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Abstract

A phylogenetic tree is a hypothesis of evolutionary relationships among lineages. The branch-

ing pattern of such tree tells us the history of species groups derived from their most recent

common ancestors. The length of each branch of this tree represent time, a critical infor-

mation to study evolutionary processes. Such a tree is the starting point for phylogenetic

comparative studies, which aim is to use phylogenies to test hypotheses about macroevolu-

tion. One of the most interesting questions on macroevolution is how morphological traits

evolved to gave origin to the impressive biodiversity we see today. In this dissertation, I

use and develop statistical models to ask questions such as the association between mor-

phological differentiation and lineage diversification and patterns of evolutionary correlation

among several traits. The present dissertation is divided into four chapters. The first tests

whether the diverse coloration patterns associated with Neotropical false-coral snakes of the

family Dipsadidae have a positive effect on the rates of diversification of the group. In the

second chapter I focused on evolutionary modularity and developed a novel Bayesian ap-

proach to study patters of evolutionary correlation among several continuous traits using

Markov-chain Monte Carlo. The third chapter is composed by the implementation of the

new method described on Chapter 2 as an R package named ’ratematrix’. In this same

chapter, I developed and implemented an extension of Felsenstein’s pruning algorithm ap-

plied when multiple independent multivariate Brownian-motion rate regimes are fitted to the

same phylogenetic tree. The fourth chapter introduces the use of mathematical functions to

describe the heterogeneity in the rate of evolution of a continuous trait across the branches

of a phylogeny as predicted by a different (also continuous) trait. In summary, in this dis-

sertation I visit different topics associated with phylogenetic comparative models of trait

evolution. Each chapter focus on a current challenge in phylogenetic comparative studies;

the association of trait with rates of diversification on chapter one, simultaneous study of

several traits on chapters two and three and the correlation between rates of evolution and

a potential predictor trait on chapter four.
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Tudo o que consegui até hoje foi por causa do seu apoio, paciência e amor.



vii

Table of Contents

Authorization to Submit Dissertation ..................................................................... ii

Abstract.......................................................................................................................... iii

Acknowledgements ....................................................................................................... iv

Dedication ...................................................................................................................... vi

Table of Contents ......................................................................................................... vii

List of Tables ................................................................................................................. x

List of Figures ............................................................................................................... xi

1 HAVE CORAL SNAKE MIMICS DIVERSIFIED MORE THAN NON-

MIMICS? .................................................................................................................. 1

1.1 Abstract .............................................................................................................. 1

1.2 Introduction ........................................................................................................ 1

1.3 Materials and Methods ....................................................................................... 4

1.3.1 Phylogenetic reconstruction..................................................................... 4

1.3.2 Color patterns ......................................................................................... 4

1.3.3 Comparative analyses .............................................................................. 6

1.4 Results ................................................................................................................ 9

1.5 Discussion ........................................................................................................... 11

1.5.1 Model selection and (in)adequacy ........................................................... 11

1.5.2 Color patterns have no effect on the diversification of dipsadid snakes... 12

1.6 Concluding remarks ............................................................................................ 13

2 ESTIMATING CORRELATED RATES OF TRAIT EVOLUTION WITH

UNCERTAINTY ..................................................................................................... 26

2.1 Abstract .............................................................................................................. 26

2.2 Introduction ........................................................................................................ 26

2.3 Methods .............................................................................................................. 30

2.3.1 A new pruning algorithm for multivariate Brownian motion with mul-

tiple regimes ............................................................................................ 30

2.3.2 Computing the likelihood for the multivariate Brownian motion model

with multiple regimes using the new pruning algorithm ......................... 31



viii

2.3.3 MCMC prior densities and sampling strategy ......................................... 34

2.3.4 Incorporating uncertainty in regime configurations and phylogenetic

trees ......................................................................................................... 35

2.3.5 Testing for shifts between rate regimes ................................................... 36

2.3.6 Simulation study ..................................................................................... 37

2.3.7 Empirical examples.................................................................................. 38

2.4 Results ................................................................................................................ 40

2.4.1 Performance of the method ..................................................................... 40

2.4.2 Empirical examples.................................................................................. 41

2.5 Discussion ........................................................................................................... 42

2.6 Conclusion........................................................................................................... 44

3 AN R PACKAGE FOR STUDYING EVOLUTIONARY INTEGRA-

TION AMONG SEVERAL TRAITS ON PHYLOGENETIC TREES ....... 65

3.1 Abstract .............................................................................................................. 65

3.2 Introduction ........................................................................................................ 65

3.3 The model and MCMC implementation ........................................................... 66

3.4 Description of the ratematrix R package ........................................................ 68

3.4.1 Estimating rates of correlated evolution ............................................... 69

3.4.2 Integration of uncertainty in regime configurations .............................. 71

3.4.3 Continuing unfinished chains or adding extra iterations ....................... 72

3.5 New pruning algorithm improves computational time ...................................... 72

3.6 Resources .......................................................................................................... 73

4 PREDICTING RATES OF EVOLUTION FOR ONE TRAIT USING A

CONTINUOUS GRADIENT OF ANOTHER TRAIT .................................. 81

4.1 Abstract .............................................................................................................. 81

4.2 Introduction ........................................................................................................ 81

4.3 Methods .............................................................................................................. 83

4.3.1 Description of the model ......................................................................... 83

4.3.2 Mathematical functions and model choice............................................... 85

4.3.3 Model implementation............................................................................. 86

4.3.4 Performance simulations.......................................................................... 86

4.3.5 Likelihood surface for the linear function ................................................ 87

4.4 Results ................................................................................................................ 88

4.4.1 Performance simulations.......................................................................... 88

4.4.2 Likelihood surface for the linear function ................................................ 89



ix

4.5 Discussion ........................................................................................................... 90

4.5.1 Future directions ..................................................................................... 92

4.6 Concluding remarks ............................................................................................ 93

Bibliography ..................................................................................................................103



x

List of Tables

1.1 Results from the three best models ranked among 24 trait-dependent and trait-

independent models using Akaike Information Criteria (AIC) across a pool of 100

phylogenetic trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Proportion of simulation replicates showing support for two R matrix regimes

under likelihood ratio test (LRT) and using summary statistics computed from

the posterior distribution of parameter estimates. . . . . . . . . . . . . . . . . . 46

3.1 Principal functions available in ratematrix. . . . . . . . . . . . . . . . . . . . . 74

4.1 Number of times each model showed the best Akaike information criterion (AIC)

score across 100 simulations using different search strategies. . . . . . . . . . . . 94

4.2 Number of times that mean pairwise ∆AIC across stochastic mapping histories

for each model was larger than 4 units in favor of the model that generated the

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Number of times that mean pairwise ∆AIC across stochastic mapping histories

for each model was larger than 4 units in favor of the alternative model when

compared to the true model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



xi

List of Figures

1.1 Genus-level maximum clade credibility (MCC) tree of the family Dipsadidae

showing the number of species assigned to each color category and posterior

distribution of parameter estimates for the BiSSE model. . . . . . . . . . . . . . 15

1.2 Results of model selection between trait-dependent and trait-independent BiSSE

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Results from the posterior predictive simulations for BiSSE under the trait-

dependent and the trait-independent models. . . . . . . . . . . . . . . . . . . . . 17

1.4 Results from linear regressions between net diversification rates estimated using

BAMM and the proportion of the category coral-mimic for each dipsadid genera. 18

1.5 Maximum clade credibility tree with all species (Part 1). . . . . . . . . . . . . . 19

1.6 Maximum clade credibility tree with all species (Part 2). . . . . . . . . . . . . . 20

1.7 Parameter estimates for the BiSSE model under the contrasting versus cryptic

color category. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.8 Results of model selection between trait-dependent and trait-independent BiSSE

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.9 Results from linear regressions between net diversification rates estimated using

BAMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.10 Results from linear regressions between net diversification rates estimated using

BAMM and the proportion of both color categories coral-mimic and contrasting

for each dipsadid genera under different prior distributions on the number of

expected rate shifts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 Example of phylogeny used to compute the likelihood of a multivariate Brownian-

motion model using the new pruning algorithm. . . . . . . . . . . . . . . . . . . 47

2.2 Example of phylogeny used for the simulation study. . . . . . . . . . . . . . . . 47

2.3 Example of posterior distribution for the six simulation treatments with three

traits each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Prior distribution for the evolutionary rate matrix (R) used for all analyses. . . 50

2.5 Distribution of percentiles for the maximum likelihood estimate (MLE) of the

full model and for the true value of the simulations with respect to the posterior

distribution of each simulation replicate. . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Posterior distribution of the R matrix regimes fitted to the island anole and

mainland anole lineages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7 Posterior distribution of the R matrix regimes fitted to the background group

and to the Micropterus clade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



xii

2.8 Example of posterior distribution of root values for the six simulation treatments

with three traits each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.9 Example of posterior distribution of root values for the six simulation treatments

with three traits each using a uniform prior for the vector of root values. . . . . 57

2.10 Maximum clade credibility tree from Gamble et al. (2014) study showing the

distribution of ‘mainland’ and ‘island’ anole species. . . . . . . . . . . . . . . . . 59

2.11 Posterior distribution of root values fitted to the island and mainland anole lineages. 60

2.12 Trace plots of the log-likelihood and the acceptance ratio for the four independent

MCMC chains of the island and mainland anole analysis. . . . . . . . . . . . . . 61

2.13 Posterior distribution of root values fitted to the Centrarchidae fishes. . . . . . . 62

2.14 Trace plots of the log-likelihood and the acceptance ratio for the four independent

MCMC chains of the Centrarchidae fishes analysis. . . . . . . . . . . . . . . . . 63

2.15 Posterior distribution of the R matrix regimes fitted to the background group

and to the Micropterus clade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1 Diagram of the separation strategy proposal. . . . . . . . . . . . . . . . . . . . . 75

3.2 Samples from the prior of the evolutionary rate matrix (R) for two simulated

traits using the separation strategy. . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Posterior distribution of the evolutionary rate matrix (R) regimes fitted to the

island anole and mainland anole lineages. . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Time in seconds spent to compute the likelihood function using different approaches. 78

3.5 Maximum clade credibility phylogenetic tree for anole lizards made available by

Gamble et al. (2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 List of mathematical functions implemented in the R package phylofx. . . . . . 96

4.2 Example of phylogeny showing changes in σ2 for the response trait across the

branches in function of the predictor trait values following a linear model with

positive slope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Results from performance simulations using datasets generated with a constant

evolutionary rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Results from performance simulations using datasets generated with a linear func-

tion between predictor trait values and rates of evolution of the response trait. . 99

4.5 Results from performance simulations using datasets generated with a step func-

tion between predictor trait values and rates of evolution of the response trait. . 100

4.6 Number of ‘hits’ computed across each of the stochastic mapped histories for each

simulation replicate and model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



xiii

4.7 Relationship between the mean absolute distance of parameter estimates from

the parameter values that generated the data and the number of ‘hits’ after 500

independent searches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



1

CHAPTER 1: HAVE CORAL SNAKE MIMICS DIVERSIFIED

MORE THAN NON-MIMICS?

1.1 Abstract

Dipsadidae is one of the most diversified family of snakes, composed of species showing an

impressive variety of color patterns. Some species are cryptic whereas others have contrast-

ing patterns comprised by bright colors alternated with darker shades, including particular

combinations of vivid colors characteristic of coral snakes (Elapidae). Species with such

patterns are thought to be mimics of coral snakes based on their color pattern similarity,

predator avoidance of such patterns in field experiments, and the geographical concordance

between models and mimics. Here we test whether color patterns associated with coral snake

mimicry and contrasting color patterns in general influenced the diversification dynamics of

the group. We compile a large database of color patterns with color descriptions for about

80% of the known diversity of the group (594 species). We used trait-dependent diversifica-

tion models along with extensive simulations to deal with the recently described statistical

bias associated with such methods. We also tested whether color patterns are associated

with trait-independent estimates of diversification. Despite the apparent survival advantage

associated with coral snake mimicry, we show that there is no detectable influence of color

types in the dynamics of diversification in Dipsadidae and discuss insights into the potential

functions of color patterns.

1.2 Introduction

Colors play an important role in avoiding predation. Patterns similar to the background

environment make prey difficult for the predators to detect and recognize (Merilaita and

Lind, 2005; Stevens and Merilaita, 2009). On the other hand, bright and contrasting col-

ors displayed by unpalatable, toxic or venomous animals (i.e., aposematic patterns) serve

as warning signals that are often avoided by visually oriented predators (Wallace, 1867;

Mappes et al., 2005; Speed and Ruxton, 2005). However, such conspicuous colors can also

be displayed by mimics, which gain protection by deceiving predators that avoid their false

warning signals. Strong evidence from field experiments shows that mimicry of warning sig-

nals decreases predation pressure when compared to cryptic color patterns (Jeffords et al.,

1979; Brodie III, 1993; Brodie III and Janzen, 1995; Pfennig et al., 2001; Pinheiro, 2011;

Pfennig et al., 2015). Such reduction in predation pressure may also have positive impacts
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on habitat use by aposematic lineages and their mimics. Cryptic animals are to some degree

restricted to backgrounds which their color patterns match and may only be active at certain

times because movement is often antithetic to good crypsis (Speed et al., 2010; Stevens and

Ruxton, 2012). In contrast, such restrictions may be weaker in aposematic or mimic lineages,

which could promote more opportunities to exploit habitat resources (Speed et al., 2010).

In contrast with aposematism, the survival advantage of Batesian mimicry is dependent

on the relationship between the model and the mimetic organism because predators need to

associate the unpalatability or hazard of the model with the warning signals of the deceiver.

Once this association is broken, a mimicry breakdown occurs and the mimic phenotype

might become maladaptive since warning signals can make individuals more conspicuous to

predators (Mallet and Joron, 1999; Pfennig et al., 2001, 2015). Mimicry breakdown can be

caused by allopatry between mimic and model populations as a result of population expansion

of the mimic or local extinction of the model (Pfennig and Mullen, 2010). Allopatric mimics

are conspicuous to näıve predators that might not avoid their deceptive warning signals and

this may result in higher predation rates and eventual extinction of the mimic population

(Pfennig et al., 2015). On the other hand, population expansion or migration of mimics

can create opportunities for local adaptation to novel aposematic models. This process

could result in selection against intermediate hybrids followed by decreased gene flow among

populations and eventually promote reproductive isolation (Mallet and Joron, 1999; Pfennig

et al., 2015). Over longer time scales such processes might have a positive effect on rates

of diversification of mimetic lineages. Previous studies show that aposematic lineages are

more species-rich than cryptic ones (Santos et al., 2003; Przeczek et al., 2008), suggesting

that the evolution of the aposematic condition may even represent a key innovation (Speed

et al., 2010). This key innovation hypothesis could be extended to mimicry; however, the

potential effects of mimicry evolution on lineage diversification have yet to be investigated.

Among snakes, groups of relatively harmless or mildly venomous species showing color

patterns similar to those of venomous coral snakes (Elapidae) have instigated a long debate

on whether such patterns are mimetic (see a comprehensive review in Pough, 1988). Reports

often rely on the similarity of color patterns between mimics and models to argue in favor of

mimicry relationships (Dunn, 1954; Hecht and Marien, 1956; Greene and McDiarmid, 1981;

Savage and Slowinski, 1992). Additional evidence come from parallel geographic variation

of coral snakes and their putative mimics (e. g., Hecht and Marien, 1956; Zweifel, 1960;

Greene and McDiarmid, 1981; Marques and Puorto, 1991; Rabosky et al., 2016) and from

field studies using replicas of coral snakes and other similar color patterns (Smith, 1975;

Brodie III, 1993; Brodie III and Janzen, 1995; Hinman et al., 1997; Pfennig et al., 2001;

Buasso et al., 2006).
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Some authors pointed to the possibility that contrasting colors, including the stereotyp-

ical banded pattern observed in almost all coral snakes, could serve a disruptive function

(Gadow, 1908; Thayer, 1909; Dunn, 1954; Brattstrom, 1955). Those reports suggested that

the alternate pattern of bands could blend to the background environment and break the

outline of the snake body, making recognition by visually oriented predators difficult. Re-

cently, Titcomb and colleagues 2014 showed that the contrasting ringed pattern of coral

snake mimics can create an illusory effect when the individuals are moving fast. The effect,

called flicker-fusion, can give advantage to snakes against avian predators independent of

mimicry. Despite its protective effect, the plausible disruptive function of the contrasting

bands do not invalidate the existence of a mimicry complex between elapids and snakes from

other families, since the same color pattern can perform both functions (Titcomb et al.,

2014).

The family Dipsadidae (Zaher et al., 2009, sensu Grazziotin et al., 2012) is a diverse group

of snakes, with ca. 700 species occurring from Central to South America (Grazziotin et al.,

2012; Uetz et al., 2014), and is characterized by an impressive variety of color patterns (see

Martins and Oliveira, 1998, for some examples). Some dipsadids have color patterns similar

to those of coral snakes, and have long been suggested as cases of mimicry of New World

coral snakes (family Elapidae; Wallace, 1867; Greene and McDiarmid, 1981; Sazima and

Abe, 1991; Savage and Slowinski, 1992; Martins and Oliveira, 1993; Pough, 1988; Almeida

et al., 2014). The contrasting coloration found in dipsadid snakes always includes bright

colors but is not restricted to ringed patterns. In general, species can vary from the coral

snake pattern of black, red and yellow rings or bands to a less colorful homogeneous red

body with a single black or cream band on the neck (nuchal collar). Besides contrasting

color patterns, the family also shows a diverse array of cryptic color patterns, characterized

by blotches and shades of brown, gray, or green. Included in the latter are species whose

dorsum is cryptic and whose venter has a plain bright color and even a coral snake pattern.

Mimetic and cryptic patterns can be found both within and among genera and make dipsadid

snakes an ideal study system to investigate the possible effects of such distinct color types

on macroevolutionary patterns.

Herein we test whether distinct color patterns have an influence on the diversification of

the family Dipsadidae. We investigate whether color patterns similar to coral snakes (and

contrasting color patterns in general) show diverging macroevolutionary patterns when com-

pared to non-mimic and cryptic lineages, respectively. We show that there is no detectable

influence of supposedly mimic or contrasting color patterns in the dynamics of diversification.
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1.3 Materials and Methods

1.3.1 Phylogenetic reconstruction

We used sequence data for Dipsadidae and outgroup species previously analyzed by Grazz-

iotin and colleagues (2012, see GenBank accession numbers in their Appendix S1). We

aligned sequences using MAFFT (Katoh et al., 2005) under the G-INS-i strategy and se-

lected models of molecular evolution for each of the eight gene sequences using a decision

theory framework in DT-ModSel (Minin et al., 2003). We concatenated the alignments and

set four partitions; one partition for each nuclear gene (bdnf, c-mos, and rag2) and a single

partition with the mitochondrial genes (12S, 16S, cytb, nd2, and nd4). We used phyutility

(Smith and Dunn, 2008) to trim down all sites with 75% or more missing data and inferred

a Maximum Likelihood (ML) tree using GARLI 2.0 (Zwickl, 2011). We used the resulting

ML phylogeny as the starting tree for three independent searches in BEAST 1.8 (Drummond

et al., 2012) for 270 million generations with a thinning interval of 1500 generations each.

Since there are sequences available for only few species of each genera we set an incomplete

sampling birth-death tree prior (Stadler, 2009) and an uncorrelated relaxed clock model to

estimate relative branching times. We checked each run for convergence using Tracer 1.6

(Drummond et al., 2012) and excluded 50% of the posterior chain as burnin. We then com-

bined the posterior from the three BEAST searches and randomly sampled 100 trees, rescaled

all trees to a total depth of 1, and retained only one randomly selected species of each genera

while pruning the rest. When the original tree had paraphyletic genera we selected the most

inclusive monophyletic clade representing each group and kept a single species to represent

each of those genera. Then, we used the resulting pool of genus-level phylogenetic trees to

perform all subsequent comparative analyses. The 100 sampled trees and the BEAST xml

file comprising the data matrix, selected models of molecular evolution, starting tree and

prior parameters is available in FigShare (http://dx.doi.org/10.6084/m9.figshare.831493).

We also deposited the configuration and log files for GARLI 2.0. Figures 1.5 and 1.6 show

the resulting maximum clade credibility (MCC) tree and respective posterior probability

support values.

