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Abstract 

Post-spawned female rainbow trout were developed as a model for studying repeat 

spawning in steelhead kelts. Female trout were collected after spawning and separated 

into a standard maintenance ration group and a restricted ration group (20% of standard 

ration). Our intention was to induce an energy deficit that would arrest rematuration 

among restricted-ration fish, and then compare plasma levels and tissue gene expression 

for candidate endocrine biomarkers between non-rematuring and rematuring fish. Food-

restriction arrested ovarian growth and development within 15–20 weeks, as evidenced 

by reduced ovarian growth and lower plasma estrogen levels. Food restriction also 

affected hepatic expression of the metabolic endocrine factors insulin-like growth factor 

and leptin, but not consistently across age classes, and did not affect circulating levels of 

nesfatin-1 or ghrelin. Next, we combined plasma hormone assays, physical 

measurements, and post-release tracking data for female steelhead kelts from a 

reconditioning program on the Yakima River to predict early detection of reproductive 

maturation. Rematuring kelts were longer and heavier at intake in spring; grew faster 

during summer reconditioning; and were longer, heavier, fatter, and of higher condition 

factor at autumn release. This work is the first known comparison of reconditioned 

steelhead with natural-origin in-river migrating steelhead, and shows that reconditioning 

projects yield bigger and fatter fish, with higher circulating levels of estrogen and similar 

circulating levels of vitellogenin compared to in-river migrating steelhead, and that 

tracking data suggests rematuring reconditioned kelts behave congruently with repeat 

spawning in the Upper Yakima River. 
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Chapter 1: “General Introduction” 

 

Iteroparity 

 

Endocrine regulation of initial maturation (puberty) has received some attention 

among certain fishes of economic importance or intellectual interest [1,2,3,4]. However, 

rematuration and the physiological processes associated with gonadal recrudescence 

remain largely unstudied in fishes. This is unfortunate, because the fishes present an 

interesting case among vertebrates for the study of gonadal recrudescence: some fishes, 

such as salmonids, exhibit complete compensatory ovarian recrudescence following 

unilateral ovariectomy [5], and it is likely that similar mechanisms regulate recrudescence 

among rematuring iteroparous fishes. 

While it makes sense to presume that the same endocrine factors regulate puberty 

and re-maturation [6], this assumption has largely gone untested with a few exceptions 

[7,8,9,10,11]. However, even if this is true, photoperiodic, growth, and nutritional 

thresholds may differ between the two processes. For instance, body size thresholds 

gating puberty have necessarily been met by the time of re-maturation; perhaps growth 

rate or nutritional stores are more important for subsequent reproductive efforts. Also, at 

the time of rematuration, at least some reproductive anatomy remains from puberty. This 

means that fewer somatic resources need to be diverted toward reproductive system 

growth and development, less time is required to prepare for spawning, and the 

reproductive system is essentially primed for recrudescing almost immediately after 
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spawning. This may result in higher circulating levels of sex steroids during subsequent 

reproductive efforts, as has been described in meagre (Argyrosomus regius) [12]. 

Salmonid fishes (Family Salmonidae) represent a unique group in which to study 

variation in life history and reproductive strategy for a number of reasons. Salmonids are 

capital breeders that invest heavily in reproduction by producing large, yolky eggs 

[13,14,15,16], and many migrate long distances to reproduce [17,18,19,20,21]. 

Reproduction occurs once per year, often under conditions of intense competition for nest 

sites and mates [22]. The combination of these traits means that salmonids invest heavily 

in reproduction, sometimes at the cost of their own life. As a group, salmonid fishes 

exhibit a diversity of life histories, and life history may be plastic within a species 

[23,24]. There are semelparous Pacific salmon (e.g., Chinook salmon Oncorhynchus 

tshawytscha, sockeye salmon O. nerka), iteroparous trout (e.g., cutthroat trout O. clarkii, 

brown trout Salmo trutta), and species that exhibit both life histories (e.g., largely 

semelparous anadromous steelhead trout and iteroparous resident rainbow trout). 

Semelparity appears to be a shared derived character (synapomorphy) among salmonids 

[25,26,27,28], and evidence suggests that semelparity is confounded with anadromy in 

this group [13]. Migration to the ocean generally results in larger body size, higher 

quality gametes, and greater fecundity, but is often associated with death after spawning 

[25]. Costs associated with producing large, yolky, metabolically expensive eggs, and 

then migrating long distances, may inhibit the successful expression of iteroparity in 

animals that have been selected to produce such eggs. Still, some anadromous salmonids 

(notably Atlantic salmon, Salmo salar, and steelhead) do display iteroparity 
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[22,29,30,31]. Individuals among iteroparous salmonid species that have survived initial 

spawning are called kelts. 

For numerous reasons, steelhead numbers have declined markedly over the last 

century [32,33]. The National Oceanic and Atmospheric Administration has identified 

five distinct population segments of steelhead from the interior (non-coastal) portion of 

the Columbia River Basin; all five are currently listed as threatened under the 

Endangered Species Act [34,35]. One strategy to increase returns of steelhead in the 

Columbia River Basin [36,37,38] involves capturing post-spawned steelhead during the 

spring, when they are outmigrating downstream, holding and feeding them in land-based 

tanks while they recover from spawning, and then releasing them in autumn with the 

assumption that these fish will migrate back upstream and spawn again [38]. These 

programs are known as “reconditioning.” 

The Columbia River Inter-Tribal Fish Commission (CRITFC) has ongoing 

projects to recondition steelhead kelts captured during their downstream migration at 

locations throughout the Columbia River Basin. Progress has been made in refining 

techniques and methods associated with these projects, and by some measures they have 

been successful [36,37,39]. Both collection and survival of steelhead kelts are heavily 

biased toward female fish. Consequently, nearly all of the fish released from 

reconditioning programs are female. However, the reproductive status of fish released 

after reconditioning is not known. Improvements to the reconditioning process could be 

made if fish could early and accurately be separated into groups based on their likelihood 

of re-maturing, with special care or additional treatments being provided solely to fish 

that require such action. It seems probable that endocrine signals or physical parameters 
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differ between fish that will re-mature and those that will skip the upcoming spawning 

season. Identification of these metrics would provide markers that could then be used to 

focus efforts and resources on fish that need and would respond to costly treatments. 

Toward this end goal, a series of studies were undertaken to determine the endocrine 

signals responsible for communicating information about nutritional and growth status 

from the periphery to the central reproductive axis in iteroparous O. mykiss. In order to 

conduct these studies in a tractable experimental model, post-spawned, domesticated 

female rainbow trout were developed as a model for studying repeat spawning in 

steelhead kelts. 

 

Intersection of Growth & Reproduction 

 

Nutritional status mediates trade-offs and informs the physiological underpinnings 

of life history decisions among salmonids. Atlantic salmon (Salmo salar) physiologically 

assess energy reserves during critical periods prior to metamorphosis and seaward 

migration (smoltification), smoltifying only if food within the stream environment is 

inadequate to support maturation [40]. Both brown trout and Atlantic salmon migrate 

more quickly and smoltify at a higher rate and more rapidly when fed reduced rations 

[40,41]. Hatchery raised steelhead O. mykiss that are raised under conditions of nutrient 

excess often “residualize”, remaining in the stream system as resident rainbow trout 

rather than outmigrating to the ocean [42,43]. It may be the case that when nutritional 

resources are abundant and adequate for maturation, no physiological motivation for 
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seaward migration exists. These examples suggest that, among salmonids, life history is 

highly plastic and regulated by environmental energy availability. 

A link between energy balance and reproduction has long been observed in fishes 

[44], but the physiological mechanisms that underlie this phenomenon have remained 

unclear until rather recently. While a broad body of literature has established the major 

endocrine factors linking growth and reproduction in mammalian systems, until recently 

the fishes have been less studied. Furthermore, most fish research has focused on the 

metabolic regulation of initial sexual maturation (puberty) [45], rather than re-maturation. 

Among salmonids and other fishes, there is no evidence that size or age thresholds 

directly gate puberty [3]; instead, it appears that maturation is an adaptive and heritable 

response to environmental conditions (e.g., photoperiod, temperature, nutrient 

availability) that functions to maximize reproductive success [46]. In salmonid fishes, age 

and size at maturity are products of the interaction of environmental conditions and 

genetic background, with maturation generally being regulated by inhibition [47]. This 

means that maturation proceeds when environmental food availability during critical 

periods of development allows an animal to acquire sufficient energy to accumulate 

somatic energy reserves that exceed genetically determined thresholds. If food energy is 

deficient, investment in reproductive development is arrested until the following year, 

when an individual’s nutritional status is physiologically assessed anew [47,48]. 

As a group, the fishes exhibit a number of unique growth physiology 

characteristics. First, most fishes exhibit indeterminate growth. Although growth rate 

changes through life, and somatic growth decreases during puberty when investment to 

reproductive development consumes most of the energy budget, adult fishes continue to 
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grow throughout their lives [49,50]. Second, fish growth is hyperplastic rather than 

hypertrophic throughout life, partially due to elevated growth hormone–insulin-like 

growth factor (GH-IGF) tone through adulthood [50]. Finally, excess energy in fishes is 

often stored as muscle protein, rather than lipid or carbohydrate, as is the case among 

most terrestrial quadrupeds. This is the result of both fish anatomy and habitat 

characteristics. By depositing muscle tissue around the spinal cord, excess muscle does 

not restrict movement as it does in terrestrial mammals. Lipid storage would compromise 

fish buoyancy, and the utilization of stored lipids by fishes requires more O2 than does 

the utilization of stored proteins [50]. For these reasons, growth physiology and 

endocrinology, and mechanisms of cross-talk between endocrine growth and reproductive 

axes often differ among fishes and terrestrial vertebrates. 

In mammals, a vast number of endocrine factors regulating somatic growth have 

been characterized, the most important of which are those associated with the 

hypothalamus-pituitary-liver (HPL) endocrine growth axis. Additionally, numerous 

peripheral metabolic cues originating in fat and gastric cells interact with the HPL axis to 

stimulate or inhibit growth. The GH-IGF system, ghrelin, and leptin are key factors 

coordinating growth with nutritional status and energy availability. Recently, the peptide 

nesfatin-1 has emerged as a factor that regulates feeding behavior and reproductive 

function [51], although its role in fishes remains unclear. 

Poikilotherms (e.g., most fishes) appear to differ significantly from homeotherms 

(e.g., mammals) in regard to the roles that most of these endocrine factors play. 

Hormones are generally named for the effect with which they are initially associated, and 

are often later discovered to be pleiotropic, exerting multiple effects in addition to the one 



 

 

7 

7 

for which they are named. For example, in fishes, GH not only stimulates protein 

synthesis and growth [52], but also regulates lipolysis and gluconeogenesis [53], and 

affects osmoregulation by interacting with prolactin, IGFs, thyroid hormones, and 

cortisol, to direct the developmental trajectory of gill-crypt chloride cells 

[54,55,56,57,58]. Endocrine factors that share similarity across taxa in nucleotide or 

amino acid sequence, or in structure, may be thus similarly annotated, while having 

vastly divergent effects in different evolutionary groups. Considering that the divergence 

within the fishes between the Sarcopterygii (which gave rise to all tetrapods including 

mammals) and Actinopterygii (which gave rise to modern ray-finned fishes including 

salmonids and other teleosts) is estimated to have occurred 450 million years ago [59], 

we cannot assume hormones that regulate growth in mammals play identical roles in 

fishes. 

Iteroparous anadromous salmonids fast for prolonged periods during migration to 

spawning areas, spawning, and return migration. Among species that have evolved to 

withstand periods during which food is not available, fasting may not represent the stress 

that is often assumed based on mammalian physiology. For instance, food-restricted 

salmonids exhibit reduced weight and condition [60], but not elevated cortisol [61]. For 

poikilotherms that regularly experience bouts of food deprivation preceding the spawning 

season, food restriction may actually activate the reproductive endocrine axis, stimulating 

reproductive development or behaviors [62]. 

 



 

 

8 

8 

Growth Hormone/Insulin-Like Growth Factor 

 

The most important system regulating somatic growth in vertebrates is the GH-

IGF system, which encompasses the hypothalamic peptides growth hormone releasing 

hormone (GHRH) and somatostatin (SST), the pituitary peptide GH, and both hepatic 

(systemic) and organ-specific (local) sources of IGFs and associated binding proteins 

(IGFBPs) [53,63,64,65]. In salmonid fishes, GH is highly pleiotropic and impacts a vast 

diversity of physiological endpoints including lipid distribution, organ size, plasma 

hormone levels and tissue gene expression for other metabolic and nutritional endocrine 

factors, osmoregulation, smoltification, reproduction, and immune function [66,67]. 

Among vertebrates, the IGFs [68] are the peripheral mediators of the growth-stimulating 

effects of GH [69]. In salmonids, the liver is the main site of IGF synthesis, which is 

stimulated primarily by GH [70]; the IGF1-stimulating effects of GH are inhibited by 

insulin, glucagon, and corticosteroids [71]. In rainbow trout, liver mRNA expression 

patterns of igf1 and igf2 are highly correlated with plasma levels of the respective 

peptides, IGF1 and IGF2 [72], suggesting that the IGFs are not appreciably stored within 

the liver, but are secreted as they are synthesized. Circulating IGF1 concentration has 

been suggested as the most promising biomarker of growth rate in fishes [73], and is 

highly correlated with growth rate in rainbow trout [66,72] and other salmonids [74,75]. 

IGF2 regulates growth during early development [72,76,77], sexual maturation 

[78,79,80,81], osmoregulation [82], and stress response [75]. 

Ration affects the GH-IGF system and can uncouple GH from growth. In a state 

of energy sufficiency, GH stimulates liver synthesis of IGFs, which circulate systemically 
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to act in an endocrine fashion promoting growth in those tissues expressing the IGF-

receptors. In rainbow trout [83,84] and in coho salmon (O. kisutch) [85], GH injections 

only increase plasma IGF1 under conditions of nutrient sufficiency [83,86]. Under 

conditions of energy availability, GH upregulates muscle and other tissue-specific mRNA 

transcription of igf [50], supporting a paracrine growth-promoting role of the IGFs [87]. 

However, in a state of energy deficit, liver expression of the GH-R is down-

regulated, uncoupling pituitary GH secretion from hepatic IGF-synthesis [86,88,89,90]. 

