EVIDENCE FOR MIXING AND RE-EQUILIBRATION IN THE TWIN FALLS – BANBURY HYDROTHERMAL SYSTEM AND ITS EFFECTS ON RESERVOIR TEMPERATURE ESTIMATION

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Hydrology

in the

College of Graduate Studies

University of Idaho

by

Cody J Cannon

Major Professor: Thomas R. Wood, Ph.D.

Committee Members: Ghanashyam Neupane, Ph.D., Robert W. Smith, Ph.D.

Department Administrator: Mickey E. Gunter, Ph.D.

November 2015

AUTHORIZATION TO SUBMIT THESIS

The thesis of Cody J. Cannon, submitted for the degree of Master of Science with a major in Hydrology and titled, "EVIDENCE OF MIXING AND RE-EQUILIBRATION IN THE TWIN FALLS – BANBURY HYDROTHERMAL SYSTEM AND ITS EFFECTS ON RESERVOIR TEMPERATURE ESTIMATION," has been reviewed in final form. Permission, as indicated by the signatures and dates given below, is now granted to submit final copies to the College of Graduate Studies for approval.

Major Professor:		Date:
	Thomas R. Wood, Ph.D.	
Committee Members:	Ghanashyam Neupane, Ph.D.	Date:
	Robert W. Smith, Ph.D.	Date:
Department Administrator:	Mickey E. Gunter, Ph.D.	Date:

ACKNOWLEDGEMENTS

I am forever grateful to all the selfless people who made this study possible.

First, I must thank my major professor Dr. Tom Wood of whom I have the utmost respect and admiration. I am immeasurably indebted to him for all of his long hours spent working with me, his invaluable advice, continuous support and reassurance, and for always having his door open to my incessant questions and worries. I have learned countless lessons from him not only pertaining to scientific research but life in general. He is highly regarded as an expert hydrogeologist throughout the region, a skilled research scientist, and by those lucky enough, a good friend. He is a great man and a consummate professional.

I recognize the unyielding support of Dr. Hari Neupane without whose broad geochemical and geothermal knowledge; none of this work would be possible. He is not only a brilliant mind, but also a very caring person who sacrificed much of his valuable time. The scientific research competence of Dr. Bob Smith has proven vitally important to this study. He has a special knack for seeing beneath the surface of problems and has given me direction when I needed it the most. I am extremely grateful for the guidance provided by Travis McLing, whose expertise as a geologist in the field and in the laboratory have been a source of inspiration for me throughout this process. Dr. Earl Mattson has been a continual source of guidance and support throughout this process and was instrumental in providing focus to an otherwise broad collection of data. I also acknowledge the support and guidance of Dr. Pat Dobson and Dr. Mark Conrad of the Lawrence Berkeley National Laboratory.

Lastly, I must send out a very special thank you to Debbie Lacroix, whose analytical chemistry expertise is responsible for the original data in this study, Dr. Ross Spackman whose study area field expertise and incredible relational skills resulted in the collection of samples in this study, and to Eric Hass of the Department of Energy's Geothermal Technologies Office for funding this project.

DEDICATION

This work is dedicated to my incredible wife, Emily Cannon, for her unconditional love, unwavering support, and steadfast belief in me even through the tough times when I don't believe in myself. She is my best friend and the best friend any man could ask for. To my parents, Ellen and Gary Cannon, for believing in me from the beginning, convincing me that nothing is impossible, and teaching me that I am never alone. To my sister, Christi Cannon, for reminding me to never take myself too seriously. Lastly and chiefly, this thesis is dedicated to Jesus Christ in whose mighty company I am blessed to be counted. For making me a new man, His constant companionship, and grace through His selfless finished work, I am and will continue to be eternally grateful.

"He is a man in a way that we have forgotten men can be; truthful, blunt, emotional, nonmanipulative, sensitive, compassionate." – Brennan Manning

ABSTRACT

The Twin Falls - Banbury area is one of many Known Geothermal Resource Areas located along the periphery of the Eastern Snake River Plain (ESRP). The ESRP is a topographical plain, which was formed by the bimodal volcanism of successive caldera formations associated with the migration of the Yellowstone Hot Spot over the last 16 Ma. Despite temperature gradients of 45-60 °C/km (double the global average) and high heat flow values (110 mW/m²), geothermal utilization within the ESRP is largely limited to direct use with no commercial geothermal development. A gradational trend between deep rhyolite derived Na-K-HCO₃ waters of the deep system and basalt hosted Ca-Mg-HCO₃ thermal water is observed in deep exploration wells. Mixing between the fluids of the deep system and cooler overlying groundwater as well as re-equilibration of thermal fluids during ascension are considered possibilities that may explain this trend and the low geothermometry temperature estimations of the area. The Twin Falls – Banbury area was chosen as the location for an in depth investigation into the possibility of geothermal mixing and re-equilibration as an explanation for the lower than expected geothermometry.

Evidence for mixing is provided by partial equilibration conditions in most thermal samples as well as a variety of linear mixing trends between both conservative chemical species (Cl, B, δD , etc.) and more reactive species (Ca, Mg, Na, and K). The reactive species show two distinct chemical trends between the two water types that may constitute evidence for different flow paths and/or re-equilibration of thermal fluids at lower temperatures. Multicomponent equilibrium geothermometry (MEG) analysis through the inverse modeling tool RTEst (Palmer, 2013) provides more reliable reservoir temperature estimates for the area through the use of likely reservoir mineral assemblages and the compensation of a mixing component. Results from MEG also support the possibility of re-equilibration. The combination of MEG, high temperature water-rock interaction experiments, and local geological and hydrological data have resulted in a revised conceptual flow model of the Twin Falls – Banbury hydrothermal system.