1.3.2 Color patterns

To understand the evolution of colors and its effect on diversification we compiled a large

database of coloration patterns for dipsadid snakes. We searched several information sources

such as comprehensive taxonomic reviews (e.g., Downs, 1967), published articles and books

containing photographs of identified individuals (e.g., Savage, 2002; Campbell and Lamar,
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2004), trusted on-line photo repositories (e.g., CalPhotos - http://calphotos.berkeley.edu/

and Reptile Database – Uetz et al., 2014), photographs of live individuals, and museum

specimens. We excluded invalid taxa or names presenting nomenclatural problems that are

still appearing in the literature or online databases. We avoided subspecific ranks for coding

the currently recognized taxa (with the exception of four subspecies of Alsophis antillensis)

because terminals in available phylogenies correspond to species only and less than 10% of

the members of the family Dipsadidae present valid subspecies to date.

While color diversity makes the family Dipsadidae interesting for studies focusing on the

evolution of color patterns such as ours, this is also the most challenging characteristic of

the system. Since it is not possible to consider all diversity of color patterns for comparative

analyses, we used categories that are directly related to the hypotheses tested. For that, we

describe below two distinct classifications of the color patterns, each one including a different

important aspect of the biology of the group. We repeated all comparative analyses with

each of these color pattern classifications in order to access how distinct interpretations of

color diversity in the group affect our macroevolutinary conclusions.

First, we compared coral-mimics with non-mimics. We call coral-mimics species that

resemble the color pattern of any New World coral snake species (see Roze, 1996; Campbell

and Lamar, 2004). Species included in this category can show the coral-mimic pattern

throughout the dorsum (e.g., Simophis rhinostoma) or restricted to the anterior portion of

the body (e.g., Pseudoboa coronata). On the other hand, all species not defined as potential

mimics of coral snakes, independent of whether their color pattern was better described

as contrasting or cryptic, were included in the category of non-mimics. As a result, the

non-mimic category comprise species with cryptic color patterns and others with bright

coloration but not resembling any known lineage of New World coral snake. Second, we

compared contrasting with cryptic species. We defined as contrasting species that show

brightly colored patterns in general, independent of whether the color pattern was similar

to those of coral snakes. The category coral-mimic is a subset of the contrasting category;

every coral-mimic lineage is among the species defined as contrasting, but the reverse is

not true. On the other hand, we defined as cryptic all color patterns lacking contrasting

colors. Examples of such patterns are blotches with hues of brown, reddish brown, gray, and

other combinations of dark colors. We also considered as cryptic species whose dorsum is

homogeneously green, since individuals of those species are usually found among leaves of

trees and bushes (e.g., Uromacer).

There are three other important aspects of the color patterns in the group that could

potentially affect our study; the presence of color polymorphism, ontogenetic changes in

coloration and contrasting coloration restricted to the venter of the body. In the case of
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species with color polymorphism, some populations may show cryptic patterns occasionally

associated to thermoregulation (Tanaka, 2005, but see Lorioux et al., 2008). Alternatively,

contrasting colors in polymorphic populations can be due to increasing sexual dichromatism

in the course of the reproductive season (Forsman, 1995; Lindell and Forsman, 1996), related

to non-selective processes, such as migration and dispersal (King and Lawson, 1995) or

genetic drift in local (Brakefield, 1990) or island populations (Bittner and King, 2003).

Independent of the potential sources of the polymorphic color patterns we assigned species

to the non-mimic and cryptic categories every time a cryptic morph was described among

color types. Some Pseudoboini snakes (sensu Zaher et al., 2009) show ontogenetic changes in

color pattern in which juveniles are brightly colored but become cryptic when adults (Martins

and Oliveira, 1998). We included those species into the contrasting category since juveniles

correspond to the life stage most threatened by predation (Bonnet et al., 1999) and thus

their defensive tactics are fundamental for individuals to reach sexual maturity. Finally, some

species show cryptic color patterns in the dorsum but have contrasting patterns restricted

to the venter. The distinct patterns in the dorsum and venter are usually associated with a

threatening display in which individuals twist the body and expose the bright colors when

disturbed (Martins and Oliveira, 1993; Sawaya et al., 2008; Tozetti et al., 2009). Hence, we

classified those cases into the contrasting category instead of following their dorsal coloration.

We provide additional data with the list of species included in each of these cases. We also

repeated comparative analyses with alternative color categories defined to accommodate such

cases, but results showed no appreciable difference when compared to the coral-mimic vs.

non-mimic or contrasting vs. cryptic categories.

1.3.3 Comparative analyses

In order to test whether color patterns influence the dynamics of diversification of Dipsadidae

snakes we performed a series of complimentary phylogenetic comparative analyses using the

pool of 100 trees sampled from the posterior distribution and the three distinct color pattern

classifications defined above. We used the Binary State Speciation and Extinction model

(BiSSE – Maddison et al., 2007; FitzJohn et al., 2009; FitzJohn, 2012) and the Hidden State

Speciation and Extinction model (HiSSE – Beaulieu and O’Meara, 2016) followed by model

adequacy simulations. Both BiSSE and HiSSE are joint models of trait and trees (Beaulieu

and O’Meara, 2016) because model parameters reflect diversification rates conditioned on the

state of the traits and trait transitions throughout the tree. In addition, we estimated trait-

independent diversification rates using BAMM (Rabosky et al., 2014) and tested whether

the distribution of color patterns across dipsadid genera is associated with the diversification
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dynamics of the group. We describe details for each analyses below.

Since a species-level tree is not available for the Dipsadidae family, we used the pool

of genus-level trees as terminally unresolved trees (sensu FitzJohn et al., 2009) to estimate

trait-dependent diversification using BiSSE. We used Markov chain Monte Carlo (MCMC)

to estimate the posterior distribution of the parameters for the unconstrained BiSSE model

(six free parameters) and the constrained model, in which λ and µ are not related to color

types (four free parameters). We used an exponential prior distribution with rate parameter

equal to 0.3 for all BiSSE parameters and a starting point equal to the maximum likelihood

estimate (MLE) for the model. We ran 10,000 generations of MCMC (chain length was based

on preliminary analyses), discarded 50% of generations as burnin and checked convergence

using the ‘coda’ package (Plummer et al., 2006). To test whether the full model explained

the data better than the trait-independent model we performed model selection using the

Bayesian Deviance Information Criteria (DIC – Gelman et al., 2013). In order to account for

the behavior of the BiSSE model when its assumptions are violated (Rabosky and Goldberg,

2015; Beaulieu and O’Meara, 2016), we did posterior predictive checks for model adequacy to

test whether data simulated under the trait-dependent and trait-independent BiSSE models

are similar to the observed data. For each model, we simulated traits using the ‘tree.bisse’

function in the package ‘diversitree’ (FitzJohn, 2012) with parameters drawn from the joint

posterior distribution resulting from the BiSSE analysis and constraining simulations to

have a tree depth equal to 1 (identical to the empirical trees). Then, we compared the

number of species and the relative frequencies of each trait generated by the simulations

with the empirical dataset. If models are adequate, simulated phylogenies should produce

both diversity and frequency of states similar to the observed data.

Recently, Beaulieu and O’Meara (2016) described the HiSSE model that introduces hid-

den states associated with each of the traits and helps to accommodate the rate heterogene-

ity observed on empirical phylogenetic trees (Rabosky and Goldberg, 2015; Beaulieu and

O’Meara, 2016). The implementation of HiSSE integrates incomplete sampling using the

proportion of known species associated with each trait across the whole tree, but does not

include the option of terminally unresolved phylogenetic trees such as ‘diversitree’ (FitzJohn,

2012). We fitted the 20 trait-dependent (including BiSSE and HiSSE models) and 4 trait-

independent models to each of the 100 genus-level phylogenetic trees and performed model

choice among models fitted for each tree using the Akaike Information Criteria (AIC).

Finally, we used BAMM (Rabosky et al., 2014) to estimate rates of diversification and

shift locations in the tree independent of the trait data. Different from the BiSSE and HiSSE

analyses, we used species-level phylogenies by randomly resolving the relationships within

each genera using a constant rate Birth-Death model (Kuhn et al., 2011). This approach
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assumes that diversification rates are homogeneous within each genera but should not bias

the estimation of diversification rates for the backbone tree, since BAMM fits distinct rate

regimes to different parts of the tree. Additionally, we set the BAMM model with constant

rates through time within each regime (similar to MEDUSA – Alfaro et al., 2009), since this

is a more adequate model given that diversification rates within genera were constrained

to a homogeneous clock model. We set two independent MCMC chains for each of the 10

phylogenetic trees randomly sampled from the BEAST analysis. We ran each chain for 5

million generations, discarded 20% of generations as burnin and checked convergence using

the ‘coda’ package (Plummer et al., 2006). Finally, we tested for a linear relationship between

diversification rates and the proportion of each color pattern among species of each genera.

Since there is large variation in species richness across the genera, we performed two analyses;

the first including all genera with at least two species and the second excluding all genera

with less than 10 species (total of 54 and 14 genera, respectively).

Recently, Moore and colleagues 2016 pointed out some important issues with BAMM’s

implementation; that the likelihood function does not incorporate diversification shifts on

unobserved branches of the tree, that posterior estimates of the number of shifts is sensitive

to the prior specification and that use of the compound Poisson process (CPP) prior make

it difficult to differentiate many rate shifts of small effect from fewer rate shifts of large

effect. Shortly after, Rabosky and colleagues 2017 responded to the critiques by showing

that not incorporating shifts on unobserved branches has only minor impacts on inferences

and argued that Moore et al. (2016) assessment of prior sensitivity on posterior estimates

of the number of shifts was problematic. In this study, we use only relative diversification

rates compared across genera (i.e., the slope of the regression) and our analyzes do not focus

on the posterior distribution of the number of rate shifts across the tree. Thus, we believe

that most concerns associated with BAMM should not have major impacts on our biological

conclusions. Nevertheless, we repeated BAMM analyses with different prior distributions

for the expected number of shifts (γ = 0.1, 1, or 10) to test whether our results could be

affected by the prior sensitivity.

We repeated all trait-dependent analyses with each of the three distinct color pattern cat-

egories. R scripts, BAMM files, phylogenetic trees and coloration data to reproduce all anal-

yses are available in the github repository https://github.com/Caetanods/Dipsadidae_

color_evolution .

https://github.com/Caetanods/Dipsadidae_color_evolution
https://github.com/Caetanods/Dipsadidae_color_evolution
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1.4 Results

We compiled a large report of coloration descriptions for 594 species of dipsadid snakes

covering over 80% of the known diversity of the group. We were able to get detailed color

descriptions for most species, but for some the information available was incomplete or

limited (i.e., taxa known from a single specimen). Although those cases were not suitable for

definition as coral-mimic or non-mimic lineages (i.e., state unknown or ‘NA’), we managed

to classify those as either contrasting or cryptic for all but a few exceptions. Among all

data sources, museum specimens are the most difficult to categorize since colors fade after

preservation and only light and dark hues remain. Bright colors such as yellow, orange,

pink, and red (derived from carotenoid pigments) fade completely over time turning into

cream on preservative fluid. In contrast, dark pigmentation is preserved and sometimes

turns into shades of black or dark brown. As a result, we assigned museum specimens

with alternate bright and dark bands (or with a distinct nuchal collar) as contrasting and

homogeneous light or dark patterns as cryptic. We provide the species list and their color

patterns under the distinct categorization schemes in the online data repository ( https:

//github.com/Caetanods/Dipsadidae_color_evolution ).

We made analyses using BiSSE based on the two different categorizations of the same

color description dataset (see Material and Methods). When we compared coral-mimic

to non-mimic patterns, net diversification estimates associated with the coral-mimic trait

(λ1− µ1) were in average two times higher than non-mimics (Figure 1.1). In contrast, when

diversification rates are constrained to be independent of color types we recovered inter-

mediate net diversification values relative to the trait-dependent model. These results are

qualitatively similar to the analyses based on the contrasting and cryptic alternative catego-

rization (Figure 1.7). Both trait-independent and trait-dependent BiSSE models estimated

strongly asymmetrical transition rates with changes from the coral-mimic to the non-mimic

state (q10) in average two to three times more frequent than the reverse (q01). The median

of the posterior distribution of transition rates are also qualitatively similar independent

of color categorization (Figures 1.1 and 1.7). These results were consistent across all sam-

pled trees and the trait-dependent diversification model was the one preferred by the DIC

model selection criteria independent of the phylogeny and the color categorization used in

the analysis (Figures 1.2 and 1.8).

We performed posterior predictive simulations to evaluate whether the BiSSE trait-

dependent diversification model is adequate to explain the observed data. Since there is

no appreciable difference in parameter estimates and DIC results across the categorizations

of color types, we performed simulations based only in the contrasting vs. cryptic cate-

https://github.com/Caetanods/Dipsadidae_color_evolution
https://github.com/Caetanods/Dipsadidae_color_evolution
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gory. The posterior predictive simulations using both trait-dependent and trait-independent

BiSSE models produced trees much smaller than the 594 species provided as the observed

total diversity of the group (see left column of Figure 1.3). Since the stopping criteria for sim-

ulations were tree depth, the number of species in each simulated tree was free to vary. Trees

simulated under the full model had on average 211 species and only 9% of those showed more

species than the observed data. Similarly, trees simulated using the trait-independent model

had on average 186 species, of which only 5% were larger than the observed data. With re-

spect to trait frequency, both models simulated datasets biased towards higher frequencies of

the cryptic color type. On average the full model had 67% and the trait-independent model

84% of the simulations showing frequencies of the cryptic color type higher than observed

in the empirical data (see right column of Figure 1.3). Therefore, our results show that

both BiSSE models have similar biases and the characteristics of the data not satisfactorily

explained by the models are independent to whether rates of diversification are associated

with color types or not.

The analyses comparing 16 HiSSE, 4 BiSSE, and 4 trait-independent models estimated

using maximum likelihood resulted in only two variants of the BiSSE model selected as the

best model across the sample of 100 phylogenetic trees (Table 1). These results are also robust

to different color categorizations (Table S1). These variants of the BiSSE model only differ

on whether the extinction fraction is conditioned on the trait or not. Since BiSSE models

implemented on ‘hisse’ (Beaulieu and O’Meara, 2016) only differ from the ones in ‘diversitree’

(FitzJohn, 2012) due to the use of orthogonal transformations of speciation and extinction for

the purpose of more efficient parameter estimation (Beaulieu and O’Meara, 2016), we focus

our attention to the posterior distribution of parameter estimates and posterior predictive

simulations resulted from ‘diversitree’ BiSSE models.

Finally, we estimated trait-independent diversification rates across a pool of 10 Birth-

Death resolved trees and tested whether there is a correlation between the proportion of

mimic species and estimates of net diversification among genera. Results are consistent

across all trees and show no evidence for an increase in net diversification rates associated to

genera with higher proportion of mimics independent of the color category utilized (Figure

1.4 and 1.9). We repeated analyses using different parametrization of BAMM’s prior on the

expected number of shifts, but results show no influence of the prior on the outcome of the

correlation tests applied to the posterior estimates of diversification rates (Figure 1.10).
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1.5 Discussion

1.5.1 Model selection and (in)adequacy

We fitted the trait-dependent and trait-independent BiSSE models to the data and performed

model selection using the Deviance Information Criteria (DIC). DIC showed strong support

for the trait-dependent model for all three color pattern categorizations. On the other hand,

our posterior predictive simulations showed that both trait-dependent and trait-independent

BiSSE models are equally inadequate in explaining the observed data and share similar

biases. Unfortunately, unlike other models of trait evolution (Pennell et al., 2015), it is not

clear which set of summary statistics can be used to assess the adequacy of BiSSE models.

More studies are needed to better understand the scenarios under which this and other

models of the xxSSE family are prone to misbehave and elect a set of informative summary

statistics for predictive posterior checks.

Results from comparing 24 different models across the pool of phylogenetic trees ran-

domly sampled from the posterior distribution of the BEAST analyses consistently favored

trait-dependent BiSSE models over all alternative models. This outcome is surprising be-

cause previous studies suggest that HiSSE models are often preferred over BiSSE models

(e.g., Beaulieu and O’Meara, 2016; Frédérich et al., 2016), likely due to the accommodation

of heterogeneity in both rates of transition between traits and rates of trait-dependent diver-

sification. It is important to note that models estimated using the ‘hisse’ package (Beaulieu

and O’Meara, 2016) apply a global sampling frequency approach that is agnostic to the dis-

tribution of unsampled species (and their trait data) among genera. Although it is plausible

that this approach can influence parameter estimates, it is unclear whether a potential bias

would favor BiSSE models over HiSSE and trait-independent models.

The BiSSE models implemented on ‘diversitree’ (FitzJohn, 2012) and ‘hisse’ (Beaulieu

and O’Meara, 2016) packages are identical and, therefore, results from the posterior predic-

tive simulations show that both are equally inadequate. Our additional analyses using results

from trait-independent estimates of diversification among genera and testing whether there

is an association with the proportion of mimic species also further corroborates the lack of an

effect of coloration on the dynamics of diversification of the group. Based on the important

limitations to explain the variation observed in the data shared by both trait-dependent and

trait-independent BiSSE models and the disassociation between rates of diversification and

the proportion of different color types across genera, we can conclude the more plausible

macroevolutionary scenario is not of a trait-dependent mode of diversification. The choice

of the trait-dependent BiSSE model over a trait-independent model based on Bayesian DIC
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and as best model when comparing 24 alternative models using AIC are poorly justified by

the data and might be the result of statistical artifacts.

1.5.2 Color patterns have no effect on the diversification of dipsadid snakes

The function of coral-mimic and contrasting color patterns in snakes and other groups has

been intensely debated since the 50s (Dunn, 1954; Hecht and Marien, 1956). However,

only a few studies have investigated the evolution of snake color patterns using an explicit

phylogenetic approach (e.g., Pyron and Burbrink, 2009; Rabosky et al., 2016) despite recent

advances in comparative methods. Our results show no consistent effect of the color types

in diversification rates despite the impressive diversity of color patterns found in the group.

Estimates of diversification rates independent of color types also give support to the trait-

independent model. Overall, our results suggest that the ecological functions of coral-mimic

and non-mimic color types, as well as contrasting and cryptic colors, in dipsadid snakes have

no distinguishable effect on the macroevolution of the group.

The hypotheses of mimicry based on color similarity between mimics and models have

received strong support from field experiments and the survival advantage of mimicry has

been often demonstrated (Smith, 1975; Brodie III, 1993; Brodie III and Janzen, 1995; Hinman

et al., 1997; Pfennig et al., 2001; Buasso et al., 2006). If mimicry explains the color types of

dipsadid lineages that are similar to coral snakes, the protection attributed to the warning

signal can have a positive effect on diversification, similar to the effect of aposematism (Mallet

and Joron, 1999; Przeczek et al., 2008). However, increased survival has no necessary link to

the generation of new species and our results show that distinct color types are not associated

with appreciable differences in macroevolutionary patterns in dipsadids, independent of their

putative ecological function.

Mimetic and contrasting patterns share bright colors that might be significantly more

conspicuous to visually oriented predators than cryptic patterns. Field experiments using

plasticine replicas provide evidence that the stereotyped alternating, bright colored bands

(bearing shades of red, yellow, black and/or white) found among New World elapid species

are avoided by predators (Brodie III, 1993; Brodie III and Janzen, 1995; Hinman et al.,

1997; Pfennig et al., 2001; Buasso et al., 2006), even when these patterns are simplified to

an extent that only a single ring occurs on the neck or head and the remaining of the body

is plain red ( Brodie III, 1993; see also Hinman et al., 1997). However, contrasting patterns

are not restricted to such alternating, bright colored bands. In the absence of mimicry,

such patterns might serve as disruptive coloration and deceive predators by creating optical

illusions or hindering prey recognition. Indeed, it is plausible that coral-like patterns might
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function both as mimetic and disruptive coloration (Dunn, 1954; Titcomb et al., 2014). The

disruptive function (or flicker-fusion effect) can prevent or mitigate maladaptation caused

by allopatric distribution of mimics and models, since it provides protection even in the

presence of näıve predators. The double function of the contrasting pattern as mimetic and

illusionary may help explain the impressive diversity of colors and patterns found among

dipsadid snakes.

1.6 Concluding remarks

Herein we compiled from primary sources and made available a database of color patterns

for 594 species of dipsadid snakes, the largest compilation of color descriptions for reptiles to

date. We found that coral-mimic or contrasting patterns have no significant effect on rates

of diversification when compared to non-mimic or cryptic color types. This is an intriguing

contrast with the fact that aposematic clades are more species-rich than their cryptic sister

groups (Przeczek et al., 2008). Speciation or extinction of mimetic lineages are theoretically

linked to the relationship with their models. However, this dependence can be loosened if the

mimetic trait is associated with a secondary protective function. Both eventual extinction

events caused by allopatry with models and speciation as a result of local adaptation to novel

models can be ‘buffered’ by the secondary function of the trait. The protection by illusion

might be a precursor for both the remarkable convergence of snake lineages to coral-like forms

and the maintenance of mimicry despite the supposed likelihood of mimicry breakdowns.

