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Abstract

Research has become entwined with sequencing of DNA and RNA to contribute to our

understanding of life. The progression of sequencing technology from pattern finding; to

targeted, quantitative sequencing; to high-throughput sequencing has provided deep surveys

into the breadth of variation in life across all ecosystems. This compilation of chapters

seeks to leverage the development of high-throughput sequencing to assess changes in the

microbiomes of the gastrointestinal tracts (GIT) of heatstressed pigs, the milk microbiome

of cows with varying levels of mammary inflammation, and the host genetic variation of milk

carbohydrate-related genes in women around the globe.

In heatstressed pigs, microbial composition clustered distinctly by location in the GIT

(stomach, ileum, colon/feces) and differed in select microbes and diversity metrics. The ma-

jor finding was that fecal assessment of bacterial composition may not accurately evaluate

membership or function the entire gastrointestinal microbiome. Milk microbial composition

differed in cows on two dairies and varied with somatic cell counts (SCC; a proxy for inflam-

mation). Bacterial richness and diversity of milk with low SCC (<200,000 cells/mL) was

greater than in milk with greater SCC (>200,000 cells/mL). Multivariate analysis showed

that quarters within a cow were more similar in their microbial composition than among all

quarters analyzed. The genetic regulation and composition of milk carbohydrates examined

variation on a global scale among women. Some of the genes (FUT2, FUT3, ST6GalNAc5 ),

which are critical in the synthesis of human milk oligosaccharides (HMO), were found to be

under selective pressure. Additionally, novel single nucleotide polymorphisms (SNP) were

identified and known ones confirmed and related to the HMO and lactose in human milk.

These studies provide just a glimpse into the field of milk and lactation, addressing how

the GIT may change with external input, how the milk microbiome may fluctuate due to

inflammation, and how genetic regulation likely plays a key role in milk composition. The

complexities in the field of lactation have only grown with the advancement of sequencing
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technologies. However, our ability to leverage new information, particularly related to milk,

may be the key to further benefitting mother and neonate.
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1
CHAPTER 1

Introduction: How advances in sequencing technology advanced

the field of human milk and lactation

Modern research has adopted the idea that high-throughput genetic sequencing will be the

answer to most scientific inquiry regarding living systems; concisely summarized by Fred-

erick Sanger:“knowledge of sequences could contribute much to our understanding of living

matter” (Heather, 2016). Genetic sequencing spans all kingdoms of taxonomy including

bacteria, archaea, and eukaryotes and impacts our understanding of biology from the utility

of commensal microbiomes to the impact of specific point mutations on genome structures.

The advanced technology in high-throughput sequencing allows scientists to explore the vast-

ness of what nucleotide sequences can tell us due to advances in time, quality, and cost of

sequencing. This difference is particularly noticeable when sequencing human versus bac-

terial genomes where the human genome is approximately 3300 Mbp (megabase pairs) and

bacterial genomes range from 130 kilobase pairs (kbp) to 14 Mbp (Van Leuven, 2014; Han,

2013; Venter, 2001). Moore’s Law states the complexity of microchips (measured by num-

ber of transistors per unit cost) doubles approximately every two years, while sequencing

capabilities between 2004 and 2010 doubled every five months (Stein, 2010), pointing out

the lighting fast advances in sequencing capacity supporting the depth of knowledge gained.

From the initial Sanger sequencing and the subsequent advent of 454 pyrosequencing, the

forward-thinking aspects indicated ability to increase speed and quality of sequencing while

markedly decreasing cost of analysis (Heather, 2016). One of the major advances of pyrose-

quencing (a sequence by synthesis method where colored pyrophosphate is released for every

nucleotide added by DNA polymerase) over Sanger sequencing (a chain termination sequenc-

ing technique where a terminal base gets added by polymerase and the resulting terminated

amplicons can determine the DNA sequence) was the application of mass parallelization

(the ability to sequence many strands of DNA simultaneously) of analysis (Shendure, 2008),

marked by the improvement in cost and quality in sequencing the human genome (Wheeler,
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2008). The next advancements allowed for bridge-amplification (a technique whereby a DNA

strand is amplified in two directions, forming a ‘bridge,’ both strands are sequenced with

phosphorescence associated when each nucleotide is added) developed into the current Illu-

mina technology, which has further increased the length, quality, and parallelization capacity

for high-throughput sequencing (Heather, 2016). The wealth of knowledge gained from high-

throughput sequencing has important implications for any health-related field, if and only if

we can manage to process and accurately interpret data of this magnitude.

Computational advances (though outside the true scope of this review) have allowed

for the accurate use of increasing amounts of sequencing data. Particularly related to the

following topical studies, utilizing DNA sequence analysis to identify bacterial taxa and sin-

gle nucleotide polymorphisms (SNPs) will continue to be a field in need of advancement

(Schloss, 2010; Liu, 2008; Lluch, 2015; Callahan, 2016; McKenna, 2010). The ability to

leverage sequencing data comes equally from these advancements in analysis, wherein DNA

sequences are aligned to a reference genome (e.g., BWA, Bowtie2, Dada2) or de novo as-

sembled into longer reads (e.g., SPAdes, MEGA); once the DNA sequences are known, their

similarity to known DNA or other samples can be assessed (Dalca, 2010). Once DNA can

be compared, sequences can be classified to specific bacteria for microbiome work (e.g.,

RDP, SpinGo) or host DNA can be assessed for changes such as SNPs, insertions, dele-

tions, or structural changes (e.g., GATK, Samtools). The field of milk and lactation has

progressed due to the advancement of sequencing technology, as briefly summarized in Fig-

ure 1. Early studies focused on the genetic regulation of nutritional components in milk, as

well as studying pathogens that caused mammary infection, relevant in both dairy cows and

humans. Analyses of bacteria in milk were reliant on culture-dependent techniques to iden-

tify living bacteria thought to be environmental contamination from the skin, bedding, or

milking practices surrounding lactation (Björkstén, 1980; Schalm, 1971). Culture-dependent

methods were able to identify staphylococci, streptococci, enterococci, and enterobacteria

as mastitis pathogens (Jimenez, 2017). The first lactic acid bacteria (LAB) were isolated
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in studies from the early 2000s in human and bovine milk (Heikkila, 2003, Martin, 2003;

Park, 2007) which altered the perception of milk only containing pathogenic bacteria when

infected, but potentially harboring commensal bacteria. Culture-dependent techniques in

bovine milk continue to be integral to mastitis pathogen identification (Bouchard, 2015;

Braem, 2014, Klostermann, 2008). For many years, culture-dependent techniques allowed

for the identification of live, definable microbes across the biosphere, not just limited to

milk. Bacterial culture is still used to enumerate bacterial counts and identify pathogens

in both human and animal models (Martin, 2003; Mediano, 2017; Broom, 2006; Hojberg,

2005; Katouli, 1999). Culture-dependent techniques also allow expanded evaluation of com-

mensal microbiome by contributing in-depth characterization for virulence factors, antibiotic

response, and potential probiotic traits (Jimenez, 2017).

The advancement of knowledge truly escalated with fast and inexpensive sequencing

technology sufficient to examine the DNA profile of bacteria. Additionally, the change in

philosophy regarding the presence of a non-disease causing bacterial community was sup-

ported by the introduction of the Human Microbiome Project in which site-specific bacterial

communities were characterized in healthy humans (Turnbaugh, 2007). Initial characteriza-

tion of DNA patterns from milk can be found with studies using denaturing or temperature

gradient gel electrophoresis (DGGE/TGGE). These techniques were popular in the early

1990s (Muyzer, 1993) and helped jump start the field of microbial ecology. Differences in

DNA sequences based on migration of bands in the gel due to nucleotide sequence differences

make species classification tangible. Progress made by using DNA migration patterns was

that cells need not be cultivable, nor the conditions to grow the bacteria known to identify

bacteria. Advances in lactation research from DGGE/TGGE include describing diverse mi-

crobial communities in human milk and maternal feces (Perez, 2007), identifying potential

mastitis pathogens in women (Delgado, 2008) and cows (Kuang, 2009; Quigley, 2011), as

well as the diversity of the gastrointestinal tract (GIT) microbes in humans (Muyzer, 1993;

Matto, 2005) and swine (Haenen, 2013; Kostantinov, 2006). The limitation of this type
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of analytical approach is that only known patterns of bacteria can be identified, thus the

hypotheses can only be driven by the current knowledge and isolation of bacterial DNA from

the site of interest.

Further expansion of microbial ecology came with the ability to look at bacterial se-

quence directly, over the pattern detection available with DGGE/TGGE. The benefits of

quantitative or real time PCR (qPCR) allowed genetic identification of specific bacteria via

DNA-binding dye that fluoresces when bound to a specific target. Multiple sequences can be

targeted and the DNA quantified by use of a calibration curve. The quantitative aspect is

also beneficial for the enumeration of bacteria in a location, and can potentially be used as

an estimation for the total bacterial load in a sample by amplifying the hypervariable regions

of the 16S rRNA gene, which provides an avenue to treat bacteria as colony forming units

instead of relative abundance (Li, 2015).This method is also timely, making it a commonly-

used diagnostic tool for bovine mastitis (Koskinen, 2010; Shome, 2011, Mahmmod, 2013;

Taponen, 2009; Zanardi, 2014), confirming the presence of specific bacterial taxa in milk

such as Clostridium cluster IV and XIV, Prevotella, and Porphyormonas (Collado, 2009),

determining the complexity of the human GIT microbiome (Rinttila, 2004), and identifying

effects of feed additives on the GIT microbiome of pigs (Castillo, 2008; Costa, 2014; Hein-

ritz, 2016). The time efficiency gain in identifying microbes and their quantity in myriad

samples allowed for faster pathogen diagnosis, decreased time and cost to treat animals, as

well as a benchmark for studying the etiology of mastitis (Mahmmod, 2013; Shome, 2011;

Taponen, 2009; Zanardi, 2014) although this technology is still limited by the necessity of

prior bacterial knowledge to prepare target specific primers.

The adaptation of sequencing to high-throughput, short-read technology (<1000 base

pairs; as reviewed above and in Heather, 2016) increased the speed and accuracy to which

taxa could be assigned with less stringent criteria for bacterial identification. The slow

evolution rate of the 16S rRNA (small subunit bacterial ribosome) gene in bacteria enabled

targeted sequencing as an ubiquitous way to identify bacteria with research growing to
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encompass bacteria never cultured nor previously identified (Woese, 1987). The first study

in human milk (Hunt et al., 2011) using 16S rRNA sequencing showed surprising results with

known mastitis pathogens, staphylococci and streptococci comprising a significant percentage

of the microbial community of milk from mothers self-identified as healthy. Further studies on

the human milk microbiome have expanded into impacts of various environmental factors on

community characteristics and have provided insight to the diversity of bacteria in a fluid that

was once considered sterile (Jimenez, 2008; Flint, 2012; Jost, 2013; Patel, 2017; Williams,

2017). High-throughput sequencing also has provided deep surveys into the breadth of

bacteria that inhabit most biological niches, such as the human GIT (Anderson, 2008, Wu,

2011), the bovine milk microbiome (Bhatt, 2011; Bonsaglia, 2017; Braem, 2012, Cressier,

2011, Doyle, 2017; Ganada, 2017; Falentin, 2016; Kuehn, 2013; Lima, 2017, Lima, 2018;

Metzger, 2018; Oikonomou, 2012; Oikonomou, 2014; Rodrigues, 2017; Young, 2015), and the

swine GIT (which may be a model species sufficient for examination of dysbiosis in the human

GIT microbiome) (Buzoianu, 2012; Kim, 2011; Kim, 2012; Li, 2016; Looft, 2012; Mach, 2015;

Mann, 2014; Niu, 2015; Pajarillo, 2014; Pajarillo, 2015; Ramavo-Caldas, 2016; Vahjen, 2010,

Yu, 2017; Zhao, 2015). Analysis of 16S rRNA not only provides membership in the bacterial

community as characteristics of the community are often summarized as diversity and/or

richness estimators; where richness refers to the number of species identified in a sample, and

diversity refers to the relative amounts of these species within the system (alpha diversity)

or the relative amounts of bacteria across a system (beta diversity) (Hughes, 2001). These

estimators allow for ecological exploration of bacterial communities as a complex ‘holobiont,’

versus looking at differences in individual species exemplified by findings such as decreased

bacterial diversity in the case of human mastitis (Jimenez, 2017).

Advancements in sequencing technology not only helped the field with respect to the mi-

crobiome, but provided an avenue which to pursue questions of microbial function. Metage-

nomics is a “brute-force” method that looks at all DNA in a sample and uses sequence

analysis to discover “who’s there” (Mardis, 2008). Additionally, because the sequences iden-
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tified are more than just marker genes (e.g., 16S rRNA) to identify bacterial taxa, metage-

nomics provides an avenue to discover the functional capacity in a sample based on the

genes present from both the host and the microbiome (e.g., Lamendella, 2011) opening the

door to exploration of host-microbe interactions. Metagenomics has been used to provide

insight into the genetic functionality of various biological niches: human milk (Ward, 2013);

human GIT (Turnbaugh, 2009; Gill, 2006); bovine milk (Ganada, 2016); and swine GIT

(Looft, 2012; Looft, 2014; Poroyko, 2010, Willing, 2009; Yang, 2016). Metagenomics also

provides insight into the expressed genes in a niche, which has the potential to expand the

knowledge of milk composition through knowledge about the proteome and metabolome (or

DNA associated with protein expression and the metabolic potential of a niche). Though

metagenomics technology is still a fledgling process, discoveries of functional capacity of milk

and GIT microbiomes may be beneficial to continued advances in the health of infants and

other neonates.

The ability to detect the constituents of the microbiome, the potential functional genetics

of the microbiome, as well as the abundant host DNA found in metagenomic sampling begs

the question about microbiome-host interaction at the genetic level. While metagenomics

does give some capacity to look at host gene function alongside bacterial function, high-

throughput sequencing data also provide the capacity to look at whole host genomes and

targeted sequencing which may also impact lactation. The instinct for genetic regulation with

regard to lactation is largely drawn from the dairy industry, where breeding practices and

genetics have long held a place in milk quality and production (Lemay, 2009a; Lemay, 2009b),

yet little is known about how human milk is genetically regulated. Genetic testing helped

advance the ability to select for traits beyond just the phenotypic features of a cow, but

based on genetic heritability increase the rate at which famers can see genetic improvement

in their herds (Wiggins, 2011). The same tools developed to scan and assess the bovine

genome for lactation can be used to determine the genetic characteristics of human milk

traits (Durbin, 2011).



7

The best human lactation example for an aspect of milk being driven by genetics is that

of human milk oligosaccharides (HMO), a set of complex sugars that, despite not serving

as nutrients per se for the infant, may act as prebiotics for the microbiota of the develop-

ing infant GIT and potentially the maternal milk microbiome (Bode, 2012). The genetic

pathway for production of HMO is not well understood; however, some of the specific link-

ages of the various sugars are performed by well characterized genes from the ABO-Lewis

blood group structures (Soejima, 2007; Soejima, 2009; Ferrer-Admetlla, 2009; Teppa, 2016).

An example of such a gene is FUT2, known as the ‘secretor’ gene, which encodes α-(1,2)-

fucosyltransferase whose function is to add a fucose sugar to a lactose backbone, creating

both this moiety in HMO and one of the basic structures in the H antigen, the precursor

for the AB blood group antigens (Guo, 2017). The general variation in this gene has fo-

cused on particular missense mutations that turn off this fucosyltransferase and create a

‘non-secretor’ phenotype (Heneghan, 2000). Literature has focused on the genetic variation

in FUT2 with occasional comparison to phenotype by blood typing (Soijima, 2007). How-

ever, this same linkage is a main driver in HMO profile in human milk, particularly driving

the presence/absence of a particular HMO, 2-fucosyllactose (2’FL), which is a precursor for

several other HMO moieties (Bode, 2012). Variation based on the predominance or presence

of 2’FL has been demonstrated in comparisons of human milk from populations around the

world (McGuire, 2017; Erney, 2000). Additionally, these genes may be under selective pres-

sure from environmental, pathogen, or historical reasons that not only drive the diversity of

ABO blood groupings, but subsequently drive the diversity seen in HMO profiles (Fumagalli,

2009).

Some of the next major questions to answer in the field of milk and lactation are how host

genomics (particularly in humans) impact the nutrient composition and the microbial com-

position in milk, and how the interactions may also play an essential role in the development

of the suckling neonate’s GIT.

Though the field of lactation has become more complex due to the advancement of se-
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quencing technology by discovering a complex microbial ecosystem and potential host genetic

impact, the field is also integral to understanding infant nutrition, health, and welfare. Thus,

lactation could be a pivotal point to leverage high-throughput sequencing data examining the

interrelationship of the milk microbiome, the GIT microbiome, and host genetic factors that

influence mammalian health. The following chapters will utilize high-throughput sequencing

technology to address questions in the field of lactation.

1) Are fecal samples the most representative way to capture the complexity of the whole

GIT microbiome? Using a swine model, it is hypothesized that the microbiome will vary

across sampling sites (stomach, ileum, colon, and feces) along the GIT. In addition, sup-

plementation with Zn and exposure to heat stress will alter the membership, diversity and

richness of the bacterial community at each site.

2) How does the bovine milk microbiome vary across levels of inflammation? Using a cow

model, it is hypothesized that the milk microbiome will be similar among quarters within a

dairy cow, but differ based on somatic cell count (a proxy for inflammation).

3) How do SNPs in lactation-related genes relate to milk composition? In a diverse

group of healthy, lactating women, it is hypothesized that variation will be found among

these women with regards to oligosaccharide-related genes, and that this variation will be

associated with known phenotypic differences with evidence of selective pressure on the

variation detected.
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Figure 1.1: Summary of techniques used to leverage sequencing data regarding human milk.
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CHAPTER 2

Impacts of heat stress and zinc supplementation on the

microbiome along the porcine gastrointestinal tract

2.1 Abstract

Heat stress is known to lead to high morbidity and mortality in production animal practice.

However, little is known about the impact of heat stress on the microbial composition in

the gastrointestinal tract (GIT) of pigs. The study objectives were to evaluate the microbial

composition along GIT segments under acute (1-day) and chronic (7-day) heat stress condi-

tions (36 °C; ∼50% humidity; temperature-humidity index ≈ 85.5), and levels of Availa® Zn

100 (ZnAA). Crossbred gilts were fed ad libitum one of three diets: control (120 ppm zinc as

ZnSO4, n = 15), Zn-220 (control + 100 ppm zinc as ZnAA, n = 7), or Zn-320 (control + 200

ppm zinc as ZnAA, n = 8) for 25 days prior to heat stress exposure. After heat exposure, pigs

were euthanized and luminal contents were collected from three segments (stomach, ileum,

and colon), and feces. The microbial community at each site was assessed by sequencing the

16S rRNA V1-V2 region. Sequences were filtered using Mothur and classified using Spingo,

RDP, and the Silva database. ZnAA supplementation did not affect bacterial community

membership at any sampling site. Microbial composition distinctly clustered by sampling

site in PCoA analysis, but only Dolichospermum in the ileum and Muribaculum in feces

were found to be affected by heat stress. This study demonstrates that segment of GIT is

an important aspect of GIT microbiome studies as fecal samples are not representative of

community composition in the upper GIT. Further work examining the impact of ZnAA or

heat stress would require greater numbers of pigs.
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2.2 Introduction

Production systems work to improve animal growth and health for animal welfare and eco-

nomic benefit. Heat stress (HS) is well established as a detriment to animal production

through reduced growth and feed efficiency, compromised intestinal barrier function, and

increased animal health costs (Lee, 2016). Nutrient supplementation can be beneficial to

animal production (Song, 2014; Sanz Fernandez, 2013), and there is limited evidence that

supplemental zinc (Zn) can ameliorate HS effects on growth and health including intestinal

integrity (Sales, 2013; Sanz-Fernandez et al., 2014). However, mechanisms by which HS

negatively impacts animal production or acts as a vector for increased risk of diarrhea are

poorly understood (Castillo, 2008; Costa, 2014; Janczyk, 2013).

Both HS and dietary supplementation have been hypothesized to lead to changes in

the gastrointestinal (GI) microbiome (Starke, 2014; Buzoianu, 2012; Li, 2016), where clear

evidence of modulating health and disease in the host has been demonstrated (Dethlefson,

2007; Flint, 2012; Mach, 2015). A vast diversity of microbes exists in the GI tract with

estimates of over 500 species in humans (Eckburg, 2005) and 1000 species in pigs (Looft,

2012). Microbes may confer health to the host through participation in digestive processes,

but dysbiosis of the GI microbiome may lead to a variety of disease states such as diarrhea

(Alam, 1994; Allen, 2012), irritable bowel and Crohn’s disease (Walker, 2011), enterocolitis

in newborns (Bering, 2018), and with long lasting impacts such as obesity (Cani, 2008;

Turnbaugh, 2006; Yang, 2016) or atopic diseases and allergy (Stefka, 2014; Stokholm, 2018).

Animals, in particular, are impacted by changes in bacterial communities which impact

growth rates (Ramayo-Caldas, 2016), state of inflammation (Cani, 2008; Walker, 2011), and

diarrheal disease (Castillo, 2008; Costa, 2014).

The GI microbiome can be impacted by a number of factors including animal genetics

and husbandry practices (Pajarillo, 2014; Doyle, 2017; Lamendella, 2011). In particular,

supplementation can alter the microbial composition along the GI tract. Zinc oxide (ZnO)
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has been used to ameliorate the impact of diarrhea in weaning piglets, but there is con-

flicting evidence as to the impact on the microbial composition of the GI tract (Katouli,

1999; Vahjen, 2010; Pieper, 2012; Yu, 2017). Other strategies to alter the GI microbiome

include addition of fiber or starch (Haenen, 2013; Niu, 2015; Heinritz, 2016; Metzler-Zebeli,

2010, Tako, 2008), calcium phosphate (Trowman, 2006; Govers, 1993; Metzler-Zebeli, 2010b;

Mann, 2014), and antibiotics (Looft, 2012; Kim, 2012). There is clear need to understand the

effects of supplementation on animal health and production outcomes through alterations in

the GIT microbial communities.

Health outcomes for pigs are also negatively impacted by HS, yet the response of the

microbiome in the GI tract is not well studied. Evidence from poultry shows impacts of

HS on the bacterial community of the small intestine of broiler chickens, particularly with

increases in coliform bacteria, which include potential GIT pathogens (Song, 2014). Due to

the potential impact of the GI microbiome to health and production outcomes in pigs, we

evaluated the change in GI microbiome in response to HS conditions and supplementation

with Zn. We hypothesized that HS would alter the relative abundance of some bacterial

genera in segments of the pig GI tract; supplemental Zn would reduce genera associated

with inflammation/pathogenesis in the small intestine; and supplemental Zn would mitigate

changes in the GI microbiome due to HS.

2.3 Materials and Methods

Animals and Experimental Design

The Iowa State University Institutional Animal Care and Use Committee approved all

procedures involving animals. Forty-three crossbred gilts were assigned to one of three diets,

as described in Sanz-Fernandez, 2014. Zinc was provided above the control (ZnSO4) in a

form complexed to amino acids (ZnAA; Availa®, Zinpro Corporation, Eden Prairie, MN,

USA). Treatments were briefly: control diet (120 ppm ZnSO4) (pair-fed/Zn-control), control

plus 100 ppm ZnAA (Zn-220), and control plus 200 ppm ZnAA (Zn-320). There were three
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experimental phases during the study. Pigs were housed in groups according to their dietary

treatment during the first step and fed experimental diets for 20 ± 1 days. During the second

time step, pigs were housed individually and kept in thermoneutral conditions (19 °C; ∼61%

humidity; temperature-humidity index ≈ 64) for 5 d. In the third step, pigs were exposed to

constant heat stress for a period of 1 or 7 d (36 °C; ∼50% humidity; temperature-humidity

index ≈ 85.5) except for a thermoneutral group of pigs kept at conditions of step 2 for 1 or

7 additional days (Table 1). At the designated day in step three, pigs were sacrificed using

the captive bolt technique with exsanguination. After euthanasia, intestinal segments were

collected and the luminal contents collected aseptically, frozen on ice, and stored at -80 °C.

Samples of luminal contents were shipped frozen to the University of Idaho and kept at -80

°C until analysis.

Extraction and Amplification of Bacterial DNA

DNA was extracted from ∼200 mg of frozen luminal contents using the QIAamp DNA

Stool Mini Kit (Qiagen Cat. 51504, Valencia, CA) following the manufacturer’s proto-

col. DNA was eluted in AE buffer (10 mM Tris-Cl; 0.5 mM tris-acetate-ethylenediamine

tetraacetic acid (EDTA, 0.5 M, pH 8, Sigma, St. Louis, MO); pH 9.0; Qiagen) and stored

at -80 °C.

