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Abstract

Today’s economy and society’s well-being are dependent on secure information technol-

ogy systems and networks. Securing enterprise-size technology systems with thousands of

interconnected devices in hundreds of networks has proven a grand challenge. Within this

environment, network administrators and cybersecurity personnel need a method for verify-

ing, with a high degree of accuracy and efficiency, that security policies are being correctly

implemented throughout the enterprise’s network. In this thesis, we describe a formal model,

and associated developed tools, for policy verification of network routing policies. We also

describe the practical application of this model and tools to a an enterprise-class case study

for a Cisco-based network. The specific contributions are: formal modeling of router policies,

high-level querying of enterprise router policies, formal router policy verification, and toward

formal routing policy concatenation. This work demonstrates that it is possible to formally

model and verify real router policies in an enterprise network.
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CHAPTER 1

Introduction

Formal policy modeling plays an important role in the field of information assurance.

The ability to formally model a policy can increase the effectiveness of information security

personnel. Policy models allow professionals to better organize their domains, whether that

be corporate infrastructure or a small business network. More specifically, router policy

modeling is an critical asset in industry.

Information security personnel need to be able to use a piece of software that can gather

information about the current configuration of a given router, model that information in an

intuitive way, and allow the querying of the model for information about the router.

1.1 Problem

Information security managers have to implement policies, standards, procedures and

guidelines to ensure the availability, integrity and confidentiality of resources and information

[6]. Success is measured by the ability of a system, network, etc. to insure the integrity,

availability, and confidentiality of data both in transit and at rest. Security policies are an

essential ingredient of an organization’s operations plan and the starting point of security-

related operations including the configuration of system components.

In a corporate or industry network, it is hard to keep track of the configurations of dif-

ferent components of an enterprise network and its components. In a typical corporate level

network there are hundreds if not thousands of components that have to work synchronously.

Most networks don’t have the same technologies throughout the network, meaning system

administrators have to learn each type of technology in order to be effective at their job.

Currently, there is no high-level way, known to the authors, to gather information about

a device’s configuration and query information on the configuration. There is also a need for

a complete model of a system’s security policy that can be used to formalize concrete poli-
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cies while offering a high-level of abstraction that enables verification of a security policies’

correctness. Also, the initial and ongoing assurance that an organization’s security policies

are being completely and correctly implemented by all systems and devices is a difficult task.

This is due to the number of different systems, sub-systems, and devices within an industry’s

network and due to the current impossibility to derive a complete system policy model from

a system or device.

In order for security personnel to create and maintain a secure network, configurations of

various different components in the network need to be edited. While there are technologies

that can edit the configurations of many instances of a single type of component, such as

Microsoft’s Group Policy editor, there is no way to configure multiple different components

simultaneously nor is there a way to query the current configurations for details across all

devices in the network.

From the point of view of security policies and their enterprise implementation, there

is still a need to view an enterprise infrastructure as a whole versus as an isolated set of

individual devices and applications that are configured independently. Hence, there is a

need for a model that formalizes security policies throughout a system infrastructure from

users and roles, through applications and devices, and into the network. Such a model

must enable security policies to be organize and to represent all necessary detail within

system device configurations. In addition, this model must also be able to provide policy

representation, visualization, and analysis at a high level of abstraction.

1.2 Approach

This problem was tackled in three phases. First, a formal model had to be created. The

model created uses layered directed acyclic graphs (DAG)s to model both the components

of a system and the policies that are active in the system. The first layer of DAGs define

a set of nodes and edges that model the components or elements of a system. This DAG

orders these elements in a hierarchical format. We chose this format because information
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about a system can be implied through the hierarchy of the graph. The second DAG layer

uses the same nodes as the first layer but with two additions: a start and end node. These

nodes combined with a new set of edges define the polices in effect in the system. Each

policy defined by the model is converted in to a series of edges all starting at the policy-start

node and ending at the policy-end nodes; this is known as a policy path. These policy paths

connect the component nodes in such a way that describes how components interact with

each other and with foreign devices and components.

The second phase of our approach was to choose a sample set of systems and devices to

model. The set we chose was SELinux, Openstack and Cisco routers. These systems and

devices were chosen because they represent a large subset of devices found in an enterprise

network. The process of modeling a Cisco router scenario is described in chapter 5 of this

thesis.

The last phase of the approach was to create a query engine that can be used to gather

information about the model generated in phase 2. In order for us to proceed, two things

were needed. We needed an engine that could organize large amounts of data quickly and

produce results in a timely manner, and we needed a way to communicate with the query

engine. For the first part, Prolog was used to store and query data through a series of

procedures that were written for this project. For the second part, an intermediate language

was developed that allows the structure of the models to be loaded into the Prolog engine.

This language would also enable security professionals to write human-readable queries to

the engine. The details and processes behind model querying are described in chapter 6 of

this thesis.

This graph-based policy model is known as the Hierarchical Policy (HPol) formal model.

HPol uses a layered directed acyclic graph to organize the structure of a device and the

polices enabled in the device. The first layer in HPol is a directed tree graph that uses

hierarchy to define and model the structure of components in a device. This structure

creates a common single root node between all pieces of the model. The second layer of
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HPol uses another directed tree that models all polices enabled by the device. The typical

HPol model has three subgraph DAGs. Each one of these subgraphs has a label that is

unique to the contents of the DAG. The three labels are Subject, Action and Object. A

Subject is defined as an entity, component, or subsystem that can preform an action. An

Action is defined as any action, or more specifically the permission to preform an action that

a node in the Subject DAG can preform. An Object is defined as an entity, component,

or subsystem that is the recipient of an action preformed by a node in the Subject DAG.

These definitions were part of the original model and are used to describe policies with the

structure: Who [Subject] can preform What [Action] on Which [Object] resource. This is

further explained in chapter 4 in this thesis.

High-Level Easy-to-Use Reconfigurable Machine Evironment Specification (HERMES) is

a language developed at the University of Idaho and was originally used for web-browser

policy specification [7]. HERMES was chosen to specify the structure of an HPol formal

model and the policies that run through the model. HERMES was chosen for three reasons:

it is fully parameterized, multi-platform and easy for humans to use. In HERMES there are

no keywords, just a generalized syntax structure that allows for the efficient organization of

data. The contents of a HERMES file can be stored in a simple text file, allowing it to be

opened and edited on any platform. HERMES was originally designed to be used by humans,

in addition to being processed by computers. HERMES is fully described in chapter 4.

1.3 Overview of Thesis

In this thesis it will demonstrated that it is possible to model a Cisco router using a

formal policy model and it is possible to query the model for information about the current

configuration of the router. Chapter 2 describes the contributions to the HPol project written

up in this thesis. Chapter 3 gives a brief introduction to previous components of the HPol

project. Chapter 4 gives full details on both the HPol formal model and the HERMES

language. Chapter 5 gives a detailed account of the first contribution made to the HPol
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project: formal router policy modeling using Cisco routers. Chapter 6 gives a detailed

description of the second contribution to the HPol project: formal policy model verification

and querying. Chapter 7 applies the concepts of chapter 6 to a Cisco router model that is

covered in chapter 5. Chapter 8 proposes possible future work for the HPol project. Finally,

chapter 9 concludes this thesis.
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CHAPTER 2

Contributions

2.1 Research Questions and Objectives

The research for the HPol project is primarily driven by a single research question: Can

the HPol formal model be used to organize policy specifications for all devices? This question

can only be answered once every type of device on the planet has been modeled by the HPol

formal model. This thesis is the answer of a subset of that question. The research for this

thesis was driven by two more specific research questions:

1. Can we use the HPol formal model to accurately formulate a Cisco router policy?

2. Can we use the previously generated formal model to verify and query a specific Cisco

device routing and security policy?

Chapter 5 answers the first question and provides details to support the answer. Chapters

6 and 7 answer the second question. Chapter 6 describes the query mechanism used for HPol

formal models and chapter 7 presents a case study using the model generated for chapter 5.

2.2 Contribution 1: Formal Router Policy Modeling

The HPol formal model was previously developed before router policy modeling and ver-

ification research started. My contributions to the project were Cisco router policy modeling

using HPol and formal model querying. Cisco router modeling is described in chapter 5 and

HPol model querying is described in chapter 6, in addition to some improvements to the

HPol model.

It took many iterations of Cisco router policy modeling to get the HPol model in a form

that is both intuitive and informative. The final model follows the typical Subject, Action,

Object structure that all HPol formal models follow.
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2.3 Contribution 2: Formal Policy Verification

HPol formal model querying is a new addition to the project. There were multiple points

of research involved in this portion of the project. The first portion involved selecting an

engine that would be used for organizing model data. XSB Prolog was selected for this

task. Second, a way was needed to load the data from an HPol model into the Prolog

engine. HERMES was selected for this task. The HERMES language was originally used for

web-browser policy specification [7]. The HERMES language was close to being what was

required for the HPol project; however, modifications were required to make it fully suitable

for its new role. These modification required the development of a new parser and translator

to compile HERMES into Prolog while the original specification of the HERMES language

remained the same.