In rainbow trout, fasting induces a change in the overall role of GH, from one of growth 

promotion to one of lipid mobilization [52]. This decoupling mechanism explains why 

fasting depresses hepatic expression of igf1 and plasma IGF1 levels [60,84], while 

simultaneously elevating circulating GH [91]. 

The GH-IGF system is regulated by a class of IGFBPs ranging from 24-44 kDA 

[92]. The members of the IGFBP family bind most plasma and extracellular IGFs, which 

have greater affinity for the IGFBPs than for the IGF-Rs or the insulin-R. A 21-23 kDa 

IGFBP present in plasma of salmonids and expressed predominantly in the liver has been 

determined by phylogenetic analysis to be one of two salmon homologues of IGFBP-1 

[93,94]. In salmonid fishes, circulating IGFBP-1 levels are positively correlated with 

hepatic mRNA expression of igfbp1, suggesting that IGFBP-1 is not stored appreciably in 

the liver. Plasma IGFBP-1 levels are inversely correlated with growth rate, suggesting 

that IGFBP-1 antagonizes the mitogenic effects of IGF [93]. Food restriction increases 

circulating IGFBP-1 in Atlantic salmon [95], and corticosteroids up-regulate hepatic 

mRNA expression and secretion of igfbp1 in coho salmon [96]. Taken together, these 
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results suggest that IGFBP-1 plays a role in stress physiology and is regulated in response 

to a variety of stressors including nutrition and reproduction in salmonids. 

A well-established literature suggests that the GH-IGF system regulates the brain-

pituitary-gonad (BPG) axis [81,97,98,99] and puberty among salmonids 

[53,100,101,102,103], and other fishes [104,105]. The GH-IGF system communicates 

growth and nutritional status to the upper tiers of the reproductive endocrine axis 

[102,106], and controls gonadal growth and development both directly and by affecting 

pituitary secretion of the gonadotropes [3]. 

In fishes, GH directly regulates gonadal steroidogenesis, as well as pituitary and 

hypothalamic function [100,107,108,109]. Likewise, IGF1 also modulates hypothalamic 

gonadotropin releasing hormone (GnRH) secretion, pituitary follicle-stimulating hormone 

(FSH) secretion, and gonadal steroidogenesis [110,111,112]. In salmonids, IGF1 directly 

regulates pituitary expression of gonadotropin subunit genes ("2, lh!, fsh!) [113] and 

increases pituitary sensitivity to GnRH [110,113], although the effect depends on 

reproductive stage [65,113,114]. Among male Chinook salmon [103,115] and maiden 

female rainbow trout [101], plasma IGF1 is elevated up to one year in advance of 

spawning among individuals that will mature, compared to individuals that will delay 

puberty. In female rainbow trout, this difference parallels differences in growth rates 

between maturing and non-maturing individuals, and precedes differences in plasma sex 

steroids [101,102]. 

The link between growth and reproduction is especially pronounced at certain 

reproductive phases, and it appears that the GH-IGF system plays a major role in puberty, 

gametogenesis, and fertility across diverse taxa, including fishes, amphibians, and 
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mammals [116]. In rainbow trout [117] and other fishes [118], 17!-estradiol eliminates or 

reduces the hepatic response to GH, depressing the systemic IGF response that usually 

follows GH release from the pituitary. Circulating testosterone tends to have the opposite 

effect, increasing peripheral sensitivity to the GH-IGF system. In this manner, the 

interaction between sex steroids and the GH system may be responsible for altering the 

effects of GH from those associated with increased growth to those associated with 

altered metabolism and increased reproductive development. Some critical threshold of 

body size or condition may partially underlie this shift [117]. 

 

Ghrelin 

 

Ghrelin is a short peptide [119] first isolated from the stomach and small intestine 

of rats and humans [120] that stimulates release of GH from the pituitary, and is the only 

known gastro-intestinal orexigenic hormone [120]. In mammals and other vertebrates, 

ghrelin and ghrl mRNA are found at the highest concentrations in stomach and intestine 

[119]. Ghrelin exhibits a highly conserved GH-releasing effect, but the orexigenic effects 

of ghrelin differ widely across phyla [121,122], as do other regulatory roles of ghrelin. 

For example, ghrelin regulates pituitary prolactin secretion in fishes [123] and adrenal 

function in birds [124]. Ghrelin assumes diverse regulatory functions due to species-

specific energetic demands, life histories, and ecology, and due to differences in 

metabolic needs between homeotherms and poikilotherms [125]. 

In fishes, ghrelin stimulates pituitary GH release in a dose-dependent fashion 

[123,126,127]. In rainbow trout, ghrelin injections have no effect or inhibit feeding 
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behavior [91,128], i.e., opposite of what is observed in mammals, and ghrelin secretion is 

neither inhibited by feeding nor stimulated by fasting [91]. 

Ghrelin also regulates reproduction, by affecting all tiers of the BPG axis and in 

some cases by facilitating the intake of nutrients that are necessary for energetically 

funding a reproductive effort [129]. However, in fishes, ghrelin regulates reproductive 

physiology differently from its role described in mammals. While ghrelin is primarily 

inhibitory to mammalian reproduction, it appears to stimulate pituitary activity associated 

with reproduction in fishes. Although teleological evolutionary speculation is dubious, in 

this case there is a stark difference between the ecology and life history of mammals and 

that of fishes, and this discrepancy has largely been ignored in the literature. Many fishes 

undergo long periods of the year in which they volitionally fast, due to lack of food or to 

central nervous system mediated inhibition of feeding during spawning migrations 

[16,130,131], similar to migratory syndrome-associated behaviors described in birds and 

insects [132]. Reproduction is energetically costly for all species; however, fishes differ 

dramatically from mammals in the mechanisms by which they apportion nutrients to 

offspring. Mammals generally exhibit long gestation periods that often require nearly 

continuous feeding during pregnancy to support embryonic development, a scenario 

referred to as income breeding [133,134,135]. On the other hand, many fish species are 

capital breeders that accrue large energy reserves when food is plentiful, and later use 

these reserves to fund reproductive efforts during times of food scarceness [133,136]. It 

therefore seems reasonable that a molecule signaling “hunger” may have different roles 

in mammals and fishes. 
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The picture emerging from a body of comparative work suggests that ghrelin is a 

multifunctional peptide with effects on reproduction, blood sugar, insulin, learning, 

memory, cardiac function, and bone metabolism [137]. Results in trout and other 

salmonids suggest that ghrelin is involved in GH-associated metabolic effects, but not 

necessarily acute feeding behavior within this group of fishes. 

 

Leptin 

 

Leptin [138,139] is the peptide product of the obese (ob) gene [140]; in mammals, 

leptin is secreted primarily by adipose tissue [141]. Leptin plays a central role in the 

physiological maintenance of lipid homeostasis [140,142,143], communicating 

nutritional and lipid status from the periphery to the central nervous system [144]. In 

addition to regulating long-term energy homeostasis, leptin also appears to inhibit 

feeding. Generally, plasma leptin increases after food intake and participates in the 

generation of a satiety signal [145] to modulate feeding behavior [146], by crossing the 

blood-brain-barrier and interacting with the central nervous system [147]. 

Early evidence that leptin played a role in reproduction came from observations 

that leptin deficient (ob/ob) mice were infertile, and that leptin injections could rescue 

reproductive development and restore fertility in these mutants [148]. Leptin interacts 

with other metabolic hormones to permissively gate reproduction by informing the 

hypothalamus of fat availability [146], and by directly regulating pituitary and gonadal 

function [149]. 
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Leptin has been identified in a number of fishes but the characterization of leptin 

in teleosts is ongoing [150,151,152] and its physiological function(s) remain unclear in 

this group. Some fishes express two leptins, which appear to have different physiological 

roles [153,154]. In contrast to mammals, which express leptin primarily in adipose tissue, 

rainbow trout [150,151] and many other fishes [65] express leptin primarily or 

exclusively in the liver. Indeed, the first description of fish leptin was in puffer (Takifugu 

rubripes), an animal that exhibits no distinct adipose tissue, but whose liver contains a 

high concentration of lipids, suggesting functional conservation of leptin expression 

location among vertebrates [150]. 

Among fishes, leptin appears to be a generalized stress signal, and may be 

involved in mitigating or buffering maladaptive physiological endpoints associated with 

the endocrine stress response [155,156,157,158,159,160,161]. From a comparative 

evolutionary perspective, it is interesting to speculate that leptin may historically have 

been a stress signal in a common ancestor of fishes and terrestrial vertebrates, with its 

current-day pleiotropic effects in different taxa representing a concerted response to 

relevant stressors in different ecological settings. 

Among the salmonids, a body of evidence suggests that leptin plays a contrasting 

physiological role to that described in mammals, although some results are contradictory. 

In adult Atlantic salmon, long-term feed restriction (10 months) does not affect plasma 

leptin, but does inhibit slepa1 mRNA expression in fat depositing tissues such as belly 

flap and white muscle, [154], suggesting a similar role of leptin in salmonids to that 

described in mammals. However, in juvenile Atlantic salmon, 7 weeks of feed restriction 

increases hepatic slepa1 mRNA expression and plasma leptin, opposite to observations in 
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mammals [162]. Similarly, rainbow trout fasted for 3 weeks exhibited elevated plasma 

leptin [163]. Taken together, these results suggest that, in salmonids, leptin assumes a 

different regulatory role under conditions of acute versus chronic feed restriction [164], 

possibly reflecting an allostatic response to what is essentially a hormetic stressor in this 

group of fishes [165]. Among salmonid fishes, high adiposity is associated with 

decreased feeding, supporting a lipostatic model for feed intake [163], but leptin does not 

appear to underlie this phenomenon [166]. 

The majority of information concerning the role of leptin in the regulation of 

reproduction comes from mammalian literature. In mammals, leptin is necessary—

though not sufficient—for the onset of puberty and continued adult ovarian cycling 

[167,168]. Although the majority of work studying the effects of leptin on reproduction 

has focused on female puberty, there is some evidence that leptin inhibits testicular 

steroidogenesis, and may regulate pituitary and hypothalamic function in male mammals 

[169]. 

Leptin effects on reproduction in fishes are variable, and likely depend on ecology 

and life history. Leptin affects both growth and reproduction in fishes largely by acting 

on the hypothalamus and pituitary [170,171]. In rainbow trout, leptin stimulates pituitary 

secretion but not synthesis of gonadotropins, although the effect differed among stage of 

gamete development [172]. In burbot (Lota lota), low circulating leptin does not inhibit 

spawning. Through evolutionary time, reproduction may have become uncoupled from 

acute lipid status around the time of spawning among species like burbot and trout that 

normally undergo a seasonal fast prior to reproducing [173]. Evidence from mammals 

suggests a similar phenomenon in seasonally fasting mink (Mustela vison) [174]. 
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Nesfatin-1 

 

First described in rats [175], nesfatin (NEFA/nucleobindin2-encoded satiety- and 

fat-influencing protein) is an anorexigenic and metabolic protein synthesized and secreted 

by the hypothalamus. Nesfatins are peptides cleaved from the nucleobindin-2 gene 

product (NUCB2); nesfatin-1 represents amino acid residues 1-82 of NUCB2. Under 

conditions of starvation, nucb2 gene expression and nesfatin-1 concentration in the 

hypothalamic paraventricular nuclei (PVN) are both reduced. ICV injection of nesfatin-1 

reduces feeding, while injection of a nesfatin antagonist stimulates feeding. Appetite 

suppression by NUCB2 requires conversion (i.e., cleavage) to nesfatin-1, and appears to 

act independently of leptin signaling in the hypothalamus, possibly involving the 

melanocortin signaling system [175]. 

Some evidence in fishes supports a conserved role of nesfatin-1 in regulating 

feeding behavior and energy homeostasis in response to food availability [176,177,178]. 

In goldfish (Carassius auratus), food deprivation reduces hypothalamic expression of 

nucb2 mRNA and elevates hepatic expression of nucb2 mRNA, with the net effect being 

reduced serum nesfatin-1 levels within one day of food deprivation [177]. However, it is 

hard to draw conclusions about nesfatin-1 from nucb2 mRNA expression data, as this 

gene product has multiple cleavage products [175]. Also, evidence in mammals suggests 

that nesfatin-1 is synthesized in the pancreas [179]; in combination with the observation 

that some fishes expresses nucb2 in hepatopancreas [178], it may be the case that reports 

of hepatic NUCB2/nesfatin in fishes that exhibit a combined hepatopancreas (e.g., 

goldfish) actually represent hepatopancreatic expression. In goldfish, serum nesfatin-1 
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responds rapidly to feeding status, increasing within one hour of feeding, and then 

returning to fasting levels within three hours [177]. Also in goldfish, central and 

peripheral injections of nesfatin-1 inhibit food intake [177]. 

 

Objectives of Dissertation 

 

The overall goal of the work contained in this dissertation is to understand the 

endocrine regulation of repeat spawning in O. mykiss, focusing on the phase of recovery 

and re-maturation immediately after spawning. Previous work has suggested that growth 

and nutrition affect this process. We suspected that, by nutritionally restricting a group of 

fish, we could induce the skip-spawner life history in a group of female fish, which could 

then be compared to a group of fully fed fish that would presumably re-mature. Because 

legal and political concerns heavily restrict the number of steelhead available for research 

and the type of research that is possible when using fish from an Endangered Species 

Act-listed population, iteroparous rainbow trout were developed as an intraspecific 

surrogate model organism. 

The objectives of the work described in this dissertation were as follows: 

1) Perform manipulative studies with rainbow trout to provide a base of 

information about how iteroparous salmonids respond to food restriction during the 

months immediately after spawning, as they prepare for another spawning effort. 

Construct a profile for metabolic hormones (hepatic expression of IGF1, IGF2, IGFBP1, 

and leptin; plasma levels of ghrelin and nesfatin-1) and reproductive hormones 
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(hypothalamic expression of GnRH3; pituitary expression of FSH and LH; and plasma 

levels of 17!-estradiol and 11-ketotestosterone) in post-spawned rainbow trout. 

2) Determine which physiological parameters (e.g., body length, mass, shape, 

adiposity) are associated with differences in the rate of re-maturation between fish fed a 

full-ration and fish fed a restricted-ration. Examine the roles of IGFs, leptin, ghrelin, and 

nesfatin-1 in signaling energetic capacity for reproduction to the HPG axis. Identify 

which indices of reproduction predict re-maturation, and how early this detection can 

accurately be made. 