Polymerase chain reaction (PCR) was conducted to amplify the V1-V2 hypervariable re-

gion of the bacterial 16S rRNA gene. The PCR protocol was carried out in a dedicated PCR

hood pre-cleaned with 70% ethanol and sterilized under ultraviolet light for 30 min. The PCR

mixture (50 µL) contained the following: 0.5 µM forward primer (7F- GCCTTGCCAGCC-

CGCTCAGTCAGAGTTTGATCCTGGCTCAG), 0.5 µM barcoded reverse primer (338R-

GCCTCCCTCGCGCCATCAGTGNNNNNNNNCATGCTGCCTCCCGTAGGAGT), 1 µL

DNA extract from colon and fecal samples, 5 µL DNA extract from stomach and ileum

samples, and PCR master mix containing a final concentration of 0.05 µM target specific

primers with barcodes, 1x PCR buffer (Life Technologies, Carlsbad, CA), 3.12 mM MgCl2

(Life Technologies), 0.25% mM DMSO, 0.2 mM dNTP (Life Technologies), and 25 U/mL
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AmpliTaq DNA 360 polymerase (Life Technologies) in 50 µL total volume. Thermal cycler

settings included a 5 min denaturation step at 94 °C followed by 35 cycles of 94 °C for 1 min,

55 °C for 1 min, and 72 °C for 2 min. A final elongation step at 72 °C for 2 min was then

performed to complete each reaction before storing PCR products at -20 °C until further use.

Products from PCR were electrophoresed on 1% agarose gels made with EDTA (0.5 M, pH

8, Sigma, St. Louis, MO), TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) and

containing ethidium bromide (0.0007 mg/mL). Gels were run for 30 min at 80 V before bands

were viewed using the Bio-Rad Fluor-S Multimager (Bio-Rad Laboratories). Samples with

high-quality product (relatively bright band of interest at 381 bp), low primer-dimers, and

absence of unwanted bands or smears were considered acceptable to move on to sequencing.

Due to low amplification, 7 samples failed to be sequenced. Ten µL of each PCR reaction

were added to a pool sample that underwent emulsion PCR as previously described (Mar-

gulies, 2005). Pyrosequencing was performed at the University of Idaho, Genomics Resource

Core on a 454 Life Sciences Genome Sequencer FLX machine (Roche, Bradford, CT).

Sequence Analysis

Mothur (v.1.24.0; Schloss, 2009) was utilized to bin sequences by sample and carry out

quality control procedures. Sequences were removed from the data set if they had any am-

biguous bases, contained homopolymer runs greater than 8 bases, greater than one difference

from the barcode, or greater than 2 differences from the forward primer. Sequences were also

removed if they did not maintain an average quality score of 35 over a sliding window of 50

bases. Sequences were then subjected to a pairwise alignment using Smith-Waterman global

alignment (Vingron, 1994) against Mothur’s Silva reference database and were trimmed to

cover the same region. Sequences that did not align correctly were then removed from

the dataset. A 2% single-linkage, precluster method was employed as it has been shown

to remove sequences that may contain sequencing error (Huse, 2010). Potential chimeras

were identified and removed using Mothur’s implementation of the ChimeraSlayer algorithm

(Haas, 2011). To determine taxonomy, SPINGO (Allard, 2015) was used to classify unique
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sequences to the genus level against the Silva database (Quast, 2012). Further analysis was

performed on sequences which SPINGO returned as “ambiguous”. These sequences were

taken through the Silva aligner against both the Silva and RDP databases (Wang, 2007).

Where there was agreement on taxonomic classification, sequences were reassigned to the

lowest possible taxonomic level. Sequences which remained ambiguous or were classified as

chloroplast or mitochondria were removed. The taxonomy was then merged with the count

data produced in Mothur, and relative abundances calculated for further analysis.

Data Analysis

After generation of relative abundances at the lowest taxonomic level, all exploratory and

statistical analyses were performed in R (version 3.5.1). Thermoneutral samples collected

on day 1 and day 7 were compared using Wilcoxon Rank Sum test and determined to not

be different and were collapsed into a single group. One-way ANOVA was used to assess di-

versity indices in thermoneutral samples across GI segment. Non-parametric Kruskal-Wallis

tests were used to calculate F statistic values to determine differences among environmen-

tal treatments. If the F statistic was significant (P<0.05), non-parametric paired Wilcoxon

Rank Sum test, with Bonferroni adjustment to correct for multiple comparisons was used

to determine differences within environmental treatments. Diversity indices were assessed

at the lowest identified taxonomic level using richness, Pielou’s evenness, Shannon diversity,

and Simpson evenness and calculated using the vegan package in R as described in Williams,

2019. The Ordiplot function was used to create principal coordinates analysis (PCoA) plots

of microbial community data using the Hellinger transformation and stacked bar charts were

made using ggplot2 (version 3.0.0).

2.4 Results

Sequence Data Disposition

Over 230,000 sequence reads passed quality control measures, and clustered into 14,890

unique sequences based on 3% similarity. After removing unclassified sequences, an average
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of 2036 ± 716 sequences per sample remained. By using a combination of the SPINGO and

Silva databases to classify unique sequences, only 3% of sequences remained unclassified and

were removed from analysis.

Microbial Composition by GI Segment

Overall, the bacterial community composition across the GI segments and feces under

thermoneutral conditions differed in their most abundant taxa with the exception of Pre-

votella (18-32%) which was the most abundant genera identified (Tables 2-5).

The dominant bacteria in the luminal contents from the stomach from pigs under ther-

moneutral conditions were Prevotella and Actinobacillus (Table 2). The dominant bacteria

in luminal contents from the ileum were Prevotella followed by Escherichia/Shigella and

Romboutsia (Table 3). The dominant bacteria in luminal contents from the colon (Table 4)

and in feces (Table 5) was Prevotella; no other genera exceeded a relative abundance of 10%.

Under thermoneutral conditions the bacterial community in the stomach generally had

lower richness and diversity than the colon and feces, but similar in diversity to the ileum

(Tables 2-5). The bacterial community in the ileum had the lowest richness of all GIT

segments, and notably lower Shannon diversity, despite having the highest evenness scores

across the GIT. The bacterial community in the colon had the highest richness and diversity

across GIT segments while the fecal samples did not differ from any other segment in diversity

or evenness.

The PCoA summary of the community structure of all samples after Hellinger transfor-

mation showed distinct clustering by sampling location (Figure 1). Bacterial communities

of the stomach and ileum clustered independently and were mostly driven by the presence

of Lactobacillus, Escherichia/Shigella, Actinobacillus, and Clostridium. The bacterial com-

munities in the colon and feces clustered tightly together, separate from the stomach and

ileum and were driven by the presence of Prevotella.

Zn Supplementation

There were no significant differences detected by non-parametric Kruskal-Wallis test, nor
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clustering by PCoA (Figure 2) on the microbial community composition at any GIT segment

related to supplementation with ZnAA. Therefore, Zn treatment groups were collapsed into

HS-related categories only.

Heat Stress

Stomach No differences in the relative abundance of the top 9 bacterial genera were

detected between acute and chronic HS in the stomach, but differences were found between

thermoneutral and chronic HS conditions (Table 2 and Figure 3). The stomach, under HS,

was still dominated by Prevotella (16%), but had a greater (P <0.008) relative abundance

of Dolichospermum (10%) in chronic HS than in pigs under thermoneutral conditions (1%;

Table 2). Actinobacillus was affected by HS (P <0.05), but no significance could be declared

among environmental treatments. No significant differences in diversity, richness, or evenness

in bacterial communities from the luminal contents of the stomach were found due to HS

(Table 2).

Ileum The relative abundance of Actinobacillus (P <0.04), Romboutsia (P <0.05), and

Klebsiella (P <0.03) in ileal contents differed due to HS, but separation within environmen-

tal treatments was not found after Bonferroni correction (Table 3). Escherichia/Shigella

(17%), Actinobacillus (16%), and Clostridium (11%) were the most abundant genera from

the bacterial community of luminal contents from the ileum of pigs under HS (Table 3 and

Figure 3). The diversity of the bacterial community in the ileum was impacted by HS.

Pielou’s evenness (P <0.04) and Shannon diversity (P <0.04) were lower under acute HS as

compared to thermoneutral conditions (Table 3).

Colon and Feces No differences were found due to environmental treatment for either

bacterial taxa or diversity indices from the community in the colon dominated by Prevotella

(Table 4). The bacterial community of feces changed little due to HS exposure and were

dominated in all treatments by Prevotella (Figure 3). Chronic HS decreased (P <0.004) the

abundance of Muribaculum when compared to the relative abundance during thermoneutral

and acute HS conditions. Environmental treatment affected (P <0.04) the relative abun-
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dance of Ruminococcus but within treatment differences were undetected. No significant

differences were found with respect to effect of environmental treatment on diversity indices

of the bacterial community of feces (Table 5).

2.5 Discussion

Heat stress negatively impacts animal agriculture and contributes to challenges of animal

health and economic success (Renaudeau, 2011). Research is needed to counter the effects of

heat stress, particularly due to inconclusive results of supplementation studies (Sales, 2013).

Pigs exposed to HS in this study had increased respiratory rate and rectal temperature and

decreased feed intake as compared to thermoneutral conditions demonstrating the presence

of heat stress (Sans Fernandez, 2013).

Zn Supplementation

No differences were detected in the microbiome due to ZnAA supplementation in any of

the GI segments. Several other studies have been conducted looking at Zn supplementation

on changes in the microbiome mostly in the ileum and using varying techniques to identify

microbes. Using 16S sequencing of ileal samples and comparing low ZnO (∼150 ppm) to

high Zn (∼2500 ppm) the following observations were reported: increase in ileum richness

and diversity, but decrease in the colon (Yu, 2017), changes in the relative abundance of

5 bacterial genera and 9 bacterial species due to supplementation (Vahjen, 2010 and 2011,

respectively). One of the early studies of Zn supplementation showed no changes in number

of coliforms using culture dependent techniques when comparing dietary supplementation of

155 ppm ZnO to 2500 ppm Zn in feces. Hojberg, et. al. used culture-dependent methods

and targeted sequencing to look at differences in microbes in the stomach, ileum, cecum,

and colon fed 100 ppm ZnO or 2500 ppm Zn. They found lower anaerobic bacteria, lactic

acid bacteria (LAB), and Lactobacilli in the stomach and ileum, but increased coliforms in

the stomach and increased Enterococci in the stomach and ileum (Hojberg, 2005). The only

studies to compare no or <100 ppm ZnO supplementation used culture-dependent techniques
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with some targeted sequencing and found that there were no differences in bacterial counts

due to Zn supplementation (Broom, 2006) with the exception of Clostridium group XIV

and Enterobacteriacea which only differed between 50 mg/kg ZnO and 2500 mg/kg Zn, and

distinct hierarchical clustering between those same Zn categories (Pieper, 2012). Based on

these results, 100 ppm Zn may be a sufficient dose to see changes in the microbiome due to

supplementation. Thus, pigs in the current study have been sufficiently supplemented with

Zn in the control and no changes were seen due to Zn treatment.

Heat Stress

Heat stress exposure had limited impact on the microbial composition of the GI tract in

pigs. We found elevated abundance of Dolichospermum due to HS in the stomach which are

cyanobacteria and have known toxin-producing species found in algae blooms (Li, 2016b),

and lowered levels of Muribaculum in feces due to chronic HS. Though diarrheal incidence

tend to increase with heat stress (Castillo, 2008; Costa, 2014), there is only one study looking

at the alteration in microbiome of the GI tract due to heat stress and it was in poultry. Song

et. al. (2014) found lower viable counts of Lactobacillus and Bifidobacterium and higher

counts of coliforms and Clostridium in contents of the small intestine from chronically heat

stressed broilers. These results are not supported by our findings in pigs, but the bacterial

community in the intestine of poultry (Pan and Yu, 2014) is very different from that of the

pig questioning the appropriateness of the comparison. This leaves conflicting evidence as to

whether heat stress induces an environment that promotes the growth of pathogenic bacteria

or creates an opening for their proliferation. Thus, more work needs to be done to determine

the disease pathway that creates harmful conditions under heat stress.

Konstantinov et. al. (2006) reported that newborn piglets, not undergoing heat stress,

have identifiable Escherichia/Shigella, Lactobacillus, and Streptococcus in the small intestine

as early as two days old, so there may be risk of increase in those bacteria due to heat

stress, particularly at an early age. However, we saw treatment effects on Actinobacillus,

Romboutsia, and Klebsiella, and significant changes in Pielou’s evennes and Shannon diversity
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which decreased due to acute HS. This demonstrates that certain bacteria may be prone

to proliferate under heat stress conditions, driving down the evenness and richness of the

community and causing dysbiosis.

Differences by GI segment

The bacterial communities detected in segments of the GI tract and feces of the growing

pig shared some members but clear segregation of the communities was apparent even across

treatments (Figure 1). There was overlap of community structure between that in the colon

and feces suggesting that an evaluation of bacteria in feces may represent that of the colon.

Zhao et al. (2015) reported correlations between the colon and fecal microbiomes; however,

they also detected separation of bacterial community structure from the colon and feces

compared to other segments of the GI tract by PCA, providing ambiguous evidence as to

the differences (if any) between the colon and feces. In addition, the bacterial community

of the stomach differed from that of the ileum in the composition of the most abundant

bacteria, and had the presence of cyanobacteria (Dolichospermum and Pseudanabaena) pos-

sibly contributing to clustering away from the ileum. The segregation of colon/feces from

the stomach and ileum clearly points to the inability to assess changes in the whole GI

microbiome through analysis of feces.

The predominant phyla in the pig GI tract are Firmicutes and Bacteroides, which agrees

with our findings (Costa, 2014; Zhou 2015). Additionally, more types of γ-proteobacteria

(common pathogens) were found in the ileum and stomach, than in the colon, similar to

other findings (Zhao et al. 2015; Isaacson et al. 2012). The most abundant genera detected

are typical of those in the literature (Hojberg, 2005; Pajarillo, 2014, 2015; Leser, 2002; Mach

2015, Kim, 2011; Vahjen, 2010) with Prevotella being the most dominant among pig GI

microbes, as well as Lactobacillus, Clostridium, Streptococcus, Mitsuokella, Neisseria and

Ruminococcus. We found similar levels of Escherichia/Shigella in the ileum to previous find-

ings, confirming that this is one of the most abundant taxa in that portion of the GI tract

(Zhao, 2015; Konstantinov, 2006; Broom, 2006). The distinct genera detected but not pre-
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viously reported in pigs were Dolichospermum, Porphyromonas, and Pseudanabaena in the

ileum and stomach, and Muribaculum, Treponema, and Selenomonas in the colon and feces

(Tables 2-5). These genera are low in abundance in comparison to the aforementioned, but

the differences are likely due to a combination of factors including environment, diet, breed

(genetics), and care practices, as described in other studies as impacting unique microbiota

(Pajarillo, 2014; Doyle, 2017; Lamendella, 2011).

The presence of potential pathogens in the intestinal microbiome has been considered to

have immune-modulating capability, preparing the small intestine and the immune system

for environmental and food borne pathogens (Allen, 2012). This work is dependent on the

advancement of detecting individual bacterial species level data with metagenomics to iden-

tify active immunological components. Continued research to identify species level bacteria

or toxins present in the GI tract could help to determine whether pathogenic bacteria are

contributing to poor outcomes under HS.

Limitations

Clearly, more animals are needed in microbial studies to identify differences in bacte-

rial abundance across multiple targets (GI segment, diet treatment, environmental treat-

ment) particularly if potential interaction of treatments are potentially present. Addition-

ally, the limitations of 454-pyrosequencing in identifying bacteria only to taxonomic rank of

genus mean there is no species or toxin potential for clarity to draw conclusions regarding

pathogenic or inflammatory risk. Further research should be conducted to elucidate the

potential pathogens that increase in presence or pathogenicity due to HS and/or common

toxins that may contribute to HS declines in performance.

Conclusion

Overall our findings show that the supplementation of ZnAA to pigs exposed to heat

stress did not alter the microbiome of the stomach, ileum, colon, or feces. However, heat

stress did cause limited changes in the microbiome at certain locations in the pig GI tract.

We found effects of HS along the GIT and in feces: Dolichospermum and Actinobacillus in the
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stomach; Actinobacillus, Romboutsia, Klebsiella, Pielou’s evenness, and Shannon diversity in

the ileum; and Ruminococcus and Muribaculum in the feces. There are distinct differences in

microbial composition of luminal contents along the pig GIT and feces demonstrating clearly

that fecal assessment of bacterial composition may not be an accurate proxy for conclusions

about the overall GI microbial composition.
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Figure 2.1: Principal coordinates analysis (PCoA) plot of Hellinger transformed genus-level
relative abundance of bacteria composition across gastrointestinal segments and in feces of
growing pigs. Points are colored by site of sampling. Treatment duration is indicated by
shape - circles indicate acute treatment (1-day) and triangles indicate chronic treatment
(7-days). Driving bacterial are displayed as vectors in the direction of contribution.
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Figure 2.2: Principal coordinates analysis (PCoA) plots of Hellinger transformed genus-level
relative abundance of bacteria composition across gastrointestinal segments and in feces of
growing pigs: stomach (A), ileum (B), colon (C), and feces (D). Each point represents a
single sample. Treatments are identified by color: blue - thermoneutral, Zn-control diet;
yellow - Zn-control; orange - Zn-220; and red - Zn-320.
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Figure 2.3: Average relative abundance of the 9 most abundant bacterial genera from lu-
minal contents of the (A) stomach, (B) ileum, and (C) colon, and in (D) feces of growing
pigs exposed to acute heat stress (1 day), chronic heat stress (7 days), and thermoneutral
conditions.
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Table 2.1: Treatment descriptions and animal distributions.

Treatment Classification Dietary Treatment Environmental Treatment Day of Sacrifice Number of pigs (n)

Zn-Control 120 ppm of zinc from ZnSO4 Heat Stress (HS): 36°C; 50% humidity 1 4

No supplemental zinc Ad libitum feeding 7 3

Zn-220 120 ppm of zinc from ZnSO4 Heat Stress (HS): 36°C; 50% humidity 1 4

100 ppm of zinc from Availa Zn 100 ® Ad libitum feeding 7 3

Zn-320 120 ppm of zinc from ZnSO4 Heat Stress (HS): 36°C; 50% humidity 1 4

100 ppm of zinc from Availa Zn 100 ® Ad libitum feeding 7 4

Pair-Fed1 120 ppm of zinc from ZnSO4 Thermoneutral (TN): 19°C; 61% humidity 1 4

No supplemental zinc Pair-feeding 7 4

1Pair-fed samples were matched to feed intake of Zn-control group under heat stress to mitigate differences due to altered feed intake.
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Table 2.2: Relative abundance of the top 9 bacterial taxa at lowest identified classification and diversity indices from luminal
contents in the stomach of growing pigs exposed to heat stress.1

Thermoneutral Acute HS Chronic HS

(n = 6) (n = 11) (n = 9)

Bacteria taxa

Prevotella 0.27 ± 0.03 0.15 ± 0.03 0.19 ± 0.04

Dolichospermum 0.01 ± 0.00a 0.10 ± 0.03ab 0.10 ± 0.01b

Lactobacillus 0.03 ± 0.01 0.12 ± 0.03 0.03 ± 0.01

Actinobacillus 0.13 ± 0.03 0.03 ± 0.01 0.02 ± 0.01

Porphyromonas 0.05 ± 0.02 0.03 ± 0.01 0.06 ± 0.04

Pseudanabaena 0.01 ± 0.00 0.04 ± 0.01 0.05 ± 0.02

Neisseria 0.08 ± 0.02 0.02 ± 0.01 0.02 ± 0.01

Clostridium 0.01 ± 0.00 0.04 ± 0.02 0.02 ± 0.01

Mitsuokella 0.06 ± 0.03 0.01 ± 0.01 0.01 ± 0.00

Diversity indices

Pielou evenness 0.66 ± 0.02 0.68 ± 0.03 0.71 ± 0.02

Richness 42 ± 4.2 50.2 ± 6.0 56.1 ± 4.7

Shannon diversity 12.5 ± 1.3 17.6 ± 3.0 18.6 ± 2.0

Simpson evenness 0.18 ± 0.01 0.20 ± 0.02 0.17 ± 0.02

1All values are means ± SEMs. Acute HS - acute heat stress for 1 day; Chronic HS - chronic heat stress for 7 days. Values in a row within
a sampling location that have different superscripts are significantly different based on Wilcoxon Rank Sum Test. P <0.05 corrected for multiple
comparisons.
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Table 2.3: Relative abundance of the top 9 bacterial taxa at lowest identified classification and diversity indices from luminal
contents in the ileum of growing pigs exposed to heat stress.1

Thermoneutral Acute HS Chronic HS

(n = 6) (n = 12) (n = 10)

Bacterial taxa

Prevotella 0.18 ± 0.04 0.04 ± 0.01 0.16 ± 0.05

Lactobacillus 0.01 ± 0.00 0.08 ± 0.03 0.03 ± 0.01

Actinobacillus 0.04 ± 0.01 0.10 ± 0.04 0.23 ± 0.04

Clostridium 0.09 ± 0.03 0.11 ± 0.04 0.12 ± 0.03

Escherichia/Shigella 0.11 ± 0.04 0.27 ± 0.08 0.05 ± 0.02

Turicibacter 0.07 ± 0.01 0.08 ± 0.04 0.05 ± 0.02

Romboutsia 0.10 ± 0.02 0.04 ± 0.02 0.02 ± 0.01

Klebsiella 0 0.03 ± 0.02 0.08 ± 0.04

Streptococcus 0.01 ± 0.00 0.03 ± 0.01 0.02 ± 0.01

Diversity indices

Pielou evenness 0.74 ± 0.02a 0.54 ± 0.04b 0.65 ± 0.03ab

Richness 24.8 ± 2.9 16.6 ± 1.7 22.7 ± 1.4

Shannon diversity 11.1 ± 1.2a 4.9 ± 0.6b 8.2 ± 0.9ab

Simpson evenness 0.28 ± 0.02 0.22 ± 0.02 0.24 ± 0.03

1All values are means ± SEMs. Acute HS - acute heat stress for 1 day; Chronic HS - chronic heat stress for 7 days. Values in a row within
a sampling location that have different superscripts are significantly different based on Wilcoxon Rank Sum Test. P <0.05 corrected for multiple
comparisons.
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Table 2.4: Relative abundance of the top 9 bacterial taxa at lowest identified classification and diversity indices from luminal
contents in the colon of growing pigs exposed to heat stress.1

Thermoneutral Acute HS Chronic HS

(n = 8) (n = 12) (n = 9)

Bacterial taxa

Prevotella 0.32 ± 0.03 0.30 ± 0.05 0.36 ± 0.04

Ruminococcus 0.06 ± 0.01 0.03 ± 0.01 0.03 ± 0.01

Muribaculum 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01

Acetobacteroides 0.01 ± 0.00 0.05 ± 0.02 0.01 ± 0.00

Treponema 0.02 ± 0.01 0.02 ± 0.01 0.04 ± 0.01

Parabacteroides 0.03 ± 0.00 0.01 ± 0.00 0.03 ± 0.00

Ruminococcaceae 0.02 ± 0.00 0.02 ± 0.01 0.02 ± 0.01

Succinivibrio 0.01 ± 0.00 0.03 ± 0.02 0.01 ± 0.00

Bacteroides 0.02 ± 0.01 0.01 ± 0.00 0.03 ± 0.01

Diversity indices

Pielou evenness 0.73 ± 0.02 0.67 ± 0.03 0.68 ± 0.04

Richness 52.9 ± 2.2 68.2 ± 5.8 49.1 ± 2.2

Shannon diversity 19.5 ± 1.6 21.2 ± 3.5 16.7 ± 1.8

Simpson evenness 0.17 ± 0.02 0.14 ± 0.02 0.16 ± 0.02

1All values are means ± SEMs. Acute HS - acute heat stress for 1 day; Chronic HS - chronic heat stress for 7 days. Values in a row within
a sampling location that have different superscripts are significantly different based on Wilcoxon Rank Sum Test. P <0.05 corrected for multiple
comparisons.
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Table 2.5: Relative abundance of the top 9 bacterial taxa at lowest identified classification and diversity indices from luminal
contents in the feces of growing pigs exposed to heat stress.1

Thermoneutral Acute HS Chronic HS

(n = 8) (n = 12) (n = 10)

Bacterial taxa

Prevotella 0.29 ± 0.02 0.28 ± 0.03 0.22 ± 0.03

Clostridium 0.02 ± 0.01 0.04 ± 0.01 0.01 ± 0.00

Ruminococcus 0.05 ± 0.01 0.02 ± 0.00 0.05 ± 0.01

Muribaculum 0.03 ± 0.00a 0.03 ± 0.00a 0.01 ± 0.00b

Treponema 0.02 ± 0.01 0.03 ± 0.01 0.01 ± 0.00

Parabacteroides 0.04 ± 0.01 0.02 ± 0.01 0.03 ± 0.01

Ruminococcaceae 0.02 ± 0.00 0.02 ± 0.01 0.04 ± 0.01

Bacteroides 0.02 ± 0.00 0.02 ± 0.01 0.02 ± 0.01

Selenomonas 0.04 ± 0.01 0.02 ± 0.01 0.02 ± 0.00

Diversity indices

Pielou evenness 0.74 ± 0.01 0.71 ± 0.02 0.76 ± 0.02

Richness 48.8 ± 3.1 57.8 ± 2.9 49.5 ± 1.9

Shannon diversity 18.2 ± 1.2 18.2 ± 1.4 19.7 ± 1.1

Simpson evenness 0.19 ± 0.01 0.17 ± 0.02 0.22 ± 0.02

1All values are means ± SEMs. Acute HS - acute heat stress for 1 day; Chronic HS - chronic heat stress for 7 days. Values in a row within
a sampling location that have different superscripts are significantly different based on Wilcoxon Rank Sum Test. P <0.05 corrected for multiple
comparisons.
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CHAPTER 3

Characterizing the bovine milk microbiome among quarters with

variable somatic cell counts

3.1 Abstract

Mastitis continues to be a major cost to the dairy industry with significant animal welfare

concerns. Generally, mastitis is treated as a pathogen-driven disease due to a limited set of

bacteria. The objective of this study was to survey the microbiome of milk from all four

quarters of cows on two dairies. A total of 412 quarters were sampled, somatic cell count

(SCC) determined, and DNA isolated and amplified for the V1-V3 region of the 16S rRNA

gene to classify the microbial community. Samples were categorized as low SCC (<200,00

cells/mL), mid SCC (200,000-400,00 cells/mL) and high SCC (>400,000 cells/mL). Neither

differences in relative abundance nor diversity metrics among quarters were detected, and

multivariate analysis found quarters to be more similar within a cow than among cows.