Once the HERMES language was ready for use, a series of Prolog procedures were created

to evaluate queries. Queries for the HPol formal model are also written in HERMES and are

loaded into the Prolog engine the same way that graph model data is. The procedures were

created for evaluating queries search through the model data to find policies that satisfy

queries. Full details on the query engine are described in chapter 6 of this Thesis.
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CHAPTER 3

Background

3.1 Past and Concurrent HPol Research

In order to answer the primary research question of the HPol project, device parsers must

be implemented to show that policies in different types of components can be modeled using

HPol. There is also research being conducted on formal model merging. This will allow

security personnel to take the formal models of multiple devices and combine them into a

single formal model that enables the direct comparison of multiple devices.

3.1.1 Access Control Policy Modeling

One of the initial areas of interest was the modeling of access control mechanisms.

SELinux was chosen for modeling due to its verboseness. Clear access control rules allow for

a direct translation between the SELinux configuration and an HPol model.

Development for the SELinux parser is still in progress. The HPol graph for SELinux

consists of three separate subgraphs: Subjects, Actions, and Objects. For the SELinux

graph, all roles and user types are being categorized as Subjects, all permission types are

being categorized as Actions, and file types are being categorized as Object. The basic

principle is that a Subject node can preform an Action node on an Object node [18].

3.1.2 Database Permissions Policy Modeling

Another initial area of interest was the modeling of database permissions. The Keystone

database application in the Openstack framework was chosen for this task. Each user in the

database has a clear set of permissions that can be easily modeled using HPol.

The goal is to model which users had access to the database and what kinds of rights

they had. The typical Subject-Action-Object format of the HPol model fits well with the
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type of rights that are present in Keystone. This work is still in progress.

3.1.3 HPol Formal Model Merging

Formal model merging is a resent addition to the HPol framework. Formal modeling

allows a security professional to take the HPol formal model of multiple devices of the same

type and visually compare the polices by combining the policy models into a single model.

This method will enable the verification of policies through multiple devices simultaneously.

3.2 Research Related to HPol

Security policy modeling has been attempted in the past. Different projects use different

types of modeling and graph schemes to model systems and the security policies that are

implemented in the systems. This section lists a few relevant types of modeling schemes as

well as how they differ from the HPol formal model.

3.2.1 Mathematical Formalisms

Set-Based Modeling: Policy modeling and querying is not a new concept to the infor-

mation assurance community. Guttman, Herzog, and Ramsdell investigated the ability to

verify information flow and access control within Security-Enhanced Linux (SELinux). They

used a set-based modeling scheme to verify that security policies were being enforced [5].

Our model instead uses a hierarchical model based on a Forest of Directed Acyclic Graphs

(DAGs) enhanced with policy links. This graph can then be used to construct more abstract

system-level policies by using graph operations.

Strand Spaces: Strands and Strands Spaces are another formal approach used for proving

security policies correct [14] [15]. Strands are defined as “a sequence of events” [16]. These

sequences are defined through the casual interaction of a system from both authorized and

unauthorized parties. Strands are then tied to a graph to form strand spaces. Strands and
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strand spaces have been used to enforce packet protection [3]. Strand spaces are used to

analyze the allowed traffic of a network and define policies that restrict unauthorized traffic.

Policies generated are only as complete as the interactions that reveal themselves at the

time of modeling. New interactions can appear after modeling is completed that can cause

false results in this type of model. In contrast HPol uses the configuration files of devices to

construct policy models. This method creates a more definite policy graph that can predict

all types of interactions.

Bipartite Graphs: Network security automation modeling through the use of graph con-

struction has also been researched [4]. This modeling scheme uses paths through bipartite

graphs to define network policy. In contrast, HPol uses a directed graph set up in a hier-

archical format to represent the relationship of different components in a model as well as

allow for policy abstraction.

Petri-Nets: Shafiq et al. [13] expand on the work of others to create a generalized tem-

poral role based access control (GTRBAC) model. They use a colored Petri-Net based

framework for verifying event-driven role based access control (RBAC) in real time. To

prevent unauthorized access, they designed a set of rules for detecting undesired traits in a

system derived from flaws in the policy specification [13]. They do not have a system set

up for querying the current status of a system. Instead of a Petri-Net model, HPol uses a

directed acyclic graph for managing data in a system and can then use the data gathered

to answer questions about queries. The HPol framework increases functionality through its

querying mechanism while also organizing data hierarchically

Model Checking: Kotenko and Polubelova created a verification model of networks and

distributed firewalls using model checking. They proposed an approach that describes a

network containing a limited number of addresses and detects anomalies in the network [9]. In

an effort to validate their proposal, they devised a series of tests to determine the correctness
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of a distributed firewall configuration. HPol converts model data into Prolog knowledge-base.

Then this knowledge-base is used to verify the correctness of device configurations against a

given set of polices.

3.2.2 Policy Specification Languages

Security Policy Language: Bernabé et al. developed an XML based High-Level Secu-

rity Policy Language (SPL) that is used to translate security policies from human readable

descriptions to configuration or machine-level code of given entities [12]. Similar to our

own research SPL is designed to allow a system administrator to configure machine settings

through the use of a policy language. Similarly to SPL, the HPol framework uses HERMES

to specify model data. The HPol tool-set also extends the SPL approach to use a hierarchical

structure to define policies that will allow a system administrator to set policy on both a

system and network level.

3.2.3 Policy Specification Tools

Margrave: Fisler et al. are developing an access control policy verification tool called

Margrave. Given a property of a system and a policy for that system, Margrave checks to

make sure the property satisfies the policy. Margrave also detects the impact of a policy

change on a system [2]. The Margrave poject was expanded to include the verification of

firewall polices as well [10]. Margave, however, does not verify policies over multiple devices.

HPol’s objective is to verify that a policy is being enforced not only in a single system but in

all systems across a network or infrastructure. The HPol model uses XSB Prolog to evaluate

whether or not a query is satisfied by the polices in the model.
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CHAPTER 4

The HPol Formal Model and The HERMES Language

4.1 The HPol Formal Model

HPol is a framework that reads low-level security configuration files and creates high-level

abstractions of those files to create a model of security policies. This enables an automatic

verification system that checks that each low-level configuration file is correct and satisfies

high-level security policies required for the correct and successful operation of an organiza-

tion’s network. HPol is designed to answer questions based on four parameters: Who can

access Which resources in What manner and in Which context?

The HPol formal model represents policy subjects, actions, and objects through a system

of Direct Acyclic Graphs (DAGs). Policy graphs are then added by superimposing a second

DAG on top of the original graph. Policy paths travel through the nodes of original graph.

Each policy path represents a policy that is allowed in the system. The structure and details

of this model are described in this chapter. Figure 4.1 is an example of an HPol model

that represents the access control of a file system. In this model the Alice user is allowed

the read and write permissions on the /home/alice directory by polices 1001 and 1002

respectively.

Also, note that a given node can have more than one parent node. For example, the

Oscar node has one primary parent (dark blue) and two secondary parents (light blue). The

dark blue hierarchical line states that Oscar is primarily a child of the Users node just like

the users Alice and Bob. The light blue hierarchical lines state that the Oscar node is also

a member of the Role User and Role Admin groups or subgraphs.

One of the primary advantages of the HPol approach to modeling security policies is

that it sorts hierarchical organizational structures into their corresponding graph hierarchies

through the use of Directed Acyclic Graphs (DAGs).

This approach enables the model to formalize these organizational hierarchies and define



13

HPolStart

Alice

1001 1002

alice

HPolEnd

1001 1002

Subjects

Role_Admin Users Role_User

read

1001

Oscar

Example

Objects Actions

write

1002

read_writefs_root

home Bob
1001

1002

Figure 4.1: A file system permission example HPol model. This model contains three different
users, two permission types and a single directory.
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formal policy abstraction operations. For example, given the permissions of a file system, if

a user has write permissions on all the files within a given sub-directory and the same user

has read permissions on the same files, then it can be inferred that the user has both read

and write permissions on all files in the subdirectory. If there are two separate policies

allowing the read and write permissions on a file, then an abstraction can be made from

these policies into a single policy that allows both reading and writing on the file. The

HPol model enables a straightforward and formal method for discovering these types of

abstractions. In this example, a DAG would be created to represent the file permissions

hierarchy. Then in such a DAG a read write node would be the parent node of nodes read

and write, hence allowing the abstraction to be inferred and represented by the formal HPol

model.

Figure 4.1 shows a graph representation of the example described above. Observe that in

the figure, there are two paths from the HPolStart node to the HPolEnd node; both paths

are drawn with green arrows. The paths in figure 4.1 are described below in detail:

1. Path in which all the links are labeled with the 1001 identifier composed of the following

green arrow links:

(a) Starting at the HPolStart node going to the Alice node in the Subjects DAG.

