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Abstract

Vagus nerve stimulation is an emerging therapy that seeks to offset pathological

conditions by electrically stimulating the vagus nerve through cuff electrodes, where

the electrical pulse is defined by several parameters such as pulse amplitude, pulse

width, and pulse frequency. This electroceutical therapy has been approved for

treatment resistant depression, and is currently under investigation for heart failure,

heart arrhythmia, hypertension, and gastric motility disorders. Recent studies have

shown the ability to selectively activate different fibers in the vagus nerve, thus

allowing for a highly specific control of physiological behavior through vagal nerve

stimulation. One of the major challenges with the application of this therapy involves

a closed loop controller to autonomously control the behavioral responses. This

problem becomes additionally challenging when multiple locations and multiple

stimulation parameters are considered for optimization. Using a physiological model

of a rat heart, this thesis investigates a data-driven control scheme for closed-loop

control of the rat cardiac system. In the first section of this thesis, a data-driven

modeling approach is used to develop a model that maps vagus nerve stimulation

parameter selection to the effect on the physiological variables of heart rate and blood

pressure. The second part of this thesis develops a controller that uses the data-driven

model by utilizing a model predictive control framework to control the heart rate and

the blood pressure in closed-loop simulations of a rat model.
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chapter 1

Introduction

Cardiovascular diseases remain a leading cause of mortality worldwide despite

several pharmaceutical interventions. Cardiac arrest is the leading cause of death

in the United States with a 82% mortality rate (Benjamin et al., 2018). Stroke is the

leading cause of death worldwide and costs $40.1 billion per year to the United

States healthcare system (Ovbiagele et al., 2013). Healthcare costs associated with

heart failure reached $31 billion (2012 dollars) (Savarese and Lund, 2017) and due

to the aging population, this number is projected to double in the next two decades,

reaching $70 billion by 2030 (Heidenreich et al., 2013). Despite various treatment

options, many people die of heart failure every year (Savarese and Lund, 2017).

Hypertension is the leading risk factor of cardiovascular diseases, and poses a

significant risk to the healthcare system with 75 million people affected in the United

States. Of this population, 15-18% have treatment resistant hypertension rendering

pharmaceutical approaches obsolete. These examples serve as a demonstration of

both the financial burden, as well as the widespread health concerns of the population

that result from cardiovascular diseases. There are multiple efforts underway that are

investigating vagus nerve stimulation (VNS) for the treatment of the aforementioned

diseases, specifically cardiac arrest, heart failure, myocardial infarction (heart attack),

atrial fibrillation, stroke, and hypertension. The focus of this thesis is to develop

data-driven modeling and control approaches to facilitate the development of next

generation bioelectric therapies for cardiovascular diseases. Specifically, this thesis

will investigate deep learning approaches to map the VNS parameters to the cardiac

physiology and develop model-based optimal control approaches to control the heart

rate and the blood pressure by optimizing VNS parameters.
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1 .1 vagus nerve stimulation

Vagus nerve stimulation (VNS), also called vagal nerve stimulation, is an

electroceutical therapy that utilizes electrical stimulation to activate vagal nerves to

achieve a desired behavioral response in the autonomic nervous system (Howland,

2014). A stimulation paradigm for VNS is characterized by an electrical pulse that

is described by the pulse width, pulse amplitude, and pulse frequency. Originally

VNS was developed as a treatment strategy for epilepsy (Healy et al., 2013; Rychlicki

et al., 2006), and was later approved as a treatment strategy for treatment-resistant

depression (Akhtar et al., 2016). Current research has investigated utilizing VNS as

a treatment strategy for arrhythmia, heart failure, hypertension, and gastric motility

disorders, emphasizing diseases that are drug-resistant, or diseases that lack a current

pharmaceutical therapy. There remain several challenges with the application of this

electroceutical therapy when considering the design of applied stimulation pulses.

These difficulties are highlighted by different results in several clinical trials that

sought to evaluate the efficacy of VNS to treat heart failure in human subjects (Asad

and Stavrakis, 2019). A potential solution to address these challenges involves the

incorporation of feedback control to autonomously select the optimal stimulation

parameters based on physiological measurements. Due to the complex nature of

the cardiovascular system, and more broadly biological systems, the difficulty of

modeling becomes a limiting factor in the controller design.

1.1.1 History of Vagus Nerve Stimulation

James Corning pioneered the first developments of VNS in the late 19th century in

an effort to cure epilepsy (Yuan and Silberstein, 2016). Perhaps due to the limitations

of electrical technology, his efforts did not lead to any therapeutic findings, and it

wasn’t until 1952 when an antiepileptic effect was demonstrated in cats (Yuan and

Silberstein, 2016). These results were further validated in 1985, where VNS was

demonstrated to terminate seizures in canines (Zabara, 1985). These discoveries

prompted investigations into human trials and the first human implanted VNS device

was accomplished in 1988 (Penry and Dean, 1990). However, it took a few more years
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before a human implanted VNS devices demonstrated notable efficacy, and in 1994 a

study found a 47% reduction in seizures in epileptic patients (Ben-Menachem et al.,

1994). This study prompted the FDA to approve VNS for the treatment of epilepsy in

1997, and for the treatment of depression in 2005 (Schachter et al., 2000; Bonaz et al.,

2016). Since those approvals, there have been many efforts in applying VNS to other

diseases. Specifically, VNS is under investigation for inflammatory bowel disease,

rheumatoid arthritis, treatment resistant epilepsy, autoimmune disorders, asthma,

PTSD, and cardiovascular diseases. While most of these investigations are still in the

pre-clincal trial phase, there are encouraging findings. Focusing on a brief history of

VNS investigations into cardiac functioning, canine models were used to demonstrate

bradycardia (slowing of the heart rate) (Sarnoff et al., 1960) in 1960, and 15 years

later, canine models were used to demonstrate protective effects against ventricular

fibrillation (Kolman et al., 1975).

1 .2 autonomic nervous system

The autonomic nervous system is primarily involved in conducting the vegetative

functioning of the body, and consists of three different subsystems of nerves: the

sympathetic nervous system, the parasympathetic nervous system, and the enteric

nervous system. These different classifications are based on the nerve’s anatomical

location of origin. The sympathetic nervous system originates in the thoracolumbar

region, or the middle of the spine. The parasympathetic nervous system primarily

originates in the central nervous system, or the brain. Finally there is the enteric

nervous system which consists of the nerves located in the gastrointestinal tract.

Considering the behavioral context, the sympathetic pathway is active during high

stress events (i.e. "fight or flight"), and in contrast, the parasympathetic pathway is

primarily active during baseline functioning to preserve homeostasis (i.e. "feed and

breed"). Regardless of a nerve’s specific classification, all neural projections have

bidirectional communication with the organs they innervate. When a neuronal fiber

carries information from a target organ to the central nervous system, it is classified

as an afferent connection. Conversely, when a neuronal fiber carries information from
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the central nervous system to a target organ, it is regarded as an efferent connection.

Together, this neural machinery allows for an organism to dynamically modulate the

functioning of internal organs on a coordinated and global scale to meet requirements

imposed by the environment, while simultaneously sensing environmental changes.

In general, the sympathetic nervous system can be thought of as countering the

parasympathetic nervous system. Primarily, this thesis is concerned with the effects

mediated by the parasympathetic system.

1.2.1 Vagus Nerve

In the autonomic nervous system, the vagus nerve is the primary source of

parasympathetic input to many organs and has been classified as the "wanderer

nerve", which corresponds to the large area traversed by the vagus nerve (Rosas-

Ballina et al., 2011). The vagus nerve innervates the heart, lungs, stomach, pancreas,

small intestine, and large intestine, thus allowing for the modulation of behavioral

responses to external and internal stimuli for these organs as illustrated in Fig. 1.1.

Additionally, Fig. 1.1 describes behavioral responses mediated through vagal nerve

action on several organs, and more broadly describes the action of the sympathetic

and parasympathetic nervous systems. With such a broad role in the functioning of

organs, the vagus nerve can be viewed as a regulator capable of initiating coordinated

muscle contractions to provide an organism with the ability to carry out vegetative

functions required for survival. Some examples of coordination that involves vagus

nerve activation includes functions such as digestion, heart rate, respiratory rate,

coughing, sneezing, swallowing, and vomiting (Babic and Browning, 2014). Following

the activation of vagal fibers, effects are mediated through acetylcholine release which

binds to muscarinic or nicontinic receptors and initiates muscle contractions (Bonaz

et al., 2016). Of particular interest for disease therapies, the activation of α7 nicotinic

receptors leads to diminishing the inflammatory response from the sympathetic

nervous system (Goverse et al., 2016). These effects can be more broadly described

as a modulation of the internal inflammatory reflex (Borovikova et al., 2000; Tracey,

2002), which occurs through the anti-inflammatory cholinergic pathway. There are

other mechanisms through which the vagus nerve attenuates inflammatory responses,
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F igure 1 .1 : A diagram of the parasympathetic (blue) and sympathetic (magenta)
projections in the autonomic nervous system and their physiological effects on
different organs. The vagal nerve projections (indicated by a green dot) innervate
the respiratory system, the cardiovascular system, the gastrointestinal tract, and the
liver. Activation of the vagus nerve can lead to bronchi constriction, slowing of heart
rate, peristalsis, and bile secretion. Conversely, the sympathetic system opposes these
actions. Afferent and efferent directions are shown in black.
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such as the hypothalamic-pituitary-adrenal axis, and the splenic sympathetic anti-

inflammatory pathway (should the vagus nerve stimulate sympathetic innervations).

