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Abstract 

Suppression programs targeting undesirable fish species are difficult and effort intensive, 

often requiring substantial effort by management agencies. Before suppression programs can 

be implemented, it is necessary to gain an in-depth understanding of the invader’s ecology to 

increase the effectiveness of removal efforts. This is especially true in the Green River 

system, Wyoming, where invasive Burbot have the potential to negatively influence native 

fishes and socially important fisheries. This thesis evaluated the efficacy of using angling data 

to monitor invasive Burbot Lota lota populations in the Green River basin and described the 

potential response of Burbot populations to various management scenarios. In addition, I 

evaluated the movement dynamics of Burbot in the Green River. My research suggests that 

angler-supplied Burbot are a cost-effective data source for monitoring Burbot populations. 

Results indicate that exploitation of mature Burbot must reach 33% to suppress lentic portions 

of the Green River Burbot population. Additionally, adfluvial Burbot in the upper Green 

River system seem to spawn near Fontenelle Reservoir. Focusing removal effort on this 

portion of the Green River could increase the efficiency of a suppression program.  
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 Chapter 1: General Introduction 

The introduction of nonnative fishes outside their natural distributions has 

substantially altered freshwater communities worldwide (Pysek and Richardson 2010). When 

introduced outside their native distribution, nonnative species often affect native fish 

populations through competitive interactions, hybridization, predation, habitat alteration, or as 

disease vectors (White and Harvey 2001; Taniguchi et al. 2002; Chornesky and Randall 2003; 

Miller and Crowl 2006; Poulin et al. 2011). For instance, the decrease in native Yellowstone 

Cutthroat Trout Onchorhynchus clarkii bouvieri populations in Yellowstone Lake, Wyoming, 

during the past two decades is largely related to predation by nonnative Lake Trout Salvelinus 

namaycush and the effects of the exotic parasite Myxobolus cerebralis (Ruzycki et al. 2003; 

Koel et al. 2005). When a species is introduced, becomes established, and poses an ecological, 

economical, or health threat to native species, those species are deemed invasive and warrant 

management action (NISC 2001).  

Although prevention of invasive species is preferred (Leung et al. 2002; Chornesky 

and Randall 2003), many invasive species become established before management agencies 

are aware of their presence (Pinder et al. 2005; Britton and Davies 2007). Once an invasive 

species is established, suppression or eradication become the best possible options to mitigate 

their possible negative effects on native fauna (Kolar et al. 2010). Suppression programs are 

expensive and difficult, requiring more expense and effort than is often feasible (Chornesky 

and Randall 2003; Mueller 2005; Quist and Hubert 2004). When resource agencies are faced 

with such costs, any suppression effort must be supported by an extensive understanding of 

the invasive species’ life history and ecology (Simberloff 2003). The current situation 

involving invasive Burbot Lota lota in the Green River of Wyoming is one such example. 
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Burbot is the only freshwater representative of the cod family (i.e., Gadidae), and has 

a circumpolar distribution extending throughout northern Europe, Asia, and portions of North 

America (McPhail and Paragamian 2000). Adult Burbot are top predators, aggregate 

spawners, and exhibit multiple life history strategies throughout their distribution (Hewson 

1955; McPhail and Paragamian 2000). The conservation status of Burbot is highly variable. A 

status review by Stapanian et al. (2010) showed that Canadian populations are generally 

stable. Only four of twenty-four countries in Europe and Asia reported secure populations of 

Burbot, the remainder reported Burbot populations as vulnerable, declining, imperiled, or 

extirpated. Similarly, only eight of twenty-five states in the United States claimed secure 

populations (Quinn 2000; Stapanian et al. 2010). The poor status of Burbot in their native 

distribution has prompted a focus on their conservation (Ireland and Perry 2008; Stapanian et 

al. 2010; Neufeld et al. 2011; Paragamian and Hansen 2011). Invasive Burbot populations 

elicit a different management response which is generally focused on population control. Such 

a dissimilarity in management objectives can be observed in Wyoming. 

Burbot are native to Wind-Big Horn and Tongue river basins of Wyoming (Baxter and 

Stone 1995). They have been extirpated from the Tongue River system and occur at low 

densities in the Wind-Big Horn River drainage (Krueger and Hubert 1997; Hubert et al 2008; 

Underwood et al. 2016). Their status has prompted their classification as a “species of greatest 

conservation concern” in these systems (WGFD 2017). Conversely, Burbot were illegally 

introduced in the Green River basin in the 1990s (Gardunio et al. 2011). Due to the potential 

of Burbot to alter the structure of the Green River system (Klobucar et al 2016; McBaine et al. 

in press), Burbot have been labelled as a “significant and immediate threat” to native species 

as well as economically, socially, and ecologically important sport fisheries (WGFD 2017). 
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In response to the possible negative effects of Burbot to fishes in the Green River 

basin, the Wyoming Game and Fish Department (WGFD) has begun exploring the efficacy of 

a suppression program targeting Burbot. Prior research in the system suggested that high total 

annual mortality (> 60%) is needed to effectively suppress Burbot in the Green River (Klein 

et al. 2016). However, this estimate was based on estimates derived from riverine Burbot and 

did not include data from reservoir populations of Burbot. Due to potential differences in 

demographics between lotic and lentic populations of Burbot, the applicability of the current 

riverine-specific population model in reservoir habitats is unknown. Previous research also 

suggests that Burbot in the Green River system may be exhibiting an adfluvial life history 

(Klein et al. 2015). Burbot are known to travel long distances in rivers to spawn elsewhere in 

their distribution (Evenson 1993; Paragamian 2000; Schram 2000). If long-distance 

movements are occurring in the Green River system, those movements could increase the 

probability of negative interactions with important fisheries located in the upper Green River. 

Understanding the movement patterns of Burbot and identifying potential spawning locations 

in the Green River has also been suggested as a means to increase the effectiveness of 

proposed suppression efforts (Klein et al. 2016). Additionally, high costs associated with 

suppression programs warrants the development of cost-effective methods to monitor the 

response of fish populations to management actions. Using various Burbot tournaments on 

reservoirs in the Green River system as a data source for monitoring could reduce the costs of 

suppression efforts. 

Considering the sizeable gaps in knowledge regarding the efficacy of a removal 

program targeting Burbot, this thesis had three main objectives. The first objective was to 

evaluate the efficacy of using angler-supplied data to monitor the Burbot population in the 
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Green River system. Secondly, the population demographics and potential response of 

reservoir Burbot populations to management effort were evaluated using an age-structured 

population model. Lastly, the movement dynamics of Burbot in the upper Green River were 

described to increase the efficacy of a removal program. 

 

Thesis Organization 

This thesis is composed of five chapters. The second chapter evaluates differences in the vital 

rate estimates gleaned from fishery-dependent and fishery-independent data sources to 

evaluate the efficacy of using angler-supplied data to monitor Burbot populations in the Green 

River system. Chapter two has been submitted for publication in the North American Journal 

of Fisheries Management. The third chapter describes the demographics of lentic populations 

of Burbot in the Green River system and evaluates their potential response to various 

management scenarios. Chapter 3 has been submitted for publication in the North American 

Journal of Fisheries Management. Chapter 4 evaluates the movement dynamics of Burbot in 

the upper Green River system and has been submitted to the North American Journal of 

Fisheries Management. The final chapter provides general conclusions and describes the 

management implications of chapter results. 
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Chapter 2: Efficacy of Using Data from Angler-Caught Burbot to Estimate Population 

Rate Functions 

 

Tucker A. Brauer, Darren T. Rhea, John D. Walrath, Michael C. Quist 

 

Abstract 

 The effective management of a fish population depends on the collection of accurate 

demographic data from that population. Since demographic data is often expensive and 

difficult to obtain, developing cost effective and efficient collection methods is a high priority. 

This research evaluates the efficacy of using angler-supplied data to monitor a nonnative 

Burbot Lota lota population. Age and growth estimates were compared between Burbot 

collected by anglers and in trammel nets from two Wyoming reservoirs. Collection methods 

produced different length-frequency distributions, but no difference was observed in age-

frequency distributions. Mean back-calculated lengths at age revealed that netted Burbot grew 

faster than angled Burbot in Fontenelle Reservoir. In contrast, angled Burbot grew slightly 

faster than netted Burbot in Flaming Gorge Reservoir. Von Bertalanffy growth models 

differed between collection methods, but differences in parameter estimates were minor. 

Estimates of total annual mortality (A) of Burbot in Fontenelle Reservoir were comparable 

between angled (A = 35.4%) and netted fish (33.9%); similar results were observed in 

Flaming Gorge Reservoir for angled (29.3%) and netted fish (30.5%). Beverton-Holt yield-

per-recruit models were fit using data from both collection methods. Estimated yield differed 

by less than 15% between data sources and reservoir. Spawning potential ratios indicated that 

an exploitation rate of 20% would be required to induce recruitment overfishing in either 

reservoir, regardless of data source. Results of this study suggest that angler-supplied data are 
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useful for monitoring Burbot population dynamics in Wyoming and may be an option to 

efficiently monitor other fish populations in North America. 

 

Introduction 

 Population demographic data are the basis of fisheries management as they provide 

insight on the recruitment dynamics, trophic interactions, and growth of fish populations 

(Allen and Hightower 2010; Quist et al. 2012). Accurate data on fish population dynamics are 

important for monitoring sport fish populations and especially critical for monitoring 

introduced fish populations prior to and in response to removal efforts (Cambray 2003). 

Because collecting demographic data is expensive and time consuming, developing cost-

effective techniques is a high priority. A potential cost-effective technique to monitor 

populations is to use information from angler-caught fish. 

 Management agencies often employ anglers to gather data on fish populations and to 

monitor angler effort and harvest (Willis and Hartmann 1986; Dolman 1991; Cooke et al. 

2000; Park 2007). Angler-catch data provide an alternative to fishery-independent data (e.g., 

standard population surveys) used by natural resource agencies. For example, Travnicheck 

and Clemons (2001) used long-term data from fishing tournaments to evaluate changes in 

Flathead Catfish Pylodictis olivaris populations after closure of commercial harvest in the 

Missouri River. Ebbers (1987) found that age-frequency distributions, growth rates, and 

mortality rates estimated for Largemouth Bass Micropterus salmoides in Minnesota lakes 

were similar between angler-supplied data and electrofishing surveys. In contrast, a number of 

studies suggest that fishery-dependent data should be used with caution. Gabelhouse and 

Willis (1986) concluded that biases related to angling technique (e.g., gear size and type) and 

season limited the use of data from Largemouth Bass tournaments in Kansas. Similarly, 
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Miranda et al. (1987) found that angler-catch data tended to overestimate Largemouth Bass 

growth rates when compared to data collected using standard survey methods (i.e., 

electrofishing, cove rotenone). Substantial length bias in angler-supplied data has also been 

reported in crappie Poxomis spp. (Miranda and Dorr 2000) and Northern Pike Esox lucius 

(Arlinghaus et al. 2008) populations. The majority of studies that have investigated the use of 

angler-catch data have focused on popular sport fishes. Although less common, anglers that 

target introduced species have the potential to provide valuable information at a fraction of 

the cost of standard monitoring regimes. Angling tournaments targeting illegally introduced 

Burbot Lota lota in the Green River basin of Wyoming provide an excellent opportunity to 

evaluate whether data from angling can be used to monitor fish populations. 

 Burbot are top predators, aggregate spawners, and occupy a diversity of lotic and 

lentic habitats (Hewson 1955; McPhail and Paragamian 2000). Throughout their native 

distribution in Wyoming, Burbot populations are in decline or have been extirpated (Krueger 

and Hubert 1997; Hubert et al 2008; Stapanian et al. 2010). Despite poor status in their native 

distribution, a population established through illegal introduction is thriving in the Green 

River basin. The presence of Burbot in the Green River system is a concern due to their 

potential negative effects on socially and economically important fishes (Gardunio et al. 

2011). In response, the Wyoming Game and Fish Department (WGFD) has implemented 

regulations in the Green River basin that are designed to maximize fishing mortality. The 

WGFD is also investigating the efficacy of suppression programs (Klein et al. 2015a, 2015b, 

2016). Anglers have become interested in participating in suppression efforts and have 

organized multiple ice-fishing tournaments for Burbot on Fontenelle and Flaming Gorge 

reservoirs, the two primary reservoirs in the system. Tournaments were organized as a means 
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to reduce Burbot numbers and have resulted in the removal of approximately 34,000 Burbot 

since tournaments began in 2010 (JDW, unpublished information). In addition to their 

effectiveness as a removal tool, angling tournaments provide fish that can be used to evaluate 

and monitor Burbot age structure and growth. 

