 

available through AgriMet (http://www.usbr.gov/pn/agrimet/webarcread.html).  

 

Agronomic Traits 

In all trials, individual plots were harvested after physiological maturity with a 

Wintersteiger Classic small plot combine equipped with a Harvest Master system 

(Wintersteiger Inc., Salt Lake City, UT). Yields were calculated from raw grain weight and 

converted to kilograms per hectare. Days to heading were calculated from the planting date 

until 50% of the heads within a plot were emerged. Heights were measured from the middle 

rows of each plot at maturity from the soil surface to top of the spike. 

 

Canopy Spectral Reflectance 

CSR measurements were made with a portable Ocean Optics Jaz spectrometer (Ocean 

Optics, Dunedin, FL). This device measures the radiation reflected directly from the plot 

canopies. Measurements were taken between 10:00 a.m. and 3:00 p.m. on cloud-free days to 

minimize atmospheric interference and ensure consistent sunlight, when a majority of the 
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plots were at specific growth stages, heading and anthesis in 2011 and at booting, heading, 

anthesis, and grain-filling in 2012. The spectrometer was calibrated using a barium sulfate 

(BaSO4) coated board to account for changes in the solar radiation intensity due to the 

position of the sun. New calibrations were taken every 40 plots or approximately every 20 

minutes.  

The spectrometer used for this experiment had three channels with gratings #3, #4 and 

#14 (Ocean Optics, Dunedin, FL).  Across all gratings, continuous wavelengths from 339 nm 

to 1259 nm were recorded with an average interval of 0.324 nm.  Grating #4 has an optimal 

range of 530 nm to 1100 nm and a full width half maximum optical resolution of 1.17 nm, 

which encompassed all required wavelengths except for 526 nm.  Grating #4 was used in the 

present study because 526 nm is just slightly outside its optimal range and all other required 

wavelengths can be optimally measured with it.  

Only the centers of plots were measured, to avoid edge effects, using a constant 

scanning method 50 cm above the canopy with a 25
○
 field of view (386 cm

3 
footprint). An 

average of 100 individual measurements was taken per wavelength recorded with a single 

scan of each plot used for measurements. Constant scanning method entails scanning across 

the center region of each plot for the duration of the measurements. The same accessions were 

recorded in both irrigated and terminal drought treatments within a single day and all plots 

were measured within a single week.  
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Index Calculations 

The wavelengths needed for calculating CSR indices were generated by averaging the 

four reflectance intensity closest to the needed wavelength.  In addition, while recording 

reflectance values the spectrometer implemented a three-step boxcar smoothing. Averaged 

values were used as a means of noise reduction.  For example, the Water Index (WI) is 

calculated using the minor water absorption band at 970 nm and reference frequency 900 nm. 

A single value for 970 and 900 is calculated by averaging reflectance values at the frequencies 

shown in the equation below: 

Water Index (WI) =  
Average (969.89, 970.21, 970.52, 970.85) 

Average (900.16, 900.49, 900.82, 901.16) 

 

Three general categories of CSR indices were used: water-based, vegetation-based, 

and nitrogen-based. The water-based and vegetation-based indices were chosen because they 

are correlated with yields in wheat and are indicators of canopy water status and 

photosynthetic biomass.  The two nitrogen-based indices were chosen because they are related 

to plant height, leaf area, dry matter accumulation, and chlorophyll content in corn and rice ( 

Xue et al., 2004; Zhao et al., 2003).  

The water-based indices used here are Water Index (WI = 970nm / 900nm) (Penuelas 

et al., 1993), Normalized Water Index 1 (NWI1 = (970nm - 900nm)/(970nm + 900nm)), 

NWI2 ((970nm - 850nm) / (970nm + 850nm)), NWI3 ((970nm - 920nm)/(970nm + 920nm)), 

and NWI4((970nm - 880nm)/(970nm + 880nm))  (Babar et al., 2006c; Prasad et al., 2007a).  

The vegetative based indices used here are Simple Ratio (SR = 900nm / 680nm) (Tucker and 

Sellers, 1986), Red Normalized Difference Vegetation Index (RNDVI = (780nm - 670nm) / 

(780nm + 670nm)) (Raun et al., 2001), Normalized Difference Vegetation Index (NDVI = 
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(900nm - 680nm) / (900nm + 680nm)) (Tucker and Sellers, 1986), Photochemical Reflectance 

Index (PRI = (531nm - 570nm) / (531nm + 570nm)) (Penuelas et al., 1997a), and Pigment 

Specific Simple Ratio Chlorophyll-a (PSSRa = 800nm / 680nm) (Blackburn, 1999). PSSRa 

specifically measures chlorophyll-a content but has been used for estimating vegetative 

biomass (Babar et al., 2006c). The indices used here estimate canopy nitrogen status were the 

Oryza Nitrogen Index (ONI = 810nm / 560nm) (Xue et al., 2004) and the Dry Zea Nitrogen 

Index (DZNI = 575nm / 526nm) (Zhao et al., 2003).  

 

Statistical Analysis   

Collected data was adjusted for maturity blocks, as well as days to heading by 

restricted maximum likelihood (REML) models. Analysis of variance (ANOVA), Student’s t-

test, and Pearson’s correlation coefficients were calculated using JMP Version 11 statistical 

software (SAS Inst, 2011). Checks were used to estimate broad sense heritability by REML 

models with rows, and columns as fixed effects and genotypes as random effects.    

 

Csr Selection of High Yielding Accessions  

Subsets of accessions were selected based on yields and CSR values. A subset of the 

25% highest yielding accessions (HY25) and the 10% highest yielding accessions (HY10) were 

selected in each treatment both years. For each CSR index at each growth stage, 25% of the 

plots (CSR25) were selected to represent accessions having values presumably associated with 

increased grain yield. Thus, accessions were chosen with the highest 25% index values for 

NDVI, RNDVI, PRI, PSSRa, SR, and ONI and the lowest 25% index values for WI, NWI1, 
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NWI2, NWI3, NWI4 and DZNI. Average yield from a random selection of 135 (25%) 

accessions, repeated 1000 times, was calculated for comparison to the CSR25 yield values. 

Bootstrapping at a 95% confidence was used to determine significance of yield increase due 

to selection.  

 

RESULTS 

Analysis of Grain Yield 

Terminal drought conditions had significant effects on yields in both 2011 and 2012 

(Table 3.1). Lines in the IR treatments produced significantly higher yields than the DR 

treatment and the average of yields of all lines both treatments was larger in 2011 than 2012 

(p < 0.05) (Table 3.1). The average yields of all lines in IR were 5795.22 kg/ha in 2011 and 

4503.95 kg/ha in 2012, while in DR they were 5376.78 kg/ha and 3697.30 kg/ha in 2011 and 

2012, respectively.  The heritability of yield was 0.64 and 0.54 in 2011 IR and DR, 

respectively, and 0.3 and 0.25 in 2012 IR and DR, respectively.  

 

Csr Heritabliity and Changes by Growth Stage 

Heritability (H) of CSR indices ranged from 0.0 at heading in 2012 DR to 0.68 at 

heading in 2011 DR. Heritabilities of RNDVI at Hd in 2011DR and at Bt in 2012 IR and DR 

were higher than that of yield in both years. Heritabilities of DZNI at most of growth stages 

over two years were higher than that of yield in 2012 (Tables 3.1 and 3.2). Heritabilities of 

WI and NWI1-NWI4 varied from different growth stages in the two treatments both years 

(Tables 3.2).  All Water based CSR indices recorded in 2011 DR at HD had higher H than 



79 

 

 

 

yield and  NWI3 had H equal to yield H in 2012 IR at anthesis.  No other water based CSR 

heritabilities were larger than their respective yield H.  In 2011, NDVI and RNDVI were the 

only vegetative indices to have H higher than yield H in DR at HD.  All vegetative biomass 

and nitrogen status related indices had higher H than yield H in 2012 IR at Bt, but not at other 

growth stages (Tables 3.1 and 3.2).  PRI, NDVI, RNDVI and DZNI had higher heritabilities 

than yield in 2012 DR booting and anthesis growth stages but not heading or grain filling. 

Overall, NDVI and RNDVI were found to have heritabilities in three of the four trials in at 

least one growth stage. The water based NWI3 had H greater than yield H in two trials, as did 

the vegetative biomass index PRI and nitrogen status based DZNI.  

CSR indices of all lines showed significant differences between irrigated and terminal 

drought treatments in all growth stages in both years except for DZNI in 2011 at anthesis or 

ONI and PRI in 2011 at heading (Table 3.3). At most growth stages measured each year 

accessions had significantly higher values in DR versus IR for WI, NWI-1, NWI-2, NWI-3, 

NWI-4, and DZNI and lower values in DR than IR for PRI, NDVI, Red NDVI, PSSRa, SR 

and ONI.  At heading in 2011, the water indices were significantly higher in the IR treatment 

than DR and the vegetation index PRI showed no difference between IR and DR treatments.   

In 2012, the highest values for the water related CSR indices (WI, NWI-1, NWI-2, NWI-3 

and NWI-4) were recorded at booting and the lowest at heading, followed by an increase from 

heading to grain-filling. The two sets of readings taken in 2011 follow this trend with an 

increase in CSR values from heading to anthesis. Photochemical (PSSRa and PRI) and 

vegetative biomass related indices (NDVI, Red NDVI and SR) generally decreased 

throughout the growing season in both years. ONI increased during the early season then 



80 

 

 

 

decreased after heading. DZNI, in contrast, decreased during the early season then increased 

after heading (Table 3.3).  

 

Correlation Between CSR Indices and Yield  

Pearson’s correlation coefficients between yield and CSR indices were significant (P < 

0.001) at all growth stages in IR and DR each year (Table 3.4). WI, NWI1, NWI2, NWI3, 

NWI4, and DZNI were consistently negatively correlated with yield, and PRI, RNDVI, 

NDVI, PSSRa, SR and ONI were positively correlated with yields. No single index had 

consistently higher associations with yields than other indices. Water indices (WI, NWI1, 

NWI2, NWI3, and NWI4) showed similar correlation coefficients ranging from -0.20 at 

heading in 2011 IR to -0.70 at anthesis in 2012 DR. Vegetative and photochemical indices 

(SR, NDVI, RNDVI, PRI, PSSRa) also showed similar correlation coefficients ranging from 

0.16 at heading in 2011 IR to 0.71 at grain-filling in 2012 IR (Table 3.4). 

In general, correlation increased during the growing season with the most significant 

correlations occurring at anthesis, followed by GF in 2012. The GF growth stage had the 

highest correlations for RNDVI in 2012 IR and DR, for NDVI in 2012 IR, and for DZNI in 

2012 DR. Water based indices were more highly correlated with yields in the irrigated 

treatments than the terminal drought at all readings except at booting in 2012 (Table 3.4). 

 

CSR Based Selections  

CSR25 selections encompassed 32% to 55% of the highest 25% yielding accessions 

(HY25) and 37% to 86% of the top 10% yielding genotypes (HY10). The proportion of 
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genotypes selected by both HY25 and CSR25 in DR treatments was higher than in IR 

treatments at both growth stages in 2011, except for PRI and ONI at anthesis. HY25 selections 

in 2012 found both terminal drought and irrigated treatments to select similar percentages by 

CSR25. For the 10% highest yielding accessions, the DR treatment had much higher selection 

rates than the IR treatment at anthesis in 2011 and at all growth stages in 2012. CSR25 

selections made after heading identified a larger proportion of HY25 than earlier growth stages 

for most indices. NWI2 at anthesis had the highest HY10 selection rates at 86% and PRI at 

grain filling had the highest HY10 selection rates at 85%, both in the DR treatment in 2012 

(Table 3.5).  

Accessions identified by CSR had average yields significantly higher than accessions 

selected at random. Accessions selected using CSR measured at anthesis consistently had the 

largest gain in yield compared to the random selections. In 2011, the yield increase of CSR25 

at anthesis was 9.1% and 10.2% above randomly selected accessions in IR and DR, 

respectively. In 2012 the average yield increase for accessions selected by CSR at anthesis 

was 20.3% in IR and 20.8% in DR. Accessions selected based on the PRI showed the greatest 

yield increases in 2011, 10.7% for IR and 12.9% for DR. In 2012, accessions selected with 

PSSRa had 20.9% greater yield than randomly selected accessions in the IR and those 

selected with NWI2 had showed a 24.4% increase over the random sample.  
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DISCUSSION 

Genetic Variation of CSR Indices 

Evaluation and selection of high yielding wheat genotypes using CSR indices have 

been successfully applied in earlier studies (Aparicio et al., 1999; Babar et al., 2006b; a; 

Prasad et al., 2007a; Gutierrez et al., 2010b). Previous studies evaluated groups of fewer than 

50 genotypes, consisting either of advanced breeding lines, elite cultivars or bi-parental 

populations. In the present study, we found that CSR indices were able to distinguish high 

yielding genotypes from a large and diverse collection of wheat accessions that included 

cultivars, breeding lines, and landraces. 

Water based indices (WI, NWI1, NWI2, NWI3 and NWI4) responded as expected in 

each treatment and were negatively correlated with yields at all growth stages. Water indices 

use the 970-nm wavelength minor water absorption band and are indicators of plant water 

status. Increases in the water index values indicate a decrease in the amount of water within 

the canopy, while decreases in water indices indicate increased water status. The trend of 

increasing water index values from heading to grain-filling follows the expected decrease in 

canopy water as the growing season progressed, which has been reported in previous studies 

(Aparicio et al., 1999; Babar et al., 2006b; a; Prasad et al., 2007a; Gutierrez et al., 2010b). 

RNDVI, NDVI, SR, PRI and PSSRa, were expected to behave similarly since they are used as 

indicators of biomass (Aparicio et al., 1999; Babar et al., 2006b; a; Prasad et al., 2007b; 

Gutierrez et al., 2010b). These indices estimate vegetative biomass or photosynthesis-related 

chemical content through measurements of chlorophylls (RNDVI, NDVI and SR) or 

xanthophyll (PRI), which absorb at 670-680 nm and 531 nm wavelengths, respectively. Near 
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infrared wavelengths (700-1300 nm) are used in each of vegetative indices, except PRI, 

because NIR wavelengths are not absorbed by plant material and have a higher level of 

reflectance.  The vegetative biomass indices assume that the leaf tissue area is related to 

photosynthetic tissue and, consequently, decreases as the plants mature, leaves senesce, and 

photochemicals are recycled.  

The difference between IR and DR index values for CSR was greater in 2012 than in 

2011. This result could be due to the higher precipitation in 2011, which would reduce the 

impact of terminal drought. In a study by Gutierrez et al., (2010b), the change in CSR index 

values as the season progressed was higher in water stressed treatments than well irrigated 

treatments, as found in the present study. Over the growing season, the more rapid and larger 

change in CSR indices seen in the DR treatment of this experiment indicates the water stress 

response. Water stressed plants need to rely almost entirely on nutrient and water reserves 

stored in stems and leaves, while non-stressed plants are still able to take up available water 

and nutrients during the reproductive growth stage. Thus stored water and nutrients are 

depleted more rapidly or are not as abundant in terminal drought treatments compared to 

irrigated treatments. The cumulative effects of lower levels of biomass, photosynthetic 

chemicals, and canopy are reflected in total yields (Foulkes et al., 2011). 

A common finding in several past studies is the inconsistency between experiments of 

correlation and regression analysis of vegetative and photochemical related indices (Babar et 

al., 2006c; Prasad et al., 2007b; Gutierrez et al., 2010b). Gutierrez et al. (2010b) reported 

water indices to be more consistent in both irrigated and water stressed treatments, but 

suggested the use of vegetative indices in high-temperature treatments. Babar et al. (2006b) 
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also found that CSR indices were more associated with final yields when recorded after 

heading, and CSR measurements from multiple growth stages were more highly correlated 

with yields than each growth stage taken singly. 

Here, we found CSR indices to be more highly correlated with yields in the later 

growth stages of anthesis and GF.  But, we did not find vegetative indices to be more highly 

associated with yields in the DR treatments than the IR except for 2011 anthesis, and 

2012booting.  It is possible that the terminal drought conditions used in this study were not 

adequate to have this effect. 

 

Indirect Selection of Yield Using Csr 

Estimates of broad sense heritability in the present study were lower than those 

reported previously (Babar et al., 2006b; Prasad et al., 2007a; b). Prasad et al. (2007a) found 

CSR heritabilities of RNDVI, SR, WI, NWI1, NWI2, NWI3 and NWI4 to range from 0.48 to 

0.78, with a majority of the heritability values exceeding 0.5 across multiple growth stages, 

years and environments.  Similarly, Babar et al. (2006b) found heritabilities of the water 

indices as well as WI and NDVI of 0.6 in a majority of their trials.  However, the low 

heritabilities in the present study might be expected when evaluating large numbers of diverse 

genotypes in unreplicated plots which is inherently imprecise  (Federer and Ragavarao, 1975). 

Yet, even with low heritabilities, indirect selection tools can still be valuable to breeders if the 

measurement being used for indirect selection has a higher heritability than the trait of interest 

(Babar et al., 2006b; Prasad et al., 2007a; b). Here we found that CSR indices NDVI and 
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RNDVI taken at or prior to HD and at Ant in DR treatment in 2012 had higher heritabilities 

than yield in three of our four trials and are possibly suitable for indirect selection.   