(b) Moving to the read node under the Actions DAG from the Alice (Subjects)

node.

(c) Moving to the alice node under the Objects DAG from the read (Actions) node.

(d) Ending at the HPolEnd node coming from the alice (Objects) node.

2. Path in which all the links are labeled with the 1002 identifier composed of the following

green arrow links:

(a) Starting at the HPolStart node going to the Alice node in the Subjects DAG.
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(b) Moving to the write node under the Actions DAG from the Alice (Subjects)

node.

(c) Moving to the alice node under the Objects DAG from the write (Actions)

node.

(d) Ending at the HPolEnd node coming from the alice (Objects) node.

Note that the only difference between these two policy paths is the read node in the

first path (1001) as a file permission and the write node in the second path (1002) as a file

permission. Also note that the same subject node, Alice, and the same object node, the

alice home directory node, are equal in both policy paths.

With this formalization of a policy using policy paths plus the fact that the permissions

are organized in a hierarchical manner, the information and inference rules needed to make

the abstraction are all present. The information needed to make this abstraction is given by

the policy paths and the hierarchy in the DAGs; in this case, the permissions DAG in which

the read write node is the parent of the read and write nodes.

The two policy paths described above could be abstracted by one unique hypothetical

policy path as follows:

1. Path in which all the links would be labeled with the 1001-1002 identifier composed

of the following links:

(a) Starting at the HPolStart node going to the Alice node in the Subjects DAG.

(b) Moving to the read write node under the Actions DAG from the Alice (Sub-

jects) node.

(c) Moving to the alice node under the Objects DAG from the read write (Ac-

tions) node.

(d) Ending at the HPolEnd node coming from the alice (Objects) node.
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This type of policy abstraction operation would also be applicable to other areas of policy

DAGs. A similar abstraction could be made in the subject DAG of figure 4.1. Suppose the

user Oscar had a similar read-write policy that Alice has with the only difference being

the subject of the policy, Oscar instead of Alice. Also, note that both Oscar and Alice

are secondary children of the Role Admin node. With the combination of the similar policy

paths and the common parent of both the Oscar and Alice node, an abstraction policy

could be formed that states that the Admin Role has the permission to read and write on

the alice directory. Also, note that this abstraction cannot be applied to the Users node.

This is because the Bob node would not have this policy. Only when all of the children of

a parent node have a similar policy can a full abstraction be made. Abstractions in the

opposite direction are possible as well. If a policy states that the Admin Role can read and

write on the alice directory then it can be inferred that all children of the Role Admin

node also have the ability to read and write on the alice directory.

Our goal is to allow the model and its computational implementation to represent the

low-level policy paths and to be able to represent and infer the high-level abstract policies.

This would enable security policy analysis to choose the level of abstraction to visualize and

verify the security policies within and across a system.

4.2 The HERMES Language

High-Level Easy-to-Use Reconfigurable Machine Evironment Specification (HERMES),

is a specification language that allows cyber security personnel to describe an organization

or industry’s infrastructure security policies using entity sets. Each entity set can classify

a variety of components such as Domains, Groups of Users, Roles, Application and so on.

HERMES allows entity sets to be defined using a hierarchical structure. Because of this

structure, an HPol model can be represented as a series of entity sets. The flexibility and

uniqueness of HERMES lies in the following features:
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� �
1 Policy: ID_001

2 {

3 Description: "Disabling JavaScript.";

4 Rationale: "Security Vulnerability";

5 Status: "Enabled";

6 Field: (JavaScript , "Disabled");

7 ApplyTo: "ALL";

8 }� �
Listing 4.1: Example of HERMES usage (to disable Javascript in all web browsers for all
machines connected to a server).[7][8]

Platform Independent: HERMES is a text-based language interpreted by a Prolog en-

gine. Because Prolog is platform independent, HERMES is as well. Also, HERMES is

capable of specifying security policies for any kind of application, on any platform or operat-

ing system and in any context. This is because all parameters of a HERMES entity set are

flexible. There are no keywords required to define entity sets. All a system administrator

would have to do is follow the very simple syntax defined by HERMES.

Human-Centered and Ease of Use: HERMES is designed to be written and read by

humans, not computers. HERMES is similar to YAML, but is not based on XML or any

other similar verbose markup languages. XML-based languages are difficult and obscure to

read and write for humans. HERMES is designed to be easy to read and write by humans.

Listing 4.1 contains an entity set written in HERMES. As shown HERMES entries are

written using words and very little special characters when compared to other specification

languages such as XML.

Versitile Specification Capacity: HERMES allows the specification of an organization’s

infrastructure in a hierarchical manner. For example, a company’s organizational chart can

be specified in HERMES with the top most entity set being the CEO and the next level of

branches being the children of this entity set, such as the marketing and IT departments.

HERMES can easily define tree and graph structures through its entity sets. It is because of
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this that HERMES was chosen to represent HPol formal models. Its parameterized nature

and its ease of use make it ideal for use in both an IT environment and in the HPol framework.

HERMES is designed to accommodate the automatic generation of entity sets based on

high-level policy specifications. Because of this HERMES was chosen to be an intermediate

language for the HPol framework. HERMES was originally used for the specification of

security policies in web-browsers. This project is called HiFiPol:Browser [7][8]. HERMES

was then later adapted for use in the HPol project.
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CHAPTER 5

Formal Router Policy Modeling

In this chapter, formal modeling of a Cisco Site-to-Site VPN policy with the HPol model

is described. Two complete router configurations will be modeled in this chapter. A policy

will also be traced through the resulting HPol formal model graph to demonstrate the models

effectiveness.

5.1 Cisco Site-to-Site VPN Policy

The scenario which is parsed and modeled was developed by Cisco for training purposes

and is described in detail on the Cisco site-to-site VPN training website [1]. Figure 5.1 shows

a similar network architecture for this site-to-site VPN example and corresponds to Figure

3-8 in the Cisco example which is available in the online Cisco example.

In the example presented in Figure 5.1 the following can be observed:

1. VPN: There are two routers, left, hq-sanjose and right, ro-rtp, connected by an en-

crypted VPN tunnel.

2. LAN(s) Left: The left router has two internal VLANs, DMZ and private, which are

connected to it with assigned IPv4 addresses: 10.1.6.0/24 and 10.1.3.0/24, respectively.

3. LAN(s) Right: The right router has one internal VLANs which is connected to it with

assigned IPv4 addresses: 10.1.4.0/24.

4. WAN: The left side of the tunnel has been assigned the IPv4 address of 172.17.2.4; the

right side of the tunnel has been assigned the IPv4 address of 172.24.2.5. These are

mapped to a serial interface in each router.

5. Tunnel: The IPv4 addresses assigned to the tunnel are 172.17.3.3 and 172.24.3.6 for

the left and right routers respectively. These are mapped to a tunnel interface in each
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Base Office
(base)

Remote Office
(remote)

Tunnel interface 0
172.17.3.3/24

Tunnel interface 1
172.24.3.6/24

Serial 1/0
172.17.2.4/24

Serial 1/0
172.24.2.5/24

Web Server 
10.1.6.5

Private Server 
10.1.3.6

Fast Ethernet 0/0
10.1.3.3/24

Remote Client
10.1.4.3

Fast Ethernet 0/0
10.1.4.2/24

Fast Ethernet 0/1
10.1.6.4/24 IPSec + GRE Tunnel

Figure 5.1: Site-to-Site VPN Scenario (based on [1]).

router. These two interfaces are virtual interfaces. The tunnel’s encapsulation protocol

is GRE+IPSec.

6. Host: A public Web server in the DMZ VLAN has been assigned the 10.1.6.5 IPv4

address.

7. Host: A private server in the internal (left) VLAN has been assigned the 10.1.3.6 IPv4

address.

8. Host: A private client in the internal (right) VLAN has been assigned the 10.1.4.3

IPv4 address.

9. Note: As indicated by the last two entries, the external IPv4 addresses assigned to the

two routers are actually non-usable reserved IPv4 addresses used only as an example.

A production configuration will configure here instead actual usable external IPv4

addresses.

10. Note: In this case both of the routers would be configured to perform Network Address

Translation (NAT) between the external and the internal VLANs.
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5.2 The Path of a Packet in the Example VPN Tunnel

In order to validate that our HPol model and tool-set are accurately modeling the routing

policy established by the VPN Tunnel example described in the previous section, the steps

followed by an IP packet in the given site-to-site VPN configuration will be manually traced.

Section 5.4 will show how the HPol formal model also models the same forwarding and

security policy.

1. Let’s assume that a user in PC A, IPv4 10.1.4.3, (right side of figure 5.1) is accessing

services provided by the private corporate server at 10.1.3.6 through the Site-to-Site

VPN Tunnel.

2. A given IP packet would be initiated at the PC A client, IPv4 address 10.1.4.3, and

sent to the gateway at the router endpoint of IPv4 address 10.1.4.2, which is within

the same subnet and VLAN.