3) Combine plasma hormone assays, physical measurements, and post-release 

tracking data for female steelhead kelts from a reconditioning program within the 

Columbia River Basin (Yakima River) to predict early detection of reproductive 

maturation. An additional purpose of this project was to compare kelts sampled after 

reconditioning with natural-origin steelhead, which presumably comprise primarily 

maiden fish, on their spawning migration up the Yakima River. 
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Chapter 2: “Metabolic endocrine factors involved in spawning recovery and 

rematuration of iteroparous female rainbow trout (Oncorhynchus mykiss).”1 

 

1. Introduction 

 

In salmonid fishes, the physiological decision whether or not to mature is made 

during photoperiodically defined critical periods, which occur up to a year in advance of 

spawning [47]. During these critical periods, an individual fish physiologically assesses 

lipid stores, growth rate, and total body size to determine whether it will mature or not 

[115,180]. In general, sexual maturation proceeds normally unless certain genetically 

determined thresholds are not exceeded during these critical periods, in which case 

development is arrested or inhibited [47]. 

While a large literature has explored the physiological regulation and endocrine 

signaling involved in the initial maturation (puberty) of juvenile fishes 

[1,2,3,4,12,181,182,183], much less work has examined the regulation and signaling 

involved in the rematuration process among adult iteroparous fishes. Some salmonids 

invest heavily in both reproductive tissue and spawning behavior [17,18,184,185,186]; 

thus, post-spawned individuals are energetically depleted. After spawning, individuals 

must assess available energetic resources and make a commitment to remature or skip 

spawning (“resting”, sensu [187]) in the upcoming year. It is unclear how this 

                                                
1 Caldwell, L. K., A. L. Pierce and J. J. Nagler (2013). “Metabolic endocrine factors 
involved in spawning recovery and rematuration of iteroparous female rainbow trout 
(Oncorhynchus mykiss).” General and Comparative Endocrinology 194: 124-132. 
See Appendix 1 for copyright information. 
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rematuration process differs from puberty, or how energetic thresholds and endocrine 

signals involved in initiating rematuration change with reproductive age. 

The peripheral endocrine factors that communicate growth and nutritional status 

to the reproductive endocrine axis (hypothalamus-pituitary-gonads-liver) include the 

various components of the IGF system [106]. The IGFs are peripheral mediators of the 

growth effects associated with GH. In response to elevated plasma GH, the liver 

synthesizes and secretes IGF-I and IGF-II, which then circulate systemically via plasma 

[188]. While IGF-I is the primary post-natal growth factor in mammals, IGF-I and IGF-II 

both appear to be important post-natal growth factors in fishes [82,189], and have effects 

on reproduction [3,81]. A class of at least six IGFBPs, also synthesized primarily in the 

liver, regulates IGF activities [190]. The main inhibitory binding protein, IGFBP-1 

diminishes IGF-I activity by modulating the interaction of IGF with the IGF-receptor; 

IGFBP-1 is produced during a wide variety of catabolic states [92,191]. In rainbow trout, 

the IGFs may act as peripheral signals of growth status that inform the reproductive 

endocrine axis, and IGFBP-1 may regulate the activity of IGFs and the IGF response to 

systemic GH. 

Among mammals, the peptide hormone leptin is synthesized by adipose tissue 

constitutively, so that leptin synthesis is proportional to lipid reserves [141,144]. In this 

way, leptin functions as an adipostat, signaling the brain about the quantity of peripheral 

lipid reserves. Leptin also has a demonstrated role permissively gating the onset of 

puberty in mammals [167,192]. Among fishes, leptin is generally produced in the liver 

(also an energy storage organ), but the role of leptin is unclear [65]. Some researchers 

have reported that fish leptin acts similarly to mammalian leptin [163], while others have 
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reported an inverse role for leptin in fishes [164]. We suspect that leptin could be a 

positive peripheral metabolic signal that regulates reproductive development among 

iteroparous fishes such as rainbow trout. 

The purpose of this study was to investigate the endocrine mechanisms that play a 

role in signaling energy status and growth rate to the central nervous system and 

reproductive endocrine axis during the hypothesized critical period immediately after 

spawning among iteroparous female rainbow trout. It was hypothesized that restricting 

food among a group of iteroparous female rainbow trout would inhibit rematuration 

following spawning; that liver igf1, igf2, and slepA1 expression would increase during 

refeeding after spawning, and liver igfbp1 expression would decrease during refeeding 

after spawning; and that some or all of these metabolic effects would be inhibited in fish 

fed a restricted ration. It was further hypothesized that the overall pattern would be 

similar among two-year-old and three-year-old fish, although energetic status of the two 

age classes after spawning might differ. 

 

2. Material and Methods 

 

2.1. Animals 

Post-spawning female rainbow trout Oncorhynchus mykiss were purchased from 

Troutlodge (Sumner, WA) and transported to the University of Idaho (Moscow, ID).  

Fish had been manually strip-spawned 2 d prior to transport, and were fasted for one 

month (in the case of two-year-old trout) or two months (in the case of three-year-old 

trout) prior to spawning. Fish were held in 1,130 L tanks, in a recirculating system (flow 
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rate 14 L min-1 per tank, temperature 12 to 15°C following a seasonal profile).  

Experiments were conducted under approved protocols in accordance with the principles 

and procedures of the Animal Care and Use Committee, University of Idaho. 

2.2. Experiments 

For both experiments, treatments consisted of a control group, which was fed 

0.5% total fish mass per day, and a restricted group, which was fed 0.1% fish mass per 

day. Fish were fed a commercial trout broodstock diet (6.4 mm pellets, Rangen, Inc., 

Buhl, ID).  Rations were adjusted to compensate for a 24-h pre-sampling fast, fish 

numbers, and fish weight based on sampling data and mortalities.  Fish were individually 

identified by PIT tags.  

2.2.1. Experiment 1: Three-year-old fish 

Three-year-old fish (post 2nd spawning) were stocked into 6 tanks (25 February 

2010, 26-27 fish per tank, average weight 1.35 kg).  Tanks were randomly assigned 

control or restricted feeding treatments (n=3 tanks per treatment), and fish were sampled 

every 4 weeks.  During sampling, all fish were anesthetized (60 mg L-1 tricaine 

methanosulfonate, buffered).  Fish were weighed, fork length was measured, muscle lipid 

content was measured (Fish Fatmeter, Distell, Fauldhouse, UK), and blood (2 ml) was 

collected from the caudal vein using syringes that were pre-coated with heparin by 

aspirating and then dispensing 3.0 mL of 10 mg mL-1 ammonium heparin (Sigma-

Aldrich) suspended in ultrafiltered H2O.  Plasma was separated by centrifugation and 

stored at -80 !C.  At each sampling, ten fish (n=5 fish per treatment group) were lethally 

sampled.  Livers and ovaries were dissected and weighed, and a liver sample was 

collected and snap-frozen in liquid N2 for tissue gene expression analyses using 
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quantitative real-time reverse transcriptase polymerase chain reaction (q-RT-PCR). To 

reduce post-spawning mortality, fish were stripped of residual eggs and injected with 

oxytetracycline (Liquamycin®, Pfizer, Inc., New York, NY, 20 mg kg-1) at the second 

sampling date.  To control Gyrodactylus sp. gill parasites, fish were treated twice with 

praziquantel (Medisca, Plattsburgh, NY, water borne, 2.3 - 3.4 mg L-1). 

2.2.2. Experiment 2: Two-year-old fish 

Two-year-old fish (post 1st spawning) were stocked into 12 tanks (3 March 2011, 

26-27 fish per tank, average weight 1.13 kg).  Tanks were randomly assigned control or 

restricted feeding treatments (n=6 tanks per treatment).  Sampling was similar to 

Experiment 1, except that fish were sampled every 5 weeks, 12 fish were lethally 

sampled at each time point (n=6 fish per treatment group), and liver samples were 

collected in RNAlater (QIAGEN, Hilden, Germany) before being snap-frozen in liquid 

N2.  At the time of stocking, fish were stripped of residual eggs, injected with 

oxytetracycline, and treated with praziquantel as described above.  In addition, fish were 

treated to control Saprolegnia (formalin 150 ppm and NaCl 2%, 1 hour static baths, 

repeated 3 times).   

2.3. RNA Extractions & cDNA Synthesis 

Liver samples were homogenized in 1.0 mL TRIzol® (Invitrogen™, Life 

Technologies, Carlsbad, CA), and RNA was isolated following the TRIzol protocol, 

using three chloroform:isoamyl alcohol extractions and three 70% ethanol washes.  

Resuspended nucleic acid fractions were treated with DNase (TURBO™ DNA-free, 

Ambion®, Life Technologies, Carlsbad, CA), RNA purity was assessed by 

spectrophotometric absorbance (NanoDrop ND-1000, Thermo Fisher), and RNA 
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concentration was measured using the RiboGreen RNA assay kit (Invitrogen) with a 

fluorometer. 1 µg total RNA was reversed transcribed with the SuperScript III First-

Strand Synthesis Kit (Invitrogen) using random hexamer primers. cDNA was diluted 1:5 

in 1x Tris-EDTA. 

2.4. q-RT-PCR 

Quantitative real-time reverse transcriptase polymerase chain reaction (q-RT-

PCR) primer sets were adapted from published sequences (Table 1). Specificity was 

confirmed by bioinformatic analysis, agarose gel electrophoresis of PCR products, and 

melting curve analysis of PCR products.  To carry out the q-RT-PCR, sample cDNA was 

amplified in 96-well optical reaction plates (Invitrogen) containing 20 µL PCR reactions 

made up of 2µL cDNA, 10 µL Power SYBR® Green PCR Master Mix (Life 

Technologies), 6 µL H2O, and 2 µL of a mix of forward and reverse primers at 2 pM 

each, in an Applied Biosystems™ ABI 7900HT real-time PCR system (Life 

Technologies) (2 min @ 50°C; 10 min @ 95ºC; 40 cycles of 15 sec @ 95ºC and 1 min @ 

60ºC).  Copy numbers in samples were quantified using standard curves of PCR 

amplicons. Three replicate PCRs were completed for each sample. Expression levels of 

target genes were normalized by dividing the copy number of the target gene by the copy 

number of the reference gene (EF1-!). The mean of the normalized expression level for 

the replicate PCRs is the value reported. q-PCR results were log2-transformed prior to 

statistical analysis. 

2.5. Data Analysis 

Specific growth rate for mass (SGR) was calculated as 

! 

ln[
mass (g)time 2

mass (g)time 1

÷ interval (d)]"100 [193]. Fulton’s condition factor (k) was calculated as 
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! 

body mass (g)
fork length (cm)3 "1000 [194]. Fatmeter readings were validated by chemical analyses of 

muscle lipid content (Fig. 2.1); the correlation between the two measurements was high 

(linear regression, r2 = 0.58; Tukey mean-difference plot, matched pairs correlation = 

0.76), as previously found in other studies on salmonids [19,195]. Hepatosomatic index 

(HSI) was calculated as 

! 

liver mass (g)
body mass (g) -  liver mass (g)

"100 [196]. Gonadosomatic 

index (GSI) was calculated as 

! 

ovary mass (g)
body mass (g) -  ovary mass (g)

"100  [196]; GSI is a well 

established and long utilized metric of reproductive maturation [197,198] that peaks 

during spawning among rainbow trout and other salmonids [11,199]. Only data from fish 

that survived until being terminally sampled were included in statistical analyses for 

SGR, k, Fatmeter readings, GSI, and HSI. For SGR, k, Fatmeter readings, GSI, and HSI, 

among two-year-old trout at week 0, n=84; week 5, n=36; week 10, n=30; week 15, 

n=24; week 20, n=18 per treatment. For SGR, k, Fatmeter readings, GSI, and HSI, among 

three-year-old trout at week 0, n=46; week 4, n=18; week 8, n=13; week 12, n=8; week 

16 n=3 per treatment). For q-RT-PCR data, among two-year-old trout, n=6 at all time 

point, and among three-year-old trout, n=5 at all time points except week 16, when n=3 

per treatment. 

Systematic tank differences were not detected within treatment for any variable 

(ANOVA, p > 0.05). Therefore, tank replicates were pooled and analyzed together. Two-

way ANOVA was used to detect main and interaction effects (time, treatment, time x 

treatment). When ANOVA indicated a significant time effect, Tukey-Kramer Honestly 

Significant Difference tests (Tukey-Kramer HSD) were used to compare values at all 

time points within a given treatment. Within each time point, two-tailed t-tests were used 
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to detect treatment differences. Statistical analyses were performed within JMP® 

(Version 9, SAS Institute Inc., Cary, NC). Differences are reported as significant when p 

< 0.05. 

 

3. Results 

 

The feeding regime used here caused fish that were fed a restricted diet to arrest 

ovarian development and also affected metrics of growth and metabolism in both two- 

and three-year-old fish. Feeding treatments produced a difference in reproductive 

development during the period of recrudescence, as indicated by differences in mean 

relative ovarian mass (GSI) between treatment groups. GSI diverged between full-ration 

fish and restricted-ration fish toward the end of the experiment with two-year-old fish, 

but the experiment with three-year-old fish did not continue long enough to capture this 

effect (Fig. 2.2). Among two-year-old trout, control-ration fish exhibited significantly 

elevated GSI at week 30 compared to all previous weeks. 

Specific growth rate was greater among control-ration fish than among restricted-

ration fish at all time points in both two-year-old and three-year-old trout (Fig. 2.3). Fish 

fed the control-ration generally exhibited positive growth, while fish that were fed the 

restricted-ration generally exhibited negative growth. Between week zero and week five, 

control-ration three-year-old trout grew at nearly double the growth rate of control-ration 

two-year-old trout (three-year-old trout SGR=0.33±0.04, two-year-old trout 

SGR=0.17±0.03, p=0.004). 
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Fulton’s condition factor (k) decreased over time in restricted-ration fish, which 

had lower k values than control-ration fish at all time points after the initial sampling in 

both two-year-old and three-year-old trout (Fig. 2.4). At week zero, k was significantly 

greater among two-year-old trout than among three-year-old trout. 