Dairy A had significantly less Staphylococcus (P <0.01) and was more rich (P <0.01) and

even (P <0.01) in community structure than Dairy B. Low-SCC quarters had significantly

less Staphylococcus (P <0.01) and were more even (P <0.01) and diverse (P <0.01) than mid-

or high-SCC quarters. Multivariate analysis confirmed that community structure differed

between the dairies, and analysis of similarity identified a difference in community structure

between low-, mid-, and high-SCC quarters. These results suggest that milk bacterial com-

munity structure is different among low-, mid-, and high-SCC quarters, as well as between

dairies.

3.2 Introduction

Mastitis causes production and economic loss among dairy herds (Heikkila, 2003; Contreras,

2011), and is a complex disease caused by multiple, often undiagnosed pathogens, that may



32

be in dynamic relation to the natural bacteria of the udder (Kuang, 2009; Patel, 2017;

Koskinen, 2010; Shome, 2011). In addition to being complex, mastitis can be difficult to

treat with the use of antibiotics in the dairy industry due to climbing rates of antibiotic

resistance (Ganada, 2016; Bonsiglia, 2011). These complications demand further research to

determine the best course of action for bovine health and productivity, particularly in regard

to alternative treatments (Crispie, 2008; Jimenez, 2008; Derakhshani, 2018). Untangling

the complex relation between intramammary infection and the natural microbiota of the

mammary gland depends on learning how the microbiome impacts the presence or type

of mastitis in a dairy herd. To further understand this relationship, we must address the

following concerns; 1. What are the bacteria present in milk at multiple somatic cell count

ranges? 2. Is milk from quarters within a cow similar in microbial composition? Do quarters

have the same or increased risk of infection? 3. Does the microbial community structure

provide support against pathogen infection, and if so, can we determine a bacterial profile

that may prevent mastitis development?

Diagnosing and treating mastitis

The known complexity of the microbial community and pathogenicity has increased

with the introduction of next generation sequencing. Mastitis has moved from a cultivable

pathogen diagnosis (supplemented by SCC; with approximately 25% of cases uncultivable),

to a complex disease which may be more than just driven by host-pathogen interaction

(Oikonomou, 2014; Bhatt, 2011). For example, Streptococcus is a common commensal milk

bacterium in both humans (Hunt, 2011; Jost, 2013, Williams, 2017) and cows (Falentin,

2016) but contains many pathogenic strains which cause mastitis (Cressier, 2011). Pathogen

identification itself does not capture every case of mastitis, which indicates a need for deeper

understanding of its etiology (Jadhav, 2018; Leitner, 2000; Malik, 2018; Taponen, 2009).

This complicates treatment protocols, particularly in terms of the impact of non-antibiotic

treatments, such as probiotics, on the commensal milk microbiome (Pellegrino, 2017; Kloster-

mann, 2008; Yu, 2017).
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Environmental influence

The Human Microbiome Project established that the presence of commensal bacteria

plays an integral role at the interface of host and environment (Turnbaugh, 2007) and pro-

vides a variety of health benefits to the host (Tambourini, 2016; Flint, 2012; Stefka, 2014).

There is also evidence that ’exposure’ to new environments can influence the community

composition of the microbiome (Meehan, 2018; Ruiz 2017; Doyle 2017). Particularly related

to mastitis, infection may be caused by an environmental pathogen, likely dominating the

community of bacteria naturally occurring in the mammary gland (Almeida, 1996; Ganada,

2017). The teat apex and milk have been shown to have distinct microbiomes. However,

both locations contain Staphylococcus, Corynebacterium, and Ruminococcus (Zanardi, 2014;

Mediano, 2017; Braem, 2014; Falentin, 2016) known to harbor potential pathogens. There

are also bacteria found in milk that are known to be in the digestive tract and environment

of ruminants such as Ruminococcaceae (Oikonomou, 2012; Young 2015; Rodrigues, 2017).

Additionally, there is little evidence available to determine if quarters within a cow are in-

dependent with respect to the microbiome and inflammation (Kuehn, 2013), and whether

quarters play an integral role in development of mastitis (Falentine, 2016). These types of

environment-microbiome interactions need further assessment to determine the risk factors

of developing mastitis and potential avenues for prevention and successful treatment.

In the present work, we used high-throughput sequencing to analyze the bacterial com-

munity structure in milk from mammary glands by quarter of dairy cows with varying levels

of inflammation, as indicated by SCC. By determining the potential interplay of quarters

and mastitis risk, as well as deploying new multivariate analyses, we hope to contribute to

the better understanding of the risk involved in cows contracting mastitis.

3.3 Materials and Methods

Animal Treatment and Approval

All animal work was approved by the Institutional Animal Care and Use Committee at
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the University of Idaho before initiation.

Sampling

Milk was collected following the methods of the National Mastitis Council (1987) from

cows (n=103) located at two dairies as they were going through the normal milking proce-

dure. Briefly, prior to milking, cows were treated with an iodine-based teat dip. Teat ends

were further cleaned with sterile gauze soaked in 70% ethanol, and the first few milliliters

of milk discarded. A subsequent 50 mL sample was collected from each quarter, before the

continuation of standard milking. All samples were stored at 4 °C until transported back

to the University of Idaho laboratory on ice. Somatic cell count was determined using an

automatic cell counter (DeLaval, Tumba, Sweden), and aliquots of milk stored at -80 °C for

further analysis. Samples were categorized as having low-SCC (<200,00 cells/mL), mid-SCC

(200,000-400,00 cells/mL) and high-SCC (>400,000 cells/mL).

DNA Extractions

Milk was thawed at 37 °C in a benchtop hybridization oven until no ice remained in the

sample. Samples were thoroughly vortexed and 1 mL of milk was centrifuged at 4000 x g

at 4 °C to form a pellet of cellular components. The lipid layer was removed along with the

supernatant, and the cell pellet was resuspended in 500 µL buffer (10 mM tris-HCl:50 mM

tris-acetate-ethylenediamine tetraacetic acid (EDTA, 0.5 M, pH 8, Sigma, St. Louis, MO):

TE50). The suspension was subjected to an enzymatic lysis wherein samples were lysed for

1 hr at 37 °C using an enzyme cocktail consisting of 50 µL lysozyme (10 mg/mL), 6 µL

mutanolysin (25,000 U/mL), and 3 µL lysostaphin (4000 U/mL in sodium acetate) in 41 µL

TE50. Samples were then subjected to a physical disruption step using 0.1 mm zirconia/silica

beads (BioSpec Products, Bartlesville, OK) in a FastPrep FP120 (Qbiogene, Carlsbad, CA)

set at 5 for 2 x 30 sec. DNA was then extracted from the cell lysate using the QIAamp® DNA

Mini Kit (Qiagen catalog no. 51304, Valencia, CA) according to manufacturer’s protocol.

Samples were eluted in 50 µL nuclease free water and stored at -80 °C until further processing.
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PCR Amplification

Microbial DNA was amplified using seven-fold degenerate universal primers targeting the

V1-V3 region of the 16S rRNA gene (Williams et al, 2017). The initial PCR mixture con-

tained 0.05 µM target-specific primers (Integrated DNA Technologies, Coralville, IA), 5 µL

10X 360 PCR buffer (Life Technologies, Carlsbad, CA), 3 mM MgCl2 (Life Technologies),

0.24 mg/mL bovine serum albumin (Sigma, St. Louis, MO), 0.2 mM dNTP (Life Tech-

nologies), 0.255% DMSO, 0.05 U/µL AmpliTaq® DNA 360 polymerase (Life Technologies),

nuclease-free water (Ambion, City, State), and 10 µL of DNA template in a total volume of

50 µL Due to the low biomass nature of samples, some samples (n = 161) were unable to

be amplified with this protocol.These samples were amplified using Q5 2X Hot Start High

Fidelity Master Mix (New England Biolabs, Ipswich, MA), the same seven-fold degener-

ate primers targeting V1-V3, and 5 µL of DNA template in a 25 µL reaction. PCR was

conducted using either an Applied Biosystems 2720, Veriti, or ProFlex model thermocycler

under the following conditions: initial denaturation for 2 min at 95 °C followed by 20 cycles

of 95 °C for 20 sec, 60 °C for 30 sec, and 72 °C for 1 min with a 0.5 °C step-down in the

annealing temp each cycle, an additional 20 cycles at 95 °C for 20 sec, 50 °C for 30 sec, and 72

°C for 1 min, and a final extension step of 72 °C for 5 min. Samples were held at 4 °C in the

thermocycler until being stored at -20 °C. Products from the PCR were electrophoresed on

1% agarose gels made with tris-acetate-ethylenediamine tetraacetic acid (TAE; 40 mM Tris,

20 mM acetic acid, 1 mM EDTA) buffer and containing ethidium bromide (0.0007 mg/mL).

Gels were allowed to electrophorese for 30 min at 80 V, and PCR products viewed using

the BioRad UltraCam Digital Imaging System (Hercules, CA). Samples with high-quality

amplicons (relatively bright band of interest at 534 bp), low primer-dimers, and absence

of unwanted bands or smears were deemed acceptable for a second PCR reaction. First

PCR products were diluted 1:100 with nuclease-free water, and 4 µL of DNA template were

added to a second round of PCR in a reaction mix containing 75 nM primers with dual-index

barcodes and Illumina sequencing adapters obtained from the University of Idaho’s Institute
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for Bioinformatics and Evolutionary Studies Genomics Resources Core (IBEST GRC), Q5

2X Hot Start High Fidelity Master Mix (NewEngland Biolabs) and nuclease free water to a

volume of 20 µL. PCR was conducted using an Applied Biosystems 2720 thermocycler under

the following conditions: initial denaturation for 30 sec at 98 °C, followed by 15 cycles of 98

°C for 10 sec, 60 °C for 20 sec, 72 °C for 20 sec, and a final extension step of 72 °C for 2 min.

Samples were held at 4 °C in the thermocycler until being stored at -20 °C. Quality of 2nd

PCR amplicons was evaluated using a QIAxcel DNA screening cartridge (Qiagen), and DNA

quantified using the Qubit double stranded DNA high sensitivity assay (Life Technologies).

Sequencing

An appropriate volume of each amplicon (containing 50 ng DNA) was pooled to create a

composite sample for high-throughput multiplexed sequencing and submitted to the IBEST

GRC for further processing and sequencing. Amplicon pools were size-selected using AM-

Pure beads (Beckman Coulter, Indianapolis, IN) and processed on a DNA 1000 chip for the

Agilent 2100 Bioanalyzer. The cleaned amplicon pool was quantified using the KAPA Illu-

mina quantification kit (KAPA Biosciences, Wilmington, MA) and the Applied Biosystems

StepOne Plus real-time PCR system. Sequences were obtained using an Illumina MiSeq

(San Diego, CA) v3 paired-end 300-bp protocol for 600 cycles.

Data Processing and Statistics

Raw sequences were demultiplexed using a custom python application dbcAmplicons

(https://github.com/msettles/dbcAmplicons) where reads were identified by expected primer

sequence and barcode as described previously (Williams et al. 2017). Reads were subse-

quently split by sample for further filtering using a custom python script. Reads were then

processed using the DADA2 package (version 1.6.0; Callahan, 2016) using a trim length

of 270 bp, a max error rate of 30 (11%); parameters to filter reads using only the read

1 sequencing data (27-290 bp of 16S; V1-V2), and taxonomic assignment used the SILVA

database (version 128). Note, read 1 was used exculsively due to an inability to merge for-

ward and reverse reads after quality filtering. Unique sequences resulting from filtering using



37

DADA2 were further aggregated to the genus taxonomic level using phyloseq (version1.22.3)

and processed to represent the most abundant (>0.001%) of the overall data, and all genera

representing <0.001% of the data were condensed into an “other” category.

Aggregation and summary statistics were performed in phyloseq (version 1.22.3) in the R

environment (version 3.4.2; R Core Team, 2016); one genus Ruminococcacea UCG-005 was

identified in the Silva database, but has not been assigned a genus level name and will be

referred to simply as Ruminococcacea. Table statistics were calculated in SAS (version 9.4)

using PROC MIXED with dairy, SCC category, and quarter as dependent variables, and

Bonferonni adjusted values used to declare significance at P <0.05. Principal componenet

analysis (PCA) plots were made including all genera using ggplot2 package (version 2.2.1).

NMF analysis was performed using the NMF package with factorization rank 20, 100 runs,

under the Brunet algorithm (version 0.21.0). Additive main effects and multiplicative in-

teraction (AMMi) models of genotype-by-environment (GxE) interactions of bacteria and

environments were performed using both SAS (version 9.4) robustreg procedure and R pack-

ages rlm (version 1.2) and pcaMethods (version 1.70.0) (methods adapted from Rodrigues,

2015). The final biplots were made using SAS sgplot procedure. Chi square, ADONIS

(PERMANOVA), and ANOSIM analyses were run in the R environment. Chi square was

run on presence or absence of bacterial genera, ADONIS was run with dairy x quarter x SCC

category interactions in the model, and ANOSIM was run with a Bray-Curtis dissimilarity

on each variable.

3.4 Results

General disposition of the data

Initially, 14,479,995 sequence reads (average: 34,807 reads/sample; range: 60-510,748

reads/sample) were generated through dbcAmplicons. Further processing using DADA2

(Callahan, 2016) yielded 10,800,318 reads (average: 25,962 reads/sample; range: 23-427,149

reads/sample). Samples with fewer than 1000 reads were eliminated from the study providing
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relative abundances in milk from 400 quarters for further analysis. Unique sequence variants

which could not be classified to the kingdom “bacteria” and were “uncharacterized” at the

phylum level were removed, and unique sequences were collapsed by their genus assignment

using the SILVA database (version 128); 18,473 unique sequences were unidentifiable at the

genera level and were removed from further analysis. The agglomeration step yielded 925

unique genera. At the genus level, bacterial units which represented less than 0.1% of the

total data were removed from the analysis leaving 596 unique genera. These genera were

further reduced to the top 59 most abundant (genera summed across all samples made up for

>1% of the total), with the remaining genera collapsed into a composite category “other”.

Relative Abundances and Diversity

Staphylococcus (12.5%), Ruminococcaceae (7.3%), Corynebacterium (6.1%), Turicibacter

(4.7%), and Intestinibacter (4.4%) made up the top 5 most abundant taxa overall. Several

differences were found between dairies and among SCC categories. Milk from cows in dairy A

had less Staphylococcus (P <0.01) and Ruminococcaceae (P <0.01), and more Tiricibacter (P

<0.01), Clostridium sensu stricto (P <0.05), Pseudomonas (P <0.01), Paeniclostridium (P

<0.01), and “other” bacteria (P <0.01) than milk from cows in dairy B (Table 1). Milk from

cows in dairy A had a richer microbial composition (P <0.01), being more even (P <0.01)

and more diverse (P <0.01) than milk from cows in dairy B (Table 1). Milk with low-SCC

had less Staphylococcus than milk produced by either mid- or high-SCC quarters (P <0.01)

(Table 2). Milk with low-SCC also had significantly higher abundance of Ruminococcaceae

(P <0.01) and Atopostipes (P <0.05) than milk with high SCC, but milk with mid SCC was

not different from milk with low or high SCC (Table 2). Milk with low SCC was also richer

than milk with high SCC (P <0.01), more even (Pielou’s) (P <0.01), and more diverse (P

<0.01) than milk with mid or high SCC quarters, with the exception of Simpson Evenness

which did not different among categories (Table 2). No differences were found in the relative

abundance of any bacteria taxa or any diversity index by quarter (Table 3).
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Chi square, ANOSIM, and ADONIS

Contingency tables of bacterial presence/absence were used to look at differences via chi-

square test across the categories of data. Based on presence/absence, bacterial communities

in milk were different (P <0.001) in structure while bacterial communities among quarters

and SCC categories were not different (P = 1 and P = 0.9864, respectively). Community

differences between dairies (P <0.001), among SCC categories (P <0.001), the interaction

between dairy and SCC category (P <0.002), and the interaction between quarter and SCC

category (P <0.042) were declared when a relative abundance (as opposed to presence/ab-

sence) ADONIS (PERMANOVA) multivariate approach based on a Bray-Curtis dissimilarity

was used. A pairwise post hoc test was applied to determine differences between the 3 SCC

categories which revealed that the community structure of milk with low SCC was different

from the mid and high SCC categories (P <0.015), but the composition of the bacterial

community in milk classified as mid and high SCC were not different (Figure 1). Analysis of

similarity (ANOSIM) also showed community structure differences by asking if the commu-

nity was more similar within a given category than compared to the whole set of quarters.

The ANOSIM approach determined that microbial communities in milk from a given quarter

were most similar within a cow (R = 0.4538, p = 0.001), more similar within a dairy (R =

0.3931, p = 0.001), not different among quarters (R = -0.0048, p = 0.946), and more similar

within a SCC category (R = 0.2335, p = 0.001). This provides further evidence that some

community differences exist based on animal, dairy, and SCC category.

NMF

Non-negative matrix factorization (NMF) was employed to see if there were distinct

differences driving the pattern of data (Brunnet, 2004; Gaujoux, 2010). This analysis looks

for patterns in the data by reducing the matrix dimensions and determining the probability

of contribution to the data structure, which allows a look beyond the relative abundances

of the bacteria. A NMF score closer to one indicates higher probability it has contributed

to the data structure. Based on the results from ADONIS and ANOSIM, NMF helped to
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discover bacterial taxa that may differ in contribution to the categorical variables. The

overall data structure was strongly influenced by Streptococcus, Bifidobacterium, Serratia,

Janibacter, Sphingomonas, and Clostridium sensu stricto. The similarities across dairies

showed that Kocuria, Aerococcus, Staphylococcus, and Faecalibacterium (score = 0.95 - 1)

contributed strongly to each dairy, and to the overall community structure. The genera that

contributed equally strongly (0.95-1) to the data differed in the following ways: dairy A had

the least number of genera that contributed at this level to the data structure; which included

Sphingomonas and Corynebacterium; dairy B included Ornithinimicrobium, Enterococcus,

Leucobacter, Aequorivita, Glutamicibacter, Streptococcus, and Serratia (Table 4). The SCC

category showed more variability than the dairy category, with low SCC having nine genera

contributing at scores equal to one, the highest ranked genera contributing to the variability

in milk at the mid SCC was Enterococcus (0.975), and the high SCC category had only 2

genera contributing strongly to the data (Table 5). The quarter data look very similar, with

the top contributors having 6 genera in common across quarters. Small variations among

quarter data structure did exist, particularly Escherichia/Shigella in the right front quarter

which could be due to a single quarter outlier contained only detected Escherichia/Shigella

in that sample and was categorized as high SCC (Table 6). Notably, many of these genera

were not found in the most abundant taxa but play a role in the community composition

of the data. Heat maps showing the differences in contribution across these 3 categorical

variables are available in Figures 2-4.

PCA and AMMi

To further identify community differences between categorical variables, principal com-

ponent analysis (PCA) was used to see if there were any groupings by categories. Figures 5

and 6 show that the only grouping in the data was by dairy, with a very strong dairy effect.

Grouping by SCC category or quarter lack clear distinction (Figures 5 and 6). Further, SCC

does not cluster by dairy. Because the relative abundance may not capture the important

differences in the data, a robust genome by environment type test was employed, additive
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main effects and multiplicative interaction (AMMi) models. These models look at the vari-

ation in the data directly and then plot the variation of samples along with the bacterial

contribution to the axes. The AMMi results support a very strong dairy effect (clustering

by dairy; Figure 7), and no clustering by SCC category or quarter (Figure B and C, respec-

tively). Again, no clustering was noted based on SCC category when each dairy was plotted

(Figure 8).

3.5 Discussion

The purpose of the current study was to survey the microbial community in milk from

quarters of dairy cows with varying SCC across two dairies. These data provide a survey

of the bacteria present in mostly healthy quarters and show that microbial composition is

related to inflammation and environment.

Environment/Dairy

There were differences in the milk microbiome and diversity indices between dairy A

and dairy B; likely due to differences in environment, milking practices, animal husbandry,

and/or genetics (Figure 1). Dairies clustered separately when examining the microbiome of

healthy quarters using discriminant analysis similar to what others have found (Oikonomous,

2014). The genera driving the differences between dairies were Glutamicibacter, (found in

cheese cultures, Jannala, 2018) Janibacter, Ornithinimicrobium (both previously reported in

the raw milk microbiome, Raats, 2011; Li, 2018), and Bifidobacterium (a common microbe

used as a probiotic and found in milk; Gueimonde, 2007). Differences to this degree have

been shown, most notably, between dairy breeds; Kankrej, Gir, and crossbred Bos taurus

x B. indicus (Bhatt et al., 2012) where different breeds produced milk which only shared

∼12% of bacteria. Bhatt et al. (2012) evaluated their sequences at the family level and saw

distinct differences between breeds in Bacillaceae, Staphylococcaceae, Streptococcaceae, and

Enterococcaceae, which contain many of the common genera in the bovine milk microbiome.

Only Holstein cows were sampled on the two dairies in the current study, eliminating the
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effect of breed as a part of the differences in milk microbiome between dairies. Environ-

mental aspects from milking procedures, to feed, housing, and animal care practices may

explain some of the differences found between our locations (Doyle, 2017). In addition to the

potential environmental differences that may distinguish predominant bacterial genera, the

history of mastitis may determine the community structure of the milk microbiome. While

historical data were not collected in the present study, Falentin et al. (2016) found distinct

clustering of the teat microbiome by PCA of healthy (defined as never having mastitis) from

infected quarters. This demonstrates that the environment (milking practices, environmen-

tal exposure, feeding practices, disease history etc.) may play a large role in the community

structure of milk from dairy cows. Historical data about inflammation may play a larger

role in diagnosing and treating mastitis in the future.

Quarters and SCC

Overall, the most dominant bacteria across all milk samples were Staphylococcus, Ru-

minococcaceae, and Corynebacterium, all of which have some association with mastitis (Kuang,

2009; Rodrigues, 2017; Metzger, 2018). These genera have been shown to be key players in

the milk microbiome of both healthy humans and cows (Park, 2007; Hunt, 2011; Oikonomou,

2014; Quigley, 2013). Staphylococcus became a larger percentage of the relative abundance of

the bacterial community in milk as SCC increased, supporting significant knowledge about

the role of Staphylococcus in mastitis (Delgado, 2009; Contreras, 2011; Almieda, 1996). In

addition, the increase in Staphylococcus was associated with decreases in other bacterial

abundance (Table 2). These changes could reflect simply the analysis of relative abundance

or suggest that Staphylococcus can out-compete the other genera to establish a more biased

community. Ma et al. (2015) have suggested a potential partnership of Staphylococcus and

Corynebacterium in human milk that can lead to dysbiosis. These genera appear to have an

inverse relationship relative to SCC category (higher Staphylococcus and lower Corynebac-

terium in mid and high SCC quarters) which is likely decreasing based on the increase in

Staphylococcus and the nature of relative abundance data. Thus, the potential partnership
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noted by Ma et al. (2015) is not supported. The presence of Rumicococcaceae which are

commonly found in the digestive tract of ruminants (Lima, 2017), shows both the poten-

tial for environmental microbes to play a role in the milk microbiome, but may also be

supportive of the enteromammary pathway, described in humans and mice (Young, 2015;

Perez, 2007; Fernandez, 2013), though we found lower relative abundance at high SCC (Ta-

ble 2). Contamination during milking and storage cannot be ruled out, though sampling

milk by needle aspiration of the teat cistern rather than expression through the teat canal

still shows a diverse microbial community in milk (McGuire, 2017a). Most studies to date

(Ganda, 2017; Kuehn, 2013) have looked exclusively at healthy versus inflamed quarters,

at most pairing these quarters in a cow, but have never looked at the potential indepen-

dence of all four mammary glands (quarters) within a cow. Our direct analysis showed that

milk across quarters were remarkably similar in bacterial composition with no significant

taxa or diversity differences, even when one or multiple quarters had increased SCC (Table

3), and ANOSIM determined that quarters were more similar within a cow than among

cows. This contrasts with previous findings where quarters were not necessarily more similar

within a cow, especially in the case of inflamed quarters (Falentin, 2016). Previous findings

also suggest that milk from mastitic quarters showed a predominance of a single bacterial

pathogen, which accounts for the low diversity (Oikonomous, 2014), although subclinical

mastitis may be the result of multiple pathogens which may limit changes in diversity or

evenness (Bhatt, 2011). Our results generally support a limit with richness, diversity, and

evenness consistently decreasing with elevated SCC indicating a less complex community

associated with inflammation (Table 2). The highest diversity was in milk with low SCC in

support of the general thought that greater diversity is associated with increased health or

positive outcomes (Braem, 2012).