3. The ro-rtp router (right) would then see that the packet has a destination IPv4 ad-

dress of 10.1.3.6 corresponding to the private corporate server on the other side of the

VPN tunnel. Hence, the router would encapsulate the packet using the VPN tunnel

logical addresses: source, IPv4 172.24.3.6, and destination, IPv4 172.17.3.3, and send

it through the tunnel interface, IPv4 172.24.2.5. In order to accomplish this, multiple

encryption and encapsulation steps would need to be carried out by the router given

the router configuration. These steps are described in the next subsection.

4. When receiving the packet on its tunnel serial interface, IPv4 172.17.2.4, the hq-sanjose

router (left) would then unwind the tunneling and encryption steps performed by the

ro-rtp router.

5. Lastly, the packet whose source IPv4 address is 10.1.4.3 and whose destination IPv4

address is 10.1.3.6 would be send via the Private VLAN to the Private corporate server

from the gateway interface, IPv4 10.1.3.3.
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5.3 The Cisco Configuration Parser

A parser was created in Python that reads a Cisco configuration file and by using the

HPol framework creates a graph representation of a router’s policy. Figures 5.2 and 5.3 show

the policy graphs resulting from this process. The configuration parsed for this example may

be found on the Cisco site-to-site VPN training website [1].

The generalized router HPol format is as follows:

• Numbers above links represent a policy number.

• A link illustrates a step in the policy.

• Subnet nodes verify that a packet contains an acceptable source address.

• Interface nodes verify that a packet was received at a particular interface.

• Action nodes represent a transform that is applied to a packet, e.g. cryptography.

• Action nodes also represent actions routers can take, e.g. send.

To verify a policy, the starting policy number must match throughout the policy. There

can be no breaks in the links; however, there are wildcard links that allow all policies to

traverse a given link. These wildcard links allow for easy readability and policy abstraction

when generating a policy graph. All policies must start at the HPol Start node, have a

continuous path throughout the graph, and end at the HPol End node. Once these conditions

are met a policy is considered complete.

The Cisco configuration parser runs in two general steps: step 1, parse input file to

gather all necessary data; step 2, generate an HPol model out of all gathered data. For the

first step, parse input file, the ciscoconfparse library was used to make parsing configuration

files easier. A series of functions were then created to extract the information out of the

ciscoconfparse library [11]. Listing 5.1 is an example of one of these functions. The function

in listing 5.1 gets all IP route information. As shown, the ciscoconfparse library allows a
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Figure 5.2: Cisco VPN HPol model: Graph View for Left Router, hq-sanjose
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user to search for configuration objects by name. In this function, all configuration objects

containing the header “ip route” were searched for and were returned in a list to be used at

the time of modeling.

1 def getIPRoutes(parse):

2 """

3 This function gathers all predefined IP routes in the

↪→ config file and stores them in a list. I chose a list for

↪→ this data because there are no unique IDs for IP Routes.

↪→ The Rule is just defined.

4 Input:

5 parse , cisco parse object of type ciscoconfparse

6 Returns:

7 iproutes , a list of defined IP routes

8 """

9 # make the list

10 iproutes = []

11 # find the ip route objects

12 routes = parse.find_objects(’ip route ’)

13 # loop directly of the object since they have no children

↪→ objects

14 for entry in routes:

15 # remove the ’ip route’ part of the object

16 temp = entry.text.replace(’ip route ’, ’’).split ()

17 # collect the ip of first object

18 ip = getIPRange(temp[0], temp [1])

19 # collect the name of the interface

20 interface = temp[-1]

21 # store

22 iproutes.append ((ip.replace(’/’,’_’), interface))

23 # and return

24 return iproutes

Listing 5.1: Code snippet: getIPRoutes function of the Cisco configuration parser.

Once information on all points of interest were collected, a model was constructed. A

description of the model is as follows. The Object DAG of the HPol model is populated using

data from the interface, ipRoute, and Access Lists entries of the configuration file. Listing

5.2 shows how the IP Route information collected in listing 5.1 is used to populate the

External IP addresses subgraph of both the Subjects and Objects DAGs. The Subject
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DAG of the HPol model is populated by duplicating the objects that can also act as a

subject. For example, the FastEthernet0 0 object in the configuration represents a subnet

that has devices on it. Theses devices are allowed to send information which means the

FasterEthernet0 0 node is duplicated under the Subjects DAG. The Action DAG is

populated with transforms and actions that apply to packets. For example, cryptographic

transforms are applied to packets that travel through Tunnel1 so all cryptographic transforms

are placed under the Actions DAG. The send action is also placed under the Actions DAG

and represents the ability of a packet to be sent.

1 #use ipRoutes to find external ipaddresses

2 for item in ipRoutes:

3 #collect the name of the ip/subnet

4 nodeName = item [0]

5 #add it to the Objects DAG

6 graphPaths[’Objects ’][’IP_addresses ’][’External ’][

↪→ nodeName] = createNode(hpol , nodeName , graphPaths[’

↪→ Objects ’][’IP_addresses ’][’External ’][’path’], ’Object ’)

7 #add it to the Subjects DAG

8 graphPaths[’Subjects ’][’IP_addresses ’][’External ’][

↪→ nodeName] = createNode(hpol , nodeName , graphPaths[’

↪→ Subjects ’][’IP_addresses ’][’External ’][’path’], ’Subject ’

↪→ )

Listing 5.2: Code snippet: How IP Route data is used to populate the formal model

Development of the Cisco router parser was completed in May of 2016 for this research.

For the Cisco router parser, IP address and subnets are considered both Subjects and Ob-

jects. This makes parsing policies more complicated because an IP address can be the subject

of one policy and the object of another. A real world scenario[1] was used in order to create a

proof-of-concept parser. This scenario consists of a VPN tunnel set up between two routers.

On one side of the tunnel is a client and on the other side is a server that the client is trying

to access. The structure of the HPol model for the router scenario consists of the typical

Subjects, Objects and Actions DAG. Subject nodes, in this model, are always the sender

and Object nodes are always the receiver.
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5.4 The Path of a Network Packet in the HPol Formal Policy

In this section shows how the HPol formal policy model matches the routing and security

policy implemented by each of the VPN routers. The cisco router HPol model’s current

limitations are also described. For this demonstration, the router modeled in figure 5.3 will

be used. Figure 5.4 shows only the relevant links in this demonstration with all other links

manually removed for purposes of clarity.

1. Router (right side): Assume that a packet initiates from device PC A with IPv4

address 10.1.4.3 on the remote office. It is important to note that individual IPv4

address are not defined in router configuration files. Hence, packets appear to originate

in the subnet the packet was sent from.

HPol:

We start on the remote office policy model, shown in Figure 5.3, and begin in the

HPolStart node.

2. Router (right side): First, the packet with source IPv4 address of 10.1.4.3 and des-

tination IPv4 address of 10.1.3.6, the latter corresponding to the Private corporate

server, is sent to the Gateway through the corresponding connected interface, desig-

nated FastEthernet0/0. The excerpt of the router configuration that enables this route

is:

� �
1 interface FastEthernet0 /0

2 ip address 10.1.4.2 255.255.255.0� �
Note: For this to happen, first the gateway IPv4 address 10.1.4.2 and subnet mask

255.255.255.0 must also be configured in the client device PC A. Our current implemen-

tation of the HPol tool-set does not parse client network configurations, for example

from MS Windows. However, if such a policy is parsed the corresponding model would

be able to be concatenated to the overall HPol system policy model.
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HPol:

(a) The link with label 1002 from the HPolStart node into the corresponding subnet

10.1.4.0 24 node within the Internal IP address subtree of the Subject DAG.

(b) The link with label 1002 from the 10.1.4.0 24 to the configured interface node,

FastEthernet0 0 residing under the Interfaces node of the Subject DAG.

(c) The wildcard Link, designated with all, from node FastEthernet0 0 to the send

node residing under the Actions subtree. The send node represents the ability

for that subnet interface pair to send to a given destination.

Note: In this policy path, only packets belonging to the 10.1.4.0/24 subnet will be

accepted. All other packets will be dropped. Because of the way Cisco routers are

configured it is impossible to know every device connected to the router by examining

the configuration file. Because of this all policies start with the corresponding subnet

of the IP addresses in question. Also note that there are duplicates of some of the

nodes. These nodes are under the Objects and Subject DAGs. This allows the policy

to state the context of the node when paths are drawn. In this case both the subnet

and interface are the subject of this policy.

3. Router: Because the destination of the router does not reside in a subnet attached to

an interface of the router, a secondary source must be examined for this route. In this

case there is an IP route set up for the destination’s subnet. The IP route indicates

that within this router all packets with an IPv4 destination address in the 10.1.3.0/24

subnet must be sent via VPN Tunnel, Tunnel1 in this case. The excerpt of the router

configuration that enables that routing policy is:

� �
1 ip route 10.1.3.0 255.255.255.0 Tunnel1� �

HPol:
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(d) The wildcard link from the send node to the Tunnel1 node within the Interfaces

subtree of the Objects DAG.

