
PERFORMANCE MEASURE CALCULATION USING

HIGH-RESOLUTION DATA

A Thesis

Presented in Partial Fulfillment of the Requirement for the

Degree of Master of Science

with a

Major in Civil Engineering

in the

College of Graduate Studies

University of Idaho

by

Randal Brunello

March 2014

Major Professor: Michael P. Dixon, Ph.D., P.E.

ii

AUTHORIZATION TO SUBMIT THESIS

This thesis of Randal Brunello, submitted for the degree of Master of Science with a Major in Civil

Engineering and titled “Performance Measure Calculation Using High-Resolution Data” has been

reviewed in final form. Permission, as indicated by the signatures and dates below, is now granted

to submit a final copy to the College of Graduate Studies for approval.

Major Professor: ____________________________________ Date: ________________
 Michael P. Dixon, Ph.D.

Committee
Members: ____________________________________ Date: ________________
 Michael Kyte, Ph.D.

 ____________________________________ Date: ________________
 Axel Krings, Ph.D.

Department
Administrator: ____________________________________ Date: ________________
 Richard Nielsen, Ph.D.

Discipline’s
College Dean: ____________________________________ Date: ________________
 Larry A. Stauffer, Ph.D.

Final Approval and Acceptance

Dean of the College
of Graduate Studies: ____________________________________ Date: ________________
 Jie Chen, Ph.D.

iii

ABSTRACT

High-Resolution data collected by traffic signal controllers can be used to create performance

measures. This project produced a tool that could take VISSIM output files and create a high-

resolution data table in a database. Then the tool can calculate performance measures and output

required values into an excel file. These values are calculated and reported on a cyclic basis so that

they may be plotted and displayed together. The calculated measures were tested using manual

observation and data collection points. The only measure that was not 100% accurate at calculating

the performance measure was the delay and queue length estimation. This measure requires very

precise data and is a promising candidate for continued research.

iv

ACKNOWLEDGEMENTS

This project would not have been possible without the support and guidance of the faculty and

staff of NIATT. To everyone that helped me I would like to say thank you very much. I couldn’t have

done it without you. A special thanks to:

Dr. Michael P. Dixon, my major professor. Thank you for guiding me through my research and

supporting me through the conclusion of this project. Your help with the writing of the thesis has

been invaluable.

Dr. Michael Kyte, my committee member, for sparking my interest in transportation engineering

and being a leading contributor to my graduate education.

Dr. Axel Krings, my committee member, for taking time out of your busy schedule to be a last

minute committee member. I hope you don’t cringe too much at the programming.

My parents for helping support me through both my undergraduate and graduate studies. I

couldn’t have made it this far without all of your love and care.

Victor House for helping with the programming and database work at multiple stages along the

way.

v

TABLE OF CONTENTS

AUTHORIZATION TO SUBMIT THESIS .. ii

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS ... v

LIST OF FIGURES ... viii

LIST OF TABLES ... ix

LIST OF ACRONYMS ... x

Chapter 1 INTRODUCTION .. 1

1.1 Overview ... 1

Chapter 2 LITERATURE REVIEW .. 2

2.1 Introduction .. 2

2.2 Purdue Coordination Diagram .. 2

2.3 Purdue Phase Termination Chart .. 4

2.4 Green Time Utilization .. 5

2.5 Delay Measurement .. 6

Chapter 3 METHODOLOGY .. 8

3.1 Introduction .. 8

3.2 High-Resolution Data Emulation ... 8

3.2.1 Interface GUI .. 9

3.2.2 Flow Chart Narration .. 11

vi

3.2.3 Coding Guidance for Anticipated Improvements... 15

3.2.3.1 Expanding Number of Intersections.. 15

3.2.3.2Output from Other Micro-Simulation Software .. 16

3.2.3.3Incorporation of External Data .. 17

3.3 Purdue Coordination Diagram .. 17

3.3.1 Introduction ... 17

3.3.2 Interface ... 17

3.3.3 Flow Chart Narration .. 18

3.3.4 Coding Guidance for Anticipated Improvements... 21

3.3.4.1 Incorporating Upstream Intersection Detection for Arrival Estimation 21

3.3.4.2 Automating the Generation of Graphs in the Excel Output ... 21

3.4 Green Time Utilization .. 21

3.4.1 Introduction ... 21

3.4.2 Interface ... 22

3.4.3 Flow Chart Narration .. 23

3.5 Phase Termination Analysis .. 26

3.5.1 Introduction ... 26

3.5.2 Interface ... 26

3.5.3 Flow Chart .. 26

3.6 Delay and Queue Length Estimation ... 27

vii

3.6.1 Introduction ... 27

3.6.2 Interface ... 28

3.6.3 Flow Chart Narration .. 29

Chapter 4 TESTING .. 31

4.1 Overview ... 31

4.2 Purdue Coordination Diagram .. 31

4.3 Green Time Utilization .. 32

4.4 Queue Length and Delay Estimation ... 33

4.5 Split Failure Analysis .. 36

Chapter 5 CONCLUSIONS .. 38

REFERENCES .. 40

viii

LIST OF FIGURES

Figure 2-1. Purdue Coordination Diagram (Brennan, 2011) ... 3

Figure 2-2: Purdue Phase Termination Chart (UDOT, 2013) ... 5

Figure 2-3: Green Occupancy Ratio and Split Failures (Smaglik, 2011) .. 6

Figure 3-1. Simulation to High-Resolution Data Emulator .. 10

Figure 3-2. Simulation to High-Resolution Data Emulator .. 14

Figure 3-3. Purdue Coordination Diagram Interface ... 18

Figure 3-4. Purdue Coordination Diagram Flowchart ... 20

Figure 3-5. Green Time Utilization Interface ... 22

Figure 3-6. Green Time Utilization Flowchart ... 25

Figure 3-7. Phase Termination Interface ... 26

Figure 3-8. Phase Termination Flowchart ... 27

Figure 3-9. Delay and Queue Estimation Interface ... 29

Figure 3-10. Delay/Queue length Flowchart ... 30

Figure 4-1. Hand Assembled PCD .. 31

Figure 4-2. Tool Generated PCD .. 32

Figure 4-3. Cyclic delay of the different methods. .. 34

Figure 4-4. The ground truth calculation of the cumulative arrivals and departures for the first 300