It is näıve to think that a unique set of traits, such as color patterns, can reflect all

relevant factors that drive the dynamics of diversification of any group. A more detailed

analysis of our questions could be accomplished by overlapping evolutionary patterns of the

Dipsadidae with those of New World coral snakes, for example. However, both phyloge-

netic data and suitable comparative models are not yet available. Further appreciation of

transitions between contrasting and cryptic color patterns within dipsadid genera can shed

light on whether disruptive colors can serve as a pre-adaptation to mimicry and help insert

new pieces into the coral snake mimicry puzzle. Understanding under which phylogenetic

and ecological scenarios mimicry is likely to evolve is a key factor to explain the patterns of

phenotypic convergence observed among distantly related lineages across the tree of life.
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Table 1.1: Results from the three best models ranked among 24 trait-dependent and trait-
independent models using Akaike Information Criteria (AIC) across a pool of 100 phyloge-
netic trees. Model BiSSE I has trait-dependent transition rates, turnover, and extinction
fraction. Model BiSSE II is similar to BiSSE I but has trait-independent extinction fraction.
Model HiSSE I has different turnover and extinction fraction for each state (including hidden
states), but transition rates among states (including hidden states) are constrained to be the
same. Model HiSSE II is similar to HiSSE I, but has trait-independent extinction fraction.
Model HiSSE III is similar to HiSSE I, but turnover and extinction fraction are linked for
all states except the hidden state associated with the coral-mimic category (state 1).

BiSSE I BiSSE II HiSSE I HiSSE II HiSSE III
First best 17 83 – – –

Second best 83 17 – – –
Third best – – 63 1 36
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Figure 1.1: Genus-level maximum clade credibility (MCC) tree of the family Dipsadidae
showing the number of species assigned to each color category and posterior distribution
of parameter estimates for the BiSSE model. Each color of the stacked bar chart (center)
correspond to different elements of the color patterns in the group; species that do not show
contrasting color patterns (i.e., cryptic coloration) are shown in gray, species with contrasting
color patterns but that are not supposed mimics of coral snakes are shown in yellow, and
species that show contrasting color patterns and are considered mimics of coral snakes are
shown in red. (Continue on next page.)
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Figure 1.1: (Continued.) The legend in the center of the plate applies different combinations
of gray, yellow, and red to show the number of species assigned to each color category:
coral-mimic (red) versus non-mimic (gray and yellow) and contrasting (yellow and red)
versus cryptic (gray). Support for the genera relationships are provided in Figures 1.5 and
1.6. Top-right plot shows the posterior distributions of net diversification rates under the
trait-dependent (coral-mimic vs. non-mimic) and trait-independent BiSSE models. Bottom-
right plot shows the posterior distributions of transition rates under the trait-dependent
and trait-independent BiSSE models. Estimates are the combined posterior distribution
from MCMC BiSSE runs across a pool of 100 phylogenetic trees. Prior distributions for the
MCMC searches are shown in blue (unmarked distributions), the horizontal lines below each
posterior distribution represent the 95% confidence interval, and the vertical hashed lines
show median values.
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Figure 1.2: Results of model selection between trait-dependent and trait-independent BiSSE
models using the Bayesian Deviance Information Criteria (DIC) for the coral-mimic versus
non-mimic category. Plot shows the DIC scores for the trait-dependent model (full model)
subtracted from the scores for the trait-independent model (constrained model). DIC values
were calculated across a pool of 100 phylogenetic trees. Large values (larger than 4 units
as a rule of thumb) are expected if the trait-dependent model is to be preferred over the
trait-independent model.
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Figure 1.3: Results from the posterior predictive simulations for BiSSE under the trait-
dependent (top row - red) and the trait-independent models (bottom row - blue). Simulation
parameters were drawn from the joint posterior distribution of each BiSSE model (contrasting
versus cryptic color category) and phylogenetic trees. At each replicate a phylogeny was
simulated under the BiSSE model until the sum of branch lengths from root to tip of the
tree was equal to 1 (same as the empirical phylogeny). Left column: Total number of species
in the resulting phylogenies. Vertical dashed lines show the number of species used in our
analysis (594 spp.). Right column: Relative frequency of the state 0 (cryptic). Vertical
dashed lines show the observed frequency of cryptic species in the data (0.64). Note that
both trait-dependent and trait-independent BiSSE models show similar deviations from the
observed data.
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Figure 1.4: Results from linear regressions between net diversification rates estimated using
BAMM (prior on expected number of shifts γ = 1) and the proportion of the category
coral-mimic for each dipsadid genera. Plots show a distribution of linear regression tests
generated by repeating the analyses for each sample of the posterior distribution of the
BAMM diversification estimates combined across 10 randomly sampled phylogenetic trees.
Top plot shows the resulting distribution of R-squared and bottom plot the distribution of
p values.
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Figure 1.5: Maximum clade credibility tree with all species. Posterior probabilities are only
visible on digital format. Outgroup species highlighted in blue. Continues on Figure 1.6.
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Figure 1.6: Maximum clade credibility tree with all species. Posterior probabilities are only
visible on digital format. Continuation for Figure 1.5.
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Figure 1.7: Parameter estimates for the BiSSE model under the contrasting versus cryptic
color category. Top plot shows the posterior distributions of net diversification rates under
the trait-dependent and trait-independent BiSSE models. Bottom plot shows the poste-
rior distributions of transition rates under the trait-dependent and trait-independent BiSSE
models. Estimates are the combined posterior distribution from MCMC BiSSE runs across a
pool of 100 phylogenetic trees. Prior distributions for the MCMC searches are shown in blue
(unmarked distributions), the horizontal lines below each posterior distribution represent
the 95% confidence interval, and the vertical hashed lines show median values.
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Figure 1.8: Results of model selection between trait-dependent and trait-independent BiSSE
models using the Bayesian Deviance Information Criteria (DIC) for the contrasting versus
cryptic category. Plot shows the DIC scores for the trait-dependent model (full model)
subtracted from the scores for the trait-independent model (constrained model). DIC values
were calculated across a pool of 100 phylogenetic trees. Large values (larger than 4 units
as a rule of thumb) are expected if the trait-dependent model is to be preferred over the
trait-independent model.
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Figure 1.9: Results from linear regressions between net diversification rates estimated using
BAMM (prior on expected number of shifts γ = 1) and the proportion of the category
contrasting for each dipsadid genera. Plots show a distribution of linear regression tests
generated by repeating the analyses for each sample of the posterior distribution of the
BAMM diversification estimates combined across 10 randomly sampled phylogenetic trees.
Top plot shows the resulting distribution of R-squared and bottom plot the distribution of
p values.
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Figure 1.10: Results from linear regressions between net diversification rates estimated us-
ing BAMM and the proportion of both color categories coral-mimic and contrasting for each
dipsadid genera under different prior distributions on the number of expected rate shifts.
Each plot show a distribution of results from linear regression tests generated by repeating
the analyses for each sample of the posterior distribution of BAMM diversification estimates
combined across 10 randomly sampled phylogenetic trees. The top plot within each treat-
ment show the resulting distribution of R-squared and bottom plot the distribution of p
values. Top row are results using the color category coral-mimic and bottom row using
category contrasting. Results on the left column were based on a prior distribution for the
expected number of shifts ( γ ) equal to 0.1 and on the right column equal to 10.



26

CHAPTER 2: ESTIMATING CORRELATED RATES OF TRAIT

EVOLUTION WITH UNCERTAINTY

2.1 Abstract

Correlated evolution among traits can happen due to genetic constraints, ontogeny, and

selection and have an important impact on the trajectory of phenotypic evolution. Thus,

shifts in the pattern of evolutionary integration may allow the exploration of novel regions of

the morphospace by lineages. Here we use phylogenetic trees to study the pace of evolution

of several traits and their pattern of evolutionary correlation across clades and over time.

We use regimes mapped to the branches of the phylogeny to test for shifts in evolutionary

integration. Our approach incorporates the uncertainty related to phylogeny, ancestral state

estimates and parameter estimates to produce posterior distributions using Bayesian Markov

chain Monte Carlo. We implemented the use of summary statistics to test for regime shifts

based on a series of attributes of the model that can be directly relevant to biological hy-

potheses. In addition, we extend Felsenstein’s pruning algorithm to the case of multivariate

Brownian motion models with multiple rate regimes. We performed extensive simulations to

explore the performance of the method under a series of scenarios. Finally, we provide two

test cases; the evolution of a novel buccal morphology in fishes of the family Centrarchidae

and a shift in the trajectory of evolution of traits during the radiation of anole lizards to the

Caribbean islands.

2.2 Introduction

Correlated evolution among traits, known as evolutionary integration, is ubiquitous across

the tree of life and can have an important impact on the trajectory of phenotypic evolution

(Olson and Miller, 1958; Klingenberg and Marugán-Lobón, 2013; Armbruster et al., 2014;

Klingenberg, 2014; Goswami et al., 2014, 2015; Melo et al., 2016). Genetic constraints,

ontogeny, and selection have pivotal roles in the development and maintenance of morpho-

logical integration over time (Arnold, 1992; Arnold et al., 2001; Hansen and Houle, 2004;

Goswami et al., 2015; Melo et al., 2016). When the additive genetic covariance between

traits is strong, then evolutionary correlation is likely due to genetic factors. In contrast,

traits might not show strong genetic covariance and still be evolutionarily integrated due to

correlated selection, which can be a result of distinct factors, such as anatomical interac-

tions during growth or coordinated function (Armbruster and Schwaegerle, 1996; Armbruster
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et al., 2014). For instance, correlated evolution can be favored by selection to maintain a

cohesive pattern of variation among traits with a shared function, but evolution can be

hindered if the genetic covariance is not aligned with the selection gradient (Lande, 1979;

Schluter, 1996; Villmoare, 2012; Goswami et al., 2014). Alternatively, when evolutionary

correlation is mainly a result of correlated selection then the morphospace occupied by lin-

eages can be restricted by the strength and direction of the selection gradient (Felsenstein,

1988; Armbruster and Schwaegerle, 1996). Shifts in the pattern of evolutionary integra-

tion among traits over macroevolutionary scales, due to changes in the genetic architecture

or selection gradient, may play a fundamental role in the exploration of novel regions of

the morphospace (Young and Hallgŕımsson, 2005; Goswami, 2006; Revell and Collar, 2009;

Monteiro and Nogueira, 2010; Hallgŕımsson et al., 2012; Claverie and Patek, 2013).

Macroevolutionary transitions in morphospace evolution have been associated with both in-

creases and decreases in the evolutionary integration among traits. In centrarchid fishes, for

example, the evolution of a novel mouth morphology was followed by a rapid differentiation

of feeding habits. More specifically, the increase in the evolutionary correlation between two

morphological features of the suction-feeding mechanism in species of Micropterus is asso-

ciated with a specialization towards consumption of larger prey (Collar et al., 2005; Revell

and Collar, 2009). In contrast, the once strong developmental integration between the fore-

and hindlimbs of early tetrapods underwent a dramatic change allowing the limbs to respond

to diverging selective pressures and leading to the evolution of bipedalism and flight (Young

and Hallgŕımsson, 2005; Young et al., 2010; Dececchi and Larsson, 2013). These examples

show the role of shifts in evolutionary integration associated with the evolution of novel

morphologies. However, stable patterns of evolutionary integration over long time scales can

be responsible for the constraint of lineages to limited regions of the morphospace and might

be a plausible mechanism associated with patterns of stasis observed in the fossil record

(Hansen and Houle, 2004; Bolstad et al., 2014; Goswami et al., 2015). Thus, evolutionary

trait correlations are central to the maintenance of form and function through time, but can

either drive or slow morphological differentiation.

Despite the prevalent role of evolutionary integration, most of what we know about the tempo

and mode of trait evolution come from studies of single traits (e.g., Harmon et al., 2010;

Hunt et al., 2015, among others). Even when multiple traits are the object of investigation,

studies often use principal component axes (or phylogenetic PCA; Revell, 2009) to reduce

the dimensionality of the data so that univariate methods can be applied (Harmon et al.,

2010; Mahler et al., 2013; Klingenberg and Marugán-Lobón, 2013, see Uyeda et al. 2015 for

more examples). This is most likely a reflection of the phylogenetic comparative models

of trait evolution available for use, since few are focused on two or more traits (but see
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Revell and Harmon, 2008; Hohenlohe and Arnold, 2008; Revell and Collar, 2009; Bartoszek

et al., 2012; Adams, 2012, 2014b; Clavel et al., 2015). However, studying one trait at a time

eliminates the possibility of identifying patterns of evolutionary correlation, while principal

component axes does not allow testing for evolutionary shifts in integration because the

orientation of the PC axes are homogeneous across the branches of the phylogenetic tree.

Furthermore, it also has been shown that PCA can influence our biological interpretation

about the mode of evolution of the data (Uyeda et al., 2015) because the first PC axes are

consistently estimated as early bursts of differentiation whereas the last axes store a strong

signal of stabilizing selection, independent of the true model of evolution of the traits. As a

result, we need models that apply to multivariate data as such in order to better understand

macroevolutionary patterns of evolutionary integration.

One way to model multivariate trait evolution using phylogenetic trees is through the evo-

lutionary rate matrix (Hohenlohe and Arnold, 2008; Revell and Harmon, 2008; Revell and

Collar, 2009; Adams and Felice, 2014). This is a variance-covariance matrix that describes

the rates of trait evolution under Brownian motion in the diagonals and the evolutionary

covariance among traits (i.e., the pattern of evolutionary integration) in the off-diagonals

(Huelsenbeck and Rannala, 2003; Revell and Harmon, 2008). The evolutionary rate matrix

is ideal for studying patterns of evolutionary integration because it allows for simultaneous

estimate of the individual rates of evolution of each trait as well as the evolutionary covari-

ance between each pair of traits. It is also a flexible model, since any number of evolutionary

rate matrix regimes can be fitted to the same phylogenetic tree (Revell and Collar, 2009).

The contrast between evolutionary rate matrices independently estimated in different re-

gions of the tree can inform us about the magnitude and direction of shifts in the pattern of

evolutionary integration.

One of the challenges of working with rate matrices is that covariances can be hard to

estimate, especially when the number of species (observations) is small relative to the number

of traits (parameters) in the model. As the number of parameters in a model increases,

the amount of data required for proper estimation also increases and it becomes crucial to

directly incorporate uncertainty in parameter estimates when interpreting results. However,

the majority of studies to date have relied on point estimates of the evolutionary rate matrix

by maximum likelihood (Revell and Harmon, 2008; Revell and Collar, 2009; Clavel et al.,

2015; Goolsby, 2016, but see Huelsenbeck and Rannala, 2003 and Dines et al., 2014 for

exceptions). Although the confidence interval around the maximum likelihood estimate can

be used as a measure of uncertainty, this quantity is rarely reported (Revell and Harmon,

2008; Revell and Collar, 2009; Adams, 2012; Immler et al., 2012; Adams and Felice, 2014;

Collar et al., 2014). Furthermore, the uncertainty in parameter estimates does not take direct
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part in model selection using likelihood ratio tests or AIC (Burnham and Anderson, 2003),

which can lead researchers to erroneous conclusions about their models. Besides the possible

uncertainty in parameter estimates, there is an important computational burden associated

with the evaluation of the likelihood function of the multivariate Brownian motion model due

to the computation of matrix inversions and determinants (Felsenstein, 1973; Hadfield and

Nakagawa, 2010; Freckleton, 2012). Thus, computational time can become a limitation when

performing a large number of likelihood evaluations, such as in simulation based approaches.

Recently, Adams (2014b) described a method to estimate the rate of evolution under Brow-

nian motion of traits defined by several dimensions (high-dimensional data), even when the

number of trait dimensions exceeds the number of lineages in the phylogeny. This method

was extended to a plethora of variations based on the same general framework (Adams and

Felice, 2014; Adams, 2014a; Denton and Adams, 2015, see also Goolsby (2016) for a different

implementation). These methods work with high-dimensional data as a result of the use of

distance matrices rather than covariance matrices, since the later becomes singular if the

number of variables is larger than the number of observations. However, by avoiding the

calculation of the covariance among trait dimensions (Adams, 2014b), such suite of methods

assume a homogeneous rate of evolution shared by all dimensions of a trait (the σ2
mult). Thus,

σ2
mult is ideal for high-dimensional traits such as shape data, but it has limitations for the

study of evolutionary integration among multiple traits.

In order to ask questions about the evolution of integration using phylogenetic trees we

need a computationally efficient method that can estimate evolutionary rate matrices while

incorporating uncertainty in parameter estimates. Here we implement a Bayesian estimate

for the evolutionary rate matrix using Markov chain Monte Carlo (MCMC) to provide a

direct assessment of the uncertainty associated with parameter estimates in the form of a

posterior distribution. Our implementation also allows for multiple regime configurations

and/or phylogenetic trees to be incorporated in the MCMC chain, thus integrating the

uncertainty associated with ancestral state estimates and phylogenetic reconstruction to the

analysis. In order to increase the performance of the likelihood evaluation, we implemented

Felsenstein’s (1973) pruning algorithm. We also derive a new version of the pruning algorithm

that is suitable for the special case when several rate regimes of the multivariate Brownian

motion model are fit to different branches of the same phylogenetic tree. We apply our new

approach to two biological examples: the fast evolution of morphology associated with the

radiation of Anolis lizards from mainland South America to the Caribbean islands (Pinto

et al., 2008; Mahler et al., 2013; Moreno-Arias and Calderón-Espinosa, 2016) and the shift of

feeding habits driven by the change in mouth morphology in Centrarchidae fishes (Revell and

Collar, 2009). We show that there is no detectable shift in the evolutionary integration among



30

morphological traits during the anole radiation and that there is significant uncertainty in

estimates of evolutionary correlation associated with the Centrarchidae mouth traits. We also

provide results from extensive simulations showing that our approach has good performance

under diverse scenarios of correlated evolution.

2.3 Methods

2.3.1 A new pruning algorithm for multivariate Brownian motion with mul-

tiple regimes

To test for shifts in the pattern of evolutionary integration among traits we need to estimate

the rates of evolution for the individual traits and their evolutionary covariation, i.e. by

estimating the evolutionary rate matrix (R; Revell and Harmon, 2008). Revell and Collar

(2009) derived a general form of the likelihood function for the model that allows for several

independent matrices assigned to different branches of the phylogenetic tree.

Lp =

exp[−(y −DaT )T (
p∑

k=1

Rk ⊗Ck)
−1(y−DaT )

2 ]√
(2π)nr |

p∑
k=1

Rk ⊗Ck |
(2.1)

Where y is a vector of length n ·r derived by concatenating the columns of a n by r matrix of

trait values for n tips and r traits; D is a n ·r by r design matrix composed of 1 for each (i, j)

entry that satisfies (j− 1) ·n < i ≤ j ·n and 0 otherwise; a is a vector with r root values for

the tree (or the phylogenetic mean); Rk is the kth evolutionary rate matrix with size r. Each

of the Ck matrices has only the sum of branch lengths which were assigned to the respective

evolutionary rate matrix. Thus,
p∑

k=1

Ck is equal to the phylogenetic covariance matrix (C)

for the whole tree. The elements of C are composed by the sum of branch lengths shared by

each pair of taxa (Felsenstein, 1973). Finally, p is the number of R matrix regimes fitted to

the tree. When p is equal to 1, equation (2.1) reduces to the likelihood function for a single

R matrix (Revell and Harmon, 2008).

The likelihood function for the evolutionary rate matrix as shown requires the matrix in-

version and determinant to be computed for the sum of the Kronecker product between

each Rk and Ck matrices. However, the matrices resulted from this product can be very

large because each R has dimension equal to the number of traits in the data whereas C

is as large as the number of tips in the phylogeny. Some methods can be used to speed

up the computation in the case of multiple rate regimes applied to the tree. For instance,
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the ‘rpf’ method avoids the explicit computation of the matrix inversion and determinant

by applying Cholesky factors (Gustavson et al., 2010; Clavel et al., 2015) whereas Goolsby

(2016) recently introduced the use of pairwise composite likelihoods, which consists of the

product of the pairwise likelihoods computed for all combinations of traits. These meth-

ods reduce the computational time for the evaluation of the likelihood but are still more

time consuming than the pruning algorithm (Felsenstein, 1973; Freckleton, 2012; Caetano

and Harmon, 2017b). Here, we expand the pruning algorithm applied to the multivariate

Brownian motion model (Felsenstein, 1973; Freckleton, 2012) to compute the likelihood even

when multiple evolutionary rate matrices are fitted to different branches of the phylogenetic

tree. This algorithm is implemented in the R package ratematrix (Caetano and Harmon,

2017b).