TABLE OF CONTENTS

Authorization to Submit	ii
Abstract	iii
Acknowledgements	iv
Dedication	v
Table of Contents	vi
List of Figures	viii
List of Tables	X
CHAPTER 1. Introduction	1
CHAPTER 2. Literature Review	8
2.1 Geology	8
2.2 Hydrology	12
2.3 Geochemistry	13
2.4 Methods	15
2.4.1Solute Chemical Geothermometry	15
2.4.2 Silica-Enthalpy Mixing Models	17
2.4.3 Multicomponent Equilibrium Geothermometry	18
2.4.5 High Temperature Water-Rock Interaction Experiments	20
CHAPTER 3 Geochemistry of Thermal	
Waters in the Twin Falls – Banbury Thermal Area	22
3 1 Sample Chemistry	22
3.2 Principle Component and Hierarchical Cluster Analysis	28
3.3 Fyidence for Mixing Between Thermal Water and Groundwater	33
3.4 Binary Diagram Mixing Trend Analysis	36
3.5 Aerial and Geologic Distribution of Water Types	43
0 7 71	
CHAPTER 4. Geothermometry Estimation of Reservoir	
Temperatures in the Twin Falls – Banbury Thermal Area	48
4.1 Conventional Geothermometers	48
4.1.1 Silica Geothermometers	49
4.1.2 Cation Geothermometers	53
4.2 Silica-Enthalpy Mixing Models for the Twin Falls – Banbury Thermal Area	63
4.3 MEG Analysis of the Twin Falls – Banbury Thermal Area	67
4.4 RTEst Results for the Twin Falls – Banbury thermal Area	72
CHAPTER 5 Conceptual Models	78
5.1 No Mixing	
5.1 1.0 MINNING	

5.2 Simple Mixing	78
5.3 Reactive Mixing	79
5.4 Re-equilibration	80
5.5 Hydrogeology	84
5.5.1 Aquifer Test Analysis	
CHAPTER 6. Water-Rock Interaction and Mixing Experiments	94
6.1 Rock Samples	94
6.2 Rock Sample Preparation	95
6.3 Initial Water Sample	97
6.4 Experimental Procedure: Part 1	98
6.5 Experimental Procedure: Part 2	101
6.6 Results	102
6.7 Discussion	107
CHAPTER 7. Summary and Conclusions	109
References	115
Appendix A. Sample Collection Procedure	127
Appendix B. Analytical Chemistry QA/QC	138
Appendix C. Charge Balance for Ca-HCO3 and Na-HCO3 waters	154
Appendix D. Well Logs Utilized in Geologic Cross Sections	156

LIST OF FIGURES

1	ESRP Reference and Sample Map	2
2	ESRP Schematic Cross Section	3
3	Twin Falls – Banbury Area Heat Flow and Sample Map	4
4	Twin Falls – Banbury Hydrothermal Area Reference Map	9
5	General Stratigraphy for the Twin Falls – Banbury Area	11
6	Principle Component Analysis Biplot Chart	31
7	Hierarchical Cluster Analysis Dendrogram for the Twin Falls – Banbury Area	32
8	Simple Water Type Dendrogram	32
9	Piper Diagram of Na-HCO3 and Ca-HCO3 Waters in the Twin Falls – Banbury Area	34
10	Giggenbach Ternary Diagram of Na-HCO3 and Ca-HCO3 Waters	36
11	Binary plot of δD vs $\delta^{18}O$ Showing Shift from Local MWL	37
12	Conservative Component (Cl ⁻ , B, δ^{18} O, and δ D) Binary Diagrams	38
13	Bicarbonate Alkalinity Binary Diagrams	39
14	Simple Gradational Trend Binary Diagrams of Reactive Components	41
15	Binary Diagrams Showing Complex Relationships of Na ⁺ vs Ca ²⁺ , Mg ²⁺ , and K ⁺	42
16	Map Showing Trend from Ca-HCO3 to Na-HCO3 Waters Away from Recharge	45
17	Water Type Distribution Map of the Banbury Thermal Area Along a Normal Fault	46
18	Water Type Distribution Map of the Twin Falls Thermal Area	47
19	Silica Solubility vs Temperature	52
20	Silica-Enthalpy Mixing Model (Quartz) Applied to the Twin Falls-Banbury Area	66
21	Silica-Enthalpy Mixing Model (Chalcedony) Applied to the Twin Falls-Banbury Area.	67
22	Application of RTEst to Banbury Hot Springs	69
23	Reconstructed (Optimized) Ca-HCO3 Thermal Water Binary Diagrams	74
24	Conceptual Model for the Twin Falls – Banbury Hydrothermal Area	82
25	Map Conceptual Model Cross Sectional Line	83
26	Geologic Cross Section of the Banbury Hot Springs Cluster Area	84
27	Map of the Cross Sectional Line Through the Banbury Hot Springs Area	85
28	Geologic Cross Section of the Twin Falls Thermal Cluster Area	86
29	Map of the Cross Sectional Line Through the Twin Falls Thermal Area	87
30	Aquifer Pumping Tests for the CSI 1 and 2 Thermal Wells	89
31	Plot of Temperature vs Drawdown for the CSI 1 and 2 Thermal Wells	90
32	Cooper-Jacob Solution for the CSI 1 Pump and Recovery Tests	93
33	Experimental Rock and Water Sample Location Maps	96
34	Rock Sample Preparation for Water-Rock Interaction Experiments	97
35	Reactor Cell Configuration for Water-Rock Interaction Experiments	99
36	Diagram of Water to Rock and Thermal Water to Groundwater Experimental Ratios	.102
37	Experimental Results Showing Calcium Concentrations from Initial Mixing	.104
38	Experimental Results Showing Magnesium Concentrations from Initial Mixing	.104

39 Experimental Results Showing Silica Concentrations from Initial Mixing	105
40 Experimental Results Showing Sodium Concentrations from Initial Mixing	105
A1 Images Showing Sample Collection Procedure	129
A2 YSI ® Professional Plus Calibration Procedure	137
C1 CSI Well 1 Driller's Log	156
C2 CSI Well 2 Driller's Log	159
C3 Banbury Hot Springs Well Driller's Log	161
C4 Dick Kaster Well 1 Driller's Log	162
C5 Dick Kaster Well 2 Driller's Log	
C6 Sam Collier Well Driller's Log	
C7 City of Twin Falls Well Driller's Log	166
C8 Twin Falls High School Well Driller's Log	170
C9 Mike Archibald Well Driller's Log	172
C10 Canyon Springs Golf Course Well Driller's Log	174
C11 Pristine Springs Well Driller's Log	175