Note: It important to notice that the only reason this router knows about the

10.1.3.0/24 subnet is because of the IP route statement. Most routers won’t know

about external subnets or IP addresses unless a special rule has been set up for the

router.

4. Router: The router configuration specifying the Tunnel1 virtual interface is indicated

immediately below. The last configuration line indicates that the contents should

be encrypted using the rules defined by the s1first crypto map. Under this rule

the packet will be encrypted using the specified rules, then encapsulated using the

specified IPv4 source and destination addresses, and then sent to the physical source

of the Tunnel:

� �
1 interface Tunnel1

2 ip address 172.24.3.6 255.255.255.0

3 tunnel source 172.24.2.5

4 tunnel destination 172.17.2.4

5 crypto map s1first� �
HPol:

(e) The wildcard link from the Tunnel1 node into the s1first node within the

crypto subtree.

5. Router: The router configuration specifying the s1first encryption scheme is indi-

cated immediately below. The interface Serial1 0 is attached to this encrypted tun-

nel, the encryption configuration is stored in the attributes value within the Serial1 0

node, the allowed hosts are given by access list number 101, and the peer IPv4 address

is 172.17.2.4. The excerpt of the router configuration that specifies this encryption

policy is:
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� �
1 crypto map s1first local -address Serial1 /0

2 crypto map s1first 1 ipsec -isakmp

3 set peer 172.17.2.4

4 set transfrom -set proposal1

5 match address 101� �
Note: There is a secondary permission evaluated by the parser known as an access

list. The access list that allows communication between the two physical interfaces of

the tunnel is indicated below. Here we see that the host at 172.24.2.5 is permitted

to communicate with the host at 172.17.2.4 using the gre protocol. By examining

the hierarchical structure of the tree we can see that node Serial1 0 has the parent

172.24.2.5. This relationship shows that the Serial1/0 device operates with the IP

address 172.24.2.5. This allows the communication between the Serial1/0 interface

and the device at 172.17.2.4:

� �
1 access -list 101 permit gre host 172.24.2.5 host 172.17.2.4� �

HPol:

(f) The wildcard link from the s1first node into the Serial1 0 node within the

Interface subtree in the Objects DAG.

(g) The wildcard link from the Serial1 0 node to the 172.17.2.4 node residing

under the External IP address subtree also in the Objects DAG.

6. Router: It is important to note that information about what is on the other side of

the tunnel is very limited. Information about the destination for a packet is gathered

through iproute statements within the router configuration. We can assume that the

subnet 10.1.3.0/24 exists and is on the other side of tunnel1 by evaluating the iproute

statement:

� �
1 ip route 10.1.3.0 255.255.255.0 Tunnel1� �
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HPol:

(h) The link with label 1002 from 172.17.2.4 to 10.1.3.0 24 also residing under

the External IP address subtree in the Objects DAG.

(i) The link with label 1002 from the 10.1.3.0 24 subnet node in the External IP address

subgraph of the objects DAG to the HPolEnd node.

Note: All nodes associated with the tunnel and the destination nodes fall under the

Objects DAG. This is because in this context these nodes are objects.
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CHAPTER 6

Applied Formal Policy Verification

If a system administrator wanted to check if a policy is in effect he or she would have

to manually check each node of the network. After checking the network the administrator

would have to check the computers the policy applies to as well. This is an inefficient use of

a system administrator’s time and should be augmented with a framework. HPol can parse

the configuration files of various components in a network and prepare the data in such a

way that a system administrator can write queries to gain information about the current

state of the network.

6.1 Modifications to HERMES

As mentioned in chapter 1, the HERMES language had to enhanced to make it fit for

its role in the HPol project. While the overall effect of the modification was minor, the

HERMES compiler had to be written to successfully allocate these changes. The changes to

the HERMES language were as follows:

1. Modified the lexical analyzer

2. Added syntax for the following attribute types:

(a) Lists

(b) Tuples

(c) List of Tuples, aka Dictionaries

3. Added Full parameterization

The lexical analyzer was modified to allow more types of special characters in identi-

fiers. The original HERMES only allowed identifiers to have the same regular expression

as Prolog terms. In HERMES identifiers are used to identify entry types and names as
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well as attribute key-value pairs. The original regular expression that defined an iden-

tifier is [A-Za-z][A-Za-z0-9_]*, which only allows for a very restricted set of possible

identifiers. The new lexical analyzer allows for a greater range of symbols in an iden-

tifier including dots, hyphens and underscores. The new identifier regular expression is

[A-Za-z0-9][A-Za-z0-9._-]*. The regular expression was modified to allow for identifiers

that take the form of IP address and subnets. The new lexical analyzer can be expanded as

needed as well. Because all identifiers are stored in Prolog as strings the number possible of

characters is only limited to the size of the ASCII table. However, because we only needed

the symbols in the new regular expression this is all that was included.

New attributes were added to allow greater flexibility with HERMES entries. The original

HERMES compiler only allowed for single-word key value pairs and key string pairs. The

new HERMES parser also allows for list, tuples, and list of tuples, or dictionaries. Listing

6.1 shows a HERMES entry that includes all attribute types. Lists were also added to list

all nodes in a policy. Tuples and lists of tuples were because they are common data types in

languages and can be useful in an unforeseen project.

� �
1 Entry: example

2 {

3 key:value;

4 key:"string";

5 key:[list , of , values ];

6 key:(value , tuple);

7 key:[(list , of), (value , tuples)];

8 }� �
Listing 6.1: HERMES entry with all types of attributes.

The last modification to HERMES was full parameterization. A new compiler was devel-

oped to enable true parameterization. The HERMES language is now truly parameterizable

for all identifiers. There are on longer any keywords in the HERMES language. The only

required piece of HERMES is the general syntax structure.
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Subjects

User_A Action_D Action_B

1001

Example

Objects Actions

Object_C

1001

HPolEnd

1001

HPolStart

1001

Figure 6.1: Basic Example of a HPol Graph.

6.2 A Formal Model for Policy Querying

This section will refer to figure 6.1 and the scenario that is modeled by the figure. The

scenario for this experiment models the access control of a file system found in a system

such as Linux. This model contains a user named User A, an action called Action B and an

object called Object C. The names chosen for this experiment are arbitrary but are used to

simplify tracing each component throughout this example. In the model there is also a policy

with the identifier 1001. Policy 1001 states that User A can preform Action B on Object C.

This can be compared to a user named Bob being able to read a file called documents.

Once the structure of the graph and the policies that traverse through the graph have

been created, the model needs to be translated into an intermediate language that can be

used in the next stage. This is where the HERMES policy language comes in. Because of its

full parameterization and its flexibility as described in section 4.2, the HERMES language is

a perfect intermediate step when converting from the HPol formal model. By using a series



36

� �
1 SubDomain:Subjects

2 {

3 Description: "Subjects";

4 Path: "Example/Subjects";

5 Type: Subjects;

6 Children: ["User_A"];

7 }� �
Listing 6.2: Subject node written out in HERMES.

of graph tracing algorithms the structure of the HPol model is translated into a series of

entries in the HERMES format. After that the policies of the model are then traced as well

and are converted into HERMES as well. Listing 6.2 contains an example of the Subject

node in HERMES form.

Figure 6.2 is data flow representation of how data is processed in the HPol framework.

Data starts as device configuration files. This data is run through a custom configuration

parser for each type of device. The output of this parser is HERMES data and a visual

representation of the HPol Graph. This transformation can be seen in figure 7.1. An example

of the HPol graph can be seen in figure 6.1. Next the data is run through the HERMES parser

where it is turned into a Prolog knowledge-base. Listing 6.8 contains an example snippet

of the created Prolog knowledge-base. Simultaneously, queries are created in HERMES and

are fed into the querying mechanism to produce results. Listings 6.4 and 6.5 show queries

written in HERMES and 6.10 the results of the queries.

As listing 6.2 shows, each node and policy in an HPol model is contained in a HERMES

entry. This entry is composed of two parts, a header and a body. The header of an entry

contains the type of the entry and the name of the entry separated by a colon. In listing

6.2 there exists a HERMES entry with the type SubDomain called Subject. All descendants

of type SubDomain are of type Node. The domain and sub domain keywords are used to

identify the root of the graph and its direct children. The body of an entry resides in curly

braces. Inside the curly braces exists the properties of the graph. Properties in HERMES
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Figure 6.2: Data flow diagram showing the processing of the data from system configuration
to query mechanism.
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� �
1 Policy: 1001

2 {

3 Description: "HPol Policy";

4 Status: Enabled;

5 Path: [HPolStart , User_A , Action_B , Object_C , HPolEnd]

6 }� �
Listing 6.3: HERMES form of Policy 1001.

have a key value pair that are separated by a colon. Every property entry that is formed

from by the HPol model will have the entries Description, Path, Type, and Children.