These anti-inflammatory responses are likely responsible for the therapeutic effects

demonstrated by VNS for several disease pathologies. Of interest for this thesis are

the therapeutic effects mediated by the vagus nerve on the cardiovascular system.

Focusing on the VNS effects in the cardiovascular system, the vagal nerve fibers

provide the primary parasympathetic input to the heart. The vagus nerve can be

found innervating the heart at the atria, the sinoatrial node, the atrioventricular

node, the ventricular myocardium, and the ventricular conduction system. To

highlight specific regions related to my thesis, the activation of vagal fibers at

the sinoatrial node lead to a slowing of the heart rate. In the pulmonary region,

activation of the vagal nerve causes vasodilation which leads to a reduction in blood

pressure. Together, these effects demonstrate actions that allow the vagus nerve to

modulate the physiological behavior of the cardiac system. The cardiac feedback

loop with the central nervous system is shown in Fig. 1.2 A, where the vagus

nerve is part of the parasympathetic fibers, and whose actions are opposed by the

sympathetic pathway. In cardiovascular disease pathology, the balance between

sympathetic and parasympathetic pathways is often disrupted leading to abnormal

functioning of the cardiovascular system, illustrated in Fig. 1.2 B. In particular, an

overactive sympathetic pathway often predisposes individuals to heart failure, and

heart arrhythmia (Kishi, 2012). By stimulating the vagus nerve, the firing pattern

of the vagal nerve fibers is altered, and thus the neuronal signaling is altered,

corresponding to a change in organ functioning. These changes in organ functioning

can be observed through physiological measurements. For example, in the case of

hypertension, the vasodilation effect from vagal activation can be used to counter the

abnormally high blood pressure in hypertensive patients.

1 .3 need for closed -loop vagus nerve stimulation

With the exception of heart failure, the research progress of VNS effects on

cardiovascular diseases remain in an early pre-clincal phase. Nonetheless, in rats with
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hypertension, 4 weeks of VNS therapy was shown to improve the mean arterial blood

pressure and the number of arrhythmic episodes in rat subjects (Annoni et al., 2015).

In stroke, the therapeutic role of VNS has been shown to reduce stroke volume by 50%

through limiting the inflammatory response and significantly improving the clinical

outcomes, thus leading to a faster recovery (Ay et al., 2011; Cai et al., 2014). In rats

with heart failure, VNS was shown to be efficacious for the treatment of heart failure.

Specifically, VNS was shown to increase resuscitation success rates when applied with

cardiopulmonary resuscitation (CPR), while simultaneously reducing the number of

shocks required for resuscitation, and increasing the 72-hr survival rate (Sun et al.,

2018). In an effort to increase the efficacy of VNS, a recent study demonstrated the

ability to selectively activate specific fiber bundles of the vagus nerve in a rat, and

this precision corresponds to specific control of physiological effects when applying

VNS (Plachta et al., 2014). These studies exemplify the promising future for VNS as a

modern healthcare solution to cardiovascular diseases.

VNS is most advantageous when pharmaceutical therapies fail, evidenced by the

application of VNS on treatment-resistant depression (Akhtar et al., 2016), as well

as drug resistant epilepsy (Rychlicki et al., 2006), and medically intractable epilepsy

(Healy et al., 2013). Pharmaceutical resistance may result from an inherent lack of

physiological response following administration of drug treatment. Potentially, long-

term administration of pharmaceutical drugs can lead to a diminished efficacy of

treatment, thus requiring different therapeutic approaches for effective treatment.

Importantly, VNS can be used in parallel with pharmaceutical interventions (Plachta

et al., 2014). In numerous studies across different animal models, VNS parameter

selection has demonstrated an ability to affect different cardiac biomarkers, such as

blood pressure and heart rate. Currently, VNS parameters are determined through

manual titration in an open-loop configuration, as was used in the three clinical trials

that investigated VNS for the treatment of heart failure (Gold et al., 2016; Zannad

et al., 2015; Premchand et al., 2014). These clinical trials reached different conclusions

regarding the efficacy of VNS, potentially due to the different operating regimes for

each trial, thus leading to the suggestion of computing optimal VNS parameters

in future trials to clearly evaluate the efficacy of VNS (Asad and Stavrakis, 2019).
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Vagus nerve stimulation can adapt with the individual over time by dynamically

altering the VNS parameter selection to consistently achieve a safe and efficacious

response. However, to achieve such a performance from an implanted VNS device,

computing optimal stimulation parameters from physiological feedback is likely

required (Asad and Stavrakis, 2019). Closed-loop control and autonomous selection

of VNS parameters would provide a monumental step in the effort of therapeutic

VNS. This effort would likely increase the efficacy of VNS while addressing some of

the challenges associated with the manual titration method currently used.

1.3.1 Nervous System Control Approaches for Cardiac System

Several studies have examined methods for optimization of VNS parameters in

a closed-loop control sense for controlling the heart rate of sheep (Ugalde et al.,

2015; Romero-Ugalde et al., 2017), pigs (Tosato et al., 2006), dogs (Zhang et al.,

2002), and rats (Greenwald et al., 2016). Here, majority of the designed controllers

followed a proportional-integral formulation, and in one case employed a state

space transition model (Romero-Ugalde et al., 2017) for calculation of the optimal

VNS parameters. Importantly, none of these controllers studied optimizing multiple

stimulation parameters, nor did they consider the possibility of different stimulation

location sites as in the experimental setup of (Plachta et al., 2014). However, a recent

study developed a cardiac model of a rat heart with the influence of VNS and used

a model predictive control (MPC) framework to optimize multiple VNS parameters

(pulse width and pulse frequency) at multiple locations to control the heart rate and

blood pressure simultaneously (Yao and Kothare, 2020).

In the case of (Romero-Ugalde et al., 2017), where a state-space model was used for

control, the authors suggested a significant improvement by altering their controller

design to adapt the state-space model in such a way that allows for changes on both

a long-time scale, as well as a short time scale. With one recent exception (Yao

and Kothare, 2020), there have been no control attempts examining optimization

of VNS parameters in the multi-location experimental setup in a true closed-loop

control sense, despite its advantages as a VNS therapy (Plachta et al., 2014). With

an exception, none of the previous studies in optimizing VNS parameters for cardiac
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system considered multiple outputs of the cardiac physiology or multiple locations

of activating the vagus nerve in the controller formulation. Demonstrating this multi-

output control capability in controller design would be valuable in extending the

therapeutic applications of VNS, and may improve the efficacy of VNS by controlling

multiple biomarkers. A noteworthy challenge in (Yao and Kothare, 2020), involved

the computational expense of the developed physiological model which hampered its

application in real-time control. To overcome this challenge, the authors developed a

reduced-order model for the real-time control application. The reduced-order model

relied on state estimation techniques to approximate the state of the system following

a measurement of the heart rate and blood pressure from the full physiological model,

which introduced a significant offset into the controller’s performance when driving

the physiological outputs to the desired set-points.

In this thesis, I investigate a data-driven approach for modeling and control of

the cardiac system by combining machine learning methods with a model-based

predictive control (MPC) framework. For my investigation, the proof of concept

was tested in the ideal case of a physiological model of a rat heart, just as in (Yao

and Kothare, 2020). The problem was formulated in a way that is easily extendable

and compatible with the experimental data. In particular, this approach provides

a considerably different problem formulation from the other controllers, leading to

novel advantages. Specifically, the advantages of this approach include using any

measurable biomarkers, considering multiple stimulation locations, and controlling

multiple physiological outputs. Regarding the discussion from (Romero-Ugalde et al.,

2017), this approach includes a way of accounting for different timescales of internal

dynamics through the use of a long short-term memory (LSTM) neural network. This

approach can also be used to address the challenge of formulating a reduced-order

model, as in (Yao and Kothare, 2020). More broadly, this approach can be applied to

systems that prove difficult to model, which is particularly advantageous in biological

systems.
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1 .4 machine learning approaches

Due to the complex nature of the autonomic nervous system, both exemplified by the

current modeling literature and previous control attempts, it remains a challenge to

model the influence of VNS on the physiological behavior. A reasonable approach

to model these unknown and complex nonlinear interactions involves utilizing data-

driven modeling techniques. To incorporate data-driven models in control, model-

based control schemes, such as MPC, can be utilized. In this section, I cover the

general structure of neural networks, machine learning techniques for time-series

modeling, and model predictive control.

1.4.1 Artificial Neural Networks

Artificial neural networks (ANNs) follow a generic structure outlined in Fig. 1.3.

Data that represents the input is provided to the first layer of nodes, whose output

is computed by the product between the input data values and a weight evaluated

through a nonlinear function. This layer output can be fed as input to another layer of

neurons. The last layer in the neural network leads to the neural network’s outputs.

Artificial neural networks are a common modeling technique used to develop data

driven models, and have been used in accomplishing several complex tasks. Through

the universal approximation theorem, these models are guaranteed to approximate

any nonlinear function provided they are constructed with a reasonable size (Hornik

et al., 1989). There are three main learning classifications for ANNs based upon the

formulation of their input-output data pairings: supervised learning, unsupervised

learning, and reinforcement learning. In the supervised learning case, the input is fed

to the neural network with labels, and the error between the network predictions and

labels are computed according to a provided cost function. Unsupervised learning

is the same approach as supervised learning, however labels are not provided to the

model, and is typically used in classification contexts where the network develops

its own representation of the data. Reinforcement learning is related to control, and

involves providing the neural network a target, a reward, and a penalty. The goal of

reinforcement learning is to discover the policy function that allows for maximization
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of the long-term reward, and requires extensive interaction with the controlled

system. In this thesis, machine learning applications were purely formulated using a

supervised learning approach.