Analysis

Principal component analysis (PCA), principal coordinate analysis (PCoA), and discrim-

inant analysis have all been leveraged to summarize the complexity of microbial composition
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data by looking at the variation between samples. Specifically, these analyses have distin-

guished variation between healthy and mastitic quarters based on the microbial variation,

and particularly that culture negative mastitic samples look distinct from others (Falentin,

2016; Khuen, 2013; Oikonomou, 2014; Lima, 2018). The data in the present study do not

show clustering due to SCC level (as a proxy for mastitis) using PCA and AMMi analysis.

The majority (360 out of 400 samples) of milk from quarters in our study were low in SCC,

which may limit the ability to detect differences. A limitation of these clustering analyses

are that they distill the data to an understandable 2-dimensional picture, based on varia-

tion which is often driven by the most abundant taxa. We explored two methods from the

genetics field in order to determine if there were less abundant taxa playing key roles in the

community structure of the milk microbiome, which can be highly important to function

(e.g., oxalate degredation in woodrat populations (Ridenhour, 2017)). Non-negative matrix

factorization (NMF) was employed which looks for patterns in high dimensional data but is

independent of the relative abundance of the bacterial taxa. The purpose of this strategy is

to decompose the data matrix into components and determine their potential probability of

contribution to the underlying variability structure (Brunett, 2004; Shafii, 2017; McGuire,

2017b; Cai, 2017; Rodriguez, 2016). The results from this analysis show contributions from

lower abundance bacteria, that create unique group distinctions, as well as show us which

bacteria may contribute to milk bacteria structure overall. For example, Kocuria had high

NMF scores in both dairies and at all SCC levels, but only makes up on average 1-2% of any

of those communities, and though no known mastitis causing species are reported, certain

species have been implicated in cholocystitis (Ma, 2005) and urinary tract infections (Chen,

2015). Similarly, Serretia makes up ∼ 1% of average milk microbial composition with low

SCC but only 0.07% of milk microbial composition with mid or high SCC and has been

reported as an opportunistic environmental pathogen (Zadoks, 2011). Though there is little

known about the potential role for these microbes, they do appear to play a role in distin-

guishing milk microbial community structure. Additionally, the bacteria contributing with
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the highest probability to the data structure across quarters is highly consistent, despite

SCC variability, providing further evidence that quarters are very similar across cows (Table

6). Additionally, we adapted genotype by environment interaction models to look at the

multivariate structure of the microbial communities. Additive main effects multiplicative

interaction models (AMMi) decompose the environmental factors (such as sample type, lo-

cation, etc.) and genetics (bacterial taxa) matrix into smaller contributing parts (Rodriguez,

2016). Again, this helps to eliminate the dependence on overly abundant data. We found

that the strongest clustering was by dairy (Figure 7), further supporting environmental fac-

tors playing a key role in the microbial composition of milk from dairy cows based on their

location and care.

Limitations

Despite the distinct differences by dairy in the bacterial community composition of milk,

only sampling two locations limits the extent to which we can assume environment plays a

key role in microbial community structure. We sampled all quarters within cows without

discrimination of presence or absence of inflammation providing data skewed toward healthy

milk (<200,000 cells/mL). This limits the conclusions we can make based on the lower

number of inflamed quarters. Future work needs to sample more dairies, using the same

techniques across samples, and look at the same statistical tests to determine true environ-

mental/location differences. Other studies have also shown strong evidence of pathogenicity

in mastitis by presenting the culture dependent results alongside the culture independent

results, and this evidence could have been useful in determining a category of high SCC

culture negative milk samples to corroborate previous studies (Taponen, 2009; Koskinen,

2009).

Conclusion

There continues to be a need for methods of treatment and prevention of mastitis through

more knowledge. Many milk samples from cows with symptoms of mastitis fail to have

an identifiable pathogen. Thus, more work needs to be done in the areas of multi-omics
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approaches (microbiome, metabolomics, proteomics, etc.) to determine the causative agents

of intramammary inflammation. We determined that quarters are more similar within a cow

than among cows and that environment and SCC may contribute to changes in diversity

metrics and microbial constituents. Further research needs to be done in order to determine

the active etiological agents that cause mastitis, and the microbiome may play an important

role in both prevention and treatment of mastitis.
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Figure 3.1: Analysis of similarity (ANOSIM) results showing the variation between groups (“Between” bar in each plot) and
within group variation: (A) dairy, (B) quarter, (C) SCC category, and (D) the posthoc difference among the SCC Categories.
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Figure 3.2: Heatmap of non-negative matrix factorization (NMF) contribution probabilities
by dairy.
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Figure 3.3: Heatmap of non-negative matrix factorization (NMF) contribution probabilities
by SCC category.
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Figure 3.4: . Heatmap of non-negative matrix factorization (NMF) contribution probabilities
by quarter.
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Figure 3.5: Principal component analysis (PCA) results of relative microbial abundance (PC1 and PC2), where data are colored
by (A) dairy, (B) SCC Category, and (C) Quarter.
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Figure 3.6: Principle component analysis (PCA) results of relative microbial abundance (PC1 and PC2) among individual
dairies, where data are colored by SCC category: (A) dairy A and (B) dairy B.
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Figure 3.7: Additive main effects and multiplicative interaction (AMMi) model results of relative microbial abundance, where
axes are equivalent to principal components 1 and 2, and data colored by (A) dairy, (B) SCC category, (C) quarter.
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Figure 3.8: Additive main effects and multiplicative interaction (AMMi) model results of relative microbial abundance, among
individual dairies, where axes are equivalent to principal components 1 and 2, and data colored by SCC category: (A) dairy A
and (B) dairy B.



55

Table 3.1: Relative abundance of the top 11 bacterial genera and diversity metrics in bovine milk from two dairies.1

Dairy A Dairy B

(n = 191) (n = 209)

Bacterial taxa

Staphylococcus 5.3 ± 1.0a 19.0 ± 1.9b

Ruminococcaceae 3.1 ± 0.2a 11.1 ± 0.5b

Corynebacterium 6.6 ± 0.4 5.6 ± 0.6

Turicibacter 5.3 ± 0.4a 4.2 ± 0.3b

Intestinibacter 4.2 ± 0.2 4.6 ± 0.2

Atopostipes 3.6 ± 0.3 3.1 ± 0.3

Clostridium sensu stricto 3.3 ± 0.3a 2.6 ± 0.2b

Pseudomonas 2.8 ± 0.3a 1.4 ± 0.2b

Paeniclostridium 2.3 ± 0.1a 1.7 ± 0.1b

Glutamicibacter 4.0 ± 0.3 0.1 ± 0.0

“Other” 18.9 ± 0.6a 14.0 ± 0.7b

Diversity indicies

Richness 46.5 ± 0.65a 38.4 ± 0.59b

Pielou evenness 0.76 ± 0.01a 0.67 ± 0.01b

Shannon diversity 19.8 ± 0.4a 13.7 ± 0.4b

Shannon entropy 2.9 ± 0.05a 2.4 ± 0.03b

Simpson evenness 0.25 ± 0.01a 0.22 ± 0.01b

Inverse simpson 11.7 ± 0.3a 8.2 ± 0.3b

1All values are means ± SEMs. Values in a row within a sampling location that have different superscripts are significantly different based on a
mixed effect model. P <0.05 corrected for multiple comparisons.
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Table 3.2: Relative abundance of the top 11 bacterial genera and diversity metrics in bovine from milk with varying SCC levels.1

Low SCC Mid SCC High SCC

(n = 340) (n = 26) (n = 34)

Bacterial taxa

Staphylococcus 10.0 ± 1.1a 29.6 ± 6.4b 24.6 ± 5.5b

Ruminococcaceae 7.5 ± 0.4a 7.4 ± 1.2ab 5.0 ± 0.9b

Corynebacterium 6.4 ± 0.4 4.9 ± 1.1 4.6 ± 2.1

Turicibacter 4.7 ± 0.2 5.0 ± 1.0 5.0 ± 0.9

Intestinibacter 4.4 ± 0.2 4.2 ± 0.8 4.4 ± 0.8

Atopostipes 3.7 ± 0.2a 2.0 ± 0.5ab 1.6 ± 0.3b

Clostridium sensu stricto 2.9 ± 0.2 3.3 ± 0.8 2.8 ± 0.6

Pseudomonas 2.3 ± 0.2 1.2 ± 0.6 1.0 ± 0.3

Paeniclostridium 2.0 ± 0.1 1.8 ± 0.3 1.6 ± 0.3

Glutamicibacter 2.1 ± 0.2 0.7 ± 0.3 1.1 ± 0.3

“Other” 16.8 ± 0.5 11.4 ± 1.8 14.7 ± 2.5

Diversity indicies

Richness 43.4 ± 2.7a 37.8 ± 0.5ab 34.3 ± 2.0b

Pielou evenness 0.73 ± 0.04a 0.63 ± 0.04b 0.61 ± 0.01b

Shannon diversity 17.4 ± 1.4a 12.0 ± 0.3b 12.0 ± 1.3b

Shannon entropy 2.7 ± 0.2a 2.2 ± 0.0b 2.1 ± 0.2b

Simpson evenness 0.24 ± 0.01 0.20 ± 0.02 0.26 ± 0.04

Inverse simpson 10.4 ± 1.0a 7.1 ± 0.2b 7.1 ± 1.0b

1All values are means ± SEMs. Low SCC <200,000 cells; Mid SCC 200,000-400,000 cells; High SCC >400,000 cells Values in a row within a
sampling location that have different superscripts are significantly different based on a mixed effects model. P >0.05 corrected for multiple comparisons.
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Table 3.3: Relative abundance of the top 11 bacterial genera and diversity metrics in bovine milk across quarters.1

Right Front Right Rear Left Rear Left Front

(n = 101) (n = 101) (n = 99) (n = 99)

Bacterial taxa

Staphylococcus 10.0 ± 1.9 12.0 ± 2.3 13.7 ± 2.6 13.7 ± 2.6

Ruminococcaceae 7.9 ± 0.7 7.0 ± 0.7 6.9 ± 0.7 7.2 ± 0.8

Corynebacterium 6.3 ± 0.9 5.7 ± 0.6 6.3 ± 0.8 5.9 ± 0.6

Turicibacter 5.1 ± 0.5 4.7 ± 0.4 4.9 ± 0.5 4.3 ± 0.4

Intestinibacter 4.5 ± 0.3 4.3 ± 0.3 4.8 ± 0.4 4.0 ± 0.3

Atopostipes 4.3 ± 0.5 3.1 ± 0.3 3.1 ± 0.4 3.0 ± 0.4

Clostridium sensu stricto 2.8 ± 0.3 2.8 ± 0.3 3.5 ± 0.6 2.6 ± 0.3

Pseudomonas 2.1 ± 0.3 2.3 ± 0.4 2.0 ± 0.3 2.0 ± 0.3

Paeniclostridium 2.0 ± 0.2 1.9 ± 0.2 2.1 ± 0.2 1.9 ± 0.2

Glutamicibacter 1.7 ± 0.3 2.2 ± 0.4 1.8 ± 0.3 2.0 ± 0.3

“Other” 16.3 ± 0.9 16.7 ± 0.9 15.6 ± 1.0 16.6 ± 1.1

Diversity indicies

Richness 42.8 ± 1.0 42.4 ± 0.9 42.0 ± 1.0 41.7 ± 0.9

Pielou evenness 0.73 ± 0.02 0.72 ± 0.01 0.70 ± 0.01 0.70 ± 0.02

Shannon diversity 17.0 ± 0.7 16.8 ± 0.6 16.1 ± 0.6 16.6 ± 0.7

Shannon entropy 2.7 ± 0.1 2.7 ± 0.1 2.6 ± 0.1 2.6 ± 0.1

Simpson evenness 0.25 ± 0.01 0.24 ± 0.01 0.22 ± 0.01 0.23 ± 0.01

Inverse simpson 10.2 ± 0.4 10.1 ± 0.4 9.5 ± 0.4 9.8 ± 0.5

1All values are means ± SEMs. Values in a row within a sampling location that have different superscripts are significantly different based on a
mixed effect model. P <0.05 corrected for multiple comparisons.
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Table 3.4: Non-negative matrix factorization (NMF) scores by dairy.1

Dairy A Dairy B Overall

Kocuria 1 Ornithinimicrobium* 1 Streptococcus* 1

Aerococcus 1 Kocuria 1 Bifidobacterium* 1

Sphingomonas 1 Faecalibacterium 1 Kocuria 1

Corynebacterium* 1 Enterococcus* 1 Aerococcus 1

Staphylococcus 1 Leucobacter* 1 Serratia* 1

Faecalibacterium 0.95 Escherichia/Shigella 1 Faecalibacterium 1

Propionibacterium* 0.94 Aequorivita* 1 Escherichia/Shigella 1

Clostridium sensu stricto* 0.92 Glutamicibacter* 1 Janibacter 1

Turicibacter* 0.92 Aerococcus 1 Sphingomonas 1

Bacteroides* 0.85 Staphylococcus 1 Staphylococcus 1

1*are exclusively in the top10 of one category
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Table 3.5: Non-negative matrix factorization (NMF) scores by SCC category. 1

Low SCC Mid SCC High SCC

Sphingomonas 1 Enterococcus 0.98 Faecalibacterium 1

Faecalibacterium 1 Faecalibacterium 0.77 Escherichia/Shigella 1

Serratia 1 Sphingomonas 0.76 Streptococcus 0.94

Glutamicibacter* 1 Tyzzerella* 0.63 Aerococcus 0.92

Streptococcus 1 Kocuria 0.63 Serratia 0.85

Bifidobacterium 1 Escherichia/Shigella 0.63 Kocuria 0.81

Aerococcus 1 Leucobacter* 0.62 Bifidobacterium 0.77

Kocuria 1 Serratia 0.61 Staphylococcus 0.77

Staphylococcus 1 Propionibacterium* 0.59 Enterococcus 0.67

Clostridium sensu stricto* 0.97 Dietzia* 0.58 Aliicoccus* 0.66

1*are exclusively in the top10 of one category. Low SCC <200,000 cells; Mid SCC 200,000-400,000 cells; High SCC >400,000 cells
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Table 3.6: Non-negative matrix factorization (NMF) scores by quarter.1

Left Rear Left Front Right Front Right Rear

Bifidobacterium 1 Bifidobacterium 1 Escherichia/Shigella* 1 Kocuria 1

Serratia 1 Kocuria 1 Aerococcus 1 Serratia 1

Faecalibacterium 1 Enterococcus 1 Sphingomonas 1 Sphingomonas 1

Streptococcus 1 Faecalibacterium 1 Streptococcus 1 Faecalibacterium 1

Aerococcus 1 Aerococcus 1 Kocuria 0.98 Bifidobacterium 1

Staphylococcus 0.99 Serratia 0.99 Staphylococcus 0.94 Glutamicibacter* 1

Kocuria 0.99 Staphylococcus 0.96 Faecalibacterium 0.92 Aerococcus 1

Janibacter 0.90 Psychrobacter* 0.88 Bifidobacterium 0.90 Streptococcus 0.99

Turicibacter* 0.82 Streptococcus 0.85 Atopostipes* 0.89 Staphylococcus 0.98

Enterococcus 0.80 Janibacter 0.83 Serratia 0.88 Janibacter 0.88

1*are exclusively in the top10 of one category
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CHAPTER 4

Global variation, evolutionary perspective, and associations of

candidate genes with human milk oligosaccharides and lactose

4.1 Abstract

The evolution and genetic regulation of lactation has growing interest, particularly with re-

gard to milk carbohydrates. This study sought to report on global variation in candidate

genes associated with the synthesis of human milk carbohydrates, compare this variation to

milk carbohydrate phenotypes, and assess the evidence for evolutionary selection on those

genes. Primer pairs (n = 113) were designed to cover exonic regions of four genes associ-

ated with milk carbohydrate production and two pseudogenes for examination of signatures

of selection. Sequences were mapped to the human reference and 230 single nucleotide

polymorphisms (SNPs) were identified. These SNPs were then associated with 19 human

milk oligosaccharide concentrations and lactose from paired samples. Previously unreported

variants were discovered in each gene: one in LALBA, 49 in FUT2, two in FUT3, and 27

in ST6GalNAc5. Evolutionary statistics (FST , Tajima’s D, and π) were calculated, and 25

SNPs were determined to be under selective pressure (elevated FST ). These results show pre-

liminary evidence that milk synthesis is likely under evolutionary pressure, genes involved

in milk carbohydrate regulation are variable and impact milk carbohydrate concentrations,

and more work needs to be conducted regarding the genetic regulation of milk constituents.

4.2 Introduction

The evolution of lactation has been debated for well over a century (Hayssen, 1985) and

nutrient composition of milk has been of interest for decades as this food source provides

the first nutrition to young (McGuire, 2017). Human milk has long been considered the

gold standard of infant nutrition (WHO, 2017), and provides nutrients, immune-modulatory
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factors, microbial constituents, and many other active factors to the developing infant (Hale

and Hartmann, 2017). Composition has focused on macro- (e.g., fat, protein, carbohydrates)

and micronutrients (e.g., vitamins and minerals) and the variation among mammals of the

same species as well as variation among species (Capuco, 2009). There exists substantial

evidence that milk nutrient composition is regulated by diet (Lonnerdal, 1986), but research

on the role of genetics on milk nutrient composition is growing (Colodro-Conde, 2015; Fanos,

2017; Lee, 2016; Strucken, 2015). Even further than just genetic regulation, research has

begun to address the evolutionary nature of lactation via genetics, and how nutrient compo-

sition has adjusted over time to develop into the ideal nutrient source for neonatal mammals

(Lemay, 2009).

An initial factor that influences both genetic regulation as well as the evolution of lac-

tation is the presence and nature of lactose. Lactose is a disaccharide made up of glucose

and galactose linked together by lactose synthase, an enzyme complex composed of beta-

galactosyltransferase 1 and alpha-lactalbumin. Considering lactose is an osmotic regulator

in the mammary gland, driving milk production (Oftedal, 2009) and the genetic similarity

to lysozyme, alpha-lactalbumin synthesis has been hypothesized to be at the center of the

development of lactation (Capuco, 2009). Evidence has pointed to a gene duplication and

subsequent adaptation of alpha-lactalbumin from lysozyme (Hayssen, 1985). The incep-

tion of alpha-lactalbumin is estimated at least 310 million years ago which is prior to the

split between synapsids and sauropsids, whereas the earliest mammaliforms were identified

approximately 100 million years later (Oftedal, 2009). More complex than lactose, oligosac-

charides also make up a proportion of sugars in milk ranging from the most abundant in some

monotremes and marsupials to low, but appreciable quantities in modern mammals (Oftedal,

2009). Oligosaccharides are all founded on a backbone of lactose with additional sugar units

added in various branching structures (Bode, 2012). Variability in these components due

to environmental factors and diet of the mother has been noted; however, there is likely a

maternal genetic effect on milk oligosaccharides (Hale and Hartmann, 2017). Human milk



63

oligosaccharides (HMO) vary in type and quantity across human populations (Erney, 2000;

Thurl, 2007; McGuire, 2017). Specifically, HMO are a set of complex carbohydrates found

in human milk that, despite not serving as nutrients per se for the infant, can act as prebi-

otics for the microbiota of the developing infant gastrointestinal tract (GIT) (Bode, 2012;

Kononova, 2017) and potentially the maternal milk microbiome (Triantis, 2018). Oligosac-

charides also potentially act to modulate the infant immune system, as antiadhesive an-

timicrobials, and contribute to early brain development (Bode and Jantscher-Krenn, 2012).

Morrow et al. (2005) determined that fucosylated HMO appear to be a major protector

of the infant from enteric pathogen binding in both the GI and respiratory tract (Morrow,

2005).

Many of these HMO structures are also genetically regulated, much like lactose (Bode,

2012). Despite vast knowledge of how host genetics impact milk components in the dairy

cow (Lemay, 2009), little is known about genetic variation among women and its impact

on human milk. The genetic regulation of HMO is not well understood; however, some of

the enzymes producing HMO are well characterized proteins of genes from the ABO-Lewis

blood group structure pathways (Soejima, 2007). Specifically, FUT2 and FUT3 are genes

which code for fucosyltransferases that add α-1-2-linked fucose to the terminal galactose of

HMO and an α-4/3-linked fucose on the internal N-acetylglucosamine, respectively (Bode,

2012). Additionally, it is thought that there are specific sialic acid transferase genes (e.g.,

ST6GalNac5) which attach sialic acid to nascent oligosaccharides, including lactose.

Despite what we know about variation in FUT2 and FUT3 genes involved in synthesis of

milk carbohydrates have yet to be truly investigated in the context of lactation. To leverage

this perspective, genotypic data from the same women will be related to milk phenotypes

(e.g., HMO and lactose). We hypothesize that genetic variation related to milk carbohydrate

synthesis is associated with variation in milk HMO profiles around the world. Knowing that

HMO isoforms are variable in milk and there exists extensive genetic variation in the regu-

latory genes of HMO synthesis, we aim to piece together the connection between maternal
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genetic variation and HMO composition of human milk.

4.3 Materials and Methods

Subjects, Experimental Design, and Ethics Approvals

Phenotypic data and enrollment information about the subjects participating in this

study have been previously described (McGuire, 2017). In brief, women were recruited from

multiple international sites and were eligible for participation under the following criteria:

women (≥ 18 yr of age) had to be breastfeeding or pumping at least five times per day,

self-reported as healthy with a healthy infant, and between two wk and five mo postpartum.

Exclusion criteria included any indication of acute breast infection or pain that was ’abnor-

mal’ for lactation, maternal or infant use of antibiotics in the previous 30 d, or nursing a

child with symptoms of illness in the previous seven d. The international locations included

two European [Spain (n=40) and Sweden (n= 24)], one South American [Peru (n=43)],

two North American [Eastern Washington/Northern Idaho (n=41) and Southern California,

self-identified as Hispanic (n=19)], and six sub-Saharan African [rural and urban Ethiopia

(n=40 and n=36, respectively), rural and urban Gambia (n=40 for both), Ghana (n=41),

and Kenya (n=40)].

When enrolled, each woman completed several questionnaires including eligibility criteria,

demographic information on general maternal and infant health, and anthropometry. Ethics

approvals were obtained for all procedures from each participating institution, with overar-

ching approval from the Washington State University Institutional Review Board (#13264).

After being translated from English (as needed), informed, verbal or written consent (de-

pending on locale and the subject’s literacy level) was acquired from each participating

woman.

Saliva Collection and Preservation

Using a gloved hand, research personnel opened a collection tube with collection fun-

nel attached for the mother to collect approximately 2 mL of saliva in a SalivaGard DNA
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kit (USA Biomatrica, San Diego, CA). Research personnel then added the preservative,

SampleMatrix® (also known as QiaSafe, Lee, 2010) and capped the tube. All samples were

shipped and stored at room temperature until analyzed.

DNA Extraction

DNA extractions were performed with the Gentra Pure Gene Blood Kit (Qiagen, Valen-

cia, CA) using manufacturer’s protocol. DNA was resuspended in 200 µL nuclease free water

and stored at -20 °C until further analysis. DNA was quantified using the Qubit dsDNA HS

Assay Kit (ThermoFisher/Life Technologies, Grand Island, NY) and quality was assessed as

260/280 ratio using a Nanodrop 1000 (Thermo Scientific).