seconds of the simulation. .. 35

Figure 4-5. The controller detection delay calculation of the cumulative arrivals and departures for

the first 300 seconds of the simulation. ... 36

Figure 4-6. Purdue Phase Termination Chart .. 37

ix

LIST OF TABLES

Table 4-1. Comparison of Hand Calculated GTU to Tool Calculated GTU ... 33

Table 4-2. Purdue Phase Termination Chart Method of Creation Comparison 37

x

LIST OF ACRONYMS

BOG – Beginning of Green

EOG – End of Green

GUI – Graphical User Interface

GTU – Green Time Utilization

PCD – Purdue Coordination Diagram

PPTC – Purdue Phase Termination Chart

VISSIM - Verkehr In Städten - SIMulationsmodell (German for "Traffic in cities - simulation

mode”)

VBA – Visual Basic for Applications

UDOT – Utah Department of Transportation

1

Chapter 1 INTRODUCTION

1.1 Overview

The purpose of this research project was to create a tool that could be used to facilitate future

research of traffic signal systems. The tool has four functions that calculate performance measures

using high-resolution data collected by traffic signal controllers. Each function produces an excel file

with data laid out such that it can easily form a graph. The measures are normalized and calculated

for each cycle so they can be displayed versus time. This normalization of measures allows multiple

measures to be included on a single graph. With multiple measures shown this way they can be

analyzed more effectively. The first function produces an Excel file that can generate a Purdue

Coordination Diagram (PCD) as well as the percent arrivals on green, percent green time, and

platoon ration. The second function produces an Excel file that can display the Green Time

Utilization (GTU) of a phase. The third function produces an Excel file that can generate a Purdue

Phase Termination Chart. The final function calculates an estimation of delay and queue length and

produces an Excel file that can display these measures. Along with the current performance

measurement, it can be expanded to use multi-source data such as Bluetooth probe data or speed

detection. The other primary function of this tool is to facilitate the ability to easily use micro

simulations to generate high-resolution data. This will help with the creation of new performance

measures by removing the necessity of hardware-in-the-loop simulation.

2

Chapter 2 LITERATURE REVIEW

2.1 Introduction

The purpose of this literature review is to describe the common performance measures that can be

generated using high-resolution or similar forms of data. The performance measures below are all

included in the generated tool. These measures are continuing to be improved and are

recommended for future research. In conjunction with one another these measures can identify

most operational problems at traffic signals as well as help find a solution. As such, they are prime

candidates in a prototype performance monitoring tool.

2.2 Purdue Coordination Diagram

Darcy Bullock at Purdue University is the leading source on high-resolution performance measures.

The Purdue Coordination Diagram (PCD) is one of his creations (Brennan, 2011). This Diagram is

a chart that displays arrivals in relation to the time in the cycle, and the cycle in relation to

the time of the day. Only one phase is analyzed on a single diagram. See Figure 2-1 below for

an example. It is a chart that displays arrivals in relation to the time in the cycle and the cycle in

relation to the time of the day. It is used to analyze the quality of coordination, among other

system monitoring activities. Each point on the diagram is a vehicle arriving at the intersection. If it

is on the lower division of the graph it is an arrival at the intersection during red. The green line

indicates the beginning of green (BOG). If it is on the upper division of the graph it is an arrival

during green. The red line at the top of this division indicates the end of green (EOG). A well-

coordinated system will show vehicle arrivals as a dense cloud, as indicated by the “ii” note in

Figure 2-1.

3

Figure 2-1. Purdue Coordination Diagram (Brennan, 2011)

The PCD does take a trained eye to be analyzed. Issues like queues extending over the advance

detectors and the lack of numerical quantification can make using the PCD challenging. For this

reason Utah Department of Transportation (UDOT) includes average performance measures for

each time of day plan. The percent arrival on green, percent green time, and platoon ratio give a

numerical quantification that is a good representation of one of their diagrams. The percent arrival

on green is calculated as the number of arrivals during the green time divided by the total arrivals

during that study period. Similarly the percent green time is simply the total green time divided by

the total time of the study period. The platoon ratio combines these two measures and is

calculated as the percent arrivals on green divided by the percent green time.

4

The PCD sheds light on a broad range of traffic operations problems, like queue spillback or poorly

timed offsets. At the same time, the PCD integrates well with more aggregate measures. As a

result, the proposed tool should include the PCD to help advance performance measurement by

generating multiple performance measures, while leveraging the PCD to see individual vehicle

operations.