 Age and growth data are of utmost importance to fishery managers. Age-structure data 

provide insight on the mortality rates and recruitment dynamics of fish populations. Growth 

data are especially important because growth has direct and indirect effects on recruitment, 

mortality, maturity, and length structure of a population (Quist et al. 2012).  Given the 

importance of age and growth data, new sampling methods should be assessed to evaluate 

concordance with standardized sampling methods. This study was conducted to compare age 

and growth estimates of Burbot from fishery-dependent (i.e., angler-caught) and independent 

(i.e., standard trammel netting survey) data sources in two Wyoming reservoirs. Given the 

results of previous studies addressing this topic, we hypothesized that fishery-dependent data 

would overestimate growth when compared to estimates from fishery-independent data 

sources and population models fit to both data types would differ substantially in their results. 

 

Study area 

 This research took place on Fontenelle and Flaming Gorge reservoirs, both of which 

are located in the Green River basin, Wyoming. Fontenelle Reservoir is an artificial 

impoundment of the Green River located in Lincoln County. The reservoir is primarily used 

for flood protection with a secondary use of hydroelectric power generation. At capacity, the 

reservoir has a surface area of approximately 3,200 hectares and a maximum depth of 

approximately 30 meters.  Flaming Gorge Reservoir is located 125 km downstream of 
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Fontenelle Reservoir and is primarily located in Sweetwater County, Wyoming, with the 

southernmost portion of the reservoir located in Daggett County, Utah (Figure 1). As such, the 

Flaming Gorge Reservoir fishery is managed by both the WGFD and the Utah Division of 

Wildlife Resources. The reservoir is primarily used for hydroelectric power generation. At 

capacity, the reservoir has a surface area of approximately 17,000 hectares and a maximum 

depth of 133 meters.  

Methods 

 Tournament data were collected from Fontenelle and Flaming Gorge reservoirs during 

January, 2016 and 2017. Data were collected from one tournament on Fontenelle Reservoir 

and two tournaments on Flaming Gorge Reservoir.  The tournament on Fontenelle Reservoir 

occurred over one night, whereas tournaments on Flaming Gorge Reservoir each spanned two 

nights. Tournaments offered cash prizes for the largest Burbot, smallest Burbot, and most 

Burbot caught by one fishing team. The rules of the competition indicated that all Burbot had 

to be euthanized and checked in to be eligible for judging.  

 At each tournament check-in, anglers were informed that a study was being 

conducted, and the premise of the study was explained. Anglers were invited to donate their 

catch. Due to logistical constraints, biological data were only collected from donated fish, not 

from the total tournament catch. Donated fish were enumerated, and total length (mm) and 

weight (g) were measured. Sex was determined for all fish by visual observation of the 

gonads. Collection of ovaries from mature female Burbot was attempted, but all had spawned 

prior to sampling. Sagittal otoliths were taken from up to ten fish per 1-cm length group 

(Quist et al. 2012; Klein et al. 2014).  
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 Burbot were collected from Fontenelle and Flaming Gorge reservoirs in October and 

November, 2016, using trammel nets. Trammel nets have been found to be effective at 

capturing lentic Burbot during spring and fall and have become the standard gear for sampling 

Burbot in lentic waters in Wyoming (WGFD, unpublished information). Trammel nets 

measured 48.8 m long, 1.8 m deep and consisted of 25.4-cm bar measure outer mesh and 2.5-

cm bar measure inner mesh. Nets were placed perpendicular to shore at varying depths and 

anchored to the substrate at both ends. Trammel nets were placed in locations used annually 

by the WGFD during fall Burbot sampling. All netted fish were counted, and total length 

(mm) and weight (g) were measured. Sex was determined by visual observation of the 

gonads. Ovaries were removed from up to five mature female Burbot per 5-cm length group, 

preserved in 5% formalin solution, and stored for fecundity analysis. Sagittal otoliths were 

removed from up to ten fish per 1-cm length group. All otoliths were dried, stored in 2.0 ml 

centrifuge vials, and returned to the University of Idaho for processing. 

 Otoliths were mounted in epoxy and transversely sectioned about the nucleus (Koch 

and Quist 2007; Edwards et al. 2011; Klein et al. 2014). Otolith cross sections were examined 

using a dissecting microscope with transmitted light and an image analysis system. Otoliths 

were examined by a single reader that had previous experience ageing otoliths. If an age 

estimate could not be reached for a fish, that fish was removed from further analyses. Ovaries 

were blotted dry and weighed to the nearest 0.01 g. One ovary was randomly selected for 

subsampling. Subsamples of oocytes (0.01-0.02 g) were taken from the anterior, central, and 

posterior portions of the ovary. Oocyte subsamples were then counted using a dissecting 

microscope and an average of subsample counts was calculated. Averages were then used to 
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determine total fecundities based on total ovary weight (Klibansky and Jaunes 2007; Klein et 

al. 2016) 

 Mean back-calculated lengths were estimated using the Dahl-Lea method (Quist et al. 

2012). Burbot growth rates were described using a von Bertalanffy growth model: 

                                                      Lt = L∞ [1 – e 
– k(t-t0)], 

where Lt (mm) is length at time t, L∞ is average maximum length, k is growth coefficient, and 

to is the theoretical age when length is zero (Quist et al. 2012). All analyses were conducted 

using the “FSA” package in R version 3.2.2 (R core development team; Ogle 2015). 

Proportional size distribution (PSD) was calculated for each reservoir and collection method 

(Gabelhouse 1984; Fisher et al. 1996; Neumann et al. 2012). Total annual mortality (A) was 

calculated using a Chapman-Robson estimator and peak plus one criterion (Smith et al. 2012). 

Mortality rates were calculated for angled fish using only those fish that were donated by 

anglers, netted fish mortality rates were calculated using all sampled fish whose ages were 

assigned using an age-length key (Quist et al. 2012). 

Chi-square tests were used to compare length-frequency and age-frequency 

distributions between collection methods in each reservoir (α = 0.05; Neumann and Allen 

2007; Ogle 2015).  Beverton-Holt yield-per-recruit models were used to describe differences 

in potential yield and spawning potential ratio (SPR) estimates between data collected by 

anglers and data collected using trammel nets. Models were constructed using the Fishery 

Analysis and Modeling Simulator v. 1.64 (FAMS; Slipke and Maceina 2014). Yield-per-

recruit models required input parameters of growth, mortality, longevity, and length-weight 

relationship parameters specific to each collection method and reservoir. Spawning potential 

ratio calculations required additional parameters including fecundity-length relationship 
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estimates, a maturation schedule, and estimates of spawning frequency (Table 1). Spawning 

potential ratio is used to index the influence of fishing on the productivity of a population and 

is calculated as the ratio of fished to unfished mature eggs that are produced in an average 

recruit’s lifetime. Populations were considered to be experiencing recruitment overfishing 

when SPR was below 0.20 (Goodyear 1993). 

Conditional natural mortality (cm) was held constant at 0.10 in all models. Conditional 

fishing mortality (cf) was allowed to vary from 0-1.0 in increments of 0.05. An arbitrary 

initial population of 100,000 individuals was input in each model. Logarithmic length-weight 

relationship and fecundity-length relationship parameters were estimated from our data using 

linear regression. Since fecundity-length data were unavailable for angled fish, we used the 

fecundity-length relationships of netted fish for all simulations.  Age at first maturation for 

females was age 2 in each reservoir based on observed maturity rates. We assumed that 

females composed 50% of the population. Based on our observations when evaluating 

oocytes, we assumed that 100% of mature female Burbot spawned annually.  

Models were run under a single management scenario that assumed no minimum 

length limit in either reservoir. Both reservoirs are currently managed with no length 

restrictions on harvest. Since Burbot smaller than 200 mm were absent from our sample, we 

used 200 mm as the “minimum length limit”.  

 

Results 

 A total of 515 Burbot was sampled from Fontenelle Reservoir, 376 were collected 

using trammel nets and 139 were collected by anglers. Otoliths were collected from all angled 

fish and from 139 fish collected using trammel nets. In Flaming Gorge Reservoir, 417 Burbot 
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were collected. Of these, 214 were collected by anglers and 203 were collected using trammel 

nets. Otoliths were collected from all angled fish and 155 netted fish. Ovaries were collected 

from 35 Burbot from Fontenelle Reservoir and 42 Burbot from Flaming Gorge Reservoir. 

 Lengths of angled fish in Fontenelle Reservoir varied from 293 mm to 900 mm, 

whereas netted fish varied in length from 304 mm to 965 mm (Figure 2). Lengths of angled 

fish in Flaming Gorge Reservoir varied from 218 mm to 858 mm and lengths of netted fish 

varied from 317 mm to 853 mm (Figure 2). Although length distributions of angled and netted 

fish were statistically different in Fontenelle Reservoir (χ
2 

= 16.8, df = 4, P = 0.002) and 

Flaming Gorge Reservoir (χ
 2 

= 15.0, df = 4, P = 0.004), proportional size distribution 

estimates were similar between collection methods in both reservoirs (Figure 2). 

 Angled fish in Fontenelle Reservoir varied in age from 1 to 11 years whereas ages of 

netted fish varied from 1-12 years (Figure 3). Ages of Burbot in Flaming Gorge Reservoir 

varied from 1 to 10 years for angled fish and 2 to 11 years for netted fish (Figure 3). No 

statistical difference in age distributions were observed between angled and netted fish in 

Fontenelle Reservoir (χ
 2 

= 13.4, df = 11, P = 0.27) or Flaming Gorge Reservoir (χ
 2 

= 12.0, df 

= 10, P = 0.29). Estimates of total annual mortality of Burbot in Fontenelle Reservoir were 

comparable between angled (A = 35.4%) and netted fish (33.9%). Mortality rates in Flaming 

Gorge Reservoir were also similar between angled (29.3%) and netted fish (30.5%). 

 Mean back-calculated lengths of Burbot in Fontenelle Reservoir were larger in angled 

fish than netted fish up to age 5. After age 5, back-calculated lengths of netted fish were larger 

than angled fish. Conversely, back-calculated lengths of Burbot in Flaming Gorge Reservoir 

were similar between angled and netted fish until age 3; thereafter, growth of angled fish was 
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faster than netted fish (Table 2). Parameter estimates from von Bertalanffy growth models 

differed between collection methods for both reservoirs, but differences were minor (Table 1).  

 Yield-per-recruit models produced similar estimates using data from angled and netted 

fish in each reservoir (Figure 4). Burbot sampled with trammel nets in Fontenelle Reservoir 

had higher potential yield than angled fish. The opposite pattern was observed in Flaming 

Gorge Reservoir where angled fish had higher potential yield than netted fish regardless of 

management scenario. Although estimates of yield differed between collection methods, 

differences in estimated yield varied from 1% to 21% and were generally under 15%. 

Spawning potential ratio estimates remained consistent between collection methods (Figure 

4). Using either data source, models without a minimum length limit indicated that 

recruitment overfishing would be achievable at an exploitation rate of 20% in both Fontenelle 

Reservoir and Flaming Gorge Reservoir.  

 

Discussion 

 The results of this research support our hypothesis that fishery-dependent data would 

produce different estimates of growth when compared to fishery-independent data. However, 

a clear pattern was not evident. Miranda et al. (1987) found that back-calculated lengths of 

angled Largemouth Bass were greater than those collected using cove rotenone and 

electrofishing. The authors also observed that growth rates converged as fish age increased, 

suggesting that angling selects for the fastest growing members of younger age classes. In our 

study, angled fish had larger back-calculated lengths at age than netted fish in Flaming Gorge 

Reservoir and the opposite pattern was observed in Fontenelle Reservoir. Contrary to our 

initial hypothesis, the disparity in mean back-calculated lengths between collection methods 
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was large enough to be statistically significant, but yield-per-recruit models resulted in minor 

differences in potential yield and SPR estimates between data sources in both reservoirs.  

 Like many collection methods, angling is size selective. Angling data can also be 

biased by differences in angling technique, gear type, and species. Miranda and Dorr (2000) 

found that angler exploitation was highest in intermediate length classes of crappie throughout 

five Mississippi reservoirs due to factors such as fish behavior and gear type. Schultz (2004) 

stated that exploitation rates of White Bass Morone chrysops were highest in large length-

classes in Kansas reservoirs. Similarly, Isermann et al. (2005) detected selective harvest of 

large Yellow Perch Perca flavescens by anglers in comparison to trap-net samples. Although 

length-frequency distributions differed significantly between collection methods in our study, 

proportional size distribution values were similar between collection methods. Similarities in 

proportional size distributions may be an artifact of the manner that the Burbot were collected. 