LIST OF TABLES

1 Original Chemical Concentrations for Twin Falls – Banbury Thermal Waters	25
2 Selected Historical Chemical Concentrations for Twin Falls - Banbury Thermal Wat	ters26
3 Principle Component Analysis Eigen Values of Major Cations	29
4 Pearson's Correlation Coefficients for PCA Variables	30
5 Silica Geothermometer Temperature Estimations for Na-HCO ₃ Waters	60
6 Silica Geothermometer Temperature Estimations for Ca-HCO ₃ Waters	61
7 Cation Geothermometer Temperature Estimations for Na-HCO ₃ Waters	62
8 Cation Geothermometer Temperature Estimations for Ca-HCO3 Waters	63
9 Alteration Mineral Assemblages and Weighting Factors Used in RTEst Modeling	71
10 RTEst Temperature Estimates of Na-HCO3 Waters Using Pure Water and Ca-HCO	3
Waters Using Local Groundwater	77
11 Water-Rock Interaction Experimental Matrix	101
12 Initial and Post Mixing Experimental Concentrations	103
A1 Field Parameters for Data Collected in the ESRP in 2014	131
B1 Anion QC Table	145
B2 Cation QC Table	147
B3 Trace Element QC Table	148
B4 Chemical Concentrations for ESRP 2014 Hydrothermal Samples	152
C1 Charge Balances for Na-HCO3 Thermal Waters	154
C2 Charge Balances for Ca-HCO ₃ Thermal Waters	155

CHAPTER 1: INTRODUCTION

The Twin Falls – Banbury hydrothermal area is one of many Known Geothermal Resource Areas (KGRA) located along the periphery of the Eastern Snake River Plain (ESRP). The ESRP is considered to be one of the most favorable areas for geothermal development within the state of Idaho (Tester et al., 2006) which the USGS estimates is home to over 4,900 MWe of undiscovered geothermal resources with a mean power production potential of 30 GWe (Williams, 2008). Regional subsurface temperature gradients of 45-60 °C/km (double the global average) have been calculated throughout the region and heat flow values of over 150 mW/m² have been projected for depths to 6 km (Brott et al., 1976; Blackwell and Richards, 2004). Despite the high observed potential, utilization of geothermal fluids has been limited to direct use applications (direct use heating, greenhouses, fisheries, etc.) for over a century with no commercial geothermal development within or along the plain proper. This is likely due to the masking of the deep geothermal signature by the Eastern Snake River Plain Aquifer (ESRPA), a prolific basalt hosted aquifer system that overlies the rhyolites, which are thought to host thermal reservoirs throughout the region.

The ESRP is a topographical lowland which was formed by the middle Miocene to recent bimodal volcanism by a succession of caldera formations associated with the migration of the North American Plate over the Yellowstone Hot Spot (Hughes et. al., 2002; Rodgers et. al., 2002; Pierce and Morgan, 2009). Caldera formation resulted in a series of younger to the east rhyolite units (Morgan et al., 1984; Leeman et al., 2008) that are overlain by extensive younger basalt flows of Tertiary to Holocene age. The basalt sequence forms the ESRPA which carries cold water from the Yellowstone Plateau down gradient to the Thousand Springs area in Twin Falls, ID. Because of the thick overlying cold water aquifer, most of the

thermal springs and wells throughout the area are observed along the margins of the ESRP. It is thought that deep thermal water is able to make its way to the surface through a variety of structurally and geologically controlled conduits.

Figure 1. Map of the ESRP showing location relative to the United States (inset) and the approximate locations of caldera centers. Red points represent thermal samples collected in the 2014.

Many compositions for thermal fluids of the ESRP have been recorded (e.g., Ross, 1971; Young and Mitchell, 1973; Ralston et. al., 1981; Lewis and Young, 1982; Wood and Low, 1988; Parliman and Young, 1992; Mariner et al., 1991, 1997; McLing et al., 2002). However, most of the previous studies do not attempt to account for mixing with a cooler groundwater component though some acknowledge it. A gradational trend between Na-K-HCO₃ type waters associated with deep rhyolites and shallower Ca-Mg-HCO₃ thermal waters has been observed in deep wells that penetrate the upper aquifer system (McLing et al., 2002; Mann, 1986). Many have explained this trend through mixing between thermal waters and groundwater where mixed waters exhibit a composition between the two end member waters (McLing et al., 2002; Neupane et al., 2014; Cannon et al., 2014).

Figure 2. Schematic cross-section across the ESRP (Neupane et. al., 2014) showing underlying rhyolitic ash-flow tuffs and overlying basalt flows with few sedimentary layers. The rhyolite ash-flow tuffs underlying the basalt aquifer system are assumed to be the ESRP geothermal reservoir.

Although there are many historical thermal fluid compositions for the ESRP, many of them are incomplete in that they lack important trace elements. This study is part of a larger Department of Energy Geothermal Technologies Office funded project to provide more accurate reservoir temperature estimations throughout the ESRP by using a modern technique called multicomponent equilibrium geothermometry (MEG). MEG utilizes trace elements (particularly aluminum) to estimate temperature using the saturation states of hydrothermal alteration minerals, many of which are aluminosilicates. MEG is also capable of accounting for mixing between thermal fluids and groundwater through inverse modeling. To this end, a collaboration between the University of Idaho, the Lawrence Berkeley National Laboratory, and the Idaho National Laboratory collected samples in 2014 in order to provide more reliable temperature estimates that are corrected for the effects of mixing.