The Description entry is the name of the node reiterated as a string so invalid characters

can be used. The Path entry is the path of the given node starting at the root of the

tree. Currently this field has no purpose and might be removed. The Type entry states the

node’s type. Finally, the Children entry identifies the children of the node. As seen in the

graph this nodes path is Example/Subject and the only child of this node is User A. All of

this information will be extremely useful when it is time to reconstruct the graph from the

HERMES source.

6.3 Policy Specification in HERMES

Polices are also modeled with the HERMES language. Listing 6.3 shows the HERMES

form of Policy 1001. As listing 6.3 shows, policies are contained by the same type of entry

as nodes are. There are, however, some differences. The entry-type and identifier syntax

are still present as required by the HERMES syntax, but the properties of the entries are

altered. Instead of Type and Children entries, there is now Order. Also, Path has a different

meaning when referring to a policy. When a policy is represented in HERMES, Path is the

path the policy takes through the graph and Order is the order of the graph nodes in the

policy. There is also a status entry present. This states whether or not the policy should

be active. When being generated from configuration files, all polices will receive the active
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� �
1 Query: 1

2 {

3 Allow: yes;

4 Subject: "User_A";

5 Action: "Action_B";

6 Object: "Object_C";

7 }� �
Listing 6.4: Example is allowed query written in HERMES.

status because the parsers can only find active polices. The Path entry contains a list of

tuples. These tuples are type ID pairs for the nodes that are relevant to the path. The

Order key also has a value of a list of tuples. These tuples contain order ID pairs to identify

the place of a node in the policy.

6.4 Formal Query Structure in HERMES

Queries are also created in the HERMES format. Currently, queries enable asking allow

and disallow questions. For example, if a systems administrator wanted to know if User A

could preform Action B on Object C, the query would look like listing 6.4. This query

contains three major parts. First, the type of the entry is Query. Second, one of the key

value pairs is the Allow rule. This states whether the evaluator should be checking if the

action is allowed or disallowed in the HPol graph. Listing 6.5 contains an example of a

query asking if the user, User B, can preform the action, Action D on the object, Object C.

While figure 6.1 contains an Action D node, there is no policy that allows User A to preform

Action D. Being able to make this distinction is a crucial part of the HPol framework. A

system administrator needs to make sure an action is not possible just as much as he needs

to make sure that one is. Finally, the Subject, Action, and Object keys have values that

are used as the parameters of the query.

Listing 6.6 shows a second type of query. This query type only has one keyword in

the body section of its entry. This keyword is Contains. The value of Contains is a list
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� �
1 Query: 2

2 {

3 Allow: no;

4 Subject: "User_B";

5 Action: "Action_D";

6 Object: "Object_C";

7 }� �
Listing 6.5: Example is not allowed query written in HERMES.

� �
1 Query:3

2 {

3 Contains:[User_A , Action_B , Object_C ];

4 }� �
Listing 6.6: Query including Contains keyword.

containing nodes that are to be found in a policy. The purpose of the contains query is for

searching for policies that contains nodes in the order they show up in the list. Every node

does not have to be present in a Contains query for a result to be produced. Listing 6.6

shows the same nodes in question as listing 6.4 to show the similarities between the nodes.

However, if a security professional just wanted to know a piece of the puzzle such as which

polices involve Object C then he or she would write a query similar to 6.7. Also, this form

of query does not give regard to the context of the nodes it is searching for, this allows a

faster searching through the policies when finding results.

� �
1 Query:4

2 {

3 Contains:[Object_C ];

4 }� �
Listing 6.7: Query to search for polices containing Object C.
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� �
1 entityDef(idhermes_out_Subjects , "Subjects", "hermes.out", "

↪→ SubDomain").

2 entityField(idhermes_out_Subjects , "Description", "Subjects").

3 entityField(idhermes_out_Subjects , "Path", "Example/Subjects").

4 entityField(idhermes_out_Subjects , "Type", "Subjects").

5 entityField(idhermes_out_Subjects , "Children", ["User_A"]).� �
Listing 6.8: Prolog facts about the Subject node.

6.5 Loading HPol Formal Models into Prolog

Once all entries have been created in HERMES, the data needs to be stored in a Prolog

knowledge-base. XSB Prolog is used as the Prolog engine during this process [17]. In order

to complete this process, a translator is created to convert the HERMES format files into a

Prolog knowledge base. The compiler for this task is written in Prolog as well. For each entry

in a HERMES file, a series of Prolog facts are created. When a new entry is encountered,

a new defining fact about the entry is created and is contained in the predicate entityDef.

Next each key value pair of an entry is created into a series of facts contained within the

predicate entityField. Each entry in HERMES is given a unique identifier that is composed

of the input file name and the identifier it was originally assigned in HERMES. Listing 6.8

contains the entire set of Prolog facts stored about the Subject node referred in figure 6.1

and listing 6.2.

Because all data needs to be captured in order to recreate the configuration files, there is

sometimes more data than needed contained within the Prolog facts. For the Subject node,

there are many facts that are generated. First, an entityDef predicate is used to initially

declare the existence of the Subject node. Next, entityField predicates are used to define

the various fields found in the HERMES example in listing 6.2. The conversion between

HERMES properties and Prolog facts is one-to-one except in the case when a dictionary is

defined in the HERMES. In this case, each entry of the dictionary is created into its own

entityField fact. Both types of predicates use a unique identifier as the first argument of
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� �
1 eval_query(ID, Policy):-

2 entityDef(ID, _, _, "Query"),

3 entityField(ID, "Subject", Subject),

4 entityField(ID, "Action", Action),

5 entityField(ID, "Object", Object),

6 entityField(ID, "Allow", "yes"),

7 atom(ID) ,!,

8 policy_containing(Subject , Action , Object , Policy).� �
Listing 6.9: eval query procedure written to evaluate queries.

the fact. This unique identifier is used to bind all facts about a given node or policy together.

6.6 Querying an HPol Formal Model

Once the Prolog knowledge-base is created, a series of Prolog procedures are created in

order to evaluate a query. Listing 6.9 contains an example of one the procedures used to

evaluate queries. Listing 6.10 contains the results of the two queries in figures 6.4 and 6.5.

The first set of results represents the allow query in listing 6.4. This result is stating that the

query with the identifier idquery herm 1 is being satisfied by the policy idhermes out p1001

or policy 1001 from figure 6.1. It is important to note that the identifiers used internally by

Prolog are generated at the time of compilation to facts. The original names of the policies

and queries are contained in entityDef predicate of the Prolog knowledge base.

� �
1 | ?- eval_query(QueryName , PolicyName).

2

3 QueryName = idquery_herm_1

4 PolicyName = idhermes_out_p1001;

5

6 QueryName = idquery_herm_2

7 PolicyName = _h180� �
Listing 6.10: Results of Queries 1 and 2.

The second set of results shows that there are no policies satisfying query idquery herm 2.

This is still a positive answer because query 2 is testing to make sure the action is not pos-
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sible. Because there are no policies that allow the action in question, the query is correct.

The h180 in place of the policy name is Prolog’s way of stating that it can not find a valid

result for the variable PolicyName.

This section demonstrates that through the use of an example it is possible to model a

system and the policies that are in effect in that system. Further, this section illustrates that

it is possible to convert the model into a database which can be queried for details about the

system. The next section of this thesis demonstrates this concept with a real-world scenario.
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CHAPTER 7

Case Study: Cisco Router Querying

The case study to test whether the HPol framework mechanism can model a real world

scenario is done on the configurations of a pair of Cisco routers connected by a VPN tunnel.

The configuration files of the two routers were parsed and converted into two separate HPol

models as described in chapter 5. The model is similar to the Subject, Actions, Objects

format as the previous example except that subnets and interface names are placed under the

Objects subtree. Also, the send and encryption actions are placed in the Actions subtree.

Because subnets can be treated as both subjects and objects, all subnets and interfaces were

placed under the Objects subtree.

7.1 Querying LAN Policy

Policies in this model state which subnets or interfaces can send packets to a given

destination, also a subnet or interface name. If encryption is needed, the policies pass through

the appropriate encryption nodes to signify that encryption takes place when packets are sent

to the destination. The model is designed in a way that only allowed actions are generated

as policies in the model. A policy for the Cisco router HPol model states which subnets and

interfaces can communicate with each other. For example, referring back to figure 5.2: policy

1004 of the headquarter’s router starts at the policy start node, HPolStart then makes its

way to the 10.1.3.0 24 node. Next, policy 1004 goes to the FastEthernet0 0 node then

the Send node and makes its way to the 10.1.6.0 24 node through the FastEthernet0 1

node. Finally, the policy makes it to the HPolEnd node; this is where all policy paths must

end. This policy reads as an IP address from the 10.1.3.0 24 subnet can send packets to

an IP addresses in the 10.1.6.0 24 subnet.