Many angling tournaments have size and total weight-based prize payouts (Wilde et al. 1998), 

and competitive anglers often target large numbers of smaller, scoring-size fish in order to 

maximize total weight instead of targeting larger, warier fish (Holbrook 1975). This 

phenomenon was documented by Gabelhouse and Willis (1986) where the size and number of 

Largemouth Bass caught and reported by tournament anglers relied on the angler’s intentions 

and values during that tournament. The authors found that non-tournament anglers caught size 

classes that were proportional to those sampled by electrofishing. However, tournament 

angler catch underestimated the proportional size distributions of small size classes and 

overestimated those of larger size classes. It is important to consider that anglers in our study 

were required by law to harvest all captured Burbot. Anglers were also required to present all 

captured fish to tournament officials as prizes were based on concurrent size and total catch 
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categories. Such regulations allowed for the collection of small and large size-classes and 

reduced likelihood of common bias-inducing angler practices (i.e., culling small fish). 

However, a potential source of bias remains as anglers generally target Burbot in spawning 

aggregations during tournaments and have a higher chance of catching large, mature fish. 

Given the similarity in age distributions between data types, this did not seem to be occurring. 

 Angler data present the opportunity to estimate other population vital statistics such as 

mortality rates that require reliable age-frequency data. Ebbers (1987) concluded that 

estimates of total annual mortality for Largemouth Bass in Minnesota were consistent 

between electrofishing data and tournament-angler-supplied data. The mortality rates in our 

study were not estimated from total angler catch due to either logistical limitations (e.g., too 

many fish were caught to process in a timely manner) or angler value limitations (e.g., 

unwillingness of anglers to donate fish). Therefore, we could not properly estimate age 

structure for the entire tournament catch. Despite this shortcoming, age-frequency 

distributions were similar between collection methods in each reservoir in our study. Due to 

the similarities in age frequencies, estimates of total annual mortality were nearly identical 

between angled and netted fish. In the future, collecting length data from the entire 

tournament catch, in addition to collecting otoliths, may provide better insight into the 

concordance of age structure and mortality estimates derived from angling and netting.  

 Angling tournaments provide a cost-effective option for monitoring fish populations 

as well as a removal tool that provides angler opportunity. Kansas’ black bass tournament 

monitoring program has been in place since 1977 and has successfully used angling-

tournament data to monitor Largemouth Bass populations and assess management actions 

(Willis and Hartmann 1986). Similar programs that use angling data as a monitoring tool have 
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existed in Texas (Dolman 1991), Nova Scotia (Macmillan et al. 2002), and Australia (Park 

2007). Successful use of angling data in prior research coupled with the results of this 

research are promising to fishery managers. Data collected from tournaments produced 

similar estimates of proportional size distribution, age structure, and total annual mortality to 

data collected using trammel nets. Estimates of growth varied between collection methods, 

but yield-per-recruit models fit using both data sources showed minimal difference in their 

model output. Thus, management decisions (e.g., exploitation targets) would not likely differ 

based on either data source. Collecting data from tournaments also required substantially less 

effort than standard survey methods. Trammel netting surveys required approximately one 

week of intensive netting in each reservoir during which a crew of over ten people using 

various boats and other equipment (e.g., nets) to collect data. Angling-data collection required 

one day of collection in Fontenelle Reservoir and two days of collection in Flaming Gorge 

Reservoir. At tournaments, data collection required minimal equipment and three people to 

process fish.  

We acknowledge that the small sample of tournaments from which we collected data 

may be a source of bias due to factors such as annual variations in fish abundance and (or) 

angler behavior. Despite this concern, we argue that the lack of research evaluating angler-

supplied data makes the results of our study extremely important to fishery managers. 

Additionally, the few studies that have compared data sources have focused on a single 

system; whereas, our study compares data from two dissimilar reservoirs. Given these 

caveats, occasional comparison with fishery-independent data seems prudent if angler-

supplied data are used to monitor populations in the future. Additionally, developing specific 
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benchmarks for acceptable differences between fishery-dependent and fishery-independent 

data will be important for fishery managers using angler-supplied data. 
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Table 2.1. Parameter estimates used in population simulations of Burbot collected by anglers and using trammel nets in Fontenelle 

Reservoir and Flaming Gorge Reservoir, Wyoming (2016 and 2017). 

        
  Collection method 

Variable Description Angled Netted Angled Netted 

  Fontenelle Reservoir Flaming Gorge Reservoir 

blw Slope of regression weight on length
a
 2.886 2.845 3.000 3.127 

alw Intercept of regression weight on length
a
 -4.968 -4.831 -5.270 -5.636 

bfec Slope of regression fecundity on length
a
 2.693 2.693 3.287 3.287 

afec Intercept of regression fecundity on length
a
 -1.760 -1.760 -3.405 -3.405 

L∞ Theoretical mean maximum length (mm) 1178 1591 2100 2096 

k Growth coefficient 0.091 0.066 0.042 0.036 

t0 Theoretical time when length is zero (years) -2.815 -1.818 -1.951 -2.771 

Agemax Maximum age of sampled fish (years) 11 12 10 11 

a 
Independent

 
and dependent variables were log10 transformed 
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Table 2.2. Mean back-calculated lengths at age for Burbot collected by angling (angled) and 

using trammel nets (netted) from Fontenelle Reservoir and Flaming Gorge Reservoir, 

Wyoming (2016 and 2017). Standard errors for estimates are included. 
              

   

Mean back-calculated length at age (mm) 

Age n (angled) n (netted) Angled SE Netted SE 

Fontenelle Reservoir 

1 2 2 251.5 10.2 200.1 12.7 

2 3 5 356.7 13.3 317.5 10.1 

3 47 55 393.3 3.8 408.2 3.9 

4 37 17 512.8 4.5 504.3 6.6 

5 13 18 570.8 6.7 568.5 8.9 

6 4 9 611.7 18.4 624.8 14.5 

7 14 15 659.6 9.3 682.2 10.3 

8 8 8 714.8 11.5 761.3 6.6 

9 6 5 770.9 13.8 802.1 7.5 

10 4 2 818.9 16.5 852.6 4.8 

11 1 2 880.5 0.0 878.9 2.1 

12 0 1 

  

911.6 0.0 

Flaming Gorge Reservoir 

1 15 0 189.9 3.0 

  2 28 18 282.3 4.7 289.5 8.7 

3 31 19 367.2 5.3 362.9 11.9 

4 41 24 448.7 4.6 427.3 12.4 

5 24 33 516.9 6.1 490.7 10.2 

6 23 24 585.6 6.1 553.6 10.6 

7 26 21 645.9 5.4 613.2 9.6 

8 13 10 695.8 7.5 665.2 13.7 

9 8 4 745.5 9.3 717.8 21.5 

10 5 1 803.9 0.0 786.6 40.5 

11 0 1     838.5 0.0 
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Figure 2.1. Map of the Green River basin including its major tributaries and associated 

reservoirs.  Burbot were sampled from Fontenelle Reservoir and Flaming Gorge Reservoir, 

Wyoming, during 2016 and 2017. 
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Figure 2.2. Length-frequency distributions of Burbot sampled by anglers (white bars) and 

trammel nets (black bars) in Fontenelle Reservoir and Flaming Gorge Reservoir, Wyoming 

(2016 and 2017). Proportional size-distributions are provided for stock (PSD), preferred 

(PSD-P), memorable (PSD-M), and trophy (PSD-T) size classifications.  

  



34 

 

  

Fontenelle Reservoir

0.0

0.1

0.2

0.3

0.4

Flaming Gorge Reservoir

Age (years)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

R
el

at
iv

e 
fr

eq
u
en

c
y

0.0

0.1

0.2

0.3

0.4

Aangled: 35.4 

Anet: 33.9 

Aangled: 29.3 

Anet: 30.5 

 

Figure 2.3. Age-frequency distributions of Burbot sampled by anglers (white bars) and 

trammel nets (black bars) in Fontenelle Reservoir and Flaming Gorge Reservoir, Wyoming 

(2016 and 2017). Variable A represents total annual mortality rate by collection method. 
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Figure 2.4. Yield-per-recruit models and spawning potential ratios using data collected by anglers and trammel nets. Models included 

data from: Burbot caught by anglers and assuming no minimum-length limit on harvest (dashed line), Burbot caught using trammel 

nets assuming no minimum-length limit on harvest (solid line). Panels A and B correspond to fish collected in Fontenelle Reservoir 

and panels C and D correspond to fish collected from Flaming Gorge Reservoir. Horizontal dashed lines represent the theoretical point 

where a fishery starts to experience recruitment overfishing.
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Chapter 3. Population Characteristics and Management of Lentic Populations of 

Nonnative Burbot in the Green River System, Wyoming 

 

Tucker A. Brauer, Michael C. Quist, Darren T. Rhea, Troy W. Laughlin, John D. Walrath 

 

Abstract 

Since their illegal introduction into the Green River, Wyoming, in the 1990s, Burbot 

Lota lota have been sampled in lotic and lentic environments throughout the Green River 

system. In response to this invasion, managers of the Green River have begun to explore the 

efficacy of a suppression effort targeting Burbot. Burbot for this study were collected from 

Fontenelle and Flaming Gorge reservoirs in October and November 2016. Growth rates of 

Burbot in the lentic portion of the system were higher than for fish in the Green River. Total 

annual mortality rates of Burbot were approximately 10% lower in reservoirs (33%) than for 

fish in the Green River. Additionally, reservoir-dwelling Burbot matured earlier than Burbot 

in riverine environments. An age-structured population model indicated that Burbot 

populations were growing rapidly (λ = 1.18) in the study reservoirs. Annual exploitation 

would need to increase to 33% or greater (A ≥ 57%) to effectively suppress Burbot in this 

system. Sensitivity analysis suggested that mortality of age-1 and age-2 Burbot had the 

greatest influence on population growth rate. Focusing removal effort on mature Burbot may 

be the best and most realistic option for suppressing Burbot populations in the Green River 

system. 
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Introduction 

Burbot Lota lota are the only freshwater representative of the cod family (i.e. 

Gadidae). They have a circumpolar distribution that rarely extends below 40° N latitude and 

occupy both lotic and lentic environments throughout their distribution (McPhail and 

Paragamian 2000). Burbot are a top predator and prey on a variety of fishes and invertebrates 

(e.g., crayfishes) throughout their life cycle (Hewson 1955; Paragamian 2009; Gardunio et al. 

2011; McBaine et al. in press). In addition, Burbot are also highly fecund and exhibit 

aggregate spawning behavior (McPhail and Paragamian 2000). The majority of Burbot 

populations throughout their distribution are stable; however, populations along the northern 

tier of the United States are experiencing decline (Stapanian et al. 2000). This decline is 

especially apparent in populations like those in the Kootenai River, Idaho, and throughout 

Wyoming (Ireland and Perry 2008; Krueger and Hubert 1997; Hubert et al. 2008). 

Management of declining populations is primarily focused on the conservation and 

enhancement of native populations (Paragamian 2000; Dillen et al. 2008; Ireland and Perry 

2008; Stapanian et al. 2010; Neufeld et al. 2011). In contrast, management focuses on control 

and suppression of invasive populations in systems where Burbot are invasive. Such contrary 

management objectives are present in Wyoming. 

Burbot are native to the Wind-Bighorn and Tongue river systems of Wyoming (Baxter 

and Stone 1995). Burbot have been extirpated from the Tongue River and are currently 

experiencing population decline in the Wind-Bighorn river system (Krueger and Hubert 1997; 

Hubert et al. 2008; Underwood et al. 2016). Their imperiled status in these systems has 

motivated their classification as a “species of greatest conservation need” throughout their 

native distribution in Wyoming (WGFD 2017). Conversely, Burbot were illegally introduced 
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to the Green River basin in the 1990s (Gardunio et al. 2011). Since their introduction, they 

have become established and are regularly sampled in lotic and lentic portions of the Green 

River (Gardunio et al. 2011; Smith et al. 2016; Klein et al. 2016). Burbot pose a threat to 

ecologically important native fishes (i. e., Bluehead Sucker Catostomous discobolus, 

Flannelmouth Sucker C. latipinnis, Roundtail Chub Gila robusta, Colorado River Cutthroat 

Trout Oncorhynchus clarki pleuriticus), as well as economically important sport fishes (e.g., 

Brown Trout Salmo trutta, Rainbow Trout Oncorhynchus mykiss, Smallmouth Bass 

Micropterus dolomieu, kokanee O. nerka) through direct predation and competitive 

interactions (Klobucar et al. 2016; McBaine et al. in press). Due to the possible deleterious 

effects of Burbot, the Wyoming Game and Fish Department (WGFD) has begun to explore 

the efficacy of a Burbot suppression program in the Green River basin.  

Suppression programs, though often effort-intensive and expensive, are feasible when 

supported by an in-depth understanding of the target species’ life history and ecology 

(Chornesky and Randall 2003; Simberloff 2003; Mueller 2005). For example, Lake Trout 

Salvelinus namaycush are slow growing and mature at old ages making them susceptible to 

overexploitation. Invasive populations of Lake Trout, such as those in Yellowstone Lake, 

Wyoming, and Lake Pend Oreille, Idaho, have been subject to removal efforts based on 

population models using demographic data that describe appropriate removal levels (Healey 

1978; Hansen et al. 2008; Syslo et al. 2011). Regardless of the species targeted for 

suppression, demographic rate data on that population are needed before a suppression 

program is initiated.  