A considerable challenge for the implementation of neural networks involved

updating the neural network’s parameters during the training phase. For the vast

majority of widely used networks today, this problem has been solved through

backpropagation (Rumelhart et al., 1985). In backpropagation, the derivative of the

network weights with respect to the cost function is calculated, and this derivative is

used to update the neural network’s weights using gradient based optimizers. The

Newton step method serves as an example of a simple optimizer. In this case, a

fixed step size is multiplied by the negative of the gradient, which guarantees that the

loss value will decrease, and the resulting product is added to the current network’s

weight values to finish the update. Since gradient based methods are used, loss

functions and activation functions must be differentiable.

x1
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x3

y1

y2

Inpu

Hidden 

Layer 1
Hidden 

Layer 2

Outputs
(3)

(5)
(4)

(2)

W1 (3x5) W2 (5x4)

Wo (4x2)

F igure 1 .3 : A diagram of a basic feedforward network that takes 3 inputs, and
computes 2 outputs with two hidden layers of size 5 and 4. The size of the weight
matrices between each layer are noted at the bottom. Activation functions (not shown)
are applied at the end of each hidden layer as well as the output layer.
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F igure 1 .4 : Diagram of a simple recurrent neural network (RNN). (A) Shows the
input x passed to the hidden layer and transformed by weights U, h denotes the
hidden state, W denotes the weights that transform the hidden state to the output, y.
(B) Shows A unfolded along the time axis. Consider a sequence of length N, at the
first step the hidden state is intialized to 0, after that, the hidden state is passed to
generate all the outputs leading up to the final input at t + N.
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1.4.2 Recurrent Neural Networks

A special class of neural networks termed recurrent neural networks (RNNs), are

particularly well suited for sequence or time-series modeling. The structure of a basic

RNN is shown by Fig. 1.4, and is highlighted by the inclusion of a self feedback, or

recurrence, that stores the information from the previous timestep. The simplest case,

or a vanilla RNN, suffered from the exploding or vanishing gradient problems during

training. When the gradient explodes, or vanishes, updates to the network weights

become unstable and training will not converge, which motivated the design of long

short-term memory (LSTM) neural networks (Hochreiter and Schmidhuber, 1997).

The LSTM uses several internal gating structures to direct the flow of information and

is illustrated in Fig. 1.5. Briefly described, there are two additional states kept in the

LSTM referred to as the cell state and the hidden state. The cell state is used to capture

information for long temporal horizons, and the hidden state is used to capture

information on shorter temporal horizons. The internal gating structures determine

how much information from the input is stored, and how much of the current memory

is forgotten. Since all of these gates use training parameters, the LSTM learns the

gating process for the pertinent dynamics throughout the training process. More

recently, a gated recurrent unit (GRU) has been proposed as an alternative to the

LSTM. The GRU eliminates the forget gate and the cell state, thus requiring fewer

parameters for training and has demonstrated comparable performance to a LSTM

on smaller datasets (Cho et al., 2014).

The LSTM has been used for a variety of sequential-based tasks including: natural

language processing (Radford et al., 2019), handwriting recognition (Graves et al.,

2008), speech recognition (Sak et al., 2014), and forecasting of traffic patterns (Zhao

et al., 2017). The LSTM allows for predictions of dynamical systems that contain

temporal evolutions that vary over different timescales as the additional gating

mechanisms allow for predictions that require information of long-time delays. As

mentioned in the previous section, VNS would be a candidate for machine learning

approaches due to the current difficulty associated with modeling the cardiac system.

A LSTM is an appropiate choice for modeling cardiovascular dynamics due to the
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F igure 1 .5 : A diagram of the internal structure of a long short-term memory
network for input xt, cell state ct, and hidden state ht. Current timesteps are
subscripted with t, and previous timesteps are subscripted with t − 1. Activation
functions are denoted by σ for the sigmoid function, and tanh for the hyperbolic
tangent function.
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time-series nature of the data. Additionally, existing models for the full cardiac

system are computationally expensive to run, and therefore infeasible to optimize

in the context of real time control implementation. Extending the applicability of

LSTMs in this direction, a LSTM model can be trained to serve as a computationally

efficient model for control applications.

Since a LSTM is used extensively throughout this thesis, a mathematical

description of the LSTM design is provided. Starting with the four initial gates there

is the input gate it, the forget gate ft, the output gate ot, and the cell update Ĉt,

also illustrated in Fig. 1.5. In these equations, the input is denoted by x and has

trainable weights denoted by U, the previous hidden state is denoted by ht−1 and has

trainable weights denoted by W. The sigmoid activation function is denoted by σ,

where σ(x) = 1
1+e−x , which together leads to:

it = σ(xtUi + ht−1W i) (1.1)

ft = σ(xtU f + ht−1W f ) (1.2)

ot = σ(xtUo + ht−1Wo) (1.3)

Ĉt = tanh(xtUg + ht−1Wg) (1.4)

Lastly, there are the updates to the two memory states with the cell state denoted by

Ct, and the hidden state denoted by ht.

Ct = σ( ftCt−1 + itĈt) (1.5)

ht = tanh(Ct) ∗ ot (1.6)

1.4.3 Model Predictive Control

To design the optimal VNS parameters using the trained LSTM, a model based

receding horizon controller (RHC) was used. In model-based RHC, also called model

predictive control (MPC), an optimal control strategy that explicitly incorporates a

dynamic model of the system as well as constraints is used when determining the
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F igure 1 .6 : Prediction and optimal control in MPC.
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controller’s actions (Kwon and Han, 2006). At each time k, a measurement of the

system is obtained and the model of the system is used to predict the future outputs

of the system yk+l+1|k, l = 0, 1, 2, ..., Np − 1 as a function of current and future control

moves uk+l|k, l = 0, 1, 2, ..., Nc − 1. The predictive horizon Np defines how far into

the future the predictions are computed, and the control horizon Nc defines how far

ahead the control moves are computed. Fig. 1.6 illustrates the process of computing

a prediction and control horizon with a model-based RHC strategy.

Using the predictions from the model, the Nc control moves uk+l|k, l = 0, 1, ...Nc− 1

are optimally computed by minimizing a cost function Jk over the prediction horizon

Np subject to constraints on the control inputs as well as any other constraints on the

internal states and outputs of the system as follows:

min
uk+l|k,l=0,1,...Nc−1

Jk (1.7)

subjects to constraints on control inputs and the system. A typical quadratic objective

cost function may be of the form

Jk =
Np−1

∑
l=0

[yk+l+1|k − yr]
TQ[yk+l+1|k − yr] +

Nc−1

∑
l=0

uT
k+l|kRuk+l|k (1.8)

Here, yr is the output to be tracked. Only the first optimally computed move uk|k is

implemented out of m computed optimal moves at time k. At the next time, k+ 1, new

system measurements are obtained and the optimization problem is solved again with

the new measurements. Thus, the control and prediction horizon recede by one step

as time moves ahead by one step. The measurements at each sampling time provide

feedback for rejecting inter-sample disturbances, model uncertainty and noises, all of

which cause the model predictions to be different from the true system output.

1 .5 thesis outline

In Chapter 2, I discuss my work on the data-driven modeling of the rat cardiac system

by using a physiological model of a rat heart. I use a variety of recurrent neural

networks, and show that the best performance is given by a long short-term memory
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network (LSTM). I demonstrate that this LSTM is capable of mapping VNS parameters

to the correct physiological response for heart rate and blood pressure. I further show

that this LSTM is more computationally efficient than a full-scale model through a

10-fold reduction in simulation time. In Chapter 3, I discuss my work of using the

previously trained neural network in a model predictive control framework to control

the cardiac physiological variables, such as the heart rate and blood pressure. I apply

the designed controller on the full physiological model that was used to generate

open-loop data to train the neural network. With this problem formulation, the neural

network can be considered as a reduced model of the true system. I show that the

controller is capable of achieving little to no offset while reaching several target set

points. In Chapter 4, I discuss the future directions of my research contained in this

thesis. Specifically, I provide suggestions for investigating mathematical techniques

that take a different approach to the control problem and provide advantages for

theoretical controller analysis.
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chapter 2

Mapping Vagus Nerve Stimulation Parameters to Cardiac

Physiology using Long Short-term Memory Network

2 .1 introduction

Predicting physiological behavior with the influence of VNS requires a complex

model, as predicting cardiac behavior alone is a challenging task. These challenges

revolve around the development and validation of the cardiac model. Often such an

approach becomes a challenging task in selecting the correct dynamical equations

to govern the cardiac system, and then fitting the parameters of those specific

equations. Such tasks can be guided by a deep mechanistic understanding of the

system, however this knowledge may be incomplete or lack the details of integration.

These differences are highlighted by different definitions of the cardiac system to be

modeled, demonstrated by the variety of cardiac models in the literature that range

from modeling the individual neuronal cells in a cardiac tissue (Mangoni et al., 2006),

to modeling the whole cardiac system as a pump (Suga et al., 1973). There have been

some models that incorporate the effects of extrinsic stimulation on the cardiac system,

such as simulating an orthostatic response in a human cardiac system (Melchior et al.,

1992). However, most models do not include the necessary variables to account for

physiological changes mediated through VNS, leaving a challenging task for using

these models in VNS parameter optimization. This gap in the modeling efforts may

be responsible for the lack of MPC-based controllers in a closed-loop control of the

cardiovascular system. Additionally, using fully detailed mechanistic models of the

cardiac system suffer the drawback of computational expense which makes their

implementation in real-time closed-loop a considerable challenge.