Once the HPol model has been generated, the model is converted into HERMES. This

action is the same as its counterpart in the previous section. Figure 7.1 shows the transition
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interface FastEthernet0 /0

ip address 10.1.3.3 255.255.255.0

no ip directed -broadcast

no keepalive

full -duplex

no cdp enable

Node: FastEthernet0_0

{

Description: "FastEthernet0_0";

Path: "base/Objects/

... Interfaces/FastEthernet0_0";

Type: object;

}

Figure 7.1: This figure contains the before (left) and after (right) when data is converted
from a Cisco router configuration file to a HERMES entry.

of the Cisco configuration file into the HERMES representation of the same data. Much of

the data from this node is stored in different areas of the model graph. For example the IP

address and subnet of this interface is a parent of this node. Data is stored in this manner

so other devices that fall under the same subnet can be placed in their proper place without

having to copy or recreate data. The result in figure 7.1 shows the description of the node

as well as the node’s path and type. Because of how the path works in the HPol model, all

forward slashes are replaced with underscores. Each parser contains its own caveats when

transforming configurations into HERMES.

Once in HERMES the data is parsed. The data is then loaded into the Prolog knowledge

base and is ready to query. Queries of each type are created to test the system. The first

query asks if the 10.1.3.0 24 subnet can send to the 10.1.6.0 24 subnet. The second

query wants to check that the 10.1.9.0 24 subnet cannot send to 10.1.6.0 24 subnet.

Both of these queries return yes as a result. The first query result returns that policy

idhermes out p1004, or policy 1004, satisfies the query. This means that according to the

configuration that is parsed, it is possible for a device in the 10.1.3.0 24 subnet to send

a packet to a device in the 10.1.6.0 24 subnet. It is also not possible for a device in the

10.1.9.0 24 subnet to send the 10.1.3.0 24 subnet.
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7.2 Querying Tunnel Policy

In chapter 5 policy 1002 was traced with reasoning and evidence for each node chosen.

Listing 7.1 shows the HERMES entry for every node involved with policy 1002 including the

HERMES entry for policy 1002.

� �
1 Node: 10.1.4.0 _24

2 {

3 Description: "10.1.4.0 _24";

4 Path: "remote/Subject/IP_addresses/Internal_IP_addresses

↪→ /10.1.4.0 _24";

5 Type: Subject;

6 Children: [10.1.4.2];

7 }

8

9 Node: FastEthernet0_0

10 {

11 Description: "FastEthernet0_0";

12 Path: "remote/Subject/Interfaces/FastEthernet0_0";

13 Type: Subject;

14 }

15

16 Node: send

17 {

18 Description: "send";

19 Path: "remote/Actions/send";

20 Type: Action;

21 }

22

23 Node: Tunnel1

24 {

25 Description: "Tunnel1";

26 Path: "remote/Objects/Interfaces/Tunnel1";

27 Type: Object;

28 }

29

30 Node: s1first

31 {

32 Description: "s1first";

33 Path: "remote/Actions/crypto/s1first";

34 Type: Action;

35 }

36

37 Node: Serial1_0
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38 {

39 Description: "Serial1_0";

40 Path: "remote/Objects/Interfaces/Serial1_0";

41 Type: Object;

42 }

43

44 Node: 172 _17_2_4

45 {

46 Description: "172.17.2.4";

47 Path: "remote/Objects/IP_addresses/External_IP_addresses

↪→ /172.17.2.4";

48 Type: Object;

49 }

50

51 Node: 10 _1_3_0_24

52 {

53 Description: "10.1.3.0 _24";

54 Path: "remote/Objects/IP_addresses/External_IP_addresses

↪→ /10.1.3.0 _24";

55 Type: Object;

56 }

57

58 Policy: p1002

59 {

60 Description: "HPol Policy";

61 Status: Enabled;

62 Path: [HPolStart , 10.1.4.0_24 , FastEthernet0_0 , send , Tunnel1 ,

↪→ s1first , Serial1_0 , 172.17.2.4 , 10.1.3.0_24 , HPolEnd ];

63 }� �
Listing 7.1: HERMES entries for all nodes associated with policy 1002.

Referring back to policy 1002, we know that this policy allows the 10.1.4.0/24 subnet to

send to the 10.1.3.0/24 subnet through Tunnel1. The listing below shows the query that is

required to ask if this is possible:

� �
1 Query: 1

2 {

3 Allow: yes;

4 Subject: "10.1.4.0 _24";

5 Action: "send";

6 Object: "10.1.3.0 _24";

7 }� �
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As shown above and in the previous section, the Subject, Action and Object query is

used to verify that subnet 10.1.4.0/24 can send to the 10.1.3.0/24 subnet. The listing below

shows this query being evaluated in the XSB Prolog interactive shell:

� �
1 | ?- eval_query_by_name (1, A).

2

3 A = 1002

4

5 yes� �
In this query example the procedure eval query by name is used to allow a user to

evaluate the queries by the name given to the query while in HERMES form instead of the

internal identifier that is used to separate queries from different files with the same name.

This procedure also returns the identifier of the policy as it appears in the original HPol

diagram. As the above listing shows, policy 1002 allows subnet 10.1.4.0/24 can send to

subnet 10.1.3.0/24; just as was traced in chapter 5.

7.3 IP to IP Query

This thesis thus far has covered the process behind router-policy formal modeling and

verification, which, in short, is as follows:

1. Model a router configuration file.

2. Convert the model into HERMES.

3. Create queries for the model in HERMES.

4. Load both model and queries into Prolog.

5. Use procedures created for this research to evaluate queries.

This thesis has shown the process is possible for both dummy examples and for real

router configurations. However, everything that has been discussed to this point applies to
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� �
1 ip_send_query(IP1 , IP2 , Policy):-

2 policy_containing(SubjectCodes , "send", ObjectCodes , Policy),

3 fmt_write_string(Subject , "%s", args(SubjectCodes)),

4 fmt_write_string(Object , "%s", args(ObjectCodes)),

5 ipINsub(Subject , IP1),

6 ipINsub(Object , IP2).� �
Listing 7.2: ip send query procedure of the IP to IP query evaluator

all HPol formal models for all devices because the previous query types referred to entities

that explicitly existed on an HPol model. For example, subnets and interfaces explicitly exist

on Cisco router formal models. To round out the research for this thesis, one more procedure

was written that applies to only router policy models. Prolog procedures were written that

could evaluate whether one IP address can send to another. This query is special because

an extra layer of processing is required to evaluate it.

In the previous sections, queries were discussed regarding whether one subnet can com-

municate with another; however, individual IP addresses were never used, just subnets. In

the IP to IP query, an evaluation is made to determine if source and destination IP addresses

belong to subnets that exist in HPol router polices. These queries are then evaluated as send

queries where the source IP address belongs to the Subject subnet, the action is send, and

the destination IP address belongs to the Object subnet. Listing 7.2 contains the procedure

that is at the center of the IP to IP query evaluator.

In section 5.4 an HPol policy was traced to verify that IP 10.1.4.3 could send to IP

10.1.3.6. That policy trace had to start at the subnet level due to limitations of the HPol

formal model’s ability to model routers and the lack of specific device IP address information

in the router’s configuration. Because of these setbacks, the policy had to trace from subnet

10.1.4.0/24 to subnet 10.1.3.0/24. For this last piece of research, a new type of query and new

evaluation procedures were created in Prolog to allow a security specialist to write queries

that pertain to individual IP addresses.

Listing 7.3 contains an example of an IP to IP query. In this query the same basic



50

� �
1 Query: 1

2 {

3 Allow: yes;

4 Src: 10.1.4.3;

5 Dest: 10.1.3.6;

6 }� �
Listing 7.3: Final type of query, IP to IP.

� �
1 | ?- eval_query_by_name (1, A).

2

3 A = 1002

4

5 yes� �
Listing 7.4: Result of the IP to IP query.

HERMES structure remains. However, there is a variation in the key value pairs in this

type of query. In this query type there is still the Query keyword for the type of HERMES

entry and the Allow keyword remains. This is where the similarities end. There are now

Src and Dest keywords that denote the source and destination IP addresses, respectively.

The source and destination IP addresses in this query are 10.1.4.3 and 10.1.3.6, which are

the same IP addresses being verified in section 5.4’s policy trace.

Listing 7.4 shows the result of the IP to IP query. The policy that was returned in

this query was policy 1002, the same policy traced in section 5.4 manually. This final

type of query is significant because it demonstrates that the HPol formal model and the

related framework can parse the configuration of a (Cisco) router and have the results semi-

automatically verified through the use of queries. This provides security personnel a more

refined way of determining if router configurations comply to the policies that are meant to

define them.
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7.4 Performance

Converting the Cisco HERMES output from the HPol model into a Prolog knowledge base

takes about 5 seconds running XSB Prolog in single core mode with a 2.00 GHz computer

running with 12 GB of RAM. However when running the XSB process takes less than 50 MB

of RAM. Once the HERMES data is converted into a Prolog knowledge base and loaded, it

takes a negligible amount of time to evaluate each query. Fortunately, unless the HERMES

data changes, it only needs to be converted once.