The Twin Falls – Banbury area (Figure 3) was chosen as the location for an in depth investigation into the possibility of geothermal mixing and re-equilibration as an explanation

Figure 3. Study area map superimposed on the USGS heat flow map (Williams and Deangelo, 2011). Map depicts the Twin Falls – Banbury hydrothermal area relative to the ESRP margin (red line). Green points correspond to thermal waters utilized in this study.

for the lower than expected reservoir temperature estimations of the area. The area was chosen due to the high sample density obtained in the 2014 sampling campaign as well as the amount of historical data available for the area. The area is comprised of two dense clusters of geothermal surface manifestations along the trend of the Snake River near the southwestern end of the ESRP. This study attempts to combine various geochemical techniques with local hydrology and geology to provide evidence for mixing, estimate reservoir temperature while accounting for mixing, consider the possibility of re-equilibration, and refine the conceptual model for the Twin Falls – Banbury hydrothermal system. However, before investigating the

Twin falls – Banbury area in detail, it is important to identify exactly what is meant by "mixing" and the different scenarios by which mixing can occur.

Mixing Scenarios Defined

The chemical signature of geothermal water is often impacted or altered by mixing with shallower waters, thereby masking the actual reservoir temperatures calculated using geothermometry. This study examines the effects of mixing on calculated temperatures via an in-depth investigation on a relatively well known geothermal area, the Twin Falls – Banbury thermal system in south-central Idaho. Dilution corrections will be made using established mixing models and the multicomponent equilibrium geothermometry (MEG) tool RTEst (Reservoir Temperature Estimator) (Palmer et al., 2013). The effect of chemical re-equilibration with rocks outside the geothermal reservoir at sub-reservoir temperatures is also considered. Mixing and re-equilibration is a practical problem facing geothermal explorationists in many areas, e.g. ESRP and similar thermal regimes. For the purposes of this work, three mixing scenarios are defined:

1) "simple mixing" or non-reactive mixing;

2) flow pathway mixing (both reactive and non-reactive)

3) re-equilibration.

Simple mixing involves the ascension of thermal water from depth through a conduit like a fault or fracture. The thermal water component is uninterrupted during ascension, cooling only through conduction and/or advection. Upon discharging at the surface, the thermal water is quickly mixed with surface water such as precipitation, a stream, or spring. In this case the thermal water is undiluted (no mixing prior to discharge) until it is mixed with surface water. Most mixing models are setup to directly address this type of dilution (Fournier, 1977; Arnòrsson, 1983; 1985). Solute-enthalpy mixing models developed in the 1970s and 80s can be utilized to adjust for simple mixing and refine the calculated reservoir temperatures. MEG methods including RTEst can remove the influence of the cold water component based on the convergence of multiple mineral saturation indices.

The second scenario, flow path mixing, involves mixing of thermal water as it makes its way from depth to the surface. In the case of the ESRP, thermal water ascending through a fracture may be mixed with cooler groundwater as the conduit is intersected by permeable cold water zones prior to discharging at the surface or through a well. This scenario may constitute a combination of both simple and reactive mixing depending on sufficient residence times that allow for reactions to occur between the two waters and/or surrounding rock. Reactive mixing is made evident through the alteration of ratios of some chemical constituents while other more conservative species (i.e. Cl⁻, B) will mix non-reactively as their ratios remain constant through dilution.

The third scenario involves the re-equilibration of thermal water or mixed thermal water with a new reservoir rock. The geochemical signature of re-equilibrated waters does not reflect the temperature of the deep thermal reservoir but only the temperature at which the waters last attained equilibrium. Because re-equilibration violates a key assumption in all geothermometry techniques (Huenges and Ledru, 2011), it has largely been ignored in geothermal investigations. Many researchers have warned about re-equilibration when discussing the applicability of their techniques (Fournier, 1977; Arnòrsson, 1985; Reed and Spycher, 1984; Giggenbach, 1988, Neupane, 2015) but few have attempted to quantify or account for its effects. Unlike the previous two scenarios, re-equilibration presents a

significant problem that can't be solved by MEG nor can it be accounted for with conventional geothermometry and mixing model techniques. To better understand if reequilibration is at play in this area, water-rock interaction and mixing experiments based on the Twin Falls – Banbury geothermal system and aquifer pumping tests to gain insight into vertical travel times (residence times for re-equilibration) are performed in this study.

CHAPTER 2: LITERATURE REVIEW OF THE TWIN FALLS – BANBURY HYDROTHERMAL SYSTEM

The hydrothermal system in Twin Falls, Idaho is the most utilized and perhaps the most prolific geothermal prospect throughout southern Idaho. Substantial use of the system began in the 1970s with the utilization of thermal water for fish propagation, irrigation, heating, and resorts (Street and Detar, 1987). All of these applications are still in operation today. One of the most promising areas for further development is located near Hagerman, Idaho where the Thousand Springs Resort produces 72 °C geothermal water from a 750 foot well. Electrical production and further geothermal investigations have been considered but limited due to concerns over observed declining thermal water levels although temperature declines are not evident (Fleischmann, 2006). Reservoir temperature estimations made by earlier researchers utilizing geothermometry techniques produced results that are insufficient for power production. However, preliminary results of this study show that mixing between groundwater and thermal water may have masked the true higher temperature signature of this area. The following section provides a review of the relevant literature pertaining to the Twin Falls – Banbury hydrothermal area.

2.1 Geology

Mabey (1982) stated that the Snake River Plain was one of the least understood geologic provinces in the United States. While it has been described as a graben and various rift structures, it is described by most as a regional down warping associated with the bimodal volcanism due to the successive caldera formations of the Yellowstone Hotspot beginning approximately 16 Ma (Hughes et. al., 1999; Rodgers et. al., 2002; Pierce and Morgan, 2002).