Feed-restriction also affected muscle lipid content. Muscle lipid percentage 

increased over time among control-ration fish and decreased (two-year-old trout) or 

remained static (three-year-old trout) over time among restricted-ration fish. This led to 

greater muscle lipid level among control-ration fish than among restricted-ration fish, in 

both two-year-old and three-year-old trout (Fig. 2.5). At week zero, muscle lipid level 

was significantly greater among two-year-old trout than among three-year-old trout. 

For both two-year-old and three-year-old trout, HSI was consistently greater 

among full-ration fish than among restricted-ration fish, although this difference was only 

significant at later time-points (Fig. 2.6). When two-year-old trout from weeks 5-20 or 

three-year-old trout from weeks 4-16 were pooled and analyzed together, control-ration 

fish exhibited significantly greater HSI than did restricted-ration fish. Among two-year-

old fish, control-ration fish HSI did not change between the beginning and end of the 

experiment, but restricted-ration fish showed a decrease in HSI over time. Among three-

year-old fish, control-ration fish showed an increase in HSI over time, while restricted-

ration fish HSI did not change between the beginning and end of the experiment. At week 

zero, HSI was marginally greater among two-year-old trout than among three-year-old 

trout (p=0.05). 

Among two-year-old trout, between week zero and week five, control-ration fish 

exhibited a slight decrease, and restricted-ration fish exhibited a slight increase, in hepatic 
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igf1 expression, leading to a difference between the two treatment groups at week five 

(Fig. 2.7). In contrast, among three-year-old trout, hepatic igf1 expression was elevated in 

control-ration fish relative to restricted-ration fish at week eight. No difference was 

detected in hepatic igf1 expression among time-points within either treatment group 

among either two-year-old or three-year-old trout.  

Among two-year-old trout, hepatic igf2 expression was elevated at week 15 

compared to all other time points within control-ration group of fish; no difference in igf2 

expression was detected among time-points within the restricted-ration group of fish (Fig. 

2.8). Among two-year-old fish, no difference in igf2 expression levels was detected 

between the two treatment groups at any time point. Among three-year-old trout, hepatic 

igf2 expression was higher among control-ration fish than among restricted-ration fish at 

week four. Although differences were not detected at any other sampling point, there was 

a trend for higher igf2 expression in livers of control-ration fish across the entire 

experiment: when pooled, control-ration fish sampled at weeks 8-16 exhibited 

significantly higher igf2 expression than did restricted-ration fish. No difference in 

hepatic igf2 expression was detected among time-points within either treatment group.  

Hepatic igfbp1 expression tended to decrease over time among both age classes 

and treatment groups (Fig. 2.9). Among two-year-old trout, hepatic igfbp1 expression 

decreased significantly over time within both treatment groups. Within control-ration 

fish, igfbp1 expression was significantly lower at week 15 compared to week zero. 

Within both treatment groups, igfbp1 expression was significantly lower at week 20 

compared to week zero. Among  three-year-old trout, hepatic igfbp1 expression 

decreased significantly over time within control-ration but not restricted-ration fish. 
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Control-ration hepatic igfbp1 expression was significantly reduced versus week zero at 

12 and 16 weeks., No difference in hepatic igfbp1 expression was detected between the 

two treatment groups at any time-point in either year. 

No difference in hepatic slepA1 expression was detected among time points for 

either treatment group within either age class (Fig. 2.10). Among two-year-old trout, 

during weeks 10-20, there was a trend of higher hepatic slepA1 expression among 

control-ration fish, a difference that became significant at week 20. A similar trend was 

observed among three-year-old trout, although no difference was detected between 

treatment groups in hepatic slepA1 expression at any time-point. 

 

4. Discussion 

 

The restricted-ration employed in these experiments affected nutrition sufficiently 

to arrest reproductive development among two-year-old trout, as evidenced by a 

divergence in GSI among two-year-old trout by the end of the experiment. This suggests 

that the nutritional limitation imposed upon the restricted-ration fish sufficed to induce a 

physiological trade-off between investment in continued survival and growth versus 

investment in reproductive development. While the experiment using three-year-old trout 

did not continue long enough to capture this arrest, it is clear from the experiment using 

two-year-old trout that between 15 and 20 weeks after spawning, the control-ration fish 

began to increasingly partition energy to the ovary for developing oocytes. 

The feeding regime selected in this study also impacted fish growth and 

metabolism rapidly and dramatically. For both two-year-old and three-year-old post 
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spawned female rainbow trout, the control ration induced weight gain, while the 

restricted ration induced weight loss; SGR was higher among control-ration fish than 

among restricted-ration fish at nearly every time point. Moreover, among both two-year-

old and three-year-old trout, k among restricted-ration fish decreased over time, while k 

among control-ration fish remained stable, leading to rapid divergence in body shape 

between rations. Muscle lipid content and HSI tended to increase among control-ration 

fish and remain stable or decrease among restricted-ration fish. These results suggest that 

control-ration fish were accumulating excess food energy and storing it in muscle and 

liver tissue, while restricted-ration fish were utilizing stored energy to support 

metabolism, but were not growing. 

Both two-year-old and three-year-old trout began the experiment in an energy-

depleted state, due to the energetic demands of fasting and spawning. However, several 

observations suggest that the two-year-old trout were less energy-depleted than the three-

year-olds at the beginning of the experiment. Two-year-old trout had greater k, higher 

muscle lipid content, and greater HSI at the initial sampling than did three-year-old trout. 

This was likely at least partially due to the difference in the duration of pre-spawning 

fasting imposed by the production facility from which the fish were obtained. 

Interestingly, in the control-ration treatment over the first 10-week period post spawning, 

the three-year-old trout grew at nearly double the rate of two-year-old trout. This suggests 

a compensatory growth response [200] that was greater among three-year-old than among 

two-year-old trout, consistent with the greater state of energy depletion at intake observed 

among three-year-old than among two-year-old fish. Compensatory growth has been 

previously shown to vary in proportion to degree of feed restriction in rainbow trout 
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[201,202]. Further, although control-ration fish were fed the same ration in both years, 

three-year-old fish were able to grow significantly faster, suggesting greater growth 

efficiency. There was an age effect with respect to HSI only, in that 2-year old control-

ration fish exhibited a trend of decreasing HSI after week five while the HSI of three-year 

old fish increased. This may be due to greater metabolism of liver lipids in the 2-year-old 

fish.  

Among control-ration fish, the different age classes of fish exhibited different 

hepatic igf expression responses to refeeding. Among three-year-old trout hepatic igf1 

expression in control-ration fish exhibited a significant increase leading to levels elevated 

above those observed in restricted-ration fish, whereas no changes over time or between 

treatments were found in two-year-old fish. A similar expression pattern was observed 

with hepatic igf2 expression: among two-year-old trout, there was no difference detected 

in hepatic igf2 expression between control-ration and restricted-ration fish. However, 

among three-year-old trout, there was a consistent trend of higher hepatic igf2 expression 

among control-ration fish compared to restricted-ration fish. The difference in pattern of 

hepatic igf expression between the age classes may be due to differences in initial 

condition and subsequent compensatory growth between the two age classes after 

spawning. Given that plasma IGF-I levels reflect growth rate in O. mykiss [203] and other 

teleosts [73], it is likely that the elevated hepatic igf1 mRNA observed in control-ration 

three-year-old fish over the first eight weeks is associated with the greater compensatory 

growth observed among this age class, as has been previously described in O. mykiss 

[201,204] and other salmonid fishes [205]. The observation that hepatic igf2 expression 

remained elevated among 3-year-old control-ration fish supports the hypothesis that IGF-
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II in rainbow trout is regulated by nutritional status and involved in coordinating 

compensatory growth during refeeding [90]. Work in Atlantic salmon has demonstrated 

that IGF-II is more sensitive than IGF-I to food nutrient content [157]. 

Among both two-year-old and three-year-old trout, no change over time in hepatic 

igf1 or igf2 expression occurred among restricted-ration fish. As all fish were fasted prior 

to spawning, it may be the case that liver igf expression was already reduced to basal 

levels among incoming fish, and the restricted-ration was not sufficient to increase 

hepatic igf expression above basal levels. During fasting, plasma IGF-I decreased to 

~40% of fed levels over two weeks and then remained constant in juvenile Chinook 

salmon (Oncorhynchus tshawytscha), suggesting that a basal plasma IGF-I level exists in 

salmonid fishes [71]. In the present study, restricted fish were fed a less than maintenance 

ration, suggesting that a greater than maintenance ration may be required to increase liver 

igf expression from basal levels during refeeding. Under conditions where anabolic 

growth is not occurring, the relationship between plasma IGF-I levels or hepatic igf 

expression and growth may become discordant [63]. 

Both two-year-old and three-year-old control-ration fish were fed a standard 

broodstock ration sufficient to support rematuration, which appears to have proceeded 

unchecked among this group (Fig. 2.2). Current models suggest that these fish would 

have initiated rematuration during the time period covered in the present study [206,207], 

and that a metabolic indicator such as IGF-I may play a permissive role in the initiation 

of maturation or rematuration [113,208]. Thus, it is interesting that no post-spawning 

increase in hepatic igf1 mRNA was found in two-year-old fish. This suggests that an 

increase in liver igf1 transcription after spawning is not required to initiate rematuration 
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in rainbow trout. Further, a significant increase in hepatic igf2 mRNA did occur 15 weeks 

after spawning in two-year-old control-ration fish. A trend toward elevation in hepatic 

igf2 mRNA occurred over this time period in three-year-old control-ration fish. 

Therefore, our data are consistent with the possibility that IGF-II rather than IGF-I plays 

a permissive role in the initiation of rematuration in rainbow trout. Alternatively, it is 

possible that fish may initiate rematuration without an increase in either IGF. 

The hepatic igfbp1 expression patterns observed were similar in both age groups 

and feeding treatments, with high hepatic igfbp1 expression at week 0 followed by 

decreasing hepatic igfbp1 expression over the course of the experiment, suggesting that 

hepatic igfbp1 was increased during spawning. To our knowledge, this is the first report 

of a spawning elevation in hepatic igfbp1 expression. In teleost fishes, hepatic igfbp1 

expression is rapidly upregulated in response to a variety of catabolic conditions 

including fasting [reviewed in 92], and expression is stimulated by plasma corticosteroids 

[96], which are elevated in salmonids during spawning [209,210]. The lack of difference 

in hepatic igfbp1 expression between treatment groups may be due to regulation of 

IGFBP-1 at a level other than transcription. Work with Atlantic salmon [189], 

demonstrated that fish fasted for 14-days exhibited lower plasma IGFBP-1 compared to 

control fish, with no difference in hepatic igfbp1 expression between the groups. 

Regardless, our results suggest that decreasing hepatic igfbp1 expression or plasma 

IGFBP-1 levels may provide an indicator of recovery from spawning, as has been found 

for other stressors [191]. 

In both age classes, no difference in hepatic slepA1 expression was detected 

among time points for either treatment group. However, among two-year-old trout, 
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hepatic slepA1 expression was elevated in control-ration versus restricted-ration fish at 

the final time point. Among three-year-old trout, no obvious pattern in slepA1 was 

apparent. Leptin physiology differs substantially between fishes and mammals. The role 

of leptin in salmonids is unclear [211], but hepatic leptin expression appears to be 

upregulated in response to various stressors, including food restriction [154,162,166] and 

temperature challenge [157]. Our results do not support regulation of hepatic slepA1 

expression by either recovery from spawning or nutritional status in post-spawning 

rainbow trout. 

In conclusion, a feeding regime that significantly impacted the growth and lipid 

levels of post spawning rainbow trout was utilized to look for age-related effects 

manifested in metabolic endocrine indicators. Most nutrient restriction studies in 

salmonids have employed rapidly growing juvenile fish. This is the first study we are 

aware of to examine nutritional endocrinology in post-spawning salmonids. Intriguingly, 

the IGFs emerged as being influenced by age, with the older three-year-old fish 

displaying a greater response to treatment than did the two-year-old fish.
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Figure 2.1. Relationship between Fatmeter readings and biochemical assay of wet muscle 
lipid content in female rainbow trout. The line shows least squares linear regression (r2 = 
0.58, p<0.0001).
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Chapter 3: “Plasma nesfatin-1 is not affected by long-term food restriction 

and does not predict rematuration among iteroparous female rainbow trout 

(Oncorhynchus mykiss).”2 

 

Introduction 

 

The reproductive endocrine (BPG) axis has been characterized for some fishes 

[1,4,181] including salmonids [212], and the basic mechanism by which the BPG axis 

secretes hormones to regulate initial maturation (puberty) in salmonid species are well 

understood [60]. However, there is a dearth of information concerning endocrine 

regulation and coordination of gonadal recrudescence (rematuration). While it is 

reasonable to suspect that puberty and rematuration are regulated similarly, this 

hypothesis has mostly gone untested. Furthermore, although the role of energetics in 

puberty is well described in many animals [213,214,215] including fishes [110,180,216], 

how metabolic and nutritional status regulate successive reproductive efforts has largely 

been overlooked. 

In mammals, nesfatin-1 is an 82-amino acid hormone cleaved from the 

nucleobindin-2 (nucb2) gene product that is secreted primarily from the hypothalamus 

and adipose tissue, and that has both anorexigenic and growth inhibiting effects [175]. In 

                                                
2 Caldwell, L. K., A. L. Pierce, L. G. Riley, C. A. Duncan and J. J. Nagler (2014). 
“Plasma nesfatin-1 is not affected by long-term food restriction and does not predict 
rematuration among iteroparous female rainbow trout (Oncorhynchus mykiss).” PLoS 
ONE 9(1): e85700. 
No copyright permission is required from the authors or the publishers of Public Library 
of Science for items in their online, open-access publications. See 
http://www.plosone.org. 
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rats, short-term (24-hour) fasting leads to a decrease in circulating levels of nesfatin-1, 

which return to normal levels upon refeeding [217]. In addition to behavioral and 

metabolic effects, nesfatin-1 appears to inform the reproductive endocrine axis regarding 

nutritional status [218]: in pigs, nesfatin-1 injections elevated plasma LH levels [219]. In 

goldfish, nucb2 mRNA is widely expressed in the brain and peripheral tissues, with the 

highest expression levels found in the liver and pituitary [177], nesfatin-1 injections 

reduce feeding [177], and nesfatin-1 suppresses the BPG axis at all three tiers [51]. Taken 

together, these results suggest that circulating nesfatin-1 may act to integrate metabolic or 

feeding status with reproductive development. 