Data driven models, such as neural networks, provide a promising solution to

address the challenges discussed above and have been used in a similar context for

a Hodgkin-Huxeley pyramidal neuron model (Plaster and Kumar, 2019). A major

advantage of neural networks is the limited assumptions required for their application
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as they do not require underlying assumptions about the system dynamics nor does

their application require a specific distribution of data. Recurrent neural networks

(RNNs) have been specifically developed to capture time-series or sequential data,

which is particularly amenable to the control application. Finally, neural networks

can be computationally inexpensive to evaluate when compared to full scale models.

Taken together, these features motivate an investigation into applying neural networks

to model the effects of VNS on the cardiovascular system.

In this chapter, I leverage deep learning approaches to model the response of

physiological variables following the VNS stimulation using the synthetic cardiac data

from an existing model of the rat cardiac system (Yao and Kothare, 2020). First, I

include a full description of the physiological model used. For increased relevance to

experimental systems, the full physiological model was used to generate synthetic

data in an open-loop trial format. I then trained a variety of RNN architectures

on the collected open-loop data. My results show that a long short-term memory

(LSTM) architecture provides the best predictive performance. Further, I find that

the computational cost of the LSTM in predicting the mean arterial pressure and

heart rate for 100 consecutive cardiac cylces is approximately 10 folds lower than the

original physiological model.

2 .2 physiological model

The model used for synthetic dataset creation is a cardiac model of a rat heart (Yao and

Kothare, 2020). Briefly described, the model consists of three parts: the cardiovascular

system, the baroreflex system, and the vagus nerve stimulation device as depicted

in Fig. 2.1. Mathematically, the model consists of a system of delayed differential

equations with ten internal states and a nonlinear combination of the internal states

provides the physiological measurements of the mean arterial blood pressure and the

heart rate. The VNS device was incorporated by including three different locations,

where each location had two parameters: a pulse width, and a pulse frequency which

together characterize the stimulation paradigm. Multiple locations were considered

following the experimental setup of (Plachta et al., 2014). A specific behavior worth
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highlighting is the model’s ability to exhibit increases in the heart rate independent

of the changes in the mean arterial blood pressure. A mathematical description of

the full physiological model developed by (Yao and Kothare, 2020) is provided for

completeness in the following sections.

F igure 2 .1 : A diagram that details the influence of vagal nerve stimulation in the
full physiological model of the rat cardiac system.

2.2.1 Cardiovascular Model

Design of the cardiovascular system is based on the previously published models

(Djabella et al., 2005; Ferreira et al., 2005). Parameters for the cardiovascular system

came from (Ferreira et al., 2005) and were then adjusted by the body volume ratio

of rats to humans, resulting in values similar to those measured in experimental rats

(Pacher et al., 2004).

Pi = Ei(Vi −Vi,d), (2.1)
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Briefly, the pressure volume relationship is described by Eqn. 2.1, where the

instantaneous blood pressure of compartment i is denoted by Pi, the total volume

is denoted by Vi, unstressed volume is denoted by Vi,d, and the elastance is denoted

by Ei.

The elastance, E(t), varies in time following the formulation of (Stergiopulos et al.,

1996):

E(t) = Emax

(
a

( tn
α1T )

n1

1 + ( tn
α1T )

n1

1
( tn

α2T )
n2

)
+ Emin, (2.2)

where tn denotes the periodic time, T denotes the cardiac period, Emax denotes the

end-systolic elastance, Emin denotes the end-diastolic elastance, and a, α1, α2, n1, n2 are

all dimensionless constants.

The flow, Q, between compliance chambers of the cardiac system is modeled as

follows:

Q =
Pin − Pout

Rsys
, (2.3)

where Pin and Pout are pressures on either side of the cardiac system’s resistance to

blood flow, Rsys. By using a mass balance, the change in volume follows

dV
dt

= Qin −Qout, (2.4)

where the change in volume is a difference between the flow in, Qin, and the flow out

Qout of the compliance chamber. Finally, there is consideration of an inertial flow out

of the left ventricle that is described as follows:

∆P = L
dQ
dt

, (2.5)
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where L denotes the inertance, and ∆P denotes the pressure difference due to the

inertial blood flow.

2.2.2 Baroreflex Model

The baroreflex system model comes from (Lau and Figueroa, 2015), and is composed

of several parts: the central nervous system, the baroreceptor model, and a

modulation of efferent responses. Following sympathetic drive, the modulation of

efferent responses can be described by left ventricle systolic elastance (Emax) and

the cardiac resistance to blood flow (Rsys) exhibiting a positive response, while the

heart period (T) exhibits a negative response. For the central nervous system, precise

interactions are not understood which has led to using a previously developed input-

output relationship (Ursino, 1998). The parameters for the baroreceptive model come

from (Mahdi et al., 2013), and the parameters in the baroreflex system from (Ursino,

1998). There is an underlying assumption that 100% of the fibers are recruited,

which allows for a qualitative match to the experimental data from (Plachta et al.,

2014). Using a set of first-order ODEs, a delay, and a logarithmic relationship, the

sympathetic efferent pathway is described as follows:

dθes

dt
= − 1

τθes

(θes − θ0) + Gθes ln(max{ fes(t− Dθes)− fes,min, 1}), (2.6)

where θes denotes the efferent path variables: heart period T, systolic elastance of

the left ventricle Emax, and inertial cardiac flow resistance, Rsys. In this equation, θ0

denotes the baseline value in the absence of external input, fes(t) represents the firing

rate of sympathetic efferents, τθes denotes the time constant, Gθes denotes the gain, Dθes

denotes the delay of the effector, and fes,min denotes the minimum firing rate of the

sympathetic efferents. First-order dynamics are used to capture the change in heart

period due to the activation of vagal fibers as follows:

dTev

dt
= − 1

τTev

(Tev − T0) + GTev fev(t− DTev), (2.7)
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where τTev is the time constant, GTev is the gain, and DTev is the delay of the vagal

pathway. Effects exerted by the sympathetic drive are assumed to be independent

of the effects exerted by the vagal drive for the cardiac period (T). This leads to the

following calculation of the heart period:

T = Tev + Tes − T0, (2.8)

where Tev denotes the vagal (parasympathetic) drive effects on the heart period, Tes

denotes the sympathetic drive efferents effect on the heart period, and T0 is the resting

heart period.

2.2.3 VNS Device Model

The stimulation device translates VNS parameter selection into neural firing rate

changes, with an assumption that the device increases the firing rates of baroreceptive

fibers, efferent sympathetic fibers, and vagal fibers. The fiber recruitment due to pulse

width is given by:

F(Pi
w) =

Pi
w/kw√

1 + (Pi
w/kw)2

, (2.9)

where i = 1, 2, ..., n is the location index, kw denotes a dimensionless scaling parameter,

Pi
w denotes the pulse width, and F(Pi

w) denotes the fiber recruitment at each location.

The change in firing rates due to pulse frequency is given by:

∆R(Pi
f ) =

Pi
f /k f√

1 + (Pi
f /k f )2

, (2.10)

where i = 1, 2..., n denotes the location index, k f denotes a dimensionless scaling

parameter, Pi
f denotes the pulse frequency, and ∆R(Pi

f ) denotes the change in firing

rates of each fiber. The change in fiber firing rates leads to the change in physiological
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variables, and this aggregate effect of fiber recruitment regarding the selection of the

pulse width and the pulse frequency on the firing rates of neuronal fiber type j is

described by:

∆ f j =
Gj

n

n

∑
i=1

δiCi,jF(Pi
w)∆R(Pi

f ), (2.11)

where i = 1, 2, ...., n is the location index, j = 1, 2, 3 indicates the fiber type index, δi

indicates an on/off of the ith location, Ci,j represents the concentration of fiber type j

at location i. The gain of each fiber’s excitability is represented by Gj, and f j denotes

the final change in the firing rate of the fibers.

2 .3 machine learning approach

Using the previously detailed physiological model of the rat cardiac system, open-

loop simulations were run for 15,198 different trials with the VNS parameters

randomly sampled from a uniform distribution. The bounds for the pulse width

and pulse frequency were 0-0.5 ms, and 0-50 Hz, respectively. The three different

locations were also randomly activated using a uniform distribution between 0 and

1 where values above 0.5 indicated activating that location. A single open-loop trial

was obtained after selecting the VNS parameters and simulating the model for 100

consecutive cardiac cycles. During all 100 cardiac cycles, the physiological outputs of

the heart rate, and mean arterial blood pressure were recorded from the model.

Next, the trials were divided into a training, validation, and test set following

a 40%, 20%, and 40% split, respectively. For the training and validation sets, the 100

cardiac cycles were sliced into 50 pairs of alternating points with the inputs consisting

of the VNS parameters, heart rate and mean arterial pressure. The labels consisted

of the heart rate and mean arterial pressure for the next cardiac cycle. This led to

an input dimensionality of 8 (heart rate, mean arterial blood pressure, and six VNS

parameters), and an output dimensionality of 2 (heart rate, and mean arterial blood

pressure). With this problem formulation, all neural networks were trained to make
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a single step prediction, where the cardiac cycle serves as the discretionalized step.