Figure 4. Map of the Twin Falls – Banbury hydrothermal study area, Lewis and Young (1982)

The Twin Falls and Banbury hydrothermal areas show characteristics of both the ESRP and basin and range regional extension. Tertiary rhyolitic volcanic rocks underlie younger quaternary and tertiary basaltic units throughout the study area. The rhyolitic units of the Idavada volcanics dip northward from the Cassia Mountains in the southern portion of the study area disappearing beneath the basaltic units of the ESRP with no clear evidence of down faulting supporting the conceptual model of ESRP regional down warping (Street and Detar, 1987). However, normal faults associated with Basin and Range extension are present in the northwestern portion of the study area. Many of these faults do not cut across basalts and are constrained to the Idavada volcanics trending north to northwest along the Salmon Falls Creek. These structures mark the beginning of the Western Snake River Plain and continue across the Bruneau Desert to the west (Kuntz, 1977).

Miocene Banbury basalts are the most predominant basalt units in the study area and may be up to 305 meters (1,000 ft.) thick (Lewis and Young, 1989). Along with overlying and interbedded Pleistocene lacustrine sediments of the Glenn's Ferry Formation (Malde and Powers, 1972), these basalts make up a locally significant shallow groundwater system. However, the most ubiquitous unit in the study area are the Tertiary volcanics of the Idavada formation which are predominantly comprised of welded rhyolitic ash flow tuff units with secondary rhyolite lava flows, andesites, and intercalated lacustrine sediments (Rember and Bennett, 1979). The Idavada volcanics are likely representative of many undifferentiated volcanic episodes from 12 to 6 Ma (Street and Detar, 1987). Electrical resistivity data shows that the Idavada volcanics are continuous over most of the area ranging in thickness from 700 to 3,000 ft. (2,000 ft average) (Lewis and Young, 1989). Lithologic logs from the recently drilled deep exploration well of Project Hotspot in nearby Kimberly, ID shows the Idavada volcanics are at least 3,800 ft. thick and reach depths up to 6,423 ft. (Shervais et al., 2013). General stratigraphy of the study area is depicted in Figure 5 below showing Tertiary rhyolites

Figure 5. General stratigraphy of the Twin Falls – Banbury area (Street and DeTar, 1987).

underlying the entire study area, lacustrine sediments, Tertiary Banbury basalts, a distinct single andesitic flow layer of the Idavada called the Shoshone Falls rhyolite, and finally overlying Tertiary and Quaternary basalts.

Although none of the well logs within the study area penetrate the extent of the Idavada volcanics, Paleozoic marine sediments are thought to underlie the entire area (Lewis and Young, 1989). Pennsylvanian age carbonates outcrop just to the southeast of the town of Buhl, ID and make up the core of the Cassia Mountains near the Idaho-Nevada border to the south. The extent of the Paleozoic carbonates beneath the Idavada volcanics is unknown but over 5,000 feet of carbonates have been reported in the mountains of northern Nevada (Schroeder, 1912).

2.2 Hydrology

The Twin Falls area hydrology is separated into two separate and distinct aquifer systems. There exists a shallow, cold water aquifer system in which flow paths between areas of recharge and discharge are relatively short. This system contains aquifer sub units within Banbury Basalts and thin sedimentary interbeds. Groundwater flow direction is generally northward or northwestward (in southeastern portions of the area near the city of Twin Falls) toward the Snake River. The majority of recharge to this system comes from the south and southeast in the low hills where annual precipitation reaches 45 inches. Hydraulic heads are below land surface. The aquifer is considered to be unconfined but may be confined in some areas. Water from this shallow system is typically around 20 °C while some shallow groundwater reaches elevated temperatures due to the mixing of cooler water with thermal water (Lewis and Young, 1989).

The thermal aquifer system (20 °C to 72 °C) is located beneath basalt units within the Idavada volcanics and is under artesian conditions with temperatures of the waters increasing to the northwest. Lewis and Young (1982) produced a generalized potentiometric surface map showing an overall north and northwestern gradient in the aquifer. Permeability within the

reservoir rock itself is associated with fractures developing from tectonic movement, joints and fractures resulting from cooling during emplacement, intergranular porosity of the nonwelded ash flow tuffs, and contacts between flow boundaries. Street and Detar (1987) described the results of a pumping test during the development of two deep thermal heating wells (450 and 675 meters) completed in the Idavada volcanics at the College of Southern Idaho in Twin Falls. Transmissivity (554-923 m²/d (44,600 – 74,300 gpd/ft)) and storativity (5.8E-4 to 6.2E-4) values were measured for the Idavada rhyolites. It was concluded that no hydrologic boundaries exist between the Twin Falls and Banbury area systems.

Thermal waters are thought to originate from deep circulation paths from the Cassia Mountain recharge zone to the south and through fractures in the overlying basalts of the thermal area. The waters are subsequently heated by either a regionally high gradient (Lewis and Young, 1989) or the young basaltic sill complexes associated with ESRP volcanism (McLing et al., 2014, Dobson et al., 2015).

2.3 Geochemistry

Lewis and Young (1982) characterized the highest temperature thermal waters of this area as sodium-bicarbonate type and stated that they are slightly alkaline. In 1989, they showed that water chemistry of the thermal waters indicates mixing with a shallow cold water component through relationships of stable isotopes, chloride, and enthalpy. They highlighted a mixing trend from cooler Ca-HCO₃ to Na-HCO₃ using a Piper trilinear diagram but made no effort to address the effects of dilution on geothermometry calculations. Traditional geothermometry calculations were performed using the Na-K-Ca geothermometer and silica geothermometers (chalcedony and quartz). Mg corrections to the Na-K-Ca geothermometer were not made as the corrections were deemed insignificant for waters with around 1 ppm Mg

concentration despite a concentration of 0.2 ppm Mg being widely regarded as the boundary for correction (Fournier and Potter, 1979).

The 19 samples taken in the Lewis and Young (1982) study were near saturation with calcite thus giving skeptical temperature estimations for the Na-K-Ca geothermometer. A simple mixing analysis was done by plotting the Na-K-Ca temperature predictions versus the silica geothermometer predictions. Waters that plotted on or near the equal temperature line for these two geothermometers were considered to be representative of reservoir water (not mixed). These waters include several of the highest temperature waters including the 72 °C water of the 1000 Springs Resort. The authors drew the conclusion that 70 – 100 °C was the likely reservoir temperature from these conventional geothermometery methods. Young and Mitchell (1973) came up with a similar but slightly higher estimate of 85-135 °C.