2.3.2 Computing the likelihood for the multivariate Brownian motion model

with multiple regimes using the new pruning algorithm

The pruning algorithm explores the property that trait changes in each of the branches can be

modelled independently and applies a multivariate normal density to compute the likelihood

of evolutionary changes at each branch assuming a Brownian motion model (Felsenstein,

2004; Freckleton, 2012). When multiple rate regimes are fitted to a phylogeny, the likelihood

is often computed by scaling the branch lengths by the rates (e.g., Eastman et al., 2011).

However, this procedure is not applicable to the multivariate case, since the product of

the length of a branch and the BM rate is a matrix. We derived the pruning algorithm

for multiple rate regimes by following the same procedures described by Felsenstein (1973,

2004), but assuming that all rates are multivariate, that rates are different at each branch

and that branches can have more than one rate regime (after Revell and Collar, 2009). This

algorithm completely avoids the calculation of the matrix inverse and the determinant of the

phylogenetic covariance matrix (C) or the Kronecker product between R and C matrices.

However, the inverse of the R matrix, which will have dimensions equal to the number of

traits in the data set, is still required.

In this extension of the algorithm, each branch of the phylogeny can be assigned to one or

more evolutionary rate matrix (R) regimes and the sum of the portions of the branch assigned

to each regime need to be equal to the total length of that branch (Revell and Collar, 2009).

We demonstrate that the algorithm yields the same likelihood as in Felsenstein (1973) and

Freckleton (2012) by showing that all calculations converge when a single regime is fitted to

tree. The pruning algorithm works by visiting the tips and going down node by node. At

each step the contrast between two tips is computed and a new “phenotype” value replaces
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the two original tips, becoming the new tip. The likelihood of the contrast is calculated and

we move to the next contrast until we reach the root node. From here on we will refer to

Figure 2.1 as an example of phylogenetic tree. Where xi is a vector with r trait values for tip

i and vi is the branch length leading to tip or node i. We will refer to the node representing

the common ancestor of tips 1 and 2 as the node 4 and the node representing the common

ancestor of all tips as the root node. The method works as following:

1. Calculate the contrast. Choose a pair of tips i and j with a unique and exclusive

common ancestor k. In our example, the selected species are 1 and 2. Compute the

contrast uij = xi − xj.

2. Compute the log-likelihood. Use the vector of contrasts (uij), the number of traits

in the data (r), the branch lengths (vi and vj), and the length of the branches assigned

to each of the k evolutionary rate matrix regimes (Revell and Collar, 2009) to compute

the log-likelihood:

L = −1

2

(
r log(2π) + log |Si + Sj|+ uᵀ

ij (Si + Sj)
−1 uij

)
where

Si = R1 v1i + R2 v2i + . . .+ Rk vki

Sj = R1 v1j + R2 v2j + . . .+ Rk vkj

and

vi = v1i + v2i + . . .+ vki

vj = v1j + v2j + . . .+ vkj

(2.2)

If we assume a single evolutionary rate matrix is fitted to the whole tree, equation 2.2

reduces to equation 10 in Freckleton (2012):

Let

R = R1 = R2 = . . . = Rk

then

Si = R1 v1i + R2 v2i + . . .+ Rk vki

= R v1i + R v2i + . . .+ R vki

= R
k∑

l=1

vli
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We know, from equation 2.2, that the sum of the portions of the branch length assigned

to each regime is equal to the total length of the branch. Then:

Si = Rvi as well as Sj = Rvj

and

Si + Sj = R(vi + vj)

Substituting into equation 2.2, we have:

L = −1

2

(
r log(2π) + log |R(vi + vj)|+ uᵀ

ij (R(vi + vj))
−1 uij

)
= −1

2

(
r log(2π) + log |R|+ r log(vi + vj) +

uᵀ
ij (R)−1 uij

(vi + vj)

) (2.3)

Which is the same as equation 10 in Freckleton (2012)1.

3. Calculate the new phenotype vector xn for the node n. This quantity is orig-

inally calculated as the weighted average of the vector of species means for species i

and j with weights equal to the length of the branches vi and vj. For the case of a

single trait, x1i and x1j, we would have:

x1n =
vi σ

2
1i

vi σ2
1i + vj σ2

1j

x1j +
vj σ

2
1j

vi σ2
1i + vj σ2

1j

x1i (2.4)

When σ2
i = σ2

j , equation 2.4 becomes equivalent to equation 7 in Felsenstein (1973)

and the rates of each branch can be omitted. However, here we assume that rates are

different in every branch, that the evolutionary covariance among traits are non-zero

and that more than one rate regime can be assigned to the same branch. As a result,

the rates need to be represented as variance-covariance matrices (R1,R2, . . . ,Rk) and

the sum of the product between the portions of each branch and their rate regimes is

given by the matrices Si and Sj (see equation 2.2). By expanding equation 2.4, we

have:

xn = Si (Si + Sj)
−1 xj + Sj (Si + Sj)

−1 xi (2.5)

1Note that the published equation in Freckleton (2012) has a printing error. The corrected form is

L = − 1
2

(
k log(2π) + log |C|+ k logVi +

ut
iC

−1ui

Vi

)
. The correct form can be appreciated in the function

‘clikGeneral’ on line 393 of the Supporting Information file MEE3 220 sm demo.R available online (Freckleton,
2012).
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In the first step of our example, we calculate the phenotype value for the node 4 (x4).

Then, we prune the tips 1 and 2 from the tree, leaving only the tip 3 and the new tip

4 with vector of trait values x4. The next contrast will be calculated between x4 and

x3.

4. Compute the variance of xn. After computing the vector of trait values for the node

n, we need to calculate the variance associated with the uncertainty in the estimation

of xn. This uncertainty is added to the variance of the branch immediately bellow the

node n. For a single trait and we would have:

var[x1n] =
viσ

2
1i vjσ

2
1j

viσ2
1i + vjσ2

1j

+ vnσ
2
1n (2.6)

Where m, . . . , n are the indexes for the branches that connect the root to the node

n of the tree. Again, when a single rate regime is fitted to the tree, equation 2.6 is

equivalent to equation 9 in Felsenstein (1973). For the multivariate case, this quantity

becomes a variance-covariance matrix which is added to Sn (the branch length below

the node n multiplied by the rate regimes; see equation 2.3) and can be calculated as:

var[xn] =
(
(Si)

−1 + (Sj)
−1
)−1

+ Sn (2.7)

The equivalence between equations 2.6 and 2.7 can be easily verified by checking the

computation of the harmonic mean of matrices. For two scalar quantities the harmonic

mean is given by 2 a b
a+b

whereas for matrices we have ((A)−1 + (B)−1)
−1

.

5. Repeat. Steps 1 to 4 are repeated until only two tips remains. The root node will

have a zero contrast. The variance associated with the root node is computed as:

var[root] =
(
(Si)

−1 + (Sj)
−1
)−1

(2.8)

6. Compute the final log-likelihood. The final log-likelihood conditioned on the

phylogenetic tree, rate regime and trait data is computed as the sum of all partial

(node-by-node) log-likelihoods computed in step 2.

2.3.3 MCMC prior densities and sampling strategy

We have developed and implemented a Bayesian method to estimate one or more evolutionary

rate matrices from phylogenetic comparative data. Our primary objective is to provide a

framework to incorporate uncertainty in the estimates of R as well as to build a flexible
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model to study shifts in evolutionary integration across clades and over time. Our method

requires a phylogenetic tree with branch lengths, continuous data for two or more traits

for each tip species, and it uses Metropolis-Hastings Markov chain Monte Carlo (MCMC,

Metropolis et al., 1953; Hastings, 1970).

We model the prior density for the vector of root values (a) as an uniform or normal dis-

tribution and we use an uniform sliding window proposal density to sample the root value

for every trait simultaneously. In contrast, the prior density and sampling scheme for the

evolutionary rate matrix requires more elaboration because variance-covariance matrices are

positive definite and are relatively hard to be estimated. We model R with two independent

distributions; one for the vector of standard deviations and another for the correlation ma-

trix (Barnard et al., 2000; Zhang et al., 2006). This method allows the prior density for the

rates (vector of standard deviations) to be parametrized independently of the evolutionary

integration (correlation matrix). Under this parametrization, one can assign any distribu-

tion of positive real values to the vector of standard deviations (here we use an uniform or a

exponential density) and the correlation matrix is modelled as the Cholesky decomposition

of variance-covariance matrices sampled from an inverse-Wishart distribution (Zhang et al.,

2006). This parameter extension approach is named ‘separation-strategy’ (Barnard et al.,

2000; Zhang et al., 2006) because it relies on the independent modelling of the vector of

standard deviations and the correlation matrix that together compose the evolutionary rate

matrix. The advantage of the separation-strategy is twofold; it allows for intuitive modelling

of rates of evolution and evolutionary integration and it is an efficient proposal scheme, be-

cause matrices are guaranteed to be positive definite at every draw (Barnard et al., 2000;

Zhang et al., 2006).

2.3.4 Incorporating uncertainty in regime configurations and phylogenetic

trees

Our approach can integrate any number of evolutionary rate matrix regimes fitted to the

same phylogenetic tree. A regime is often dictated by some categorical data which states

are hypothesized to be associated with shifts in the tempo and mode of evolution of the

traits under study. Regimes are often ‘painted’ to the phylogenetic tree using stochastic

mapping simulations (Huelsenbeck et al., 2003) and analyses are repeated over a sample of

stochastic maps. In order to facilitate incorporation of uncertainty in both ancestral state

estimates and phylogenetic inference, such as multiple phylogenetic trees sampled from a

posterior distribution, we implemented a MCMC that integrates over multiple rate regime

configurations and/or phylogenetic trees. At each step of the MCMC chain one phylogenetic
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tree is randomly sampled from a pre-determined pool of trees and used to evaluate the

likelihood of the model. The approach assumes that each phylogeny or regime configuration

in the pool has equal chance to be sampled, but one can also assign the frequency of sampling

as a result of a previous analysis. This pool is assumed to be gathered a priori, as a

result of stochastic mapping simulations, samples from a posterior distribution of trees or

other similar analyses. Although this method does incorporate the uncertainty related to

alternative regime configurations, different topologies and set of branch lengths, it is not a

joint estimation of the tree and the model because the MCMC only applies proposal steps

to the vector of root values and the evolutionary rate matrices.

2.3.5 Testing for shifts between rate regimes

A useful criterion to perform model selection in a Bayesian framework is the Bayes factor

(Kass and Raftery, 1995), which is a ratio between the marginal likelihoods of the competing

models. However, the estimation of marginal likelihoods is a computationally expensive and

contentious task. One of the most accurate methods to estimate the marginal likelihood

is the stepping stone approach. This method consists of taking samples from a series of

weighted posterior distributions by scaling the likelihood of the model so that a continuum

between the prior and the posterior is created (Fan et al., 2011; Xie et al., 2011; Uyeda and

Harmon, 2014). However, the stepping stone method adds significantly to the computation

burden of the analysis, because each step of the continuum represents a complete MCMC

chain and a large number of steps are required to produce a sufficient approximation of the

marginal likelihood (Uyeda and Harmon, 2014).

Here, we do not use Bayes factor to compare models, although implementation is feasible for

future work. We focus our interpretation of results on the distribution of posterior parameter

estimates, and quantify the amount of uncertainty and the magnitude of the difference

between components of the evolutionary rate matrices fitted to different regimes of the tree.

We implemented summary statistics that provide a framework to decide whether there is

enough signal in the data to support a model comprised by multiple R matrix regimes. First

we check the difference between untransformed R matrices (ss-overall), then we contrast the

vector of standard deviations (ss-rates) and the difference between correlation matrices (ss-

correlation) derived from these R matrices. The first quantity check for overall changes in

the evolutionary rate matrix whereas the later two quantities check for a shift in the rates of

evolution of each individual trait and the structure of evolutionary integration among traits.

We perform tests by calculating the percentile of the 0 value with respect to the distribution

of the difference between summary statistics computed from the joint posterior distribution
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of parameter estimates. If the 0 value is within 95% of the density, then there is significant

overlap between the posterior distribution of the corresponding parameter estimates and we

cannot reject that the rate regimes are likely samples from the same distribution.

The approach using summary statistics described here is justified by the fact that the models

are nested. This means that it is possible to collapse the posterior distribution of evolutionary

rate matrices fitted to different regions of the same phylogenetic tree to produce a single

distribution if enough overlap is detected. For example, a model with three evolutionary rate

matrix regimes can be reduced into a model with two regimes and so on. Thus, the summary

statistics tests help us decide whether the posterior distribution between two parameters

show enough overlap to justify their collapse into a single one. This argument extends to

different attributes of the R matrix, such that one can collapse the rates of evolution of the

traits into a single regime while accepting a shift in the pattern of evolutionary correlation

among traits.

2.3.6 Simulation study

We performed simulations to test the performance of our Bayesian MCMC estimates and the

use of summary statistics under different scenarios of correlated and uncorrelated evolution.

For each simulation we used rejection sampling to generate a phylogenetic tree with 200 tips

and at least one monophyletic clade containing 50 tips under a birth-death model. Then,

we simulated data using a multivariate Brownian motion model for three continuous traits

with two evolutionary rate matrix regimes, one for the 50 tips clade and another for the

background group (Fig. 2.2). We performed four simulation scenarios: no shift (equal

matrices), shift of orientation (positive versus negative evolutionary correlations), shift of

rates (same evolutionary correlation but varying rates of evolution), and shift of integration

(same rates but different degrees of evolutionary correlation). We applied two treatments for

the scenario of shift of rates and shift of integration by varying the magnitude of the shifts.

Figure 2.3 shows the total number of simulation treatments and their true parameter values.

For all simulations we used a uniform prior for the vector of standard deviations, a marginally

uniform prior for the correlation matrix (Barnard et al., 2000), and a multivariate normal

prior for the vector of phylogenetic means centered in the mean of the tip data for each

trait and with standard deviation equal to two times the standard deviation of the tip

data (Fig. 2.4). We chose an informative prior for the phylogenetic mean in order to

facilitate the convergence of the MCMC chains, since the root values are not the primary

focus of this set of simulations. Nevertheless, we repeated a subset of the simulations using

a uninformative prior assigned to the root values to show that the MCMC also performs
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well under this scenario. For each simulation treatment we performed 100 replicates, each

replicate composed by two independent MCMC chains of 500,000 generations. The initial

state of every MCMC chain was set to a random draw from its prior distribution. We checked

for convergence using the Gelman and Rubin (1992) test applied to each parameter of the

model (each element of the root values, standard deviation vector, and correlation matrix

was considered a separate parameter). We plotted the distribution of the percentiles of the

true parameter values for the simulations compared to the posterior distributions to show

the proportion of MCMC estimates that contained the true value of the simulation within

the 95% highest probability density (HPD) interval. We simulated phylogenies, traits and

mapped regimes using the R package phytools (Revell, 2012) and performed all parameter

estimates with the package ratematrix (Caetano and Harmon, 2017b).

In order to check for congruence between our approach and maximum likelihood estimators,

we used the R package mvMORPH (Clavel et al., 2015) to find the best model using likelihood

ratio tests (one regime versus two regimes) for all simulated scenarios. We compared the

results from the MCMC with the maximum likelihood estimates by calculating the percentile

of the MLE estimates for the two regimes model with respect to the posterior distributions

and checked whether the model favored by the likelihood ratio test also showed support

when relying on the summary statistics computed from the posterior distribution of param-

eter estimates. The comparison between the likelihood ratio test and our posterior check

approach is not a formal evaluation of model test performance, since the two approaches are

fundamentally distinct. On the other hand, this serve as a pragmatic comparison to show

whether we can adopt the use of summary statistics calculated from the posterior distri-

bution to make reliable choices between models with direct incorporation of uncertainty in

parameter estimates while retaining the explanation power of a more formal model testing

approach.

2.3.7 Empirical examples

We use two examples to show the performance of the approach with empirical datasets and to

further explore the impact of the direct incorporation of uncertainty in parameter estimates

and model comparison. The first example tests for a shift in the evolutionary integration

among anoles traits during the Caribbean radiation. Then, we repeat the analysis from

Revell and Collar (2009) study on the evolution of buccal traits in Centrarchidae fishes.

Anoles are small lizards that live primarily in the tropics. There are nearly 400 anole species

with diverse morphology and they have become a model system for studies of adaptive radia-

tion and convergence (Losos, 2009; Mahler et al., 2013, and references therein). The ancestral
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distribution of the genus is in Central and South America and the history of the clade in-

cludes island dispersion and radiation as well as dispersal back to the mainland (Nicholson

et al., 2005; Losos, 2009). The adaptive radiation of anoles to the Caribbean islands and

the repeated evolution of ecomorphs are the main focus of evolutionary studies in the genus

(Mahler et al., 2010; Losos, 2009; Mahler et al., 2013). However, mainland anoles are dis-

tributed from the north of South America to the south of North America and show more

species (60% of all species) than island anoles and equally impressive morphological diversity

(Losos, 2009). Mainland and island anole species form distinct morphological clusters (Pinto

et al., 2008; Schaad and Poe, 2010; Moreno-Arias and Calderón-Espinosa, 2016), but rates of

trait evolution have been shown not to be consistently different (Pinto et al., 2008). Island

ecomorphs can be readily distinguished by body size and the morphology of limbs, head and

tail (Losos, 2009; Mahler et al., 2013). Thus, it is plausible that a shift in the structure

of evolutionary integration among those traits associated with the radiation to the islands

played an important role on the exploration of novel regions of the morphospace and allowed

the repeated evolution of specialized morphologies. Herein we test this hypothesis by fitting

two evolutionary rate matrix regimes, one for mainland and other for island anole lineages.

We compiled data for snout-vent length (SVL), tail length (TL), and head length (HL) of 125

anole species (99 Caribbean and 26 mainland species) made available by Mahler et al. (2013)

and Moreno-Arias and Calderón-Espinosa (2016). We chose this set of traits because they

are important for niche partitioning among anoles (Pinto et al., 2008; Losos, 2009; Mahler

et al., 2013) and also provided the best species coverage given the data currently available.

We use Gamble et al. (2014) maximum clade credibility tree for all comparative analyses, but

we trimmed the phylogeny to include only the species that we have morphological data. To

map the different R matrix regimes to the phylogenetic tree we classified species as ‘island’

or ‘mainland’ and used the package ‘phytools’ (Revell, 2012) to estimate the transition

rates between the states in both directions using an unconstrained model (e.g., the ‘all

rates different’ model) and to perform 100 stochastic mapping simulations. We set the

model to estimate one R matrix for each mapped state (‘island’ or ‘mainland’) and we

used the pool of 100 stochastic maps in the MCMC to take into account the uncertainty

associated with ancestral state estimation. We ran four independent MCMC chains of 2

million generations each and used a random sample from the prior as the starting point of

each chain. We set a uniform prior for the phylogenetic mean, a marginally uniform prior on

the correlation matrices and a uniform prior on the vector of standard deviations for the R

matrices. We discarded 25% of each MCMC chain as burn-in and checked for convergence

using the potential scale reduction factor (Gelman and Rubin, 1992). In order to test the

influence of the root state for the rate regimes, we repeated the analyses by setting the
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root state for the stochastic mapping simulations as a random sample between ‘island’ and

‘mainland’ and with the ancestral distribution fixed as ‘mainland’.

In addition to the analyses of mainland and island anoles lizards, we replicated the study by

Revell and Collar (2009) as an exercise to contrast the inference of evolutionary rate matrices

in the presence of a direct estimate of uncertainty provided by the posterior densities. Revell

and Collar (2009) showed that the evolution of a specialized piscivorous diet in fishes of

the genus Micropterus is associated with a shift towards a stronger evolutionary correlation

between buccal length and gape width (see Fig. 1 in Revell and Collar, 2009). This tighter

integration might have allowed Micropterus lineages to evolve better suction feeding perfor-

mance. For this analysis we used the same data and phylogenetic tree made available by the

authors. We set prior distributions using the same approach for the analysis of anole lizards

described above. We also ran four MCMC chains starting from random draws from the prior

for 1 million generations and checked for convergence using the potential scale reduction

factor (Gelman and Rubin, 1992).

We provided scripts to reproduce simulations and analyses of the empirical data as Supple-

mentary Material.