To assess neural network performance using the test set, the 100 cardiac cycles were

sliced into one input (the initial heart rate and mean arterial pressure values with

VNS parameters) and 99 labels for the remainder of the trial. The neural network was

evaluated on its ability to recursively predict the 99 cardiac cycles, given the initial

point. Assessing the network in this way allowed me to evaluate the ability of the

neural network to predict recursively, similar to its required application in a control

context. Before the data was fed to the network for training, all data was normalized

according to Equation 2.12.

x̂ =
x− µ

xmax − xmin
(2.12)

Here, x̂ denotes the normalized data point, µ denotes the mean of the training set, xmax

and xmin denote the maximum and minimum values of the training set, respectively.

Statistics of the training set were used, so the model did not get any information about

the validation or testing datasets. The distributions following normalization for the

variables are shown by Fig. 2.2. All of the VNS parameters have the same distribution

shape, which is expected as they were all drawn from the same uniform distributions.

A variety of neural network architectures were trained, including a vanilla RNN,

a gated recurrent unit (GRU), and a LSTM. The number of layers and inputs were

also varied to explore effect of the network architecture on the model predictions.

For all models, the hyperbolic tangent function was used, and the output from the

recurrent layer was fed to a dense layer with an output size of two to predict the two

physiological variables. Throughout the training of all neural networks, the mean

squared error loss function and ADAM optimizer were used (Kingma and Ba, 2014).

To assess a trained network’s performance, normalized mean absolute error was used

in the test set. One network was said to be more accurate than another when the

mean absolute error on the test set was lower. As a measurement of performance, all

trained models were compared to a baseline case that predicts no change in the initial

heart rate and mean arterial blood pressure for the length of the trial. This choice of
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F igure 2 .2 : A violin plot of the normalized data (unitless) for all variables. HR
and MAP denote the heart rate and the mean arterial pressure, respectively. VNS PW
indicates the stimulation pulse width at the location number indicated in the label,
and F indicates the stimulation frequency at the location number indicated in the
label. For example, VNS.PW1 denotes the pulse width parameter at location 1.
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a baseline emphasized a network’s ability to capture the dynamical behavior of the

physiological model.

2 .4 results

2.4.1 Network Design Comparison

The first goal in searching for an architecture involved a wide search of different

RNN structures. The performance of different architectures is shown in Fig. 2.3A.

Consistently, a vanilla RNN failed to capture the dynamical behavior demonstrated

by the higher error value. LSTMs and GRUs contain several memory gating structures

that enable them to capture long term temporal dependencies. Given the nature of the

differential equation system, I would expect the additional memory gates to perform

better on the dataset as demonstrated by the lower error values.

Layers were also varied in all architectures to investigate the influence of this

design parameter. Consistently, for all networks, increasing the number of layers

did not improve the quality of predictions (see Fig. 2.3B). To the contrary, neural

networks with more layers performed worse on the test dataset, which may lie in the

problem formulation of using a single step prediction. Shown in Fig. 2.3C, the input

neuron size of the recurrent layer was also varied for all networks. Since the network

was predicting two outputs, the input neuron size was initially varied in powers of

two, holding the number of layers constant (one). From this investigation, the input

neuron size for a single layer must be greater than eight. When the input neuron size

was increased past 32, predictive performance started to decrease.

I found my optimal trained neural network to be a single layer LSTM with a ten

neuron input size. The best trained GRU, also with a ten neuron input size, provided

similar performance. The best performing network results are highlighted in Table

2.1. When selecting the best network, I favored networks that were smaller with

comparable performance.
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A

B

C

F igure 2 .3 : Comparison of (A) different neural network performances on the test
set including the baseline case. (B) The effect of layer size on a neural network’s
predictive performance on the test set. (C) The effect of input neuron size on a neural
network’s predictive performance on the test set.
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Table 2 .1 : Top Three Trained Architectures

Model Type Input Size Layers Test MAE
LSTM 10 1 0.0072
GRU 10 1 0.0077

GRU 32 1 0.0078

2 .5 best neural network design performance

Using the LSTM with ten input neuron size, a sample prediction from the test set is

shown in Fig. 2.4 along with the average error for all cardiac cycles. Note that the

model output is fed back to recursively generate the next prediction, however there

is not an accumulation of error. While the first few timestep predictions are slightly

inaccurate, the steady-state value is still accurately predicted. Thus, the LSTM is

capable of performing predictions in a recursive fashion. As shown in Fig. 2.4C,

a plot of the error, the mean arterial pressure had a higher error than the heart rate.

Examining trials of mean arterial pressure and heart rate, the cause of this discrepancy

likely lies in the less smooth mean arterial pressure curves. This assertion is partly

confirmed by the heart rate trials which have more smooth curves, and show a more

consistent error.

Since the model was able to reasonably predict individual trials, I varied the

VNS parameters over time to obtain a complex nonlinear curve to assess the model’s

performance on a more challenging prediction. These results are shown in Fig. 2.5.

For the first ten cycles, VNS at location 1 was active with the pulse width set to 0.21

ms and the frequency set to 21 Hz. The following ten cycles switched to activating

VNS at location 3 with pulse width set to 0.09 ms and the frequency set to 9 Hz. Then

VNS at location 2 was activated with a pulse width of 0.31 ms and a frequency of

30 Hz for ten cycles. All VNS locations were turned off for 19 cycles, after which

location 1 was activated with a pulse width of 0.14 ms and a frequency of 14 Hz for

another ten cycles. VNS at all locations was turned off for the final 40 cycles. Again,

the model demonstrates a reasonable level of accuracy when tracking the change in

the physiological variables. These results support the notion that the trained network
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has captured the underlying dynamics of the full differential equation model and is

capable of successfully mapping the VNS parameters to the physiological outputs. In

the context of closed-loop control, the LSTM demonstrates success and accuracy in

the task of predicting the cardiac dynamics subject to VNS.

2.5.1 Computational Speed

Table 2 .2 : Comparison of Computational Speed. Tests were done using an Intel(R)
Core i7-9700 CPU 3.00 GHz with 16.0 GB of RAM.

Model Type Cardiac Cycles Time (sec)
Full Model 100 19.99

LSTM 10 100 2.10

GRU 10 100 2.14

RNN 10 100 2.09

Having now showed that the neural network model is capable of predicting complex

curves generated by the differential equation model, I assessed the computational

speed of the LSTM model and the full differential equation model. Additionally, I

included a vanilla RNN and a GRU of similar sizes for a complete comparison. These

results are summarized in Table 2.2. Comparatively, there is a clear decrease in the

computational time when using a LSTM or any other RNN. While these results are

expected, such a marked decrease in computational time supports the applicability of

a LSTM-based model in designing a model-based optimal closed-loop control strategy

for controlling the cardiac system.

2 .6 summary

My goal in this chapter was to develop a data driven approach capable of reproducing

nonlinear dynamics for modeling the heart rate and the mean arterial pressure

in response to the VNS parameter selection, and demonstrate this approach on a

synthetic dataset. I found that both a GRU and LSTM were capable of accomplishing

such a task, with a LSTM exhibiting slightly better performance on the dataset used.
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F igure 2 .4 : Example of the trained LSTM model performance on a trial from the test
set for predicting the (A) heart rate (HR) and the (B) mean arterial pressure (MAP)
for one selection of the VNS parameters. The LSTM is given the input (blue), and
is asked to recursively predict the next 99 labels (black) with the LSTM predictions
shown in red. (C) Normalized mean absolute error over the entire test set for the
heart rate and the mean arterial pressure is shown, along with the standard deviation
shaded around the curve.



34

F igure 2 .5 : Comparison between the LSTM model and the full model for the (A)
heart rate and the (B) mean arterial blood pressure (MAP) for 99 simulated cardiac
cycles. The black line shows the output of the full differential equation model (labeled
Truth), while the red line shows the predictions from the LSTM model (labeled
Prediction). Cycles 1-10: location 1 with pulse width 0.21 ms and pulse frequency
21 Hz (light blue). Cycles 11-20: location 3 with pulse width 0.09 ms and pulse
frequency 9 Hz (light red). Cycles 21-30: location 2 with pulse width 0.31 ms and
pulse frequency 30 Hz (light green). Cycles 50-60: location 1 with pulse width 0.14

ms and pulse frequency 14 Hz (dark blue). All other cycles had no locations active.
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Further, I showed that both the GRU and LSTM took significantly less computational

time than the full physiological model.

This chapter could be extended by applying this approach to an experimental

dataset. Such an investigation would provide a more concrete demonstration of its

feasibility in the therapeutic context. Of particular interest in this application would

be the neural network’s ability to account for animal specific variation. If successful,

this could provide another advantage of using a neural network over a mechanistic

model as most models do not include the variation observed in the experimental data.

In the context of a closed-loop control of the cardiac system via VNS, such a feature

would be desirable for therapeutic applications. I anticipate that this application

would likely require a different neural network architecture (number of layers, input

size, etc.), but suspect that a LSTM and GRU would still be preferable to the vanilla

RNN.

Another extension to the LSTM model involves implementing a controller to

work with the LSTM in a model predictive control framework to find the optimal

stimulation parameters to reach a target set-point. This study could elucidate the

differences in controller performance with the increased computational speed of a

neural network. This control approach utilizing RNNs has been shown to control a

hypothetical chemical plant (Wu et al., 2019). Both extensions mentioned here seek to

demonstrate an increased relevance to the overall goal and address challenges related

to autonomous closed-loop control of VNS.