The metabolic peptide hormone ghrelin is synthesized and secreted from the 

stomach of vertebrates during an energy deficit [220]. In concert with other circulating 

endocrine factors, ghrelin coordinates the metabolic response to fasting and has 

behavioral effects such as stimulating appetite in salmonid fishes [128,157]. Ghrelin and 

nesfatin-1 colocalize in stomach and hypothalamus of goldfish [176]. In unfed goldfish, 

i.c.v. nesfatin-1 injection suppressed preproghrelin and ghrelin receptor mRNA 

expression in forebrain, suppressed ghrelin and nucb2 mRNA expression in 

hypothalamus, and suppressed nucb2 mRNA expression in forebrain [176]. Along with 

leptin and other regulatory metabolic hormones, ghrelin acts at multiple levels of the 

BPG axis to inhibit reproduction, e.g., by suppressing pituitary LH and testicular 

androgen secretion [149]. Ghrelin acts directly on zebrafish follicles to inhibit both basal 

and MIH-induced germinal vesicle breakdown [221]. Ghrelin abnormalities have been 

implicated in a variety of human reproductive disorders [137,222]. Thus, ghrelin may act 

as a peripheral metabolic signal that negatively regulates reproductive development under 
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conditions of nutritional deficit among iteroparous fishes such as rainbow trout 

[45,129,214]. 

Among salmonid fishes, the onset of puberty occurs up to a year in advance of 

spawning [103,223]. The current working hypothesis states that puberty in salmonids is 

ultimately regulated by energy availability [45,214]. When energy is deficient, some 

peripheral metabolic hormone inhibits or arrests reproductive development [129,221]. 

When energy is sufficient, some peripheral metabolic hormone stimulates or permits the 

reproductive axis to proceed with reproductive development [51,224]. Upon receiving the 

stimulatory or permissive signal from such a metabolic cue, maturation is initiated in the 

brain by gonadotropin releasing hormones (GnRHs). GnRHs originate primarily in the 

hypothalamus [225] and act hierarchically to stimulate pituitary release of the GtHs, FSH 

and LH [226]. In female fishes, the GtHs stimulate growth and development of the 

ovaries [65], and also activate steroidogenic pathways culminating in secretion of both 

the estrogenic sex steroid 17!-estradiol (E2) and the androgenic sex steroid 11-keto-

testosterone (11-KT) [2,3]. Increasing levels of circulating E2 both initiate and signal 

ovarian maturation [227,228]. Recent work suggests a role for 11-KT in early oocyte 

growth among various species of teleost fishes [229,230,231]; in vitro evidence suggests 

such a role for 11-KT in salmonids [232]. 

The purpose of this study was to determine how energy availability after 

spawning affects plasma levels of nesfatin-1, ghrelin, and sex steroid hormones in 

rematuring female rainbow trout (Oncorhynchus mykiss). It was hypothesized that by 

restricting food availability in a group of female trout, these fish would become energy 

deficient and thus arrest reproductive development as individuals adopted a non-
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consecutive year or “skip-spawner” life history that has been described in fishes 

[187,233]. It was also hypothesized that this energy deficit would be initially reflected by 

increased plasma ghrelin and decreased plasma nesfatin-1 [187,233]. It was further 

hypothesized that this skip-spawner life history decision would be detectible first by 

reduced pituitary levels of fsh-! mRNA, then by reduced circulating levels of 11-KT, and 

finally by reduced circulating levels of E2. 

 

Materials & Methods 

 

1. Animal handling and husbandry 

See Chapter 1. 

2. Experiments 

See Chapter 1. 

3. RNA Extractions & cDNA Synthesis 

See Chapter 1. 

4. Quantitative real-time reverse-transcriptase polymerase chain reaction 

A quantitative real-time reverse-transcriptase PCR (q-RT-PCR) primer set (Table 

1) was designed using ABI Primer Express 3.0 software (Life Technologies, Carlsbad, 

CA) to amplify a 60 bp fragment of the annotated O. mykiss fsh-! sequence 

(NM_001124586). Specificity was confirmed by bioinformatic analysis, agarose gel 

electrophoresis of PCR products, and melting curve analysis of PCR products. To carry 

out the q-RT-PCR, sample cDNA was amplified in 96-well optical reaction plates 

(Invitrogen) containing 20 µL PCR reactions made up of 2µL cDNA, 10 µL Power 



 

 

49 

49 

SYBR Green PCR Master Mix (Life Technologies), 6 µL H2O, and 2 µL of a mix of 

forward and reverse primers at 2 pM each, in an Applied Biosystems ABI 7900HT real-

time PCR system (Life Technologies) (2 min @ 50°C; 10 min @ 95ºC; 40 cycles of 15 

sec @ 95ºC and 1 min @ 60ºC). Copy numbers in samples were quantified using 

standard curves of PCR amplicons. Positive and negative controls were included on each 

plate. Three technical replicate PCRs were completed for each sample. The mean of the 

mRNA copy number for the three replicate PCRs is the value reported. q-RT-PCR results 

were log2-transformed prior to statistical analysis. 

5. 17!-Estradiol Radioimmunoassay (RIA) 

5.1. Solvent Extraction 

Plasma samples were extracted with methyl tert-butyl ether (MTBE) (Fisher 

Scientific, Hampton, NH) by combining 100 !L plasma with 4.0 mL MTBE and 

vortexing for 1 min [234]. Samples were incubated at room temperature for 7 min to 

allow phase separation to occur and then the aqueous phase was frozen. The solvent 

fraction was decanted, equilibrated 10 min at room temperature and incubated at 55°C 

until all solvent had volatilized (approximately 2 hour). A second extraction of the 

remaining aqueous fraction from each plasma sample was performed, using 3.0 mL 

MTBE, and pooled with the first extract. Dried extracts were resuspended in 250 !L E2 

zero calibrator solution from the E2 RIA kit (Coat-A-Count, Siemens, Munich, 

Germany). Average extraction efficiency was 83%, as determined by RIA values for 

extracted versus unextracted assay standards included with the RIA kit. 
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5.2. RIA 

Resuspended plasma extracts were analyzed in duplicate for E2 concentration 

using an antibody-coated tube E2 radioimmunoassay (RIA) kit (Coat-A-Count, Siemens, 

Munich, Germany), per the manufacturer’s instructions. Sensitivity for the assay is 

reported to be 8 pg mL-1. Positive and negative controls were included in all assays. 

6. 11-keto testosterone Enzyme-linked Immunosorbent Assay (EIA) 

6.1. Solvent Extraction 

 Plasma samples were extracted with anhydrous diethyl ether (JT Baker, Avantor 

Performance Materials, Inc.; Center Valley, PA, USA) by combining 100 !L plasma with 

2.0 mL diethyl ether and vortexing for 1 min [235]. Samples were incubated at room 

temperature for 7 min to allow phase separation to occur, and then the aqueous phase was 

frozen. The solvent fraction was decanted. A second extraction of the remaining aqueous 

fraction from each plasma sample was then performed, using 2.0 mL diethyl ether, and 

pooled with the first extract. Diethyl ether extracts were dried down in a 49ºC water bath 

under a gentle stream of N2 directed via a nitrogen evaporator manifold (N-EVAP 112; 

Organomation Associates, Inc; Berlin, MA). Dried extracts were resuspended in 1000 !L 

EIA buffer from the 11-KT EIA kit (described below). Extraction efficiency ranged from 

90-102%, as determined by RIA values for extracted versus unextracted assay standards 

included with the RIA kit. 

6.2. EIA 

 Resuspended plasma extracts were analyzed in duplicate for 11-KT concentration 

using an antibody-coated 96-well plate based enzyme-linked immunosorbent assay (EIA) 
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kit (Cayman Chemical Company; Ann Arbor, MI). Sensitivity for the assay is reported to 

be 1 pg mL-1. Positive and negative controls were included in all assays. 

7. Ghrelin RIA 

Plasma ghrelin concentrations were measured in duplicate using a ghrelin 

radioimmunoassay established and validated for use in fish by Riley et al. [236], with the 

following minor variations. One hundred µL of rat ghrelin standards and plasma samples 

were incubated with 200 µL anti-rat ghrelin (from H. Hosoda) at a dilution of 1:750,000. 

The anti-rat ghrelin (a.a. 1-11) recognizes the octanoylated epitope (biologically active 

region) of ghrelin [237] and detects only the biologically active forms of ghrelin (ghrelin-

C8 and ghrelin-C10). After incubation at 4°C overnight, 100 µL of 125I-human ghrelin 

(Millipore, St. Charles, MO) was added before an additional overnight incubation at 4°C. 

Finally, 100 µL anti-rabbit IgG goat serum at 1:35 (with 10 % polyethylene glycol) was 

added, incubated for 2 hour at room temperature, and then centrifuged at 3200 x g for 60 

min to separate free and bound tracers. Radioactivity of aspirated pellet was then 

quantified using a gamma counter (Packard, Palo Alto, CA). Intra- and inter-assay CV’s 

were 6.2 and 9.8%, respectively. Positive and negative controls were included in all 

assays 

8. Nesfatin-1 EIA 

 8.1. Parallelism of trout plasma dilution 

 A rat nesfatin-1 EIA (EK 003-22; Phoenix Pharmaceuticals) was used for 

measuring nesfatin-1 immunoreactivity (nesfatin-1) in rainbow trout plasma. Although 

this kit has been previously validated for use in fish (goldfish [177]), the following 

procedure was conducted to establish its use in rainbow trout. A representative sample of 



 

 

52 

52 

female trout plasma was serially diluted 1.5 fold in 1x nesfatin-1 EIA buffer and 

measured using the nesfatin-1 EIA; displacement of label by standard and by trout 

plasma were then compared (Fig. 3.1). A four-parameter logarithmic regression line was 

fit to the relationship between displacement and plasma volume. Displacement of rat 

nesfatin-1 by trout plasma was parallel to the standard curve, indicating the presence of 

an immunologically similar protein in trout plasma. Displacement was linear over the 

range 1.3µL - 9.9!L trout plasma (R2 = 0.99). 

8.2. Measuring nesfatin-1 levels in trout plasma 

Rainbow trout plasma samples were assayed for nesfatin-1 by diluting them 1:10 

in 1x EIA buffer to bring values within the linear range of the kit, as described above. 

Samples were run in duplicate, and had intra-sample CV values <10%. Positive control 

samples were all within the range specified in literature accompanying the kit, and 

negative controls were included for all assays. 

9. Data Analysis 

Only data from fish that survived until being terminally sampled were included in 

statistical analyses. Systematic tank differences were not detected within treatment for 

any variable (ANOVA, p > 0.05). Therefore, tank replicates were pooled and analyzed 

together. For normality and homoscedasticity requirements of ANOVA and post-hoc 

tests, plasma hormone data were log-transformed prior to analysis. Two-way ANOVA 

was used to detect main and interaction effects (time, treatment, time*treatment). When 

ANOVA indicated a significant time effect, Tukey-Kramer Honestly Significant 

Difference (Tukey-Kramer HSD) tests were used to compare values at all time points 

within a given treatment. Within each time point, two-tailed t-tests were used to detect 



 

 

53 

53 

treatment differences. Statistical analyses were performed with JMP (Version 9, SAS 

Institute Inc., Cary, NC). Differences are reported as significant when p < 0.05. 

 

Results 

 

As described in Chapter 1, the feeding regime used here affected metrics of 

growth, metabolism, and reproduction in both two- and three-year-old rematuring female 

rainbow trout. However, in both experiments there was no significant difference in 

plasma nesfatin-1 immunoreactivity between the treatment groups at any time point (Fig. 

3.2). Within each experiment, a two-way ANOVA determined that “week” was a 

significant effect, but neither “treatment” nor the “treatment*week” interaction were 

significant effects. Plasma nesfatin-1 immunoreactivity covaried significantly in the two 

treatment groups (ANCOVA, p<0.0001), suggesting that plasma nesfatin-1 was not 

affected by treatment. While the feeding regimes used here did not yield differences in 

trout plasma nesfatin-1 immunoreactivity between treatments, plasma nesfatin-1 

immunoreactivity did change over time both within each treatment individually and when 

the feeding treatments were pooled and considered together. In both two-year-old and 

three-year-old trout, there was a marked increase over time in plasma nesfatin-1 

immunoreactivity, before levels declined toward the end of the experiment. Similarly, no 

difference in plasma levels of acylated-ghrelin (ghrelin) was detected either among time 

points within treatment groups for a given age class, or between treatment groups at any 

time-point for a given age class (Fig. 3.3). 
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The feeding treatments produced a significant difference in reproductive 

development during this period of initial ovarian recrudescence, as indicated by plasma 

E2 levels (Fig. 3.4): among two-year-old trout fed the control-ration, plasma E2 

concentration was elevated compared to restricted-ration fish by week ten and continued 

to increase dramatically over the course of the experiment. Plasma E2 levels showed a 

similar but non-significant elevation in control versus restricted-ration fish among three-

year-old trout starting at week eight. Interestingly, at week zero, three-year-old trout 

exhibited plasma levels of E2 that were an order of magnitude greater than those 

observed among two-year-old trout, before decreasing significantly as the experiment 

progressed. 

Among two-year-old trout, pituitary fsh-! mRNA expression decreased from 

weeks 0-25 within restricted-ration fish, while fsh-! expression increased from weeks 10-

30 within control-ration fish (Fig. 3.5). This trend led to a significant difference between 

the treatment groups: restricted-ration fish exhibited higher pituitary fsh-! mRNA levels 

shortly after spawning, at week 10, and control-ration fish exhibited higher pituitary fsh-! 

mRNA levels later, at weeks 25-30. Among three-year-old trout, pituitary fsh-! mRNA 

expression did not significantly change over time within either treatment group, and 

pituitary fsh-! mRNA expression levels did not significantly differ between the two 

groups at any time point. 

Plasma concentration of 11-KT (Fig. 3.6) showed a similar trend within both year 

classes: plasma 11-KT levels were elevated at week zero before precipitously declining 

and remaining low through the remainder of the experiment. Among two-year-old trout, 

plasma 11-KT diverged at week 25, with control-ration fish exhibiting significantly 
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elevated plasma 11-KT levels compared to restricted-ration fish; the experiment with 

three-year-old trout was presumably not long enough to capture this effect, as no 

difference was detected. 