2.4 Results

2.4.1 Performance of the method

We ran a total of 1,200 Markov chain Monte Carlo chains to check the performance of

the model under six different scenarios of correlated evolution among traits. All chains

finished without errors, showed good convergence after 500,000 generations and results were

congruent both with the true simulation parameters and with maximum likelihood estimates

(Table 2.1 and Fig. 2.5). Figures 2.3 and 2.8 show examples of the posterior distribution

of evolutionary rate matrices and root values for each simulation scenario. Changing the

prior distribution for the vector of root values from multivariate normal to uniform showed

no detectable bias in the posterior distribution, however the MCMC required approximately

twice as many iterations to converge (Fig. 2.9). The distribution of percentiles for both

the MLE and the true value for the simulations with respect to the posterior distribution

of parameter estimates were, on average, within the 95% highest posterior density interval

(Fig. 2.5). The likelihood ratio tests supported the two rates model about as often as our

test based on summary statistics across all simulation scenarios (Table 2.1). When data was

simulated with a single evolutionary rate matrix across the tree but tested for two regimes,

both the likelihood ratio tests and the summary statistics (ss-overall) resulted in less than
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5% of the 100 replicates with support for the wrong model.

Alternatively, one might be interested on shifts in some of the attributes of the evolutionary

rate matrices more than others, such as specific hypotheses about the change in the pattern

of evolutionary integration without a priori expectations about shifts in the rates of trait

evolution. Table 2.1 shows the results of the summary statistics approach with respect

to different attributes of the evolutionary rate matrices fitted to the data. These results

are congruent with the simulation scenarios and show that the approach using summary

statistics calculated from the posterior distribution of parameter estimates is a reliable and

flexible way to identify changes in rates of trait evolution (ss-rates) or shifts in the pattern

of evolutionary integration (ss-correlation).

2.4.2 Empirical examples

The biogeographic reconstruction using a more recent anole phylogeny (Gamble et al., 2014)

is mostly congruent with previous studies (Glor et al., 2005; Nicholson et al., 2005; Losos,

2009). There are multiple radiations from mainland South America to the Caribbean islands

and a single radiation from the islands back to mainland South America (Fig. 2.6). In

contrast, the Jamaican clade (A. reconditus + A. grahami), that previous results have shown

to be sister to the clade that dispersed from the Caribbean islands back to mainland (Losos,

2009), is now nested within this secondary radiation. These results are maintained when we

used all species from Gamble et al. (2014) instead of the trimmed tree (see Fig. 2.10). The

R matrix estimates for each regime show no difference in the structure of integration but the

rates of evolution for the Caribbean anole lineages are twice as fast as mainland lineages (Fig.

2.6, see also figures 2.11 for the posterior of root values and 2.12 for trace plots). In other

words, the evolutionary rate matrix for the two regimes are proportional (ss-overall=0.004, ss-

rates=0.0002, and ss-correlation=0.4). Setting the root state as ‘mainland’ does not influence

the posterior distribution of parameter estimates. Head length and tail length are positively

correlated along the phylogeny and also show a strong positive evolutionary correlation with

body size.

In the case of the Centrarchidae fishes, there is a clear distinction between the results of

the maximum likelihood point estimate and the Bayesian estimate of the evolutionary rate

matrix regimes. Under MLE, we found a significant difference between the R matrix regimes

using likelihood ratio tests. There is a stronger evolutionary correlation between the gape

width and the buccal length of the Micropterus clade (r=0.83) when compared with other

lineages (r=0.36). In contrast, the direct incorporation of uncertainty in parameter estimates

reveal an important overlap between the posterior densities for the R matrices estimated for
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each regime (Fig. 2.7, see also figures 2.13 for the posterior of root values and 2.14 for trace

plots). The posterior density does not show evidence of a shift towards stronger evolutionary

correlation between gape width and buccal length in Micropterus (ss-correlation=0.46) and

the overall overlap between the posterior of evolutionary rate matrix fitted to each regime

is pronounced (ss-overall=0.58). Thus, after taking the uncertainty in parameter estimates

into account, it is unlikely that a shift on the pattern of evolutionary correlation happened

in the Micropterus clade.

2.5 Discussion

Here we implemented a Bayesian Markov chain Monte Carlo estimate of the evolutionary

rate matrix. Our approach allows multiple regimes to be fitted to the same phylogenetic tree

and integrates over a sample of trees or regime configurations to account for uncertainty in

ancestral state estimates and phylogenetic inference. We also implement summary statistics

to compare the posterior distribution of parameter estimates for different regimes. We show

that our approach has good performance over a series of different scenarios of evolutionary

integration and is congruent with parameter estimates using maximum likelihood. The use

of maximum likelihood estimate is definitely faster, since the MCMC chain requires many

more evaluations of the likelihood function. However, our new extension of Felsenstein

(1973) pruning algorithm applied when multiple R matrices are fitted to the same tree

reduces the computation time of the likelihood for the model significantly. The integration

of uncertainty in parameter estimates provided by the posterior distribution and the use

of summary statistics to describe patterns in the data that can be directly relevant to our

biological predictions are significant rewards for the longer time invested in data analysis.

The use of summary statistics to evaluate the overlap between the posterior distributions

of parameter estimates from different regimes is a intuitive and reliable framework to make

decisions of whether or not the data show a strong signal for multiple regimes. Our simula-

tions showed that results from this approach are, in average, congruent with the likelihood

ratio test. More importantly, summary statistics computed from the posterior distribution

can recognize meaningful discrepancies between distinct evolutionary rate matrix regimes

across a series of simulation scenarios. In this study we focused on the evolutionary rates for

each trait (ss-rates) and the evolutionary correlation among traits (ss-correlation), but any

other summary statistics computed over the posterior distribution of parameter estimates

and representing an attribute of the model relevant for a given question could be imple-

mented. For example, characteristics of the eigen-structure of the matrices or more formal

tests such as the Flury hierarchy (Phillips and Arnold, 1999) could be also implemented.
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This framework is flexible, does not require an estimate of the marginal likelihood and can

be easily tailored towards specific biological predictions of the study system. On the other

hand, it is important to note that the use of summary statistics does not constitute a formal

model test, but instead asks the question of whether the parameter estimates for the regimes

are distinct enough for us to accept the hypothesis of heterogeneity in the tempo and mode

of trait evolution.

Point estimates such as the maximum likelihood can generate a false impression of certainty

that may limit our biological interpretations if not accompanied by estimates of the variance.

It is possible to calculate the confidence interval around the MLE and use this interval to

check for overlaps in the parameter estimates (i.e., using the Hessian matrix). The disad-

vantage of this approach is that the confidence interval provides only the percentiles of the

density around the MLE. As a result, it is not possible to calculate summary statistics, incor-

porate uncertainty in downstream analyses, or to provide a visualization of the distribution

of parameter estimates such as in this study (see Figures 2.3 and 2.7). Maximum likelihood

estimate of models of trait evolution are commonly reported without any estimate of the

variance, most likely because the focus are often on the results of model tests and p values

rather than in our ability to reliably estimate and interpret the parameters of a model (see

discussion in Beaulieu and O’Meara, 2016 on a related issue). Furthermore, model tests such

as the likelihood ratio test and the Akaike information criteria (AIC) do not incorporate any

measure of the variance of estimates in their calculations. This is problematic when param-

eters can be hard to estimate and models are challenged by reduced sample sizes, which is a

common issue in phylogenetic comparative methods analyses in general.

The analysis of mouth shape evolution in function of diet in Centrarchidae fishes (Revell and

Collar, 2009) is an interesting example of the impact of uncertainty in parameter estimates

on our biological conclusions. The likelihood ratio test showed a strong support for a shift

in the structure of evolutionary correlation associated with the evolution of piscivory in

the Micropterus clade. In contrast, the summary statistics computed from the posterior

distribution did not show strong evidence for the same scenario of macroevolution. When

we contrast the result from the MLE with the posterior distribution (Fig. 2.15), we can

visualize the origin of the incongruence. The likelihood ratio test focus on the relative fit

of the constrained model (one regime) compared with the full model (two regimes) whereas

the summary statistics compute whether our posterior knowledge about the model reflects a

strong signal for a shift between regimes using the overlap between the posterior distribution

of parameter estimates. Furthermore, the same trend can be shown by computing the

confidence interval around the MLE estimates, since there is an important overlap between

the R matrices fitted to each regime.
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The results from the test of whether mainland and island anole species differ in the pattern of

evolutionary integration among traits are intriguing. The posterior distribution of evolution-

ary rate matrices fitted to each regime show a constant pattern of evolutionary integration

whereas rates of trait evolution are faster on island anole lineages. The radiation of anole

lizards on the Caribbean islands is one of the most striking examples of adaptive radiation

in evolutionary biology. It is natural to expect that a shift in the trajectory of evolution

of morphological traits associated with ecomorphs would occur, since mainland and island

anole species are known to occupy different regions of the morphospace (Pinto et al., 2008;

Schaad and Poe, 2010; Moreno-Arias and Calderón-Espinosa, 2016). Surprisingly, our results

suggest that ecomorphs evolved under a constant pattern of evolutionary integration among

traits when compared with mainland lineages but differ due to faster rates of trait evolution.

One hypothesis is that the evolutionary correlation among traits, which determine the major

axes of morphological evolution in the group, do not act as a constraint to the exploration of

the morphospace by the lineages. Thus, island and mainland anole lineages are not distinct

in their potential to explore the morphospace and ecomorphs might be special in the sense

of repetitive radiations and not due to exclusive morphological evolution when compared

to their mainland counterparts. This explanation has some support by the fact that a few

mainland species are morphologically similar to island ecomorphs (Schaad and Poe, 2010).

In contrast, higher rates of evolution is most likely a reflection of the rapid morphological

differentiation observed on the Caribbean anole lineages and associated with the ecological

opportunity posed by the new island habitats coupled to the reduction in predation risk.

Our results corroborate the idea that ecomorphs might also have evolved among mainland

species since there is no detectable shift in the trajectory of evolution among morphological

traits. However, efforts to understand anole biodiversity, ecology and evolution have been

strongly focused on island systems and still relatively very little is known about mainland

lineages.

2.6 Conclusion

Most of what we know about the tempo and mode of trait evolution come from studies of

individual traits, but evolutionary integration is ubiquitous across the tree of life. Recently

we have seen an increase in comparative tools aimed to deal with the challenges posed by

high-dimensional traits, such as shape data. However, the discipline is still in need of bet-

ter models to deal with multiple traits, such as the examples explored in this study. Our

framework is aimed primarily on the test of shifts in the structure of evolutionary integration

among traits across clades and over time. However, the implementation of summary statistics



45

make it feasible to extend such tests to be focused on any attribute of the evolutionary rate

matrix that might fit the biological predictions of a specific study. Another important ad-

vantage of simulation based approaches, such as the Bayesian MCMC, is that proposals can

be modified to integrate over different number of regime configurations, distinct models of

trait evolution, and even simultaneously estimate parameters for the trait evolution model

and the phylogenetic tree. Thus, our implementation lays the groundwork for future ad-

vancements towards flexible models to explore multiple facets of the evolution of integration

over long time scales using phylogenetic trees. Integration among traits is a broad and yet

fundamental topic in evolutionary biology. Understanding the interdependence among traits

over the macroevolutionary scale can be key to tie together our knowledge about the genetic

basis of traits, development, and adaptive shifts in the strength or direction of evolutionary

correlation.
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Table 2.1: Proportion of simulation replicates showing support for two R matrix regimes
under likelihood ratio test (LRT) and using summary statistics computed from the posterior
distribution of parameter estimates. The ‘ss-overall’ summary statistics compares the entire
evolutionary rate matrix, ‘ss-rates’ refers to the rates of evolution for the individual traits
and ‘ss-correlation’ represents only the structure of evolutionary correlation among traits.
Simulations were performed with no shift (Single), shift of orientation (Orient), weak shift
of rates (Rates I), strong shift of rates (Rates II), weak shift of integration (Integ I), and
strong shift of integration (Integ II). Figure 2.3 show the true value for each simulation and
a plot of the posterior distribution of one simulation replicate and 2.8 show the posterior
distribution of root values.

Single Orient Rates I Rates II Integ I Integ II
LRT 0.04 1 1 1 0.25 0.98

ss-overall 0.02 1 0.85 1 0.28 0.84
ss-rates 0.01 0.04 0.98 1 0.03 0.02

ss-correlation 0.01 1 0.06 0.03 0.26 1
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Figure 2.1: Example of phylogeny used to compute the likelihood of a multivariate Brownian-
motion model using the new pruning algorithm.

R1

R2

Figure 2.2: Example of phylogeny used for the simulation study. We simulated phylogenies
with 200 tips using a homogeneous birth-death model. Then, we randomly selected one node
with exact 50 daughter tips to set the location of the transition between the background rate
regime R1 and the focus clade regime R2 showed in red.
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Figure 2.3: Example of posterior distribution for the six simulation treatments with three
traits each. Top-left plot shows the results with no shift in the evolutionary rate matrix
regime and top-right shows the results with a shift in the orientation of R. Middle row
are results with a shift in the rates of evolution of each trait and bottom row shows the
results when the strength of the evolutionary correlation shifts between regimes. Estimates
for the background regime are showed in black and for the focus regime in red (see Fig.
2.2). For each plot: diagonal histograms show evolutionary rates (variances) for each trait,
upper-diagonal histograms show pairwise evolutionary covariation (covariances), and lower-
diagonal ellipses are samples from the posterior distribution showing the 95% confidence
interval of each bivariate distribution. Numbers in the top left of histograms are the true
value used for each simulation; background rate regimes are showed in black and focus clade
regimes in red. Table 2.1 shows the aggregate results for each simulation replicate: ‘Single’
and ‘Orient’ correspond to top-left and top-right plots. ‘Rates’ I and II are middle row left
and right plots. ‘Integ’ I and II are bottom row left and right plots. The two replicates in
the middle and bottom rows differ in the strength of the shift between regimes, left is weak
and right is strong shift.
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−1 0 1

Figure 2.4: Prior distribution for the evolutionary rate matrix (R) used for all analyses. Plate
shows samples in the interval between -1 and 1 from the prior for a model with three traits.
Diagonal plots represent the prior for evolutionary rates (variances) for each trait, upper-
diagonal plots show pairwise evolutionary covariation (covariances), and lower-diagonal are
samples from the posterior distribution of ellipses showing the 95% confidence interval of
each bivariate distribution.
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Figure 2.6: Posterior distribution of the R matrix regimes fitted to the island anole (green)
and mainland anole (brown) lineages. Left figure shows the maximum clade credibility tree
(MCC) from Gamble et al. (2014) with only the taxa used in this study. State reconstruction
for the branches was performed with a stochastic map simulation using ‘mainland’ as the root
state for the genus. Right upper plot shows the posterior distribution of parameter estimates
for the evolutionary rate matrices. Diagonal plots show evolutionary rates (variances) for
each trait, upper-diagonal plots show pairwise evolutionary covariation (covariances), and
lower-diagonal are samples from the posterior distribution of ellipses showing the 95% confi-
dence interval of each bivariate distribution. Right bottom figure shows a representation of
each trait (TL: tail length; HL: head length; SVL: snout-vent length).
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Figure 2.7: Posterior distribution of the R matrix regimes fitted to the background group
(gray) and to the Micropterus clade (red). Left figure shows the phylogeny from (Revell and
Collar, 2009) and the silhouette of some representatives of the Centrarchidae genera. Right
plot shows the posterior distribution of parameter estimates for the evolutionary rate matri-
ces. Diagonal plots show evolutionary rates (variances) for each trait, upper-diagonal plots
show pairwise evolutionary covariation (covariances), and lower-diagonal are samples from
the posterior distribution of ellipses showing the 95% confidence interval of each bivariate
distribution.
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Figure 2.8: Example of posterior distribution of root values for the six simulation treatments
with three traits each. Simulation treatments are the same as showed on Figure 2.3. Top
and bottom plots for ‘Shift of rates’ and ‘Shift of integration’ treatments correspond to the
left and right plots of the same treatments on Figure 2.3, respectively. The true value for
the ancestral state of each trait in all simulations was equal to 10.
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Figure 2.9: Example of posterior distribution of root values for the six simulation treatments
with three traits each using a uniform prior for the vector of root values. Simulation treat-
ments are the same as showed on Figure 2.3 and Figure 2.8. The true value for the ancestral
state of each trait in all simulations was equal to 10.
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Figure 2.10: Maximum clade credibility tree from Gamble et al. (2014) study showing the
distribution of ‘mainland’ and ‘island’ anole species. The species ‘sp nov 1’, ‘sp nov 2’, and
‘sp nov 3’ were excluded from the phylogenetic tree. Data for the distribution of anole
species and outgroups were compiled from Nicholson et al. (2005), Losos (2009), Thomas
et al. (2009), Reptile database (reptile-database.org) and GBIF (gbif.org). Ancestral state
reconstruction was performed using stochastic mapping with the ‘all rates different’ model
and the root state set as ‘mainland’ (Nicholson et al., 2005; Losos, 2009).
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Figure 2.11: Posterior distribution of root values fitted to the island and mainland anole
lineages (SVL: snout-vent length).
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Figure 2.12: Trace plots of the log-likelihood and the acceptance ratio for the four indepen-
dent MCMC chains of the island and mainland anole analysis.
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Figure 2.13: Posterior distribution of root values fitted to the Centrarchidae fishes.
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Figure 2.14: Trace plots of the log-likelihood and the acceptance ratio for the four indepen-
dent MCMC chains of the Centrarchidae fishes analysis.
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Figure 2.15: Posterior distribution of the R matrix regimes fitted to the background group
(gray) and to the Micropterus clade (red). Maximum likelihood estimate for the same data
and phylogenetic tree showed in blue lines. Plot shows the posterior distribution of param-
eter estimates for the evolutionary rate matrices. Diagonal plots show evolutionary rates
(variances) for each trait, upper-diagonal plot show pairwise evolutionary covariation (co-
variances), and lower-diagonal plot shows samples from the posterior distribution of ellipses
showing the 95% confidence interval of each bivariate distribution.
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CHAPTER 3: AN R PACKAGE FOR STUDYING EVOLUTION-

ARY INTEGRATION AMONG SEVERAL TRAITS ON PHYLO-

GENETIC TREES

3.1 Abstract

Evolutionary integration occurs when two or more phenotypes evolve in a correlated fash-

ion. Correlated evolution among traits can happen due to genetic constraints, ontogeny,

and selection and have an important impact on the trajectory of phenotypic evolution.

Phylogenetic trees can be used to study such pattern on macroevolutionary time scales by

estimating the strength of evolutionary covariance among traits through time and across

clades. However, only few applications implement models to conduct comparative analyses

of evolutionary integration. We introduce a Bayesian Markov chain Monte Carlo approach

to estimate the evolutionary correlation among two or more traits using the evolutionary

rate matrix (R). R is a covariance matrix that represents both the rates of evolution of

each trait and the structure of evolutionary correlation among traits. Here we present the

R package ratematrix, a resource to test hypotheses of evolutionary integration using mul-

tivariate data and phylogenetic trees. ratematrix provides a flexible framework allowing

for any number of evolutionary rate matrix regimes fitted to the same phylogenetic tree and

it incorporates the uncertainty associated with parameter estimates, ancestral state recon-

struction and phylogenetic estimation in the analyses. The ratematrix package uses a novel

pruning algorithm that significantly improve computational time. We also provide specific

functions that facilitate users to conduct long MCMC analysis when computational resources

are limited.

3.2 Introduction

Evolutionary changes in one trait are often associated with changes in other traits, such that

species traits often do not vary independently of each other (Olson and Miller, 1958). This

pattern can be observed in the covariation among traits both within and among populations

(Arnold, 1992; Arnold et al., 2001; Revell and Harmon, 2008; Revell and Collar, 2009). The

pattern of correlated evolutionary changes among two or more traits is known as evolutionary

integration and can be a result of genetic constraints (e.g., pleiotropy), ontogenetic integra-

tion, or correlated selection (Arnold, 1992; Arnold et al., 2001; Hansen and Houle, 2004;

Goswami et al., 2015; Melo et al., 2016). Although evolutionary integration is ubiquitous
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across the tree of life, only few comparative methods and associated software applications to

date implement models that can estimate evolutionary correlations among traits using phy-

logenetic trees (Revell and Harmon, 2008; Hohenlohe and Arnold, 2008; Revell and Collar,

2009; Bartoszek et al., 2012; Adams and Otárola-Castillo, 2013; Clavel et al., 2015; ?).