Demographic data serve as the basis for fisheries management and can provide insight on 

recruitment dynamics, trophic interactions, and resource availability (Guy and Brown 2007; 
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Allen and Hightower 2010; Quist et al. 2012). Estimates of population dynamic rates (i.e., 

growth, recruitment, and mortality) are critical for developing population models, as well as 

for monitoring a population’s response to suppression efforts (Cambray 2003). For example, 

Klein et al. (2016) developed a population model that predicted the response of the Burbot 

population to various levels of exploitation in the Green River, Wyoming. This was achieved 

by collecting and analyzing demographic data from Burbot in the upper and lower portions of 

the Green River. Simulations indicated that high exploitation rates would be necessary to 

successfully suppress the Burbot population in riverine habitats. As beneficial as this research 

has been to managers, a significant knowledge gap remains regarding the efficacy of a 

suppression program in the system. Burbot occupy both lotic and lentic habitats in the Green 

River basin (i.e., Fontenelle Reservoir, Flaming Gorge Reservoir, and the Green River) and 

the population characteristics of Burbot in the reservoirs have not been described previously. 

Additionally, data from Burbot in reservoirs were unavailable and, therefore, not included in 

previous modeling efforts. Given that dynamic rates likely differ between lotic and lentic 

populations of Burbot (e.g., Fischer et al. 1996), any differences that exist between lotic and 

lentic Burbot populations may affect the application of the previously developed model. To 

assess the applicability of previous modeling efforts, demographic estimates from Burbot 

occupying lentic habitats in the Green River system are needed for comparison with estimates 

from Burbot in lotic habitats.  

The objectives of our study were to describe the population characteristics of Burbot 

in Fontenelle and Flaming Gorge reservoirs to provide benchmarks for future monitoring 

programs. We also estimated the appropriate exploitation goals to suppress the Burbot 

population in lentic portions of the Green River. Results of this study will further guide 
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Burbot management in the Green River basin and provide insight into the population ecology 

of Burbot outside of their native distribution. 

  

Methods 

The Green River originates in the Wind River Range of Wyoming and flows 

approximately 235 km southward before entering Fontenelle Reservoir. Fontenelle Reservoir 

is an artificial impoundment primarily used for flood control with a secondary use of 

hydroelectric power generation (Figure 1). At capacity, the reservoir has a surface area of 

approximately 3,200 ha and a maximum depth of 30 m. From Fontenelle Reservoir, the Green 

River continues to flow another 125 km before entering Flaming Gorge Reservoir and leaving 

the state at the Wyoming-Utah border. Flaming Gorge Reservoir is primarily located in 

Sweetwater County, Wyoming, with the southernmost portion of the reservoir located in 

Daggett County, Utah. As such, Flaming Gorge Reservoir fishery is managed by both the 

WGFD and the Utah Division of Wildlife Resources. Flaming Gorge Reservoir is primarily 

used for hydroelectric power generation. At capacity, the reservoir has a surface area of 

17,000 ha and a maximum depth of 133 m.  

Native species present in the system include Bluehead Sucker, Colorado River 

Cutthroat Trout, Flannelmouth Sucker, Mountain Whitefish Prosopium williamsoni, 

Roundtail Chub, Mottled Sculpin Cottus bairdii, and Speckled Dace Rhinichthys osculus. 

Common nonnative fishes include Brown Trout Salmo trutta, kokanee, Lake Trout, 

Smallmouth Bass, Rainbow Trout O. mykiss, White Sucker Catostomus commersonii, and 

Burbot (WGFD 2017).  



41 

 

  

Burbot were collected from Fontenelle Reservoir and Flaming Gorge reservoirs in 

October and November, 2016, using trammel nets. All nets were deployed in standardized 

sampling locations used by the WGFD. Trammel nets measured 48.8 m long and 1.8 m deep. 

Nets consisted of 25.4 cm bar outer mesh and 2.5 cm bar inner mesh. Nets were placed 

perpendicular to shore at varying depths and fished for approximately 12 hours. In an effort to 

increase sample size, Burbot were also collected from one fishing tournament on Fontenelle 

Reservoir in January 2017 and two tournaments on Flaming Gorge Reservoir in February 

2016 and 2017. Estimates of dynamic rates using tournament data were found to be 

concordant with those calculated using fishery-independent data (Brauer et al. 2018). 

 Captured Burbot were enumerated and measured for total length (mm) and weight (g). 

Sex and maturity status was determined by visual examination of gonads (Hewson 1955). 

Mature males possessed angular, engorged gonads whereas immature male gonads were 

similar in shape but much smaller in size. Mature females had engorged, rounded ovaries that 

were highly vascularized. Immature females possessed ovaries that were similar in shape but 

were much smaller and lacked vascularization. Sagittal otoliths were removed from up to ten 

Burbot per 10 mm length group and stored in 2 ml centrifuge tubes prior to age analysis. 

Ovaries were removed from up to five mature females per 50 mm length group and stored in 

5% formalin solution prior to fecundity estimation. Ovaries were only collected from fish 

captured using trammel nets. 

 Sagittal otoliths were mounted in epoxy and transversely sectioned about the nucleus 

(Koch and Quist 2007; Klein et al. 2014). Cross sections were examined with a dissecting 

microscope using transmitted light. Annuli were enumerated by one reader that possessed 
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previous experience ageing hard structures. The reader assigned ages to each otolith without 

prior knowledge of fish length or sampling location. 

Both ovaries from mature female Burbot were blotted dry and weighed to the nearest 0.001 g. 

One ovary was then randomly selected for fecundity analysis. Subsamples were removed 

from the posterior, medial, and anterior section of each selected ovary. These subsamples 

were weighed to the nearest 0.001 g and eggs were enumerated (Murua et al. 2003). The 

number of mature eggs in each subsample was then divided by the weight of that subsample 

to estimate the number of eggs per gram. The number of eggs per gram of each subsample 

was averaged and multiplied by total ovary weight to estimate the total number of eggs per 

ovary. Mean fecundity at age was calculated for age-2 and older female Burbot. Fecundities 

of missing age classes were estimated by fitting a linear regression model to the age-fecundity 

data and predicting fecundity for the missing age classes. 

Analysis was conducted using the fisheries stock assessment (FSA) package in R 

(Ogle 2016; R Core Development Team 2016). Length structure was summarized using 

proportional size distribution (PSD; Gabelhouse 1984; Fisher et al. 1996; Neumann et al. 

2012).  Growth was evaluated using a von Bertalanffy growth model (Quist et al. 2012; Ogle 

et al. 2017). A nonlinear function was fit to back-calculated length-at-age data of subsampled 

Burbot using the following equation: 

 

𝐿𝑡  =  𝐿∞ [1 – 𝑒–𝐾 (𝑡 – 𝑡0)] 

 

where Lt is length at time t, L∞ is the theoretical mean maximum length of Burbot in the 

population, K is the growth coefficient, t is age, and t0 is the theoretical age when length 
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equals 0 mm (Quist et al. 2012; Ogle et al. 2017). Mean back-calculated length at age was 

calculated for Burbot using the Dahl-Lea method (Campana 1990; Shoup and Michaletz 

2017).  

Instantaneous rate of mortality (Z) of age-3 and older Burbot was estimated using the 

Chapman-Robson estimator and the peak plus one criterion (Chapman and Robson 1960; 

Smith et al. 2012). No estimate of Z was available for age-0 Burbot in this system so an 

estimate from the literature was used (Paragamian and Laude 2011; Klein et al. 2016). 

Estimates of Z for age-1 and age-2 Burbot were also unavailable so an average of Z values for 

age-0 and age-3 fish was used as an estimate of age-2 mortality. An average of Z for age-0 

and age-2 Burbot was used as an estimate for age-1 mortality (Table 1). Similar methods were 

used by Klein et al. (2016).  Since an empirical estimate of instantaneous natural mortality 

(M) was unavailable, M was calculated using the Hoenig (1983) equation. Age-specific 

estimates of M were converted to annual survival rate (S) using the relationship S = e
-M

 

(Ricker 1975; Miranda and Bettoli 2007).   

A female-based Leslie matrix was employed to estimate population growth rate of 

Burbot in the reservoirs impounding the Green River (Caswell 2000; Morris and Doak 2002). 

Demographic rates were similar between the study reservoirs; therefore, data from both 

reservoirs were pooled to construct a single population model. Matrices were constructed as: 

𝐴 =[

𝐹𝑒𝑟𝑡1 … … 𝐹𝑒𝑟𝑡12

𝑆1 0 0 0
0 ⋱ 0 0
0 0 𝑆11 0

], 
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where Fert1 – Fert12 are fertility rates for age-0 through age-12 Burbot and S1 – S11 are the 

corresponding rates of age-specific annual survival at age-t. Fertility rates for each age t were 

calculated as: 

𝐹𝑒𝑟𝑡𝑡  =  (𝑓𝑡) (𝑚𝑡) (𝑝𝑓) (𝑆0), 

 

where ft is the mean fecundity at age t, mt is the probability of maturity for females at age t, pf 

is the proportion of offspring that are female (0.5), and S0 is the annual survival rate of age-0 

Burbot (Table 1).  

Population growth simulations accounted for uncertainty in the vital rates used to 

parameterize matrices. Fertility rates included in matrices were calculated from randomly 

generated vital rates in each simulation. The probability of maturity was generated from a beta 

distribution (i.e., values constrained between 0 and 1) using the mean and standard error (SE) 

calculated from the observed maturity rates. Age-specific fecundity in each simulation was 

generated from a lognormal distribution using the mean and SE of fecundity from the age-

fecundity relationship. Estimated survival rates and their SEs were incorporated into 

simulations by generating age-specific survival terms using a beta distribution (Caswell 2000; 

Morris and Doak 2002). 

Three hypothetical management scenarios were created to model Burbot population 

growth (λ). Under these scenarios, instantaneous fishing mortality (F) was allowed to vary 

from 0 – 1.5 in increments of 0.1, and F fully selected for either age-1 and older Burbot, age-2 

and older Burbot, or age-3 and older Burbot. Management scenarios were chosen to account 

for uncertainty in Burbot sampling efficiency for various age classes. Our model did not 

incorporate density-dependence due to a lack of information regarding density-dependent 



45 

 

  

relationships for Burbot. A starting population of 20,000 female individuals was used for 

modeling since no estimate of population size (N) was available. Abundance starting values 

for each age class were obtained by multiplying total abundance by the proportion of each age 

class in our sample. Scenarios were run through 1,000 iterations for each level of F using the 

“popbio” R package (Stubben and Milligan 2007; R Core Development Team 2014). 

Population growth rate (λt) was calculated each year over 10, 1-year-long time steps as λt = Nt 

/Nt-1 and the mean λt was calculated over all time steps. The geometric mean of λt (λG) along 

with its 95% confidence interval was then calculated to represent the average population 

growth rate over 10 years. The Burbot population was assumed to be experiencing 

recruitment overfishing when λG dropped below replacement (λG < 1; Haddon 2001). The 

level of F at which λG dropped below 1 was used to calculate the equivalent rate of 

exploitation. 

 A sensitivity analysis was conducted to evaluate age-classes that were most sensitive 

to age-specific mortality. A conventional simulation approach was used to calculate 

sensitivities (Cross and Beissinger 2001). Age-specific survival was reduced by 10% and 

population growth was simulated 1,000 times while holding all other vital rates constant. 

Sensitivity of age-specific survival was calculated as the percent reduction in λG between 

altered and unaltered matrices over a 10-year period that was averaged over 1,000 replicates. 

We assumed no fishing mortality when calculating sensitivities. 

 

Results 

 A total of 923 Burbot was collected from Fontenelle (n = 506) and Flaming Gorge 

reservoirs (n  = 417). Burbot were large and varied in length from 218 mm to 985 mm with a 
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mean length of 534 mm (Figure 2). Proportional size distribution for Burbot in Fontenelle 

Reservoir was 90 and 79 in Flaming Gorge Reservoir. Incremental PSD values were all higher 

in Fontenelle Reservoir.  

 Ages of Burbot in our sample varied from 1 to 12 years (Figure 2). Total annual 

mortality of Burbot in reservoirs was approximately 33% and estimated natural mortality was 

29%. Given these estimates, angler exploitation was approximately 4%. The von Bertalanffy 

growth model indicated that Burbot grow rapidly and can attain large sizes in the study 

reservoirs (Figure 3). Female Burbot attained larger lengths than male Burbot, but differences 

in sex-specific growth were minimal. 