36

chapter 3

Data Driven Control of Vagus Nerve Stimulation for the

Cardiac System

3 .1 introduction

As discussed in Chapter 2, modeling the cardiac system of any animal is a challenging

task leading many investigations to utilize a proportional-integral approach for

control. However, proportional-integral controllers require extensive tuning and a

square system for multiple-input multiple-output control. A square system requires

that the number of manipulated variables must equal the number of controlled

variables, which is often not the case in the design of stimulation parameters for

vagus nerve stimulation. As an example, one study has shown that simultaneously

modulating multiple VNS parameters is required for optimal VNS performance

(Ojeda et al., 2016). In a deviation from proportional-integral controllers, one group

developed a state transition model for controlling the cardiac system (Romero-

Ugalde et al., 2017). While this specific approach shares some similarities to a data-

driven approach, the resulting controller design is still limited to controlling one

physiological output. The authors note that applying the control scheme in a strategic

way that allows for adaptations on temporal scales of both the short-scale dynamics,

and the long-scale dynamics would increase its applicability. Examining the study

that used the MPC formulation, a notable obstacle involved developing a reduced-

order model that could accurately represent the system dynamics while remaining

computationally efficient (Yao and Kothare, 2020).

To provide improvements in these directions, as well as allowing for control

of multiple physiological outputs, MPC with a LSTM model was selected for

investigation in this chapter. The details of both MPC and LSTM can be found in

Chapter 1. Of specific relevance for the LSTM is the capability to capture the dynamics

with both long and short temporal scales, which is enabled through the internal gating

structures in the LSTM. Additionally, the LSTM learns the relationship between the
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inputs and outputs on a temporal scale defined by the user, while MPC provides

the necessary framework to enable the multiple input and multiple output problem

formulation. While this approach has not been used in biological systems, LSTM in

MPC has been used for chemical plant control (Wu et al., 2019). This novel approach

addresses the challenges of modeling the cardiac system by using a data-driven model,

while providing the flexibility for tracking multiple physiological variables.

In this chapter, I use the LSTM designed in Chapter 2 with MPC to develop

a data-driven controller. First, I demonstrate the controller’s ability to control the

LSTM itself in closed-loop. Next, I show the controller is able to control the full

physiological model with a nominal offset. I provide an investigation into a few

different control designs to demonstrate the versatility of the controller with different

contextual objectives. Finally, I provide an analysis of the controller designs and

guidelines when applying this approach.

3 .2 lstm in closed -loop with lstm

To verify that the LSTM based MPC controller was operating as expected, the

controller was designed to control the output from the LSTM. In the case of the

feedback scheme in Fig. 3.1, the subject would indicate the trained LSTM model.

The expectation of the controller is to reach the target setpoints since there is no

model mismatch between the model used in MPC (LSTM), and the controlled system

(LSTM), which provides a control problem for benchmarking controller performance.

3.2.1 Controller Design

The controller will be controlling the heart rate and the mean arterial blood pressure to

reach specified target set points by manipulating the stimulation pulse frequency, and

the stimulation pulse width at three different locations. To determine the stimulation

parameters at each location, the controller uses the LSTM to make predictions of the

system’s response for the length of the predictive horizon. These predictions are used

in formulating a cost function that compares the system’s response to the target set

point. Taken together, the setup of the controller scheme is shown in Fig. 3.1, with
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F igure 3 .1 : A block diagram that details the design of the controller, labeled as
MPC. The target set point is denoted with r, the optimal control actions are denoted
by u∗, the measurement of the physiological variables from the rat cardiac system
(labeled as subject) are denoted by y, and the predictions from the LSTM are denoted
with ŷ.
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the output denoted by y. The LSTM model based controller provides the optimal

stimulation parameters u∗, to the full physiological model. The output from the full

physiological model is then provided as feedback to the LSTM based MPC.

Since there are three discrete stimulation locations available, the full optimization

problem is a mixed integer nonlinear programming problem (MINLP). To serve as

an approximation of the MINLP problem, a L1 cost term was added to the objective

function. This additional cost term penalized the input, and as a result the sparse

solution was found by the controller, thus approximating the solution to the MINLP

problem. For MINLP problems, several different solution paths must be considered

which leads to multiple optimization problems at each iteration. As a consequence of

multiple problems, optimization becomes computationally expensive to implement,

thus an advantage of adding the L1 cost is speeding up the controller for real-time

implementation. In addition to the L1 cost, a simple quadratic cost between the model

predictions, and the target was used to find the optimal control action. Together, these

lead to the following optimization problem:

min
u

Np

∑
i=1

(r(k)− ŷi)
2 + λ

Nc

∑
j=1
|uj|, (3.1)

s.t. umin ≤ u(k + j|k) ≤ umax, j ∈ [1, Nc],

ŷ = fNN(ŷ(k + i|k), u(k + i|k)), i ∈ [1, Np],

ŷ(k|k) = y0.

Here, fNN(·, ·) denotes the LSTM, ŷi denotes the predicted physiological values from

the LSTM model, r(k) denotes the set point of the physiological variables, and uj

denotes the VNS input parameters. The constraints require that the model predictions

come from the LSTM, and bounds of the VNS input are not exceeded which provides

an inherent safety constraint. The L1 cost was multiplied by a weight term, λ, for

balancing the input penalty with the performance error penalty. The control horizon

is denoted by Nc, and the prediction horizon is denoted by Np. The three final values

(Nc, Np, λ) represent design parameters of the controller, and all of them impact the
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optimized control actions. In Eqn. 3.1, the first term of the minimization problem

denotes the quadratic cost (enforces accuracy) and the second term denotes the L1

cost (input penalty).

3.2.2 Controller Tracking Simulation

As a simple test case for the controller described by the optimization problem of Eqn.

3.1, three different set points were provided and the controller was asked to reach

each set point within 50 cardiac cycles. The set points for the tracking problem are

detailed in Table. 3.1, and are the same set point targets used in the MPC based

controller study in (Yao and Kothare, 2020).

Table 3 .1 : Set Points for the Controller

Set Point No. Cycles HR (bpm) MAP (mmHg)
1 0-50 392 111

2 51-100 346 144

3 101-150 393 125

By setting λ = 0.001, Nc = 5, and Np = 10 the controller achieved accurate

performance and was able to reach all of the set points in the case where no model

mismatch exists. The result from this simulation is shown in Fig. 3.2, with the selected

controller actions shown in Fig. 3.3. The controller is able to reach the set point and

keep the system there. Additionally, looking at the controller actions, at least one

location is turned off at all times. By including the L1 cost in the objective function,

this result demonstrates that the controller performance results in a sparse solution.

3 .3 lstm in closed -loop with physiological model

Having shown that the controller was able to successfully track set points in a

case with no model mismatch, the next task was to track set points in a case with

model mismatch. Since the LSTM was trained to be an approximation of the full

physiological model, controlling the full physiological model in a closed-loop would
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A

B

F igure 3 .2 : LSTM controller tracking set points for (A) heart rate (HR) and (B) mean
arterial blood pressure (MAP) when controlling the LSTM in closed-loop. Set points
are denoted with a black line, while the controlled output is indicated with red dots.

introduce some model mismatch. As discussed in Chapter 2, the LSTM did not

perfectly match the full model.
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A

B

F igure 3 .3 : LSTM controller actions to achieve the set point for (A) pulse width
and (B) pulse frequency when controlling the trained LSTM in closed loop. The
three different locations are differentiated by color with the first location in black, the
second location in blue, and the third location in red.

3.3.1 L1 Controller Simulation

Using the optimization problem described by Eqn. 3.1, a controller was designed to

control the physiological model. The controller set points were the same as in Table 3.1.

For this application, the following values were used in the controller formulation: λ =
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0.001, Nc = 5, and Np = 10. Taken together, this is the same control problem described

previously, however the controller is controlling the full physiological model in this

case.

The results of the aforementioned control problem are shown in Fig. 3.4, with the

selected controller actions shown in Fig. 3.5. Again, for each set point, one location is

turned off, thus demonstrating that the L1 cost enforces a sparse solution. Importantly,

the LSTM-based MPC controller reaches these set points with nominal offset. For all

set points, there is an overshoot for the heart rate, however the controller still reaches

the target set point. Importantly, the controller demonstrates the ability to control both

the heart rate, and the mean arterial blood pressure simultaneously by optimizing six

different input variables.

3.3.2 L2 Controller Simulation

In an effort to consider a different context of interest regarding the application of VNS,

an optimization problem that replaced the L1 cost with a L2 cost was formulated. A

L2 cost penalizes the input and is equivalent to the square of the L1 cost. This is

shown in Eqn. 3.2, which details the optimization problem with the L2 cost. Since

VNS is a battery powered implanted electrical device, power consumption becomes an

area of concern. To incorporate this context in the controller, the L2 cost can be used

to emphasize avoiding large values for stimulation parameters, which correspond to

high power consumption.

min
u

Np

∑
i=1

(r(k)− ŷi)
2 + λ

Nc

∑
j=1

(uj)
2 (3.2)

s.t. umin ≤ u(k + j|k) ≤ umax, j ∈ [1, Nc]

ŷ = fNN(ŷ(k + i|k), u(k + i|k)), i ∈ [1, Np]

ŷ(k|k) = y0

Examining the controller actions, the solution to the L2 cost formulation

emphasizes avoiding maximum values, which correspond to the highest level of
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B

F igure 3 .4 : Performance of L1 objective function in LSTM based controller for set
point tracking of (A) heart rate (HR) and (B) mean arterial blood pressure (MAP)
of the physiological model. Set points are denoted with a black line, while the
physiological model output is indicated with blue dots.

power consumption. Despite the different controller emphasis, the L2 controller

demonstrates an ability to reach all set points with nominal offset. When approaching

each set point for the heart rate, the controller exhibits overshoot before returning to
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A

B

F igure 3 .5 : Controller actions for the L1 objective function to achieve the set points
for (A) pulse width and (B) pulse frequency in controlling the physiological model.
The three different locations are differentiated by color with the first location in black,
the second location in blue, and the third location in red.

the target set point. Overall, the LSTM based controller has demonstrated reasonable

performance with two different objective function formulations.
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B

F igure 3 .6 : Performance of L2 objective function in LSTM based controller for set
point tracking of (A) heart rate (HR) and (B) mean arterial blood pressure (MAP)
of the physiological model. Set points are denoted with a black line, while the
physiological model output is indicated with blue dots.