Here we describe the R package ratematrix, which implements a Bayesian estimate of

evolutionary rate matrices ( R; Revell and Harmon, 2008) fitted to phylogenetic trees and

trait data using Markov chain Monte Carlo (as described in Caetano and Harmon, 2017a).

The R matrix is a variance-covariance matrix that describes the rates of trait evolution under

Brownian motion in the diagonals and the evolutionary covariance among traits (i.e., the

pattern of evolutionary integration) in the off-diagonals (Revell and Harmon, 2008; Revell

and Collar, 2009; Adams and Felice, 2014). With such a matrix we are able to simultaneously

investigate the pace of evolution and the structure of evolutionary integration among two or

more continuous traits evolving along the branches of a phylogenetic tree. We can also fit

multiple R matrices to the same tree in order to test hypothesis of shifts in the evolutionary

integration of these traits across clades on the tree.

The R matrix can be estimated using current R packages, however all available implementa-

tions rely on point estimates using maximum likelihood. In contrast, the use of a Bayesian

framework, as presented here, allows for direct incorporation of uncertainty in parameter

estimates in the form of a posterior distribution (Caetano and Harmon, 2017a). This is

especially important because covariances can be hard to estimate when the number of ob-

servations is small relative to the number of parameters in the model, which is commonplace

among phylogenetic comparative studies in general.

3.3 The model and MCMC implementation

To study the pattern of correlated evolution among two or more continuous traits we use the

model described by Revell and Harmon (2008), which consists of a multivariate Brownian

motion model with rate equal to the R matrix and root value equal to the vector a (see

Equations 2 and 3 in Revell and Collar, 2009). Our implementation allows for multiple

independent rate regimes fitted to different branches of the phylogenetic tree (as in Revell

and Collar, 2009). Rate regimes can be either fixed a priori or a collection of multiple

regime configurations can be included in the analysis. For example, multiple regimes applied

to the same analysis could be samples from a stochastic character mapping (Huelsenbeck

et al., 2003), alternative reconstructions due to missing data, or other plausible hypotheses.

However, all regimes need to share the same data at the tips of the tree and same number of

rate matrices fitted to the tree. The ratematrix package implements Metropolis-Hastings
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Markov chain Monte Carlo (MCMC) to estimate the posterior distribution of each R matrix

fitted to the tree and the vector of phylogenetic root values (a).

Here we detail the proposal distribution used for each set of parameters as well as the options

of prior densities currently implemented in the package. At each step of the MCMC chain we

choose between the vector of root values and the set of one or more R matrices by drawing

from a binomial distribution. The probability that each of these two sets of parameters will

be updated is fixed throughout the chain, but can be determined by the user (see function

ratematrixMCMC). Every time that the set of rate matrices is chosen, only one R matrix is

updated but all R matrices fitted to the tree are equally likely to be updated. In contrast,

once chosen, the root value for every trait is updated simultaneously. Updates are performed

with different configurations of sliding window proposal distributions.

We implemented a uniform distribution with width controlled by the parameter ‘w mu’ as

the proposal distribution for each element of the vector of phylogenetic means. In contrast,

the proposal of R matrices requires a more elaborate scheme, since variance-covariance ma-

trices are constrained to be positive definite. Furthermore, R matrices describe both the

rate of evolution of the traits and their pattern of evolutionary correlation, so the proposal

distribution needs to provide good mixing for both the variance of each trait and the cor-

relation structure of such matrices. We implemented a separation strategy (Barnard et al.,

2000; Zhang et al., 2006; Liu et al., 2016) proposal scheme which consists of making updates

to the vector of standard deviations and the correlation matrix derived from the variance-

covariance matrix in separate steps (Figure 3.1). The vector of standard deviations can be

updated directly using a sliding window proposal distribution. On the other hand, the pro-

posal scheme for the correlation matrix requires two steps: first, draw covariance matrices

from an inverse-Wishart distribution; and second, we derive correlation matrices from this

sample. Finally, we recompose the evolutionary rate matrix in order to calculate the like-

lihood of the model. Figure 3.1 shows a diagram that describes the procedure. Note that

the vector of standard deviations generated by decomposing the variance-covariance matrix

is not evaluated by the likelihood of the model (Zhang et al., 2006). As a result of this

parameter-extension approach, we need to correct the acceptance ratio for the transforma-

tion from variance-covariance matrix to the corresponding correlation matrix and vector of

variances (Figure 3.1). This proposal scheme allows for independent priors and proposals

for the rates of evolution and the evolutionary integration among traits. The ratematrix

package allows control over the width of the uniform sliding window proposal for the vector

of standard deviations (‘w sd’) as well as the degrees of freedom of the inverse-Wishart (‘v’)

used to sample correlation matrices.



68

The prior densities for the model naturally follow the proposal scheme implemented. Prior

densities are determined for the vector of root values, the vector of standard deviations

and the correlation matrix (which is sampled by a transformation from the inverse-Wishart

distribution). The separation between standard deviations and correlation matrix enable

users to translate their biological intuition about the pace and mode of evolution into model

parameters in a straightforward manner. The user can set independent priors (options are

uniform, normal or log-normal) for both the vector of root values and the vector of standard

deviations of the R matrices. For the correlation matrix that, together with the standard

deviation, will constitute the R matrix the user can set the degrees of freedom (ν) and the

scale matrix (Ψ) of the inverse-Wishart distribution. Small values for ν make the distribution

wider (Figure 3.2, top) whereas larger values reduce the variance of the distribution, so

samples will be closer to Ψ and, as a result, the prior will be more informative (Figure

3.2, bottom). Note from Figure 3.2 that a change in the parameters of the inverse-Wishart

prior on the correlation matrix will not change the prior distribution of variances. Since

the inverse-Wishart will only be used to sample correlation matrices, Ψ can be set as any

correlation matrix or variance-covariance matrix.

3.4 Description of the ratematrix R package

The package ratematrix offers a plethora of functions to allow flexible choices of prior

distributions for all parameters in the model, customizable MCMC chains, plots, and

robust analyses of convergence (Table 3.1). The package can be installed from our github

repository using the R package devtools:

devtools::install github("Caetanods/ratematrix", build vignettes =

TRUE) library(ratematrix)

The option build vignettes will make the package vignettes available after installa-

tion. A list of vignettes can be accessed using:

browseVignettes("ratematrix")

We will use the same data from Caetano and Harmon (2017a) on mainland and is-

land anole lizards as a demonstration of the package. In this study we test whether the

radiation of anole lizards from Central and South America to the Caribbean islands was

associated with a shift in the pattern of evolutionary integration among morphological
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traits (head length, tail length and snout-vent length). Here the phylogenetic tree (object

anoles$phy) is a stochastic map with two regimes produced with the package phytools,

one rate regime for island and other for mainland species (see Figure 3.5). Both the trait

data and phylogenetic tree are included in the ratematrix package.

data(anoles) # Load trait data and phylogeny.

3.4.1 Estimating rates of correlated evolution

After loading the package and data, we choose the prior distributions for the MCMC

chain. We set a uniform prior for the vector of root values and variances and a marginally

uniform prior for the covariance matrices, following Barnard et al. (2000) (see also docu-

mentation for makePrior). The marginally uniform prior produces uniform distributions

for each of the covariance terms (σ2
i,j for i 6= j) of the variance-covariance matrix after

integrating over the uncertainty of the other parameters (i.e., the marginal distribution

for σ2
i,j). Many characteristics of the Markov chain Monte Carlo can be customized (see

documentation for ratematrixMCMC). We encourage users to run short preliminary chains

in order to adjust the width of the proposal distributions for each set of parameters

in function of the acceptance ratio (see function logAnalyzer) prior to a full MCMC

chain analysis. This procedure can improve the mixing of the chains, which might

decrease the number of generations required until convergence and increase the effective

sample size (ESS) of the posterior distribution. The following lines of code will run

only a short example, starting with a random sample from the prior distribution. The

package also provide results from previous MCMC analyses with this same data as examples.

estimateTimeMCMC(data=anoles$data[,1:3], phy=anoles$phy, gen=10000)

handle <- ratematrixMCMC(data=anoles$data[,1:3], phy=anoles$phy

, prior="uniform", gen=10000)

The estimateTimeMCMC function estimates the time for the MCMC chain whereas

ratematrixMCMC runs it. The MCMC function writes one file with the parameter samples

and another with the log information for each generation. Both files are marked with

a unique identifier that prevents multiple chains of overwriting each other. The handle

object is a list containing detailed information about the MCMC chain and is required in

order to read the posterior distribution from files, analyze the log information and continue

an unfinished MCMC chain. Bellow we show an example of how to read the posterior
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distribution from the files. Then, we make plots (Figure 3.3) and calculate summary

statistics based on results of a converged MCMC chain provided as example data.

( short chain <- readMCMC(handle, burn=0.25, thin=1) )

logAnalyzer(handle, burn=0.25, thin=1) # Log information for the chain.

plotRatematrix(chain=short chain) # Plots the short chain.

plotRootValue(chain=short chain) # Plots the short chain.

data(anolesPost) # Load example of posterior distribution.

plotRatematrix(chain=anolesPost$chain1)

plotRootValue(chain=anolesPost$chain1)

checkConvergence(anolesPost$chain1, anolesPost$chain2)

testRatematrix(chain=anolesPost$chain1, par="correlation")

testRatematrix(chain=anolesPost$chain1, par="rates")

The logAnalyzer function calculates the acceptance ratio for each parameter of the

model and plots the trace of the log-likelihood for the MCMC chain. The plot functions

show the posterior distribution of parameter estimates. plotRatematrix produces a

plate with histograms for the rate of evolution of each trait (diagonal) and the pairwise

evolutionary covariation among traits (upper-diagonal). The lower-diagonal plots show

ellipses for the 95% confidence interval of the bivariate distribution between each pair of

traits. Different from the histograms, the ellipses are only a sample from the posterior

distribution (see documentation for plotRatematrix).

Here we applied the test of convergence for the chains using Gelman and Rubin (1992) poten-

tial scale factor analysis (see function checkConvergence). This convergence test requires

two or more independent MCMC chains and compares the variance of parameter estimates

between chains and within each chain.

The testRatematrix function calculates a series of summary statistics based on the pairwise

degree of overlap among the posterior distribution of R matrices fitted to same phylogenetic

tree (Caetano and Harmon, 2017a). If this overlap exceeds 5%, then we can conclude that

the difference between posterior parameter estimates is not strong enough to support the

hypothesis that regimes are representations of distinct macroevolutionary patterns. When

we compare the posterior distribution for the evolutionary correlation (par="correlation";

overlap of 0.4) and the rates of evolution for each trait (par="rates"; overlap of 0.0002)

there is no evidence for a shift in the pattern of evolutionary integration but island anole

lineages show faster rates of trait evolution when compared to mainland lineages (Figure 3.3,
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see also Caetano and Harmon, 2017a). We refer readers to Caetano and Harmon (2017a)

for an extensive simulation study of the performance of the method as well as the use of

summary statistics under a diverse set of scenarios of correlated evolution.

3.4.2 Integration of uncertainty in regime configurations

One of the advantages of Bayesian implementations is that analyses can integrate uncertainty

from different sources. Rate regimes, for example, are used to map the set of nodes and

branch lengths that will be assigned to each R matrix fitted to a phylogenetic tree. Such

regimes are usually determined a priori by ancestral estimate, since we often are interested in

the association between some characteristic and a possible shift in the pattern of evolutionary

integration among traits. However, ancestral state estimates can be uncertain and alternative

reconstructions are often possible, specially when the states of the characteristics under study

are polymorphic or of dubious interpretation. Nevertheless, most comparative methods are

implemented to estimate the parameters of the model with a single regime configuration

and users need to perform multiple independent analyses in order to incorporate uncertainty

associated with ancestral state estimates.

The package ratematrix offers a different approach by allowing a pool of phylogenetic trees

to be directly incorporated in the MCMC. This pool can comprise repeated simulations

from a stochastic mapping analysis, equally parsimonious ancestral state reconstructions or

even a random sample of trees from the posterior distribution of a phylogenetic inference

analysis. In order to incorporate the pool of trees, we randomly sample one phylogenetic

tree each time the likelihood function of the model is evaluated. Note that this proce-

dure is not the same as a joint Bayesian MCMC estimate of the trait model and the

phylogenetic tree because the posterior distribution of rate regimes or phylogenetic trees

is not sampled as part of the MCMC. However, the posterior distribution of parameter

estimates for the model is sampled conditioned on the pool of trees provided by the user.

Bellow we show how to create an analysis based on a pool of stochastic mapping simulations:

library(phytools) # Using Revell (2012).

state <- setNames(anoles$data$Location, rownames(anoles$data))

phy map <- make.simmap(anoles$phy, x=state, nsim=100)

handle map <- ratematrixMCMC(data=anoles$data[,1:3], phy=phy map

, prior="uniform", gen=10000, outname="phy.pool")

logAnalyzer(handle map, burn=0.25, thin=1)
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When a pool of phylogenetic trees is provided for the MCMC, logAnalyzer returns the

acceptance ratio for each of the phylogenetic trees. Relative low acceptance ratio for a given

tree means that proposals were rejected more often than with the rest of trees from the same

pool. This might be due to a low likelihood score for the multivariate Brownian-motion model

given the tree as a result of an unlikely topology, branch lengths or rate regime configuration.

If this is the case, one can check if the tree has some particular attributes that make it

distinct from other trees in the pool, since such patterns might carry important biological

information. Furthermore, we recommend that an independent analysis is performed with

such a tree (or trees) so that one can test whether results are significantly different than the

former analysis using the entire pool.

3.4.3 Continuing unfinished chains or adding extra iterations

The ratematrix package allows for continuing an unfinished MCMC analysis or to append

additional generations to the previous MCMC chain. This is an essential feature given the

computational burden associated with any Bayesian simulation approach. In both cases,

the user needs to provide the handle object returned by the ratematrixMCMC function (or

saved to the working directory). The following example will add iterations to the previous

MCMC chain:

handle map add <- continueMCMC(handle map, add.gen=1000)

One can use continueMCMC alongside checkConvergence to add generations to the

MCMC until the chain(s) pass the convergence test. This is especially relevant given that

the number of generations required for acceptable convergence is dependent on the data

and the configuration of the sampler.

3.5 New pruning algorithm improves computational time

The package ratematrix implements a novel algorithm to evaluate the likelihood function of

a multivariate Brownian motion model when two or more R matrix regimes are fitted to the

same phylogenetic tree (Caetano and Harmon, 2017a). In previous implementations, a large

matrix composed by the multiplication between the phylogenetic variance-covariance matrix,

with dimension equal to the number of species in the tree, and the evolutionary rate matrix,

with dimension equal to the number of traits, needed to be computed. However, any opera-

tion with such large matrices can become very computationally intensive. Recently, Caetano

and Harmon (2017a) implemented an extension of Felsenstein (1973) pruning algorithm that



73

avoids such calculations. As a result, matrix operations need only to be performed with

the evolutionary rate matrix (R), which is usually a fairly small matrix. Figure 3.4 shows

the computational time for the likelihood function under different approaches. Computa-

tion using the full inverse and determinant of the matrices is the approach that scales worst

with number of traits and size of the phylogeny. Although the ‘rpf’ method (Gustavson

et al., 2010), which avoids the computation of the full inverse and determinants, shows a

significant improvement, the pruning algorithm has the best performance. With respect to

the asymptotic upper bounds (O), all approaches scale equally with the number of traits in

the analysis when the size of the phylogeny is held constant, but there is a remarkable im-

provement with the scaling in function of the number of tips in the phylogeny. The pruning

algorithm scales with O(n + r3) whereas the other methods scale with O(n3 + r3), where n

is the number of tips in the phylogeny and r is the number of traits. The reduction of time

to evaluate the likelihood of the model is fundamental to the implementation of simulation

based approaches such as the Bayesian Markov chain Monte Carlo estimates performed by

the package ratematrix (Caetano and Harmon, 2017a).

3.6 Resources

ratematrix is an open-source R package that can be installed from the github repository

https://github.com/Caetanods/ratematrix. A series of tutorials are available at https:

//github.com/Caetanods/ratematrix/wiki.

https://github.com/Caetanods/ratematrix
https://github.com/Caetanods/ratematrix/wiki
https://github.com/Caetanods/ratematrix/wiki
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Table 3.1: Principal functions available in ratematrix.

Function Description
checkConvergence Perform tests of convergence with one or multiple MCMC chains.

continueMCMC Continue or add generations to a MCMC chain.
estimateTimeMCMC Estimate the time that a MCMC chain will take to run.

likelihoodFunction Compute the log-likelihood of the multivariate Brownian-motion
model.

logAnalyzer Compute acceptance ratio for parameters and pool of phylogenies
and make trace plots for the log-likelihood and acceptance ratio.

makePrior Create prior densities for the model.
makeStart Create starting point for the MCMC chain.

mergePosterior Merge multiple chains from the same data into a single chain.
mergeSimmap Merge rate regimes mapped to a phylogenetic tree.
plotPrior Plot the prior distribution for the parameters of the model.

plotRatematrix Plot the posterior distribution of evolutionary rate matrices (R).
plotRootValue Plot the posterior distribution of root values (phylogenetic mean).
ratematrixMCMC Make the Bayesian Markov chain Monte Carlo analysis.

readMCMC Read MCMC samples from the ratematrixMCMC output file.
samplePrior Draw samples from the prior density created by makePrior.

simRatematrix Simulate data given a phylogenetic tree, evolutionary rate matrix
and root values.

testRatematrix Use summary statistics to test for shifts between rate regimes.
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Figure 3.1: Diagram of the separation strategy proposal (Barnard et al., 2000). Boxes in grey
show the proposal distributions for the variance vector and correlation matrix that compose
the evolutionary rate matrix (R). Boxes in blue show the elements that are directly (or
indirectly, in the case of the covariance matrix) evaluated in the acceptance step of the
MCMC. The yellow circle shows the transformation (T ) required to decompose the variance-
covariance matrix sampled from a inverse-Wishart into a correlation matrix and the variance
vector. The yellow square shows the formula for the Jacobian correction due to T (Zhang
et al., 2006), where di stands for the variance of traits 1 to q. The red square demonstrates
that a additional variance vector is produced in the process, but it is discarded. The green
circle is a representation of the R matrix as a product between the variance vector and the
correlation matrix.
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Figure 3.2: Samples from the prior of the evolutionary rate matrix (R) for two simulated
traits using the separation strategy (Barnard et al., 2000). Standard deviation was modelled
as a uniform distribution between 0 and 10 and the correlation matrix was derived from
a inverse-Wishart centered on a scale matrix with positive correlation (corr = 0.5). Top
figure shows a weak prior with small value for the degrees of freedom parameter (ν = 3)
whereas bottom figure are draws from a more informative prior (ν = 12). In each figure,
the plots in the diagonal show evolutionary rates for each trait whereas the upper-diagonal
plot shows the evolutionary covariation. Lower-diagonal plot show 150 randomly sampled
ellipses representing the 95% quantile for the bivariate distribution. Although both priors
share the same scale matrix, when ν is small the prior distribution has more variance than
when ν is larger. The diagonal plots are held constant since the prior distribution for the
standard deviation is the same in both figures. Note that ellipses show both positive and
negative correlation when the prior is weak (top figure) and positive or no correlation when
the prior is more informative (bottom figure).