7.5 Discussion

The results of the queries demonstrate it is possible to successfully query the configuration

of a network component such as a Cisco router. For both allow and deny queries, the Prolog

query system can identify queries and all policies that satisfy any given query. The system

can also take a query identifier as an argument and return all policies that satisfy the query.

It has also been discovered due to the nature of Prolog that the reverse is acceptable; a

policy can be given and all queries that the policy satisfy will be returned.

In this chapter three examples of a case study were presented where the HPol formal

models of two Cisco routers were queried. For both the LAN query and the tunnel query,

accurate results were produced. In the final example, it was shown queries that allow the

verification of IP address communication can be used to further verify the correctness of

router policies.
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CHAPTER 8

Future Work

The HPol framework is still within its infancy. There are many different components

that need to be combined or created in order for it to reach its full potential. Parsers need to

be generated for additional types of devices such as firewalls and managed switches. Policy

concatenation also needs to be implemented. This will allow queries to be generated across a

variety of components of an enterprise network. The ability to configure components through

HPol also needs to be implemented. Finally, a GUI should be set up to graphically organize

all of the data presented by an HPol policy.

8.1 Additional Device Configuration Parsers

In order to prove HPol’s flexibility, parsers need to first be created for every type of

component found in an enterprise network. Firewalls and managed switches are a large part

of the networking side of an enterprise network. File system access control is another field

that needs to be researched to increase HPol’s flexibility. Once these components have HPol

parsers, the model for each type can be formalized. Next the different brands and models

would have to have parses created for them to match the model created for the general

component template.

8.2 Formal Policy Concatenation

In order for HPol to evaluate an enterprise network as a whole policy, models have to be

linked together. The hypothesis is that if the start and end nodes of multiple policies are

connected, then it is possible to query a policy on a larger scale. For example, if two router

policies are linked together, then it is possible to query whether an IP address in subnet

X on router A can send a packet to the IP address of a subnet in router B. However, it is
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not possible to determine if the policy is correct when looking at each router’s configuration

separately. When looking at Router B’s configuration in isolation, it is only possible to

determine whether router A can send packets to a subnet in router B. By look at only this

configuration, there is no way of knowing the origin of the packet from router A. Furthermore,

when looking at router A’s configuration separately, it can be seen that an IP in subnet X

can send a packet to router B. This, however, is still not enough information to determine

whether the policy is in effect. Only when the two models are combined is it possible to see

that packets from a specific IP address in a subnet of router A can be sent to one of router

B’s subnets. This is enough information to determine that the policy is correct.

For example, figures 5.2 and 5.3 show the policy graphs for the two routers used in the

given VPN configuration. However, the overall system policy for this VPN Tunnel cannot

be observed by analyzing the configurations of the two routers separately.

In order to be able to analyze a network tunnel system policy in a holistic way, a com-

plex system security policies needs to be built starting from the policies of the composing

components of the system. The HPol formal model enables this by the introduction of the

concatenation of security policies formal operation. The Cisco VPN Tunnel policy model is

used to demonstrate this operation.

By superimposing the End node in the hq-sanjose (Left) router to the Start node in the

ro-rtp (Right) router, a system wide and formal network policy that models the complete

VPN Tunnel configuration is created.

This formal Policy Concatenation Operation, in conjunction with other additional opera-

tions, would enable the formal construction and analysis of system-wide and holistic security

policies. In this case, the visualization and analysis of the complete VPN Tunnel system

policy is possible by concatenating the policies of the two integrating routers.

While formal policy concatenation operations seem trivial, there is a greater more com-

plex problem in this operation. Currently, HPol formal models have no since of self and

are unable to identify themselves in another model. Once HPol models are able to identify
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themselves in other models then policy concatenation can be implemented.

8.3 Policy-Based Device Configuring

Once parsing and policy concatenation are implemented, policy-based configuration func-

tionality can be developed. This functionality enables a system administrator to state a pol-

icy and have the HPol framework evaluate that policy, determine which configurations need

to be changed to place the policy in effect, and then apply the changes to the configurations.

This functionality is critical to the HPol model. When configurations are parsed, every detail

from the old configurations needs to be saved in order to create the new configurations based

on both old and newly assigned policies.
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CHAPTER 9

Summary and Conclusions

In this thesis, the process involved in converting a Cisco router configuration into an

HPol formal model has been demonstrated. Also introduced was policy querying of an HPol

formal model with evidence provided using both an example and a case study.

When converting a Cisco router policy to an HPol formal model there are some key

elements. First, all subnets and interface names are placed under the Objects DAG. Any

node that can also act as the subject of a policy is then duplicated under the Subjects

DAG. Second, the send node and all encryption types are placed under the Actions DAG.

Finally, all policies in this model begin with either a subnet or interface node continue to a

send or an encryption node and finish at an interface or subnet node.

Policy queries can be broken down into easy steps. First, all HPol models are converted to

the HERMES language. Second, once in HERMES, the data is read into a Prolog knowledge

base. Also part of the second set, queries about the model are written in HERMES and are

loaded into the Prolog knowledge base. Finally, Prolog evaluates the queries with the help

of some procedures written for this project.

Both of these operations are described in this thesis using simple examples and Cisco

Router configurations. The conclusion of these operations is that it is possible to both

model Cisco routers, or routers in general, and then query those models for information

about the router’s configuration.

Through the use of the HPol formal model and the associated framework, security per-

sonnel also have the ability to verify the correctness of a Cisco router’s configuration. The

IP to IP query enables security personnel to write queries for specific IP addresses to further

increase the granularity of router policy correctness verification.

Modeling and querying different types of devices is important in industry because system

administrators need to be able to know the current status of devices without having to go out
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and collect and analyze the data manually. A modeling system such as HPol can shift the

responsibilities of system administrators from worrying about configuring devices correctly

to worrying more about the policies that the configurations enforce.



57

References

[1] Cisco IOS VPN Configuration Guide: Site-to-Site and Extranet VPN Business Scenar-

ios. http://www.cisco.com/c/en/us/td/docs/security/vpn_modules/6342/vpn_

cg/6342site3.html, 2014.

[2] Kathi Fisler, Shriram Krishnamurthi, Leo A Meyerovich, and Michael Carl Tschantz.

Verification and Change-impact Analysis of Access-control policies. In Proceedings of

the 27th international conference on Software engineering, pages 196–205. ACM, 2005.

[3] J. D. Guttman. Security goals: Packet trajectories and strand spaces. In R. Focardi and

F. Gorrieri, editors, Foundations of Security Analysis and Design - Tutorial Lectures,

pages 197–261. Springer, 2001.

[4] Joshua D. Guttman and Amy L. Herzog. Rigorous automated network security man-

agement. Int. J. Information Security, 4(1-2):29–48, 2005.

[5] Joshua D. Guttman, Amy L. Herzog, John D. Ramsdell, and Clement W. Skorupka.

Verifying information flow goals in security-enhanced linux. Journal of Computer Secu-

rity, 13:115–134, 2005.

[6] Susan Hansche, John Berti, and Chris Hare. Official ISC2 Guide To The CISSP Exam.

Auerbach Publications, 2004.

[7] Ananth Jillepalli and Daniel Conte de Leon. An architecture for a policy-oriented

web browser configuration management system - HiFiPol: Browser. In Proc. IEEE

40th Annual Computer Software and Applications Conference (COMPSAC), Atlanta,

Georgia, USA, 2016.

[8] Ananth A. Jillepalli, Daniel Conte de Leon, Stuart Steiner, and Frederick Sheldon. HER-

MES: a high-level policy language for high-granularity enterprise-wide secure browser

http://www.cisco.com/c/en/us/td/docs/security/vpn_modules/6342/vpn_cg/6342site3.html
http://www.cisco.com/c/en/us/td/docs/security/vpn_modules/6342/vpn_cg/6342site3.html


58

configuration management. In Proc. 2016 IEEE Symposium Series on Computational

Intelligence (SSCI-2016). IEEE, December 2016.

[9] Igor Kotenko and Olga Polubelova. Verification of security policy filtering rules by model

checking. In Intelligent Data Acquisition and Advanced Computing Systems (IDAACS),

2011 IEEE 6th International Conference on, volume 2, pages 706–710. IEEE, 2011.

[10] Timothy Nelson, Christopher Barratt, Daniel J Dougherty, Kathi Fisler, and Shriram

Krishnamurthi. The margrave tool for firewall analysis. In LISA, 2010.

[11] David Michael Pennington. Welcome to ciscoconfparse’s documentation! http://www.

pennington.net/py/ciscoconfparse/index.html, 2015.
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