2.3 Purdue Phase Termination Chart

The UDOT has implemented an extensive system that logs high resolution data for the majority of

the traffic signals on the state system (UDOT, 2013). Their system allows users to view performance

measures depending on the detection setup. For example if the intersection has advance detectors,

PCDs can be generated. Most high-resolution performance measures depend on detectors. The

Purdue Phase Termination Chart is the only measure that does not require detector data. This

chart, see Figure 2-2, shows the condition that lead to the green ending. It color codes max-outs,

gap-outs, and force-offs. Then comparing different phases it can help identify problems with split

times and in some cases find malfunctioning detectors. For instance, Figure 2-2below shows a plot

created on UDOT’s performance metrics website. The green dots are gap-outs, the blue dots are

force-offs and the red dots are max-outs. Since the max-outs are similarly colored to the pedestrian

walk markers, a group of max-outs has been circled in the figure. The orange dots that are just

above the phase are pedestrian walk indications. There are two coordinated periods, one in the AM

and the other in the PM. Because of the consistent force-off phase termination, it is clear that

phases 2 and 6 are the major approach that is coordinated. During plans 1 and 13 where there is

coordination they are always forced off.

5

Figure 2-2: Purdue Phase Termination Chart (UDOT, 2013)

This measure is very simplistic but can still be very useful. For instance, in the case shown above, if

another measure identified a problem on the major corridor this diagram could be consulted to

compare the different phases. Due to the consistency of the minor phases gapping out, this

intersection would be able to have its split times adjusted to better meet its demands.

Unfortunately nothing concrete can be determined from this measure alone, it is simply an

assistant to the other measures.

2.4 Green Time Utilization

Green Time Utilization (GTU) is a simple performance measurement of the percent green time that

the stop bar detectors were active. This serves as a surrogate measure for capacity utilization.

However, it requires calibration for proper use. Calibration is necessary because the variety of

detection types, accuracy, and sensitivity affect the GTU significantly. However, even after being

6

calibrated it still does not have a significant correlation with delay. A study found that GTU had an

R2 of .513 when correlated to delay, (Smaglik, 2011). It can be a good indicator of the performance

even though it is not very precise. In their study, when the GTU was greater than 95%, half of the

cycles were split failures, meaning the queues failed to clear during the green time (see Figure 2-3).

Note that Smaglik used the term green occupancy ratio (GOR) instead of GTU.

Figure 2-3: Green Occupancy Ratio and Split Failures (Smaglik, 2011)

2.5 Delay Measurement

UDOT also did a study on estimating delay. It used loop detector data to estimate delay and travel

times using stop bar data from the target intersection and the upstream intersection. The

estimated travel time would determine which detector hits from the downstream intersection

would refer to which detector hits in the upstream intersection. The dataset was trimmed to not

include vehicles that were already in the system at the start of the analysis or still in the system at

7

the end of the analysis. They also had to account for vehicles exiting and entering mid segment.

This problem led to the creation of two methods. The first method had detectors on the mid

segment driveways so that the vehicles that exited and entered could be accounted for. The other

method did not have these mid segment detectors. The second method is the only one that might

be viable for use in the tool. Once the vehicles entering and exiting mid-stream have been removed

from the analysis, the process checks to make sure that all the data points from the upstream

detectors have matches with data points from the downstream detectors. Then the average travel

time is calculated. First the sum of the upstream detector hit times is subtracted from the sum of

the downstream detector hit times. That value is then divided by the total number of vehicles. The

average delay time is then defined as the difference between the average travel time and the ideal

travel time, the time it takes a vehicle to drive through the test zone while driving the speed limit.

The results of this study seemed promising with errors in delay less than 5 seconds per vehicle for

most cases. Unfortunately, that is value is out of context. The percent error varied from a

significant 30 to 40 percent. This is caused by the distance between measurements. The longer the

distance the more complex the model for the drivers’ behavior needs to be. Intersection-to-

intersection requires more than the simple expectation that drivers will travel the speed limit. The

delay will still be used in the tool, but the distance between entrance and exit detectors will be

much shorter, approximately 400 feet.

8

Chapter 3 METHODOLOGY

3.1 Introduction

The system for generating performance measures requires 2 parts. The first part is a database that

contains the high resolution data and, for conversion of VISSIM, traffic micro simulation software

developed by PTV group, outputs to high resolution data, a table that contains some of the signal

timing parameters. The database used in this project was Microsoft SQL Server. The other part is

the collection of Python programs which perform the necessary calculations and produce the

output. There are a total of seven files that make up the performance measure suite. Only two of

the files need to be run or edited to use the program. Only, the file that produces the graphical user

interface (GUI) and the file that controls the default information are needed. In order to run the

different performance measure programs all that must be done is the opening of the GUI program.

In order to change the default information the Python file named “CustomDefaults.py” must be

edited.

3.2 High-Resolution Data Emulation

This program converts VISSIM output files to basic eventcode style high resolution data. High

resolution data is a record of every change of state. It includes the time stamp of the state change,

the event code to identify the state that is changing, the signal identifier, and the phase identifier.

The Detector output file (.ldp) and the signal output file (.fzp). The detector output files must be

converted to (.csv) files to be read by the program. Any form of control, including hardware in the

loop, is acceptable, so long as the same output files are created.

9

3.2.1 Interface GUI

The interface for this tool is shown below in Figure 3-1. The input fields can all be customized using

the CustomDefaults.py. The GUI starts by requesting a study number. The study number has an

effect on the tables that are created in the database and despite its name it does not need to be a

number. So long as the study number is unique it will not have an effect on the operation of this

program. The next set of information requested by the emulator is the signal numbers. These are

entered with a comma separating each signal. The signal numbers must be integers and must

match the signal numbers in the simulation. They are not constrained by order outside of the

previous. Once the signals have been entered the detectors for each signal must be entered. The

current program is prepared for one to four signals. While the fields are labeled Intersection 1-4

they just are linked to the numbers entered into the Intersections field, which do not need to be 1-

4. An increase above four signals must be hardcoded into the program for it to be able to run. The

detector numbers must be entered into the field matching the order of the detector data in the

VISSIM output files. If there are fewer than four intersections the values in the extra intersections

10

detector fields will be ignored by the program. The final entry is the name of the table that the data

needs to be output to. This must be a unique name.