 

Discussion 

 

The results presented in Chapter 1 showed that the control-ration was sufficient to 

maintain positive growth rates, while the restricted-ration was sufficient to maintain near-

zero or negative growth rates. The results in this chapter provide evidence that plasma 

nesfatin-1 levels are not affected by this long-term feeding restriction in post-spawned 

female rainbow trout; no difference in plasma nesfatin-1 levels was detected between the 

control-ration and restricted-ration fish at any time point in two-year-old or three-year-

old trout. Additionally, circulating nesfatin-1 levels observed during the months after 

spawning do not predict rematuration in rainbow trout: restricted-ration fish failed to 

undergo initial sexual maturation, but nonetheless exhibited plasma nesfatin-1 levels that 

were similar to control-ration fish. While i.p. injections of nesfatin-1 have been shown to 

inhibit the reproductive endocrine axis in fish [51], the observed inhibitory effect may be 

due to relatively high (i.e., pharmacological) dosage, and thus not accurately reflect the 

native (i.e., physiological) role of circulating nesfatin-1. Alternatively, nesfatin-1 may act 

differently in fish with group-synchronous ovary development (rainbow trout) compared 

to fish with asynchronous ovary development (goldfish). Plasma nesfatin-1 levels did 

exhibit a pattern suggesting nesfatin-1 may be regulated seasonally in rainbow trout, with 
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a peak occurring near the summer solstice (Fig 3.2A). Further studies are required to 

determine the significance of seasonal changes in trout plasma nesfatin-1 levels. 

Similarly, within both age classes, plasma ghrelin levels did not differ 

significantly between treatment groups at any time point. Among two-year-old trout fed 

the restricted-ration, plasma ghrelin did significantly increase between week 20 and week 

30. However, plasma ghrelin levels also exhibited a transient spike among two-year-old 

trout fed the control-ration around week 25. Among three-year-old trout, the later 

increase in plasma ghrelin (between week 20 and week 30) was not observed; this is 

likely the result of the experiment using three-year-old trout not running long enough. 

Taken together, these findings do not support a role for ghrelin as an indicator of long-

term nutritional status in rainbow trout. Although these data do not support the original 

hypothesis, this contradiction with previous results in other systems may be partially 

explained by the observation that ghrelin physiology differs substantially between fishes 

and mammals [238,239]. For instance, in rainbow trout, ghrelin administration does not 

increase feed intake, and plasma ghrelin levels are reduced during fasting [91,128]. Also 

in rainbow trout, in vitro ghrelin treatment of gastrointestinal tissue does not affect GI 

contractility [240]. In channel catfish, neither plasma ghrelin nor stomach ghrl mRNA 

expression changes with feeding status [241]. In two species of sturgeon [242], and in 

grass carp [243], ghrelin appears to play a principally developmental role. It appears that 

more work needs to be done to clarify the disparate roles of ghrelin among non-

mammalian vertebrates. However, these results do not support regulation of plasma 

ghrelin levels by either recovery from spawning or nutritional status in post-spawned 

rainbow trout. 
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The experimental design used in this study affected nutrition sufficiently to arrest 

reproductive development among two-year-old trout, as evidenced by a divergence in 

plasma E2, GSI (Chapter 1), plasma 11-KT and pituitary fsh-! mRNA expression. This 

suggests that the nutritional limitation imposed upon the restricted-ration fish sufficed to 

induce a physiological trade-off between investment in continued survival and growth 

versus investment in reproductive development. While the experiment using three-year-

old trout did not continue long enough to capture this arrest, it is clear from the 

experiment using two-year-old trout that between 15 and 20 weeks after spawning, the 

control-ration fish began to increasingly partition energy to the ovary for developing 

oocytes. 

At intake, three-year-old trout exhibited plasma E2 levels that were approximately 

an order of magnitude greater than those observed in two-year-old trout (Fig 3.4), while 

ovarian masses were similar between the two age classes (Chapter 1). This difference in 

circulating E2 levels may be due to differences in the duration of pre-spawn fasting used 

by the facility from which trout were obtained (as described in Methods section), or to 

altered clearance of steroids by the liver [244,245]. Previous work suggests that animals 

may experience an aging-associated decrease in the rate of steroid clearance via liver 

conjugation and hydroxylation reactions [246,247], or an increasing sequestration of 

steroids by sex hormone-binding globulin [248], or some diffuse age-related effects 

associated with a diminished basal metabolic rate similar to that described in humans 

[249,250] and other animals [251]. Regardless, this difference between age classes was 

transient: two-year-old and three-year-old fish exhibited similar plasma E2 levels by the 

second sampling date. 
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The results in Chapter 1 described how this feeding regime induced remodeling of 

organs and a general redistribution of energy stores, with control-ration fish accumulating 

lipid in muscle tissue and increasing liver mass. Interestingly, differences in plasma E2 

between the two treatment groups were already significant at week ten and presumably 

were present sometime between weeks five and ten of the experiment. This would 

indicate that a trajectory of reproductive rematuration for the following year’s spawning 

effort had been at least partially determined approximately six weeks after spawning (as 

fish were obtained approximately one week after spawning), similar to the current 

understanding of the progression of puberty in salmonid fishes [103]. This implies that 

the energy deficit incurred during spawning and feeding conditions during the period 

immediately after spawning interact to determine whether rematuration is initiated within 

an approximately six week window. Restricted ration fish appear to have arrested 

rematuration before significant energy was invested in ovarian development. 

Classic reproductive endocrine axis theory [4,212] predicts that an increase in 

secretion of pituitary (i.e., FSH) factors should precede an increase in plasma E2. 

However, among control ration fish, we detected no elevation in pituitary fsh-! mRNA 

(Fig. 3.5) expression prior to elevation of plasma E2 levels (Fig. 3.4). In vitro work 

suggests that FSH is regulated at the level of both transcription and secretion by the 

interaction of GnRH hierarchical stimulation and E2 feedback [252], and thus, pituitary 

expression of fsh-! may not be directly correlated with circulating levels of FSH peptide 

[253]. In addition, our ability to detect treatment differences in pituitary fsh-! mRNA was 

less than for plasma E2 due to the number of lethal and non-lethal samples at each time 

point (e.g., for two-year-old trout at week 10, n=60 for plasma E2, while n=12 for 
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pituitary fsh-! mRNA). Interestingly, within two-year-old trout, pituitary fsh-! mRNA 

expression was significantly higher among restricted-ration fish than control-ration fish 

between weeks 10 and 15; plasma E2 levels show the opposite trend and were elevated 

among control-ration fish during this time. This combination of observations is explained 

by the well-documented inhibitory tone of sex steroids on pituitary gonadotropin 

synthesis [254,255,256]. Among control-ration fish, increasing levels of plasma E2 exert 

negative feedback inhibition of fsh-! expression, as has been described in rainbow trout 

[257] and other fishes [258,259]. Conversely, the lower plasma E2 levels observed 

among restricted-ration fish around this time releases pituitary fsh-! mRNA transcription 

from inhibition, causing an apparent increase in pituitary fsh-! mRNA levels among 

restricted-ration fish. 

In a recent in vitro study in coho salmon, 11-KT stimulated growth of late 

perinucleolar stage follicles, suggesting a role for this androgen in early ovarian 

development [232]. However, it is not clear whether circulating or local levels of 11-KT 

are physiologically relevant in this scenario. In the present study, plasma 11-KT levels 

dropped rapidly between zero and five weeks after spawning and did not differ between 

treatment groups until week 25, which was 15 weeks after plasma E2 diverged. 

Therefore, our results do not support the hypothesis that plasma 11-KT stimulates ovarian 

rematuration during the period immediately following spawning. However, it cannot be 

ruled out that local 11-KT (i.e., 11-KT produced in the ovary) may be involved in 

stimulating early ovarian development immediately after spawning, in a paracrine 

fashion. Between 20 and 25 weeks after spawning, treatment groups within the two-year-

old trout diverged, with control ration fish exhibiting 2.4-fold elevated plasma levels of 
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11-KT versus restricted-ration fish by 30 weeks. This elevation in plasma 11-KT 

coincided with a significant elevation in GSI among control ration fish (Chapter 1), 

suggesting that plasma 11-KT among maturing female fish may be of ovarian origin, as 

has previously been proposed [260]. Both age classes of trout started the experiment at 

the first sampling point immediately after spawning with elevated plasma 11-KT (Fig. 

3.6), supporting the proposed role for 11-KT in female salmonid spawning physiology 

and behavior [228,261,262]. 

In conclusion, by restricting food availability in a group of female rainbow trout, 

growth and energy partitioning were both affected, with restricted-ration fish generally 

existing in a catabolic state and control-ration fish existing in an anabolic state for the 

duration of the experiment. Furthermore, the treatments were sufficient to induce 

differences in gonadal recrudescence between the two treatment groups: while restricted-

ration fish arrested ovarian growth, control ration fish accumulated ovarian tissue until 

the end of the experiment (Chapter 1). Differences in ovary size were preceded by 

differences in circulating levels of E2, which diverged between one and two months after 

the start of the experiment. Although pituitary secretion of FSH presumably drives the 

increase in ovarian steroidogenesis underlying elevated plasma E2, our results suggests 

that this purported increase in FSH is not regulated at the level of transcription during the 

months immediately after spawning. In addition, our study provides no evidence to 

support the notion that circulating 11-KT is involved in early maturation of recrudescing 

female rainbow trout. Finally, food-restriction and the subsequent difference in 

reproductive trajectory did not measurably affect plasma levels of nesfatin-1 or ghrelin, 

suggesting that circulating levels of neither peptide link metabolic status to reproduction 



 

 

61 

61 

in O. mykiss. Future work should focus on elucidating the different roles of endocrine and 

paracrine nesfatin-1, as well as clarifying differences in chronic and acute nesfatin-1 

responses to nutrient availability.
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Figure 3.1. Parallel displacement of rat nesfatin-1 by a serial dilution of trout 

plasma. Displacement curve showing parallelism of the rat nesfatin-1 standard curve 

(circle points, solid line) and a dilution series of female rainbow trout plasma displacing 

rat-nesfatin-1 (triangle points, dashed line) in the nesfatin-1 EIA. Horizontal axis depicts 

volume of trout plasma (µL) used in the assay or concentration of rat-nesfatin-1 standard 

(ng·mL-1). 
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Table 3.1 – Primer sequence data for q-RT-PCRs. 

Gene Accession Number Direction  Sequence Product Size 
Fwd AGAGCTGCGATTGCATCAAA fsh-b AB050835 
Rev GCCATGCTTATGCGATCACA 

61 bp 
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Chapter 4: “Reconditioned Steelhead Kelts Exhibit Similar Endocrine Biomarkers 

Compared to In-River Migrating Steelhead” 

1. Introduction 

 

Oncorhynchus mykiss is a salmonid fish native to northwestern North America 

that exhibits high levels of variability and plasticity of life history [23,24,263]. O. mykiss 

may live as resident rainbow trout or may adopt one of many life history patterns that 

involve a migration to the ocean and return to natal stream for spawning (anadromy) 

[264,265]. Collectively, these anadromous life history forms are known as steelhead. 

Steelhead are native to the North American west coast and to the interior west of the 

continental divide, from Alaska to the Mexican Baja California peninsula [23]. Steelhead 

typically spawn in smaller tributaries that feed mainstem rivers during the months of 

early spring through early summer [23,263]. All O. mykiss are capable of repeat 

spawning (iteroparity); however, many steelhead do not survive spawning [263]. 

Steelhead (and other anadromous salmonids) that do survive initial spawning are called 

kelts. Kelts may recover during the year after initial spawning and spawn again in the 

following year (consecutive spawners), or they may delay rematuration for one or more 

years (skip-spawners) [33,187]. 

Repeat spawning steelhead are ecologically important for two reasons: 1) life 

history diversity within a species may buffer populations against otherwise potentially 

catastrophic effects of stochastic events [266], and 2) repeat-spawning fish often 

contribute more than twice the lifetime reproductive output of once-spawning fish, and 

thus represent a way to sustain and possibly recover threatened or endangered 
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populations [263]. As salmonids grow and age, the potential lifetime reproductive output 

of a given individual increases at a rate greater than predicted by fecundity at the initial 

spawning, due to two inherent features of salmonids: indeterminate growth and size-

dependent fecundity. All salmonids exhibit indeterminate growth, meaning that they 

continue to increase in size throughout their life; theoretically, there is no upper limit to 

attainable body size, given enough food and protected from predation and disease [50]. 

Salmonids also exhibit size-dependent fecundity, meaning that the bigger a fish grows, 

the more gametes it produces [267]. Thus, when steelhead survive initial spawning and 

grow before the next spawning season, those kelts that do repeat spawn contribute more 

than twice the number of offspring in their lifetime than fish that spawn only once [263]. 

The potential ecological contribution of these repeat spawning kelts in rebuilding 

threatened wild populations is considerable. 

In addition to differences in migratory behavior, one major difference between 

rainbow trout and steelhead life history forms is the degree to which individuals repeat 

spawn (parity) in the wild. Resident rainbow trout are highly iteroparous: approximately 

25-50% of resident trout survive initial spawning and spawn multiple times throughout 

their life [267]. Historical records of iteroparity rates among steelhead are unreliable, but 

steelhead may have exhibited iteroparity rates as high as 20-40% in certain systems 

[268]. Atlantic salmon (Salmo salar) is a closely related species that provides a 

comparable model for steelhead. Unlike Pacific salmon, Atlantic salmon are iteroparous: 

in the wild as many as 10-20% may survive the initial spawning effort to repeat spawn, 

and there are reports of individual fish surviving to spawn up to six times in the wild [29]. 

Steelhead iteroparity rates have decreased throughout the Columbia River Basin, but 
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especially in upper watersheds like the Yakima River Basin, largely due to anthropogenic 

factors [38]. Current estimates of repeat spawning rates for steelhead in the Columbia 

River Basin are low (0.5-9%) [268]. Female kelts have a higher survival rate after initial 

spawning and generally contribute more than males towards population growth rates 

[263]. 