3.3.3 ∆ U Controller Simulation

When the previous controller solutions are considered, the controlled outputs appear

to oscillate around the steady-state value for MAP. By examining the controller actions,

it appears that these selected actions are giving rise to the slight oscillations. These
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A

B

F igure 3 .7 : Controller actions for the L2 objective function to achieve the set points
for (A) pulse width and (B) pulse frequency in the physiological model. The three
different locations are differentiated by color with the first location in black, the
second location in blue, and the third location in red.

oscillations motive the test of a final controller design where penalizing the change

in the input was formulated as an optimization problem in an effort to remove these

oscillations. By penalizing the change in input in addition to the L1 cost, the controller

should perform more smooth control actions, specifically during steady-state at the
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target set points. As an illustration of the goal, this smooth controller behavior is

inherently observed in the case of the LSTM controlling the LSTM in the closed-loop

control (see Fig. 3.2 and Fig. 3.3). This problem formulation introduced an additional

parameter, λ2, to weight the change in the inputs. Changing the weighting between

λ1 (the L1 cost weight) and λ2 (the ∆u weight) influences the result by shifting the

controller’s optimization priority. The described optimization problem used for this

controller design is detailed by Eqn. 3.3.

min
u

Np

∑
i=1

(r(k)− ŷi)
2 + λ1

Nc

∑
j=1
|uj|+ λ2

Nc

∑
j=1

∆uj (3.3)

s.t. umin ≤ u(k + j|k) ≤ umax, j ∈ [1, Nc]

ŷ = fNN(ŷ(k + i|k), u(k + i|k)), i ∈ [1, Np]

∆uj = |u(k + j|k)− u(j|k)|, j ∈ [1, Nc]

ŷ(k|k) = y0

u(k|k) = u∗t−1

For this controller optimization, the design parameters were set to the following

values: Nc = 5, Np = 10, λ1 = 0.001, and λ2 = 0.00005. Different selections of

Nc and Np can lead to similar performance, provided that the weights (λ1, λ2) are

appropriately selected.

As shown by the controlled output in Fig. 3.8, the addition of the ∆u term led

to a more smooth solution while exhibiting nominal offset. The mean arterial blood

pressure still appears to vary a little, however these variations are not as large as the

previously designed controllers. Notably, there is no overshoot in the last set point

for the heart rate, and there is minimal overshoot for the other two target set points of

the heart rate. The controller actions are where the influence of this additional term

becomes more obvious, as depicted in Fig. 3.9. The controller is attempting to reach

the stimulation values that lead to the target set point and staying at those values,

consistent with the intuition of the designed objective function. Interestingly, the ∆u
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B

F igure 3 .8 : Performance of L1 with ∆u objective function in LSTM based controller
for set point tracking of (A) heart rate (HR) and (B) mean arterial blood pressure
(MAP) of the full physiological model. Set points are denoted with a black line, while
the physiological model output is indicated with blue dots.

controller does not achieve the sparse solution at all target set points, evidenced by

having all three locations active for the last set point.
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B

F igure 3 .9 : Controller actions for the L1 with ∆u objective function to achieve the
set points for (A) pulse width and (B) pulse frequency. The three different locations
are differentiated by color with the first location in black, the second location in blue,
and the third location in red.

3 .4 controller analysis

Here, I compare the performance of the different controller designs, the L1 and L2

cost formulations are directly shown in Fig. 3.10, with the different controller actions

shown in Fig. 3.11. Both the controller designs demonstrated similar performance
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for the tracking case, with the L2 formulation reaching some set points slightly faster

than the L1 formulation. However, the actions that each controller took to obtain

that performance differed slightly. Focusing on location 1, the L2 controller chose

notably lower values for the first set point. This difference in performance validates

the intuition that the L2 cost seeks to avoid high values. Throughout the entire

simulation, the L2 controller did not emphasize setting one location to 0 for all set

points, conversely the L1 cost did set one location to 0.

Regarding selection of control design parameters, there are some guiding

principles to select these parameters based on the controller’s observed behavior.

In the case of the L1 cost, high values of λ instructs the controller to emphasize

suppressing the input more than reaching the target value. The occurrence of such a

scenario would be evidenced by offset in the controlled output. Following the L2 cost

formulation, high values of λ can lead to a similar situation where the controller

is more focused on minimizing the L2 cost term than the quadratic cost of the

predictions. There is a balance between the two cost terms that leads the controller

to minimize the quadratic cost followed by minimizing the second cost term. Such a

balance is demonstrated in the controller outputs of the above cases.

A notably different result was obtained using the ∆u controller formulation,

specifically regarding the overshoot around the set points. The formulation of this

optimization problem did not exhibit overshoot in the same way that the other

controllers did (compare Fig. 3.8 with Fig. 3.4 and Fig. 3.6). Additionally, the

evolution of the controlled variables were smooth and more gradual. However, this

controller design was not separate from the other controller designs as it employed

a L1 cost term as well. In that sense, the ∆u cost term can be added to all objective

function formulations. For example, it could be added to the L2 cost function as well.

Similar to the L1 cost approximating the MINLP problem, the ∆u cost term can be

added to give the controller a more gradual and gentle performance.

Should these controller designs be deployed in the real physiological setup, there

is the potential that the controller could switch its objective function to meet the

demands of the biological system. In a therapeutic sense, stimulating all locations at

all times could lead to a loss in efficacy of treatment. Conversely, there may be times
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B

F igure 3 .10 : Comparison of controller performance for the L1 cost denoted by Eqn.
3.1 (blue dots) and controller performance for the L2 cost denoted by Eqn. 3.2 (red
crosses) with Nc = 5, Np = 10, and λ = 0.001 in both controller formulations for (A)
heart rate (HR) and (B) mean arterial blood pressure (MAP). The target set points are
shown by the black line.
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B

F igure 3 .11 : Comparison of controller actions for the L1 cost denoted by Eqn. 3.1
(solid lines) and controller action selection for the L2 cost denoted by Eqn. 3.2 (dotted
lines) with Nc = 5, Np = 10, and λ = 0.001 in both controller formulations for (A)
pulse width and (B) pulse frequency. Locations are differentiated by color with L1
location 1 shown in black, location 2 shown in blue, and location 3 shown in red. For
L2, location 1 is shown in orange, location 2 is shown in magenta, and location 3 is
shown in grey.
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when power consumption holds a higher priority than enforcing a sparse solution. For

the therapeutic application, the ∆u cost term can be used to reach targets with more

smooth transitions, which may be more gentle for the patient or subject of the therapy.

These different contexts are why multiple controller designs were investigated in this

thesis. Importantly, all controllers have been shown to reach the target set point with

a nominal offset. Their similar performances lead to the potential of employing them

in the experimental system, and allowing for multiple external factors (battery level,

physiological feedback, stimulation time, etc.) to provide the context for selecting the

specific controller design used at a particular time.

3.4.1 Controller Computational Time

Additionally, the computational time for different choices of Np and Nc were

computed. As expected, when the control horizon was increased, the computational

time increased as well. A longer control horizon led to longer times for optimization

to converge because the number of optimized variables increased by a six-fold rate.

For every additional cardiac cycle in the control horizon, there were six additional

parameters for the controller to optimize. Similarly, as the predictive horizon

increased, the time of optimization also increased as there were more predictions

to be computed. However, this additional computational time was not as significant

compared to increasing Nc. The computational time was estimated by taking the

total time to run the simulation and subtracting the time it took the full physiological

model to run the number of cycles simulated, and dividing this difference by the total

number of cycles in the simulation. All of these findings are summarized in Table 3.2.

In the context of requirements for real-time closed-loop control of VNS, it is likely

that selections with Nc ≥ 5 and Np ≥ 20 would be difficult to implement in real-time.

This leaves Nc ≤ 5, and Np ≤ 10 as plausible choices for real-time implementation.

This analysis is based on the estimation that the controller would be continuously

optimizing with roughly one second between iterations to optimize the result. In

the case of computing multiple controller actions, Nc > 1, control actions can be

implemented one at a time in case the next optimization has not converged in time.

In this application, all controller designs listed above could be configured to give



55

Table 3 .2 : Computational Time of Controllers Tests Were Done Using an INTEL(R)
CORE I7-9700 CPU 3.00 GHZ with 16.0 GB of RAM

Nc (cycles) Np (cycles) Variables Est. Time/cycle (s)
1 10 6 0.21

5 10 30 0.88

10 10 60 1.15

1 20 6 0.57

5 20 30 1.85

10 20 60 2.35

20 20 120 2.79

similar performance by carefully selecting the weighting values (λ). Despite these

considerations, it’s worth noting that some VNS paradigms utilize a duty cycle of

14 seconds on, and 66 seconds off (Ardell et al., 2015, 2017). For these stimulation

paradigms, all possibilities listed above could be implemented in real-time.