 Female Burbot first began to mature at age 2 which corresponded to a mean length of 

300 mm. In our sample, 33% of age-2 female Burbot were mature. All female Burbot were 

mature at age 6 which corresponded to a mean length of 596 mm (Table 1). Fecundity for 

female Burbot increased with age (Figure 4). Mean fecundity for age-3 Burbot was 183,799 

(±SE; ±36,612) eggs and age-10 Burbot had a mean fecundity of 1,305,823 (±60,444) eggs 

(Table 1). 

 Over a 10-year period, λG for lentic Burbot in the Green River system was 1.23 

assuming no fishing mortality and 1.18 with the current estimate of exploitation (Figure 5). In 

the scenario where fishing mortality focused on age-1 and older Burbot, λG dropped below 

replacement when F ≥ 0.15. This corresponds to an annual exploitation rate (µ) of 7%. If 

fishing mortality selected for age-2 and older Burbot, λG would drop below replacement when 

F ≥ 0.25 (µ ≥14%). In the final scenario where age-3 and older Burbot were fully selected, the 

population would experience recruitment overfishing when F ≥ 0.49 (µ ≥ 33%). Population 

growth rate was most sensitive to mortality of age-1 and age-2 Burbot (Figure 6). However, 
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reductions in population growth when selecting for these ages were minimal. For example, a 

10% reduction in survival of age-1 Burbot resulted in a 4% reduction in λG  and a 10% 

reduction in survival of age-2 Burbot only resulted in a 3% reduction in λG over 10 years.  

   

Discussion 

Burbot are a top predator and have the potential to negatively influence important 

native and sport fish assemblages in the Green River system (Rudstam et al. 1995; Fratt et al. 

1997; Gardunio et al. 2011; Hares et al. 2015; McBaine et al. in press).  Klobucar et al. (2016) 

evaluated the trophic interactions of Burbot in Flaming Gorge Reservoir and found that 

Burbot have a relatively high level of diet overlap with Rainbow Trout (18 – 22%) and 

Smallmouth Bass (44%). In addition to potential competitive interactions, the authors 

suggested that Burbot could consume nearly double the biomass of Rainbow Trout annually 

stocked into the Flaming Gorge Reservoir (> 1 million individuals). Similarly, McBaine et al. 

(in press) found that fish composed an average of 75% of Burbot diet in the Green River. 

Given the potential of Burbot to negatively influence the Green River system, a suppression 

program may be warranted. Determining the efficacy of such a program depends on an in-

depth understanding of Burbot population dynamics. This study revealed marked differences 

in demographic rates between lentic and lotic portions of the Green River Burbot population. 

Burbot sampled in major reservoirs experienced low mortality rates, grew rapidly, and 

attained large sizes. Additionally, they matured at an early age and were highly fecund. In 

contrast, Burbot in lotic portions of the system had higher mortality rates, lower growth 

potential, and a slower maturity schedule than those in our study (Klein et al. 2016). Given the 
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observed demographic differences, it appears that the lentic portion of the Burbot population 

in the Green River basin is growing in abundance at a faster rate than its lotic counterpart.  

Estimates of Burbot mortality in our study were low in comparison to Burbot sampled 

from the Green River and Burbot populations in their native distribution. Burbot in our study 

had a total annual mortality of 33% with a small proportion attributed to fishing mortality. 

Klein et al. (2016) found that Burbot in the lotic portions of the Green River had higher 

mortality rates (A = 43%) than Burbot in our study. Due to low levels of exploitation in lotic 

environments of the Green River, the estimate of total annual mortality was also assumed to 

be the natural mortality level. Estimates of A in the lentic portions of the Green River were 

also lower than in other lentic populations throughout the species’ distribution. For example, 

annual mortalities varying from 43 - 63% have been reported for Burbot across various 

Wisconsin lakes, and from 54 - 64% in the lakes and reservoirs of the Wind River basin, 

Wyoming (Schram 2000; Hubert at al. 2008). The low estimates of mortality from our study 

are likely due to the relative lack of fishing effort present in this system. Though no empirical 

estimate of angler exploitation exists for Burbot in the Green River, our estimate of 

exploitation is low (4%) compared to other river systems in Wyoming (Krueger and Hubert 

1997). Reward-tag-return data collected at angling tournaments held on the study reservoirs 

suggests that our exploitation estimate may be slightly low for Flaming Gorge Reservoir, but 

not for Fontenelle Reservoir (WGFD; unpublished data). Despite the lack of a robust 

empirical estimate of exploitation, exploitation likely does not currently exceed 10% in either 

reservoir. Tagging studies to elucidate the current exploitation of Burbot in these reservoirs 

may be warranted. 
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 Burbot in reservoirs of the Green River displayed higher growth rates when compared 

to Burbot in the lotic portions of the system. Specifically, age-3 and age-6 Burbot in the 

Green River had mean lengths of 319 mm and 521 mm, whereas Burbot in the lentic portions 

of the Green River were 434 mm and 601 mm at the same ages. Growth in lentic portions of 

the Green River was comparable to growth of fish in other Burbot populations experiencing 

low exploitation. In Upper Red Rock Lake, Montana, age-3 Burbot had a mean length of 501 

mm and age-6 Burbot had a mean length of 682 mm (Katzman and Zale 2000). Von 

Bertalanffy models fit to our data also suggested that reservoir-dwelling Burbot had a higher 

mean maximum length (L∞ = 1,174 mm) than Burbot in the Green River (L∞ = 779 mm; Klein 

et al. 2016).   

 Maturity of Burbot is largely a function of length (Evenson 1990; Bernard et al. 1993; 

Hubert et al. 2008). The rapid growth rate of Burbot in our study resulted in an accelerated 

maturity schedule when compared to their lotic counterparts.  Klein et al. (2016) found that 

Burbot in the Green River first matured at age 3 and reached 100% maturity at age 8. In 

comparison, Burbot in our study first matured at age 2 and all Burbot were mature at age 6. 

Ages at maturity in our study were comparable to other lentic Burbot populations. In Lake 

Winnipeg, Canada, female Burbot began to mature at age 3 and reached 100% maturity at age 

7 (Hewson 1955). Burbot started to mature at age 2 and all age-5 Burbot were mature in Lake 

Superior (Bailey 1972).  

Given their comparably fast growth and large size-structure, reservoir populations of 

Burbot in the Green River system had relatively high reproductive potential. Throughout their 

distribution, Burbot fecundity rates are generally high with fecundities often exceeding 1 

million eggs per individual (Lawler 1963; Bailey 1972; Roach and Evenson 1993). Bailey 
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(1972) found that average fecundity of Burbot in Lake Superior was 812,300 eggs per female. 

Similarly, Lawler (1962) found that fecundities varied from 74,800 to 1,362,000 eggs and 

averaged 500,000 eggs per female in Heming Lake, Manitoba. Fecundity of Burbot in our 

study reservoirs was comparable to Burbot in the Green River and to populations of Burbot 

throughout their distribution. Fecundities of Burbot in the Green River were comparable and 

varied from 53,000 (250 mm) to 2,099,000 (682 mm) with an average of 621,000 eggs per 

individual (Klein et al. 2016).  Our study found that fecundities of Burbot varied from 71,000 

(368 mm) to 1,666,000 (852 mm) eggs and averaged 560,000 eggs per individual.  

 An age-structured population model indicated that population growth of Burbot in the 

study reservoirs was faster than for lotic populations. Early maturity, fast growth, and low 

mortality of reservoir-dwelling Burbot suggested that lentic populations of Burbot will 

continue to grow without some form of intervention. Our model suggested that Burbot 

populations in the study reservoirs increased at a rate of 23% annually in the absence of 

exploitation and 18% annually given the current estimate of exploitation. Previous research in 

the system suggests that the lotic population of Burbot will grow at a rate of 11% annually 

under similar conditions (Klein et al. 2016). One limitation of our study is the reliance of our 

models on assumptions of juvenile survival and spawning frequency. Our model used an 

empirical estimate of juvenile Burbot survival based on a study where Burbot were reared in 

earthen ponds and subjected to predation (Paragamian and Laude 2011). However, a lack of 

refuge habitat available to Burbot in the Paragamian and Laude (2011) study may have left 

juvenile Burbot overly exposed to predation. Despite this shortcoming, this estimate was also 

used to model age-0 Burbot survival by Klein et al. (2016), and is believed to be the best 

available representation of juvenile Burbot mortality in the Green River system. If juvenile 
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survival in the Green River is higher than the estimate used in our model, our estimate of 

population growth rate is an underestimate. We also assumed that Burbot in the reservoirs of 

the Green River spawned annually. Burbot have been observed to skip spawning with 

spawning frequencies of 60 – 95% (Evenson 1990; Pullianen and Korhonen 1993). In Burbot 

populations with low juvenile survival, spawning frequency has been identified as a major 

driver in the viability of the population (Paragamian et al. 2000; Worthington et al. 2011). 

This suggests that any deviation from the “worst case scenario” of 100% spawning frequency 

would likely result in a slower population growth rate for Burbot in the study reservoirs. 

Furthermore, our models did not consider movement dynamics of Burbot. Preliminary results 

of a separate study evaluating movement suggests that a portion of the Green River Burbot 

population exhibits an adfluvial life history (Brauer et al. In prep). Movement of Burbot 

between lotic and lentic habitats may affect the estimates of our model since a portion of the 

reservoir population of Burbot is not reproducing in a reservoir.  If Burbot from the study 

reservoirs are spawning in the Green River, our model results may be an overestimate of 

population growth. Additionally, model estimates from Klein et al. (2016) may be an 

underestimate if the spawning activity of adfluvial fish was not accounted for while modeling 

population growth. 

Relatively low angling effort could suppress Burbot in our study reservoirs if young 

age classes are effectively removed. Unfortunately, trammel nets and anglers were only 

effective at capturing age-3 and older Burbot (Brauer et al. 2018). Trammel nets have been 

shown to be the most effective means of sampling Burbot in lentic environments throughout 

Wyoming during the spring and fall seasons (WGFD, unpublished information). However, 

trammel nets require extended handling time and may not be the most cost-effective method. 
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Recreational anglers can also act as an effective removal mechanism. Excessive angler 

exploitation is implicated for the declining population status of native Burbot populations 

elsewhere in Wyoming (Hubert et al. 2008). Additionally, Burbot tournaments held on the 

reservoirs of the Green River have resulted in the removal of ~40,000 Burbot from the system 

since 2010 (Brauer et al. 2018).  Unfortunately, angling for Burbot in Wyoming is almost 

exclusively conducted during the winter when reservoirs are covered with ice. Other gears, 

such as gill nets, have been used to capture Burbot. Hewson (1955) reported that catch rates 

of Burbot using gill nets were high enough that commercial harvesters considered them a 

nuisance. However, gill nets may result in substantial bycatch (Murphy et al. 1995; Buchanan 

et al. 2002). The shortcomings associated with these methods may make a combination of 

methods the most appropriate approach for suppression efforts. Additionally, the scenario 

where age-3 and older Burbot were selected for removal is likely the most realistic scenario 

for our study system. Under this scenario, exploitation would need to exceed 33% (A ≥ 57%) 

annually to effectively suppress Burbot in the study reservoirs. In comparison, Klein et al. 

(2016) suggested that exploitation of age-3 and older Burbot would need to reach levels of 

14% or higher (A ≥ 60%) to suppress Burbot in the lotic portions of the system. Given the 

difference between population demographics and model outputs, using the higher exploitation 

estimate (33%) as a suppression target in both lotic and lentic portions of the system may be 

warranted. Although this level of exploitation will likely require substantial effort (Quist and 

Hubert 2004; Britton et al. 2011), similar programs have been successful for other invasive 

species elsewhere in the United States. In Lake Pend Oreille, Idaho, a combination of gill 

netting, trap netting, and angling has resulted in nonnative Lake Trout exploitation rates over 

44% which exceeded the mortality required to suppress that population (Hansen et al. 2008). 
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Although these efforts have been relatively successful, they come with a large financial 

burden. For example, the Lake Trout removal program on Lake Pend Oreille has incurred 

costs of over US$400,000 annually since its initiation (Martinez et al. 2009).  

  Burbot populations in our study exhibited demographic rates similar to other lentic 

populations of Burbot throughout their distribution. However, Burbot in our study grew 

faster, matured earlier, and had lower mortality than Burbot in the lotic portions of the Green 

River system. Burbot populations in reservoirs of the Green River are growing rapidly and 

control of Burbot in the Green River system will likely be an arduous process. Exploitation 

will need to reach high levels and will require considerable effort by management agencies.  