Figure 3-1. Simulation to High-Resolution Data Emulator

There are three buttons that follow the entry fields. The first button is a browse button that will

collect the simulation output data. First the detector data is collected in the order of the signals

entered into the input field. Following the detector data’s collection the signal changes are

collected. These files are then each entered into a table in the database. The next button runs the

analysis and conversion of the output files to high resolution data. The detector data is output by

VISSIM every time step. Therefore, it must be simplified down to detector activation and

deactivation times. The signal changes are already output by VISSIM in the form of state changes.

11

Only the format must be changed to fit the event code style. Also, the green times are checked with

the maximum green to determine the phase termination. The maximum green times are retrieved

from a table in the database. The table is formatted to have 3 fields, the intersection, phase, and

maximum green. These fields were integers in the example but could be any numerical data type

that is needed. Each file is analyzed and entered into a string. This string is then entered into the

database. Since the order of the data produced by this program is not chronological, all queries to

this table need to include an “ORDER BY TimeStmp”.

3.2.2 Flow Chart Narration

Figure 3-2 explains each step through the program. Each of the functions has its own smaller flow

chart since they do not need to be run in order, although it is recommended.

This program has four sections of code. The first section of code generates the GUI. This consists of

seven entry fields and three buttons. The first entry is used to name tables in the database that

store the output files for this simulation. Each time the first function is run, by pressing the Browse

button, this field will be used. It must have a unique value if a new dataset is being entered into the

database. However, the first function can be skipped if the dataset has already been run through it.

Just leave this first entry as what it was when the dataset was added and skip to the second button.

The second entry collects the signal numbers. Any number may be entered and they do not need to

follow any particular order. The values must be separated by commas. The following four entry

fields collect the signal detector information. The four fields are hardcoded into the program. A

system with fewer signals will simply ignore the extra detector entry fields. A system with more will

require some slight adjustment to the program. Any numbers may be entered but they will be

associated with the data from the detector files in the order they are entered. Therefore, it is

recommended that these values be taken directly from the detector output files. The last entry

12

field is the name that the database will be saved as. This value needs to be unique. If there is a

table with this name already the program will have an error. If the program fails to run it is most

likely either a problem with Python libraries or these entries.

13

14

Figure 3-2. Simulation to High-Resolution Data Emulator

The second section of code retrieves the VISSIM output files and enters their data into the

database. It starts by opening a browse window. It will ask for a detector output file for each signal

that was entered into the signals entry field as well as the signal timing output file. Once the output

files have been located the program reads the files into separate database tables for easier access.

The third section of code uses the previous tables that were created and converts their format to

state-change events. This section of the program has the most complex process. It starts by

retrieving values from the input fields, in case the second section did not need to be run. Then the

program loops through the signals and prepares the detector events. The VISSIM output provides

the status of the detector each time step. This must be changed to detector activations and

15

deactivations. To do this all of the active times are retrieved and processed. When the difference

between the previous active timestamp and the current active time stamp is more than one time

step then the previous active timestamp plus one time step is logged as a deactivation and the

current timestamp is logged as activation. Once the detector output information has been analyzed

the signal timing information is analyzed. This information is already in state change and only

requires one logic check. When the signal state changes to amber the previous green time is

checked to determine if it was a max-out/force-off or a gap-out. All values are placed into a string

which is used in the next section of the program.

The final section of code creates a table using the input from the final entry field as a name. It then

deposits the entirety of the string produced in the previous step into the table, commits the

changes, and closes the connection.

3.2.3 Coding Guidance for Anticipated Improvements

3.2.3.1 Expanding Number of Intersections

Currently the program is hard coded to only allow four intersections because there are only four

intersection entry fields. There are two avenues for improving this. The first option is to open a

second window that will retrieve the detector information. This can be generated with a loop and is

the only way to automate this process. The second option is less complicated but more stringent.

The number of fields can simply be increased by copy-pasting sections of code, making small

changes to that code, and larger changes to other code down the line. If there is a maximum

number of intersections that are likely to be used it is recommended that the second alternative be

used. If there is uncertainty in the size of networks the first alternative is significantly more flexible

but will require more up-front time.

16

The first alternative will use code similar to a section from the turning count estimation. The

function Hits in this program will need to be copied into the program. The hard coded fields will all

need to be removed and a button for the function Hits will be added in their place. The locations

where the detector fields are retrieved will have to be changed to loops to match the new

flexibility. This should be done using append on the lists where this information is stored. The

CustomDefaults.py file will have to be adjusted to allow for this flexibility. The simplest option will

be to have a single default for all fields that requires the operator to adjust. Otherwise, there will

have to be a hard-coded number of defaults which will limit the flexibility of the program.

The second alternative will require that a detector label and entry be copied and pasted until the

number of signals goal has been reached. The row count variable will take care of the formatting

but the entry and label objects will need to be renamed. Also, the locations where the detector

fields are retrieved will need to be adjusted to match the new number of signals. If the values

attribute of the entries is updated then the CustomDefaults.py file will need to be expanded to

match. This does not need to be changed but can greatly increase the ease of using this program on

a single system.

3.2.3.2Output from Other Micro-Simulation Software

Changes in output file format will be difficult to address without significant code changes. If there

are only minor changes, such as detector status changed to ‘true’/’false’ or ‘1’/’0’ instead of ‘|’/’.’,

then the change will be simple. If the output files are in the form of status changes already it would

likely be easiest recode all the logic, only maintaining the writing of events to the string. The “if”

statements in the loop that analyzes the signal timing output file will require adjustment. The string

they check for is very specific, requiring the exact number of advance and trailing spaces. It may

even be easier to write a separate program that changes the output files to match what is required.