  When considering correlation of yields with CSR indices, selections at Ant or GF 

would seem to be the most accurate as these CSR readings were more highly correlated with 

yield in both IR and DR each year.  However, in the present study CSR selections in DR were 

better than in IR at identifying the highest yielding genotypes. In optimal water conditions 

plants are able to remain green for the maximum amount of time. Yield potential has been 

shown to be related to water status and biomass, but in irrigated conditions these traits could 

be masked by the longevity of green tissue survival. In DR, genotypes that remain green 

longer will have lower water index values, and higher biomass/photochemical index values at 

later growth stages. These genotypes will likely have the highest biomass/photochemical 

related yield potential. Therefore, selection using CSR indices under DR allows for more 

efficient selection of genotypes that remain green longer and have a higher chance of 

increased yields than genotypes that lose green tissue quickly in DR.  

In comparison to previous studies that evaluated yield selection by CSR indices, the 

selections made here match closest to the high temperature water stressed treatment used by 

Gutierrez et al. (2010a), with ambient daily temperature at anthesis of 30
o
 to 35

o
 C. They 

reported average selection efficiencies of 80% and 100% using NWI1 and NWI3, 

respectively. Here we found the CSR indices in DR able to identify 82% of the highest 10% 

yielding accessions at anthesis. We observed lower selection rates of the 25% highest yielding 

genotypes than previously reported (Babar et al., 2006a; Prasad et al., 2007b; Gutierrez et al., 

2010b), but comparable selection rates of the highest 10% yielding genotypes with water, 
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vegetative and photochemical based indices. In this study, CSR indices were found to be 

suitable for indirect selection in terminal drought environments because of their high 

correlation with yield, ability to identify a large proportion of the highest yielding plots at the 

anthesis growth stage and significantly increase average yields of selected accessions over 

random selection. 

 

CONCLUSIONS 

Developing improved cultivars by introducing superior traits or combinations of traits 

that would benefit wheat growers is the most important job for breeders worldwide. Currently, 

the genetic gain achieved by breeders is not adequate to keep pace with the growing world 

population. Some researchers have speculated that the reduction in the rate of yield gain in 

wheat is because the crop is approaching its theoretical yield limit (Foulkes et al., 2011; 

Reynolds et al., 2012; Cavanagh et al., 2013). It was shown in an analysis of multiple wheat 

genomes that during the domestication and subsequent development of modern cultivars the 

diversity of alleles was greatly reduced, creating a genetic bottle-neck for breeders (Rostoks et 

al., 2006; Brenchley et al., 2012; Cavanagh et al., 2013). Achieving sufficient genetic gains 

will require introduction of new alleles to broaden the genetic pool available to breeders. An 

underutilized resource that could be a source of new alleles are germplasm repositories such 

as the NSGC (Feuillet et al., 2008; Fischer and Edmeades, 2010; Fischer, 2011). 

Identifying alleles that could increase the rate of genetic gain in wheat would require 

screening large numbers of wheat genotypes. Canopy spectral reflectance is a tool that could 

greatly decrease the time needed to screen new genotypes. Reducing the number of genotypes 
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early in the breeding process would significantly reduce the costs of cultivar development. 

Based on correlations with yield and selections made using CSR, the Ant and GF growth 

stages are most suitable for indirect selections.  Selections made here by CSR indicate that the 

best results would be obtained in drought conditions.  This study also suggests that additional 

replicated trails, using a smaller number of accessions may improve our results and is needed 

to validate above findings.   



88 

 

 

 

REFERENCES: 

Aparicio, N., D. Villegas, J. Casadesus, J.L. Araus, and C. Royo. 1999. Spectral vegetation 

indices as nondestructive tools for determining durum wheat yield. Agron. J. 

92(202000): 83–91. 

Araus, J.L. 2002. Plant breeding and drought in c3 cereals: what should we breed for? Ann. 

Bot. 89(7): 925–940. 

Araus, J., and J. Cairns. 2014. Field high-throughput phenotyping: the new crop breeding 

frontier. Trends Plant Sci. 19(1): 52–61. 

Arbuckle, J.G., L.S. Prokopy, T. Haigh, J. Hobbs, T. Knoot, C. Knutson, A. Loy, A.S. Mase, 

J. McGuire, L.W. Morton, J. Tyndall, and M. Widhalm. 2013. Climate change beliefs, 

concerns, and attitudes toward adaptation and mitigation among farmers in the 

Midwestern United States. Clim. Change (117): 943–950. 

Babar, M. A., M. van Ginkel, a. R. Klatt, B. Prasad, and M.P. Reynolds. 2006a. The potential 

of using spectral reflectance indices to estimate yield in wheat grown under reduced 

irrigation. Euphytica 150(1-2): 155–172. 

Babar, M. A., M.P. Reynolds, M. van Ginkel, a. R. Klatt, W.R. Raun, and M.L. Stone. 2006b. 

Spectral reflectance indices as a potential indirect selection criteria for wheat yield under 

irrigation. Crop Sci. 46(2): 578. 

Babar, M. A., M.P. Reynolds, M. van Ginkel, a. R. Klatt, W.R. Raun, and M.L. Stone. 2006c. 

Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, 

and canopy temperature in wheat. Crop Sci. 46(3): 1046. 

Blackburn, G.A. 1999. Relationships between spectral reflectance and pigment concentrations 

in stacks of deciduous broadleaves. Remote Sens. Environ. 70: 224–237. 



89 

 

 

 

Brenchley, R., M. Spannagl, M. Pfeifer, G.L.A. Barker, R.D. Amore, A.M. Allen, N. 

McKenzie, M. Kramer, A. Kerhornou, D. Bolser, S. Kay, D. Waite, M. Trick, I. 

Bancroft, Y. Gu, N. Huo, M.-C. Luo, S. Sehgal, B. Gill, S. Kianian, O. Anderson, P. 

Kersey, J. Dvorak, W.R. Mccombie, A. Hall, K.F.X. Mayer, K.J. Edwards, M.W. Bevan, 

N. Hall, and R. D’Amore. 2012. Analysis of the bread wheat genome using whole-

genome shotgun sequencing. Nature 491(7426): 705–710. 

Cabrera-Bosquet, L., J. Crossa, J. Von Zitzewitz, M.D. Serred, and L. Araus. 2012. High-

throughput phenotyping and genomic selection : the frontiers of crop breeding converge 

genomic selection : a step forward. J. Integr. Plant Biol. 54(5): 312–320. 

Cavanagh, C.R., S. Chao, S. Wang, B.E. Huang, S. Stephen, S. Kiani, K. Forrest, C. 

Saintenac, G.L. Brown-Guedira, A. Akhunova, D. See, G. Bai, M. Pumphrey, L. Tomar, 

D. Wong, S. Kong, M. Reynolds, M.L. da Silva, H. Bockelman, L. Talbert, J. a 

Anderson, S. Dreisigacker, S. Baenziger, A. Carter, V. Korzun, P.L. Morrell, J. 

Dubcovsky, M.K. Morell, M.E. Sorrells, M.J. Hayden, and E. Akhunov. 2013. Genome-

wide comparative diversity uncovers multiple targets of selection for improvement in 

hexaploid wheat landraces and cultivars. Proc. Natl. Acad. Sci.  110(20): 8057–8062. 

Federer, W . T . and D . Raghavarao. 1975. On augmented designs biometrics, 31(1): 29–35. 

International Biometric Society retrieved from  : http://www.jstor.org/stable/2529707.  

Fedoroff, N. V, D.S. Battisti, R.N. Beachy, P.J.M. Cooper, D. A Fischhoff, C.N. Hodges, 

V.C. Knauf, D. Lobell, B.J. Mazur, D. Molden, M.P. Reynolds, P.C. Ronald, M.W. 

Rosegrant, P. a Sanchez, A. Vonshak, and J.-K. Zhu. 2010. Radically rethinking 

agriculture for the 21st century. Science 327(5967): 833–834. 

Feng, W., Y. Zhu, Y. Tian, W. Cao, X. Yao, and Y. Li. 2011. Monitoring leaf nitrogen 

accumulation in wheat with hyper-spectral remote sensing. Acta Ecol. Sin. 28(1): 23–32. 



90 

 

 

 

Feuillet, C., P. Langridge, and R. Waugh. 2008. Cereal breeding takes a walk on the wild side. 

Trends Genet. 24(1): 24–32. 

Fischer, R. 2011. Wheat physiology: a review of recent developments. Crop Pasture Sci.: 95–

114. 

Fischer, R. A., and G.O. Edmeades. 2010. Breeding and Cereal Yield Progress. Crop Sci. 

50(Supplement 1): S–85–S–98. 

Foulkes, M.J., G. a Slafer, W.J. Davies, P.M. Berry, R. Sylvester-Bradley, P. Martre, D.F. 

Calderini, S. Griffiths, and M.P. Reynolds. 2011. Raising yield potential of wheat. III. 

Optimizing partitioning to grain while maintaining lodging resistance. J. Exp. Bot. 62(2): 

469–86. 

Graybosch, R. a., and C.J. Peterson. 2010. Genetic improvement in winter wheat yields in the 

great plains of north america, 1959–2008. Crop Sci. 50(5): 1882–1890. 

Gutierrez, M., M.P. Reynolds, and A.R. Klatt. 2010a. Association of water spectral indices 

with plant and soil water relations in contrasting wheat genotypes. J. Exp. Bot. 61(12): 

3291–3303. 

Gutierrez, M., M.P. Reynolds, W.R. Raun, M.L. Stone, and A.R. Klatt. 2010b. Spectral water 

indices for assessing yield in elite bread wheat genotypes under well-irrigated, water-

stressed, and high-temperature conditions. Crop Sci. 50(1): 197–214. 

Hansen, P. 2002. Predicting grain yield and protein content in winter wheat and spring barley 

using repeated canopy reflectance measurements and partial least squares regression. J. 

Agric. Sci. 139: 307–318. 

Inoue, Y., and M.S. Moran. 1998. Remote sensing modeling analysis of spectral 

measurements in paddy field for predicting rice growth and yield based on a simple crop 

simulation model. Plant Prod.Sci 1(4): 269–279. 



91 

 

 

 

Li, P., J. Chen, and P. Wu. 2011. Agronomic characteristics and grain yield of 30 spring 

wheat genotypes under drought stress and nonstress conditions. Agron. J. 103(6): 1619–

1628. 

Malcolm, S., E. Marshall, M. Aillery, P. Heisey, M. Livingston, and K. Day-rubenstein. 2012. 

Agricultural adaptation to a changing climate : Economic and environmental 

implications vary by U. S. region. USDA-ERS, Econ. Res. Rep. (136): 1–76. 

McCaig, T.N., and I. Romagosa. 1989. Measurement and Use of Excised-Leaf Water Status 

in Wheat. Crop Sci. 29(5): 1140–1145. 

Penuelas, J., I. Filella, C. Biel, l. Serrano, and r. Savé. 1993. The reflectance at the 950–970 

nm region as an indicator of plant water status. Int. J. Remote Sens. 14: 1887–1905. 

Penuelas, J., J. Llusia, J. Pinol, and I. Filella. 1997a. Photochemical reflectance index and leaf 

photosynthetic radiation-use-efficiency assessment in Mediterranean trees. Int. J. Remote 

Sens. 18: 2863–2868. 

Penuelas, J., J. Pinol, R. Ogaya, and I. Filella. 1997b. Estimation of plant water concentration 

by the reflectance Water Index WI (R900/R970). Int. J. Remote Sens. 18: 2869–2875. 

Pingali, P.L. 2012. Green revolution: impacts, limits, and the path ahead. Proc. Natl. Acad. 

Sci.  109(31): 12302–12308. 

Prasad, B., B.F. Carver, M.L. Stone, M. a. Babar, W.R. Raun, and a. R. Klatt. 2007a. Genetic 

Analysis of Indirect Selection for Winter Wheat Grain Yield Using Spectral Reflectance 

Indices. Crop Sci. 47(4): 1416–1425. 

Prasad, B., B.F. Carver, M.L. Stone, M.A. Babar, W.R. Raun, and A.R. Klatt. 2007b. 

Potential Use of Spectral Reflectance Indices as a Selection Tool for Grain Yield in 

Winter Wheat under Great Plains Conditions. Crop Sci. 47: 1426. 



92 

 

 

 

Raun, W., J. Solie, and G. Johnson. 2001. In-season prediction of potential grain yield in 

winter wheat using canopy reflectance. Agron. J. 93: 131. 

Ray, D.K., N.D. Mueller, P.C. West, and J. a Foley. 2013. Yield Trends Are Insufficient to 

Double Global Crop Production by 2050. PLoS One 8(6): e66428. 

Reynolds, M., J. Foulkes, R. Furbank, S. Griffiths, J. King, E. Murchie, M. Parry, and G. 

Slafer. 2012. Achieving yield gains in wheat. Plant. Cell Environ. 35(10): 1799–1823. 

Reynolds, M., M.J. Foulkes, G. a Slafer, P. Berry, M. a J. Parry, J.W. Snape, and W.J. Angus. 

2009. Raising yield potential in wheat. J. Exp. Bot. 60(7): 1899–1918. 

Rostoks, N., L. Ramsay, K. MacKenzie, L. Cardle, P.R. Bhat, M.L. Roose, J.T. Svensson, N. 

Stein, R.K. Varshney, D.F. Marshall, A. Graner, T.J. Close, and R. Waugh. 2006. Recent 

history of artificial outcrossing facilitates whole-genome association mapping in elite 

inbred crop varieties. Proc. Natl. Acad. Sci.  103(49): 18656–18661. 

Stamp, P., and R. Visser. 2012. The twenty-first century, the century of plant breeding. 

Euphytica 186(3): 585–591. 

Teal, R., B. Tubana, and K. Girma. 2006. In-season prediction of corn grain yield potential 

using normalized difference vegetation index. Agron. J. 98: 1488. 

Tucker, C., and P. Sellers. 1986. Satellite remote sensing of primary production. Int. J. 

Remote Sens. 7: 1395–1416. 

Wright, D., V. Rasmussen, R. Ramsey, D. Baker, and J. Ellsworth. 2004. Canopy Reflectance 

Estimation of Wheat Nitrogen Content for Grain Protein Management. GIScience 

Remote Sens. 41(4): 287–300. 

Wright, D., and G. Ritchie. 2003. Managing grain protein in wheat using remote sensing. 

Online J. Sp. Commun. 3(1992). 



93 

 

 

 

van Ginkel, M., and D. Calhoun. 1997. Plant traits related to yield of wheat in early, late, or 

continuous drought conditions. Euphytica (100): 109–121. 

Xue, L., W. Cao, W. Luo, T. Dai, and Y. Zhu. 2004. Monitoring leaf nitrogen status in rice 

with canopy spectral reflectance. Agron. J. (96): 135–142. 

Zhang, J., J. Chen, B.C. Bowman, K. O’Brian, J. Marshall, and J.M. Bonman. 2014. 

Association Mapping of Hagberg Falling Number in Hard White Spring Wheat. Crop 

Sci. 54(3): 1243–1252. 

Zhao, D., K. Raja Reddy, V.G. Kakani, J.J. Read, and G. a. Carter. 2003. Corn (Zea mays L.) 

growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance 

properties as affected by nitrogen supply. Plant Soil 257(1): 205–218. 

Zhu, Y., X. Yao, Y. Tian, X. Liu, and W. Cao. 2008. Analysis of common canopy vegetation 

indices for indicating leaf nitrogen accumulations in wheat and rice. Int. J. Appl. Earth 

Obs. Geoinf. 10(1): 1–10. 

 

 

  



94 

 

 

 

Table 3.1. Grain yield, plant height, and days to heading recorded in 2011 and 2012 irrigation 

(IR) and terminal drought (DR) treatments, as well as the broad sense heritability (H). 

A)  Trait Treatment 2011 Mean H
 
 2011 2012 Mean H

 
 2012

IR 5795.22a 0.64 4503.95a 0.30

DR 5376.78b 0.54 3697.30b 0.25

IR 107.24a 0.67 105.79a 0.63

DR 109.60b 0.69 110.00b 0.73

IR 69.66a 0.88 70.96a 0.32

DR 69.33b 0.78 70.03b 0.20

Yield (kg/ha)

Height (cm)

Days to heading (Days)

Values not connected by letters indicate significant differences  p < 0.05 within 

columns  
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Table 3.2. Heritability of single CSR indices at each growth stage measured in 2011 and 2012 

irrigated (IR) and terminal drought (DR) treatments. 

Hd Ant Hd Ant Bt Hd Ant GF Bt Hd Ant GF

WI 0.28 0.44 0.57 0.27 0.27 0.20 0.27 0.26 0.21 0.05 0.17 0.14

NWI1 0.29 0.42 0.54 0.25 0.22 0.20 0.27 0.25 0.21 0.04 0.15 0.13

NWI2 0.30 0.43 0.61 0.23 0.28 0.17 0.19 0.21 0.22 0.03 0.13 0.09

NWI3 0.30 0.41 0.54 0.26 0.20 0.22 0.30 0.28 0.21 0.04 0.16 0.15

NWI4 0.32 0.44 0.59 0.26 0.26 0.19 0.23 0.24 0.21 0.03 0.14 0.11

SR 0.45 0.29 0.33 0.12 0.63 0.18 0.21 0.17 0.17 0.00 0.14 0.15

PRI 0.47 0.42 0.31 0.23 0.46 0.14 0.20 0.25 0.26 0.05 0.36 0.23

NDVI 0.25 0.44 0.65 0.22 0.51 0.24 0.21 0.22 0.61 0.07 0.28 0.11

RNDVI 0.33 0.41 0.68 0.21 0.58 0.22 0.17 0.20 0.57 0.05 0.28 0.09

PSSRa 0.45 0.31 0.34 0.11 0.60 0.17 0.19 0.15 0.15 0.00 0.13 0.18

ONI 0.22 0.31 0.27 0.19 0.66 0.20 0.29 0.24 0.16 0.04 0.20 0.19

DZNI 0.46 0.50 0.36 0.27 0.49 0.15 0.22 0.28 0.33 0.06 0.37 0.23

2011 IR 2011 DR 2012 IR 2012 DR
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Table 3.3:  Average CSR index value and standard deviations of measurements taken in 2011 

and 2012 irrigated (IR) and terminal drought (DR) treatments. 