However, given the proper impetus and application of effort, the suppression of Burbot in this 

system is likely a tenable goal.  
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Table 3.1. Mean vital rates and standard errors (SE) estimated from Burbot sampled from  

Fontenelle and Flaming Gorge reservoirs, Wyoming during the autumn and winter (2016-

2017). Vital rate estimates and SEs were used to construct population matrices and model 

population growth.                              

Symbol Description Age Estimate SE 

ft Total fecundity 2 23,510 46,384 

  3 183,799 36,612 

  4 344,088 28,544 

  5 504,377 23,968 

  6 664,666 24,890 

  7 824,955 30,821 

  8 985,244 39,570 

  9 1,145,534 49,668 

  10 1,305,823 60,444 

  11 1,466,112 71,592 

  12 1,626,400 104,627 

     

mt Probability of maturity (females) 2 0.330 0.086 

  3 0.790 0.049 

  4 0.820 0.032 

  5 0.960 0.027 

  6 1 - 

  7 1 - 

  8 1 - 

  9 1 - 

  10 1 - 

  11 1 - 

  12 1 - 

     

pf Proportion female 2-12 0.500 - 

     

S0 Survival at age 0 0.002 0.0004 

S1  1 0.177 0.039 

S2  2 0.353 0.079 

  S3-12  3-12 0.705 0.0092 
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Figure 3.1. Map of the Green River basin including its major tributaries and associated 

reservoirs.  Burbot were sampled from Fontenelle Reservoir and Flaming Gorge Reservoir, 

Wyoming, during autumn and winter (2016 - 2017). 
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Figure 3.2. Length and age distributions of Burbot sampled in Fontenelle (FR; black bars) and 

Flaming Gorge (FGR; white bars) reservoirs, Wyoming in autumn and winter (2016-2017). 

Proportional size-distributions are provided for stock (PSD), preferred (PSD-P), memorable 

(PSD-M), and trophy (PSD-T) size classifications. Total annual mortality (A) estimates are 

also provided. 
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Figure 3.3. Back-calculated length-at-age and von Bertalanffy growth model for female 

Burbot (dot-dashed line), male Burbot (dashed line), and both sexes combined (solid line). 

Fish were sampled in Fontenelle and Flaming Gorge reservoirs, Wyoming during autumn and 

winter (2016-2017).  
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Figure 3.4. Fecundity-length relationship for Burbot sampled in Fontenelle and Flaming 

Gorge reservoirs, Wyoming during autumn (2016). The solid line and equation represents the 

fitted regression model. The r
2
-value is provided as an estimate of model fit. 
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Figure 3.5. Population growth rate (λG) over a 10-year time period for Burbot sampled from 

Fontenelle and Flaming Gorge reservoirs during the autumn and winter (2016-2017). 

Population growth was calculated assuming fishing pressure fully selected for age-1 and older 

Burbot, age-2 and older Burbot, and age-3 and older Burbot. Dotted lines represent 95% 

confidence intervals for estimates of λG. The horizontal dashed line represents λG = 1 

(replacement). 
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Figure 3.6. Percent reduction in population growth rate (λG) given 10% reductions in age-

specific survival of Burbot in Fontenelle and Flaming Gorge reservoirs, Wyoming sampled 

during autumn and winter (2016-2017). 
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Chapter 4. Movement Dynamics of Nonnative Burbot in the Upper Green River System 

and Implications for Management  

 

 

Tucker A. Brauer, Michael C. Quist, Darren T. Rhea, Troy W. Laughlin 

 

Abstract  

Burbot Lota lota were illegally introduced to the Green River, Wyoming, in the mid-1990s 

and pose a threat to recreational fisheries and native fish conservation. Although much is 

known about Burbot population dynamics, little is known about their movement patterns in 

the Green River system. Our objectives were to describe the movement dynamics of Burbot in 

the upper Green River system to provide information on the ecology of Burbot and insight on 

possible management actions. In total, 875 Burbot were tagged with passive integrated 

transponder (PIT) tags in the upper Green River within 57 km of Fontenelle Reservoir and 

throughout Fontenelle Reservoir.  Movements of tagged fish between reservoir and river 

habitats were tracked using a stationary PIT antenna located near the mouth of the upper 

Green River from August 2016 - March 2018. Additionally, 22 Burbot were tagged with 

radio-transmitters in Fontenelle Reservoir in November 2017. Of these fish, 11 Burbot were 

tracked as they migrated into the Green River and associated tributaries during the spawning 

season. Upstream and downstream movements of Burbot tagged with PIT tags in Fontenelle 

Reservoir and the upper Green River peaked during December - January and were 

synchronized with river temperatures reaching 0°C. Of the total number of Burbot PIT 

tagged, 13% tagged in Fontenelle Reservoir were detected in the Green River during the 

spawning season and 19% of Burbot tagged in the Green River were detected moving 

downstream towards Fontenelle Reservoir during the spawning period. Movements of radio-
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telemetered Burbot were synchronized with river ice-up in mid-December. Maximum 

upstream distance travelled by adfluvial Burbot was 5.8 km and the majority of fish migrated 

less than 3 km upstream before returning to the reservoir. Relocation data suggest that Burbot 

do not move long distances and areas within 3 km of Fontenelle Reservoir are important for 

spawning. Results of this study assist with the management of Burbot in this system by 

identifying areas and timing of high Burbot use that can be targeted for suppression programs. 

Results also contribute to our understanding of variability in Burbot ecology beyond their 

native distribution. 

 

Introduction 

Freshwater fishes exhibit a diversity of movement behaviors and life history strategies 

(Mann et al. 1984). These life history strategies are often of interest to fishery managers due 

to the influences that individual movement behaviors may have on population status (Pine et 

al. 2012). Freshwater fish generally employ one of four life history strategies including 

resident (i.e., river dwelling and spawning), fluvial (i.e., river dwelling, tributary spawning), 

adfluvial (i.e., lake dwelling, river or stream spawning), and anadromous variants (i.e., ocean 

dwelling, river spawning). A fish population can have multiple life history variants occurring 

simultaneously. Each life history variant group in a population can be affected by different 

factors and managers must understand the population’s structure to ensure effective 

management (Jonsson 1985; Trotter 1989; McPhail and Baxter 1996; Peterson et al. 2007). 

Inability to assess behavioral and life history differences in fish populations can result in the 

overexploitation (Ying et al. 2011) and (or) the misallocation of resources (e.g., rehabilitation 

of unimportant habitats; Binns 2004; Pegg and Chick 2010). For example, adfluvial Bull 
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Trout Salvelinus confluentus in Lower Kanaskis Lake, Alberta, were subject to high 

exploitation rates during their spawning season as they became more vulnerable to angling in 

the shallow tributaries compared to the deep-water habitat they used during the non-spawning 

season. By closing the fishery in tributary streams, the population experienced a 28-fold 

increase in abundance over a 10-year period (Johnston et al. 2007). Similarly, a review by 

Cunjak (1995) suggested that increases in salmonid production brought on by summer habitat 

improvement projects were frequently nullified by a rivers overwinter habitat carrying 

capacity and subsequent movements of fish out of rehabilitated reaches. 

In addition to managing socially important fishes, assessments of population structure 

and movement dynamics are also crucial when designing removal programs that target 

undesirable species, especially when that species is known to exhibit multiple life history 

strategies. Understanding movement dynamics and population structure of undesirable species 

can often make removal efforts more effective. For example, Lake Trout Salvelinus 

namaycush inhabit deep lakes throughout a majority of the year and are less susceptible to 

most sampling gears; however, they often congregate in shallow waters to spawn and are 

vulnerable to removal efforts at that time (Gunn 1995). Numerous nonnative Lake Trout 

populations throughout the western United States have been targeted for removal by focusing 

suppression efforts on spawning congregations (Syslo et al. 2011). Similar methods have been 

used to suppress Common Carp Cyprinus carpio in the midwestern United States. Bajer et al. 

(2011) achieved 52-94% removal from four midwestern reservoirs by targeting winter-time 

aggregations of Common Carp using commercial seines. Effective suppression programs such 

as these provide a model for fishery managers that are addressing the effects of nonnative 

species in their own jurisdictions. The situation surrounding nonnative Burbot in the Green 
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River basin (GRB), Wyoming, is one such example where an understanding of movement 

dynamics and populations structure is critical for developing effective management strategies. 

Burbot are native to northern Wyoming in the Wind-Big Horn and Tongue river basins 

(Baxter and Stone 1995). Like many native populations of Burbot in the United States, Burbot 

populations in Wyoming have declined. They have been extirpated from the Tongue River 

system and occur at low densities in the Wind-Big Horn River drainage which has prompted 

their designation as a “species of greatest conservation need” in Wyoming (Krueger and 

Hubert 1997; Hubert et al 2008; Underwood et al. 2016; WGFD 2017). In these systems, 

management is focused on conservation and protection of native Burbot populations. Burbot 

are also present in the GRB due to unauthorized introductions in the 1990s where they illicit a 

very different management response given their invasive nature (Gardunio et al. 2011). Given 

the potential of Burbot to negatively affect socially and ecologically important fishes in the 

Green River system through predation and competitive interactions (i.e., Flannelmouth Sucker 

Catostomus latipinnis, Bluehead Sucker Catostomus discobolus, and Roundtail Chub Gila 

robusta), the Wyoming Game and Fish Department (WGFD) has expressed interest in a 

suppression program to target Burbot throughout the Green River system (Klein et al. 2015a; 

2015b; 2016; Klobucar et al. 2016; Brauer at al. 2018; McBaine et al. 2018). However, before 

a suppression effort can be implemented, an in-depth understanding of the movement 

dynamics and population structure of Burbot must be attained to effectively allocate 

suppression efforts. 

Burbot is a holarctically distributed top predator that occurs throughout a diversity of 

lotic and lentic habitats (McPhail and Paragamian 2000). Similar to gadiforms in marine 

environments (e.g., Atlantic Cod Gadus morhua), Burbot have exhibited both resident and 
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migratory behavior (Cote et al. 2004). In some lotic systems, fluvial Burbot migrate long 

distances to spawning sites, sometimes travelling over 100 km (Evenson 1993). Some 

lacustrine populations of Burbot have demonstrated an adfluvial life history where they 

occupy a lake and use tributary streams for spawning (Paragamian 2000; Schram 2000). 

Burbot spawn in aggregate during the winter season (McPhail and Paragamian 2000) and 

these aggregations represent a potential target for suppression efforts as targeting these sites 

will likely increase the efficiency of removal efforts. However, the locations of spawning 

areas and the timing of fish movements to these areas in the GRB are unknown. Since 2001, 

Burbot have been consistently sampled in both the Green River and its associated reservoirs 

(i.e., Fontenelle Reservoir, Flaming Gorge Reservoir; Gardunio et al. 2011; Klein et al. 2016). 

Anecdotal evidence suggests that proportions of Burbot in the upper Green River system 

exhibit both adfluvial and resident movement behaviors (Klein et al. 2015b). Movements of 

Burbot between reservoir and river environments may influence the effectiveness of removal 

efforts by informing previously developed population models that did not account for 

movement.  Movement may influence Burbot population dynamics in the GRB due to the 

addition and(or) subtraction of individuals from reservoir and river environments.  If Burbot 

in the upper Green River system exhibit migratory behavior, understanding the timing of 

movements, as well as the location of high-use areas of river (i.e., spawning locations), will 

aid in the management of Burbot populations in the system. The objective of this study was to 

describe the timing and patterns of Burbot movement in the upper Green River system. 

Additionally, we sought to identify areas of high use by Burbot that may serve as targets for 

suppression efforts. Overall, this study meant to provide data to aid in management and 

provide information on the ecology of nonnative Burbot. 
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Methods 

Study area 

The Green River is the largest tributary to the Colorado River, draining portions of 

Colorado, Utah, and Wyoming. This study took place in the upper portion of the Green River 

system from Fontenelle Dam to the headwater region of the Green River. The upper Green 

River originates in the Wind River Range of western Wyoming and flows approximately 235 

km before entering Fontenelle Reservoir (Figure 1). Fontenelle Reservoir is an artificial 

impoundment primarily used for flood control with a secondary use of hydroelectric power 

generation. At capacity, the reservoir has a surface area of approximately 3,200 ha and a 

maximum depth of about 30 m. Upstream of Fontenelle Reservoir, the Green River is 

characterized by high-gradient runs interspersed with pool-riffle habitat and substrate 

dominated by alluvial deposits (i.e., cobble, gravel, sand, and silt; Kurtz 1980). Most of the 

GRB is typical of a high desert climate with monthly average temperatures of -9°C (January) 

and 17°C (July), and low annual precipitation (25.4 cm; WGFD 2017). During the winter 

season, the majority of the upper Green River and Fontenelle Reservoir is covered with ice. 

Ice-up generally occurs in late-November to early-December and ice-out typically occurs in 

March along with low-elevation runoff. 