17

3.2.3.3Incorporation of External Data

Including other forms of data, like Bluetooth probe detection or manually collected data, is not

difficult. As long as you can produce an event code entry from external data it is a simple matter to

add it to the database. If it is going to be occurring in every study it may be included in the current

functions. More likely however, this process would be added as a separate function that runs upon

button press. This would require the external data to be read into the program, either by reading a

text file, not the process used in any other part of this program, or by inputting a file into the

database and reading it from there. Then looking through the data and appending events to the

same string that is produced by the emulation. This can be done entirely with processes already

developed within the program.

3.3 Purdue Coordination Diagram

3.3.1 Introduction

This program analyzes high resolution data and outputs an Excel file that contains data organized

into columns. This Excel file can easily be used to create a Purdue Coordination Diagram, or PCD,

using a scatter plot. It also produces summary measures including: percent time green, percent

arrivals on green, and platoon ratio for each cycle and overall. These cycle-by-cycle measures are

plotted along with or on the PCD.

3.3.2 Interface

This interface, seen below in Figure 3-3, is the base interface for most of the following programs. It

has four fields that collect information. As with all of the programs, the default values for the

graphical user interfaces (GUI) can be changed using the CustomDefaults.py file. The first field is the

signal numbers separated by commas. The second field is the phase numbers separated by

commas. Only one phase number can be selected for each intersection selected. However, the

18

same intersection may be listed multiple times to include multiple phases from one intersection

and any number of intersection/phase pairs are acceptable. Together the first two fields must

produce pairs of intersection and phase numbers, as marked below. The detector input field is

slightly more complicated. The detectors per phase are separated by commas. Then each phase’s

group of detectors is separated from the other phases’ groups of detectors by a semicolon. The

final entry is the database table where the data will be retrieved. At the very bottom of the GUI

there is a button which will run the program once the fields have been prepared. This button will

run the entire program from retrieving inputs to creating the Excel output.

Figure 3-3. Purdue Coordination Diagram Interface

3.3.3 Flow Chart Narration

The Purdue Coordination Diagram program has two parts and these are illustrated in Figure 3-4. In

the first part, it constructs the graphical user interface, seen in Section 2 of the flow chart. The

second part runs the analysis based on the information entered into the graphical user interface,

seen in Section 3 of the flow chart.

19

The user interface is described in detail above, so this discussion emphasizes the calculation

process, which begins by retrieving the information from the graphical user interface. Then the

process connects to a database and creates an Excel workbook, Steps 3.3 and 3.4 in Figure 3-4.

Once this has been done, it loops through the intersection/phase combinations that were entered

into the graphical user interface. For each loop, the program uses the remaining input information

to construct three SQL queries, Step 3.6. The queries retrieve all of the intersection green times,

red times, and detector activations for the given phase. These are stored in three separate lists. The

process organizes the data cycle-by-cycle by looping through the beginning-of-red time list. The

beginning-of-red time indicates the ending time of the current cycle for which detection data are

being organized. For each cycle’s red time, the program loops through the detector times,

searching for detections that occurred during the cycle. The loop through the detection times stops

when a detector time occurs after the beginning-of-red time. Each detector time is logged as an

arrival in the workbook. Next, after completing looping through the detector data the program

checks the green time list to see if the green time is the correct one. It does this check by making

sure that the green time occurred between the previous beginning-of-red time and the current

beginning-of-red time. It then logs the green time in the workbook for the current cycle for which

data are being organized. Once it is done looking at the detector times and green times, it

calculates the cycle’s performance measures. Percent arrivals on green, percent green time, and

the platoon ratio are the measures calculated. The program then moves to the next cycle’s red time

and repeats this process until there are no more red times. Once all the red times have been

completed, the program steps to the next intersection and repeats the process again. Last the

program saves the workbook and it is ready to be used to create a PCD. All output excel files are

saved in the same directory as the python programs. The excel files are named as the performance

20

measure and datetime separated by an underscore. For example, the format,

PerformanceMeasureName_Month_Day_Hour_Year, results in a PCD_Jan_15_2_30.xlsx.

Figure 3-4. Purdue Coordination Diagram Flowchart

21

3.3.4 Coding Guidance for Anticipated Improvements

3.3.4.1 Incorporating Upstream Intersection Detection for Arrival Estimation

PCD oriented information is most useful when detection occurs upstream of the subject

intersection’s queue. In many cases, there are no detectors at this strategic location. Using arrival

estimations from an upstream intersection is an easily implemented addition to the program. There

will need to be an addition to the GUI’s current entry fields, allowing the user to enter the

upstream intersection information, which is the intersection number and the phase numbers that

contribute to the subject intersection/phase arrivals. This program would then need to collect

departure data which will be processed to create the list of arrival times. For example, the program

would retrieve the departure times and add the travel time between intersections. The travel time

could be based on probe data or simply defined as the distance divided by the estimated speed

resulting in estimated arrival times. The program would then need refer to these estimated values

instead of retrieving arrival times directly from queried detector results and it will produce the

same output with the estimations.

3.3.4.2 Automating the Generation of Graphs in the Excel Output

Currently, the user needs to manually create the PCD from the output data that this program

creates. The program can be modified to automate the generation of graphs in Excel using Visual

Basic for Applications (VBA). The VBA program can either be run in Excel after the output file has

been created or VBA can be executed by the Python program after the workbook has been saved.