Index Treatment Booting Heading Anthesis Grain Filling 

      WI 2011:  IR / 0.165 ± 0.014a 0.181 ± 0.023a / 

 
2011:  DR / 0.163 ± 0.018b 0.199 ± 0.027b / 

 
2012:  IR 0.71 ± 0.109a 0.162 ± 0.014a 0.182 ± 0.026a 0.222 ± 0.032a 

  2012:  DR 0.787 ± 0.058b 0.191 ± 0.025b 0.201 ± 0.027b 0.278 ± 0.038b 

      NWI1 2011:  IR / -0.717 ± 0.021a -0.695 ± 0.032a / 

 
2011:  DR / -0.721 ± 0.026b -0.669 ± 0.039b / 

 
2012:  IR -0.174 ± 0.078a -0.722 ± 0.021a -0.693 ± 0.037a -0.638 ± 0.043a 

  2012:  DR -0.12 ± 0.037b -0.68 ± 0.035b -0.666 ± 0.037b -0.566 ± 0.047b 

      NWI2 2011:  IR / -0.719 ± 0.021a -0.694 ± 0.033a / 

 
2011:  DR / -0.722 ± 0.026b -0.667 ± 0.042b / 

 
2012:  IR -0.17 ± 0.081a -0.717 ± 0.024a -0.687 ± 0.042a -0.623 ± 0.05a 

  2012:  DR -0.119 ± 0.039b -0.675 ± 0.037b -0.657 ± 0.04b -0.545 ± 0.049b 

      NWI3 2011:  IR / -0.71 ± 0.021a -0.687 ± 0.032a / 

 
2011:  DR / -0.713 ± 0.026b -0.664 ± 0.038b / 

 
2012:  IR -0.169 ± 0.075a -0.716 ± 0.02a -0.687 ± 0.035a -0.635 ± 0.041a 

  2012:  DR -0.117 ± 0.034b -0.675 ± 0.035b -0.661 ± 0.036b -0.568 ± 0.045b 

      NWI4 2011:  IR / -0.72 ± 0.021a -0.697 ± 0.032a / 

 
2011:  DR / -0.724 ± 0.026b -0.672 ± 0.04b / 

 
2012:  IR -0.172 ± 0.077a -0.722 ± 0.022a -0.695 ± 0.038a -0.635 ± 0.045a 

  2012:  DR -0.121 ± 0.037b -0.681 ± 0.036b -0.666 ± 0.038b -0.562 ± 0.047b 

      SR 2011:  IR / 20.579 ± 6.829a 12.633 ± 5.856a / 

 
2011:  DR / 19.284 ± 5.105b 10.059 ± 4.139b / 

 
2012:  IR 11.119 ± 4.001a 12.02 ± 3.984a 6.997 ± 3.365a 3.992 ± 2.239a 

  2012:  DR 8.077 ± 2.782b 7.858 ± 3.486b 4.91 ± 2.191b 1.816 ± 0.865b 

      PRI 2011:  IR / -0.023 ± 0.014a -0.062 ± 0.026a / 

 
2011:  DR / -0.023 ± 0.016a -0.065 ± 0.026b / 

 
2012:  IR -0.145 ± 0.021a -0.144 ± 0.021a -0.165 ± 0.036a -0.198 ± 0.036a 

  2012:  DR -0.154 ± 0.017b -0.162 ± 0.024b -0.185 ± 0.028b -0.22 ± 0.017b 

      NDVI 2011:  IR / 0.897 ± 0.032a 0.82 ± 0.086a / 

 
2011:  DR / 0.892 ± 0.035b 0.785 ± 0.092b / 

 
2012:  IR 0.812 ± 0.082a 0.829 ± 0.063a 0.695 ± 0.143a 0.516 ± 0.199a 

  2012:  DR 0.744 ± 0.129b 0.732 ± 0.119b 0.613 ± 0.144b 0.243 ± 0.163b 

      RNDVI 2011:  IR / 0.861 ± 0.059a 0.808 ± 0.093a / 

 
2011:  DR / 0.887 ± 0.04b 0.766 ± 0.104b / 

 
2012:  IR 0.817 ± 0.071a 0.809 ± 0.078a 0.653 ± 0.172a 0.444 ± 0.237a 

  2012:  DR 0.748 ± 0.115b 0.702 ± 0.133b 0.56 ± 0.161b 0.144 ± 0.17b 

      PSSRa 2011:  IR / 19.909 ± 6.568a 12.19 ± 5.659a / 

 
2011:  DR / 18.813 ± 5b 9.544 ± 4.053b / 

 
2012:  IR 11.162 ± 3.845a 11.442 ± 4.054a 6.61 ± 3.373a 3.64 ± 2.207a 

  2012:  DR 8.122 ± 2.696b 7.413 ± 3.384b 4.486 ± 2.129b 1.569 ± 0.834b 

      ONI 2011:  IR / 9.027 ± 2.468a 6.365 ± 2.215a / 

 
2011:  DR / 8.934 ± 2.028a 5.719 ± 1.706b / 

 
2012:  IR 5.585 ± 1.552a 6.515 ± 1.479a 4.603 ± 1.324a 3.075 ± 0.834a 

  2012:  DR 4.554 ± 1.164b 4.911 ± 1.412b 3.821 ± 0.933b 2.122 ± 0.458b 

      DZNI 2011:  IR / 1.098 ± 0.039a 1.199 ± 0.08a / 

 
2011:  DR / 1.09 ± 0.043b 1.203 ± 0.078a / 

 
2012:  IR 1.52 ± 0.109a 1.479 ± 0.08a 1.578 ± 0.141a 1.701 ± 0.146a 

  2012:  DR 1.531 ± 0.086b 1.529 ± 0.084b 1.632 ± 0.116b 1.778 ± 0.076b 

*Values not connected by the same letter are significantly different; p < 0.05  
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Table 3.4. Pearson’s correlation coefficient of yield and CSR indices at different growth 

stages in two irrigation regimes over two growing seasons. Growth stages:  Bt, booting; Hd, 

heading; Ant, anthesis; and GF, grain-filling. 

 

Index 

2011 

IR 

(Hd) 

2011 

IR 

(Ant) 

2011 

DR 

(Hd) 

2011 

DR 

(Ant) 

2012 

IR (Bt) 

2012 

IR 

(Hd) 

2012 

IR 

(Ant) 

2012 

IR 

(GF) 

2012 

DR 

(Bt) 

2012 

DR 

(Hd) 

2012 

DR 

(Ant) 

2012 

DR 

(GF) 

WI -0.21 -0.41 -0.25 -0.39 -0.32 -0.48 -0.63 -0.58 -0.43 -0.41 -0.55 -0.45 

NWI1 -0.21 -0.41 -0.25 -0.38 -0.31 -0.48 -0.63 -0.58 -0.44 -0.41 -0.56 -0.46 

NWI2 -0.21 -0.42 -0.29 -0.37 -0.37 -0.52 -0.66 -0.62 -0.44 -0.44 -0.59 -0.50 

NWI3 -0.20 -0.40 -0.24 -0.35 -0.30 -0.46 -0.62 -0.56 -0.42 -0.40 -0.54 -0.43 

NWI4 -0.20 -0.41 -0.27 -0.35 -0.36 -0.51 -0.64 -0.60 -0.44 -0.42 -0.57 -0.47 

SR 0.22 0.37 0.27 0.43 0.54 0.54 0.64 0.61 0.26 0.37 0.53 0.53 

PRI 0.25 0.48 0.39 0.44 0.53 0.58 0.69 0.67 0.29 0.41 0.54 0.51 

NDVI 0.25 0.46 0.28 0.39 0.57 0.56 0.69 0.70 0.26 0.39 0.49 0.45 

RNDVI 0.16 0.46 0.30 0.41 0.57 0.57 0.70 0.71 0.25 0.41 0.52 0.53 

PSSRa 0.22 0.38 0.28 0.44 0.56 0.55 0.65 0.62 0.26 0.39 0.56 0.55 

ONI 0.26 0.40 0.30 0.34 0.56 0.51 0.59 0.50 0.22 0.32 0.40 0.28 

DZNI -0.24 -0.48 -0.38 -0.41 -0.50 -0.58 -0.70 -0.66 -0.30 -0.42 -0.40 -0.47 

Growth stages:  Bt, booting; Hd, heading; Ant, anthesis; and GF, grain-filling. 
All values significant at p < 0.001  
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Table 3.5. Percentage of the HY25% genotypes selected by CSR25% and percent yield gain compared to the mean yield of a random 

selection of 25% (n = 135) of all genotypes (MeanRand25%). Values within ‘( )’ are the percentage of HY10% genotypes selected by 

CSR25%. 

Expe rim e nt 2 0 11 IR 2 0 11 D R  2 0 12  IR

M e a n R a n d 2 5 % (kg / ha ) 5779 5374 4508 3700

Gro wth S ta g e Hd
Ga in 

%
A nt

Ga in 

%
Hd

Ga in 

%
A nt

Ga in 

%
A nt

Ga in 

%
GF

Ga in 

%
A nt

Ga in 

%
GF

Ga in 

%

WI2 5 % 33 (55) 6.2 40 (51) 8.8 39 (39) 5.8 45 (56) 9.9 48 (57) 20.4 48 (54) 18.8 53 (84) 22.5 48 (78) 17.6

N WI12 5 % 33 (55) 6.2 40 (51) 8.8 39 (39) 5.7 45 (56) 9.8 48 (57) 20.4 48 (54) 18.8 53 (84) 22.5 48 (78) 17.6

N WI2 2 5 % 32 (49) 5.3 38 (49) 8.5 41 (44) 6.6 42 (54) 9.3 48 (55) 20.1 51 (58) 19.9 57 (86) 24.4 49 (78) 19.2

N WI3 2 5 % 33 (55) 6.4 38 (49) 8.8 38 (37) 5.6 43 (54) 9.3 46 (51) 19.4 48 (52) 18.5 53 (82) 21.5 45 (71) 15.6

N WI4 2 5 % 32 (51) 5.9 39 (49) 8.5 41 (44) 6.8 42 (54) 8.9 49 (57) 20.2 51 (58) 19.3 55 (84) 23.2 47 (78) 17.6

S R 2 5 % 34 (49) 8.1 38 (51) 8.1 40 (49) 5.7 44 (59) 10.9 49 (58) 20.7 48 (54) 18.1 50 (84) 19.6 51 (83) 15.7

P R I2 5 % 32 (45) 5.1 46 (58) 10.7 46 (60) 10.5 44 (63) 12.9 47 (58) 19.8 47 (52) 17.8 42 (76) 21.4 50 (80) 19.2

N D VI2 5 % 32 (51) 7.8 38 (51) 8.7 41 (50) 6.2 44 (57) 10.4 49 (58) 20.7 48 (54) 18.1 50 (84) 19.6 53 (83) 15.7

R N D VI2 5 % 33 (43) 5.5 46 (60) 8.8 48 (56) 6.8 49 (70) 10.4 49 (58) 20.6 46 (52) 18.2 50 (82) 21.1 53 (85) 17.8

P S S R a 2 5 % 35 (49) 7.6 38 (53) 8.7 39 (50) 7 44 (57) 10.6 49 (57) 20.9 48 (56) 18.2 48 (82) 21.1 50 (83) 17.1

ON I2 5 % 38 (51) 8.3 44 (60) 10.1 43 (55) 7.3 41 (52) 9 49 (58) 20.1 50 (56) 19.5 45 (70) 16.1 39 (68) 10.5

D ZN I2 5 % 35 (51) 4.8 38 (51) 10.5 37 (45) 10.1 45 (61) 11.1 49 (57) 19.9 48 (56) 18.2 48 (82) 16.4 50 (83) 19.9

A v e ra g e  Ga in (%) 6.4 9.1 7 10.2 20.3 18.6 20.8 17

2 0 12  D R

*Bootstrapped yields at a 95% confidence interval (p < 0.0001)
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Chapter IV: 

Association Mapping of Yield, Grain Protein Content and Test Weight in Common 

Wheat 

ABSTRACT 

 Genome wide association studies (GWAS) are an effective method of investigating the 

genetic basis underlying traits of interest in crops. In this study we identified loci significantly 

associated with yield, grain protein (GP) content, and test weight (TW) in a panel of spring 

wheat (SW) accessions from the National Small Grains Collection wheat core subset, and 

validate significant associations by allelic analysis in a panel of winter wheat (WW) 

accessions.  The SW panel was evaluated in irrigated (IR) and drought (DR) treatments in 

2011 and 2012, while the WW panel was evaluated in IR and DR treatments in 2013.  A 

mixed linear model was used to identify significant associates using principal component 

analysis and a relationship matrix as covariates.  Empirical significance thresholds were 

determined based on the significance of the associations between RhtB1 and VrnA1 with plant 

height and days to heading, respectively.  In total, 36 loci were identified, 7 loci were 

associated with yield, 11 were associated with TW and 17 were associated with GP content in 

the SW panel.  Analysis of the average yield, TW, and GP of accessions in both SW and WW 

panels that contained the significantly associated loci confirmed four of the yield loci, six of 

the TW loci, and six of the GP loci.  The loci identified here should be studied further in 

additional germplasm to evaluate their value for breeding programs. 
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INTRODUCTION 

 Grain yield, protein content, and test weight are important agronomic traits in variety 

development of wheat and other crops. Selecting for these traits is confounded by 

environmental conditions (Reynolds et al., 2009; 2012).  Identification of QTL underlying 

traits of interest has relied mainly on bi-parental mapping populations developed by crossing 

parental lines that exhibit phenotypic differences for the trait of interest.  Genome wide 

association studies (GWAS) offer several advantages over traditional bi-parental mapping, 

including increased mapping resolution, decreased time requirements, and increased diversity 

of loci evaluated (Zhu et al., 2008).   

GWAS have become the analysis of choice for investigating complex traits in many 

crop species, including sorghum,  rice, barley, sunflower, and wheat,  (Murray et al., 2009; Jin 

et al., 2010; Roy et al., 2010; Kloth et al., 2012; Mandel et al., 2013; Zhang et al., 2014).  

Association studies have been used to identify loci controlling agronomic traits in wheat.  One 

of the first studies in wheat confirmed the locations of QTL controlling kernel morphology 

identified in previous bi-parental mapping studies and showed GWAS are suitable for 

investigating complex traits in wheat (Breseghello and Sorrells, 2006).  A comprehensive 

analysis of quality traits in soft winter wheat found multiple significant marker-trait 

associations for kernel weight, grain protein content, flour sedimentation, test weight, and 

starch content (Reif et al., 2011a, b).  Studies of pre-harvest sprouting resistance and falling 

numbers showed that specific traits could be targeted for analysis by GWAS (Jaiswal et al., 

2012; Zhang et al., 2014).  Environment-specific studies have been used in an attempt to 

identify QTL that influence yields in different irrigation regimes (Dodig et al., 2012).  
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Historic data was used in a meta-analysis study for identifying important loci associated with 

20 different quality traits in a small population of bread wheat (Neumann et al., 2010).  Taken 

together, GWAS have been applicable across a wide range of traits, mapping panels, and 

experimental designs  

In conventional linkage mapping studies, large populations must be developed by 

crossing parental lines and advancing progeny for several generations before traits could be 

genetically mapped.  In such studies the mapping resolution is often dependent on the size of 

the population and only two alleles per trait can be evaluated.  In GWAS, population 

development is not required, panel size can readily be adjusted to achieve the desired 

resolution, and multiple alleles are evaluated in a single study (Zhu et al., 2008).  GWAS 

exploit linkage disequilibrium to identify significant marker-trait associations, whereas bi-

parental mapping relies on limited recombination events that occur during population 

development.   

The stringency of association studies, combined with the evaluation of multiple alleles 

makes the identification of novel loci more difficult in GWAS than bi-parental mapping 

studies.  This difficulty arises because the detected loci can only be found in significant 

proportion of the genotypes that make up the association mapping panel (Kloth et al., 2012).  

In practice, alleles and markers that have a minor allele frequency (MAF) within a mapping 

panel of less than 5% to 10% are excluded from analysis.  Novel alleles, by definition, have 

not been knowingly used by breeders, are likely not found in a large percentage of genotypes, 

and may not to be found in a high enough proportion of genotypes to be detected by GWAS 

(Kloth et al., 2012).  But, this also means that significant loci identified in GWAS will be 
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found in a number of genetic backgrounds equal to or greater than the MAF cut off, 

increasing the chance the loci identified will be applicable across a broader range of 

germplasm.  In bi-parental mapping studies, the parental lines are often selected specifically 

for a single trait.  Often one parent has a novel characteristic that is of interest to breeders, and 

the other is selected to maximize the phenotypic difference that will segregate among 

progeny.  In this situation, bi-parental genetic mapping can identify novel rare alleles as long 

as it is found in one of the parental lines and there is sufficient phenotypic diversity to map 

the locus of interest.  An additional difference between these two mapping strategies is that 

GWAS often underestimates the effects of identified QTLs and bi-parental mapping inflates 

the effects QTLs  (Wang et al., 2012). 