Primer design and validation

Targeted primers were designed using manufacturer instructions (Fluidigm, San Fran-

cisco, CA) for most exon specific regions of genes alpha lactalbumin (LALBA), fucosyltrans-

ferase 2 (FUT2 ), fucosyltransferase 3 (FUT3 ), and ST6 N-acetylgalactosaminide alpha-

2,6-sialyltransferase 5 (ST6GALNAC5 ). Additionally, regions of secretory blood group 1

(SEC1P) and gulonolactone (L-) oxidase (GULOP) pseudogenes were assessed for neutral

genome comparisons. Primer pairs were developed using human reference build HG38 and

Primer3 software (http : //frodo.wi.mit.edu) with base parameters as follows; product size

length <600 bp, Primer Tm min: 59.0, opt: 60.0 and max: 61.0, and Max Poly-X: 3. Primer

pairs were in silico validated using BLAST (NCBI) to check for specificity of binding and

alternate product yield (Altschul, 1990). Primer sequences were selected based on their

specificity to the location (as few alternate products as possible) and the size of the product

<600 bp. Additionally, a short consensus sequence (CS) tag was added to the 5’ end of

the target-specific primer. The inclusion of the CS tag on the target-specific primer and on

the 3’ end of the Illumina sequencing adaptor allows the design of multiple target-specific

primers that can then be linked to primers containing a complementary CS tag, the Illu-

mina sequencing adapter, and individual barcodes (University of Idaho IBEST Genomics

Resources Core Facility).
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Primer validation was conducted using the manufacturer’s protocol (Fluidigm). PCR

reactions were carried out in 5 µL volume using FastStartTM High Fidelity PCR System and

dNTPack (Roche), specifically 1x FastStart Reaction Buffer, 4.5 mM MgCl2, 5% DMSO,

200 µM of each nucleotide base, 0.05 U FastStart High Fidelity Enzyme Blend (polymerase),

400 nM Illumina barcode primers (University of Idaho IBEST Genomics Resources Core

Facility), 10 ng/µL genomic DNA, and 50 µM specific target primer pairs (Sigma, St. Louis,

MO) following manufacturer’s instructions (Fluidigm). Amplification was validated using a

QIAxcel screening cartridge (Qiagen) and amplicons were deemed successful with a moderate

amplification peak assessed by electropherogram.

Fluidigm Protocol and Sequencing

The Fluidigm Access Array and Juno technologies were used for amplicon production,

using the manufacturer’s protocol. Briefly, a 48x48 Access Array IFC (Fluidigm) was used to

simultaneously run 48 primer pairs x 48 samples. The reagents used were the same as listed

above and a 20x loading reagent (Fluidigm). The reaction was run using the same ther-

mal cycling conditions as a primer validation step. Amplicons were post-processed following

manufacturer guidelines; amplicons were harvested and pooled equi-volume, cleaned with

AMPure XP beads (Beckman), and qualified with Advanced Analytical Fragment Analyzer

(22 cm capillary array) (Ames, IA). Libraries were quantified using qPCR, Kappa kit for Il-

lumina libraries on the ABI StepOnePlus qPCR machine (ThermoFisher/Life Technologies),

normalized, pooled and sequenced on an Illumina MiSeq (Illumina, San Diego, CA) using

v3 2x300 method.

Data Processing

Amplicon sequences were preprocessed from raw sequences and demultiplexed using de-

fault settings of the custom python pipeline, dbcAmplicons and sequences were split by

sample using a custom python script, splitReadsBySample.py

(https : //github.com/msettles/dbcAmplicons/). Primer sequences were not trimmed to

facilitate mapping to the reference. Raw, non-overlapped reads were mapped to HG38 using
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Burrows Wheeler Aligner (BWA) mem version 0.7.12 (Li, 2009) adding read tag groups (for

variant calling) and using default settings. Variant calls were made via the Genome Analysis

Toolkit (GATK) version 3.5 Unified Genotyper (McKenna, 2010) across each subpopulation

using GATK best practices (Van der Auwera, 2013). The raw calls were then filtered against

a BED file of primer locations to prevent calls within the primer sequence and filtered with

the following parameters using VCFtools version 0.1.14 (Danecek, 2011). Individual variant

calls required >15x coverage, >0.05 minor allele frequency (MAF), data present in >70% of

the samples, and Hardy-Weinberg Equilibrium conditions. Individuals with <70% SNP call

rate were also removed from further analysis for a total number of 281 subjects.

HMO and Lactose Analysis

Milk collection and HMO analysis was as previously described (McGuire 2017). Anal-

ysis of lactose in milk was adapted from Polberger and Lonnerdal, 1993. First, protein

was precipitated from 0.25 uL whole milk using 0.3 M barium hydroxide and 5% zinc sul-

fate. Samples, lactose standards, and glucose standards were digested by beta-galactosidase

(Roche 105-031, 1500 U/1 mL, from Escherichia coli). and assessed via spectrophotometry

at 450 nm. Total glucose was then back calculated to infer the lactose concentration in the

samples.

Statistical Analysis

After filtering, allele frequency, FST (fixation index; Holsinger, 2009), Tajima’s D, and

π (nucleotide diversity) were calculated using VCFtools (Danecek, 2011). Allele frequencies

were calculated per population, FST was calculated using the Weir and Cockerham calcu-

lation (1984) among all populations, and a sliding window of 5 bp was used to calculate

Tajima’s D and π. FST values were considered of interest at >0.1 and Tajima’s D were

considered of interest at >1.5. Basic ANOVA analysis of lactose and HMO concentrations

by population was calculated in R version 3.5.1 (R core team) and significance was declared

at P <0.01.
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Associations

Association analysis was run using a linear model in Plink version 1.9

(http : //pngu.mgh.harvard.edu/purcell/plink/; Purcell, 2007) with HMO phenotypes and

lactose. Significance was declared at P <0.01 with a Bonferroni correction to account for

multiple comparisons.

4.4 Results

Targeted exonic regions of LALBA, FUT2, FUT3, ST6GALNAC5, and pseudogenes GULOP

and SEC1P in 281 individuals covering a variety of human populations were sequenced and

compared to concentrations of HMO and lactose in milk collected.

General disposition of the data

We sequenced products of 113 custom designed primer pairs (Table 1) spanning ∼ 500

bp each of the coding regions of four genes and two pseudogenes from 281 lactating women

located in 11 populations, nine countries, and four continents. The women were generally

similar in age, parity, time postpartum, weight, and height with some differences between

populations (Table 2). Spanish women were older but had limited parities whereas women in

Sweden and the United States were some of the tallest and heaviest. Time postpartum was

not different among sites. Lactose concentration in milk was not different among populations

(Figure 1) with a range of 71.6 to 85.6 g/dL for means by site. Oligosaccharides were variable

by country, and described previously for the full dataset (McGuire, 2017). A summary of

the HMO for the women by population included in the genetic evaluation is found in Figure

2.

Nucleotide Variation and Phenotype Association

Alpha Lactalbumin (LALBA) Using 5 primer pairs, 2,706 bp of the total 32,428 bp were

sequenced. The initial three primer pairs covering exons 1-3, though, had very low read

coverage having ≤ 6000 reads per sample, where successful calls were made in the final two

primers whose average read count was >114,000 reads per sample (Table 1 and Figure 3).
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Variation was detected in five locations (Table 3): one novel (referring to no rsID available

via NCBI) at chr12:48569365, one nonsynonymous (change which confers an amino acid

change to the protein) rs1261272249, one intergenic (very low frequency) rs113190598, and

two upstream variants rs73104702 and rs923867024. No significant association was found

between a SNP and any concentration of HMO or lactose (Figure 4).

Fucosyltransferase 2 (FUT2 ) encodes the enzyme with alpha-(1,2)-fucosyltransferase ac-

tivity. Seventeen primer pairs were used to sequence the coding region of the gene, as well as

some potential upstream promotor region sites, and coverage was approximately 8,000 bp of

the 9,980 bp gene. Primers FUT2-6, FUT2-1, and FUT2-P3 had <42,000 average reads per

sample and no SNPs were identified in these regions. The remaining primers were more suc-

cessful in identifying variants with >118,000 average reads per sample (Table 1 and Figure

5). We found 119 SNPs: 42 upstream, two downstream, 12 nonsynonymous (including one

stop gain), seven synonymous, and 56 in the 3’UTR (untranslated region) (Table 4). Among

these loci, 49 were novel, ten very low frequency, and five appear to be population specific.

Of the novel SNPs, most were found in intergenic regions or upstream of the coding re-

gion. Of those in the coding region, one SNP was found to be synonymous (chr19:48703974)

and three SNPs were found to be nonsynonymous; chr19:48703384 changes a glutamic acid

changed for a glycine, chr19:48703419 changes a threonine to proline, and chr19:48703912

changes an isoleucine to threonine. These novel variants had low allele frequencies yet sev-

eral noncoding, upstream variants, such as chr19:48694285 have allele frequencies as high as

20-39% (Table 4).

Variants in FUT2 had many significant associations with HMO moieties (Figures 6 and

7). A novel SNP (chr19: 48694463) was significantly associated with concentrations of LNnT

and LNT; a large group of SNPs at the end of FUT2 (chr19: 48702888 - 48705969) were asso-

ciated with several outcomes including, secretor status (2’FL >200 nmol/mL are secretors),

and concentrations of 2’FL, DFLac, FDSLNH, LNFPI, LNFPII, LNnT (far fewer SNPs),

LNT, LSTb, total HMO, total fucosylated HMO (sum of all fucose containing HMO) and
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total sialylated HMO (sum of all sialic acid containing HMO; far fewer SNPs) Additionally

rs603985 and rs485186 was associated with concentration of DSLNT and a novel SNP (chr19:

48705048) was associated with concentration of DFLNH.

Fucosyltransferase 3 (FUT3 ) encodes the enzyme with alpha-(1,3)-fucosyltransferase and

alpha-(1,4)-fucosyltransferase activities and is the last step of Lewis antigen biosynthesis.

Using 8 primer pairs, about 3,600 bp of the 9,980 bp gene was sequenced. Coverage was

lowest at the beginning of the gene with <5000 reads per sample for FUT3-P and FUT3-1,

subsequent primers had average reads per sample >139,000 (Table 1 and Figure 8). We

identified 15 SNPs: nine nonsynonymous (one novel), and four synonymous (one novel), and

two 3’UTR variants (Table 5). One of the identified variants appeared to be population

specific, but none were very low frequency. The two novel SNPs were identified in the

coding region; chr19:5843757 is a synonymous variant and chr19:5843782 is a nonsynonymous

variant changing a valine to glycine. Importantly, two known SNPs that impact Lewis

secretor status were confirmed at relatively high frequencies: rs3745635 and rs28362459.

Associations were found with concentrations of four HMO moieties (Figure 9): rs778986

and rs28362459 were associated with DFLNT concentration, and rs28362459 was also asso-

ciated with concentrations of LNFPI, LNFPII, and LNH. No significant associations for 3FL

or total fucosylated HMO were found with any FUT3 SNP (Figure 9).

ST6 N-Acetylgalactosaminide Alpha-2,6-Sialyltransferase 5 (ST6GALNAC5 ) is one of a

family of Golgi type II transmembrane glycosyltransferase proteins which add sialic acid

residues to cell surface proteins and it is thought to perform this function on HMO. The

sequencing results across this gene mostly captured data in intergenic regions, using 27

primers, spanning 12,866 bp of the 201,727 bp that make up the gene. Coverage across

ST6GALNAC5 was mostly good with primers (ST6-2 and ST6-20) having <41,000 average

reads per sample, however most of the sequences mapped outside of the main exon (Table

1 and Figure 10). We found 58 SNPs: three nonsynonymous (all novel), six intergenic (one

novel, one potential splice site), 16 downstream (eight novel), and 33 3’UTR (15 novel),
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within these SNPs ten appear to be population specific (Table 6). Of the novel SNPs,

three were in the coding region of the gene; chr1:77044448 is a nonsynonymous mutation

changing an isoleucine to a serine, chr1:77044472 is also a nonsynonymous mutation changing

a methionine to arginine, and chr1:77063069 which changes a glycine to a cystine. Allele

frequencies for all SNPs can be found in Table 6.

Very few associations between ST6GalNAc5 and HMO concentrations were found (Figure

11): rs11162262 was associated with 2’FL, rs115329926 was associated with 6’SL, and a novel

SNP (chr1: 77067914) was associated with LNFPIII. No significant associations were found

with total sialylated HMO (Figure 11).

Gulonolactone (L-) oxidase, pseudogene (GULOP) was sequenced as a ’neutral’ marker,

due to non-functionality of the L-gulono-gamma-lactone gene that influences vitamin C

synthesis (Yang, 2013). General gene coverage and read depth are reported in Figure 12.

Sequencing was limited to four primer pairs, covering 2,373 bp of the 28,800 bp pseudogene.

In this limited selection, we identified 26 SNPs, eight novel, two of which appear to be

population specific (rs78422197 and rs146127661 in GN; Table 7). Although none of these

mutations have expression effects in this pseudogene, the variation helps to determine the

relative rate of mutations in populations (Table 7). Significant associations were found with

DFLac and rs146127661 and rs78422197 (Figure 13).

Secretory blood group 1, pseudogene (SEC1P) is a pseudogene found nested in the family

of fucosyltransferase genes on chromosome 19 with relatively unknown function; it was se-

quenced as a potential neutral marker. General gene coverage and read depth are reported

in Figure 14. Three primer pairs were designed to cover regions of this gene which did not

overlap with other open reading frames associated with alternate genes, covering 1,500 bp

of the 44,207 bp pseudogene. We identified seven SNPs, four of which were novel (Table 8).

Of the four novel SNPs, chr19:48679949 and chr19:48680161 were relatively low frequency

(Table 8). There were no significant associations found between SNPs in SEC1P and HMO

or lactose concentrations in milk (Figure 15).
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Interpopulation Differentiation Analysis

To assess the interpopulation differences across these evaluated genes, FST , Tajima’s D,

and nucleotide diversity (π) were calculated across all populations. π was calculated on a 5

bp sliding window and used as a basis marker for the level of variation across populations and

is generally associated with the overall allele frequencies (Tables 3-8). FST was calculated

on a per site basis across all populations, and elevated FST was found (>0.1) in three out

of four genes and one out of two pseudogenes sequenced: zero SNPs in LALBA, 14 SNPs

in FUT2, two SNPs in FUT3, four SNPs in ST6GalNAc5, five SNPs in GULOP and zero

SNPs in SEC1P. Tajima’s D was calculated on a 5 bp sliding window and elevated D values

(>1.5) were found in the same three out of four genes and one of the two pseudogenes had

elevated FST , though the SNPs did not often overlap. Values of π, FST , and D are plotted

as scatter plots along the length of each gene in Figures 16-21.

4.5 Discussion

Lactose and HMO

Lactose concentrations were not different among populations, and were consistent with

concentrations reported at similar times postpartum (Gay, 2018; Spavecek, 2015; Zhang,

2013) Variation in HMO phenotypes has been described across populations (Erney, 2000;

McGuire et al. 2017). Briefly, the complete dataset from which the current study was used

found total HMO concentration of each individual HMO moiety except for LNFP I differed by

population. These results are similar to the relative concentrations of HMO moieties from the

281 women paired to sequencing data in the current study (Figure 2). We found differences

(P <0.05) among populations in the following HMO: 2’FL, 3FL, LNnT, DFLac, 6’SL, LNT,

LNFPII, LNFPIII, LSTb, LSTc, DSLNT, FLNH, DFLNH, FDSLNH, and DSLNH. This

differs from previous reporting where differences were also found in: 3’SL, DFLNT and

LNH, likely due to the reduced sample representation. The variation in HMO phenotype

provides a basis to look at the genetic regulation of HMO synthesis and evolutionary processes
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potentially in play. This variability and unknown genetic influence may be indicative that

milk is not a ’one-size-fits-all’ substance and cannot be characterized the same on a global

level.

Nucleotide Variation

The genetic variation of genes tied to milk carbohydrate synthesis was explored through

custom, targeted sequencing. Beside genes involved in milk carbohydrate synthesis, two

pseudogenes were included as a comparison of the baseline rate of variation and selective

pressure (Fumagalli, 2009).

LALBA LALBA is the gene encoding the alpha-lactalbumin protein which is a key fea-

ture regulating lactose synthesis (Blackburn, 1989: Jabed, 2012) and has been reported as

highly divergent across Mammalia (Lemay, 2009). Several studies have looked at the folding

affinities for LALBA (Ramboarina, 2009; Mizuguchi, 2005) and human alpha-lactalbumin

folding has been associated with tumor apoptosis (Svensson, 2003; Casbarra, 2004) suggest-

ing protein sequence has biological impact. Further, absence of alpha-lactalbumin leads to

failure of lactation (Stacey, 1995) demonstrating the critical importance of this gene. Due

to limited sequencing reads, only one coding region SNP was identified as a nonsynonymous

glycine to alanine amino acid change which occurred at low frequencies in urban Gambia

and Sweden. This is consistent with findings listed on NCBI of a global MAF of >0.01 of a

globally diverse study cohort (Sherry, 2001). Few SNPs found in LALBA is likely the result

of poor sequencing, however reports in bovine genetics show a substantial divergence in the

sequence of LALBA across species indicating that LALBA is not constrained of variation

despite the necessity of lactose (Lemay, 2009).

FUT2 FUT2 is involved in making the precursor of the H antigen in the A/B antigen

synthesis pathway. This gene is also associated with the production of fucosylated HMO,

particularly 2’FL (Kumazaki, 1984), denoting ’secretor status’ when 2’FL is present in milk.

Variations in FUT2 included 18 cited variants and 3 clinical variants (NCBI) associated with

presence/absence of 2’FL in human milk, and presence of the H antigen on red blood cells
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and the mucosal lining of the gastrointestinal tract (Sherry, 2001). HMO (phenotypes) and

their suspected regulatory genes (genotypes) are variable among women and populations,

and the fucosyltransferase gene family, in particular, has been studied across subpopulations

of humans (Koda, 2001; Ferrer-Admetlla, 2009). However, these lines of research have (to

our knowledge) proceeded independently of one another. Soejima’s group in Japan detected

wide genetic variation in FUT2 (Soejima, 2007, 2009). Likely due to sequencing limitations,

we found a subset of SNPs in common with both Soejima (2007, 2009) and with Ferrer-

Admetella (2009), covering varying populations across all 3 studies. The overlapping SNPs

with their data are: rs1800021 (functional allele), rs492602, rs681343, rs28362836 (nonfunc-

tional allele), rs281377 (functional allele), rs601338 (nonfunctional allele), rs1800027 (func-

tional allele), rs1800025 (functional allele), rs602662, rs485186 (functional allele), rs485073

(functional allele), rs603985 (functional allele), which do not include 24 SNPs identified in

previous studies, likely due to low sequencing coverage and/or population coverage, partic-

ularly considering evidence of several Asian specific polymorphisms (Soejima, 2007; Henry,

2014; Koda, 2001). Of the many reported SNPs in the dbSNP database, we found similar

rates of variation in rs601338 49% reported in African populations where we found 43-59%;

44% in European populations where we found 41-50%; and 34% in the Americas where we

found 10-40% (Sherry, 2001). rs1800459 and rs755843863 are reported at <1% across all pop-

ulations and we found much higher frequencies in our data (8-48% and 0-11%, respectively;

Sherry, 2001).

FUT3 FUT3 has also been studied broadly in the context of blood groups and func-

tionally provides alpha-(1,3) and alpha-(1,4) linkages to many fucosylated HMO such as

3FL (Bode, 2012). Extensive variation has been discovered across FUT3 including 10 cited

variants, and 2 clinical variants (NCBI) have been associated with the Lewis antigen system

(Corvelo, 2013; Soejima, 2009; Koda, 1993), miRNA and gastric cancer (Cai, 2016), ulcer-

ative colitis and inflammatory bowel disease (Hu, 2016; Guo, 2015), cardiovascular disease

(Silander, 2008), and schizophrenia (Yazawa, 1999). Our results differed from the findings
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of Soejima et. al. (2009) identifying different polymorphisms across FUT3 considering only

3 SNPs overlapped between our studies. Found in all populations in the current study

and in three populations (Ghana, Caucasian, and Mongolian) from Soejima were rs3745635,

rs812936, and rs28262459. Despite identifying different SNPs than those reported by Soe-

jima et al. (yr), only 2 new variants (chr19:5843757 and chr19:5843782) were not previously

reported. This could be due to the increased diversity of populations used in the current

study in addition to sequencing past the only intron in this gene, which had not been done.

Some SNPs (17) reported (Soejima) were not identified in the current study possibly due

to low sequencing coverage, especially considering the two studies overlapped in both Cau-

casian and Ghanaian populations. As compared to reported allele frequencies to NCBI, we

found similar rates of variation at the following loci: rs5844332 is reported at 30% in African

populations where we found 9-38%; 2% in European populations where we found 2-3%; and

22% in the Americas where we found 0-45%; and rs28362459 is reported at 34% in African

populations where we found 21-45%; 10% in European populations where we found 6-11%;

and 27% in the Americas where we found 5-50% (Sherry, 2001).

ST6GALNAC5 Far less is known about the sialyltransferase genes that create sialylated

HMO, but there is limited evidence that other genes similar to ST6GalNAc5 are under evo-

lutionary pressure (Teppa, 2016). There are many variants reported in NCBI including 6

cited variants associated with coronary artery disease (CAD) (Amini, 2014), colon cancer

(Tsuchida, 2003), and nicotine response (Rose, 2010). The ST6GalNAc5 gene was of par-

ticular interest because sialylated HMO appear to have many health benefits to the infant,

including response to necrotizing enterocolitis (Jantscher-Krenn, 2011). The sialyltrans-

ferases are categorized into 4 families of genes: ST6Gal, ST3Gal, ST6GalNAc, and ST8Sia

and there are at least 7 common HMO isoforms that contain sialic acid residues (Teppa,

2016; McGuire, 2017). We chose to sequence ST6GalNAc5 due to evidence that it may con-

tribute specifically to the structure of DSLNT found to be protective of very low birth weight

neonates (Jantscher-Krenn, 2011; Autran, 2017). Despite significant differences in the quan-
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tity (218-370 nmol/mL, P <0.01) of DSLNT among populations (McGuire, 2017), there were

very little genotypic differences among populations in this sialyltransferase gene. Difficulty

in detecting genetic differences could be because ST6GalNAc5 is a very long gene, hard to

tile unique primers for adequate coverage. The custom primer pairs (Table 1) covered the

5 exons across the length of ST6GalNAc5. Primers 1 and 2 had low sequence coverage and

no variants were found and despite having sequence coverage, however Primer 4, 5, 7, and 8

were directly over coding portions of the gene, but only 3 coding SNPs were identified. This

may be due to lack of variation in this gene, but further studies with more subjects will be

needed to clarify. The many SNPs identified in the noncoding regions (Table 6) have 4 loci

(rs11162262, rs199722, rs199724, and rs199663) which have elevated diversity statistics, par-

ticularly FST and Tajima’s D. While this provides evidence that some selective pressure may

be underlying the polymorphisms in this gene, little has been reported on the evolutionary

history of this particular gene, although orthologs are found in most vertebrate species for

the ST6Gal gene family (Teppa, 2016). The ability to connect functional ST6GalNAc5 with

sialylation of HMO is also limited based on associations as the only HMO associated with

variants of ST6GalNAc5 were 2’FL, LNFP III and 6SL, and only 6SL is sialylated. Little

evidence that ST6GalNAc5 provides the majority of structure to sialylated HMO was found,

but further sequencing of ST6 family genes may determine the genetic variation responsible

for the sialylated HMO. Compared to allele frequencies reported to NCBI, we saw similar

frequencies in our populations: rs200277344 reported at <1% in European populations where

we found 6% in SW specifically; rs144737930 reported at 2% in African populations where

we found 3% in GBR specifically; rs199724, rs199662, and re199663 all reported at 58% in

African populations where we found 32-78%, 31% in European populations where we found

25-47%, and 50% in the America’s where we found 23-60% (Sherry, 2001).

GULOP Five cited variants exist even in this pseudogene and have been primarily discov-

ered in relation to L-gulono-gamma-lactone oxidase (GULO) and scurvy (Inai, 2003; Yang,

2013). Compared to reported allele frequencies in the dbSNP database, we found similar
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results. rs78422197 and rs146127661 are only reported in African populations (3% and 2%,

respectively) and we found this allele only in the Ghanaian population. rs17057419 was

found at similar rates across our populations demographics: 36% in African populations

where we found 28-62%; 15% in European populations where we found 17-23%; and 21% in

the Americas where we found 0-19% (Sherry, 2001).

SEC1P Four cited variants have been identified in this region, mostly associated with

serum carcinoembryonic antigen levels (Liang, 2014). Other studies have noted some poten-

tial interactions with SEC1P variants and FUT2 variants as they are in close proximity to

one another (Soejima, 2008; Koda 1997). One of the novel SNPs chr19:48680213 had higher

allele frequency (0-24%) than the other identified SNPs.

Selection

The variation in HMO found in human milk suggests a potential for importance for the

unique structures. To evaluate the value of these structures, one can assume evolutionary

pressure could lead to greater reproductive success if certain HMO provide greater survival.