3.4 Green Time Utilization

3.4.1 Introduction

This program analyzes high resolution data and output from an Excel file that contains both cyclic

and overall performance measures. The primary performance measure calculated is the GTU.

22

However, detector hits are also counted, which can be used to measure the most basic

performance measure, flow rates.

3.4.2 Interface

This interface, shown below in Figure 3-5, is very similar to the Purdue Coordination Diagram’s

interface. There are four entry fields: Signals, Phases, Detectors, and Table Name. They work the

same as the PCD. The Signals field accepts comma-delimited values. The Phases field requires the

same number of entries as the signals field. The intersection and phase values are considered as

pairs. For instance, the first intersection-phase pair would be 1-2 and the second pair would be 1-6.

The detectors field follows the same rules as they have in the previous interface but require a

different set of detectors to be entered. For the best results, the PCD program uses advance

detectors, while stop bar detectors would be best for the GTU measurement. As is shown below

the detector field is too small for large entries. If more than one intersection phase pair is being

analyzed it is recommended that the values be changed using the CustomDefaults.py file. The final

entry is the name of the high resolution data table. The “Run Calculations” button will run the

calculations and produce an Excel file with the calculated measures.

Figure 3-5. Green Time Utilization Interface

23

3.4.3 Flow Chart Narration

This discussion provides an overview for the computer program that extracts GTU information from

high resolution controller data and uses the flowchart in Figure 3-6for illustration. The program

starts by importing all the libraries required to function. These are all included with the scripts. The

GUI is then constructed. There are 4 entry fields and a button. The button “Run Calculations”

executes this program’s only function. As shown in Steps 3.1 to 3.13, this function collects the data

from the database, processes it, and outputs the results into an Excel file.

The first step is to collect the information entered into the entry fields, Step 3.1. Next it enters a

loop where it analyzes each intersection-phase pair. In the loop, it initializes the temporary count

and summation variables that will be used, Step 3.5. Then it produces a query that selects all

detector activation and deactivation times along with the start of red and start of green times. Each

of these times also has a corresponding event. These values are arranged in one list which is

analyzed in the next steps, 3.8-3.10. Each loop processes one event. If the event is a green light a

few things are done. First the cycle counter is incremented up one. Then the number of hits in the

previous cycle is appended to a list where they are stored until the reporting step. This is followed

by the green light Boolean being set to true and the previous green time being logged. Last the

temporary variable that holds the previous detector activation is overwritten with the start of

green. This has to be done because the detector events are only analyzed if the light is green.

Therefore, if the detector activates during the red phase, which is very likely, the program will

recognize the detector as on immediately, at the same time as the beginning of green. If the

detector is not active when the light turns green then this temporary variable will be overwritten

with the actual activation time before the time the detector is on is calculated. There are also a few

steps that are taken if the event is a red light. First the green light Boolean is set to false. Then, the

green time is calculated and recorded, and if the detectors are active the time it has been active is

24

calculated and added to the sum. Similar to storing the start of green in the temporary detector,

the end of the green must turn off any detectors and log their time towards the sum. When the

event is not either of these two then the program checks to see if the light is currently green. If it is

green then it will process the events accordingly. This is done because the program is not

concerned with detector events while the light is red. The program then loops through the

detectors to see which detector had a state change. Each of the detectors’ states is stored in a list.

If any detector is active, then the green is still being used and will be counted towards the utilized

part of the phase’s green time. When the phase’s detection status changes states from off to on,

the size of the gap is calculated and the activation is logged. When the phase’s detection status

changes from on to off the duration of the activation is calculated and reported. Once all the events

have been analyzed, the performance measures are calculated and output to Excel.

25

Figure 3-6. Green Time Utilization Flowchart

26

3.5 Phase Termination Analysis

3.5.1 Introduction

This program looks at the end-of-green events and uses the event code to prepare an Excel file. The

gap-outs are separated from the max-outs and force-offs and both can be easily added to a graph

for analysis.

3.5.2 Interface

The interface, shown below in Figure 3-7, is very similar to the GTU interface. It does not, however,

require detector inputs of any kind, because it is only gathering reasons for phase termination. The

phase entry is formatted similar to the detector input of the previous program. There can be

multiple phase entries for each signal entry. Phase entries for the same signal are comma delimited

and phase groups for each signal are separated by a semicolon, not a comma, see Figure 3-7.

Figure 3-7. Phase Termination Interface

3.5.3 Flow Chart

This program has very simple calculations and, as shown in flowchart used for illustration, it is

therefore significantly shorter than the others, see Figure 3-8. As with each of the programs, the

first task is to load the required libraries. Then the program constructs the GUI. When the “Run

Program” button is pressed the values of the entry fields are retrieved and used to create two

queries. The queries collect the end of green times and gap-outs in one list, and force-offs/max-

27

outs in the other. For isolated intersection operations, force-offs should be considered max-outs.

The lists retrieved from the queries are written to Excel workbook storing the output data. The

workbook is then saved.

Figure 3-8. Phase Termination Flowchart

3.6 Delay and Queue Length Estimation

3.6.1 Introduction

This program estimates delay and queue length using high resolution data. The estimates are

calculated using arrival and departure counts based on detector activations. This program requires

lane-by-lane detection for both the arrival detection and the departure detection. Ideally, arrival

28

detection would be accomplished by advanced detectors located upstream of the queues and

departure detection would occur through stop bar detectors.

3.6.2 Interface

Similar to the previously discussed programs, this interface has entry fields for the intersections,

phases, arrival detectors, departure detectors, and the table name of the dataset, see Figure 3-9

below. The first notable difference is that there are two sets of detector inputs. This is because it is

important to differentiate between the arrival detection and departure detection in the analysis.