Avoiding spurious associations is a concern when conducting GWAS.  Hidden 

population structure can significantly influence GWAS results.  Factors such as allele 

frequencies, population admixture, population stratification, and the founder effect can 

influence the identification of significant marker-trait associations.  While it is difficult to 

control those factors in panels used in GWAS without changing the panel constituents, 

researchers can control the molecular markers used within their study.  The best markers to 

use in GWAS encompass the entire genetic diversity of their target organism.  Molecular 

markers that show ascertainment bias can affect GWAS as a proportion of the genetic 

diversity found within the target organism is overrepresented and a proportion is 

underrepresented.  Marker ascertainment bias can cause misrepresentation of panel structure 

in GWAS. 
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In this study we: (1) identify significant marker-trait associations for grain yield, grain 

protein content (GP), and test weight (TW) in a panel of spring wheat (SW) accessions; (2) 

evaluate the effects of high yield (HY), high test weight (HTW) and high grain protein (HGP) 

alleles in the SW panel; and (3) validate significant markers through allelic analysis of 

significant marker-trait associations in a separate panel of winter wheat (WW) accession.   

 

MATERIALS AND METHODS 

Plant Material, Field Design and Experimental Conditions 

The plant materials used for this study are part of the USDA-ARS National Small 

Grains Collection (NSGC) wheat core subset.  SW and WW GWAS panels each contained 

540 individual accessions from around the world and consisted of landrace, cultivar, breeding 

line, and uncertain improvement status groups.   

Trials were planted at the University of Idaho Aberdeen Research and Extension 

Center in Aberdeen, Idaho (42°57’36’’ N, 112°49’12’’ W, and elevation 1342 m).  Plots were 

arranged in an augmented complete block design 20 plots wide and 30 plots deep for a total of 

600 plots, as described by Zhang et al. (2014).  Individual plots were 1.83 m long and 1.5 m 

wide and planted at a rate of 364,500 kernels per hectare.  Irrigated (IR) and terminal drought 

(DR) treatments were planted adjacent to each other to minimize environmental effects each 

year.  Each treatment was subdivided into early, medium, and late maturity blocks of 180 

accessions and 20 checks based on days to heading.  Maturity blocks were further divided into 

four sub-blocks so that each sub-block contained a single plot of each check.  Across an entire 
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treatment, checks were arranged so that each of the 30 rows had two different checks and each 

of the 20 columns had three different checks. 

A drip tape system was used for precise control of supplemental irrigation.  Maturity 

blocks were independently controlled to ensure terminal drought conditions at the appropriate 

growth stage.  Individual plots had three 1.83 meter sections of drip tape spaced every two 

rows. All plots were irrigated for a single 12 hour period each week until heading, at a rate of 

2.5 l/h per 30.5 meters of drip tape.  Information on climate conditions for Aberdeen Idaho is 

available through AgriMet (http://www.usbr.gov/pn/agrimet/webarcread.html). 

 

Phenotypic Measurements 

In all trials, individual plots were harvested after physiological maturity using a 

Wintersteiger Classic small plot combine equipped with a Harvest Master system 

(Wintersteiger Inc., Salt Lake City, UT). Yields were calculated from raw grain weight and 

converted to kilograms per hectare.  Whole grain protein content (%) was measured by a Foss 

6500 NIR Spectrometer with attached transport cell and test weights (kg/m
3
) were measured 

using certified dry pint container.   

 

Phenotypic Data for GWAS 

Best linear unbiased predictors (BLUP) were calculated to account for environmental 

variation using JMP Version 11 statistical software (SAS Inst., 2011).  Data measurements 

were adjusted for maturity blocks and days to heading by the restricted maximum likelihood 

(REML) models so that the correlation coefficients between BLUP and unadjusted values 
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were greater than 0.70. Both BLUP and unadjusted data were used in the analyses of marker-

trait associations in the following sections.   

 

Molecular Marker Analysis 

Single nucleotide polymorphisms (SNPs) were assayed by the Illumina Infinium 9K 

iSelect platform (Illumina, Inc.) as part of the TCAP genotyping effort.  The 9000 SNP 

markers used for genotyping were clustered and called using GenomeStudio as described by 

Cavanagh et al. (2013).  SNPs were filtered to remove markers with minor allele frequencies 

(MAF) below 5% or more than 10% missing data.  The remaining SNPs were ordered based 

on the most recent Consensus Wheat SNP Map (Cavanagh et al., 2013).   Haplotype markers 

were derived by using the program TASSEL 4.0 with a sliding window of two SNPs and a 

single SNP step, as described by Bradbury, et al. (2007).  Finally, haplotypes were filtered to 

remove markers with MAF below 5% or missing more than 10% data.  In addition to SNP 

markers, a separate dataset added the RHT1 functional marker to our analysis. 

Linkage disequilibrium (LD) was calculated using the ‘Full Matrix LD’ option in 

TASSEL for all marker and haplotype combinations.  Significance of LD was determined 

using a P < 0.05.  Marker pairs within the same linkage group that showed R
2 

values higher 

than 0.75 were considered to have high levels of disequilibrium.  The R
2
 values of LD 

between marker pairs were plotted against genetic distance to determine the distance at which 

to expect linkage decay between SNPs and surrounding regions and to estimate the number of 

markers needed for adequate genome coverage with the accessions used in the present study 
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(Bradbury et al., 2007).  Molecular markers not found within the consensus map were 

removed for estimates of LD, but were included for association analysis. 

 

Population Structure and Kinship 

Principal component analysis (PCA)  was used to correct for hidden populations 

within our panels (Bradbury, 2007; Price et al., 2006). PCA was used as the “Q” matrix in 

general linear models (Q) and mixed linear models (Q+ K).  Scree plots of the PCA results 

were used to determine number of (K) subpopulations present in our panel of accessions. Bi-

plots of the PCA were used to visualize population structure and show the genetic variation 

explained by the first two principal components.   

Kinship between accessions was calculated with all markers.  In TASSEL the kinship 

matrix (K) is generated from a cladogram to visualize subpopulations, which is a measure of 

pairwise relatedness between accessions.  Briefly, accessions were clustered through the 

neighbor-joining method creating a distance matrix (Saitou, 1987).  The kinship matrix was 

derived by subtracting all distance matrix values from two, then scaling the smallest values to 

zero (Bradbury, 2007).  The resulting matrix was used as ‘K’ in the mixed linear model Q + K 

analysis.   

 

Association Mapping 

A genome wide association study was initiated to identify loci associated with grain 

yield in the SW panel using single nucleotide polymorphism markers (SNPs).  BLUP and 

unadjusted datasets were used for genome wide association analysis in TASSEL (Bradbury et 
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al., 2007).  GLM (Q) and MLM (Q + K) were used to identify significant marker-trait 

associations.  GLM accounted for population structure only, while MLM accounted for both 

population structure and relationship between accessions (Zhu, 2008).  Comparison of GLM 

and MLM results allowed identification of significant markers found using both models. 

Significance of the marker-trait associations were determined using Bonferroni 

adjusted P values and by empirically derived thresholds (Dudbrudge and Gusnanto, 2008).  

Empirical significant levels were determined using the reported genetic locations of Rht-B1 

dwarfing gene and Vrn-A1 flowering time locus within the consensus SNP map constructed 

by Cavanagh et al. (2013).  The consensus SNP map was used to assign genetic locations to 

all SNP markers.  Traits were analyzed using both uncorrected data sets and as BLUP.  

Significance levels were set at p < 0.001 for GLM and at p < 0.01 for MLM.  Significant SNP 

markers found to be associated with yield, test weight or grain protein were removed from 

further analysis if they did not pass both the GLM and MLM analysis significance thresholds.   

Markers found to be significantly associated with yield, TW or GP were ordered and 

groups of significant markers were combined into loci by their genetic location.  If there was a 

difference of greater than 3cM between adjacent significant markers, they were determined to 

be in separate significant loci.  Loci were considered for further analysis if found in 2 or more 

of the SW trials.  

 

Allelic Effects of Significant Loci in SW and WW Panels 

 Using the significant markers identified by GWAS in the SW panel, accessions from 

both the SW and WW panels were grouped into high-yielding (HY), low-yielding (LY), high-
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grain protein content (HGP), low-grain protein (LGP), high-test weight (HTW), and low-test 

weight (LTW) allele classes.  The average yield, GP, and TW of each allele class was 

compared in the SW and WW trials to validate the significant SW associations.   

 

RESULTS:   

Yield and Agronomic Traits 

 The SW panel mean yield was 5795.22 kg/ha and 5376.78 kg/ha in 2011 and 

4503.95kg/ha and 3697.30 kg/ha in 2012; the WW panel mean yield was 6112.98 kg/ha and 

5088.90 kg/ha in IR and DR treatments, respectively.   The SW panel mean TW was 926.5 

kg/m
3
 and 911.61 kg/m

3
 in 2011 and 890.0 kg/m

3
 and 871.73 kg/m

3
 in 2012; the WW panel 

mean TW was 881.5 kg/m
3
 and 827.77 kg/m

3
 in IR and DR treatments, respectively.   The 

SW panel means for GP was 13.04% and 14.01 % in 2011 and 15.14% and 15.46 % in 2012; 

the WW panel means for GP was 16.58 % and 17.37 % in IR and DR treatments, respectively 

(Table 4.1).    

 Yields in the SW panel were skewed towards lower yields and TW was skewed 

towards higher TW in all trials (Supplemental Diagram 1).  GP skewed towards higher values 

in the SW IR treatments in 2011 and 2012, as well as in 2012 DR, while slightly skewed 

towards low GP in 2012 IR.  In the WW trials, yield and TW were skewed towards high TW 

while GP was skewed towards low in the IR treatment.  In the DR treatment, TW and GP 

were skewed towards higher values and yield towards lower (Supplemental Diagram 1).  
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SNP and Haplotype Markers 

Molecular markers were filtered to remove MAF below 5% (<0.05), or having greater 

than 10% (>0.1) missing data.  After filtering, 5277 markers remained that identified 3001 

unique loci across the wheat genome.  Ordered markers were divided by linkage group and 

converted into 4658 haplotypes by TASSEL.  Removal of haplotypes with MAF below 5% or 

missing more than 10% data left 2453 markers for further analysis.  SNP markers without 

known chromosomal locations were included in our analysis as single markers, but were not 

used for designating haplotype markers. 

 

Spring Wheat SNP Density and LD 

Polymorphic SNPS were found on each of the 21 wheat linkage groups.  Genome 

wide coverage of combined linkage groups was 3489 cM.  The A genome had the largest 

coverage at 1404 cM, followed by the B genome at 1284 cM and the D genome at 801 cM.  

The B genome had the highest number of unique polymorphic markers at 1366.  The A 

genome had 1318 polymorphic markers and the D genome had 317.  The D genome had the 

largest mean distance between markers at 2.72 cM and the B genome the least at 0.98 cM 

(Supplemental Table 1).  

Within the A genome, LG2A was the largest at 231 cM, LG1A had the most unique 

loci with 210.  3A was the shortest linkage group at 172 cM and LG4A had the lowest number 

of loci with 158.  In the B genome, LG2B was the largest linkage group, at 272 cM, and also 

had the highest number of unique loci with 265.  LG4B was the shortest at 124 cM and also 

had the smallest number of loci with 96.  The D genome had several unconnected linkage 
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groups for LGs 3D, 5D, 6D and 7D based on the consensus SNP map constructed by 

Cavanagh et al. (2013).  Of the three complete linkage groups, LG2D had the most loci with 

76 across 192 cM and LG4D was the smallest at 102 cM and had the least number of markers 

with 30 (Supplemental Table 1). 

Marker pairs having significant (p < 0.05) R
2 

values higher than 0.75 were identified 

as having high levels of LD (Cavanagh et al., 2013).  In our panel of accessions, SNP high LD 

blocks extended for an average of 1.09 cM and haplotype high LD blocks extended for 1.84 

cM. 

 

Population Structure and Kinship 

 Population structure was estimated using principal components.  Scree plots of the 

number of principle components by eigenvalues showed two principle components were 

sufficient to explain most of the genotypic variance when using either SNP markers in both 

SW and WW panels.  Bi-plots of the first two principle components also identified two 

clusters of genotypes that consisted mainly of either landrace accessions or breeding lines and 

cultivars (Fig. 4.1).  Using the SNP dataset, the first principal component explained 9.6% of 

the genotypic variation and the second explained 4.5%. 

 The kinship matrix also distinguished two groups of accessions within our mapping 

panel (Fig. 4.2).  Landrace accessions, for the most part, clustered together as did cultivars 

and breeding lines when the kinship distance matrix was viewed as a dendrogram.  Landrace 

accessions clustered into three general groups based on their geographic region of origin, 

Africa, Southern Asia, and Western Asia.  Most of the accessions of uncertain improvement 
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status clustered with the landraces from either Africa or Southern Asia (Fig. 4.2).  Cultivars 

and breeding lines clustered into three groups of broader geographic regions than landraces.  

The first group was a mixture of accessions from North America and South America, the 

second was from Western Asia or Europe, and the third from Africa.  A small group of 

accessions from multiple geographic regions clustered between the landraces and cultivars. 

  

GWAS Significance Threshold 

 Bonferroni (p < 1.89e
-5

) and False discovery rate (FDR) adjusted p-values did not 

identify any significant SNP marker-trait associations.  Significance thresholds were derived 

using known height and flowering time related loci included within the wheat consensus 

linkage map.  Rht-B1 was located at 39cM on LG4B based on the consensus genetic map 

released by Cavanagh et al. (2013).  Rht-B1-specific markers were significantly associated 

with plant height each year and in both IR and DR treatments.  The p-values of Rht-B1 

specific markers ranged from 1.58e
-12

 in 2011 IR to 2.20e
-7

 in 2012 IR.  The regions flanking 

Rht-B1 were not significantly associated with plant height (Fig. 4.3).  The most significant 

marker within 5cM of the Rht-B1 locus had a p-value of 4.43e
-3

.  Flowering time related loci 

Vrn-A1 was also identified, but did not pass the Bonferroni adjusted significance thresholds.  

Vrn-A1 is located on LG5A at position 120.1 cM to 124.0 cM within the wheat consensus 

map (Cavanagh et al., 2013).  There were six SNP markers at the Vrn-A1 locus that were 

consistently associated with DH in both treatments each year.  P-values from this locus ranged 

from 3.07e
-5 

in 2012 DR to 6.62e
-3

 in 2012 IR (Fig. 4.3).  Based on the significant levels of 

known height and flowering loci, marker-trait significance thresholds were set at 0.01, which 
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would encompass markers flanking Vrn-A1.  Haplotype marker significance thresholds were 

treated in the same manner as single markers for subsequent analysis. 

 

GWAS of SW Yield, GP and TW 

 Of the original 5277 markers, 303 markers were significant in both MLM and GLM, 

and were assigned genetic locations based on the wheat consensus map (Cavanagh et al., 

2013).  A final filtering step was used to remove loci that were not identified in multiple 

experiments leaving 212 significant marker trait associations with 103 markers across 35 loci.  

Of the loci identified by molecular markers, 24 loci were also identified by haplotype markers 

(Tables 4.2, 4.3 and 4.4).   

 Significant marker associations with yield were found on four linkage groups, LG2B, 

LG4A, LG5B, and LG6A (Table 4.2).  On LG2B, three loci at 149cM, 157-158cM, and 

160cM were found.  The 2B1 locus was identified in all experiments except 2011 DR, 2B2 

was found in 2012 IR and DR, and 2B3 was found in all SW trials.  Significant loci on LG5B 

and 4A1 were found in 2011 IR and DR, while LG6A was identified in 2011 DR and 2012 IR 

(Table 4.2).   Haplotype markers were found to be significantly associated with 6 of the 7 

yield loci. 

Loci on linkage groups LG2A, LG3B, LG4A, LG5A, LG5B, LG7A, and LG7B were 

associated with TW (Table 4.3).  The 5A2 locus at 78cM was identified in all treatments each 

year; 2A1, 5A1, and 5B1 loci were found in 3 of the 4 SW trials; and 3B1, 5B2, 7A1, 7B1, 

7B2, 4A1, 7B3 and 7B4 were found in 2 trials.  Haplotype markers also identified 9 of the 11 

test weight loci. 
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Loci associated with grain protein content were found on LG1A, LG2B, LG2D, 

LG3B, LG5A, LG5B, LG6A, LG6B, LG6D, and LG7A (Table 4.4).  But, only 4 of the 17 

loci were found to be significant in the 2012 DR treatment, 2B1, 3B1, 6A1 and 6B2. The loci 

2B1, 3B1, 6B3, and 6D2 were found in 3 of the 4 SW trials.  The 1A1, 2B1, 2B3, 3B2, 5A1, 

6A1, 6A2, 6B2, 6B4, 6D2 AND 7A1 loci were found in 2 trials.  Haplotype markers 

identified 9 of the 17 GP loci (Table 4.4). 

 

Allelic Analysis of Yield, TW and GP 

 Comparison of the effects of the HY alleles on yield for SW and WW panels found 

that 5 of the 7 loci identified in the SW panel also showed higher yields associated with their 

respective HY allele in the WW panel, and 4 of these had yield increases in all SW and WW 

trials.  The 2B1 locus had yield increases in the SW ranging from 2.47% in the 2011 DR to 

7.17% in 2012 DR.  In the WW panel, yield increases ranged from 8.18% to 39.86%.  The 

2B3 locus imparted increased yields from 1.9% to 16.45% in the SW panel and 2.21% to 

11.74% in the WW panel.  At 6A1, SW accessions with the HY allele had yield increases 

from 2.62% to 6.75%, while WW accessions had up to a 5.38% yield increase.  The SW panel 

had yield increases from 8.91% to 19.36% attributable to the 6A2 HY allele, and the WW 

panel had 4.98% to 5.90% increases.  HY loci at 2B2 and 5B1 were associated with increased 

grain yield in the WW panel.  The single locus at 4A1 was not associated with increased yield 

in SW 2012 IR. 