In 1997, Mariner et al., conducted a study in Twin Falls and Jerome Counties using sulfate-water isotope geothermometry. They estimated a reservoir temperature of 90-106 °C. However, recent sulfate-water isotope geothermometry results show temperature estimates of 159 °C for this area (Conrad et al., 2015). Lead isotopic values from this study showed that thermal waters in the area have a signature reflective of Paleozoic carbonates. This suggests that despite the overprinting of a rhyolitic signature (high silica and high fluoride), thermal waters may be originating even deeper in the system within Paloezoic carbonates.

¹⁴C isotopes were used to date the waters of the Twin Falls geothermal system. Age estimations for Twin Falls area thermal are around 4,000 to 10,000 years old (Mariner et al., 1991). Lewis and Young (1982) attributed low deuterium values in the waters to a historically cooler climate making the waters at least 8,000 years old and possibly up to 15,000 years old. Discharge measurements for wells in the area in early 1979 indicated a thermal water discharge of 10,300 acre-ft annually (Lewis and Young, 1982). However, there have been significant declines to the utilization of this system for heating, low-head hydro power production, and fish propagation (Street and Detar, 1987). Fleischmann (2006) listed this area in his *Geothermal Development Needs in Idaho* stating that more exploration is warranted due to the masking of the high temperature resource by the overlying cold water system. The report states that more exploration is needed to determine the source of heat and a resource may be confirmed with deep drilling.

2.4 Methods

With advancements in geothermal science, there exists more substantial evidence for mixing in this region. Recent geothermometry studies have shown that the Twin Falls – Banbury hydrothermal system may represent a higher temperature resource than what was previously estimated (Cannon et al., 2014; Conrad et al., 2015). The following sections describe the geochemical methods utilized in this study.

2.4.1 Solute Chemical Geothermometry

Geothermal fluids have widely varied chemistries, reflecting the geologic setting and the host rock from which they emanate. Geothermometers are experimentally and empirically based equations that take advantage of specific high temperature mineral-solute reactions that are slow to equilibrate at lower temperature. These equations give geoscientists insight into the reservoir temperature achieved by the thermal water at depth prior to ascent to the surface. Several assumptions are made in order for geothermometers to be useful. The first assumption is that equilibrium between host rock and water is obtained at depth. This assumption has been proven valid through research on several commercial geothermal power plants. The second major assumption is that the thermal fluid composition is not altered by secondary processes (boiling, mixing, reactive processes, etc.) during its ascent to the surface. This assumption is made but is often invalid and corrections need to be made to the predicted temperatures.

Utilization of geothermometers began in the late 1970s with the development of the silica geothermometers, which are perhaps the most widely used geothermometers. The quartz and amorphous silica geothermometers were first developed by Fournier (1977) and are based on the experimentally determined prograde relationship between silica concentration and increasing temperature. Different polymorphs of silica dominate at different temperatures and thus not all silica geothermometers are appropriate at all temperatures. This led to the development of the chalcedony geothermometer by Arnorsson et al. (1983). However, not all thermal fluids are hosted within silicic reservoirs leading to the development of cation geothermometers.

Cation geothermometers are based on temperature-dependent cation exchange reactions. For example, the Na-K geothermometer (Fournier, 1979; Giggenbach et al. 1988) uses the ratio of sodium to potassium based on the reaction between albite (NaAlSi₃O₈ + K⁺) and the K-feldspar adularia (KAlSi₃O₈ + Na⁺). The Na-K-Ca geothermometer (Fournier and Truesdell, 1973) was developed to deal with waters having high concentrations of calcium making the Na-K geothermometer unsuitable. However, high concentrations of Mg (>0.2 ppm) yield anomalously high results for the Na-K-Ca geothermometer. As a result the Mg correction for the Na-K-Ca geothermometer was developed to account for the higher Mg concentrations at temperatures less than 180 °C and where Mg is present in clays and carbonates. This correction was intended for unmixed waters although high magnesium concentrations are often an indication of mixing with a cooler groundwater component. Other cation geothermometers include the Na-Li geothermometer (Fouillac et al., 1981), which uses the ratio of sodium to lithium and is based on cation exchange reactions that take place with clays and zeolites and the K-Mg geothermometer (Giggenbach et al. 1988) which is useful when sodium and calcium have not equilibrated between fluid and rock.

2.4.2 Silica-Enthalpy Mixing Models

While the Quartz geothermometer is capable of correcting for steam loss due to boiling, none of the conventional geothermometers mentioned previously are capable of accounting for mixing. As a result, models were developed to better account for mixing. The silica-enthalpy mixing model used in this study is based on the positive relationship between silica solubility and increasing temperatures. However, in this model, respective enthalpies of sample waters calculated from field temperatures are used as plot coordinates rather than temperature because enthalpy is conserved as waters mix and boil whereas temperature is not (Fournier, 1977). This model can be applied with two separate scenarios. A trend line is drawn from the point representing the non-thermal component of the mixed water (lowest silica and enthalpy), through the mixed water from thermal springs. The intersection of this line with a silica solubility curve approximates the enthalpy of the hot-water component at reservoir conditions if there was no boiling prior to mixing. The enthalpy at the boiling temperature (100°C) which is 419 J/g is intersected with the projected trend line. From this intersection, a horizontal line is drawn to the quartz maximum steam loss line. This new enthalpy value can be used to calculate the reservoir temperature if boiling occurred prior to mixing (Fournier, 1977).

While mixing models have aided in making better predictions in areas where rapid simple mixing occurs, they are not comprehensive enough to compensate for reactive secondary processes that may affect waters prior to or after mixing. Finally, the prediction of a reservoir temperature based solely on two or three chemical species contains more error than is desirable. Estimations that utilize an entire reservoir mineral assemblage based on likely alteration minerals within the reservoir are considered, in theory, to provide much more accurate temperature predictions.