 

Data collection 

 A dual application of passive integrated transponder (PIT) and radio-telemetry 

technology was used to describe Burbot movements in this system. Passive integrated 

transponder tags were intended to describe coarse-scale movement patterns of Burbot tagged 
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in the Green River and Fontenelle Reservoir. Radio telemetry was used to describe fine-scale 

movement patterns of adfluvial Burbot in Fontenelle Reservoir. We were primarily interested 

in identifying areas of high Burbot use and the extent and timing of migrations undertaken by 

adfluvial Burbot. 

 

Passive integrated transponder (PIT) evaluation 

In July 2016, two identical flat-panel half-duplex (HDX) passive integrated 

transponder antennae were installed in the Green River 7 km upstream of Fontenelle 

Reservoir (Figure 1) and was active from July – March, 2016 – 2018. The site was chosen due 

to its proximity to Fontenelle Reservoir, comparatively narrow channel, accessibility, and 

cooperation by landowners. Each antenna covered one half the river channel (~50 m each). 

Antennae were a pass-over design that minimized potential damage from high-velocities. 

Antenna efficiency was measured using a large-scale detection test modified from Compton et 

al. (2008). Briefly, a PIT tag was passed over the antenna at 1 m intervals at substrate, mid-

column, and surface depths. The tag was held parallel and perpendicular to the antenna at 

each location. Combined detection efficiency for the array was 86% under base flow 

conditions and effective read range was approximately 30 cm. The system did not 

differentiate between upstream and downstream movements. Initial movement direction was 

inferred by release location of tagged fish. Movement direction of individual Burbot 

following the initial detection was estimated based on the direction of the previous movement 

direction. Antennae recorded movements of Burbot for the project duration except for periods 

of high flow (spring-summer season) when they were removed to avoid damage to PIT 

electronics. 
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 Burbot were tagged with PIT tags in the upper Green River in the summer of 2016 and 

2017, and in Fontenelle Reservoir during the fall of 2016 and 2017. Fish in the upper Green 

River were collected using drift-boat-mounted electrofishing gear in the section of river 

beginning at the PIT antenna array to a point 50 km upstream of the array. Power output was 

standardized to 2,750-3,250 W (Miranda 2009) and sampling took place after sunset to 

maximize catch rates (Witt and Campbell 1959; Paragamian 1989; Klein et al. 2015a). Fish in 

Fontenelle Reservoir were collected using trammel nets. Trammel nets were 48.8 m long and 

1.8 m tall and consisted of 25.4-cm bar outer mesh and 2.5-cm bar inner mesh. Nets were set 

perpendicular to shore at varying depths (<20 m) and anchored at both ends. Net locations 

were placed in standardized locations used by WGFD during annual Burbot surveys, or near 

those locations when additional netting effort was required. 

 All captured Burbot were enumerated, measured for total length (mm) and weight (g), 

and implanted with a 23-mm half-duplex PIT tag (Oregon RFID, Portland, Oregon). Tags 

were injected into the peritoneal cavity just off the midline, posterior to the pectoral fin using 

a syringe applicator due to the high retention rate (>95%; Ashton et al. 2014). The tag 

identification number was recorded to identify individual fish. A sample of fish tagged in 

Fontenelle Reservoir (n = 50) were placed in a net pen submerged to a depth of 10 m to 

evaluate short-term mortality due to tagging and handling. After a period of 24 hours, the net 

pen was brought to the surface so mortality and tag retention could be evaluated. Short-term 

survival was 98% and short-term tag retention was 100%. We were unable to evaluate short-

term mortality and tag retention for fish tagged in the Green River due to the logistics of 

holding fish for a long period of time. Tagged fish were released as close as possible to 
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capture locations and all release locations were georeferenced using a global positioning 

system (GPS) unit.  

 

Radio telemetry  

We sought to identify the movement dynamics of adfluvial fish; therefore, we 

allocated radio tags to Burbot in Fontenelle Reservoir. Burbot in Fontenelle Reservoir were 

collected using trammel nets in late-November 2017. Adfluvial Burbot are known to stage 

near river mouths prior to migrating upstream for spawning (McPhail and Paragamian 2000). 

For that reason, trammel netting focused on the upstream portion of the reservoir to improve 

the probability that a tagged fish was adfluvial. Only large Burbot (>550 mm) were chosen for 

radio-transmitter implantation to increase the probability that tagged Burbot were mature 

(Klein et al. 2016). Additionally, Burbot in the upper Green River were collected for radio 

transmitter implantation in August 2017. Riverine Burbot were collected by methods like 

those used to collect fish for PIT tag implantation. 

Burbot selected for transmitter implantation were anesthetized using MS-222 (100 

mg/L, Agent Chemical Laboratories, Inc., Washington) before total length (mm) and weight 

(g) were recorded. Fish were placed in a supine position and individually-coded MCFT2-3EM 

radio transmitters (Lotek Wireless, Newmarket, Ontario) were implanted into a 1-2 cm 

incision in the peritoneal cavity (Jakober et al. 1998). Transmitters were programmed to 

150.570 MHz with a 5.0 s burst interval. Minimum battery life for transmitters was 250 days. 

Antennae exited the body wall using a shielded-needle technique (Ross and Kleiner 1982). 

Incisions were closed with 2-3 interrupted sutures. Tag weight (10 g) was less than 3% of 

total fish weight (Zale et al. 2005), and surgeries were kept under 10 min in duration to 
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minimize stress on the fish. Prior to release, fish were allowed to recover in aerated live wells 

until they regained equilibrium and responded to touch stimulus (>20 minutes). Fish were 

released as close as possible to their original capture location. 

Radio-tagged Burbot were tracked on foot and using fixed-wing aircraft from October 

2017 to February 28
th

, 2018. Based on PIT tag movement data from 2016, this period likely 

coincided with the Burbot spawning season. Mobile tracking equipment consisted of a 

portable three-element Yagi antenna in conjunction with a SRX 800 receiver modified for 

portability (Lotek Wireless, Newmarket, Ontario). Antennae error was measured using similar 

methods to those described by Simpkins and Hubert (1998). Tags were placed underwater and 

tracked by an observer possessing no knowledge of tag location at various distances from the 

tag. Error was measured as the distance between a tag’s true location and its estimated 

location. Location error was 1.1 m (SE = 0.2 m) at 10 m to the radio transmitter and decreased 

to 0.6 m (± 0.1 m) at 5.0 m. Foot-based tracking was conducted multiple times weekly and 

commenced at the uppermost section of the study area in a downstream direction. Foot-based 

tracking was conducted in the section of river within 57 km of the mouth of the upper Green 

River.  Aircraft-based methods tracked fish throughout Fontenelle Reservoir and the entire 

upper Green River on a monthly basis. Aircraft-based telemetry accuracy was assessed by 

comparison with known-location radio-transmitters. Aircraft relocations were less accurate 

than foot-based relocations and error averaged 68 m (± 43 m). Once a fish was relocated, its 

location in the river channel was recorded and georeferenced using a GPS unit. Temperature 

data for the Green River were collected using a U.S. Geological Survey monitoring station 

located 200 m upstream of the PIT antennae array. 
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Data analysis 

The initial release locations of fish tagged with PIT tags were uploaded into ArcMap 

V. 10 (Environmental Systems Research Institute, Redlands, California) for analysis. Fish 

movement was expressed as the total distance between initial release location and each 

relocation at the PIT antenna (Muhlfeld and Marotz 2011; Dobos et al. 2016). Distances and 

timing of movements were summarized by tagging location (i.e., river or reservoir).  

Movement of Burbot tagged with radio transmitters was summarized based on the extent of 

movement and daily movement rate. Extent of movement was defined as the difference 

between the initial release location and the farthest upstream or downstream relocation of a 

fish throughout the study period (Langhurst and Schoenike 1990). Daily movement rate was 

calculated as the total distance moved divided by the number of days between subsequent 

relocations (Dobos et al. 2016). Upstream movement was expressed as a positive value and 

downstream movements were expressed as negative values. Movements were summarized for 

Burbot during the spawning period. Pre-spawn and spawning periods were defined based on 

observed movement patterns in the study system and considered to occur during the period 

between river ice-up to the onset of low-elevation runoff (December-March). We estimated 

that a fish had returned to its pre-spawn location once an adfluvial fish had moved from the 

river to the reservoir. 

 A kernel density estimator was used to examine the proportional use of the upper 

Green River by radio-tagged Burbot during the spawning season (Vokoun 2003). Histograms 

of relocations along the upper Green River were used to obtain the density estimate. Areas 

with a high probability of use by Burbot were illustrated by peaks in the utilization 
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distribution and indicate potential spawning locations of adfluvial Burbot. The univariate 

kernel density estimator was defined as 

𝑓(𝑥) =
1

𝑛ℎ
∑ 𝐾 (

𝑥 − 𝑋𝑖

ℎ
)

𝑛

𝑖=1

 

where h was the bandwidth and K(x) was the Gaussian kernel function (Vokoun 2003; 

Vokoun and Rabeni 2005). The appropriate bandwidth was selected using a Sheather-Jones 

plug-in method (Jones et al. 1996). Kernel estimates were calculated for the entirety of the 

Burbot spawning season in 2017.  

 

Results 

 Eight hundred and seventy five Burbot were implanted with PIT tags. Of these, 421 

were tagged in the Green River (n2016  = 280, n2017  = 141) and 454 were tagged in Fontenelle 

Reservoir (n2016  = 237, n2017  = 217). Fish tagged in the Green River varied in length from 200 

to 633 mm (mean ± SD; 377 ± 90 mm) and fish tagged in Fontenelle Reservoir varied in 

length from 282 to 985 mm (535 ± 146 mm; Figure 2). Of the fish tagged in the upper Green 

River, 81 (19%) were detected moving downstream toward Fontenelle Reservoir during the 

spawning period (n2016 = 37, n2017 = 44). Relocated river-tagged fish varied in length from 230 

to 618 mm (382 ± 71 mm; Figure 2). In total, 59 (13%) of the Burbot tagged in Fontenelle 

Reservoir were relocated at the PIT antenna (n2016 = 37, n2017 = 22). Relocated reservoir-

tagged Burbot varied in length from 414 to 850 mm (617 ± 114 mm). Lengths of reservoir-

tagged Burbot relocated in the Green River were skewed toward larger length classes 

compared to the length distribution of all tagged fish.    

 Movements of Burbot PIT tagged in the Green River corresponded with water 

temperatures reaching 0°C (Figure 3). Initial relocations of river-tagged fish began in late 
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November and relocations peaked in early to mid-December. Of the relocated river-tagged 

fish, 54% were subsequently relocated. We made the assumption that these fish were moving 

back upstream. Mean time spent downstream of the antenna was 30 days (SE = 21 d). 

Relocations of Burbot tagged in Fontenelle Reservoir moving upstream were highly 

synchronized. Relocations primarily occurred during the last two weeks of December in both 

2016 and 2017. Like Burbot tagged in the river, movements of fish tagged in the reservoir 

primarily occurred once water temperatures reached 0°C. Mean time spent upstream of the 

PIT antenna for reservoir-tagged Burbot was 21 days (SE = 14 d). 

Approximately 31% of the Burbot tagged within 12 km upstream of the antenna were 

relocated moving downstream (Figure 4). Relocated fish that were tagged in this section of 

river accounted for 79% of the total number of initial relocations for river-tagged fish. Of the 

total initial relocations of river-tagged fish, 96% were released within 24 km of the PIT array. 

The maximum distance travelled downstream by a relocated PIT-tagged Burbot was 35 km.  

 In total, 40 radio transmitters were implanted in Burbot. Eighteen transmitters were 

implanted in Burbot from the upper Green River in August 2017 and 22 Burbot were 

implanted with radio transmitters in Fontenelle Reservoir in November 2017. Total length of 

radio-tagged fish in the Green River varied from 430-711 mm (mean ± SD; 509 ± 71 mm). 

Total length of radio-tagged fish in Fontenelle Reservoir varied from 560-905 mm (713 ± 100 

mm). No relocations were made for river-tagged fish due to high tag-failure rates (>60%) and 

mortality. Of 22 tagged fish in Fontenelle Reservoir, 10 were relocated in the Green River and 

one was relocated in the mouth of Fontenelle Creek, a tributary to Fontenelle Reservoir. The 

remaining 11 fish were not relocated due to attenuation caused by the depth of the reservoir or 

transmitter malfunction. In total, 191 relocations were made on radio-tagged Burbot (Figure 
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5). Similar to movement of PIT-tagged fish, radio-tagged Burbot movement into the Green 

River was synchronized. All fish entered the Green River from December 10 - 16 after river 

temperature dropped to 0°C. Once in the Green River, movement patterns were variable 

among individual Burbot. Maximum upstream distance travelled by a fish from its release site 

in Fontenelle Reservoir was 13.2 km (Figure 5). However, maximum upstream distance 

travelled from the mouth of the river was only 5.8 km. Mean daily movement rates for Burbot 

varied from -30 to 142 m/day (67 ± 59 m/day). Upstream movements generally occurred over 

a short time period and fish remained sedentary upon reaching suspected spawning areas. 