 Within the SW panel, the largest increase in TW when comparing HTW and LTW 

alleles was associated with 7B2 with a TW increase of 3.37% followed by 5A2 in both 2011 
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and 2012 trials with TW gains of 2.64% and 2.69%, respectively (Table 4.3).  Of the 11 

significantly associated loci, six had HTW alleles that were associated with higher TW in all 

SW and WW trials.  The HTW alleles of loci at 2A1, 3B1, 4A1, 5A1, 5B1, and 7B2 were 

associated with increases in TW from 0.2% to 3.37% in the SW panel and 0.76% to 4.11% in 

the WW trials (Table 4.3).  The 5A2, 5B2, 7A1, 7B1 and 7B3 loci were found in the SW 

panel but were not associates with WW TW increases.   

 In the 2011 and 2012 SW trials, no loci were found to have significant marker trait 

associations with GP in both IR and DR treatments each year, but 8 of the 17 loci had HGP 

alleles associated with higher GP than their LGP counterparts in all SW trials (Table 4.4).  In 

the 2011 SW trial, the largest GP increases were associated with alleles at 2B2, 5B1, 5B2 and 

6D, while the 5B1 and 5B2 loci had the largest increases in GP associated with the HGP allele 

in 2012.  In the WW panel the 5B1 HGP allele was also found to impart the largest increase in 

GP.  Across both SW and WW trials, the HGP alleles at 1A1, 2B1, 5B1, 5B2, 6D1, 6D2, and 

7A1 always had higher GP than their LGP alleles (Table 4.4).  The 3B1, 6A1, and 6B1 loci 

did not impart increased GP.    

 

DISCUSSION 

Methodology 

 In this study we identify significant marker-trait associations in a diverse panel of 

spring wheat accessions selected from the NSGC core subset.  Initial analysis of the SW 

molecular markers showed, on average, markers were spaced every 1.2cM across the entire 

genome.  Analysis of genome-wide LD indicated that coverage was sufficient to identify 
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marker associations that were within approximately 1cM of the trait of interest (Flint-Garcia 

et al., 2003; Zhu et al., 2008).   Population structure analysis indicated that to avoid spurious 

associations our analysis would need to account for two subpopulations (Zhu et al., 2008).    

The criteria used here for designating significant markers attempts to reduce spurious 

associations or false positives.  Q models and Q+K models were used together to eliminate 

marker-trait associations that were not significant in both analyses.  The Q model is a less 

stringent analysis that accounts for population structure (Q) only.  It is expected that Q models 

will have some spurious associations as it is a more sensitive method (Yu et al., 2006).  The 

Q+K model is more stringent and accounts for both population structure (Q) and the kinship 

(K) within the mapping panel (Yu et al., 2006).  A drawback of the Q+K model is that the 

stringency of the analysis decreases the ability to detect true marker-trait associations. 

Comparing GLM (Q model) and MLM (Q + K model) to identify true associations has been 

used previously in wheat association studies (Neumann et al., 2010) to designate significant 

loci.  In addition to the two different methods of association analysis, data was analyzed as 

both BLUP and uncorrected.  A final step used haplotype marker analysis as a way to support 

the significant loci identified by single markers, but not as grounds for removal from 

consideration.  Haplotype marker analysis increased confidence that our association analysis 

identified true marker-trait associations.  We found that using GLM or MLM, BLUP or 

unadjusted data, and haplotypes or single markers identified nearly identical loci associated 

with yield, grain protein, and grain test weight. 
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Significance Thresholds 

To mitigate the weaknesses of MLM being too strict and GLM being too lenient, 

empirically derived significance thresholds were generated in the present study by using 

significance threshold values generated from loci with well-characterized phenotypes (plant 

height and flowering).  FDR and Bonferroni adjustments are commonly used methods of 

designating significance thresholds in GWAS (Dudbrudge and Gusnanto, 2008).   However, 

several studies have found FDR and Bonferroni adjusted p-values are often too stringent to 

identify marker-trait associations (Lu et al., 2010; Adhikari et al., 2011; Zhang et al., 2014; 

Dodig et al., 2012; Maccaferri et al., 2011).   In the present study empirical thresholds were 

derived from plant height and heading related loci and used to identify significant 

associations.    

Empirical significance thresholds were derived through association analysis of 

markers flanking Rht-B1and Vrn-A1 loci.  Rht-B1 is a dwarfing gene that is found in many 

modern cultivars (Ellis et al., 2002).  Cavanagh et al. (2013) reported that the Rht-1B locus 

exhibited high levels of geographic admixture which increased LD at this locus as a result of 

domestication of wheat (Flint-Garcia et al., 2003).  Markers specific for Rht-B1 (Ellis et al., 

2002) were found to be highly associated with plant height in each experiment (P < 1.0 x e
-6

).
 
 

In the present study, the markers flanking this dwarfing locus were not found to be 

significantly associated with plant height even though they were located within 1.5cM of the 

Rht-B1 locus.  This indicated that even with adequate genome coverage and increased LD we 

were unable to detect a large effect locus except through the use of gene-specific markers.  

Significant associations at the Rht-B1 and Rht-D1 locus were difficult to identify in previous 
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association studies in wheat (Neumann et al., 2010).  Neumann et al. (2010) suggested that the 

inability to identify Rht-D1 was due to low marker coverage of this linkage group in their 

study and that the only way to find Rht-B1 was to raise the significance threshold to P < 0.1 in 

five of their nine years of data.  But, there were still four years of data that were unable to 

identify Rht-B1 at all.  The study by Neumann et al. (2010) used only 96 accessions and thus 

likely had reduced ability to detect loci due to the small panel size.  SNPs at the Vrn-A1 locus, 

localized on the wheat consensus map by Cavanagh et al. (2013), were consistently associated 

with days to heading in all experiments.  Vrn-A1 is a vernalization response gene located on 

chromosome 5A that affects heading in spring wheat (Kamran et al., 2013; Zheng et al., 2013; 

Kiss et al., 2014).  We found markers flanking Vrn-A1 were unable to pass FDR or Bonferroni 

adjusted significance levels even though they were the most significant markers associated 

with heading.  Due to the inability to detect significant associations at three large affect loci, 

we set significance levels to ensure inclusion of markers flanking these two loci at p < 0.01 

for the MLM. 

 

Analysis of Associations 

 The significant loci identified in this study were all located on chromosomes that have 

previously reported QTL for their respective trait.    Previously reported QTLs related to these 

traits did not use the Illumina Infinium 9K iSelect platform (Illumina, Inc.), therefore it is 

difficult to make specific comparisons to studies that used other marker types.  Regardless, 

the loci identified in this study may have been identified previously.  Here, genetic locations 

are based on the consensus genetic linkage map published by Cavanagh et al. (2013) and the 
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location of QTL from previous studies is compared on a linkage group level.  If a QLT 

identified in the present study is on the same linkage group as a previously identified QTL for 

the same trait, we conclude that it is possible we identified the same QTL.  Without direct 

comparison of individual maps it is difficult to designate new QTL identified in this study.  

Here we compare studies that identified or further characterized QTL of interest on the 

linkage groups we identified. 

 Yield had the fewest significant marker-trait associations and the fewest loci 

identified.  The six linkage groups with yield QTLs identified in the present study all had 

previously reported QTL.  A significant locus on LG2B has been identified in two previous 

studies (Groos et al., 2003; Bennett et al., 2012a).  Groos et al. (2003) mapped this locus in a 

recombinant inbred line population (F7) consisting of 194 lines derived from a cross between 

a high yielding cultivar, ‘Recital’, and a high GP cultivar ‘Renan’. In their study, the QTL 

identified on LG2B was located from 68cM to 162cM, on their genetic map, and explained 

5.6% of the yield variation.  Bennett et al. (2012a) also identified a locus on LG2B as being 

related to yield as it was found to affect thousand kernel weight in their double haploid 

mapping study.  Here we found a QTL on LG2B in each of our four experiments within a 

smaller genetic interval.  Yield related loci have been  identified on LG4A in three previous 

studies (Groos et al., 2003; Kirigwi et al., 2007; Bennett et al., 2012a).  Groos et al. (2003) 

identified a small effect locus in their study that explained 4-5% of the yield variation, but 

were unable to refine the map position on LG4A.  The study by Kirigwi et al. (2007) was 

designed to identify drought tolerance loci in a bi-parental population.  The locus on LG4A 

was found to influence grain yield, vegetative biomass, biomass growth rate, spike density 
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and drought susceptibility.   A significant locus on LG5B was identified in two previous 

studies (Groos et al., 2003; Bennett et al., 2012a; b).   The Groos et al. (2003) study found a 

small effect QTL that explained 4% to 7% of the yield variation located between markers at 

85cM and 152cM in their genetic map.  Bennett et al. (2012a) found a yield locus on LG5B 

that was only found in fully irrigated conditions.  In the present study the locus on LG5B was 

identified in 2011 IR and DR environments.  Yield loci on LG6A were identified in two 

studies previous (Groos et al., 2003; Simmonds et al., 2014).  Simmonds et al. (2014) 

designed a study to look specifically at a locus on LG6A that had significant effects on yield 

and yield related traits such as spike number, spike density, and grains per spike. They 

determined LG6A was a major yield QTL affecting yield components and interacting with 

other yield or yield related QTL.    

 Yield related loci on LG4A and LG5B were identified in two association mapping 

studies (Neumann et al., 2010; Reif et al., 2011b).  These loci were located at 8cM on LG4A 

and 68cM on LG5B in their mapping study.  Both loci explained about 5% of the yield 

variation.  The Reif et al. (2011b) study was conducted in a small set of 455 European soft 

winter wheat lines.  Both of these yield loci were also identified by Neumann et al. (2010) that 

used a small mapping panel of 94 winter wheat lines.  Their study indicated that the locus on 

LG4A was a multi-trait locus that also influenced plant height and harvest index.  We did not 

find the locus on LG4A to be significantly associated with other traits.  However, a locus 

influencing test weight was identified ~40cM away.  The locus on LG5B was not associated 

with other traits, but LG5B had multiple QTL for grain protein content and a single locus for 

TW.   
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TW had the largest number of significant marker-trait associations at 84 on 11 

individual loci across seven linkage groups.  QTLs  for test weight were identified on LG2A 

(Sun et al., 2008b, 2010), LG3B (McCartney and Somers, 2005; Sun et al., 2008b), LG4A 

(Sun et al., 2008b), LG5A (Sun et al., 2008b, 2010), LG5B (Groos et al., 2003; Sun et al., 

2010), LG7A (Groos et al., 2003; Sun et al., 2010) and LG7B (Sun et al., 2008b).  Each of 

these studies used bi-parental mapping populations.  Test weight loci have been identified in a 

previous association study that used a panel of soft winter wheat, these include the loci 

identified on LG2A, LG3B, LG5A, and LG7A (Reif et al., 2011a).  In the present study, 

individual loci did not explain more than 3% of the variation in TW.   

 Grain protein QTLs were identified at 17 loci on ten linkage groups.  Loci were 

identified on LG1A (Groos et al., 2003), LG2B (Campbell et al., 2001; Prasad et al., 2003), 

LG2D (Prasad et al., 2003; Sun et al., 2008a), LG3B (Groos et al., 2003; Sun et al., 2008a), 

LG5A (Sun et al., 2008a; Xu et al., 2012), LG5B (Groos et al., 2003), LG6A (Groos et al., 

2003; Sun et al., 2008a; Xu et al., 2012), LG6B (Joppa et al., 1997; Campbell et al., 2001; 

Prasad et al., 2003; Gupta et al., 2008) and , LG6D (Sun et al., 2008a) and LG7A (Prasad et 

al., 2003; Groos et al., 2003).  Each of the studies used bi-parental populations to identify 

significant loci.  The QTL identified in previous studies explained from 1% (Xu et al., 2012) 

to 32.44% (Prasad et al, 2003) of TW variation.  The loci on LG1A1 and LG3B were 

identified in the Neumann et al., (2010) GWAS meta-analysis. 
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SW Specific Loci 

 Here we found several loci related to yield, TW and GP that were only found in the 

SW panel.  Cavanagh et al. (2013) found significant differences between marker frequencies 

in SW and WW panels and only 11% of haplotype markers to have cross over in SW and 

WW populations.  There were also 15 distinct genomic regions, across 6 chromosomes, which 

are thought to be responsible for adaption to winter and spring growth habits (Cavanagh et al., 

2013).  The 2B2 and 5B1 loci significantly associated with yield in our SW panel did not 

show an increase in yield in the WW panel, but are located 10cM and 20cM from reported 

growth habit adaption loci, respectively.   Even more compelling, the TW loci 5A1 and 5B2 

fall directly on growth habit adaption loci, and the 7B1 and 7B3 flank another with in a 29 cM 

interval.  For the SW specific GP loci, 3B1 is within 4cM of a growth habitat adaption locus. 

Across all of the SW specific loci, only 6A1, 6B1 and 7A1 were not located near a growth 

habit adaption loci (Cavanagh et al., 2013). 

 

Marker Annotations 

 Significant markers were further investigated for similarities to known genes or 

proteins.  The USDA wheat SNP database (http://129.130.90.211/snp/) was used to query the 

NCBI reference protein and non-redundant nucleotide databases using the Basic Local 

Alignment Search Tool (BLAST, http://blast.st-va.ncbi.nlm.nih.gov/Blast.cgi).  A majority of 

the markers hit unknown, hypothetical, predicted genes or predicted proteins from rice (O. 

sativa), corn (Z. mays) or sorghum (S. bicolor). Within the 103 individual markers identified 

in this study, only 12 hit annotated genes or proteins (Supplemental Table).  In the group of 
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markers associated with grain yield, an RNA binding protein (Rnp-1) and PAP specific 

phosphatase were found on linkage groups 5B and 6A, respectively.  For grain protein 

associated markers, a pre-mRNA splicing factor was found on LG3B, a chlorophyll a-b 

binding protein on LG6B, a polyadenylate-binding protein on 6D, a guanylate kinase gene on 

LG5B, and a putative Rh2 protein on LG6A.  The significant markers associated with TW had 

two genes related to drought stress and starch synthesis.  LD1, a starch de-branching enzyme 

that is responsible for creating starch granules from glucan was found on LG7B (Repellin et 

al., 2008) and an autophagy protein 9, that is expressed during drought stress, was identified 

on LG4A (Budak et al., 2013).  In addition, a barley resistance gene analog and rice GEP2 

homolog were found on LG2A, an RND family efflux transporter on LG7A and molybdenum 

cofactor identified on LG7B (Supplemental Table 2).   

 

CONCLUSIONS  

 Loci associated with yield, grain protein content, and test weight were discovered in 

the present study using a panel of spring wheat accessions selected from the NSGC core 

subset.  Empirically derived significance thresholds, comparisons between GLM and MLM 

analysis methods, and comparisons between experiments were used to control for spurious 

associations.  Using this approach, loci were identified on linkage groups with previously 

identified QTL for yield, grain protein content, and test weight.  These loci may be the same 

as those identified in previous studies, and further analysis must be done to determine if the 

QTL identified here are novel.   
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 Based on our GWAS results and allelic analysis, the most likely yield loci are on 2B1, 

2B3, 6A1 and 6A2; the most likely TW loci are on 2A1, 3B1, 4A1, 5A1, 5B1, and 7B2; and 

2A1, 5B1, 5B2, 6D1, 6D2, and 7A1 are the most likely GP loci.  The present study was able 

to identify trait related loci that be used to improve current cultivars.   
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Table 4.1:  Average yields, grain test weight and grain protein content for spring wheat (SW) 

and winter wheat (WW) panels evaluated in irrigated (IR) and drought (DR) treatments in 

2011, 2012 and 2013. 

(A) Trt  SW 2011  Std Err SW 2012  Std Err WW 2012  Std Err 

Yield (kg/ha) IR 5795.22 50.06 4503.95 56.76 6112.98 50.06 

 DR 5376.78 45.48 3697.3 49.13 5088.90 45.48 

TW (kg/m
3
) IR 926.5 0.46 890.00 0.69 881.54 0.89 

 DR 911.61 0.64 871.73 0.72 827.77 0.15 

GP (%) IR 13.04 0.08 15.14 0.06 16.58 0.06 

 DR 14.01 0.08 15.46 0.07 17.37 0.06 
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Table 4.2:  (A) SW trials in which loci were found to be significantly associated with yield.  

(B) Percent yield increase when selecting SW and WW accessions that carry the HY allele of 

markers significantly associated with yield in SW panel.   

(A) 
Linkage 

Group 

Position 

cM 

2011 

IR 

2011 

DR 

2012 

IR 

2012 

DR 

Yield 2B 149 X 
 

X X 

 
2B 157 - 158 

  
X X 

 
2B 160 X X X X 

 
4A 90 X X 

  

 
5B 201 - 204 X X 

  

 
6A 110 

 
X X 

 
  6A 180   X X   

 

(B)    

LG 
Pos 

cM 

HY  

Allele 

SW 11 

IR 

SW 11 

DR 

SW 12 

IR 

SW 12 

DR 

WW 

IR 

WW 

DR 

2B1 149 2 ng ng 3.75 7.17 22.23 39.86 

 
149 0 5.94 2.47 3.30 2.83 8.18 ng 

2B2
 h

 157 2 3.85 4.39 12.10 10.06 ng ng 

 
158 0 6.81 6.66 14.77 8.66 ng ng 

2B3
 h

 160 0 4.34 1.90 4.23 0.86 11.74 11.32 

 
160 2 9.41 6.92 16.45 12.23 ng 2.21 

 
160 0 ng 3.18 5.99 8.80 2.83 7.00 

 
160 2 6.55 6.62 14.89 7.19 ng ng 

4A1
h
 91 2 1.41 0.86 ng 0.36 5.90 13.12 

5B1
 h

 202 2 10.28 11.84 8.98 3.07 ng ng 

 
204 2 9.56 9.58 10.63 5.27 ng ng 

 
205 0 3.07 5.48 9.34 6.26 ng ng 

6A
 
1

h
 110 2 2.62 3.93 6.75 3.67 0.53 5.38 

6A2 180 2 19.36 19.24 14.94 8.91 4.98 5.90 

ng = no gain; (
h
)
  
identified by haplotype markers; LG, linkage group; cM, centimorgan, SW, 

Spring Wheat; WW, Winter Wheat; IR, irrigated; DR, drought; and Associated allele ‘0’ or 

‘2’ 
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Table 4.3:  (A) SW trials in which markers were found to be significantly associated with 

TW.  (B) Percent TW increase realized when selecting SW and WW accessions that carry the 

HTW allele of markers found to be associated with TW in SW.   