2.4.3 Multicomponent Equilibrium Geothermometry

Reed and Spycher developed the basic concept of multicomponent equilibrium geothermometry (MEG) in 1984. The major advantage of MEG over more conventional geothermometry techniques is the use of a reservoir mineral assemblage (RMA) that represents the full suite of minerals likely to be present in a geothermal reservoir. The approach uses the calculated ion activity products (Q) of chemical species within the RMA to determine the degree of saturation (log Q/K_T) where K_T is the temperature dependent mineralwater equilibrium constant. The temperature at which all minerals have near zero saturation indices is taken to be the temperature at which thermal fluid last equilibrated.

While there is an obvious advantage to utilizing an entire RMA as opposed to a few basis chemical species, MEG also allows for adjustments to be made to account for secondary alteration processes that effect calculated temperatures; including the amount of water gained (dilution/mixing) or lost (boiling) and the effects of degassing. The loss of CO₂ has been shown to affect the pH of geothermal waters and is commonly shown by the oversaturation of calcite (Palandri and Reed, 2001). Despite the advantages of MEG over conventional geothermometry methods, there has been little application in geothermal assessment and development. Some previous investigators (e.g., D'Amore et al., 1987; Tole et al., 1993; Hull et al., 1987) have used this technique for predicting geothermal temperature. The first two of these authors utilized a MEG technique to predict reservoir temperatures and develop conceptual models. However, both noted the difficulty that secondary processes pose to predicting an accurate equilibrium temperature. Hull et al. (1987) made an attempt to account for the dilution of thermal water by a cooler groundwater component (similar to the ESRP conceptual model). They noted that the use of a real groundwater component from a nearby source was problematic due to the production of bulk compositions with negative molalities of Mg, Al, Fe, and Ca. The use of deionized water as a mixing agent resulted in more successful temperature predictions. Hull et al. (1987) explained this phenomena by stating that either 1) the nearby cold water component is dissimilar to the actual mixing agent or 2) the mixture of thermal water and groundwater undergoes additional reactions (precipitation, exchange, etc.) and thereby re-equilibrate at a cooler temperature or within a new host rock.

More recent efforts by some researchers (e.g., Bethke, 2008; Cooper et al., 2013; Neupane et al., 2013; Spycher et al., 2014; Neupane et al., 2014) have focused on improving temperature predictability of the MEG method. The two latest tools (computer codes) are the GeoT tool developed by Spycher et al. (2014) and the Reservoir Temperature Estimator (RTEst) tool developed by Palmer (2014). RTEst is the method used in this study. RTEst couples the React module of The Geochemist's Workbench® (GWB) (Bethke and Yeakel, 2012) and the optimization program PEST (Doherty, 2013) to optimize parameters including temperature, water, and CO₂ fugacity. RTEst works to obtain an estimated reservoir temperature by repeatedly calculating mineral saturation indices while allowing temperature, solvent mass, and CO₂ fugacity to fluctuate. The ultimate goal of this inverse modeling is to minimize the objective function Φ given here by:

$$\Phi = \sum (SI_i w_i)^2$$
 where $SI = (\log Q/K_T)$ and w_i = weighting factor for a mineral.

The minimization of the objective function represents the minimization of the collective distances away from zero for all saturation indices within the RMA. In theory, the reservoir temperature is obtained when Φ is essentially zero. The weighting factor (w_i) ensures that each mineral contained in a chosen mineral assemblage is considered equally and the results are not skewed by reaction stoichiometry (Neupane et al., 2014).

2.4.4 High Temperature Water-Rock Interaction Experiments

Geothermal alteration in aqueous solutions has been extensively studied but application in geothermal reservoir characterization and development is limited. High temperature water-rock interaction experiments can provide valuable information on alteration temperature, rock composition, and especially fluid composition (Browne, 1978; Lesher et al., 1986; Reyes, 1990; Davis et al., 2003). Research into water-rock interaction at high temperatures began in the late 1950s. Khitarov (1959) investigated the interaction of high temperature waters with particular interest in granite, feldspars, and micas. Basharina (1958) successfully extracted many water-soluble constituents from an andesitic ash and in 1963, Ellis and Mahon targeted silicic volcanic rocks in particular comparing experimentally determined fluid compositions with natural ones in New Zealand. Data from natural geothermal systems shows that local equilibria between geothermal fluids and alteration minerals controls major component concentration (except Cl⁻ and other mobile elements) in fluids at temperatures as low as 50 °C (Ellis, 1970; Arnórsson et al., 1983; Stefánsson and Arnórsson, 2002). Although primary rock type is important, it is considered to have less of an effect on geothermal alteration than permeability, temperature, and fluid composition (Henley and Ellis, 1983; Rodriguez, 2001). Browne (1978) showed that Quartz, K-feldspar, albite, chlorite, Fe-epidote, calcite, illite, and pyrite were the principal alteration minerals in many rock types including rhyolites, sandstones, basalts, and andesites. However, later studies showed that significant differences occur between alteration minerals in different rock types particularly at lower temperatures (<150 °C) (Bethke, 1986; Reyes, 1990; Mas et al., 2006, Weisenberger and Selbekk, 2009; Rodriguez, 2011). This study utilizes the differences in alteration minerals between silicic volcanic type rocks like the Idavada volcanics and the basalts of the ESRP in which smectite clays and zeolites are dominant (Morse and McCurry, 2002; Sant, 2012).

The aforementioned geochemical techniques are utilized in this study to better understand the role of mixing and re-equilibration within the Twin Falls – Banbury hydrothermal system and the implications such secondary processes have on geothermal temperature estimation within other areas of the ESRP.