Some statistics have been developed to test for signatures of evolutionary selection. These

include FST or fixation index which measures interpopulation variation (Beaumont, 2005;

Holsinger, 2009), Tajima’s D compares the average number of pairwise differences to the

number of segregating sites (Tajima, 1989), and nucleotide diversity (π) which measures the

average nucleotide differences per site (Misawa, 1997). Elevated FST has often been reported

as evidence for balancing selection between populations, however, there are few strong FST

values across genes that would indicate strong population differentiation due to balancing

selection in this case. There were no SNPs in LALBA that had elevated FST nor Tajima’s

D which is indicative that the alleles are not undergoing selection, likely due to the essential

functionality of alpha-lactalbumin in lactation (Lemay, 2009). FUT2 appears to be under

non-neutral evolutionary selection, with evidence pointing toward balancing selection forces

that appear to impact the expression of fucosylated antigens (Silva, 2009). Because the

protein products of these genes are known to have immunologic roles in both mother and
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infant, the variation and evolutionary pressure could be, at least in part, pathogen-driven.

For instance, Fumagalli (2009) found evidence for selection and haplotype variation in FUT2

with respect to pathogen density, indicating that host-pathogen pressure may contribute

to the selective pressure on FUT2. This work concurs with conclusions from Bode that

’secretor status’ (presence or absence of a functional FUT2 gene; presence or absence of

2’FL) can contribute to the risk of maternal and infant infections, including but not limited

to caliciviruses, HIV, respiratory viruses, urinary tract infections, yeast infections, and some

diarrheal infections (Bode, Jantscher-Krenn, 2012; Fumagalli, 2009). FUT3 has two loci

with elevated FST and two additional sites with elevated Tajima’s D which would indicate

some selective pressure, likely balancing the variation in this gene. ST6GalNAc5 had 1 loci

with elevated FST but is in a non-coding region of the gene but may be linked to variation

not captured in this study. Comparatively, ’neutral’ genes are likely to experience random

variation due to genetic drift (Fay, 2002). We sequenced portions of GULOP and SEC1P

as comparative non-coding regions of the genome, however we saw increased FST at 4 loci

in GULOP which may mean that the among population differences are increased, or there

may be a higher rate of mutation at this part of the genome (Holsinger, 2009). LALBA

and SEC1P which saw no elevated evolutionary statistics are likely close to the level of

background differentiation expected among human populations.

Values for Tajima’s D were positive and elevated for several loci across these genes (Fig-

ures 16-21) suggesting some balancing selection. Of particular interest are the fucosyltrans-

ferase genes. The genes here have had polymorphisms identified that appear to be under

some positive or balancing selection previously (Ferrer-Admetella, 2009). A key limit to

estimating both FST and Tajima’s D in this data is the lack of an Asian cohort which may

directly contribute to the lower values than previously reported (Ferrer-Admetella, 2009;

Fumagalli, 2009).

Limitations

Some limitations of this study are the low sample size, limited coverage across the genome
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and targeted genes, and bias in global variation, specifically due to a lack of an Asian cohort.

A targeted approach was attempted to determine polymorphisms across coding regions of

selected genes thought to potentially alter milk carbohydrate composition. Had there been

more sequence coverage of the genes, there would have been more potential to tie those genes

directly to milk phenotypes. The limited sample size per population impaired the potential

to detect variation in populations, particularly of very low frequency SNPs.

Conclusions

Variation in selected genes related to proteins involved in synthesis of carbohydrates (lac-

tose and HMO) in milk was found confirming previously identified polymorphisms and novel

ones: 5 SNPs in LALBA, 119 SNPs in FUT2, 15 SNPs in FUT3, 58 SNPs in ST6GalNAc5,

26 SNPs in GULOP, and 7 SNPs in SEC1P. Evidence for selective pressure was found in

46 SNPs across FUT2, FUT3, ST6GalNAc5 and GULOP which have elevated FST (>0.1)

or Tajima’s D (>1.0) indicating that these genes may be under selective pressure. The

long-term goals of this research are to determine the extent to which maternal genetics

contributes to infant nutrition through variation in milk composition and identify selective

pressures in genes associated with milk composition. This may alter how milk is viewed as

a ’one-size-fits-all’ source of nutrients.
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Figure 4.1: Boxplot of lactation concentration (g/dL) by population. Box indicates population median with first and third
quartile. Outliers are indicated as dots. ETR - rural Ethiopia; ETU - urban Ethiopia; GBR - rural Gambia; GBU - urban
Gambia; GN - Ghana; KE - Kenya; PE - Peru; SP - Spain; SW - Sweden; USC - United States, California; USW - United
States, Washington/Idaho.
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Figure 4.2: Stacked bar chart of HMO abundance (nmol/mL) of 19 HMO moieties averaged within populations with 281 total
women represented.
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Figure 4.3: Graphic showing position of custom primer pairs for LALBA and histogram of total read counts sequenced for each
primer pair.
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Figure 4.4: Heatmap of association test p-values for all SNPs identified in LALBA. * indicates
significance (P <0.01) with a Bonferroni correction for multiple comparisons.
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Figure 4.5: Graphic showing position of custom primer pairs for FUT2 and histogram of total read counts sequenced for each
primer pair.
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Figure 4.6: Heatmap of association test p-values for all SNPs identified upstream in FUT2.
* indicates significance (P <0.01) with a Bonferroni correction for multiple comparisons.
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Figure 4.7: Heatmap of association test p-values for all SNPs identified near the coding
region in FUT2. * indicates significance (P <0.01) with a Bonferroni correction for multiple
comparisons.
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Figure 4.8: Graphic showing position of custom primer pairs for FUT3 and histogram of total read counts sequenced for each
primer pair.
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Figure 4.9: Heatmap of association test p-values for all SNPs identified in FUT3. * indicates
significance (P <0.01) with a Bonferroni correction for multiple comparisons.
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Figure 4.10: Graphic showing position of custom primer pairs for ST6GalNAc5 and histogram of total read counts sequenced
for each primer pair.
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Figure 4.11: Heatmap of association test p-values for all SNPs identified in ST6GalNAc5. *
indicates significance (P <0.01) with a Bonferroni correction for multiple comparisons.
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Figure 4.12: Graphic showing position of custom primer pairs for GULOP and histogram of total read counts sequenced for
each primer pair.
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Figure 4.13: Heatmap of association test p-values for all SNPs identified in GULOP. *
indicates significance (P <0.01) with a Bonferroni correction for multiple comparisons.
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Figure 4.14: Graphic showing position of custom primer pairs for SEC1P and histogram of total read counts sequenced for each
primer pair.
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Figure 4.15: Heatmap of association test p-values for all SNPs identified in SEC1P. * indi-
cates significance (P <0.01) with a Bonferroni correction for multiple comparisons.
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Figure 4.16: Scatterplot of evolutionary statistics by SNP displayed across chromosomal position for LALBA. Blue represents
FST , or fixation index (y-axis right), orange represents Tajima’s D (D; y-axis left), and grey represents π (p) or nucleotide
diversity.



97

Figure 4.17: Scatterplot of evolutionary statistics by SNP displayed across chromosomal position for FUT2. Blue represents
FST , or fixation index (y-axis right), orange represents Tajima’s D (D; y-axis left), and grey represents π (p) or nucleotide
diversity.
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Figure 4.18: Scatterplot of evolutionary statistics by SNP displayed across chromosomal position for FUT3. Blue represents
FST , or fixation index (y-axis right), orange represents Tajima’s D (D; y-axis left), and grey represents π (p) or nucleotide
diversity.
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Figure 4.19: Scatterplot of evolutionary statistics by SNP displayed across chromosomal position for ST6GalNAc5. Blue
represents FST , or fixation index (y-axis right), orange represents Tajima’s D (D; y-axis left), and grey represents π (p) or
nucleotide diversity.
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Figure 4.20: Scatterplot of evolutionary statistics by SNP displayed across chromosomal position for GULOP. Blue represents
FST , or fixation index (y-axis right), orange represents Tajima’s D (D; y-axis left), and grey represents π (p) or nucleotide
diversity.
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Figure 4.21: Scatterplot of evolutionary statistics by SNP displayed across chromosomal position for SEC1P. Blue represents
FST , or fixation index (y-axis right), orange represents Tajima’s D (D; y-axis left), and grey represents π (p) or nucleotide
diversity.



102

Table 4.1: Primer sets used for targeted sequencing of human genes involved in milk lactose and oligosaccharide synthesis, and
pseudogenes.1

Primer Pairs

Name “F” Sequence “R” Sequence

LALBA-1 ACACTGACGACATGGTTCTACATGAGTAAGGGTCTAGAGCTCAGT TACGGTAGCAGAGACTTGGTCTCGCTCCGCTCCTTGGTAG

LALBA-2 ACACTGACGACATGGTTCTACATTGCTACCAAGGAGCGGAG TACGGTAGCAGAGACTTGGTCTCGGAGCTGTCTGAGAGTCTTG

LALBA-3 ACACTGACGACATGGTTCTACAAGACTCTCAGACAGCTCCGA TACGGTAGCAGAGACTTGGTCTACTCTGAGCTTTGCCATCTTTG

LALBA-4 ACACTGACGACATGGTTCTACACTCCAAAGATGGCAAAGCTC TACGGTAGCAGAGACTTGGTCTAGATGGTTATGGAGGCATCG

LALBA-5 ACACTGACGACATGGTTCTACACCCAAGAACCTGAAATGGAA TACGGTAGCAGAGACTTGGTCTGCTGGATTGGTTGGACAAGT

FUT2-P1 ACACTGACGACATGGTTCTACATGGAGTTGGAAAGTCTAAGCCT TACGGTAGCAGAGACTTGGTCTGGAGGACAAAGTTCCCAGTGA

FUT2-P2 ACACTGACGACATGGTTCTACAGAGTGGCTGCTGGTTTCTCT TACGGTAGCAGAGACTTGGTCTAATACAAATGGGCCCGGTGT

FUT2-P3 ACACTGACGACATGGTTCTACATTGAAATAGGCAGGGCGAGG TACGGTAGCAGAGACTTGGTCTAGCATCGGTGACTGGCAAA

FUT2-1 ACACTGACGACATGGTTCTACAAACCACTCTGTCCCGGTTTC TACGGTAGCAGAGACTTGGTCTTCAGAGCGGGATTAGGGAGT

FUT2-2 ACACTGACGACATGGTTCTACACACTATGCCTGCACACCACCG TACGGTAGCAGAGACTTGGTCTGCGGTATTCCTCCTCCATCCAGTC

FUT2-3 ACACTGACGACATGGTTCTACATGCAGATACCAGTGCTAGCC TACGGTAGCAGAGACTTGGTCTGGTGACCACGAAGATGAGGG

FUT2-3R ACACTGACGACATGGTTCTACAACCTGAACGACTGGATGGAG TACGGTAGCAGAGACTTGGTCTGTCAATGTTCTCCCGACACC

FUT2-3b ACACTGACGACATGGTTCTACACAGCTCCCTCATCTTCGTGG TACGGTAGCAGAGACTTGGTCTCTGTTACTTGCAGCCCAACG

FUT2-4 ACACTGACGACATGGTTCTACACCGACCGGCGATACCTAC TACGGTAGCAGAGACTTGGTCTCACAGAAGAGAGATGGGTCCT

FUT2-5 ACACTGACGACATGGTTCTACATGGGCTGCAAGTAACAG TACGGTAGCAGAGACTTGGTCTGGATGATACAGCTAAGAAATGG

FUT2-6 ACACTGACGACATGGTTCTACAGTCACCTGAGCTCCATCCAT TACGGTAGCAGAGACTTGGTCTGCTCTCTGGGTGGACACAAT

FUT2-6b TGTCCTTGGCATTGTGTCCAACACTGACGACATGGTTCTACA CCCTGAAGTTCACTGAGCCATACGGTAGCAGAGACTTGGTCT

FUT2-7 ACACTGACGACATGGTTCTACAAACCAGGTGTCCTTGGCATT TACGGTAGCAGAGACTTGGTCTCATCCCAGGCCCTAGAAAGC

FUT2-7R ACACTGACGACATGGTTCTACAGGTTGTTCACTGCAGGAAGT TACGGTAGCAGAGACTTGGTCTAAACAGTGAGCTCTAGGGCC

FUT2-8 ACACTGACGACATGGTTCTACATGGCATGCATCCAAGTCCAT TACGGTAGCAGAGACTTGGTCTTTCTCCCATCCGCAAAGTCA

FUT2-9 ACACTGACGACATGGTTCTACACTGCCTCTTCAATCCTGGCTTTCTA TACGGTAGCAGAGACTTGGTCTCTGGCCTAAGATGTATTTTGGAGTT

FUT2-10 ACACTGACGACATGGTTCTACAGCATTGTGTCCACCCAGAGA TACGGTAGCAGAGACTTGGTCTACGCCCTGAAGTTCACTGAG

FUT3-P2 CTGTCCTCATCCACTGCTCGACACTGACGACATGGTTCTACA ATGCCACACCCAGAAAGACCTACGGTAGCAGAGACTTGGTCT

FUT3-1 ACACTGACGACATGGTTCTACACCCTGCTGCTGGGGAGAACA TACGGTAGCAGAGACTTGGTCTGGGGAGGCTGTTGATGGGGT
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FUT3-2 ACACTGACGACATGGTTCTACAGGACTCATGGCCCGGAGCTT TACGGTAGCAGAGACTTGGTCTGGCTTCCAGGTGCTGGCAGTTA

FUT3-3 ACACTGACGACATGGTTCTACACCTGATCCTGCTACGGACAT TACGGTAGCAGAGACTTGGTCTGTCCACCTTGAGATGAGCCT

FUT3-3R ACACTGACGACATGGTTCTACATTCTCGGTGATGTAGTCGGG TACGGTAGCAGAGACTTGGTCTCGCTGGATCTGGTTCAACTT

FUT3-4 ACACTGACGACATGGTTCTACACCCGACTACATCACCGAGAA TACGGTAGCAGAGACTTGGTCTTAGCAGGCAAGTCTTCTGGA

FUT3-5 ACACTGACGACATGGTTCTACAGGCCAACCCTCTCTCTTACC TACGGTAGCAGAGACTTGGTCTGGACCAACCCCTCTAGAGTG

FUT3-6 ACACTGACGACATGGTTCTACAGGCCCTGGGGAACTGGCTTA TACGGTAGCAGAGACTTGGTCTGTGCCTGGCCGGCCTATTATTT

ST6-1 ACACTGACGACATGGTTCTACACGGACCAAGAAGTGGGTACA TACGGTAGCAGAGACTTGGTCTCCTTTGTAACAGGCGACCTC

ST6-2 ACACTGACGACATGGTTCTACACGCCCCAAATCTCCCCCACT TACGGTAGCAGAGACTTGGTCTTACTCACAGCGCCTCCCAGC

ST6-3 ACACTGACGACATGGTTCTACAAGGCAGATGCAAACCTGTGGGAG TACGGTAGCAGAGACTTGGTCTATGCAGAGAGTCCCAGCCCC

ST6-4 ACACTGACGACATGGTTCTACATGCTGAGTGAGGGTTAAGCC TACGGTAGCAGAGACTTGGTCTGCATCTTCTTCCCTGTGCCT

ST6-5 ACACTGACGACATGGTTCTACAGTTACTTTACCAGCTTGCAGACT TACGGTAGCAGAGACTTGGTCTAAAGCCCTCACTGTCAAAGG

ST6-6 ACACTGACGACATGGTTCTACATCCCCACCTGCTTCCTCTAA TACGGTAGCAGAGACTTGGTCTTGTCCAAGCAGCAGAAAAGTG

ST6-7 ACACTGACGACATGGTTCTACACTCTGGAAGCTTAGTGGAGTGG TACGGTAGCAGAGACTTGGTCTATTGAATGTCCGTGCCCAGT

ST6-8 ACACTGACGACATGGTTCTACAGGGCAGTCATCACCGCTTTA TACGGTAGCAGAGACTTGGTCTGCTTATGTTGCAGTTTCAAAGGC

ST6-9 ACACTGACGACATGGTTCTACAAAGTACCATGGACAGACGCC TACGGTAGCAGAGACTTGGTCTGGCCATTTCCAACCATCATTCA

ST6-9b TACCATGGACAGACGCCTACACACTGACGACATGGTTCTACA TTCTAGGCCATTTCCAACCATTACGGTAGCAGAGACTTGGTCT

ST6-10 ACACTGACGACATGGTTCTACAAGCACATCTCCACTGACTTTCA TACGGTAGCAGAGACTTGGTCTGGGTCAAGAAGAGGCCACAA

ST6-11 ACACTGACGACATGGTTCTACAGGCAGAATGATGTCACTGTACC TACGGTAGCAGAGACTTGGTCTGAGTTGAATGATAGGGCATGTCC

ST6-12 ACACTGACGACATGGTTCTACATCTCGAAGCATCACCATCCG TACGGTAGCAGAGACTTGGTCTTCATAAGCCAGGTCATGTCTGT

ST6-13 ACACTGACGACATGGTTCTACATGGTCTGAAGGAGTATAAAGGAC TACGGTAGCAGAGACTTGGTCTTGTGTTCAGAGTCCATGCTGT

ST6-14 ACACTGACGACATGGTTCTACATGCTCAAACATAAGTGGCTCCT TACGGTAGCAGAGACTTGGTCTACAGTCATGAAATGGTAGTGGGA

ST6-15 ACACTGACGACATGGTTCTACATCGTTTGTAACTTCTCCCTCTCA TACGGTAGCAGAGACTTGGTCTAGGAGGGAGCTGATGACACA

ST6-15b CCATCTCGTTTGTAACTTCTCCCACACTGACGACATGGTTCTACA CCTCTGCCAAATGTTCTTGTGTTTACGGTAGCAGAGACTTGGTCT

ST6-16 ACACTGACGACATGGTTCTACATCCCACTACCATTTCATGACTGT TACGGTAGCAGAGACTTGGTCTGGAGTACACACCAGGGTTAGC

ST6-16b CTGTGTCATCAGCTCCCTCCACACTGACGACATGGTTCTACA ACCTAAGGATTGTGAGAGACCATACGGTAGCAGAGACTTGGTCT

ST6-17 ACACTGACGACATGGTTCTACAGGCAACTAAGTCCCTGTGCT TACGGTAGCAGAGACTTGGTCTCAAGGGCAAATATTTAGGCAGGT

ST6-17b TGCTTTGCTAACCCTGGTGTACACTGACGACATGGTTCTACA AGGAACATGGACCCTTCTTTCATACGGTAGCAGAGACTTGGTCT

ST6-18a ACACTGACGACATGGTTCTACATGAATGACATGAGAATGGAGGGA TACGGTAGCAGAGACTTGGTCTCCTTAACAGCACCAAAGACTGC
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ST6-18b ACACTGACGACATGGTTCTACATCTGAAAGAAGGGTCCATGTTCC TACGGTAGCAGAGACTTGGTCTAGTTCTCTTTGACGTGGCCT

ST6-19 ACACTGACGACATGGTTCTACATCTCTCTCTGCAGTGTTGGG TACGGTAGCAGAGACTTGGTCTCACTCTCACCTCTTTCCATTCCA

ST6-20 ACACTGACGACATGGTTCTACATCAGAAGGCCACGTCAAAGA TACGGTAGCAGAGACTTGGTCTCCAGTGGGTCAACATTAAGAGGT

ST6-21 ACACTGACGACATGGTTCTACATGTCTCTGCAGCCTATACCTAGT TACGGTAGCAGAGACTTGGTCTAGCTGTCAAGTTTAAAGCAGGTT

ST6-21b CTCCTTTGTCTCTGCAGCCTATACACTGACGACATGGTTCTACA TGTCGTTGAACCACAGAAGTCATACGGTAGCAGAGACTTGGTCT

ST6-22 ACACTGACGACATGGTTCTACAGCAGAAAGGCGGAAGAACAG TACGGTAGCAGAGACTTGGTCTGTCCACATGCTCAAGAAGGGA

ST6-23 ACACTGACGACATGGTTCTACAGCATGTGGACACTCTAGAATTCC TACGGTAGCAGAGACTTGGTCTTCTGTTCTCATCTTCATCACCCA

ST6-24 ACACTGACGACATGGTTCTACAGTCCTGTACCATGTGACTAGCT TACGGTAGCAGAGACTTGGTCTGCTTCTAACCTGCCTTTCCCA

ST6-25 ACACTGACGACATGGTTCTACACAGCATGTCTTGTACCGAGC TACGGTAGCAGAGACTTGGTCTTCAGGTAGCTTCAAAAGTAGTGA

ST6-26 ACACTGACGACATGGTTCTACAGTCCTGTACCATGTGACTAGCT TACGGTAGCAGAGACTTGGTCTACACTCCAGAGACAGACCCT

GULOP-1 ACACTGACGACATGGTTCTACACTAGATGACTCAGGGTGCCA TACGGTAGCAGAGACTTGGTCTGGAGTTGGACTGGCTGGAAA

GULOP-2 ACACTGACGACATGGTTCTACACCCTCTCTCATACCCAGCAG TACGGTAGCAGAGACTTGGTCTATGATTACCTTGGCTGCTCG

GULOP-3 ACACTGACGACATGGTTCTACAAGACGTGAGCTACTGAACCC TACGGTAGCAGAGACTTGGTCTTCCCTGCCCAGATCCAATAC

GULOP-4 ACACTGACGACATGGTTCTACATGAAAGGTGCTGGGAAGTGA TACGGTAGCAGAGACTTGGTCTGGGCATCAGGTCTGGGTATA

SEC1P-2 ACACTGACGACATGGTTCTACAGTCAGGATTTCGAGACTGGC TACGGTAGCAGAGACTTGGTCTCAGAACCACCCAATGAAGCC

SEC1P-3 ACACTGACGACATGGTTCTACATCAGGACAGAGGCTTGGATG TACGGTAGCAGAGACTTGGTCTCCAGTCGTTCAGGTGGTAGT

SEC1P-4 ACACTGACGACATGGTTCTACACCCATCTTCAGAATCACCCTG TACGGTAGCAGAGACTTGGTCTCTGTGTGAGCAGTGCGAAG

1LALBA - alpha-lactalbumin, FUT2 - fucosyltransferase 2, FUT3 - fucosyltransferase 3, ST6GalNAc5 - ST6 N-Acetylgalactosaminide Alpha-2,6-
Sialyltransferase, GULOP - Gulonolactone (L-) oxidase, pseudogene, SEC1P - Secretory blood group 1, pseudogene
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Table 4.2: Characteristics of the women (n = 281) participating in this study and effects of population. Values represent means
± SEM. Values in a row not sharing a common superscript differ (P < 0.05) using Bonferroni correction procedures for multiple
comparisons.1

Age (y) Parity (#) Time postpartum (d) Weight (kg) Height (cm) BMI (kg/m2)2

rural Ethiopia (n = 30) 25.6 ± 1.0bc 4.0 ± 0.4a 67.4 ± 5.8 51.2 ± 1.6c 154.4 ± 1.0d 21.4 ± 0.5ab

urban Ethiopia (n = 28) 21.8 ± 0.6c 1.7 ± 0.2b 59.0 ± 2.4 55.6 ± 1.3bc 158.3 ± 1.2cd 22.2 ± 0.5ab

rural Gambia (n = 31) 26.3 ± 1.3bc 3.9 ± 0.6a 63.5 ± 3.1 55.9 ± 1.5bc 162.6 ± 1.2abcd 21.1 ± 0.5b

urban Gambia (n = 33) 26.6 ± 0.9bc 3.1 ± 0.4ab 61.8 ± 3.4 65.8 ± 1.8ab 167.6 ± 1.2a 23.4 ± 0.6ab

Ghana (n = 24) 30.5 ± 1.0ab 2.5 ± 0.2ab 59.0 ± 4.0 66.0 ± 2.4ab 159.7 ± 1.3bcd 25.9 ± 0.8ab

Kenya (n = 20) 25.5 ± 1.0bc 2.3 ± 0.2ab 73.1 ± 5.2 58.7 ± 2.2abc 159.3 ± 1.4bcd 23.1 ± 0.9ab

Peru (n = 39) 27.3 ± 1.0bc 2.1 ± 0.2b 61.3 ± 2.7 66.0 ± 2.1ab 152.6 ± 0.8d 28.3 ± 0.8a

Spain (n = 31) 34.1 ± 0.7a 1.3 ± 0.1b 66.8 ± 4.4 64.7 ± 1.8ab 165.3 ± 1.3abc 23.7 ± 0.7ab

Sweden (n = 20) 30.8 ± 1.2ab 1.7 ± 0.2b 49.8 ± 4.4 73.3 ± 2.7a 168.5 ± 1.3a 25.9 ± 1.1ab

US Washington (n = 20) 29.7 ± 1.1ab 2.0 ± 0.2b 64.9 ± 4.0 79.0 ± 3.3a 167.3 ± 1.3ab 28.3 ± 1.3a

US California (n = 5) 27.6 ± 1.5abc 1.2 ± 0.2b 82.5 ± 7.3 80.0 ± 5.4a 164.9 ± 2.4abcd 29.5 ± 2.2a

1Values in a row not sharing a common superscript differ (P <0.05) using Bonferroni correction procedures for multiple comparisons.
2BMI - body mass index
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Table 4.3: Identified genetic variants, allele frequency, and evolutionary statistics for alpha-lactalbumin (LALBA).