(A) 
Linkage 

Group 
Position cM 2011 IR 

2011 

DR 
2012 IR 

2012 

DR 

TW 2A 30 X X X 
 

 
3B 121 - 126 X X 

  

 
4A 50-52 

 
X 

 
X 

 
5A 11 X X 

 
X 

 
5A 78 X X X X 

 
5B 59 X X X 

 

 
5B 98 X X X 

 

 
7A 51 – 53 X X 

  

 
7B 17 

 
X X 

 

 
7B 46 

  
X X 

  7B 55 X     X 

 

(B)    

LG 
Pos 

cM 

HTW 

Allele 

SW 11 

IR 

SW 11 

DR 

SW 12 

IR 

SW 12 

DR 

WW 

IR 

WW 

DR 

2A1 30 2 0.22 0.84 1.64 1.21 2.3 4.11 

 
30 2 0.83 0.96 0.96 0.28 1.75 3.19 

3B1
 h

 122 0 ng 0.77 0.81 0.13 0.4 1.62 

 
126 0 0.23 0.96 1.56 0.53 ng ng 

4A1
 h

 50 2 1.28 1.24 1.44 1.56 1.49 3.08 

 
52 0 1.53 1.50 0.78 0.82 ng ng 

5A1 11 2 0.29 0.30 ng 0.29 1.47 3.84 

 
11 0 1.33 0.78 0.15 1.50 1.33 3.15 

5A2
 h

 78 0 2.64 1.06 0.84 2.33 / / 

 
78 2 0.92 ng 0.65 2.69 ng ng 

5B1
 h

 59 0 0.43 0.76 ng ng ng ng 

 
59 2 ng ng 0.48 0.7 2.16 3.26 

 
59 2 0.71 1.41 0.35 ng 0.95 3.07 

5B2
 h

 99 0 0.3 0.16 ng ng ng ng 

7A1
 h

 51 2 1.06 1.09 0.57 0.71 ng ng 

 
53 2 0.79 1.46 0.51 ng / / 

7B1
 h

 17 0 0.81 1.3 1.94 1.95 ng ng 

 
17 2 0.76 1.45 1.74 1.43 ng ng 

7B2
 h

 46 2 1.12 1.36 1.26 3.37 0.76 1.32 

7B3
h
 56 2 0.51 0.3 1.02 0.64 ng ng 

ng = no gain; (
h
)
  
identified by haplotype markers; LG, linkage group; cM, centimorgan, 

SW, Spring Wheat; WW, Winter Wheat; IR, irrigated; DR, drought; and Associated allele 

‘0’ or ‘2’ 
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Table 4.4:  (A) SW trials in which markers were found to be significantly associated with GP.  

Percent GP increase realized when selecting SW and WW accessions that carry the HGP 

allele of markers found to be associated with GP in SW.   

(A) 
Linkage 

Group 

Position 

cM 

2011 

IR 

2011 

DR 

2012 

IR 

2012 

DR 

GP 1A 44 
 

X X 
 

 
2B 158 - 163 

 
X X X 

 
2B 211 X X 

  

 
2D 71 X X 

  

 
3B 88 - 89 X 

  
X 

 
3B 127 - 128 X X 

  

 
5A 195 X X 

  

 
5B 59 - 61 X X X 

 

 
5B 65 

 
X X 

 

 
5B 68 

 
X X 

 

 
6A 207 X 

  
X 

 
6A 215 X X 

  

 
6B 22 X X 

  

 
6B 85 - 88 X 

 
X X 

 
6D 29 - 30 X X 

  

 
6D 116 X X X 

 

 
7A 171 

 
X X 
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Table 4.4 Continued… 

(B)    

LG cM 
HGP 

allele 

SW 

11 IR 

SW 11 

DR 

SW 

12 IR 

SW 12 

DR 

WW 

IR 

WW 

DR 

1A1 45 0 2.54 3.12 2.76 1.77 2.18 1.16 

2B1
 h

 158 2 3.46 5.91 4.15 0.54 ng ng 

 
160 2 3.45 5.68 3.35 0.64 ng ng 

 
163 2 1.76 0.41 0.2 2.05 1.07 1.43 

2B2 211 0 10.64 16.03 6.24 ng 2.89 ng 

2D1 71 2 1.79 2.8* 0.48 0.1 0.58 ng 

3B1
 h

 88 0 5.14 3.68 2.56 0.8 ng ng 

 
89 0 6.2 3.74 1.2 1.11 ng ng 

3B2 127 2 3.55 1.8 2.44 1.94 ng ng 

 
128 0 4.33 3.0 ng 2.07 1.08 ng 

5A1 195 0 4.51 4.34 0.99 ng 2.16 ng 

5B1
 h

 59 2 2.74 4 ng 0.16 0.1 ng 

 
59 2 1.36 0.12 1.79 0.91 3.03 ng 

 
59 2 ng ng 2.37 1.62 0.52 1.09 

 
59 0 15.17 15.7 8.11 6.62 9.48 4.08 

 
61 0 13.53 13.6 7.56 5.08 7.14 ng 

5B2 65 0 14.12 14.99 6.12 2.75 4.13 2.02 

5B3 68 2 0.58 ng 2.73 1.75 ng 1.09 

6A1 207 0 4.15 2.93 ng 0.33 ng ng 

 
207 0 3.28 1.74 ng ng ng ng 

6A2
 h

 215 2 1.73 2.33 1.64 ng 1.08 ng 

6B1
h
 22 2 2.5 0.49 2.48 2.06 ng ng 

6B2
 h

 85 2 0.39 ng 1.42 2.75 ng 0.46 

 
88 0 ng ng 1.67 2.25 0.21 1.19 

6D1
 h

 29 2 14.34 12.07 3.73 2.83 3.42 7 

 
30 0 9.28 8.59 2.24 0.36 1.97 5.08 

6D2
 h

 116 0 4.59 5.48 3.9 2.48 ng 1.77 

 
116 2 5.22 5.86 3.83 3.01 0.77 1.81 

7A1
 h

 171 0 8.43 7.32 1.82 1.49 1.53 0.46 
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Figure 4.1:  Density biplots of the first two principal components of SW panel.  Breeding 

lines and cultivars are indicated as red points, landraces are green points and accessions of 

uncertain origin are blue.  Underlying shaded regions indicate density of accession clusters, 

with the darkest areas being the most dense.   
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Figure 4.2:  Relationship among accessions within the NSGC spring wheat core subset 

mapping panel using SNP markers represented by a cladogram.  The indicated division is 

labeled as the dominant improvement status.  Colored branches are labeled as the dominant 

region of origin.   
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Figure 4.3:  Locations of –log10 marker-trait significance levels for height across the entire 

length of LG4B and days to heading across LG5A.  Bonferroni adjusted p-value threshold is 

shown (on 4B) and the locations of Rht-B1and Vrn-A1.  Irrigated (IR) and drought (DR) 

treatments are shown for both 2011 and 2012.   
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Appendices  

Chapter 2:  Supplemental Table 1, High yielding drought tolerant accessions.  

Table of yield, grain protein content (GP), and test weight (TWT) in irrigated (IR) and drought (DR) conditions for the 39 accessions 

found to be high yielding and drought tolerant.  Drought susceptibility index = DSI  Accession improvement status:  Adv = cultivar or 

breeding lines, unknown = uncertain accessions, and LR = landrace.  Wheat market classes:  SRS = soft red sprng, HRS = hard red 

spring, HWS = hard white spring and SWS = soft white spring.   

ACNO Status CLS 

Avg 

Yield 

2011 

DSI 

2011 

Avg 

Yield 

2012 

DSI 

2012 

GP 

2011 

IR 

GP 

2011 

DR 

GP 

2012 

IR 

GP 

2012 

DR 

TWT 

2011 

IR 

TW 

2011 

DR 

TW 

2012 

IR 

TW 

2012 

DR 

PI324151 Adv srs 6371.37 0.92 4133.66 -3.23 12.87 14.72 17.54 15.24 446.3 415.4 395.7 418.9 

PI337710 Adv sws 5598.34 -1.18 4223.17 -1.43 13.32 14.24 16.37 15.87 432.4 414 399.3 414.3 

PI428528 Adv hrs 6469.02 -2.63 4271.99 -0.11 12.35 14.48 14.76 15.29 441.5 443.6 405.7 403.6 

PI519662 Adv hrs 6794.5 -0.85 4345.23 0.32 11.26 14.65 15.67 15.16 452 447.5 420 439.9 

PI268328 Adv hws 6420.19 -1.91 4385.91 0.93 11.1 13.57 14.71 13.96 452.2 447.6 439.2 443.8 

CItr14362 Adv srs 6428.33 -1.09 4564.93 0.37 11.95 13.18 14.59 14.56 440.8 441.1 422.2 416.3 

PI384036 Adv hrs 7201.36 0.4 4743.95 -0.06 13.44 13.79 15.1 15.13 445.1 440.4 420 418.8 

PI312115 Adv srs 6102.85 -0.68 4890.41 0.68 13.69 15.05 14.97 16.37 456.2 440.3 431.6 429.7 

PI520350 Adv hrs 6045.89 -3.77 5012.47 0.42 13.37 15.49 15.93 15.34 455 445 432.9 449 

PI351504 Adv hrs 6094.71 0.33 5240.31 -1.45 14.35 12.35 14.43 13.43 441.7 448.4 418.6 415.9 

CItr12881 Adv hws 6054.02 0.87 5248.45 -0.68 11.19 13.05 14.42 12.29 437.9 443.2 432.5 434.7 

PI584920 Adv sws 6119.12 -0.45 5403.05 0.13 12.41 14.53 14.69 15.95 442.8 443.7 431.3 415.9 

PI642362 Adv hrs 6485.29 -0.82 5427.47 0.5 10.89 12.82 14.1 15.87 448.9 445.9 418.4 409.9 

CItr17943 Adv hrs 6127.26 -0.26 5476.29 0.02 14.44 15.89 14.53 15.24 443.5 447.1 434.7 437.8 

PI642362 Adv 
 

7071.17 -0.36 5606.48 -1.24 14.07 12.72 14.09 12.22 441 442.9 422.7 433 

PI641733 Adv sws 5801.77 -0.27 5671.58 -2.12 11.24 12.23 13.7 11.81 423.2 427.4 418 430.9 

CItr14392 Adv hws 6949.11 0.45 5704.13 0.87 10.9 12.77 13.69 14.33 438.1 441.6 429.6 426 

PI428666 Adv sws 5728.54 -0.89 5752.95 -0.76 10.36 12.24 15.08 12.97 444 439.5 416.8 426.7 

PI520282 Adv hrs 5736.68 0.12 5801.77 0.41 11.52 11.34 13.89 10.25 440.1 438.2 429.3 435.4 

PI639458 Adv hrs 6224.9 -2.57 5980.79 0.08 9.97 11.71 13.51 11.91 437.8 436.7 432.1 426.6 

PI201414 Adv hws 5940.1 -1.95 6029.61 -0.59 12.32 12.94 13.82 12.75 422.5 415 399.6 405.1 

PI276705 Adv hrs 5915.69 0.26 6119.12 -0.18 11.16 12.63 13.57 12.74 438.4 444 429.5 425.2 

PI184575 Adv sws 5964.52 -1.98 6208.63 -0.35 9.71 9.49 11.52 10.63 440.1 441.5 424.9 436 

PI639455 Adv hrs 6851.46 -1.45 6249.32 0.34 11.67 12.72 13.44 11.97 440.8 442.5 433.2 428.7 

PI418575 Adv hrs 7071.17 -2.02 7030.48 -1.33 10.7 13.85 13.53 13.8 440.1 444.5 430.4 428.2 

PI625725 LR hws 6745.68 -0.37 4426.6 0.66 13.23 12.23 13.43 14.95 408 427.3 419 395.5 

PI477901 LR sws 6290 -1 5101.98 0.65 15.75 15.63 15.99 15.53 419.9 427.9 415.3 410.5 
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PI624415 LR hws 6119.12 -0.3 5150.8 0.12 12 14.84 14.12 16.84 440.9 442 431 413.2 

PI173488 LR srs 5630.89 -3.02 5256.59 -0.39 11.17 14.72 14.11 15.76 459.3 461.7 446.6 435.3 

PI234385 LR srs 6102.85 -1.15 6110.98 -0.04 15.73 15.53 16.93 13.72 426.9 442.7 428.4 441.5 

PI24485 LR hrs 6322.55 -0.32 6143.53 0.07 13.6 15.07 14.86 15.17 438 436.3 441.8 428.6 

PI624426 LR srs 6371.37 0.52 6273.73 -0.99 13.67 14.74 17.76 13.69 445.2 440.1 431.2 443.2 

PI445696 LR hws 6216.77 -2.02 6338.82 -1.26 11.11 13.35 13.66 11.45 455.3 460.1 448 453.5 

PI137758 LR hws 6737.54 -0.55 6371.37 -0.04 11.27 13.66 14.21 13.05 434 437.1 422.5 414 

PI202828 LR hws 7030.48 0.32 6932.83 -1.09 12.22 12.25 14.15 12.72 425.5 431.7 423.1 414.4 

PI384374 Unknown hws 6436.47 -0.04 4198.76 0.09 15.08 14.86 14.4 14.72 440.9 448.3 438.5 445.2 

PI525284 Unknown hws 5964.52 -1.9 4385.91 1 9.99 10.98 13.37 13.38 440.2 430.3 415.9 395.6 

PI532060 Unknown sws 6623.62 -0.91 5199.63 0.67 11.31 13.77 14.54 14.18 453.4 452 437.3 445.3 

PI285819 Unknown srs 6452.74 0.71 6542.25 0.48 13.74 13.1 14.27 12.94 450.2 450.5 439.9 441.8 
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Chapter 4:  Supplemental Table 2:  Distibution of SNP markers within the NSGC spring 

wheat core subset.  SNP positions are based on the Consensus Wheat SNP Map by Cavanagh 

et al. (2013).  Linkage group size, number of unique SNP loci; and largest, smallest and 

average gap sizes for individual linkage groups.  Genetic distance units are shown in 

centimorgans (cM). 

 

Linkage 

Groups  

Size 

(cM) 

Individual  

SNP loci 

Mean 

Gap  

(cM) 

Smallest 

Gap 

(cM) 

Largest  

Gap 

(cM) 

1A 183 210 0.88 0.02 10.4 

2A 230.86 202 1.15 0.03 22.9 

3A 172.28 192 0.9 0.06 10.89 

4A 211.13 158 1.34 0.11 10.02 

5A 195.83 165 1.19 0.02 10.28 

6A 217.7 184 1.19 0.09 14.06 

7A 193.82 207 0.94 0.02 8.96 

1B 141.37 189 0.75 0.05 8.17 

2B 272.12 265 1.03 0.03 10.25 

3B 196.01 215 1 0.01 15.62 

4B 124.94 96 1.32 0.17 11.93 

5B 226.9 232 0.98 0.07 8.63 

6B 154.05 206 0.75 0.05 9.36 

7B 169.09 163 1.04 0.01 7.65 

1D 145.36 75 1.96 0.18 40.58 

2D 191.72 76 2.56 0.22 18.05 

3D1 1.71 3 0.86 0.56 1.15 

3D2 1.65 4 0.55 0.54 0.56 

3D3 84.92 27 3.27 0.09 63.07 

4D 101.5 30 3.5 0.37 31.64 

5D1cult 54.01 14 4.15 0.31 39 

5D2cult 15.52 3 7.76 4.5 11.02 

5D3cult 48.4 17 3.03 0.29 16.36 

6D1 8.49 13 0.71 0.15 2.75 

6D2 77.66 24 3.38 0.04 21.45 

6D3 7.78 9 0.97 0.28 1.96 

7D1 6.59 4 2.2 0.53 4.94 

7D2 55.34 18 3.26 0.49 8.56 
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Chapter 4:  Supplemental Table 3 

Significant markers identified for yield (Kg/ha), protein (PROT) and test weight (TWT).  ‘Trait _Exp’ is coded as 

“Trait/Year/Treatment”.  Mixed linear model (Q + K; MLM_p) and General linear model (Q; GLM_p) significance levels, marker 

location (Genetic_dist) and BLAST descriptions are shown.   