77

SVL
S

V
L

Tail_length Head_length
Ta

il_
le

ng
th

H
ea

d_
le

ng
th

0 1 2

2

1

2

2

2

3

2

1,2

2

1,3

2

2,3

Figure 3.3: Posterior distribution of the evolutionary rate matrix (R) regimes fitted to the
island anole (gray) and mainland anole (pink) lineages. A different R matrix were jointly
estimated for each regime. The plots in the diagonal show evolutionary rates (variances)
for each trait; σ2

1 for SVL, σ2
2 for tail length, and σ2

3 for head length. Upper-diagonal plots
show pairwise evolutionary covariation (covariances); σ2

1,2 between SVL and tail length, σ2
1,3

between SVL and head length, and σ2
2,3 between tail length and head length. The ellipses in

the lower-diagonal plots represent the 95% confidence interval of each bivariate distribution
for 50 randomly sampled R matrices from the posterior. The order of the ellipse plots is a
mirror reflection from the upper-diagonal evolutionary covariance plots. Ellipses are only a
sample of the posterior because a very large number of lines can become hard to visualize,
however the user can set any number of samples (or the entire posterior).
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Figure 3.4: Time in seconds spent to compute the likelihood function using different ap-
proaches. Top figure shows computational time for two traits and a phylogeny of different
number of species. Bottom figure shows computational time with a phylogeny of 400 species
and increasing number of traits. Both plots show a comparison among three approaches: ‘in-
verse’ uses the full inverse and determinant of matrices as implemented in phytools (Revell,
2012), ‘rpf’ uses the rectangular full-packed format algorithm as implemented in mvMORPH

(Clavel et al., 2015), and ‘pruning’ uses Felsenstein (1973) pruning algorithm as implemented
in ratematrix.
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A. breslini
A. whitemani
A. longitibialis
A. strahmi
A. marcanoi
A. dolichocephalus
A. hendersoni
A. bahorucoensis
A. monticola
A. darlingtoni
A. aliniger
A. singularis
A. chlorocyanus
A. coelestinus
A. bartschi
A. vermiculatus
A. noblei
A. smallwoodi
A. baracoae
A. luteogularis
A. equestris
A. occultus
A. fraseri
A. chocorum
A. frenatus
A. princeps
A. maculigula
A. danieli
A. aequatorialis
A. ventrimaculatus
A. chloris
A. peraccae
A. huilae
A. fitchi
A. calimae
A. punctatus
A. transversalis
A. heterodermus
A. nicefori
A. euskalerriari
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Figure 3.5: Maximum clade credibility phylogenetic tree for anole lizards made available
by Gamble et al. (2014). Only anole species included in the analysis are shown. Branches
painted in brown represent mainland lineages whereas branches in green are island lineages.
Regimes were mapped to the tree using stochastic mapping with root state set to mainland,
as implemented in the package phytools (Revell, 2012). Please refer to Caetano and Harmon
(2017a) for more information.
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CHAPTER 4: PREDICTING RATES OF EVOLUTION FOR

ONE TRAIT USING A CONTINUOUS GRADIENT OF AN-

OTHER TRAIT

4.1 Abstract

Shifts in the tempo and mode of trait evolution are often interpreted as instantaneous changes

between different regimes. Such regimes are defined as the portion of the phylogenetic

tree related to the presence or absence of a given discrete variable. Then, phylogenetic

comparative models are used to estimate patterns associated with these regimes and test

whether there is a significant difference among them. However, often times the variable that

defines evolutionary regimes is not essentially discrete. Many important factors that influence

rates of trait evolution are continuous such as climate, degree of species interactions, range

size, habitat specialization, among others. As a result, one needs to create arbitrary bounds

and fit such traits into discrete categories in order to perform comparative analyses, since,

up to date, there is no method able to use continuous variables as predictors in analyses of

rates of trait evolution across the branches of a phylogenetic tree. Here we describe a new

comparative method which aims to use a continuous predictor variable in order to predict the

variation of evolutionary rates for a continuous response variable. For this we fit different

continuous mathematical functions that map predictor trait values to evolutionary rates

for the response trait. Our approach is not to be confused with PGLS analyses, since the

former relate predictor trait values to rates of evolution for the response trait whereas the

latter tests for the correlation between the values of two or more continuous traits. We use

simulations to show that the new approach is able to correctly estimate parameter values for

three distinct predictive functions. The use of mathematical functions as predictive models

for rates of evolution is a powerful approach and might contribute to the development and

test of more general processes driving trends of phenotypic evolution across the tree of life.

4.2 Introduction

There is a striking degree of phenotypic diversity among groups of species across the tree

of life. Many are the factors that influence the tempo and mode of phenotypic evolution

(e.g., Adams et al., 2009; Cooper and Purvis, 2009; Hipsley et al., 2014). Furthermore, shifts

in the pace of trait evolution, which can disconnect phenotypic disparity from clade age,

are common throughout the history of several groups (Eastman et al., 2011; Benson and
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Choiniere, 2013; Mahler et al., 2013; Rabosky et al., 2013; Slater, 2013; Rabosky et al., 2014;

Uyeda and Harmon, 2014). These shifts are often associated with important events on the

evolutionary history of lineages, such as mass extinctions (Slater, 2013), the evolution of a

new function for an existent trait (Benson and Choiniere, 2013; Dececchi and Larsson, 2013)

or even changes in the structure of evolutionary correlation among traits affecting the ability

of lineages to explore novel regions of the morphospace (Revell and Collar, 2009; Caetano

and Harmon, 2017a).

Changes in the tempo and mode of evolution of lineages are often interpreted as instanta-

neous shifts in the history of the group. On a phylogenetic context, discrete evolutionary

events are mapped to specific locations on branches or nodes of the tree following ancestral

reconstruction analyses (Schluter et al., 1997; Pagel, 1999; Huelsenbeck et al., 2003). These

positions then divide the phylogenetic history of the group into different regimes defined by

the presence or absence of the events under study (Butler and King, 2004; O’Meara et al.,

2006; Revell and Collar, 2009; Eastman et al., 2011; Caetano and Harmon, 2017a). This

framework is the most used to study macroevolutionary patterns of trait evolution using

available phylogenetic comparative methods (PCMs) and is grounded in the concept of ‘key

innovations’ (Simpson, 1953; Heard and Hauser, 1995) as the driver of trends in phenotypic

evolution. Interestingly, most macroevolutionary studies are focused on the influence of

rare events on the history of the groups even though the reduced number of observations is

prone to bias results due to the problem of phylogenetic pseudo-replication (Maddison and

FitzJohn, 2015). Whether such focus is a result of an inordinate fondness for unique, and

often extraordinary, events across the tree of life or a paradigm associated to the history of

comparative studies is hard to understand.

On the other hand, not all traits acting as important driving forces of phenotypic evolution

among lineages are essentially discrete. Important factors such as climate (Hunt et al., 2015;

Clavel and Morlon, 2017), degree of species interactions (Galetti et al., 2013; Thompson

et al., 2013), range size (Diniz-Filho and Balestra, 1998; Pigot et al., 2012), and habitat

specialization (Bonetti and Wiens, 2014; Hardy and Otto, 2014) are inherently continuous.

Continuous traits are not naturally interpreted on a phylogenetic context by the use of dis-

crete transitions or regimes. Furthermore, while discrete ‘key innovations’ are commonly

associated with shifts in the tempo and mode of phenotypic evolution (e.g., Revell and Col-

lar, 2009; Claverie et al., 2011; Benson and Choiniere, 2013; Dececchi and Larsson, 2013;

Maddison and FitzJohn, 2015), continuous factors are often addressed as predictors on re-

gression models that use phylogenetic information only as a means to address the lack of

independence among species traits (Felsenstein, 1985; Grafen, 1989; Blomberg et al., 2012).

However, continuous traits can also have important impacts on the tempo and mode of
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phenotypic evolution and, similar to regimes mapped for a discrete trait, the gradient of a

continuous variable across the branches of the phylogenetic tree could be used as a predictor

for the dynamics of phenotypic evolution.

Most phylogenetic comparative models of trait evolution focus on the macroevolutionary

patterns of single traits (Butler and King, 2004; O’Meara et al., 2006; Eastman et al., 2011;

Rabosky et al., 2014; Uyeda and Harmon, 2014). Evolutionary rates for traits are estimated

based on species mean values, the distribution of branch lengths, and the topology of the

tree whereas rate shifts are estimated in function of the evolutionary variance for the trait

estimated on different regions of the tree (O’Meara et al., 2006; Eastman et al., 2011).

Some methods allow rate regimes to be mapped a priori to the phylogeny following another

discrete variable (Butler and King, 2004; O’Meara et al., 2006) while others automatically

find the location of shifts (Eastman et al., 2011; Rabosky et al., 2014; Uyeda and Harmon,

2014). More recently, models have incorporated continuous varying rates of trait evolution

across the branches of the tree, but such rates vary independently of any predictor variable

(Rabosky et al., 2014). In the case that two or more continuous traits are incorporated into

the analysis, models use variance-covariance matrices to estimate both the rate of evolution

for each trait and their evolutionary covariance (Revell and Collar, 2009; Bartoszek et al.,

2012; Clavel et al., 2015; Caetano and Harmon, 2017a). However, up to date, no comparative

model is able to estimate rates of trait evolution for a continuous trait as predicted by another

continuous variable mapped to the same tree.

We present a novel framework that uses mathematical functions to describe the dynamics

of rates of evolution of a continuous trait with respect to the values of a predictor variable

mapped to the phylogenetic tree. For this we model rate variation alongside the branches

of the phylogeny using a semi-continuous approach. At each branch, rates of trait evolution

are predicted using some continuous mathematical function mapping to the values of the

predictor variable. We show that the new approach estimates meaningful patterns of rate

variation throughout the tree using different mathematical functions and provide a approach

to test the predictive power of gradients to explain rates of trait evolution across phylogenetic

trees.

4.3 Methods

4.3.1 Description of the model

Here we use continuous mathematical functions to model the rates of evolution of a trait

(i.e., the response trait) under a Brownian-motion model (BM) with respect to the values
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of another trait (i.e., the predictor trait). The model aims to study the association between

the macro-evolutionary patterns of one trait evolving on a phylogenetic tree and the rates

of evolution of another trait on the same tree. Figure 4.2 shows the fundamental concepts

of the model. The predictor and response traits are continuous traits for the same set of

species. The linear function represented by the line on Figure 4.2 describes the variation

of evolutionary rates for the response trait (σ2
response) in function of the trait values of the

predictor trait. The difference between the present model and other phylogenetic compara-

tive models of trait evolution with varying rates, such as AUTEUR (Eastman et al., 2011),

BAMM (Rabosky et al., 2014), and bayOU (Uyeda and Harmon, 2014), is that these meth-

ods estimate rates of trait evolution informed only by the distribution of trait values and

the phylogenetic tree. In contrast, here we introduce the use of a second trait to inform the

variation of rates of evolution across the branches of the tree.

The model can be sub-divided into two components; ancestral values for the predictor trait

are mapped to the branches of the phylogenetic tree and evolutionary rate regimes for the

response trait are assigned to the phylogeny in function of the map of ancestral predictor

trait values. First we divide the predictor trait into k ordered categories defined by k - 1

equidistant breakpoints across the range of the predictor trait values. Then we estimate the

evolutionary rate transitions among the k categories using a Markov process (Pagel, 1994)

that restricts transition rates to happen only between neighbouring states. For example, a

transition from ki to a larger trait value category ki+3 need to be preceded by transitions to

and from the intermediary categories ki+1 and ki+2 . The number of categories reflects how

fine-grained is the model with respect to the macro-evolutionary patterns of the (continuously

distributed) predictor trait; larger k produce a more fine detailed model whereas smaller k

yield a more coarse model (Boucher and Démery, 2016).

The transition rates between the k categories of the predictor trait can be estimated using

a meristic Markov model (MKn) with a single homogeneous rate or multiple rates. Ho-

mogeneous rate can be described by constraining all transition rates between neighbouring

categories to be equal whereas more complex evolutionary patterns can be described by al-

lowing transition rates to and from each category to vary. Of course, one can compare and

choose the model that best describes the evolutionary history of the predictor trait across

the branches of the phylogenetic tree. As the number of categories (k) increases the single

rate Mkn model becomes equivalent to a single rate Brownian-motion (BM) model whereas

the unconstrained Mkn model spans trait evolution models with heterogeneous rates such

as multiple rate BM (O’Meara et al., 2006), BM with a directional trend (Hunt, 2006) and

Ornstein–Uhlenbeck (OU – Butler and King, 2004) (Boucher and Démery, 2016). However,

the Mkn model, as used here, fits a single transition matrix to the whole phylogenetic tree
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and, as a result, can only be equivalent to time-dependent models, such as the acceler-

ated/decelerated (ACDC – Blomberg et al., 2003; Uyeda et al., 2015) and early burst (EB –

Harmon et al., 2010), if the predictor map shows a time-dependent structure.

In order to map ancestral values of the predictor trait to the branches of the phylogenetic

tree we generate multiple stochastic histories for the trait categories using the estimated Mkn

transition matrix (Huelsenbeck et al., 2003). Each of these maps associate the branches of

the phylogeny with the k categories for the ancestral values of the predictor trait. Then we

use a mathematical function (see Figures 4.1 and 4.2) to map these predictor trait regimes

to evolutionary rate regimes for the response trait and compute the likelihood of a multiple

rates Brownian-motion model (O’Meara et al., 2006) with the response trait as the tip data.

4.3.2 Mathematical functions and model choice

Virtually any mathematical function can be used to map values of the predictor trait cat-

egories to evolutionary rate regimes of the response trait. Different functions can be fit to

the data using maximum likelihood (ML) and compared using standard model choice ap-

proaches such as Likelihood-ratio tests (LRT) for nested or the Akaike information criterion

(AIC) for non-nested models (Burnham and Anderson, 2003). Using model choice criteria

that penalizes for the number of parameters (such as AIC – Burnham and Anderson, 2003)

is desirable, since distinct functions of varying complexity can produce identical maps. Some

mathematical functions are commonly applied across a series of biological disciplines and are

likely to be erected as a priori hypotheses for the macro-evolutionary association between a

plethora of traits. Figure 4.1 shows a collection of functions that describe patterns commonly

observed in biological data, especially in studies of trait evolution using phylogenetic trees.

One of the advantages of our approach is that the number of parameters varies with respect

to the chosen mathematical function rather than the number of categories used to describe

the predictor trait (see Figure 4.1). This is a result of maximizing the likelihood of the data

with respect to the parameters of the mathematical function rather than to the rate regimes

directly. Thus, we can use a large number of rate regimes in order to model a trait with (semi-

)continuously varying rates of evolution across the phylogeny without increasing the number

of parameters of the model. This aspect of the model is similar to the strategy implemented in

BAMM (Rabosky et al., 2014), which uses an exponential function to describe the continuous

decrease or increase of rates of trait evolution through time.
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4.3.3 Model implementation

We implemented the model as a R package named ‘phylofx’. The package offers a simple

interface to fit continuous mathematical functions to model the variation of evolutionary

rates of a response trait in function of a predictor trait across the branches of a phylogenetic

tree. All mathematical functions showed on Figure 4.1 are available in the package and can

be chosen from a simple menu. The package also have options for users to define their own

mathematical functions.

4.3.4 Performance simulations

To check the performance of the method we will focus in three very common, but distinct,

nested models: a constant relationship, with homogeneous evolutionary rates (σ2=0.5); a

step function, with two distinct rates separated by an instantaneous transition step (σ2
left=1,

σ2
right=0.5, break point=mean of predictor trait); and a linear function, with a continuous

relationship between the predictor and the response traits (see Figure 4.1). For the linear

function we defined β1=0.5, the set of predictor trait values at the tip as X, and computed

the intercept such that:

β0 = β1 minX − 0.1 (4.1)

We generated a phylogenetic tree with 200 species using a pure-birth model (tree height=1).

Then we simulated a predictor trait following a single rate BM model (σ2=0.5) and divided it

into 10 trait categories mapped to the branches of the tree. We will refer to the result of this

simulation as the true mapped tree. We used the true mapped tree to assign evolutionary

rate regimes to the branches following one of the mathematical functions described above

and simulated the response trait under a multi-rate BM model. We repeated this process

in order to produce 100 datasets for each of the three mathematical functions used in the

simulations tests.

In order to fit the models to the generated data, we estimated a meristic Mkn transition ma-

trix for the predictor trait with k=5 and equal transition rates. We produced 10 stochastic

mapping histories based on this transition matrix and performed a maximum likelihood esti-

mate for each of the mathematical functions under each of the stochastic mapping histories.

We chose the best model by comparing the mean pairwise AIC values across all stochastic

maps with threshold equal to 4 ∆AIC units (Burnham and Anderson, 2003). We repeated

model fit and model test for each of the 300 simulated datasets. We computed error rates

as the frequency in which the model used to generate the data was not selected as the best
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model.

Preliminary tests showed that it is often difficult to find the global maximum likelihood for

the parameters of the model using minimization algorithms. Thus, we applied three distinct

strategies to generate the starting point for the searches. First we generated starting points

by drawing from a flat distribution with a large range of parameter values (from -400 to 400).

Starting points generated using this approach are unlikely to be close to the global maximum

but provide a wide sample of the parameter space. We refer to this approach as ‘wide’.

Second we used a more informed strategy by optimizing the parameters of the mathematical

functions to produce evolutionary rates equal to σ2 estimated for a homogeneous BM model

with the response trait as the tip data. Then we defined a narrow range of parameter values

around the best fit (by adding -10 and 10) and used this distribution to draw starting points.

This starting point strategy, which we refer as ‘narrow’, makes sure that starting parameter

values for the functions yield evolutionary rates that are congruent with the observed data

and avoid possible problems resulting from starting at a flat region of the likelihood surface.

Finally, we applied the most informative strategy by setting the starting point of the ML

searches as the true parameter value for the models. When estimating a model different

from the one that generated the data we set the parameters of the mathematical function

as to minimize the distance relative to the evolutionary rates predicted by the true model

for each trait category. We defined this search strategy as ‘fixed’. We compare and discuss

results among the different search strategies.

4.3.5 Likelihood surface for the linear function

Results from simulations showed that the linear model estimated with starting points draw

from a wide range of the parameter space (the ‘wide’ strategy) often have worse fit than

estimates with starting points informed by the data (the ‘narrow’ strategy). To investigate

whether this pattern is associated with the shape of the likelihood surface rather than a sys-

tematic bias due to the implementation of a restricted pool of starting points when using the

‘narrow’ strategy we computed summary statistics from the results of maximum likelihood

searches based on the simulated data.

First we calculated the number of times that the multiple independent searches for the same

data reached the maximum likelihood score among all the searches, we defined this quantity

as ‘hits’. To compute the number of ‘hits’ we aggregated the maximum likelihood score

returned by each of the independent searches. Then we counted the number of searches for

which the ∆log-likelihood with respect to the maximum log-likelihood among all searches

was less than the 0.0001 threshold. A large number of ‘hits’ indicates that multiple searches
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starting from different points in the parameter space converged towards the same likelihood

score and, therefore, the same combination of parameter values. Such result support the

hypothesis that this point is the global maximum log-likelihood for the model. Following,

we investigated whether there is an association between the number of ‘hits’ and how close is

the model estimate to the true model that generated the data. For this we only used results

based on the same models that generated the data.

4.4 Results

4.4.1 Performance simulations

First we computed the proportion of times that each of the generating models was recov-

ered by model selection using the Akaike information criterion (AIC) while integrating the

uncertainty associated with the use of stochastic mapped histories and comparing different

approaches used to define the starting points for the maximum likelihood searches. Table

4.1 shows the number of times among all 100 simulated datasets that each model had the

best AIC score, computed as the mean pairwise AIC over stochastic mapped histories. Then

we used ∆AIC scores, also based on the pairwise AIC across stochastic mapped histories,

to record support for (Table 4.2) and against (Table 4.3) the model that generated the data

using a threshold of 4 ∆AIC units. For each simulation replicate and starting point strat-

egy we plotted the distance between σ2 values for the predictor trait categories estimated

under the models and the true value for the simulation (Figures 4.3, 4.4 and 4.5). Below we

describe results when data are simulated with the constant, linear, and step functions.

The majority of replicates, independent of search strategy, recovered the true model as the

model with best AIC scores when data was generated under a constant evolutionary rate

throughout the tree (Table 4.1). However, for most cases, there is a lack of support in

favor (Table 4.2) or against (Table 4.3) the constant model when compared with alternative

models. These results suggest that ∆AIC cannot substantiate any difference between models

when data is simulated under a constant rate of evolution. Indeed, the distance between

rates estimated for each model and the true rates is comparable among most of the replicates,

starting point strategies, and models (Figure 4.3). Only the linear function estimated using

the ‘wide’ starting point strategy can be rejected as a good model to explain the data when

contrasted with the true model. Figure 4.3 (top row, middle column) shows that rates

estimated under this model are much larger than reasonable values given the tree and the

trait data, which suggests that the estimator failed to find the global maximum for the

likelihood of the model.
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Data generated under the linear function, where rates of evolution of the response trait show

a positive correlation with predictor trait values, show results with the true model having

the highest AIC on the majority of simulation replicates for both the ‘narrow’ and ‘fixed’

starting point approaches (Table 4.1). However, this result changes in the case of the ‘wide’

distribution of starting points, because the step function shows the best AIC scores even

though the data was simulated under a linear function. When we compute the support for

the model that generated the data both under the ‘narrow’ and ‘fixed’ starting points, we

see that there is support for the linear model against the constant model on the majority

of replicates and about half of the replicates show support in favor of the linear model

when compared with the step model (Table 4.2). On the other hand, when using the ‘wide’

starting point distribution, ∆AIC scores point to both alternative models as better models

than the true model that generated the data (Table 4.3). Parameter estimates for these

models show that results from the linear model under the ‘wide’ starting point strategy

produce overly large evolutionary rates compared to competing models (Figure 4.4 - top

row, middle column), which is likely the reason for the poor fit to the data. Using either the

‘narrow’ and ‘fixed’ starting point produce better parameter estimates for the linear function

(Figure 4.4 - middle and bottom rows) that reflect as more support for the true model based

on ∆AIC scores (Table 4.2).