Although most kelts attempt outmigration (perhaps as many as 70%), few actually 

return to spawn repeatedly [36,37]. One strategy that has been tested to increase returns 

of salmonids [31,269,270,271,272,273,274], and that has been applied to steelhead in the 

Columbia River Basin [36,37,38] involves capturing post-spawned steelhead during the 

spring, when they are oumigrating downstream, holding and feeding them in land-based 

tanks while they recover from spawning, and then releasing them in autumn with the 

assumption that these fish will migrate back upstream and spawn again [38]. These 

programs are known as “reconditioning.” Previous work has shown that kelt 

reconditioning produces a substantial proportion of rematuring kelts, that reconditioned 

kelts spawn in the wild, and that these spawning efforts produce viable progeny [37]. 

However, direct comparisons of the reproductive status of reconditioned kelts and 

natural-origin, in-river migrating steelhead (IRMS) have not been conducted. As the 

efficacy and long-term sustainability of reconditioning programs have been contested 

[263,275], comparisons between reconditioned kelts and IRMS are needed, to show that 

steelhead kelt reconditioning programs generate fish that are physiologically comparable 

to natural-origin steelhead undertaking spawning migrations, and to help justify further 

pursuance of kelt reconditioning as a conservation measure. Also, improvements to 

reconditioning methods could be made if it is possible to early and accurately separate 
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fish into groups based on likelihood of rematuring, with special care or additional 

treatments being provided solely to fish that require such action. It seems probable that 

endocrine signals or physical parameters differ between kelts that will remature and those 

that will not during the upcoming spawning season. Identification of these metrics could 

provide markers that could be used to both increase the proportion of successfully 

rematured kelts and to focus efforts and resources on fish that need and would respond to 

costly treatments. 

The goals of this study were to monitor the reproductive status steelhead kelts 

from the YRB reconditioned at Prosser, WA; to directly compare the reproductive and 

energetic status of reconditioned kelts and IRMS moving upriver at the time of kelt 

release following reconditioning in October; and to explore relationships between 

parameters measured in October and VSP segments as determined by tracking for both 

IRMS and reconditioned kelt steelhead. We combined plasma hormone assays, physical 

measurements, and post-release tracking data for steelhead in the reconditioning program 

at Prosser, WA, to determine how early kelt rematuration can be detected, what 

parameters accurately predict rematuration, and which physical and endocrine parameters 

differ among steelhead from the different VSP segments within the YRB. We 

hypothesized that kelts would be bigger than IRMS, which are predominantly maiden 

fish. Also, since reconditioned kelts do not undergo the long-distance spawning migration 

that in-river fish do, we hypothesized that reconditioned kelts would be in better 

condition, as indication by Fulton’s condition factor (k), and would have greater 

concentrations of muscle lipid. Since evidence suggests that continuous swimming can 

inhibit reproductive investment by diverting energy towards somatic maintenance 
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[20,276], we hypothesized that reconditioned kelts would exhibit plasma levels of 17!-

estradiol, the primary fish estrogen and an established marker of reproductive 

development in O. mykiss (Chapter 2) that were higher than IRMS. In salmonid fishes 

and other lecithotrophic vertebrate, 17!-estradiol stimulates liver synthesis of the egg 

precursor protein vitellogenin [277,278], which circulates via the blood and is taken up 

by developing ovaries to fuel oocyte growth [279]. 

A substantial literature documents many aspects of salmonid physiology and 

endocrinology. However, most of this work describes changes in organismal biology 

occurring during initial sexual maturation, often using hatchery-origin fish in a laboratory 

or aquaculture setting [280,281]. A smaller portion of work has examined endocrine and 

other physiological processes during maturation and spawning migrations of natural-

origin salmonids [282,283,284,285]. Much less work has focused on the physiology and 

endocrinology of recovery from spawning and gonadal recrudescence preceding repeat 

spawning efforts. To our knowledge, this is the first study comparing physiological and 

endocrine factors between natural-origin steelhead recovering from spawning and 

natural-origin IRMS. 

 

2. Materials and Methods 

 

2.1.A. Steelhead Kelt Collection, Husbandry, Handling, Sampling, Release: 

 

The Yakima River Basin (YRB) encompasses the Yakima River and associated 

tributaries located in south-central Washington [38] (Fig. 4.1). The YRB drains a 1.6M 
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hectare area including high and wet Cascade Mountain forests, transitional eastern 

Cascade slopes, and low and dry Columbia Basin shrub steppe, before flowing into the 

Columbia River near Richland, WA [38,286]. Steelhead returning to the Yakima River 

spawn in the tributaries upstream of Prosser Dam, including Satus Creek, Toppenish 

Creek, and the many first and second order tributaries located in the upper reaches of the 

YRB [286]. In late spring and early summer, YRB steelhead kelts outmigrate down the 

mainstem Yakima and ultimately encounter Prosser Dam, where some of the fish (less 

than 50%) are diverted into the Chandler Juvenile Monitoring Facility (CJMF). Inside 

CJMF, a separator screen sorts juvenile smolts from adult kelts, and the latter are 

evaluated for inclusion in the reconditioning program located on-site. Detailed methods 

associated with collection, husbandry, sampling, and release of kelts at the Prosser, WA 

facility have been described previously [38]. After separation, kelts were transferred to a 

temporary holding tank, anesthetized with buffered tricaine methanesulfonate, weighed, 

measured for fork length (FL), and implanted with a uniquely coded PIT tag injected into 

the pelvic girdle [287,288,289]. Fish are then treated for parasitic gill copeopods with 

emamectin or ivermectin, and transferred to covered 23 m3 circular tanks fed 13.8ºC well 

water at a rate of 570-950 L/min. Kelts were started on frozen krill for 4-6 weeks, after 

which 6.0-mm pellet feed (Bio-Oregon, Longview, WA) was introduced. Feed was 

administered 3–5 times daily, and fish were fed until satiation, corresponding to a rate of 

1–2% body weight per day. In October prior to release, reconditioned steelhead were 

weighed, measured for FL, measured for muscle lipid content with a microwave-based 

fatmeter (Fish Fatmeter, Distell, Fauldhouse, UK), blood sampled, and scanned for PIT 

tags. 
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2.1.B. Sampling of In-River Migrating Steelhead 

 

A Denil-type fish passage ladder [290,291] is in place at Prosser Dam [292], 

allowing upstream migrating fishes to navigate what would otherwise be an impassible 

structure. During the upriver spawning migration in autumn months (26 September-19 

November), natural-origin IRMS were captured as they negotiated this structure, and 

sampled on site. IRMS were weighed, measured for FL, measured for muscle lipid 

content with the fatmeter, blood sampled, and scanned for PIT tags. If no tag was 

detected, fish were implanted with a uniquely coded PIT tag injected into the pelvic 

girdle. Measurements were taken and samples collected from kelts and IRMS at slightly 

different times. However, all fish were sampled within approximately one month of each 

other (October 2012), during what was their upstream (spawning) migration, making 

these fish comparable. 

 

2.2. Tracking 

 

Two remote instream PIT detection antenna arrays are located below the known 

spawning distributions of the Satus Creek and Toppenish Creek populations. The 

Toppenish Creek array is located approximately 400 m upstream and the Satus Creek 

array is located approximately 2.5 km upstream from their respective confluences with 

the Yakima River. Additionally, all fish are trapped and scanned for PIT tags during 

upstream migration through Roza Dam, north of Yakima, WA. Based on PIT array 

detections, fish were divided into VSP segments corresponding to tributaries in which 
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they appear to spawn; all fish detected at or above Roza dam are considered Upper 

Yakima fish. There were no PIT arrays operating during 2012 in the Naches River, the 

largest VSP segment of the Yakima steelhead population. Tracking data was also used to 

infer behaviors congruent with successful spawning and survival. If a fish was detected 

migrating past an upstream array at the mouth of a tributary during the spawning season, 

and spent at least two weeks in that tributary before being detected migrating past the 

downstream array at the tributary mouth, it was presumed that these fish 1) spawned in 

that tributary, 2) survived the spawning effort, and 3) swam downstream out of the 

tributary into the mainstem of the Yakima River. Most fish that were detected migrating 

downstream after entering a tributary had spent more than 2 weeks in that stream; a very 

small number of fish spent only 2-5 days in the tributary, which is hard to reconcile with 

spawning behavior [293]. Also, many fish were only detected migrating past the 

upstream arrays; while these fish may have successfully spawned and survived the 

spawning effort, numerous alternate hypotheses could describe these behaviors, which 

prevented us from drawing conclusions about post-spawn survival of such fish. Using 

this PIT tag data, it is impossible to infer failed spawning and death with any reasonable 

measure of specificity, but it may be possible to sensitively infer success and survival. 

 

2.3. Plasma hormone assays 

 

Blood plasma was obtained from whole blood samples by centrifugation, after 

which plasma samples were immediately frozen on dry ice until returning to University 

of Idaho, where samples were stored at -80ºC until analysis. Per kit recommendations, all 
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samples were ether extracted prior to assay, as described in Chapter 2. Plasma 17!-

estradiol was measured by EIA (Cayman Chemical Company, Ann Arbor, MI; Item No. 

582251), following kit directions; samples were measured in duplicate. Plasma 

vitellogenin was measured by homologous EIA (Biosense, Bergen, Norway; Product No. 

V01004402), as previously described [37]; samples were measured in duplicate. 

 

2.4. Statistical analysis 

 

197 steelhead kelts that survived reconditioning until release in autumn were 

included in analyses. However, not all measurements were available for each individual 

at every sampling point. 171 kelts were measured for fork length and mass at intake; all 

197 kelts were blood sampled and measured for fork length, mass, and fatmeter reading, 

at release. In some cases, total blood drawn was insufficient for all assays; therefore, 196 

kelts were assayed for plasma 17!-estradiol, but only 185 kelts were assayed for plasma 

vitellogenin. 46 reconditioned kelts were detected at PIT arrays upstream of the release 

site in tributaries of the Yakima River. 

129 putative female IRMS were sampled at the Denil trap near Prosser, WA in 

autumn 2012. Of these fish, 2 appeared to be males based on extremely low plasma 17!-

estradiol and secondary sex characteristics (coloration, head morphology) noted during 

sampling. Of the 127 IRMS included in analyses, all were blood sampled and measured 

for fork length, mass, and fatmeter reading. In some cases, total blood drawn was 

insufficient for all assays; therefore, all 127 IRMS were assayed for plasma 17!-estradiol, 

but only 125 IRMS were assayed for plasma vitellogenin. 
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Plasma concentrations of 17!-estradiol and vitellogenin were log10-transformed 

prior to analysis. 

Reconditioned kelts were categorized as rematuring or non-rematuring based on 

multivariate cluster analysis. Ward’s minimum variance method [294] was used to 

hierarchically group fish into one of two clusters (rematuring and non-rematuring) based 

on plasma 17!-estradiol and vitellogenin. Cutoffs for inclusion as rematuring were 

identified to be 1 ng/ml 17!-estradiol and 0.4 mg/ml vitellogenin. 

A multivariate correlation analysis was performed to determine the relationship of 

measurements taken at release among both rematuring and non-rematuring reconditioned 

kelts. Pearson’s correlation coefficients and associated significance probabilities were 

generated for each pairwise relationship among the parameters measured at release. 

Based on the cluster analysis groupings generated using plasma 17!-estradiol and 

vitellogenin, parameters measured in rematuring kelts were compared directly to those 

measured in both non-rematuring kelts and IRMS. As these comparisons were used to 

test hypotheses about two groups for which we had no prior hypotheses about the 

direction of differences, and as the two pairs of groups are orthogonal, two-tailed t-tests 

were used. 

In cases where more than two groups were simultaneously compared, ANOVA 

was used to detect significant differences; in the event of a significant ANOVA (p<0.05), 

Tukey’s HSD multiple comparison tests were used to determine which groups were 

different. Differences are reported as significant when p<0.05. Condition factor was 

calculated as described in Chapter 1. All statistical analyses were performed using JMP9 

(SAS Institute, Cary, NC). All ranges provided refer to mean ± SD. 
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3. Results 

 

3.1. Reconditioned kelts from Prosser 2012: 

 

Steelhead kelts reconditioned during summer 2012 at the Prosser, WA facility 

robustly and discretely separated into two groups based on the multivariate clustering 

analysis using both plasma 17!-estradiol and plasma vitellogenin: rematuring fish 

exhibited plasma 17!-estradiol > 1 ng/mL and plasma vitellogenin > 0.5 mg/mL (Fig. 

4.2). During this year, 148/185 (80%) reconditioned kelts that survived until release, and 

were assayed for both 17!-estradiol and vitellogenin, had rematured. When 11 additional 

kelts were categorized based on plasma 17!-estradiol data only ([17!-estradiol] > 1 

ng/ml), 8 additional kelts appeared to be rematuring and 3 appeared to be non-

rematuring, making the total 156/196 (80%). 

 

3.1.a. Parameters measured in reconditioned kelts at intake: 

 

Kelts that ultimately rematured entered the reconditioning program bigger than 

kelts that did not remature (Fig. 4.3). Rematuring kelts were 4% longer (a mean 

difference of 2.5 cm; two-tailed t-test, p = 0.02) and 15% heavier (a mean difference of 

290 g; two-tailed t-test, p = 0.007) than non-rematuring kelts at intake. Condition factor 

at intake was similar between rematuring and non-rematuring kelts: rematuring kelts had 

2% higher condition factor than non-rematuring kelts at intake (a mean difference of 0.2; 
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two-tailed t-test, p = 0.49). Rematuring and non-rematuring kelts arrived at Prosser at 

similar times (mean intake date of rematuring kelts was April 29 ± 22 days, mean intake 

date of non-rematuring kelts was April 27 ± 24 days; two-tailed t-test, p = 0.60). 

 

3.1.b Parameters measured in reconditioned kelts at release: 

 

Kelts that rematured during reconditioning grew faster than kelts that did not 

remature (Fig. 4.4); upon release after reconditioning, rematuring kelts were bigger, 

fatter, and of higher condition factor than kelts that did not remature (Fig. 4.5). 

Rematuring kelts had 32% greater SGR than non-rematuring kelts over the course of 

reconditioning (two-tailed t-test, p < 0.0001), and were 7% longer than non-rematuring 

kelts (a mean difference of 4.6 cm; two-tailed t-test, p < 0.0001), 41% heavier (a mean 

difference of 1,084 g; two-tailed t-test, p < 0.0001), had 26% more muscle lipid content 

(a mean difference of 1.1% lipid; two-tailed t-test, p = 0.005) and 15% higher condition 

factor (a mean difference of 1.5; two-tailed t-test, p < 0.0001) than non-rematuring kelts 

at release. 