 
Trait Trait_Exp. Marker MLM_p GLM_p ChrGen Genetic_dist Description (blastx refseq_protein) or (blastn nr/nt)  

Kg/ha Kg/ha2011T1 Ex_c26375_35620271 0.0067 0.000707 2B 149.356 Os04g0379900 [Oryza sativa Japonica Group] 

Kg/ha YieldBLUPT12012 Ex_c5363_9482943 0.005598 0.000112 2B 149.356 hypothetical protein SORBIDRAFT_06g013960 [Sorghum 

bicolor] 

Kg/ha YieldBLUPT12012 Ex_c26375_35620271 0.008984 0.000261 2B 149.356 Os04g0379900 [Oryza sativa Japonica Group] 

Kg/ha YieldBLUPT22012 be499362B_Td_2_1 0.002042 0.000549 2B 149.356 na 

Kg/ha Kg/ha2012T1 Ex_c128_255285 0.004889 0.000353 2B 157.1677 Os04g0496800 [Oryza sativa Japonica Group] 

Kg/ha Kg/ha2012T2 Ex_c128_255285 0.003816 0.000811 2B 157.1677 Os04g0496800 [Oryza sativa Japonica Group] 

Kg/ha Kg/ha2012T1 JD_c758_1132463 0.002383 2.39E-06 2B 158.0738 Os04g0503500 [Oryza sativa Japonica Group] 

Kg/ha Kg/ha2012T2 JD_c758_1132463 0.002302 7.94E-05 2B 158.0738 Os04g0503500 [Oryza sativa Japonica Group] 

Kg/ha YieldBLUPT12012 Ex_c2097_3932976 0.004082 0.000113 2B 160.0919 Os04g0507000 [Oryza sativa Japonica Group] 

Kg/ha YieldBLUPT12012 Ex_c41558_48356869 0.004082 0.000113 2B 160.0919 conserved hypothetical protein [Ricinus communis] 

Kg/ha YieldBLUPT12012 JD_c14405_14144807 0.004082 0.000113 2B 160.0919 hypothetical protein SELMODRAFT_127796 [Selaginella 

moellendorffii] 

Kg/ha YieldBLUPT12012 Ku_rep_c68888_68067293 0.004082 0.000113 2B 160.0919 predicted protein [Populus trichocarpa] 

Kg/ha Kg/ha2012T1 Ex_rep_c68587_67434960 0.001318 1.27E-06 2B 160.442 Os04g0503500 [Oryza sativa Japonica Group] 

Kg/ha Kg/ha2012T1 Ku_c3780_6950286 0.001374 2.02E-06 2B 160.442 hypothetical protein SORBIDRAFT_06g021790 [Sorghum 
bicolor] 

Kg/ha Kg/ha2012T1 Ex_c8894_14858193 0.001762 2.47E-06 2B 160.442 hypothetical protein SORBIDRAFT_06g021790 [Sorghum 

bicolor] 

Kg/ha Kg/ha2012T1 Ex_rep_c68386_67199155 0.001762 2.47E-06 2B 160.442 hypothetical protein SORBIDRAFT_06g021790 [Sorghum 
bicolor] 

Kg/ha Kg/ha2012T1 BG274019B_Ta_2_1 0.001782 1.12E-05 2B 160.442 na 

Kg/ha Kg/ha2011T2 Ku_c3780_6950286 0.003054 1.39E-05 2B 160.442 hypothetical protein SORBIDRAFT_06g021790 [Sorghum 

bicolor] 

Kg/ha Kg/ha2012T2 BG274019B_Ta_2_1 0.000506 0.000016 2B 160.442 na 
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Kg/ha Kg/ha2011T2 Ex_c8894_14858193 0.004234 1.76E-05 2B 160.442 hypothetical protein SORBIDRAFT_06g021790 [Sorghum 

bicolor] 

Kg/ha Kg/ha2011T2 Ex_rep_c68386_67199155 0.004234 1.76E-05 2B 160.442 hypothetical protein SORBIDRAFT_06g021790 [Sorghum 
bicolor] 

Kg/ha Kg/ha2011T2 Ex_rep_c68587_67434960 0.009305 0.000068 2B 160.442 Os04g0503500 [Oryza sativa Japonica Group] 

Kg/ha Kg/ha2011T1 BG274019B_Ta_2_1 0.002744 0.000321 2B 160.442 na 

Kg/ha Kg/ha2012T2 Ex_c17700_26446810 0.000908 0.000415 2B 160.442 hypothetical protein SORBIDRAFT_06g021850 [Sorghum 

bicolor] 

Kg/ha YieldBLUPT22011 Ex_c8894_14858193 0.009468 2.63E-05 2B 160.442 hypothetical protein SORBIDRAFT_06g021790 [Sorghum 
bicolor] 

Kg/ha YieldBLUPT22011 Ex_rep_c68386_67199155 0.009468 2.63E-05 2B 160.442 hypothetical protein SORBIDRAFT_06g021790 [Sorghum 

bicolor] 
Kg/ha YieldBLUPT22011 Ku_c3780_6950286 0.009709 2.78E-05 2B 160.442 hypothetical protein SORBIDRAFT_06g021790 [Sorghum 

bicolor] 

Kg/ha YieldBLUPT22012 BG274019B_Ta_2_1 0.003911 8.48E-05 2B 160.442 na 

Kg/ha Kg/ha2011T2 Ku_c3081_5776947 0.006295 0.000821 4A 90.85943 Os03g0659400 [Oryza sativa Japonica Group] 

Kg/ha Kg/ha2011T2 Ku_c3081_5778117 0.006802 0.000992 4A 90.85943 Os03g0659400 [Oryza sativa Japonica Group] 

Kg/ha YieldBLUPT12012 Ku_c3081_5777013 0.001426 4.86E-05 4A 90.85943 Os03g0659400 [Oryza sativa Japonica Group] 

Kg/ha YieldBLUPT12012 Ku_c3081_5776947 0.001691 5.09E-05 4A 90.85943 Os03g0659400 [Oryza sativa Japonica Group] 

Kg/ha YieldBLUPT12012 Ku_c3081_5778117 0.001745 6.23E-05 4A 90.85943 Os03g0659400 [Oryza sativa Japonica Group] 

Kg/ha Kg/ha2011T2 Ra_c19660_28866961 0.008327 1.68E-05 5B 201.814 Os05g0207900 [Oryza sativa Japonica Group] 

Kg/ha Kg/ha2011T2 Ex_c7193_12354542 0.008921 1.84E-05 5B 201.814 Os05g0207900 [Oryza sativa Japonica Group] 

Kg/ha Kg/ha2011T2 Ku_c21465_31217980 0.008921 1.84E-05 5B 201.814 Os05g0207900 [Oryza sativa Japonica Group] 

Kg/ha Kg/ha2011T2 JD_c8978_9893945 0.000168 9.81E-08 5B 203.6357 RNA-binding region RNP-1 (RNA recognition motif):FAD 
linked oxidase, C-terminal:FAD linked oxidase, N-terminal 

[Fulvimarina pelagi HTCC2506] 

Kg/ha Kg/ha2011T1 JD_c8978_9893945 0.008286 2.88E-05 5B 203.6357 RNA-binding region RNP-1 (RNA recognition motif):FAD 
linked oxidase, C-terminal:FAD linked oxidase, N-terminal 

[Fulvimarina pelagi HTCC2506] 

Kg/ha YieldBLUPT22011 JD_c8978_9893945 0.001679 2.27E-06 5B 203.6357 RNA-binding region RNP-1 (RNA recognition motif):FAD 
linked oxidase, C-terminal:FAD linked oxidase, N-terminal 

[Fulvimarina pelagi HTCC2506] 

Kg/ha Kg/ha2011T2 JD_c12269_12546501 0.008597 9.25E-06 5B 204.0058 Os03g0835800 [Oryza sativa Japonica Group] 
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Kg/ha YieldBLUPT22011 JD_c12269_12546501 0.005101 3.18E-06 5B 204.0058 Os03g0835800 [Oryza sativa Japonica Group] 

Kg/ha YieldBLUPT12011 Ex_c2870_5296539 0.003804 2.48E-06 5B 204.63 Os03g0836200 [Oryza sativa Japonica Group] 

Kg/ha Kg/ha2012T1 Ex_c34545_42832894 0.000682 3.40E-07 6A 110.2899 Os02g0702500 [Oryza sativa Japonica Group] 

Kg/ha Kg/ha2012T1 Ex_c34545_42833327 0.000682 3.40E-07 6A 110.2899 Os02g0702500 [Oryza sativa Japonica Group] 

Kg/ha Kg/ha2012T1 RFL_Contig2182_1514692 0.000682 3.40E-07 6A 110.2899 na 

Kg/ha Kg/ha2011T2 Ex_c34545_42832894 0.007629 3.91E-05 6A 110.2899 Os02g0702500 [Oryza sativa Japonica Group] 

Kg/ha Kg/ha2011T2 Ex_c34545_42833327 0.007629 3.91E-05 6A 110.2899 Os02g0702500 [Oryza sativa Japonica Group] 

Kg/ha Kg/ha2011T2 RFL_Contig2182_1514692 0.007629 3.91E-05 6A 110.2899 na 

Kg/ha YieldBLUPT22011 Ex_c16423_24920805 0.002012 3.63E-07 6A 180.1925 PAP-specific phosphatase [Zea mays] 

Kg/ha YieldBLUPT12012 Ex_c16423_24920805 0.001941 0.000335 6A 180.1925 PAP-specific phosphatase [Zea mays] 

Prot PROTBLUPT12012 Ku_c11769_19153951 0.000412 0.000022 1A 44.98814 hypothetical protein LOC100274440 [Zea mays] 

Prot PROTBLUPT22011 Ku_c11769_19153951 0.001343 0.000492 1A 44.98814 hypothetical protein LOC100274440 [Zea mays] 

Prot Prot2012T1 JD_c758_1132463 0.009958 3.83E-06 2B 158.0738 Os04g0503500 [Oryza sativa Japonica Group] 

Prot Prot2012T1 Ku_c3780_6950286 0.004715 9.38E-06 2B 160.442 hypothetical protein SORBIDRAFT_06g021790 [Sorghum 

bicolor] 

Prot Prot2012T1 Ex_c8894_14858193 0.005797 1.13E-05 2B 160.442 hypothetical protein SORBIDRAFT_06g021790 [Sorghum 
bicolor] 

Prot Prot2012T1 Ex_rep_c68386_67199155 0.005797 1.13E-05 2B 160.442 hypothetical protein SORBIDRAFT_06g021790 [Sorghum 

bicolor] 

Prot Prot2011T2 Ku_c3780_6950286 0.00589 0.000427 2B 160.442 hypothetical protein SORBIDRAFT_06g021790 [Sorghum 
bicolor] 

Prot Prot2012T2 Ex_c18261_27078080 0.001223 0.000415 2B 163.38 Os04g0578700 [Oryza sativa Japonica Group] 

Prot Prot2011T2 Ex_c45468_51254978 0.000329 1.75E-07 2B 211.067 hypothetical protein SORBIDRAFT_06g030930 [Sorghum 

bicolor] 

Prot Prot2011T1 Ex_c45468_51254978 0.001919 9.78E-06 2B 211.067 hypothetical protein SORBIDRAFT_06g030930 [Sorghum 
bicolor] 

Prot PROTBLUPT12011 Ex_c45468_51254978 0.000925 1.26E-07 2B 211.067 hypothetical protein SORBIDRAFT_06g030930 [Sorghum 

bicolor] 

Prot PROTBLUPT22011 Ex_c45468_51254978 0.001223 8.93E-07 2B 211.067 hypothetical protein SORBIDRAFT_06g030930 [Sorghum 
bicolor] 

Prot Prot2011T2 Ex_c1944_3664205 0.008118 0.000293 2D 71.34027 hypothetical protein SORBIDRAFT_02g041520 [Sorghum 

bicolor] 
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Prot Prot2011T1 Ex_c1944_3664205 0.008004 0.0004 2D 71.34027 hypothetical protein SORBIDRAFT_02g041520 [Sorghum 

bicolor] 

Prot PROTBLUPT22012 Ex_c40060_47197713 0.002534 0.000635 3B 88.31186 Os01g0789000 [Oryza sativa Japonica Group] 

Prot PROTBLUPT22012 RFL_Contig3896_4291652 0.002534 0.000635 3B 88.31186 na 

Prot PROTBLUPT22012 JD_c19725_17732526 0.002549 0.000834 3B 88.31186 hypothetical protein LOC100275589 [Zea mays] 

Prot PROTBLUPT12011 Ex_rep_c69664_68618163 0.000534 0.000301 3B 88.51365 hypothetical protein SORBIDRAFT_03g037240 [Sorghum 

bicolor] 

Prot PROTBLUPT12011 Ku_c1391_2771050 0.000534 0.000301 3B 88.51365 hypothetical protein SORBIDRAFT_03g037240 [Sorghum 
bicolor] 

Prot Prot2011T1 JD_c2937_3905238 0.008677 0.000391 3B 127.4231 Os01g0927600 [Oryza sativa Japonica Group] 

Prot Prot2011T2 Ex_c13154_20784674 0.006303 5.03E-05 3B 127.8741 Oryza sativa (indica cultivar-group) partial mRNA for putative 

pre-mRNA-splicing factor cwc-22 (Os12g15420 gene) 

Prot Prot2011T2 Ex_c13154_20785032 0.006514 5.53E-05 3B 127.8741 Oryza sativa (indica cultivar-group) partial mRNA for putative 

pre-mRNA-splicing factor cwc-22 (Os12g15420 gene) 

Prot Prot2011T1 Ex_c2171_4074003 0.000476 4.84E-05 5A 195.0005 hypothetical protein LOC100193799 [Zea mays] 

Prot Prot2011T2 Ex_c2171_4074003 0.00546 0.000153 5A 195.0005 hypothetical protein LOC100193799 [Zea mays] 

Prot PROTBLUPT12011 Ex_c2171_4074003 0.000885 0.00068 5A 195.0005 hypothetical protein LOC100193799 [Zea mays] 

Prot Prot2012T1 Ex_c12431_19823475 0.007954 0.000839 5B 56.34129 hypothetical protein EcolC_1609 [Escherichia coli ATCC 8739] 

Prot Prot2012T1 RFL_Contig1809_946826 0.005634 0.000827 5B 59.25887 na 

Prot Prot2012T1 Ra_c2421_4647159 0.005651 0.000852 5B 59.25887 Os05g0558900 [Oryza sativa Japonica Group] 

Prot PROTBLUPT12012 RFL_Contig1809_946826 0.008368 7.31E-05 5B 59.25887 na 

Prot PROTBLUPT12012 Ra_c2421_4647159 0.008348 7.47E-05 5B 59.25887 Os05g0558900 [Oryza sativa Japonica Group] 

Prot PROTBLUPT12011 Ku_c46323_53087840 0.000374 0.000148 5B 59.25887 Oryza sativa Japonica Group Gmk gene for guanylate kinase 

Prot PROTBLUPT22011 Ku_c46323_53087840 0.003706 0.000163 5B 59.25887 Oryza sativa Japonica Group Gmk gene for guanylate kinase 

Prot PROTBLUPT12011 CAP7_c2086_1018815 0.006178 0.000412 5B 59.25887 na 

Prot PROTBLUPT12011 BF473658B_Ta_2_1 0.004215 0.000753 5B 59.25887 na 

Prot Prot2012T1 Ex_rep_c66881_65284662 0.003229 0.000451 5B 61.08055 Os07g0665700 [Oryza sativa Japonica Group] 
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Prot PROTBLUPT12012 Ex_rep_c66881_65284662 0.004185 3.84E-05 5B 61.08055 Os07g0665700 [Oryza sativa Japonica Group] 

Prot Prot2011T2 Ex_c1630_3105100 0.002622 5.69E-05 5B 65.13033 na 

Prot PROTBLUPT22011 Ex_c1630_3105100 0.002035 9.31E-05 5B 65.13033 na 

Prot Prot2011T2 Ex_c6100_10676217 0.001337 6.75E-05 5B 67.53261 hypothetical protein SORBIDRAFT_02g026540 [Sorghum 

bicolor] 

Prot Prot2012T1 Ex_c6100_10676217 0.001888 0.000215 5B 67.53261 hypothetical protein SORBIDRAFT_02g026540 [Sorghum 
bicolor] 

Prot PROTBLUPT12012 Ex_c6100_10676217 0.000411 1.41E-06 5B 67.53261 hypothetical protein SORBIDRAFT_02g026540 [Sorghum 

bicolor] 

Prot Prot2011T1 Ex_c20352_29416468 0.009315 0.000799 6A 206.9033 Os02g0822800 [Oryza sativa Japonica Group] 

Prot PROTBLUPT22012 Ra_c39433_47141896 0.000844 0.000411 6A 207.3341 putative RH2 protein [Zea mays] 

Prot Prot2011T1 Ku_rep_c71567_71302229 0.001106 0.000016 6A 215.2325 Os02g0830100 [Oryza sativa Japonica Group] 

Prot Prot2011T2 Ku_rep_c71567_71302229 0.005186 7.90E-05 6A 215.2325 Os02g0830100 [Oryza sativa Japonica Group] 

Prot PROTBLUPT12011 Ku_rep_c71567_71302229 7.32E-05 1.58E-05 6A 215.2325 Os02g0830100 [Oryza sativa Japonica Group] 

Prot PROTBLUPT22011 Ku_rep_c71567_71302229 0.001124 0.000382 6A 215.2325 Os02g0830100 [Oryza sativa Japonica Group] 

Prot Prot2011T1 Ra_c20409_29673950 0.006177 0.000927 6B 21.7637 hypothetical protein SORBIDRAFT_04g000990 [Sorghum 
bicolor] 

Prot PROTBLUPT22011 Ra_c20409_29673950 0.006124 0.000203 6B 21.7637 hypothetical protein SORBIDRAFT_04g000990 [Sorghum 

bicolor] 

Prot PROTBLUPT12011 CAP11_c1724_940246 0.000709 1.71E-05 6B 79.99885 chlorophyll a-b binding protein 8 [Zea mays] 

Prot PROTBLUPT12011 Ex_c1319_2522682 0.001227 4.01E-05 6B 79.99885 Os02g0196300 [Oryza sativa Japonica Group] 