The intersection field requires that the intersection values be separated by commas. Similarly, the

phase numbers must be separated by commas and must have the same number of entries as

intersections. The detectors are broken into groups by semicolons which each refer to a phase. The

detectors for a single phase are separated by commas. All of the information needed for delay at

Phase 2 of Intersection 11 is indicated by dashed boxes in Figure 3-9. Queue length and delay could

be extracted for other phases of the same intersection by repeating the intersection number,

adding a different phase number, specifying the corresponding arrival and departure detector

numbers.

29

Figure 3-9. Delay and Queue Estimation Interface

3.6.3 Flow Chart Narration

The flow chart for this program is shown below in Figure 3-10. This program begins by loading the

libraries it uses. Then it produces the GUI. When the “Run Program” button is pressed it executes

the function. This function starts by retrieving the information in the entry fields. Then it opens a

connection to the database, opens a workbook object, and begins looping through each of the

intersection/phase combinations. For each combination, it creates a worksheet, retrieves the red

times, retrieves the arrival times, and retrieves the departure times. Then it loops through each

time step and checks for when different events occur (beginning of red, arrivals, and departures

occur). If the event is the beginning of red then the queue length is recorded. If an arrival occurs

the queue is incremented up one. If a departure occurs the queue is decremented down one. For

each time step, the time, queue, and delay are recorded. Then the delay for the next time step is

calculated. Once the loops have finished cycling through the lists, the workbook is saved.

30

Figure 3-10. Delay/Queue length Flowchart

31

Chapter 4 TESTING

4.1 Overview

The output from the performance measure calculation tool was tested by directly comparing the

measures produced by the tool with the hand calculated measures. All of the measures relied on

the same VISSIM output files. The hand calculated measures, GTU, PCD, and PPTC, were produced

using the detector output files (.ldp) and signal changes output file (.lsa) from VISSIM. The delay

was compared to the calculated delay from VISSIM. Each measure was tested for accuracy over five

cycles. Each of the tested measures was an exact match with the exception of the delay and queue

length measures.

4.2 Purdue Coordination Diagram

The part of the tool that produced the PCD was tested by comparing the list of arrivals that were

output to the detector output files. A PCD assembled in Excel using the detector output files was

created to compare as well. These PCD’s are shown below as Figure 4-1 and Figure 4-2.

Figure 4-1. Hand Assembled PCD

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

Ti
m

e
 in

 C
yc

le
, s

Time, s

Hand Assembled 5 cycle PCD

Arrivals

Red

Green

32

Figure 4-2. Tool Generated PCD

4.3 Green Time Utilization

The GTU performance measurement creation was the most difficult to calculate. The complications

during calculation were primarily caused by detectors being active when the phase began. When a

detector activated and deactivated during the phase the time that it was active is added to the total

active time and is easily accounted for. When a detector is already active, at the start of the phase,

the program wouldn’t know it was active until the detector deactivated.

Table 4-1 below, shows the GTU that was produced by the program for two phases. The column

titled “GTU 1” is the calculated GTU for the first five cycles of Phase 1 in Intersection 1. The values

in the column to its right, labeled “Calculated” contain the hand calculated values. These values

were identical to the ones produced by the program. The column “GTU 6” and its corresponding

“Calculated” column were another test which included a phase with multiple lanes. The second test

also produced identical results.

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

Ti
m

e
 in

 C
yc

le
, s

Time, s

Generated 5 cycle PCD

Series1

Red

Green

33

Table 4-1. Comparison of Hand Calculated GTU to Tool Calculated GTU

Cycle GTU 1 Calculated GTU 6 Calculated

1 0.27 0.27 0.21 0.21

2 0.33 0.33 0.32 0.32

3 0.14 0.14 0.22 0.22

4 0.34 0.34 0.24 0.24

5 0.36 0.36 0.38 0.38

4.4 Queue Length and Delay Estimation

Along with the other measures, queue length can be estimated using high-resolution data. This

measure requires both advanced and stop bar detectors that are sensitive enough to detect

individual vehicles. The queue length estimation is based on an input output model which assumes

that every vehicle is detected, both entering and exiting the system.

To test the queue length estimation, VISSIM Data Collection Points (VDCP) were added to the

system. These VDCPs provided the ground truth data on the traffic counts. Unlike the controller

detectors, they have no influence on the intersection operations.

During an hour long simulation, manual inspection found, 15 errors in the controller detectors. The

errors were caused by vehicles changing lanes over the advance detectors. These errors lead to a

single vehicle being counted twice as it enters the system. The delay then has a bias of input

vehicles because the vehicle was not double counted at the stop bar.

Accuracy was determined by calculating the delay with both the VDCP and controller detectors,

with the VDCP being the ground truth. The results were assessed through visual inspection of the

delay curves, shown below in Figure 4-3. The figure shows that the delay was accurate at the

beginning of the simulation. The errors visibly separate the controller detector’s delay from the

VDCP’s delay at cycle 5. Figure 4-3 below, shows the increasing errors in estimation as simulation

34

progressed. The controller detector’s delay estimation is the line that continues to climb upward.

On the other hand, an adjusted controller detector delay, which is explained in the next paragraph,

and the ground truth calculation are steady near the 20 seconds/vehicle mark. Adjustments needed

to be made to improve the calculations.

Figure 4-3. Cyclic delay of the different methods.

Since the cause for the errors was known, steps were taken to remove these imperfections from

the dataset and retest the method with filtered controller detector data. Unfortunately, there was

not a discernable pattern to the errors which would allow for an automated correction procedure.