Position a rsID b Change c AA d MAF e FST
f D f π f

ETR ETU GBR GBU GN KE PE SP SW USC USW All

30 28 31 33 24 20 39 31 20 5 20 282

chr12 48569365 . intergenic 0 0.02 0 0 0 0 0 0 0.06 0 0 0.01 0.02 -0.8 0.01

chr12 48569718 rs113190598 intergenic 0.15 0.13 0.19 0.15 0.23 0.2 0 0 0 0 0.06 0.1 0.05 0.23 0.18

chr12 48570031 rs1261272249 nonsyn G → A 0 0 0 0.08 0 0 0 0 0.03 0 0 0.01 0.04 -0.73 0.02

chr12 48570375 rs923867024 upstream 0.02 0.02 0 0 0 0 0 0 0 0 0 0 -0.01 -0.83 0.01

chr12 48570451 rs73104702 upstream 0.23 0.18 0.18 0.09 0.1 0.13 0.01 0.11 0.05 0 0.13 0.12 0.02 0.38 0.21

aChromosomal location of variant.
brsID corresponds to entry in NCBI dbSNP database, ’.’ indicates no entry available.
cChange based on snpEff analysis of location function and potential change of amino acid in protein sequence; syn - synonymous mutation; nonsyn

- nonsynonymous mutation.
dAmmino acid change due to SNP
edMinor Allele Frequency - ETR: Ethiopia, rural; ETU: Ethiopia, urban; GBR: The Gambia, rural; GBU: The Gambia, urban, GN: Ghana; KE:

Kenya; PE: Peru; SP: Spain; SW: Sweden; USC: United States, California; USW: United States, Washington/Idaho.
fEvolutionary statistics to assess interpopulation differences: FST : fixation index; D: Tajima’s D; π: nucleotide diversity
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Table 4.4: Identified genetic variants, allele frequency, and evolutionary statistics for fucosyltransferase 2 (FUT2).

Position 1 rsID 2 Change 3 AA 4 MAF 5 FST
6 D 6 π 6

ETR ETU GBR GBU GN KE PE SP SW USC USW All

30 28 31 33 24 20 39 31 20 5 20 282

chr19 48694270 rs1214586456 upstream 0.06 0.07 0.05 0.02 0.05 0 0.06 0.02 0.03 0.2 0.05 0.04 0 0.51 0.09

chr19 48694274 rs1486345849 upstream 0.17 0.23 0.22 0.21 0.23 0.13 0.16 0.29 0.19 0.3 0.21 0.21 0 0.51 0.33

chr19 48694277 . upstream 0.08 0.05 0.07 0.06 0 0.09 0.06 0.21 0.06 0 0.08 0.07 0.02 -0.05 0.14

chr19 48694280 . upstream 0.27 0.23 0.21 0.18 0.18 0.28 0.16 0.1 0.08 0.3 0.13 0.18 0.01 0.02 0.3

chr19 48694281 . upstream 0.02 0.02 0.02 0.03 0.05 0.06 0.03 0.04 0.06 0 0.03 0.03 -0.02 0.02 0.06

chr19 48694283 . upstream 0.02 0.05 0.03 0.05 0.05 0.09 0.03 0.02 0 0.1 0.08 0.04 0 0.02 0.08

chr19 48694285 . upstream 0.31 0.32 0.34 0.34 0.25 0.28 0.39 0.33 0.28 0.2 0.32 0.32 0 1.76 0.44

chr19 48694299 . upstream 0.04 0.05 0.07 0.05 0.08 0.09 0.03 0.08 0.03 0 0.11 0.06 -0.01 -0.22 0.11

chr19 48694321 rs1156343359 upstream 0 0 0.05 0.02 0 0.03 0.01 0.02 0.03 0.1 0.08 0.02 0.01 -0.36 0.05

chr19 48694323 . upstream 0.1 0.09 0.07 0.13 0.05 0.09 0.01 0.1 0.06 0.1 0.16 0.08 0 -0.36 0.15

chr19 48694332 . upstream 0.06 0.16 0.16 0.06 0.08 0.13 0.1 0.15 0.14 0 0.08 0.11 0 0.27 0.19

chr19 48694335 rs28746179 upstream 0 0.05 0.07 0.02 0.05 0.09 0 0 0 0 0 0.02 0.01 -0.59 0.05

chr19 48694348 . upstream 0.1 0.05 0.07 0.06 0.13 0.16 0.13 0.04 0.03 0.1 0.11 0.09 0 0.07 0.16

chr19 48694353 . upstream 0.1 0.05 0.1 0.16 0.15 0.25 0.09 0.1 0.06 0 0.05 0.11 0.01 0.27 0.19

chr19 48694366 . upstream 0.06 0.18 0.07 0.13 0.18 0.13 0.04 0.15 0.11 0.2 0.11 0.11 0.01 0.33 0.2

chr19 48694394 rs988844014 upstream 0.35 0.36 0.36 0.34 0.32 0.34 0.29 0.23 0.36 0.1 0.29 0.32 0 1.75 0.43

chr19 48694398 rs1021282467 upstream 0.29 0.32 0.29 0.24 0.38 0.44 0.37 0.4 0.44 0.4 0.32 0.34 0.01 1.84 0.45

chr19 48694406 rs557631142 upstream 0.15 0.07 0.16 0.08 0.15 0.25 0.17 0.15 0.14 0.1 0.18 0.14 0 0.62 0.25

chr19 48694414 rs576217481 upstream 0.19 0.16 0.18 0.18 0.18 0.19 0.16 0.13 0.14 0.4 0.21 0.17 -0.01 0.87 0.29

chr19 48694415 . upstream 0.04 0.05 0.11 0.13 0.13 0.13 0.06 0.08 0.03 0 0.05 0.08 0.01 0.87 0.18

chr19 48694424 rs2548456 upstream 0 0 0.18 0.13 0.13 0.06 0 0.02 0 0 0 0.05 0.08 -0.26 0.1

chr19 48694428 rs1253339733 upstream 0.17 0.23 0.11 0.13 0.16 0.16 0.19 0.23 0.28 0 0.16 0.17 0 0.86 0.29

chr19 48694430 rs1396330130 upstream 0.06 0.07 0.1 0.11 0.1 0.06 0.07 0.08 0.06 0.1 0.08 0.08 -0.02 0.69 0.15

chr19 48694432 . upstream 0.12 0.14 0.17 0.18 0.15 0.19 0.24 0.23 0.22 0.3 0.24 0.19 0 0.69 0.31
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chr19 48694438 . upstream 0.21 0.09 0.12 0.15 0.13 0.22 0.16 0.25 0.22 0.2 0.18 0.17 0 0.81 0.28

chr19 48694439 . upstream 0.12 0.11 0.16 0.12 0.1 0.13 0.07 0.13 0.08 0.2 0.13 0.11 -0.01 0.81 0.2

chr19 48694443 . upstream 0.08 0 0.02 0.05 0.03 0.03 0.03 0.02 0.06 0.1 0.03 0.03 -0.01 -0.47 0.07

chr19 48694447 rs28362826 upstream 0.04 0.11 0 0.06 0.03 0 0 0 0 0 0 0.02 0.04 -0.59 0.05

chr19 48694455 . upstream 0 0.02 0.07 0.08 0.03 0.06 0.07 0.08 0.03 0.1 0.08 0.06 0 -0.24 0.1

chr19 48694463 . upstream 0.04 0.02 0.07 0.03 0 0.03 0.01 0.02 0 0 0.05 0.03 -0.01 -0.54 0.06

chr19 48694846 . upstream 0 0 0 0.07 0 0 0 0 0 0 0 0.01 0.05 -0.77 0.02

chr19 48695079 rs2548457 upstream 0.19 0.25 0.61 0.53 0.68 0.5 0 0.1 0.16 0.1 0.21 0.31 0.24 1.72 0.43

chr19 48695088 rs150156163 upstream 0 0 0.09 0.02 0 0 0 0 0 0 0 0.01 0.04 -0.73 0.02

chr19 48695142 rs1237144276 upstream 0.1 0.06 0.11 0.07 0.03 0.09 0.03 0.02 0.13 0.3 0.07 0.07 0.02 -0.07 0.13

chr19 48695151 . upstream 0.26 0.42 0.34 0.28 0.21 0.18 0.22 0.23 0.28 0.4 0.29 0.27 0.01 2.20 0.4

chr19 48695152 . upstream 0.33 0.4 0.36 0.33 0.24 0.21 0.26 0.29 0.28 0.4 0.32 0.31 0 2.20 0.43

chr19 48695167 rs528122216 upstream 0.28 0.44 0.3 0.31 0.34 0.21 0.28 0.23 0.38 0.5 0.32 0.31 0.01 1.72 0.43

chr19 48695199 rs1423727045 upstream 0.29 0.44 0.3 0.24 0.2 0.21 0.21 0.15 0.31 0.5 0.29 0.27 0.03 1.51 0.39

chr19 48695201 . upstream 0.21 0.38 0.29 0.16 0.1 0.18 0.1 0.06 0.25 0.5 0.18 0.2 0.06 1.04 0.32

chr19 48695255 . upstream 0.02 0 0.02 0 0.03 0 0 0 0 0 0 0.01 -0.01 -0.8 0.01

chr19 48695320 rs545073059 upstream 0 0 0 0 0 0 0 0.06 0 0 0 0.01 0.03 -1.12 0.01

chr19 48695323 rs765420172 upstream 0 0 0 0 0 0 0 0.02 0 0 0 0 0 -1.12 0

chr19 48702888 rs516316 downstream 0.63 0.41 0.57 0.47 0.43 0.64 0.09 0.62 0.35 0.1 0.47 0.44 0.12 2.11 0.49

chr19 48702915 rs516246 downstream 0.63 0.41 0.57 0.47 0.43 0.64 0.09 0.62 0.35 0.1 0.47 0.44 0.12 2.11 0.49

chr19 48703029 rs1800021 nonsyn I → V 0 0.04 0.11 0.1 0.11 0.04 0 0 0 0 0 0.04 0.03 -0.39 0.08

chr19 48703036 rs1185332526 nonsyn H → R 0 0 0 0.02 0 0 0 0 0 0.1 0 0 0.04 -0.83 0.01

chr19 48703160 rs492602 syn A → A 0.65 0.45 0.57 0.47 0.46 0.63 0.08 0.65 0.42 0.2 0.5 0.47 0.12 2.13 0.5

chr19 48703167 rs575344194 nonsyn R → C 0 0 0 0 0 0 0.01 0 0 0.1 0 0 0.04 -0.83 0.01

chr19 48703205 rs681343 syn Y → Y 0.65 0.45 0.57 0.47 0.46 0.63 0.07 0.65 0.42 0.2 0.5 0.46 0.13 2.13 0.5

chr19 48703304 rs28362836 syn S → S 0 0 0.02 0.02 0.04 0.07 0 0 0 0 0 0.01 0.01 -0.74 0.02

chr19 48703346 rs281377 syn N → N 0.35 0.5 0.14 0.34 0.2 0.17 0.57 0.27 0.53 0.7 0.5 0.37 0.09 1.94 0.47

chr19 48703384 . nonsyn E → G 0.1 0.04 0 0 0 0 0 0 0.06 0 0.05 0.02 0.03 -0.63 0.04
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chr19 48703417 rs601338 Stop gained W → * 0.59 0.46 0.5 0.5 0.44 0.43 0.1 0.5 0.41 0.3 0.4 0.41 0.09 0.72 0.53

chr19 48703418 rs1800459 nonsyn W → C 0.23 0.25 0.26 0.28 0.48 0.45 0.44 0.48 0.08 0.3 0.4 0.35 0.06 0.72 0.45

chr19 48703419 . nonsyn T → P 0 0 0 0 0.02 0 0.01 0.02 0 0 0 0.01 -0.01 0.72 0.01

chr19 48703469 rs1800027 syn H → H 0.06 0.09 0.09 0.05 0.02 0.03 0.01 0.03 0.03 0 0.05 0.04 0 -0.36 0.08

chr19 48703470 rs1800025 nonsyn D → N 0.06 0.02 0.17 0.2 0.21 0.13 0 0.02 0 0 0 0.08 0.09 -0.01 0.14

chr19 48703477 rs755843863 nonsyn V → G 0.1 0.07 0.02 0.03 0.04 0 0.1 0.08 0.11 0 0.08 0.06 0 -0.16 0.12

chr19 48703728 rs602662 nonsyn G → S 0.58 0.46 0.59 0.38 0.4 0.56 0.12 0.65 0.44 0.4 0.53 0.45 0.09 2.12 0.5

chr19 48703830 rs548111243 nonsyn G → R 0 0 0 0 0 0 0.07 0 0 0 0 0.01 0.03 -0.75 0.02

chr19 48703912 . nonsyn I → T 0 0 0.02 0 0 0 0 0 0 0 0 0 -0.01 -0.85 0

chr19 48703949 rs485186 syn T → T 0.62 0.48 0.6 0.43 0.4 0.61 0.12 0.62 0.44 0.4 0.53 0.47 0.09 2.14 0.5

chr19 48703974 . syn L → L 0 0 0 0.02 0 0 0 0 0 0 0 0 -0.01 -0.85 0

chr19 48703998 rs485073 3’UTR 0.62 0.48 0.6 0.47 0.4 0.56 0.12 0.65 0.47 0.4 0.53 0.47 0.09 2.14 0.5

chr19 48704000 rs603985 3’UTR 0.6 0.48 0.6 0.43 0.4 0.56 0.12 0.65 0.47 0.4 0.53 0.46 0.09 2.13 0.5

chr19 48704175 rs28362840 3’UTR 0.02 0 0.07 0.05 0.02 0.08 0 0 0 0 0.03 0.02 0.01 -0.59 0.05

chr19 48704297 rs571689 3’UTR 0.69 0.54 0.62 0.59 0.66 0.75 0.25 0.6 0.48 0.3 0.6 0.56 0.07 2.11 0.49

chr19 48704303 . 3’UTR 0.17 0.11 0.27 0.21 0.15 0.18 0 0.02 0 0 0 0.11 0.09 0.33 0.2

chr19 48704353 rs374477120 3’UTR 0 0 0 0 0 0.05 0 0 0 0 0 0 0.03 -0.83 0.01

chr19 48704378 . 3’UTR 0.18 0.11 0.07 0.09 0.1 0.05 0.03 0.11 0.08 0 0.05 0.09 0.01 0.09 0.16

chr19 48704394 rs570794 3’UTR 0.72 0.57 0.63 0.62 0.65 0.75 0.29 0.63 0.48 0.4 0.63 0.58 0.07 2.07 0.49

chr19 48704400 . 3’UTR 0.02 0.02 0 0 0 0 0 0.03 0 0.1 0 0.01 0.02 -0.04 0.02

chr19 48704403 rs1203875153 3’UTR 0.28 0.2 0.18 0.09 0.1 0.08 0.01 0.29 0.23 0.2 0.13 0.16 0.06 -0.04 0.26

chr19 48704407 . 3’UTR 0.04 0.02 0.05 0.05 0.02 0 0.24 0.05 0.08 0 0.05 0.06 0.07 0.87 0.11

chr19 48704408 rs1175534345 3’UTR 0.2 0.3 0.18 0.21 0.2 0.15 0.41 0.26 0.35 0.4 0.32 0.26 0.02 0.87 0.39

chr19 48704411 . 3’UTR 0.04 0.09 0.07 0.06 0.05 0 0.36 0.06 0.13 0.1 0.13 0.1 0.1 0.08 0.18

chr19 48704413 . 3’UTR 0.04 0.06 0.05 0.06 0.02 0 0.26 0.05 0.1 0.1 0.08 0.07 0.06 0.08 0.14

chr19 48704414 . 3’UTR 0.05 0.04 0.03 0.05 0.02 0 0.33 0.03 0.1 0.1 0.08 0.08 0.12 0.08 0.14

chr19 48704416 rs1449519289 3’UTR 0.02 0.06 0.03 0.08 0.05 0.03 0.26 0.06 0.1 0.1 0.11 0.08 0.05 0.04 0.15

chr19 48704418 rs1336286761 3’UTR 0.05 0.11 0.08 0.1 0.05 0.08 0.36 0.06 0.13 0.3 0.16 0.12 0.08 0.04 0.21
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chr19 48704419 . 3’UTR 0 0.07 0.02 0.02 0.02 0 0.19 0 0.03 0 0.11 0.04 0.08 0.04 0.08

chr19 48704420 rs1308982795 3’UTR 0.04 0.09 0.07 0.05 0.05 0.03 0.26 0.05 0.05 0.1 0.16 0.08 0.05 0.05 0.15

chr19 48704461 rs569970 3’UTR 0.69 0.59 0.62 0.59 0.66 0.75 0.27 0.6 0.48 0.3 0.6 0.57 0.06 2.09 0.49

chr19 48704535 rs2251034 3’UTR 0.69 0.52 0.53 0.52 0.55 0.63 0.22 0.61 0.48 0.3 0.6 0.52 0.06 2.14 0.5

chr19 48704728 . 3’UTR 0 0 0 0 0.03 0 0 0.02 0 0.17 0 0.01 0.05 -0.8 0.01

chr19 48704791 rs28362842 3’UTR 0 0.02 0.11 0.08 0.03 0.06 0.08 0.08 0.05 0 0.06 0.06 -0.01 -0.18 0.11

chr19 48704795 rs567037 3’UTR 0 0 0.29 0.27 0.37 0.34 0 0.02 0 0 0 0.13 0.2 0.45 0.22

chr19 48705048 . 3’UTR 0 0 0 0.11 0 0.03 0.03 0.02 0.03 0 0 0.02 0.04 -0.62 0.04

chr19 48705106 rs146519458 3’UTR 0 0 0.03 0.02 0.06 0.03 0 0 0 0 0 0.01 0.01 -0.7 0.03

chr19 48705111 rs2432132 3’UTR 0.62 0.43 0.52 0.48 0.48 0.5 0.07 0.58 0.48 0.3 0.5 0.45 0.1 2.12 0.5

chr19 48705116 rs868855781 3’UTR 0.1 0.14 0 0 0 0.03 0 0 0 0 0 0.03 0.09 -0.56 0.05

chr19 48705123 rs112820994 3’UTR 0.02 0.02 0.12 0.09 0.21 0.1 0 0 0 0 0 0.05 0.08 -0.28 0.1

chr19 48705129 rs1031492296 3’UTR 0.2 0.27 0.2 0.11 0.06 0.18 0.03 0.03 0.15 0.1 0.1 0.13 0.05 0.46 0.22

chr19 48705130 rs1184990920 3’UTR 0.05 0.05 0.02 0.03 0.04 0.03 0 0 0.03 0 0.03 0.02 0 -0.61 0.05

chr19 48705132 rs1246979914 3’UTR 0.1 0.11 0.05 0.02 0.06 0.08 0.01 0 0.05 0 0.05 0.05 0.01 -0.61 0.09

chr19 48705136 rs955425753 3’UTR 0.08 0.05 0.07 0.03 0.06 0.05 0 0 0.03 0 0.08 0.04 0.01 -0.3 0.08

chr19 48705139 . 3’UTR 0.15 0.13 0.11 0.06 0.08 0.13 0 0.02 0.05 0 0.08 0.07 0.02 -0.3 0.14

chr19 48705142 . 3’UTR 0.22 0.27 0.13 0.15 0.06 0.18 0.06 0 0.13 0 0.15 0.13 0.04 0.17 0.22

chr19 48705143 . 3’UTR 0.1 0.11 0.11 0.05 0.04 0.1 0 0 0.05 0 0.05 0.06 0.02 0.17 0.11

chr19 48705161 rs1467636699 3’UTR 0.03 0.04 0.02 0 0.02 0.03 0 0 0.03 0 0.03 0.02 -0.01 -0.68 0.03

chr19 48705204 . 3’UTR 0.08 0.11 0.07 0.05 0.04 0.03 0.01 0 0.03 0 0.08 0.05 0.01 -0.34 0.09

chr19 48705214 rs28362845 3’UTR 0 0 0.02 0.06 0.06 0.08 0 0 0 0 0 0.02 0.02 -0.64 0.04

chr19 48705228 . 3’UTR 0.03 0.05 0.02 0.05 0.02 0 0.01 0 0.08 0 0.05 0.03 0 -0.54 0.06

chr19 48705237 . 3’UTR 0.02 0.04 0.05 0.03 0 0.05 0 0 0 0 0.03 0.02 0 -0.64 0.04

chr19 48705244 rs507855 3’UTR 0.6 0.39 0.47 0.44 0.38 0.48 0.1 0.55 0.43 0.3 0.5 0.42 0.08 2.07 0.49

chr19 48705247 . 3’UTR 0.02 0.04 0 0 0 0 0 0 0 0 0 0.01 0.01 -0.81 0.01

chr19 48705254 . 3’UTR 0.1 0.07 0.08 0.08 0.04 0.03 0.01 0 0.03 0.1 0.03 0.05 0.01 -0.32 0.09

chr19 48705263 . 3’UTR 0.02 0.02 0.02 0.05 0 0.08 0.04 0 0 0 0.05 0.02 0 -0.58 0.05
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chr19 48705266 . 3’UTR 0.02 0.02 0.03 0.08 0 0.1 0.04 0 0 0 0.08 0.03 0.02 -0.48 0.07

chr19 48705272 rs1376457670 3’UTR 0.02 0.04 0.03 0.03 0 0.1 0.04 0 0 0 0.08 0.03 0.01 -0.52 0.06

chr19 48705286 rs507766 3’UTR 0.67 0.48 0.6 0.52 0.42 0.55 0.08 0.58 0.53 0.3 0.55 0.48 0.12 2.14 0.5

chr19 48705307 rs507711 3’UTR 0.67 0.52 0.59 0.52 0.44 0.55 0.09 0.6 0.5 0.3 0.53 0.48 0.11 2.15 0.5

chr19 48705372 rs506897 3’UTR 0.7 0.48 0.57 0.5 0.48 0.55 0.07 0.63 0.48 0.3 0.5 0.48 0.13 2.14 0.5

chr19 48705608 rs504963 3’UTR 0.65 0.52 0.52 0.5 0.48 0.68 0.09 0.58 0.43 0.4 0.48 0.47 0.1 2.14 0.5

chr19 48705716 . 3’UTR 0 0.09 0.05 0.05 0.02 0 0.06 0.03 0.03 0 0.03 0.04 0 -0.42 0.08

chr19 48705721 rs632111 3’UTR 0.48 0.3 0.53 0.45 0.48 0.55 0.08 0.6 0.4 0.3 0.48 0.42 0.09 2.07 0.49

chr19 48705753 rs503279 3’UTR 0.72 0.48 0.58 0.55 0.52 0.68 0.08 0.6 0.43 0.3 0.48 0.49 0.14 2.15 0.5

chr19 48705954 . 3’UTR 0.08 0 0.03 0 0 0.08 0.03 0.08 0.03 0 0.05 0.04 0.02 -0.46 0.07

chr19 48705969 rs633372 3’UTR 0.6 0.54 0.53 0.47 0.44 0.6 0.12 0.65 0.34 0.4 0.47 0.46 0.08 2.13 0.5

1Chromosomal location of variant.
2rsID corresponds to entry in NCBI dbSNP database, ’.’ indicates no entry available.
3Change based on snpEff analysis of location function and potential change of amino acid in protein sequence; syn - synonymous mutation; nonsyn

- nonsynonymous mutation.
4Ammino acid change due to SNP
5dMinor Allele Frequency - ETR: Ethiopia, rural; ETU: Ethiopia, urban; GBR: The Gambia, rural; GBU: The Gambia, urban, GN: Ghana; KE:

Kenya; PE: Peru; SP: Spain; SW: Sweden; USC: United States, California; USW: United States, Washington/Idaho.
6Evolutionary statistics to assess interpopulation differences: FST : fixation index; D: Tajima’s D; π: nucleotide diversity
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Table 4.5: Identified genetic variants, allele frequency, and evolutionary statistics fucosyltransferase 3 (FUT3).