Prot PROTBLUPT12012 Ex_c6356_11055912 0.009554 0.000272 6B 83.88119 hypothetical protein LOC100274901 [Zea mays] 

Prot PROTBLUPT22012 Ex_rep_c69660_68614071 0.004723 0.000919 6B 84.50839 hypothetical protein SORBIDRAFT_01g021330 [Sorghum 

bicolor] 

Prot PROTBLUPT12012 Ex_c6356_11056222 0.00913 0.000263 6B 87.66318 hypothetical protein LOC100274901 [Zea mays] 

Prot PROTBLUPT12012 Ex_c6356_11056696 0.00913 0.000263 6B 87.66318 hypothetical protein LOC100274901 [Zea mays] 

Prot PROTBLUPT22012 Ex_c2854_5270318 0.004723 0.000919 6B 87.66318 na 

Prot Prot2011T1 Ex_c1690_3206784 0.007021 0.000653 6D 29.39409 polyadenylate-binding protein 2 [Zea mays] 

Prot PROTBLUPT22011 Ex_c1690_3206784 0.00526 0.000103 6D 29.39409 polyadenylate-binding protein 2 [Zea mays] 

Prot Prot2011T2 Ra_c13881_21836489 0.009715 3.73E-05 6D 29.78121 hypothetical protein SORBIDRAFT_04g027560 [Sorghum 
bicolor] 
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Prot PROTBLUPT22011 Ra_c13881_21836489 0.002518 2.21E-05 6D 29.78121 hypothetical protein SORBIDRAFT_04g027560 [Sorghum 

bicolor] 

Prot Prot2011T2 Ex_c14691_22763609 0.009068 0.000155 6D 116.253 hypothetical protein SORBIDRAFT_04g037410 [Sorghum 
bicolor] 

Prot Prot2011T1 Ex_c14691_22763753 0.00324 0.000277 6D 116.253 hypothetical protein SORBIDRAFT_04g037410 [Sorghum 

bicolor] 

Prot Prot2011T1 Ex_c14691_22765150 0.00324 0.000277 6D 116.253 hypothetical protein SORBIDRAFT_04g037410 [Sorghum 
bicolor] 

Prot Prot2011T1 Ex_c14691_22763609 0.003357 0.000406 6D 116.253 hypothetical protein SORBIDRAFT_04g037410 [Sorghum 

bicolor] 

Prot PROTBLUPT22011 JD_rep_c50999_34772439 0.004018 2.29E-05 6D 116.253 Os02g0820000 [Oryza sativa Japonica Group] 

Prot PROTBLUPT22011 Ex_c14691_22763609 0.003083 3.18E-05 6D 116.253 hypothetical protein SORBIDRAFT_04g037410 [Sorghum 
bicolor] 

Prot PROTBLUPT22011 Ex_rep_c69248_68171036 0.006546 5.45E-05 6D 116.253 Os02g0820000 [Oryza sativa Japonica Group] 

Prot PROTBLUPT12011 Ex_c14691_22763609 0.006193 9.05E-05 6D 116.253 hypothetical protein SORBIDRAFT_04g037410 [Sorghum 

bicolor] 

Prot PROTBLUPT12011 Ex_c14691_22763753 0.007619 0.0001 6D 116.253 hypothetical protein SORBIDRAFT_04g037410 [Sorghum 
bicolor] 

Prot PROTBLUPT12011 Ex_c14691_22765150 0.007619 0.0001 6D 116.253 hypothetical protein SORBIDRAFT_04g037410 [Sorghum 

bicolor] 

Prot PROTBLUPT22011 Ex_c14691_22763753 0.007752 0.000136 6D 116.253 hypothetical protein SORBIDRAFT_04g037410 [Sorghum 
bicolor] 

Prot PROTBLUPT22011 Ex_c14691_22765150 0.007752 0.000136 6D 116.253 hypothetical protein SORBIDRAFT_04g037410 [Sorghum 

bicolor] 

Prot PROTBLUPT12012 JD_rep_c50999_34772439 0.001522 0.000413 6D 116.253 Os02g0820000 [Oryza sativa Japonica Group] 

Prot PROTBLUPT12012 Ex_c14691_22763609 0.002718 0.000807 6D 116.253 hypothetical protein SORBIDRAFT_04g037410 [Sorghum 
bicolor] 

Prot Prot2011T2 Ex_c6961_11998812 0.008319 0.000524 7A 171.3263 hypothetical protein SORBIDRAFT_10g024960 [Sorghum 

bicolor] 

Prot PROTBLUPT12012 Ex_c6961_11998812 0.002963 0.000503 7A 171.3263 hypothetical protein SORBIDRAFT_10g024960 [Sorghum 
bicolor] 

TWT TWT2012T1 Ex_rep_c67848_66550913 0.006144 4.87E-05 2A 29.57903 hypothetical protein SORBIDRAFT_06g028850 [Sorghum 

bicolor] 

TWT TWT2012T1 Ex_rep_c67848_66550913 0.006144 4.87E-05 2A 29.57903 hypothetical protein SORBIDRAFT_06g028850 [Sorghum 
bicolor] 

TWT TWT2012T1 Ku_c54793_58953037 0.006144 4.87E-05 2A 29.57903 hypothetical protein SORBIDRAFT_06g028850 [Sorghum 

bicolor] 
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TWT TWT2011T2 Ex_rep_c67848_66550913 0.005466 6.40E-05 2A 29.57903 hypothetical protein SORBIDRAFT_06g028850 [Sorghum 

bicolor] 

TWT TWT2011T2 Ku_c54793_58953037 0.005466 6.40E-05 2A 29.57903 hypothetical protein SORBIDRAFT_06g028850 [Sorghum 
bicolor] 

TWT TWT2012T1 Ex_c23768_33006588 0.000148 8.17E-05 2A 29.57903 Hordeum vulgare partial mRNA for NBS-LRR disease 

resistance protein homologue (rga S-217 gene) 

TWT TWTBLUPT22011 Ex_rep_c67848_66550913 0.001245 0.000242 2A 29.57903 hypothetical protein SORBIDRAFT_06g028850 [Sorghum 

bicolor] 

TWT TWTBLUPT22011 Ku_c54793_58953037 0.001245 0.000242 2A 29.57903 hypothetical protein SORBIDRAFT_06g028850 [Sorghum 

bicolor] 

TWT TWTBLUPT12011 Ku_c10196_16926860 0.003072 1.55E-06 3B 121.5238 Os01g0916300 [Oryza sativa Japonica Group] 

TWT TWT2011T1 Ku_c10196_16926860 0.005214 1.03E-05 3B 121.5238 Os01g0916300 [Oryza sativa Japonica Group] 

TWT TWT2011T2 Ku_c10196_16926860 0.008392 1.12E-05 3B 121.5238 Os01g0916300 [Oryza sativa Japonica Group] 

TWT TWTBLUPT22011 Ku_c10196_16926860 0.007762 5.55E-05 3B 121.5238 Os01g0916300 [Oryza sativa Japonica Group] 

TWT TWT2011T2 Ex_c11837_18996495 0.008993 5.99E-05 3B 126.2361 Os01g0923900 [Oryza sativa Japonica Group] 

TWT TWTBLUPT12011 Ex_c11837_18996495 0.004259 0.000227 3B 126.2361 Os01g0923900 [Oryza sativa Japonica Group] 

TWT TWTBLUPT22011 Ex_rep_c67799_66488792 0.002928 0.00084 4A 50.42882 Oryza sativa guanine nucleotide-exchange protein GEP2 

(GEP2) 

TWT TWTBLUPT22012 Ex_c4220_7623030 0.001062 0.000019 4A 51.62826 Triticum aestivum mRNA for autophagy protein 9 (atg9 gene) 

TWT TWTBLUPT22011 Ex_c4220_7623030 0.003884 0.00037 4A 51.62826 Triticum aestivum mRNA for autophagy protein 9 (atg9 gene) 

TWT TWT2011T2 Ex_c4220_7623030 0.008194 0.000541 4A 51.62826 Triticum aestivum mRNA for autophagy protein 9 (atg9 gene) 

TWT TWT2011T1 BE399966A_Ta_2_3 0.002282 3.01E-05 5A 11.21989 na 

TWT TWTBLUPT12011 BE399966A_Ta_2_3 0.001896 9.65E-05 5A 11.21989 na 

TWT TWTBLUPT22011 Ku_c6125_10773757 0.003674 0.000142 5A 11.21989 Os02g0284500 [Oryza sativa Japonica Group] 

TWT TWTBLUPT22011 Ku_c6125_10773757 0.003674 0.000142 5A 11.21989 Os02g0284500 [Oryza sativa Japonica Group] 

TWT TWT2012T2 Ku_c6125_10773757 0.00075 0.000262 5A 11.21989 Os02g0284500 [Oryza sativa Japonica Group] 

TWT TWT2012T2 Ku_c6125_10773757 0.00075 0.000262 5A 11.21989 Os02g0284500 [Oryza sativa Japonica Group] 

TWT TWTBLUPT22011 Ex_c32825_41419391 0.000907 9.65E-06 5A 77.19494 GM11232 [Drosophila sechellia] 

TWT TWT2011T12 Ex_c32825_41419391 0.004079 3.56E-05 5A 77.19494 GM11232 [Drosophila sechellia] 

TWT TWTBLUPT12011 Ex_c32825_41419391 0.006707 0.000091 5A 77.19494 GM11232 [Drosophila sechellia] 
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TWT TWTBLUPT12012 Ex_c32825_41419391 0.001211 0.000157 5A 77.19494 GM11232 [Drosophila sechellia] 

TWT TWTBLUPT22011 Ex_c3838_6981043 0.000704 1.14E-05 5A 77.52282 hypothetical protein SORBIDRAFT_02g028640 [Sorghum 

bicolor] 

TWT TWT2011T1 Ex_c3838_6981043 0.004534 0.000044 5A 77.52282 hypothetical protein SORBIDRAFT_02g028640 [Sorghum 
bicolor] 

TWT TWTBLUPT12011 Ex_c3838_6981043 0.006997 0.000118 5A 77.52282 hypothetical protein SORBIDRAFT_02g028640 [Sorghum 

bicolor] 

TWT TWTBLUPT12012 Ex_c3838_6981043 0.002571 0.000641 5A 77.52282 hypothetical protein SORBIDRAFT_02g028640 [Sorghum 
bicolor] 

TWT TWT2012T2 Ex_c3838_6981043 0.009636 0.000744 5A 77.52282 hypothetical protein SORBIDRAFT_02g028640 [Sorghum 

bicolor] 

TWT TWT2012T2 Ku_c14139_22353229 0.005403 3.38E-05 5A 77.85069 Triticum aestivum MBD2 mRNA 

TWT TWTBLUPT22011 Ku_c14139_22353229 0.001637 0.000783 5A 77.85069 Triticum aestivum MBD2 mRNA 

TWT TWT2011T1 Ku_c14139_22353229 0.006696 0.000951 5A 77.85069 Triticum aestivum MBD2 mRNA 

TWT TWTBLUPT22011 Ku_c6125_10773757 0.003674 0.000142 5B 31.28781 Os02g0284500 [Oryza sativa Japonica Group] 

TWT TWTBLUPT22011 Ku_c6125_10773757 0.003674 0.000142 5B 31.28781 Os02g0284500 [Oryza sativa Japonica Group] 

TWT TWT2012T2 Ku_c6125_10773757 0.00075 0.000262 5B 31.28781 Os02g0284500 [Oryza sativa Japonica Group] 

TWT TWT2012T2 Ku_c6125_10773757 0.00075 0.000262 5B 31.28781 Os02g0284500 [Oryza sativa Japonica Group] 

TWT TWTBLUPT12012 BF473658B_Ta_2_1 0.000899 1.20E-05 5B 59.25887 na 

TWT TWTBLUPT22011 CAP7_c2086_1018815 0.002108 6.48E-05 5B 59.25887 na 

TWT TWT2011T2 CAP7_c2086_1018815 0.001433 7.69E-05 5B 59.25887 na 

TWT TWTBLUPT12011 CAP7_c2086_1018815 0.006861 8.38E-05 5B 59.25887 na 

TWT TWTBLUPT22011 BF473658B_Ta_2_1 0.003179 9.16E-05 5B 59.25887 na 

TWT TWTBLUPT22011 JD_c38123_27754848 0.004492 0.000134 5B 59.25887 Os05g0334400 [Oryza sativa Japonica Group] 

TWT TWT2011T2 JD_c38123_27754848 0.001982 0.000147 5B 59.25887 Os05g0334400 [Oryza sativa Japonica Group] 

TWT TWT2012T1 BF473658B_Ta_2_1 0.008041 0.000356 5B 59.25887 na 

TWT TWTBLUPT22011 Ex_c7982_13546427 0.009828 0.000522 5B 59.25887 Os12g0502800 [Oryza sativa Japonica Group] 

TWT TWT2012T1 Ex_c47152_52446529 0.007634 0.00016 5B 98.62447 hypothetical protein SORBIDRAFT_02g029480 [Sorghum 
bicolor] 

TWT TWT2011T2 Ex_c47152_52446529 0.00615 0.000798 5B 98.62447 hypothetical protein SORBIDRAFT_02g029480 [Sorghum 

bicolor] 

TWT TWT2011T2 Ku_c29780_39658445 0.006768 0.000913 5B 98.62447 Os07g0139500 [Oryza sativa Japonica Group] 

TWT TWT2011T1 Ex_c8019_13598348 0.006065 1.78E-05 5B 181.7103 Os03g0809300 [Oryza sativa Japonica Group] 
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TWT TWTBLUPT12011 Ex_c8019_13598348 0.007504 6.15E-05 5B 181.7103 Os03g0809300 [Oryza sativa Japonica Group] 

TWT TWT2012T1 Ku_c10377_17180909 0.000666 0.000485 6A 36.83932 hypothetical protein SORBIDRAFT_04g001010 [Sorghum 

bicolor] 

TWT TWT2011T2 Ku_c10377_17180909 0.007698 0.000975 6A 36.83932 hypothetical protein SORBIDRAFT_04g001010 [Sorghum 
bicolor] 

TWT TWTBLUPT12011 Ex_c20062_29096454 0.001109 6.36E-05 7A 51.17462 Os05g0255600 [Oryza sativa Japonica Group] 

TWT TWT2011T12 Ex_c20062_29096454 0.003521 0.000338 7A 51.17462 Os05g0255600 [Oryza sativa Japonica Group] 

TWT TWTBLUPT22011 CAP11_c1591_881161 0.002734 0.000137 7A 52.88501 Efflux transporter, RND family, MFP subunit [Rhodobacter 

sphaeroides KD131] 

TWT TWT2011T2 Ex_c24376_33618864 0.002621 4.02E-05 7B 17.07149 Triticum aestivum limit dextrinase type starch debranching 
enzyme (LD1) 

TWT TWT2011T2 Ex_c24376_33619527 0.008862 0.000132 7B 17.07149 Triticum aestivum limit dextrinase type starch debranching 

enzyme (LD1) 

TWT TWT2012T1 Ex_c24376_33618864 0.005166 0.00017 7B 17.07149 Triticum aestivum limit dextrinase type starch debranching 
enzyme (LD1) 

TWT TWTBLUPT22012 BE498662B_Ta_2_5 0.006769 2.33E-05 7B 46.80061 na 

TWT TWTBLUPT12012 BE498662B_Ta_2_5 0.004554 0.000143 7B 46.80061 na 

TWT TWT2011T1 Ex_c18800_27681277 0.002837 0.000199 7B 48.47886 molybdenum cofactor biosynthesis protein A [Aquifex aeolicus 

VF5] 

TWT TWT2011T1 JD_c9040_9947841 0.004137 0.000358 7B 48.47886 hypothetical protein SORBIDRAFT_10g014850 [Sorghum 
bicolor] 

TWT TWT2011T1 Ex_c27373_36578273 0.003315 0.000439 7B 48.47886 Os06g0326400 [Oryza sativa Japonica Group] 

TWT TWTBLUPT12011 Ex_c18800_27681277 0.004366 0.000963 7B 48.47886 molybdenum cofactor biosynthesis protein A [Aquifex aeolicus 

VF5] 

TWT TWT2011T1 RFL_Contig2167_1484520 0.003279 9.63E-06 7B 52.22267 na 

TWT TWT2012T2 RFL_Contig1735_856501 0.004438 0.000293 7B 54.0792 na 

TWT TWT2012T2 Ex_c3248_5987129 0.006799 0.000379 7B 54.0792 hypothetical protein SORBIDRAFT_05g009983 [Sorghum 
bicolor] 

TWT TWT2012T2 RFL_Contig3057_2961708 0.004092 0.000284 7B 55.46852 na 

TWT TWT2012T2 BE403622B_Ta_1_1 0.004438 0.000293 7B 55.46852 na 

TWT TWT2012T2 BE443396B_Ta_1_1 0.004438 0.000293 7B 55.46852 na 

TWT TWT2012T2 RFL_Contig3258_3294392 0.004438 0.000293 7B 55.46852 na 

TWT TWT2012T2 be591305B_Ta_1_1 0.00752 0.00043 7B 55.46852 na 

TWT TWT2011T1 be591305B_Ta_1_1 0.005033 0.000553 7B 55.46852 na 
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Chapter 4:  Supplemental Diagram 1:  Distribution of (A) yield, (B) grain protein and (C) 

test weight for spring and winter wheat panels with fitted normal distribution line. 

(A) Yield 

Grain Yield (kg/ha) Irrigated (IR) Grain Yield (kg/ha) Drought (DR) 
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(B) Grain Protein (%) 

 

 

Grain Protein (%) Irrigated (IR) Grain Protein (%) Drought (DR) 
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(C)  Test weight (kg/m
3
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