Kernel density estimates suggested a high probability of Burbot use between river kilometers 

19-21 during the spawning season (Figure 6).  Habitat used by Burbot within 3 km of 

Fontenelle Reservoir was characterized by low-velocity runs and pools with coarse substrate 

and close proximity to alluvium-bluff banks. Habitats used by adfluvial Burbot upstream of 3 

km were primarily low-velocity runs. 

 

Discussion 

 Burbot movement dynamics have been studied throughout their distribution (Evenson 

1993; Carl 1995; Arndt and Hutchinson 2000; Schram 2000; Paragamian et al. 2005; 

Dunnigan and Sinclair 2008; Dillen et al. 2008; Paragamian and Wakkinen 2008). Although 

patterns in movement vary based on their geographic location, prior research suggests that 

movement is generally highest during the pre-spawn and spawning period (i.e., winter).  In 

the Tanana River, Alaska, Burbot movement was most prevalent during winter months and 

coincided with river ice-up (Evenson 1993). Similarly, movement of radio-tagged Burbot in 

the Kootenai River, Idaho, peaked during winter months when water temperatures dropped 
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below 4°C (Paragamian and Wakkinen 2008). Both PIT and radio-tagged Burbot in our study 

exhibited peak movement during the spawning season. In fact, movements were almost 

entirely observed after water temperatures reached 0°C, when both the upper Green River and 

Fontenelle Reservoir were covered in ice. The relationship between Burbot spawning 

movements and temperature was similar in our study to other systems, but the timing of 

movements and the suspected spawning period were dissimilar. Specifically, Cott et al. (2013) 

reported little variation in the timing of spawning in 24 lacustrine Burbot populations 

throughout Canada, regardless of differences in environmental conditions (e.g., duration of ice 

cover). Spawning generally occurred during the first three weeks of February in these 

populations. In our study, Burbot in the Green River likely spawn primarily in January. 

Movement data suggest that Burbot conducted pre-spawn movements synchronously in mid-

December and returned to their pre-spawn locations after a period consistent with other 

populations reviewed in Cott et al. (2013). This dissimilarity in movement patterns may be the 

result of a much earlier onset of freezing water temperatures in the Green River basin. In 

addition, Burbot movements have not been previously described outside of their native 

distribution, so comparisons with other populations may be somewhat tenuous. 

 Adfluvial life histories are common in Burbot populations (Sorokin 1971) and given 

the lentic origin of Burbot illegally introduced in the Green River (Boysen Reservoir, 

Wyoming; Underwood et al. 2016), it is not surprising that they are exhibiting historic 

adfluvial life history traits in their adopted river system. Burbot have shown to exhibit high 

ecological plasticity which may explain their success in the Green River system. For example, 

hatchery-reared lake-origin Burbot adopted riverine environments over lacustrine 

environments when stocked into the Kootenai River, Idaho (Hardy et al. 2015). Our study 
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suggests that a portion of the Burbot population in Fontenelle Reservoir exhibits an adfluvial 

life history. Of the total fish PIT-tagged in Fontenelle Reservoir, 10-15% were detected in the 

upper Green River throughout the spawning season depending on the year of the study. 

Additionally, only mature fish seemed to be making migrations based on length distribution 

of relocated fish. 

Relocations of radio-tagged Burbot suggested that adfluvial movements were over 

short distances. The distances travelled by adfluvial fish in our study were different from 

those of other adfluvial populations of Burbot. For example, Schram (2000) documented 

upstream migrations of Burbot over 50 km from Lake Superior, Wisconsin, into various 

tributaries. Fluvial Burbot also exhibit long migrations, sometimes exceeding 200 km 

(Evenson 1993). In our study, radio-tagged Burbot travelled a maximum of 6 km into the 

Green River with most fish staying within 3 km of Fontenelle Reservoir.  Spawning habitats 

occupied by adfluvial Burbot in our study are consistent with habitats selected by Burbot 

during the summer and fall (Klein et al. 2015a). No radio-tagged Burbot moved as far 

upstream as our PIT antenna, highlighting the importance of the lower portion of the upper 

Green River to the Fontenelle Reservoir Burbot population. The fact that all radio-tagged 

Burbot stayed downstream of our PIT array may suggest that our estimate of the proportion of 

adfluvial Burbot (using PIT tags) in Fontenelle Reservoir is an underestimate. Our PIT tag 

data also suggest that fluvial Burbot travel downstream towards these sites and return 

upstream after the spawning period. Approximately 19% of Burbot PIT-tagged in the Green 

River demonstrated downstream movements during the spawning season. Most of these fish 

were caught and tagged within 20 km of the reservoir. While we have no direct evidence of 

spawning activity for these fish, other Burbot populations have exhibited extensive 
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downstream movements to reach spawning sites (Robins and Duebler 1955; Evenson 1993) 

and many Burbot in the Green River may be exhibiting similar, albeit shorter, movement 

patterns. However, without complimentary radio telemetry data for fluvial Burbot, 

assumptions made regarding the purpose of downstream movements may be tenuous. From a 

management perspective, short Burbot migration distances may benefit a suppression program 

because spawning is likely occurring in a relatively small section of the upper Green River. 

Targeting the area within 6 km of Fontenelle Reservoir may improve the overall efficiency of 

removal efforts. However, mechanical removal of Burbot during the spawning season may be 

difficult and dangerous since the Green River is covered in ice during that period. Despite the 

inherent difficulties brought on by ice cover, this section of the Green River could also be 

targeted during the spring months after the spawning season. Prior research suggests that 

increases in mortality of juvenile Burbot have the greatest effect on reducing Burbot 

population growth (Klein et al. 2016). Beard et al. (2017) observed low levels of dispersion 

for juvenile Burbot stocked in Deep Creek, Idaho. If wild juvenile Burbot exhibit similar 

movement patterns in the Green River, targeting these sites after ice-off may increase the 

efficiency of removal efforts on juvenile age-classes.  

The objective of this study was to identify the movement dynamics Burbot in the 

upper GRB. Due to a mixture of high tag failure rates (over 60%) and suspected mortality, we 

were unable to track fish that were radio-tagged in the Green River. Of the five suspected 

mortalities, three tags were located above the high-water mark. Two of these tags were found 

near River Otter Lontra canadensis latrine sites and one tag was found at the base of a large 

tree containing an Osprey Pandion haliaetus nest. The remaining two unconfirmed mortalities 

were considered dead due to lack of movement over a 5-month period and because they were 
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in areas of river that were not favorable for Burbot (i.e., very shallow). The high tag failure 

rate observed in our study was the result of frequency drift caused defective tag crystals.  The 

high mortality rate of radio-tagged Burbot in the Green River may be a result of the riverine 

fish being exposed to high water temperatures during tagging (13 – 15 °C). Tags that were 

located above the high-water mark may be the result of direct predation or scavenging of dead 

Burbot by terrestrial and avian predators. Given the difficulties we experienced regarding 

radio-tagged fish in the Green River, repeating this portion of the study by tracking river-

tagged fish may be warranted. Additionally, identifying spawning areas in Fontenelle 

Reservoir will also provide managers with areas to target in both river and reservoir 

environments. 

 This study provides critical insight into the movement dynamics of Burbot in the 

upper Green River system. Given the potential of Burbot to alter the food web in the Green 

River, understanding their movement dynamics will both increase the effectiveness of 

suppression efforts and provide insight on potential interactions of Burbot with important 

native and sport fishes. The results of this research suggest that a substantial portion of the 

Burbot population in the upper Green River exhibits an adfluvial life history. Fish movements 

are generally short in distance with the majority of suspected spawning locations occurring in 

close proximity to Fontenelle Reservoir. Potential spawning locations described in this study 

also provide a target for suppression efforts. Additional insight into the movement dynamics 

of riverine Burbot in the Green River system will further assist with their management. This 

research also provides insight into the ecology of Burbot outside of Wyoming, and may assist 

in the management of imperiled Burbot populations throughout their distribution by further 

demonstrating the possible variability in Burbot ecology among populations. 
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Figure 4.1. Map of the upper Green River and Fontenelle Reservoir.  Burbot were sampled 

from the upper Green River and Fontenelle Reservoir, Wyoming, during summer and autumn 

(2016 - 2017). This study was conducted in the portion of the system from Fontenelle 

Reservoir upstream to the headwaters of the Green River. The location of a passive integrate 

transponder array is indicated by a star. 
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Figure 4.2. Length-frequency distributions of Burbot tagged in the upper Green River and 

Fontenelle Reservoir, Wyoming, and for Burbot detected at a passive integrate transponder 

antenna located near the mouth of the upper Green River in 2016 (black bars) and 2017(white 

bars). 
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Figure 4.3. Histograms depicting the timing of detections of Burbot passive integrated 

transponder (PIT)-tagged in Fontenelle Reservoir and the upper Green River, Wyoming at a 

stationary PIT antenna array located 7 km upstream of Fontenelle Reservoir. Frequency of 

detections and mean daily water temperature for the upper Green River in 2016 (black bars; 

solid line) and in 2017 (white bars; dashed line) are provided. Total number of individuals 

detected are provided for 2016 and 2017 
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Figure 4.4. Histogram depicting total number of Burbot tagged with passive integrated 

transponder (PIT) tags in the upper Green River (black bars) and total number of Burbot 

redetected at the PIT antenna (white bars) in relation to the distance a fish was tagged and 

released (km) from the PIT antenna. Data from 2016 and 2017 are included. 
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Figure 4.5. Redetection locations (black dots) for radio-telemetered Burbot in Fontenelle 

Reservoir and the upper Green River, Wyoming during winter 2017-2018. The dotted line 

represents the mouth of the upper Green River (river kilometer [rkm] 18.6) and Fontenelle 

Dam (rkm 0) from December 2017 – February 2018. The location of the passive integrated 

transponder array is indicated by a star. 

Fontenelle Creek 
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Figure 4.6. Kernel density estimates for winter detections of radio-tagged Burbot in the upper 

Green River, Wyoming in 2017-2018. The horizontal dashed line (river kilometer 18.6) 

represents the mouth of the upper Green River. The number of Burbot detected is included. 
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Chapter 5. General Conclusions 

 The goal of this thesis was to provide additional information on the ecology of Burbot 

outside their native distribution. The results presented in this thesis are meant to inform the 

management of nonnative, undesirable Burbot. Each chapter addresses an aspect of Burbot 

ecology that has previously limited the ability of management agencies to plan and implement 

a suppression program. 

 Chapter two suggests that angler-supplied data collected from fishing tournaments 

targeting Burbot provide similar demographic rate estimates as data collected using fishery 

independent methods. As such, angling tournament may provide managers a cost-effective 

alternative for monitoring Burbot populations. However, if tournament data are used to 

monitor the response of a population to removal, occasional comparison of fishery-dependent 

data with fishery-independent data is warranted to ensure concordance between data types. 

Chapter three evaluated the demographics of Burbot in reservoirs of the Green River system. I 

also described the potential population growth response of Burbot in the reservoirs of the 

Green River to various management scenarios. Results indicate that substantially higher levels 

of exploitation are required to suppress lentic populations of Burbot than lotic populations of 

Burbot in the Green River. My findings suggest that the higher exploitation target of 33% 

should be used for removal of both river and reservoir populations. In chapter four, I used a 

combination of methods to describe the movement dynamics of Burbot in the upper Green 

River. Results suggest that a portion of the Burbot population exhibits an adfluvial life 

history. Fish movements were generally over short distances and spawning was suspected to 

occur in close proximity to Fontenelle Reservoir. The observed movement patterns may 
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benefit a suppression program because spawning areas are located in a relatively short section 

of river and may be a target for removal efforts. 

 Given the capacity of Burbot to negatively influence popular sport fisheries and native 

fish conservation efforts, a suppression program may be warranted. Although eradication of 

Burbot is not likely feasible, reducing the number of Burbot in the system is a tenable goal. A 

suppression program targeting Burbot will likely be an arduous process and require a 

substantial outlay of effort and funding. With the proper political impetus, such a program has 

the potential to be effective. The success of such a program will depend on the proper 

application of removal efforts. Unless effective methods for collecting juveniles are 

developed, mature Burbot should be targeted for removal. Through a combination of netting 

and angling, recruitment overfishing can be reached assuming the proper level of exploitation 

is reached. Additionally, by targeting spawning areas with these methods, the efficiency of 

removal efforts can be increased. To monitor the progress of a suppression program, angler-

supplied data can be used as a cost-effective monitoring tool to reduce the overall cost of a 

sustained program. 
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