3 .5 conclusions

In this chapter, I provided the extension of the LSTM developed in Chapter 2

by embedding the LSTM in a MPC framework to allow for controlling the full

physiological model. I considered several different objective functions, and analyzed

their performance. When considering the design of a controller, I provided guidance

into selecting the parameters associated with the controller design. Overall, the LSTM-

based MPC controller was able to achieve acceptable closed-loop performance when

controlling the full physiological model.

The novel control approach outlined here is considerably different from other

control studies focusing on controlling the cardiac system. To my knowledge,

there has not been a control-based attempt that utilizes deep learning approaches

in the cardiac system. Additionally, the novelty of controlling multiple outputs

by optimizing multiple inputs has not been shown in the other controller designs.

By using a LSTM, the potential improvements regarding timescales suggested by

(Romero-Ugalde et al., 2017) have been addressed. Finally, the controllers shown in



56

this chapter demonstrate nominal offset, which is behavior that the original study’s

reduced-order controller did not exhibit (Yao and Kothare, 2020).

Viewing the controller designs from this chapter as an overall approach, there

are many systems that may gain advantages from utilizing this methodology. As

demonstrated in this chapter, this approach can be used to develop reduced-order

models of larger-scale models, thus enabling the plausibility of real-time control.

Other potential application areas where this approach would excel can be found in

areas where model development is challenging, however a control application would

still prove useful. The challenge of model building may result from lack of adequate

system knowledge, or the challenge may arise from the level of detail required for

modeling the system. In either case, provided input-output data, this approach can be

used to develop a controller. As an example of such an area, this would be particularly

advantageous in the context of controlling biological systems.

While the designed controller described in this work did not receive experimental

validation, there is no detrimental reason preventing its application in experimental

setups as well. Particularly, the inclusion of a deep learning based model allows for

the flexibility of training that model with the experimental data. Notably, the deep

learning model described here was never given information regarding the structure

of the underlying physiological model. The challenge may shift to obtaining a

sufficiently accurate trained model, however that challenge may be more feasible than

developing a model for some systems.

There are a few notable limitations with this data-driven control approach,

particularly the controlled system must be fully observable. More specifically, to

train the neural network, measurements of the controlled variables as well as the

manipulated variables must be provided. Thus, a partially observed system may be

possible to control using this approach, but that has not been demonstrated in this

thesis. Expanding this approach to account for such a situation may be an area of

interest for future work. There are other situations where the current approach may

not lead to an improvement in performance, such as systems that can already be

accurately approximated by computationally efficient models. After these limitations
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are taken into account, there remains a broad area of applications across several

domains where this approach would prove useful.
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chapter 4

Summary and Future Directions

4 .1 summary

In this thesis, I presented a unified approach for modeling and controlling the

rat cardiac system by using machine learning approaches to develop a model and

applying that model in model predictive control. This approach provided a useful

framework for applications of control wherein a model is either difficult to obtain, a

full model is too computationally expensive for optimization, or a full mechanism is

not understood, thus challenging efforts to build a model. I applied this framework

to a model of the rat cardiac system, and demonstrated that the full physiological

model can be controlled with this approach. Generally stated, my thesis provided an

additional approach for data-driven control that merges machine learning with model

predictive control.

In chapter 2, I used machine learning approaches to develop a timeseries

relationship between the input VNS parameters and the output physiological

variables. Specifically, I used a LSTM which is commonly used for time-series or

sequence-based datasets. Data from the true physiological model was then collected

using an open-loop trial characterization of the system (i.e. choose parameters, collect

response, repeat). This led to the LSTM serving as a map between the current state

of the system, and the evolution of physiological variables following the selection

of a specific set of VNS parameters. I showed that this model is 10-folds faster in

computational time compared to the full model, and achieved the speed required

for real-time optimization. My results suggested that this data-driven approach is a

viable method to model the effect of VNS parameter selection on the physiological

variables of heart rate, and blood pressure.

Using the LSTM designed in Chapter 2, I designed a controller in Chapter 3

that drove the system to several set points with a nomial offset during closed-loop

simulations. The controller was designed using a MPC problem formulation with the
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trained LSTM serving as the model. Using a L1 cost, I showed that the mixed integer

programming problem can be approximated, thus allowing for easier implementation

in real time. Finally, I compared different objective function formulations and

provided guidelines for the selection of their associated parameters.

4 .2 future work

4.2.1 Using Physiological Data

In this thesis, I provided a framework to model and control a nonlinear physiological

model of a rat heart. The work provided in my thesis is purely computational, leading

to the next application of this framework to real data. The problem formulation

used in this thesis allows for extension and application using other sources of data

because the developed LSTM and controller were never given information about the

underlying physiological model. Similar to the process employed on the physiological

model, experiments can be configured to collect data in the form of open-loop

trials investigating the influence of VNS parameter selection on various physiological

measurements. As an example, this analysis has been completed in dogs (Ardell

et al., 2015, 2017). This dataset specifically investigated the influence of different

VNS parameter selection (pulse width, pulse frequency, and pulse amplitude) while

recording electrocardiogram (ECG), left ventricular pressure, and blood pressure. The

applied duty cycle for VNS consisted of 14 seconds on and 66 seconds off. By

performing the same approach on this dataset, or a similar dataset, the resulting

controller would be directly applicable to the in vivo system and could lead to

experimental validation and improvements in both the modeling approach and the

controller design.

To highlight the key differences between the two datasets, heart rate is not directly

measured and must be inferred from the ECG measurement. This problem is

equivalent to predicting the inter-spike interval, which has been demonstrated using

synthetic data with neural networks in other work (Plaster and Kumar, 2019). There

will also be statistical variation in the measured data (noise), that must be handled by

both the modeling approach and the controller. The consideration of noise, highlights
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an important underlying assumption that unique VNS parameters lead to a specific

and unique response in the measured physiological variables.

4.2.2 Controlling Diseased Model

In Chapter 3, the designed controller was based on the same model as was used for

training the LSTM. However, an interesting investigation would involve developing

a rat cardiac model with a pathological condition. This investigation could train a

LSTM using data from the healthy case and use that LSTM in a MPC framework. The

resulting controller could then be applied to the pathological model, to investigate

challenges and solutions to those challenges. This investigation would be of clinical

relevance as it provides insight into the potential of using data from healthy subjects in

a controller used to treat a pathological condition. There is the potential that a wide

range of data could be collected and integrated into the controller in a meaningful

way.

4.2.3 Recovering Linear Dynamics

In chapter 2, I utilized a data-driven approach to develop a relationship of VNS

parameter selection on the open-loop trials from a physiological model of a rat

heart, which provided a reduced-order model. In general, this approach can be

applied to dynamical systems models, due to the flexibility of the data-driven

approach. The LSTM based controller provided faster and more accurate convergence

to target set points than the reduced-order dynamical model. A more attractive

way to model the system would involve a linearization technique, which enables

traditional linear control schemes. The advantage of this approach lies in the

control application, where proving optimality, stability, and robustness is much

more feasible than in the nonlinear case. There would be additional performance

gains in required computational times through faster optimization of a linear system.

These benefits are countered by the challenge involved in linearizing a nonlinear

system, exemplifying a broad challenge found in control applications. An approach

that utilizes an extension of the LSTM modeling approach involves employing an
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autoencoder where the dynamics are encoded to a reduced dimensionality of the

system. The complimentary decoder can be used to acquire the original system

dynamics. Investigation into applying a linear control scheme to the encoded

dynamics could provide a more efficient control scheme while maintaining a data-

driven approach. Another approach that seeks to accomplish linearization of the

nonlinear model involves the Koopman operator (Brunton et al., 2016b; Korda and

Mezić, 2018; Proctor et al., 2018), which provides a coordinate transform such that

a linear state space model evolves according to the nonlinear dynamics. Again,

the linearized model would allow for more rigorous control analysis through well-

established linear control theory, while providing a method to recover the nonlinear

dynamics from the linear dynamics. Both of these approaches are illustrated in Fig.

4.1.
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F igure 4 .1 : A control framework approach that utilizes an autoencoder for
dimensionality reduction to obtain a linearized model for control. The encoder is used
to obtain the reduced dimensional model, which then undergoes Koopman analysis
to generate a linear model for control. The decoder can be used to reconstruct the
physiological activity.

A final approach for advancing the controller involves dynamic mode decompo-

sition (Tu et al., 2013; Proctor et al., 2016), which has been used to analyze several

systems in domains such as epidemiology (Proctor and Eckhoff, 2015), neuroscience
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(Brunton et al., 2016a), robotics (Berger et al., 2015), video processing (Erichson

et al., 2019), finance (Mann and Kutz, 2016), power systems (Le Clainche and Vega,

2017), plasma physics (Taylor et al., 2018), and fluid dynamics (Schmid et al., 2011;

Muld et al., 2012; Seena and Sung, 2011; Hemati et al., 2014; Noack et al., 2016).

Dynamic mode decomposition has been adapted for use in the control framework,

and provides a reduced-order linear model that is capable of capturing the temporally

local dynamics of a system. Such an approach has similar advantages that allow for

real-time application of control, while utilizing a data-driven approach. Dynamic

mode decomposition provides the additional benefit of eliminating the training phase

associated with the neural networks, allowing for immediate use in controller design.

A comparison in performance between all the approaches discussed here would

be a valuable investigation, and would provide insight on data-driven modeling

techniques that perform well for the control of biological systems using vagal nerve

stimulation.
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