The step model is the most parameter-rich among the tested models, with three parameters

(see Figure 4.1). When data was simulated under this model, only results from the ‘wide’

starting point distribution show the true model as the model most frequently with the highest

AIC scores (Table 4.1). Under the other starting point strategies the step model is as frequent

the best AIC scoring model as the linear model (Table 4.1). This pattern is also present in

the results of the support for the step model over alternative models. When using the ‘wide’

starting point distribution the step model is favored over the linear model in the majority of

replicates whereas there is no difference between these models in the majority of replicates

when using the other starting point approaches (Tables 4.2 and 4.3). Parameter estimates

for the linear function under the ‘wide’ starting point distribution show the same pattern as

in the previous results: rates are too fast and too distant from the parameters that generated

the data (Figure 4.5 - top row, middle column). On the other cases the rates estimates for

the linear and the step models show good fit to the data.

4.4.2 Likelihood surface for the linear function

The maximum likelihood estimate (MLE) for the parameters of the different mathematical

functions show a trend that the ‘wide’ approach to sample starting points often result in worse
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fit than the other starting point strategies (see Figures 4.3, 4.4, and 4.5). When we compute

the number of ‘hits’ among all replicates, each with 500 independent searches, for the ‘wide’

and ‘narrow’ starting point distributions we can see that the same trend is reflected in how

often independent searches return the same maximum likelihood point. Figure 4.6 (middle

row) shows the distribution of frequencies of number of ‘hits’ for the linear function using

the ‘wide’ and ‘narrow’ starting schemes. When using the ‘wide’ starting point distribution,

almost all replicates returned only a single ‘hit’ whereas the frequency of 2 or more ‘hits’

increase significantly under the ‘narrow’ search strategy. Interestingly, the effect of the ‘wide’

distribution of starting point on the number of ‘hits’ is not so pronounced with the other

models in the set (Figure 4.6).

The association between a small number of ‘hits’ and poor parameter estimates for the

model is made clear by the results shown in Figure 4.7. The mean absolute distance between

the parameter estimates and the true value for the model is larger when the search result

returned a single ‘hit’ than when 2 or more ‘hits’ occur. Furthermore, the variance of this

distance is much larger when the search resulted in a single ‘hit’, meaning that one is likely

to get a maximum likelihood estimate far from the parameter values that generated the data.

Surprisingly, there is no gradual improvement in estimates with the number of ‘hits’, searches

with 2 or more ‘hits’ show similar mean and variance of the distance between estimated and

true parameter values for the model (Figure 4.7).

4.5 Discussion

The models described herein test for an association between a continuous trait and the

evolutionary rates of a second trait evolving on the same phylogenetic tree. We tested the

performance of three nested models using simulated datasets: the constant, linear and step

functions. However, the same analysis framework used here can be easily extended to any

mathematical function, nested or non-nested, that relates the values of a predictor trait to

rates of evolution of a response trait under a Brownian-motion model. For instance, the R

package phylofx provides six functions that can be easily implemented (Figure 4.1) besides

the option to create any other function that better describes the hypothesis of rate variation

observed in the data.

Our simulations show that it is difficult to recover the true model that generated the data

as the best model using the Akaike information criterion (AIC) because, on average, there is

not enough distinction among the ∆AIC scores of competing models (Table 4.2). However,

parameter estimates for all models generally produced evolutionary rates congruent with

rates used to generate the data even when the true model was not significantly different
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than the alternative models (Figures 4.3, 4.4, 4.5). When data was generated under the

simplest model, for example, the slope of the linear function (mean=0.01, sd=0.22) and the

difference between rates of the step function (mean=0.01, sd=0.29) were on average centered

on 0. This means that the gradient of evolutionary rates predicted across the tree was fairly

similar across all models and suggests that any of the models in this set would yield similar

conclusions about the macroevolution of the traits. Such results reinforce the idea that

when performing multi-model inference it is important to focus on the parameter estimates

for each model rather than turning our attention only to the model selection criteria or

the arbitrary threshold statistics that may rank one model above the others (Caetano and

Harmon, 2017a).

The performance of the linear model, that describes a linear relationship between the pre-

dictor trait and the rates of evolution of the response trait, was found to be dependent

on the strategy used to draw random starting points for the maximum likelihood search.

The likelihood surface for this model has multiple local optima which increase the chance

that multiple independent searches will not return the global optima for the likelihood when

starting from distant regions of the parameter space (See Figures 4.6 and 4.7). For this

reason, searches using a very wide starting point region (i.e., the ‘wide’ strategy) will often

result in poor parameter estimates for the linear function. However, using the evolutionary

rate for a homogeneous Brownian-motion model estimated for the response trait to define a

parameter space region where to draw starting points from (i.e., the ‘narrow’ strategy) is a

reliable approach to set starting points that are within reach of the global maximum despite

the presence of various local optima. We suggest that empirical studies implementing the

linear function, or other parameter-rich mathematical functions, use a similar starting point

strategy for model estimation.

The step model, different from the linear model, does not describe a continuous relationship

between the predictor and response traits. This model applies a threshold value that is

dependent on the predictor trait, then regions of the phylogenetic tree reconstructed as

below the predictor threshold share a single rate that is independent of the rate for regions

of the phylogeny reconstructed as above the threshold. For this reason, the contrast with the

linear function is important to understand how the transition from discrete regime-oriented

models to continuous functions can improve our inferences of macroevolutionary patterns.

Our simulations show that when the linear model is properly estimated (using the ‘narrow’

starting point strategy) it is difficult to differentiate the regime-like step model from the

continuous linear model (Tables 4.2 and 4.3). Two attributes of the models and inference

might be driving such results: model complexity and sensibility to discretization.

There is a balance between the number of parameters that constitute a model and how well
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the model fits to the data or, more precisely, how likely is the observed data to be generated

under the model when implementing model selection using the Akaike information criterion

(AIC). For instance, the linear model has one fewer parameter than the step model and, all

else equal, it should be preferred over the latter. Indeed, we found the linear model to be

preferred over the step model on 30% of our simulations whereas the reverse only occurred

once (Table 4.2). The linear model predicts a distinct rate value for each predictor trait

category following a strict relationship whereas the step model has two independent rate

regimes. When the number of categories used to discretize the model is low, it is possible

that two independent rate regimes fit to the data better even when the generating model

was linear. Thus, support for the continuous model might increase if a higher number of

rate categories is used. However, this is a hypothesis to be explored in future studies.

4.5.1 Future directions

Our simulations explored different relationships between the predictor trait and the response

trait. Results suggest that we are able to estimate correctly the pattern of rate variation

across the branches of the phylogenetic tree if rates are constant, positively or negatively

associated with the predictor trait. However, differentiating between competing models using

∆AIC scores remains a challenge. Herein we used phylogenetic trees with 200 species and we

discretized continuous functions using 5 rate categories (k). It is plausible, and likely, that

both the number of species and k might influence the power to differentiate among models

using AIC or other model choice criteria.

To perform such tests one need to increase both the number of rate categories used to

discretize the models and the number of branches that stochastic mapped histories need to

be simulated on. However the current implementation of stochastic mapping reconstructions

(Huelsenbeck et al., 2003) offered by the R package phytools (Revell, 2012) does not scale

well with the number of traits in the data and creates an important challenge for such

tests. Fortunately, Irvahn and Minin (2014) have developed a framework1 that drastically

improves computational time for generating stochastic mapped histories. Incorporating this

framework on our package phylofx will make it possible to perform analyses with a large

number of species and rate categories for the predictor trait.

1This is not that much recent, I know. The issue is that the performance barrier associated with stochastic
mapped histories increases faster in function of the number of traits than the number of species in the
phylogeny. This happens because the Q matrix need to be exponentiated at every branch. However, studies
often have a reasonable number of traits and the time to perform stochastic mappings is commonly bearable.
This is not the case for our approach. For example, for 200 species and 15 traits a single stochastic map
simulation using phytools can take up to 10 hours!
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4.6 Concluding remarks

Interspecific trait variation plays a fundamental role in our understanding of evolutionary

processes happening on multiple scales. Macroevolutionary analyses of trait evolution, for

instance, focus on describing patterns and testing hypotheses about the phenotypic differ-

entiation of lineages over time. However, we are still far from comprehending the general

processes that may have shaped the diversity of traits on the majority of groups. Most of

what we know is restricted to clades that show some kind of evolutionary ‘key innovation’ or

the rare, but well-studied, examples of adaptive radiation. Evolutionary innovations attract

studies that test whether such events are or not responsible for shifts in how lineages changed

over time, unfortunately, these are unique events in the evolutionary history of a group and

often provide results only applicable to the clade under study or their close relatives. Thus,

if a general trend of phenotypic evolution across the tree of life is to be ever established,

our focus need to shift from rare events to more commonly occurring predictors that can be

applied to very disparate groups.

Different from trait evolution, lineage diversification studies have made significant advances

towards testing large scale hypotheses derived from processes that might be acting on the

dynamics of lineage accumulation over time. These are often based on gradients acting on

ecological and evolutionary levels and, most importantly, have predictor factors common

to most groups, such as latitude, elevation, ecological specialization and competition. The

generality of such factors is the key element for the predictive power of lineage diversification

hypotheses and allow the inclusion of distantly related clades into the same framework. Un-

fortunately, phenotypic evolution studies often focus on much more group-specific questions.

The lack of suitable phylogenetic comparative methods to implement predictor gradients

might play a role on the perceivable disparity of approaches when comparing diversification

with trait evolution studies. In this light, our new framework expands the comparative

method toolkit to incorporate the use of continuous predictor variables that describe rates

of trait evolution varying across the branches of a phylogenetic tree using parameters for a

series of mathematical functions. The introduction of mathematical functions allow for the

estimate of powerful predictive models that can be used to test hypothesis regarding the

gradient of general factors across the tree of life and, hopefully, help us understand more

about general patterns and processes of trait evolution.
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Table 4.1: Number of times each model showed the best Akaike information criterion (AIC)
score across 100 simulations using different search strategies. For each simulation AIC was
computed as the mean AIC score across stochastic mapped histories. ‘Wide’ denotes searches
in which starting points were randomly draw from a wide uniform distribution of parameter
values. ‘Narrow’ and ‘Fixed’ use more informed starting points for the MLE searches: the
first draw from an uniform distribution around the parameter values after setting the function
to produce rates of evolution equal to the rate estimated using a single rate Brownian motion
model; the second sets the starting point as close as possible to the rates that generated the
data.

True model Search strategy Constant Linear Step

Constant Wide 84 1 15
Constant Narrow 75 11 14
Constant Fixed 89 2 9

Linear Wide 9 13 78
Linear Narrow 3 84 13
Linear Fixed 9 64 27

Step Wide 17 8 75
Step Narrow 16 54 30
Step Fixed 20 39 41
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Table 4.2: Number of times that mean pairwise ∆AIC across stochastic mapping histories
for each model was larger than 4 units in favor of the model that generated the data. See
main text and Table 4.1 for details on the different search strategies. Column ‘N’ shows the
number of times that the true model had the best AIC score among all other models.

True model Search strategy N Constant Linear Step

Constant Wide 84 — 94 0
Constant Narrow 75 — 1 0
Constant Fixed 89 — 13 0

Linear Wide 13 25 — 2
Linear Narrow 84 78 — 30
Linear Fixed 64 67 — 38

Step Wide 75 38 79 —
Step Narrow 30 26 1 —
Step Fixed 41 24 18 —

Table 4.3: Number of times that mean pairwise ∆AIC across stochastic mapping histories
for each model was larger than 4 units in favor of the alternative model when compared to
the true model. See main text and Table 4.1 for details on search strategies. Column ‘N’
shows the number of times that the true model failed to show the best absolute AIC score
across all other models.

True model Search strategy N Constant Linear Step

Constant Wide 16 — 0 2
Constant Narrow 25 — 2 3
Constant Fixed 11 — 1 0

Linear Wide 87 65 — 77
Linear Narrow 16 0 — 0
Linear Fixed 46 5 — 7

Step Wide 25 0 1 —
Step Narrow 70 0 5 —
Step Fixed 59 0 0 —
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A homogeneous rate throughout the tree.

Two homogeneous rate regimes with shifts 

ocurring at a threshold value of the predictor 

trait.

A linear model. Rate changes linearly with the 

value of the predictor trait.

A two regimes linear model. Rate changes 

linearly with the value of the predictor trait, 

but the linear function shifts at a threshold 

A power function model. Rate changes over a 

power function of the value of the predictor 

trait.

A sigmoid function model. This is the most 

flexible function implemented by default on

the 'phylofx' package.

Predictor trait

E
vo

lu
tio

na
ry

 r
at

es
 fo

r 
th

e 
re

sp
on

se
 tr

ai
t

Figure 4.1: List of mathematical functions implemented in the R package phylofx. Plots on
the left show regression lines between the values of the predictor trait and the rates of evo-
lution of the response trait (σ2

response). Middle column shows the mathematical function(s)
associated with each plot and right column provides a brief description of each function.
These functions are easily selected from a menu when using the phylofx, however any math-
ematical function that associates trait predictor trait values to σ2

response can be implemented
on phylofx.
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Figure 4.2: Example of phylogeny showing changes in σ2 for the response trait across the
branches in function of the predictor trait values following a linear model with positive slope.
Cold and warm colors represent slower and faster evolutionary rates, respectively. All colors
match among plots. Each portion of a branch showed in the phylogenetic tree on the left is
mapped to a value of σ2

response following the ancestral reconstructed value for the predictor
trait. The relationship between the rate of evolution and the predictor trait value is shown
on the upper right plot. The dashed gray line represents the linear function that generated
the data (see main text for information on parameter values). Each horizontal line is one of
the five rate categories (k) used to discretize the continuous gradient of rates. All predictor
trait values on the extent of these horizontal lines are mapped to a respective σ2

response value.
Bottom right plot show a scatter plot between the predictor and response trait values for
the tips of the tree. See that there is no clear correlation between the trait values, since the
association here is between the predictor trait values and the rates of trait evolution of the
response trait.
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Figure 4.3: Results from performance simulations using datasets generated with a constant
evolutionary rate. Each plot shows the distance between the true value for the evolutionary
rate and the estimated value for each of the 5 predictor trait categories used in the analyses.
Columns show parameter estimates under different models and rows correspond to three
search strategies. The x axes are the predictor trait categories from 1 to 5 while y axes show
σ2
response associated with each category. The horizontal red line marks 0, which correspond

to parameter estimates equal to the true value used to generate the data. The color of
the points mark if the model is significantly better (threshold of 4 ∆AIC units) than the
model that generated the data (blue), worse than the generating model (red), or show no
significant difference (black). Each point is the mean parameter estimate across stochastic
mapped histories for each of the 100 simulations. Points were slightly dislocated horizontally
for better visualization.
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Figure 4.4: Results from performance simulations using datasets generated with a linear
function between predictor trait values and rates of evolution of the response trait. Each plot
shows the distance between the true value for the evolutionary rate and the estimated value
for each of the 5 predictor trait categories used in the analyses. Columns show parameter
estimates under different models and rows correspond to three search strategies. The x axes
are the predictor trait categories from 1 to 5, y axes show σ2 associated with each category.
The horizontal red line marks 0, which correspond to parameter estimates equal to the true
value used to generate the data. The color of the points mark if the model is significantly
better (threshold of 4 ∆AIC units) than the model that generated the data (blue), worse
than the generating model (red), or show no significant difference (black). Each point is the
mean parameter estimate across stochastic mapped histories for each of the 100 simulations.
Points were slightly dislocated horizontally for better visualization.
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Constant Linear Step

Figure 4.5: Results from performance simulations using datasets generated with a step
function between predictor trait values and rates of evolution of the response trait. Each plot
shows the distance between the true value for the evolutionary rate and the estimated value
for each of the 5 predictor trait categories used in the analyses. Columns show parameter
estimates under different models and rows correspond to three search strategies. The x axes
are the predictor trait categories from 1 to 5, y axes show σ2 associated with each category.
The horizontal red line marks 0, which correspond to parameter estimates equal to the true
value used to generate the data. The color of the points mark if the model is significantly
better (threshold of 4 ∆AIC units) than the model that generated the data (blue), worse
than the generating model (red), or show no significant difference (black). Each point is the
mean parameter estimate across stochastic mapped histories for each of the 100 simulations.
Points were slightly dislocated horizontally for better visualization.
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Figure 4.6: Number of ‘hits’ computed for 500 independent searches across each of the
stochastic mapped histories for each simulation replicate and model. Large number of ‘hits’
means that multiple independent searches converged to the same log-likelihood score.
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Boucher, F. C. and V. Démery. 2016. Inferring Bounded Evolution in Phenotypic Characters

from Phylogenetic Comparative Data. Syst. Biol. 65:651–661.

Brakefield, P. M. 1990. Genetic drift and patterns of diversity among colour-polymorphic

populations of the homopteran Philaenus spumarius in an island archipelago. Biol. J.

Linn. Soc. 39:219–237.

Brattstrom, B. H. 1955. The Coral Snake ’Mimic’ Problem and Protective Coloration. Evo-

lution 9:217–219.



105

Brodie III, E. 1993. Differential Avoidance of Coral Snake Banded Patterns by Free-Ranging

Avian Predators in Costa Rica. Evolution 47:227–235.

Brodie III, E. D. B. and F. J. Janzen. 1995. Experimental Studies of Coral Snake Mimicry:

Generalized Avoidance of Ringed Snake Patterns by Free-Ranging Avian Predators. Func.

Eco. 9:186.

Buasso, C. M., G. C. Leynaud, and F. B. Cruz. 2006. Predation on snakes of Argentina:

Effects of coloration and ring pattern on coral and false coral snakes. Stud. Neot. Fauna

and Env. 41:183–188.

Burnham, K. P. and D. R. Anderson. 2003. Model Selection and Multimodel Inference: A

Practical Information-Theoretic Approach. 2nd edition ed. Springer, New York.

Butler, M. A. and A. A. King. 2004. Phylogenetic comparative analysis: a modeling approach

for adaptive evolution. Am. Nat. 164:683–695.

Caetano, D. S. and L. J. Harmon. 2017a. Estimating rates of trait evolution with uncertainty.

bioRxiv doi: https://doi.org/10.1101/102939.

Caetano, D. S. and L. J. Harmon. 2017b. ratematrix: An R package for studying evolutionary

integration among several traits on phylogenetic trees. Method. Ecol. Evol. .

Campbell, J. and W. Lamar. 2004. The Venomous Reptiles of the Western Hemisphere.

Cornell University Press, Ithaca, NY.

Clavel, J., G. Escarguel, and G. Merceron. 2015. mvmorph: An R package for fitting multi-

variate evolutionary models to morphometric data. Method. Ecol. Evol. 6:1311–1319.

Clavel, J. and H. Morlon. 2017. Accelerated body size evolution during cold climatic periods

in the Cenozoic. Proc. Natl. Acad. Sci. 114:4183–4188.

Claverie, T., E. Chan, and S. N. Patek. 2011. Modularity and scaling in fast movements:

power amplification in mantis shrimp. Evolution 65:443–61.

Claverie, T. and S. N. Patek. 2013. Modularity and rates of evolutionary change in a power-

amplified prey capture system. Evolution 67:3191–3207.

Collar, D. C., T. J. Near, and P. C. Wainwright. 2005. Comparative analysis of morphological

diversity: Does disparity accumulate at the same rate in two lineages of centrarchid fishes?

Evolution 59:1783–1794.

https://doi.org/10.1101/102939


106

Collar, D. C., P. C. Wainwright, M. E. Alfaro, L. J. Revell, and R. S. Mehta. 2014. Biting

disrupts integration to spur skull evolution in eels. Nature Communications 5:5505.

Cooper, N. and A. Purvis. 2009. What factors shape rates of phenotypic evolution? A

comparative study of cranial morphology of four mammalian clades. J. Evol. Biol. 22:1024–

1035.

Dececchi, T. A. and H. C. E. Larsson. 2013. Body and limb size dissociation at the origin of

birds: Uncoupling allometric constraints across a macroevolutionary transition. Evolution

67:2741–2752.

Denton, J. S. S. and D. C. Adams. 2015. A new phylogenetic test for comparing multiple high-

dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in

lanternfishes (Myctophiformes; Myctophidae). Evolution 69:2425–2440.
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