A t-test determined the delay estimation method to be accurate when comparing the entire hour

of data, with a t-statistic of 0.096. Even with the statistical confirmation it should be noted that the

queue length estimation works most accurately with smaller datasets. Figure 4-4 and Figure 4-5

below, show the resulting cumulative vehicle diagrams for the ground truth data and the fixed high-

resolution data. It is clear that the calculation starts out working well but as the slight inaccuracies

of high-resolution data continue the accuracy decreases. Even in a plot that only shows the first five

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 10 20 30 40 50

D
el

ay
, s

ec
o

n
d

s/
ve

h
ic

le

Cycles

Delay Estimation

Data Collection Points

High-Resolution Data

High-Resolution Data,
Adjusted

35

minutes of the simulation, the high resolution estimations do not match the ground truth

cumulative vehicles diagram.

Figure 4-4. The ground truth calculation of the cumulative arrivals and departures for the first 300 seconds
of the simulation.

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300

V
eh

ic
le

s

Time, Seconds

Cumulative Arrivals and Departures, Ground Truth

Cumulative Arrivals

Cumulative Departures

36

Figure 4-5. The controller detection delay calculation of the cumulative arrivals and departures for the first
300 seconds of the simulation.

The delay performance measure has potential in short analysis periods. However, using an

algorithm to find and mitigate errors in the calculation would significantly improve the calculation.

Also, instituting a process that can determine if there is a compounding error could significantly

improve analysis as well as enable use outside of simulations. Including measures that correlate

with delay would make this possible. For example, knowing whether or not a queue existed at the

end of a phase by way of variations in the detector occupancy would eliminate additive count

errors from one cycle to the next. This would essentially reduce the analysis period from the entire

simulation to each individual cycle.

4.5 Split Failure Analysis

This is the most basic of the performance measures generated by the tool. The table below

validates the results generated by the tool with hand checked phase terminations. Figure 4-6

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300

V
eh

ic
le

s

Time, Seconds

Cumulative Arrivals and Departures, High-Resolution Analysis

Cumulative Arrivals

Cumulative Departures

37

below, shows the resulting chart from the validated tool results. The calculated measures were

determined using the signal changes output file, shown in Table 4-2.

Table 4-2. Purdue Phase Termination Chart Method of Creation Comparison

Calculated Results Program Results

Time Stamp Phase Time Stamp Phase

Gap-out Gap-out

5.2 1 5.2 1

109 1 109 1

235.7 1 235.7 1

Max-out Max-out

74.4 1 74.4 1

172 1 172 1

Gap-out Gap-out

23.7 6 23.7 6

74.4 6 74.4 6

140.8 6 140.8 6

255.7 6 255.7 6

Max-out Max-out

203.6 6 203.6 6

Figure 4-6. Purdue Phase Termination Chart

1

6

0 50 100 150 200 250 300

P
h

as
e

Time, s

Generated Purdue Phase Termination
Chart

38

Chapter 5 CONCLUSIONS

This project produced a tool that generates high-resolution data from micro simulations without

the use of hardware-in-the-loop simulation. Along with this functionality, the tool can calculate

numerous performance measures using four different functions. These functions produce Excel files

that facilitate the ability to analyze multiple measures at a time. This project has demonstrated and

utilized the strengths of high resolution data. It has also shown that the data can be very limiting.

The Purdue Coordination Diagram was very successful because the arrivals are accurately counted

using the advance detectors. Along with the Purdue Coordination Diagram, the percent green time,

percent arrivals on green, and platoon ratio were included so they could be plotted in the same

figures. The Green Time Utilization was also very successful. While this measure is not definitive by

its self, the tool produced greatly improves its usefulness by allowing this measure to be shown

with others. The Purdue Phase Termination Chart was included in the project as well. Similar to the

Green Time Utilization, this measure is best when used in conjunction with other measures. Delay

and Queue length estimations were included in the project which had margins of error that varied

significantly with the quality of the data and the length of the analysis period. This measure has the

most potential as a standalone measure but requires more work. The results are promising when

the data is perfect but imperfections in data can lead this measure off course. The focus of future

work with this measure should start by error filtering the data being fed into this measure.

The tool was created using Python 2.7. The high-resolution data is generated by analyzing VISSIM

output files. Future work will need to be done to enable the use of other micro simulation

programs with this tool. Producing the high-resolution data with this tool requires setup but is a

valuable alternative to using field data or hardware in the loop simulation. The alternative is to

have the controllers linked to a system that produces a high-resolution database which is expensive

39

to buy and maintain. With this tool researchers will now be able to produce high-resolution data

easily and efficiently. This will help accelerate the development of improved performance

measures, which are becoming more valuable every day since multiple state agencies have begun

collecting this data.

40

REFERENCES

Brennan, T.M., et al., (2011). “Visual Education Tools to Illustrate Coordinated System Operation”

Transportation Research Board, National Research Council, Washington, DC.

Saito, Forbush, (2011). “AUTOMATED DELAY ESTIMATION AT SIGNALIZED INTERSECTIONS: PHASE I

CONCEPT AND ALGORITHM DEVELOPMENT” Utah Department of Transportation Research

and Development Division.

Smaglik, E. J., et a`. (2011). “Comparison of Alternative Real-Time Performance Measures for

Measuring Signal Phase Utilization and Identifying Oversaturation” Transportation Research

Board, National Research Council, Washington, DC.

UDOT, (2013). “http://udottraffic.utah.gov/signalperformancemetrics/”

Wang, Z., et al. (2014). “Estimating Queue Length at Signalized Intersections Using Multi-Source

Data A Shockwave Theory Approach.pdf” Transportation Research Board, National

Research Council, Washington, DC.