Among non-rematuring reconditioned kelts, there was a significant positive 

pairwise correlation between CF and both plasma vitellogenin and plasma 17!-estradiol, 

between SGR and plasma vitellogenin, and between fish mass and plasma 17!-estradiol 

at the time of release (Table 1). Among rematuring reconditioned kelts, there was a 

significant positive pairwise correlation between most physical measurements and both 

plasma vitellogenin and plasma 17!-estradiol at the time of release (Table 2). 
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3.1.c Comparisons within Reconditioned Kelts by VSP Segment: 

 

All 43 kelts detected entering spawning tributaries were rematuring as determined 

by plasma 17!-estradiol and vitellogenin, so it is impossible to evaluate reconditioning 

success as a factor of VSP segment. 

Date of intake for reconditioning (outmigration timing) was significantly different 

among kelts from the different VSP segments (ANOVA, p < 0.0001). Satus Creek kelts 

arrived on their post-spawn, downstream (seaward) migration earliest, followed by 

Toppenish Creek kelts, with Upper Yakima kelts arriving last (Fig. 4.6). Kelts 

outmigrating from Satus Creek had a mean arrival date at Prosser Dam of April 6 ± 10 

days, two and a half weeks earlier than kelts outmigrating from Toppenish Creek (April 

24 ± 15 days, Tukey’s HSD, p < 0.0002) and over a month earlier than kelts outmigrating 

from tributaries in the Upper Yakima (May 11 ± 1 day, Tukey’s HSD, p < 0.0002). Run 

timing was similar between kelts outmigrating from Toppenish Creek and kelts from 

tributaries in the Upper Yakima (Tukey’s HSD, p < 0.13). Following release in autumn 

after reconditioning, the date of first detection at the mouth of the respective tributaries 

upstream of Prosser Dam was similar among kelts from the different VSP segments 

(ANOVA, p = 0.16). 
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3.2. Comparison of Reconditioned Kelts to Wild Migrating Steelhead: 

 

Rematuring kelts were bigger and had higher circulating levels of estrogen 

compared to IRMS (Fig. 4.5). Compared to IRMS, rematuring kelts were 3.5% longer (a 

mean difference of 2.3 cm; Tukey’s HSD p = 0.005), 35% heavier (a mean difference of 

0.95 kg; Tukey’s HSD p < 0.0001), 43% fatter (mean difference of 1.6%; Tukey’s HSD p 

< 0.0001), exhibited 22% higher condition factor (mean difference of 1.03; Tukey’s HSD 

p < 0.0001), 152% higher plasma 17!-estradiol (mean difference of 17.5 ng/mL; Tukey’s 

HSD p < 0.0001), and similar plasma vitellogenin levels (rematuring kelts plasma 

vitellogenin = 12.960 ± 0.508 mg/mL, IRMS plasma vitellogenin = 12.819 ± 0.555 

mg/mL; i.e., rematuring reconditioned kelts had 1% higher plasma vitellogenin than 

IRMS; Tukey’s HSD, p = 0.98). Compared to IRMS, non-rematuring reconditioned kelts 

were similar in length (non-rematuring kelts = 63.2 ± 1.0 cm, IRMS = 65.2 ± 0.6 cm; 

Tukey’s HSD, p = 0.16), mass (non-rematuring kelts = 2.6 ± 0.1 kg, IRMS = 2.7 ± 0.1 

kg; Tukey’s HSD, p = 0.78), and fatmeter (non-rematuring kelts = 4.2 ± 0.3 %, IRMS = 

3.7 ± 0.2 %; Tukey’s HSD, p = 0.26); however, non-rematuring kelts had higher 

condition factor (non-rematuring kelts = 10.2 ± 0.2, IRMS = 0.6 ± 0.1; Tukey’s HSD, p = 

0.049), lower plasma 17!-estradiol (non-rematuring kelts = 0.196 ± 4.4 ng/mL, IRMS = 

24.6 ± 2.5 ng/mL; Tukey’s HSD, p < 0.0001), and lower plasma vitellogenin (non-

rematuring kelts = 0.043 ± 1.015 mg/mL, IRMS = 12.819 ± 0.555 mg/mL; i.e., IRMS had 

297-fold higher plasma vitellogenin than non-rematuring kelts; Tukey’s HSD, p < 

0.0001). 
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3.3. In-River Migrating Steelhead – Comparison of VSP Segments 

 

When sampled at the Prosser Dam Denil trap in October 2012, IRMS from the 

various VSP segments exhibited similar values for fork length (ANOVA, p = 0.31), fish 

mass (ANOVA, p = 0.24), fatmeter (ANOVA, p = 0.68), plasma 17!-estradiol (ANOVA, 

p = 0.28), and plasma vitellogenin (ANOVA, p = 0.22). IRMS destined for the Upper 

Yakima (including IRMS that were detected entering Swauk, Taneum, and Teanaway 

Creeks) exhibited higher condition factor than fish destined for tributaries lower in the 

basin (Fig. 4.7). Upper Yakima IRMS exhibited 7% higher condition factor compared to 

IRMS destined for Satus Creek (mean difference of 0.32; Tukey’s HSD, p = 0.02) and 

7% higher condition factor compared to IRMS destined for Toppenish Creek (mean 

difference of 0.31; Tukey’s HSD, p = 0.04). 

If IRMS and reconditioned kelts are pooled, then first detection upstream reflects 

general expectations based on migration logistics (Fig. 4.8). Satus Creek steelhead and 

Toppenish Creek steelhead both arrived at their respective tributaries on a similar date 

(Feb 9 ± 45 days and Jan 25 ± 40 days, respectively; Tukey’s HSD, p = 0.24), which was 

significantly earlier (Tukey’s HSD, p " 0.0002) than steelhead destined for the Upper 

Yakima (March 30 ± 19 days). 

 

4. Discussion 

 

Of 196 female steelhead kelts released after reconditioning at Chandler Juvenile 

Monitoring Facility (CJMF) in October 2012, 80% were rematuring, as determined by 
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plasma levels of the estrogen 17!-estradiol and the yolk precursor protein vitellogenin. 

This is the highest maturation percentage recorded to date at this facility [38]. Compared 

to IRMS migrating upstream in October, reconditioned kelts that had rematured were 

longer and heavier, and exhibited higher plasma 17!-estradiol and similar plasma 

vitellogenin. Increases in length and mass through the reconditioning program may seem 

like an obvious result of kelts being at least one year older than IRMS. However, it 

should be noted that non-rematuring reconditioned kelts were similar to IRMS in both 

length and mass, suggesting that significant growth is not the inevitable outcome of aging 

among steelhead kelts. From a project standpoint, it is assuring that reconditioned kelts 

accrue muscle lipid and exhibit both higher condition factor and higher plasma 17!-

estradiol than IRMS. 

To our knowledge, this is the first report of a physiological comparison between 

rematuring kelts and IRMS, the latter of which comprise a majority of maiden fish along 

with a much smaller proportion (approximately 1.6%) of naturally occurring kelts [292]. 

For the purposes of evaluating steelhead kelt reconditioning projects throughout the 

Columbia River Basin, the most relevant physiological comparisons are between 

reconditioned and naturally occurring steelhead kelts. However, the low incidence and 

prevalence of natural kelts in the Upper Columbia River, along with the technical 

challenges associated with non-lethally determining spawning history for a given fish, 

logistically preclude such a comparison. The next most salient comparison is between 

reconditioned kelts and in-river steelhead that are migrating upstream, collected from 

similar locations, and sampled at similar stages of reproductive development. Due to very 

low numbers of naturally occurring repeat-spawning steelhead kelts in the Upper 



 

 

85 

85 

Columbia River, we have assumed that all IRMS thus sampled are maidens. However, 

this group may contain a small number of naturally occurring repeat spawning steelhead 

kelts. 

Circulating estrogen and egg protein levels unequivocally show that the 

reconditioned steelhead kelts determined to be rematuring were developing on a 

trajectory congruent with reproduction in the following spring. However, concentrations 

of these plasma biomarkers do not enable complete separation between rematuring and 

non-rematuring kelts until at least late summer [36]. Earlier determination of the 

particular reproductive trajectory fish are on could help improve both efficacy and 

efficiency of reconditioning programs. To better understand the factors that influence 

rematuration and associated biomarkers, measurements at intake, when outmigrating 

kelts are captured at CJMF after spawning, were compared between kelts that ultimately 

rematured after reconditioning and those that did not, to assess parameters that could be 

used to predict rematuration. Kelts that ultimately rematured were longer and heavier at 

intake, possibly reflecting greater somatic energy reserves that are not detectible by 

measuring muscle lipid content. Previous work has shown that longer steelhead kelts 

[295] and Atlantic salmon [296] have higher somatic energy reserves compared to shorter 

fish. Although perhaps underwhelming, this finding suggests that reconditioning 

practices increasing growth among kelts should also improve rematuration percentages. 

After spawning in the spring, outmigrating kelts arrive at CJMF in discrete 

groups. Date of intake for reconditioning was significantly different among kelts from the 

different viable salmon population (VSP) segments, with Satus Creek kelts arriving 

earliest, followed by Toppenish Creek kelts, and later by Upper Yakima kelts. Spawn 



 

 

86 

86 

timing in the VSP segments generally follows elevation, with Satus Creek fish spawning 

earliest, followed by fish from Toppenish Creek and then the fish from the Upper Yakima 

[292]. The arrival date of kelts at CJMF is consistent with this pattern: Steelhead that 

spawn in lower elevation tributaries closer to Prosser Dam arrive earlier, while steelhead 

that spawn at higher elevations in the Yakima basin further from Prosser Dam arrive at 

CJMF later. Kelts that remature during reconditioning are longer and heavier when they 

are collected at CJMF during their post-spawn downstream migration in the spring. 

When sampled on their upstream migrations during the autumn prior to spawning, 

IRMS from the various VSP segments in the upper Yakima generally exhibited similar 

physical and endocrine measurements. However, fish undergoing longer migrations (i.e., 

fish that were detected later) had higher condition factor when sampled at the Prosser 

Denil trap, although fatmeter readings did not differ among the IRMS VSP segments 

(data not shown). Fish undergoing longer migrations are likely subjected to strong 

selection pressures for acquiring substantial energy reserves in order to successfully 

complete a spawning migration [20,21,297]. It may be the case among steelhead that 

body shape reflects a more integrated measure of energy reserves, which include hepatic 

lipids and glycogen, visceral adipose tissue, and belly flap lipids, in addition to muscle 

lipid stores, the only energy reserve assessed with the fatmeter [298]. 

As a group, salmonids exhibit a synergistic combination of indeterminate growth 

[50] and size-dependent fecundity [17]. Together, these traits are responsible for an 

emergent phenomenon: repeat-spawning salmonids contribute more than double the 

number of offspring in their lifetime than salmonids who spawn only once [263]. Repeat-

spawning steelhead thus have the potential to contribute meaningfully toward population 
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recovery. Ensuring the survival of repeat and skip-spawning steelhead kelts will also 

contribute to the maintenance of salmonid life history diversity, an ecological property 

thought to buffer populations against devastating crashes associated with life in a 

stochastic environment [299,300,301]. For these reasons, kelt reconditioning programs 

that generate repeat spawning females are a viable short-term strategy to mitigate the 

present decline in steelhead populations throughout the Columbia River Basin. This work 

provides the first known comparison of reconditioned steelhead with natural-origin in-

river migrating steelhead (IRMS), and shows that reconditioning projects yield bigger 

and fatter fish, with higher circulating levels of estrogen and similar circulating levels of 

vitellogenin compared to IRMS, and that those reconditioned kelts determined to be 

rematuring by plasma 17!-estradiol and vitellogenin analysis do behave congruently with 

repeat spawning in the Upper Yakima River. 
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Figure 4.1. Map of Yakima River Basin, including location of kelt reconditioning facility 

at Chandler Juvenile Monitoring Facility, near Prosser, WA. From Hatch (2013). 
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Figure 4.2. Plasma concentration of vitellogenin plotted as a factor of plasma 

concentration of 17!-estradiol in kelts reconditioned at the Prosser, WA facility during 

2012. Red indicates fish determined to be non-rematuring, and green indicates fish 

determined to be rematuring, based on multivariate cluster analysis. Estimated cutoff 

concentrations of 1 ng/mL for 17!-estradiol and 0.4 mg/mL for vitellogenin are indicated 

by grey lines. 
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Figure 4.3. Comparisons of fork length (A) and total fish mass (B) at intake in Spring 

2012 between reconditioned kelts that ultimately rematured and those that did not at 

Prosser, WA.
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Figure 4.4. Comparison of growth rate during 2012 reconditioning between kelts that 

ultimately rematured and those that did not at Prosser, WA. 2-tailed t-test, P<0.0001. 
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Figure 4.5. Comparison of fork length (A), fish mass (B), condition factor (C), fatmeter 

(D), plasma 17!-estradiol (E), and plasma vitellogenin (F) measured in Autumn 2012 

among IRMS, reconditioned kelts that rematured, and reconditioned kelts that did not 

remature. Groups sharing a letter are not significantly different. 
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Figure 4.6. Comparison of intake date for kelts entering the reconditioning program at 

Prosser, WA, by VSP segment. Groups sharing a letter are not significantly different. 
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Figure 4.7. Comparison of condition factor among VSP segments of IRMS. Groups 

sharing a letter are not significantly different. 
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Figure 4.8. Comparison of first upstream detection among VSP segments of combined 

IRMS and reconditioned kelts. Groups sharing a letter are not significantly different. 
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Table 4.1. Correlations of parameters measured at Autumn 2012 release in non-

rematuring steelhead kelts. Values in shaded cells represent Pearson’s correlation 

coefficients; values in un-shaded cells represent associated significance probabilities. 

Bolded cells represent significantly correlated variables (p<0.005). 
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Table 4.2. Correlations of parameters measured at autumn 2012 release in rematuring 

steelhead kelts. Values in shaded cells represent Pearson’s correlation coefficients; values 

in un-shaded cells represent associated significance probabilities. Bolded cells represent 

significantly correlated variables (p<0.005)
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