Position 1 rsID 2 Change 3 AA 4 MAF 5 FST
6 D 6 π 6

ETR ETU GBR GBU GN KE PE SP SW USC USW All

30 28 31 33 24 20 39 31 20 5 20 282

chr19 5843565 rs34304528 3’UTR 0.11 0 0 0 0 0 0.03 0.05 0.14 0.13 0.03 0.03 0.04 -0.49 0.06

chr19 5843598 rs874232 3’UTR 0.21 0.34 0.24 0.32 0.25 0.29 0.45 0.28 0.26 0.3 0.13 0.29 0.02 1.62 0.41

chr19 5843757 . syn T → T 0 0 0 0 0 0 0 0 0 0 0.06 0 0.01 -0.82 0.01

chr19 5843782 . nonsyn V → G 0.02 0.05 0.03 0.08 0 0.03 0.01 0 0.03 0 0 0.03 0 -0.51 0.06

chr19 5843913 rs1331233156 syn L → L 0 0 0 0.02 0 0 0 0 0 0.1 0 0 0.04 -0.82 0.01

chr19 5844032 rs137909900 nonsyn V → M 0.06 0.04 0.13 0.03 0.05 0.1 0 0 0 0 0 0.04 0.02 -0.4 0.08

chr19 5844332 rs3745635 nonsyn G → S 0.09 0.14 0.12 0.38 0.32 0.18 0.45 0.02 0.03 0.25 0 0.19 0.16 1 0.31

chr19 5844356 rs28362463 nonsyn D → N 0.07 0.06 0.2 0.1 0.1 0.17 0 0 0 0 0 0.06 0.06 -0.16 0.12

chr19 5844526 rs778986 nonsyn M → T 0.65 0.7 0.81 0.88 0.87 0.98 0.95 0.84 0.76 1 0.85 0.84 0.05 0.78 0.27

chr19 5844615 rs377716323 syn P → P 0.13 0 0.03 0.05 0 0 0.03 0 0.03 0 0.03 0.03 0.04 -0.53 0.06

chr19 5844638 rs812936 nonsyn R → W 0.58 0.46 0.63 0.74 0.73 0.88 0.78 0.81 0.68 1 0.7 0.71 0.06 1.63 0.42

chr19 5844649 rs376471696 nonsyn L → P 0 0 0 0 0.02 0 0.01 0 0.08 0 0 0.01 0.03 -0.76 0.02

chr19 5844652 . nonsyn L → P 0.38 0.38 0.29 0.3 0.37 0.25 0.4 0.29 0.25 0.4 0.38 0.33 0 1.81 0.44

chr19 5844656 rs1259810674 nonsyn T → P 0.46 0.46 0.45 0.39 0.37 0.38 0.41 0.31 0.42 0.2 0.4 0.4 0.01 2.03 0.48

chr19 5844661 rs148881389 nonsyn R → P 0.44 0.42 0.5 0.41 0.39 0.35 0.45 0.37 0.39 0.3 0.38 0.41 0 2.06 0.49

chr19 5844665 rs756103678 nonsyn T → P 0.38 0.44 0.44 0.3 0.3 0.25 0.31 0.19 0.28 0.1 0.25 0.31 0.03 1.73 0.43

chr19 5844779 rs28362460 syn L → L 0.02 0.02 0.02 0.02 0.07 0.03 0.01 0 0 0 0 0.02 0 -0.68 0.03

chr19 5844781 rs28362459 nonsyn L → R 0.21 0.25 0.26 0.44 0.45 0.25 0.49 0.11 0.06 0.5 0.05 0.28 0.11 1.57 0.4
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chr19 5844827 rs28362458 nonsyn G → S 0.1 0.06 0.18 0.11 0.16 0.23 0 0 0 0 0 0.08 0.07 -0.01 0.14

1Chromosomal location of variant.
2rsID corresponds to entry in NCBI dbSNP database, ’.’ indicates no entry available.
3Change based on snpEff analysis of location function and potential change of amino acid in protein sequence; syn - synonymous mutation; nonsyn

- nonsynonymous mutation.
4Ammino acid change due to SNP
5dMinor Allele Frequency - ETR: Ethiopia, rural; ETU: Ethiopia, urban; GBR: The Gambia, rural; GBU: The Gambia, urban, GN: Ghana; KE:

Kenya; PE: Peru; SP: Spain; SW: Sweden; USC: United States, California; USW: United States, Washington/Idaho.
6Evolutionary statistics to assess interpopulation differences: FST : fixation index; D: Tajima’s D; π: nucleotide diversity
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Table 4.6: Identified genetic variants, allele frequency, and evolutionary statistics for ST6 N-Acetylgalactosaminide Alpha-2,6-
Sialyltransferase 5 (ST6GalNAc5).

Position 1 rsID 2 Change 3 AA 4 MAF 5 FST
6 D 6 π 6

ETR ETU GBR GBU GN KE PE SP SW USC USW All

30 28 31 33 24 20 39 31 20 5 20 282

chr1 77007735 rs6663942 intergenic 0.29 0.22 0.25 0.3 0.26 0.46 0.04 0.02 0.21 0 0.11 0.2 0.07 1.05 0.32

chr1 77007808 rs74090578 intergenic 0 0.1 0.11 0.12 0.07 0.19 0 0 0.06 0 0.03 0.06 0.03 -0.2 0.11

chr1 77008186 . intergenic 0.1 0 0.05 0.03 0.04 0.08 0.03 0 0.03 0 0 0.03 0.01 -0.47 0.07

chr1 77044197 rs200277344 intergenic 0 0 0 0 0 0 0 0 0.06 0 0 0 0.01 -0.82 0.01

chr1 77044448 . nonsyn I → S 0.02 0.02 0.02 0.11 0.06 0.06 0.04 0 0.12 0 0 0.04 0.02 -0.36 0.08

chr1 77044472 . nonsyn M → R 0 0.02 0.02 0 0.03 0.03 0.03 0 0 0 0.04 0.01 -0.01 -0.7 0.03

chr1 77050454 rs1003060586 intergenic 0.26 0.32 0.3 0.37 0.23 0.14 0.42 0.3 0.36 0 0.32 0.31 0.02 1.72 0.43

chr1 77050655 rs77058959 intergenic 0.09 0 0.02 0.03 0.08 0.04 0 0 0 0 0 0.02 0.01 -0.61 0.04

chr1 77062741 rs199722 downstream 0.6 0.52 0.66 0.45 0.52 0.73 0.55 0.33 0.39 0.33 0.18 0.5 0.06 2.15 0.5

chr1 77062831 . downstream 0.27 0.33 0.45 0.45 0.32 0.37 0.43 0.28 0.42 0 0.35 0.37 0.02 1.94 0.47

chr1 77063069 . nonsyn G → C 0 0.02 0 0 0 0 0 0 0 0.1 0 0 0.04 -0.83 0.01

chr1 77063299 . 3’UTR 0 0 0 0 0 0.03 0 0 0 0 0 0 0.01 -0.85 0

chr1 77063362 rs993365662 3’UTR 0 0 0.02 0 0 0.03 0 0 0 0 0 0 0 -0.83 0.01

chr1 77063368 . 3’UTR 0.02 0 0 0 0 0 0 0 0 0 0 0 0 -0.85 0

chr1 77063686 . 3’UTR 0.02 0.04 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0 0 0.03 -0.02 -0.58 0.05

chr1 77063880 rs144737930 3’UTR 0 0 0.03 0 0 0 0 0 0 0 0 0 0.01 -0.83 0.01

chr1 77063921 . 3’UTR 0 0 0 0 0.03 0 0 0 0 0.13 0 0 0.06 -0.83 0.01

chr1 77063950 . 3’UTR 0 0 0 0 0 0 0 0.02 0 0.13 0 0 0.06 -0.83 0.01

chr1 77064364 rs537623812 3’UTR 0 0 0 0 0 0 0 0 0 0.1 0.03 0 0.05 -0.83 0.01

chr1 77064710 rs115329926 3’UTR 0.02 0.04 0.02 0.03 0.07 0.03 0 0 0 0 0 0.02 0 -0.65 0.04

chr1 77064778 rs41292250 3’UTR 0.07 0.09 0 0 0 0 0 0.1 0.2 0.17 0.05 0.05 0.06 -0.32 0.09

chr1 77064824 . 3’UTR 0.17 0.38 0.3 0.4 0.27 0.42 0.44 0.24 0.33 0 0.26 0.32 0.03 1.77 0.44

chr1 77064830 . 3’UTR 0.13 0 0.1 0.02 0.02 0 0.03 0.1 0.03 0 0.05 0.05 0.03 -0.32 0.09
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chr1 77065124 . 3’UTR 0.36 0.26 0.25 0.18 0.17 0.31 0.31 0.17 0.13 0 0.24 0.24 0.02 1.33 0.36

chr1 77065281 rs1059038 3’UTR 0.03 0.04 0 0 0 0.03 0 0.08 0 0.1 0 0.02 0.02 -0.64 0.04

chr1 77065303 rs151127371 3’UTR 0.02 0.09 0 0 0 0.06 0 0 0 0 0 0.02 0.04 -0.69 0.03

chr1 77065538 rs11162262 3’UTR 0 0.04 0.15 0.06 0.08 0.1 0.6 0.08 0.18 0.3 0.15 0.16 0.26 0.76 0.27

chr1 77065664 . 3’UTR 0.1 0.02 0.03 0.02 0 0 0 0.02 0 0 0 0.02 0.03 -0.64 0.04

chr1 77065667 . 3’UTR 0 0 0 0 0 0 0 0 0.05 0 0 0 0.03 -0.83 0.01

chr1 77065765 . 3’UTR 0 0 0 0 0 0 0 0.02 0 0 0 0 0 -0.85 0

chr1 77065838 . 3’UTR 0.08 0 0.1 0.02 0.02 0.03 0.04 0.1 0.08 0 0.03 0.05 0.01 -0.31 0.09

chr1 77066028 rs79261221 3’UTR 0.15 0 0 0 0 0 0.1 0.04 0.03 0.17 0.03 0.04 0.05 1.18 0.08

chr1 77066029 rs199723 3’UTR 0.48 0.5 0.65 0.45 0.55 0.76 0.6 0.35 0.47 0.5 0.25 0.51 0.04 1.18 0.5

chr1 77066077 . 3’UTR 0 0 0 0 0 0 0.01 0 0 0 0 0 -0.01 -0.85 0

chr1 77066095 rs199724 3’UTR 0.48 0.5 0.65 0.45 0.55 0.76 0.6 0.35 0.47 0.5 0.25 0.51 0.04 2.15 0.5

chr1 77066152 rs146849779 3’UTR 0.02 0.07 0.02 0 0 0.05 0 0 0 0 0 0.01 0.02 -0.7 0.03

chr1 77066309 . 3’UTR 0 0 0 0 0 0 0 0 0 0 0.03 0 0.01 -0.85 0

chr1 77066733 rs144704498 3’UTR 0 0 0.06 0.09 0.04 0 0 0 0 0 0 0.02 0.03 -0.62 0.04

chr1 77066868 rs199662 3’UTR 0.35 0.38 0.45 0.32 0.4 0.5 0.38 0.26 0.25 0.3 0.23 0.35 0.02 1.88 0.46

chr1 77066895 rs58416742 3’UTR 0.1 0.11 0.03 0.08 0.1 0.11 0 0.05 0.03 0.1 0.08 0.06 0 -0.14 0.12

chr1 77066910 rs76211710 3’UTR 0.03 0.02 0.06 0.05 0.02 0.06 0 0.03 0.03 0 0 0.03 -0.01 -0.53 0.06

chr1 77066917 rs199663 3’UTR 0.57 0.52 0.66 0.5 0.56 0.78 0.58 0.37 0.4 0.5 0.33 0.53 0.04 2.14 0.5

chr1 77067143 . 3’UTR 0.07 0.02 0 0.02 0 0 0 0.06 0 0 0 0.02 0.02 -0.66 0.04

chr1 77067212 rs199664 3’UTR 0 0 0 0 0.02 0.08 0 0 0 0 0 0.01 0.02 -0.8 0.01

chr1 77067670 rs147210202 downstream 0.02 0.09 0 0 0 0.04 0 0 0 0 0 0.01 0.05 -0.7 0.03

chr1 77067799 rs115295855 downstream 0 0 0.07 0.03 0.05 0 0 0 0 0 0 0.02 0 -0.67 0.03

chr1 77067800 rs72681867 downstream 0 0 0 0 0 0 0 0.05 0.16 0 0.03 0.02 0.07 -0.67 0.03

chr1 77067913 . downstream 0 0 0 0 0 0 0 0.02 0 0.1 0 0 0.04 -1.13 0.01

chr1 77067914 . downstream 0 0 0 0 0 0 0 0 0.06 0 0 0 0.04 -1.13 0.01

chr1 77068042 . downstream 0 0 0.02 0 0 0 0 0 0 0 0 0 -0.01 -0.85 0

chr1 77068197 . downstream 0 0 0 0 0 0 0 0 0.03 0 0 0 0.01 -0.85 0
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chr1 77068224 rs61782871 downstream 0.02 0.09 0 0 0 0 0 0.17 0.15 0.2 0.06 0.05 0.08 -0.34 0.09

chr1 77068303 . downstream 0 0 0 0.08 0 0 0 0 0 0 0 0.01 0.06 -0.76 0.02

chr1 77068366 rs61782872 downstream 0.08 0.08 0.02 0.03 0 0.09 0 0.17 0.18 0.2 0.09 0.07 0.04 -0.07 0.13

chr1 77068620 rs74963941 downstream 0 0.02 0 0.12 0.13 0 0 0 0 0 0 0.03 0.08 -0.55 0.05

chr1 77069007 rs199665 downstream 0.14 0.25 0.34 0.25 0.27 0.25 0.41 0.05 0.15 0.3 0.16 0.24 0.05 1.32 0.36

chr1 77069015 . downstream 0.1 0 0 0 0 0.06 0 0.15 0 0 0 0.03 0.09 -0.51 0.06

chr1 77069103 rs11162264 downstream 0.23 0.05 0.19 0.1 0.07 0.17 0 0.07 0 0 0.03 0.09 0.06 0.09 0.16

1Chromosomal location of variant.
2rsID corresponds to entry in NCBI dbSNP database, ’.’ indicates no entry available.
3Change based on snpEff analysis of location function and potential change of amino acid in protein sequence; syn - synonymous mutation; nonsyn

- nonsynonymous mutation.
4Ammino acid change due to SNP
5dMinor Allele Frequency - ETR: Ethiopia, rural; ETU: Ethiopia, urban; GBR: The Gambia, rural; GBU: The Gambia, urban, GN: Ghana; KE:

Kenya; PE: Peru; SP: Spain; SW: Sweden; USC: United States, California; USW: United States, Washington/Idaho.
6Evolutionary statistics to assess interpopulation differences: FST : fixation index; D: Tajima’s D; π: nucleotide diversity
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Table 4.7: Identified genetic variants, allele frequency, and evolutionary statistics for Gulonolactone (L-) oxidase, pseudogene
(GULOP).

Position 1 rsID 2 Change 3 AA 4 MAF 5 FST
6 D 6 π 6

ETR ETU GBR GBU GN KE PE SP SW USC USW All

30 28 31 33 24 20 39 31 20 5 20 282

chr8 27579326 rs17057417 intergenic 0.1 0.06 0.14 0.14 0 0.14 0 0 0 0 0.03 0.06 0.05 -0.17 0.12

chr8 27579750 rs73558181 intergenic 0.08 0.1 0.19 0.13 0.03 0.13 0 0 0 0 0.13 0.08 0.04 0 0.14

chr8 27579771 rs78422197 intergenic 0 0 0 0 0.06 0 0 0 0 0 0 0 0.02 -0.82 0.01

chr8 27579865 rs146127661 intergenic 0 0 0 0 0.07 0 0 0 0 0 0 0 0.02 -0.82 0.01

chr8 27579871 rs17057419 intergenic 0.32 0.28 0.37 0.58 0.37 0.63 0.17 0.23 0.06 0 0.19 0.32 0.11 1.75 0.44

chr8 27579906 rs114652835 intergenic 0 0.02 0.11 0 0.19 0 0 0 0 0 0 0.03 0.1 -0.52 0.06

chr8 27580056 rs111659883 intergenic 0.24 0.28 0.46 0.23 0.44 0.25 0.06 0.12 0.22 0 0.03 0.22 0.09 1.23 0.35

chr8 27580101 . intergenic 0.13 0.02 0 0 0 0.09 0.04 0 0 0 0 0.03 0.05 -0.56 0.05

chr8 27583045 . intergenic 0.02 0.04 0.04 0.03 0 0 0.03 0.05 0.03 0 0 0.03 -0.01 -0.58 0.05

chr8 27583197 rs10216551 intergenic 0.27 0.04 0.2 0.12 0.1 0.16 0.15 0.16 0.06 0.13 0.11 0.14 0 0.54 0.23

chr8 27583362 rs10216623 intergenic 0.27 0.04 0.2 0.12 0.1 0.16 0.15 0.16 0.06 0.13 0.11 0.14 0 0.42 0.23

chr8 27583364 rs77271157 intergenic 0 0 0 0 0 0 0.35 0.08 0.18 0.13 0.14 0.09 0.2 0.42 0.16

chr8 27583400 rs61006720 intergenic 0.05 0.07 0.14 0.26 0.02 0.03 0.05 0.03 0 0.13 0 0.08 0.07 0.01 0.15

chr8 27583457 rs75929510 intergenic 0 0.09 0.12 0.05 0.24 0.13 0 0 0.09 0 0.06 0.07 0.05 -0.1 0.13

chr8 27583493 rs7828131 intergenic 0.55 0.54 0.82 0.82 0.79 0.72 0.26 0.32 0.32 0.38 0.36 0.55 0.19 2.12 0.5

chr8 27583506 rs10216661 intergenic 0 0 0.08 0.02 0.02 0 0 0 0 0 0 0.01 0.02 -0.72 0.02

chr8 27583590 . intergenic 0.02 0 0 0 0.04 0.05 0.03 0.02 0.05 0 0.03 0.02 0 -0.63 0.04

chr8 27583676 rs973743582 intergenic 0 0.02 0 0 0.02 0 0 0 0 0.13 0 0.01 0.03 -0.8 0.01

chr8 27583810 rs116425632 intergenic 0 0 0.07 0.03 0.02 0 0 0 0 0 0 0.01 0.01 -0.7 0.03

chr8 27583821 . intergenic 0 0 0 0.02 0 0 0 0 0 0.1 0 0 0.04 -0.82 0.01

chr8 27583843 . intergenic 0 0.02 0 0.02 0.02 0 0.01 0.07 0.03 0 0.03 0.02 0 -0.63 0.04

chr8 27583862 . intergenic 0 0.06 0.02 0.05 0.05 0.03 0 0 0 0 0 0.02 0.01 -0.89 0.04

chr8 27583864 . intergenic 0 0 0 0 0 0.06 0.03 0.04 0.06 0 0 0.02 0.01 N/A 0.03
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chr8 27583870 rs1410553994 intergenic 0 0 0 0.02 0 0 0 0 0 0.13 0 0 0.05 -0.82 0.01

chr8 27583888 . intergenic 0 0 0.02 0 0.05 0 0 0.04 0.03 0 0 0.01 0 -0.73 0.02

chr8 27584004 rs4732728 intergenic 0.7 0.65 0.93 0.81 0.86 0.84 0.24 0.44 0.44 0.25 0.33 0.61 0.25 2 0.48

1Chromosomal location of variant.
2rsID corresponds to entry in NCBI dbSNP database, ’.’ indicates no entry available.
3Change based on snpEff analysis of location function and potential change of amino acid in protein sequence; syn - synonymous mutation; nonsyn

- nonsynonymous mutation.
4Ammino acid change due to SNP
5dMinor Allele Frequency - ETR: Ethiopia, rural; ETU: Ethiopia, urban; GBR: The Gambia, rural; GBU: The Gambia, urban, GN: Ghana; KE:

Kenya; PE: Peru; SP: Spain; SW: Sweden; USC: United States, California; USW: United States, Washington/Idaho.
6Evolutionary statistics to assess interpopulation differences: FST : fixation index; D: Tajima’s D; π: nucleotide diversity
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Table 4.8: Identified genetic variants, allele frequency, and evolutionary statistics for Secretory blood group 1, pseudogene
(SEC1P).

Position 1 rsID 2 Change 3 AA 4 MAF 5 FST
6 D 6 π 6

ETR ETU GBR GBU GN KE PE SP SW USC USW All

30 28 31 33 24 20 39 31 20 5 20 282

chr19 48679906 . upstream 0.03 0 0.02 0 0 0.07 0.04 0.03 0.06 0 0 0.02 0 -0.62 0.04

chr19 48679949 . upstream 0 0 0.02 0 0 0.07 0.01 0 0 0 0 0.01 0 -0.77 0.02

chr19 48679992 rs56330548 upstream 0 0.04 0.09 0.1 0.16 0 0.01 0 0 0 0 0.05 0.04 -0.35 0.09

chr19 48680027 rs3826838 Splice site 0.18 0.15 0.09 0.07 0.09 0 0.34 0.03 0.14 0.4 0.11 0.14 0.07 0.59 0.24

chr19 48680126 rs115439718 upstream 0 0.02 0.05 0.05 0.06 0.07 0 0 0 0 0.06 0.03 -0.01 -0.55 0.05

chr19 48680161 . upstream 0 0 0 0 0 0 0.01 0 0 0.1 0 0 0.04 -0.82 0.01

chr19 48680213 . upstream 0.18 0.24 0.16 0.15 0.13 0.14 0.19 0.13 0.19 0 0.19 0.17 -0.01 0.84 0.28

1Chromosomal location of variant.
2rsID corresponds to entry in NCBI dbSNP database, ’.’ indicates no entry available.
3Change based on snpEff analysis of location function and potential change of amino acid in protein sequence; syn - synonymous mutation; nonsyn

- nonsynonymous mutation.
4Ammino acid change due to SNP
5dMinor Allele Frequency - ETR: Ethiopia, rural; ETU: Ethiopia, urban; GBR: The Gambia, rural; GBU: The Gambia, urban, GN: Ghana; KE:

Kenya; PE: Peru; SP: Spain; SW: Sweden; USC: United States, California; USW: United States, Washington/Idaho.
6Evolutionary statistics to assess interpopulation differences: FST : fixation index; D: Tajima’s D; π: nucleotide diversity
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1/13/2019 Mail - broo3572@vandals.uidaho.edu

https://outlook.office.com/owa/?realm=uidaho.edu&path=/mail/inbox 1/1

FW: Protocol 2012‐140 ‐ Characterization of Antigens for a
Staphylococcal Bovine Mastitis Vaccine

Actually, this is the protocol approval for the cow study.
 
Mark
 
From: Institutional Animal Care and Use Committee <iacuc@uidaho.edu> 
Date: Friday, December 21, 2012 at 12:10 PM 
To: Mark McGuire <mmcguire@uidaho.edu> 
Subject: Protocol 2012-140 - Characterization of Antigens for a Staphylococcal Bovine Mastitis Vaccine
 

University of Idaho 
Animal Care and Use Committee

 

Date: Friday, December 21, 2012
To: Mark McGuire
From: University of Idaho
Re: Protocol 2012-140 

Characterization of Antigens for a Staphylococcal Bovine Mastitis Vaccine

 

Your animal care and use protocol for the project shown above was reviewed and approved by the University of Idaho on Friday,
December 21, 2012.

This protocol was originally submitted for review on: Tuesday, November 27, 2012 
The original approval date for this protocol is: Friday, December 21, 2012 
This approval will remain in affect until: Saturday, December 21, 2013 
The protocol may be continued by annual updates until: Monday, December 21, 2015

Federal laws and guidelines require that institutional animal care and use committees review ongoing projects annually. For the
first two years after initial approval of the protocol you will be asked to submit an annual update form describing any changes in
procedures or personnel. The committee may, at its discretion, extend approval for the project in yearly increments until the
third anniversary of the original approval of the project. At that time, the protocol must be replaced by an entirely new
submission.

Brad Williams, DVM 
Campus Veterinarian 
University of Idaho 
208‐885‐8958

McGuire, Mark ﴾mmcguire@uidaho.edu﴿

Wed 1/9/2019 10:15 PM

To:Brooker, Sarah ﴾broo3572@vandals.uidaho.edu﴿ <broo3572@vandals.uidaho.edu>;
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Office of Research Assurances

Institutional Review Board
875 Perimeter Drive, MS 3010

Moscow ID 83844-3010

Phone: 208-885-6162

Fax: 208-885-5752

irb@uidaho.edu

To: Mark McGuire

From: Jennifer Walker
Chair, University of Idaho Institutional Review Board
University Research Office 
Moscow, ID 83844-3010

Title:

Project: 14-308

Approved: 06/27/15

Expires: 06/25/16

Thank you for submitting your extension request.

Jennifer Walker

On behalf of the Institutional Review Board at the University of Idaho, I am 

pleased to inform you that the first-year extension of your proposal is 

approved as offering no significant risk to human subjects as no changes in 

protocol have been made on this project. 

This extension of approval is valid until the date stated above at which time a 

second extension will need to be requested if you are still working on this 

project. If not, please advise the IRB committee when the project is completed.

': INSPIRE Track 1: What is Normal Milk? Sociocultural, 

Evolutionary, Environmental, and Microbial Aspects of Human Milk 

Composition'

June 15, 2015

University of Idaho Institutional Review Board:  IRB00000843, FWA00005639
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