CHAPTER 3: GEOCHEMISTRY OF THE THERMAL WATERS IN THE TWIN FALLS - BANBURY GEOTHERMAL AREA

The following section details the aqueous geochemistry for the Twin Falls – Banbury hydrothermal system as it relates to the problem of mixing between the deep thermal water and shallow groundwater components of the system. Water chemistry data from previous hydrothermal studies of both the Twin Falls and Banbury Hot Springs areas are compiled and combined here with the new data obtained from the 2014 ESRP sampling campaign in order to establish sufficient sample density to:

- 1) Classify the waters based on their respective chemistries;
- Observe mixing and water-rock interaction trends with both conservative and reactive chemical species through the use of binary diagrams;
- Observe the areal distribution of water types and its relation to local geology and geologic structures
- Apply conventional geothermometry and mixing model techniques to all of the waters; and
- 5) Delineate appropriate mixing components for use within the multicomponent equilibrium geothermometry (MEG) tool RTEst.

3.1 Sample Chemistry

Sample compilation focused predominately on hydrothermal water samples within the study area but also include cooler groundwater samples from the assumed recharge zone located in the hills to south (to the east and south of the town of Robertson, ID). Interestingly, recharge area groundwater samples (4.5 - 12 °C) and cooler thermal waters within the region (< 30 °C) contain high amounts of silica (average 61 ppm) providing particularly valuable

evidence for mixing (Arnórsson, 1985) in that high silica concentrations are likely due to mixing with a thermal component. Thermal waters range in temperature from 25 °C to 70 °C. Sample selection criteria include temperature, location, and extensiveness of chemical data (possessing data from both conservative [Cl⁻, F⁻, Li, B, δ D] and reactive [Ca²⁺, Mg²⁺, K⁺, Na⁺, CO³⁻, SiO2⁻] species). Samples meeting the criteria were omitted only if they share the same location as a newly collected sample or lie outside of the study area. In this case is bound to the north by the Snake River which represents a groundwater boundary from the Twin Falls – Banbury area.

Chemical data for both the Banbury and Twin Falls area were compiled from four previous studies including the two isotopic studies conducted by R.H. Mariner et al. (1991 and 1997) and the USGS geothermometry studies of the Banbury (1982) and Twin Falls (1989) areas produced by R. E. Lewis and H.W. Young. These data sets are the most complete sets in terms of chemical constituents reported as compared to some of the earlier work presented in the Geothermal Investigations of Idaho series (Street and Detar, 1987; Young and Mitchell, 1974; Mitchell et al., 1980). Reported concentrations from these sources remain original and unaltered in this study with the exception of the calculation of total dissolved solids (TDS and the conversion of alkalinity listed as mg/L CaCO₃ to alkalinity as HCO₃ from samples originating from the Geothermal Resources in the Banbury Hot Springs Area (Lewis and Young, 1982). In total, 62 samples comprise the data set including 17 new samples collected under this study. Chemical concentrations are shown in Table 2. New samples contain trace elemental analyses that are absent from previous studies. New samples were collected primarily to satisfy the need for a more extensive chemical data set (particularly Al) to more effectively utilize the MEG tool RTEst. The new analyses enabled

the use of a variety of hydrothermal alteration mineral assemblages comprised of various aluminosilicates.

Information regarding the chemical analysis of new samples as well as the QA/QC reports can be found in Appendix B. Charge balance calculations show that most waters are within $\pm 15\%$ of a 1:1 charge balance and are presented in Appendix C. The waters range in TDS from as low as 62 mg/L in cold groundwater samples to 565 mg/L in thermal water samples. Waters from these samples seem to comprise two distinct groups based on differences in several constituents. One group of waters, which comprises a mix of all of the cold water samples and several thermal waters exhibit much higher calcium and magnesium concentrations and tend to have lower TDS concentrations than the other group. Groundwaters in the area and throughout the ESRP are considered Ca-Mg-HCO₃ in type and contain similarly high magnesium concentrations. This is to be expected as magnesium is largely absent in geothermal waters. Because of increased water-rock interaction at higher temperatures, magnesium is taken up by magnesium bearing clay minerals (Ellis, 1971; Fournier and Potter, 1979; Giggenbach, 1988). The second group of waters exhibits higher sodium, silica, chloride, and TDS concentrations. This is to be expected with ESRP geothermal waters due to the prograde relationship between temperature and solubility (chloride/silica) and the increase in cation-exchange reaction within deep rhyolites (sodium) (Fournier, 1977, Arnórsson, 1985; McLing et al., 2002). These differences and others are taken into account in the classification of the waters. Thermal waters were categorized in order to investigate the effects of secondary processes on thermal waters that may be shown in chemical trends between water types. Rather than arbitrarily separate the water types (i.e. graphically), multivariate cluster analysis was performed on selected chemical data.

Site	Lat	Long	TEMP	Hq	Ca	Mg	Na	К	L:	CI	ц	S04	В	SiO2
8	42.69940	-114.91040	24.7	9.47	5.74	0.74	112.83	4.16	0.009	46.460	12.155	90.872	0.1897	52.04
6	42.64497	-114.78706	34.5	7.98	23.47	3.00	57.54	7.69	0.057	23.094	2.213	40.459	0.1074	71.89
10	42.64432	-114.78294	34.4	7.96	26.66	3.47	55.93	8.04	0.056	20.031	2.455	31.777	0.1057	69.37
11	42.69457	-114.85592	58.4	9.53	0.84	0.00	128.20	1.87	0.046	31.692	22.368	33.720	0.3320	99.53
12	42.54479	-114.94855	37.5	8.59	11.23	0.36	149.41	1.38	0.188	53.312	2.415	188.043	0.1167	45.54
13	42.54348	-114.94897	36.2	8.65	11.14	0.79	146.61	1.92	0.190	53.588	2.445	186.647	0.1135	48.37
14	42.58318	-114.47496	38.1	8.79	4.54	0.19	94.90	3.27	0.011	26.445	9.636	46.811	0.1501	64.23
40	42.70399	-114.85699	72.0	9.37	0.94	0.00	136.44	1.59	0.054	50.446	24.222	30.057	0.4988	93.53
42	42.68841	-114.82680	58.5	9.15	1.04	0.00	94.90	1.60	0.034	16.759	11.357	23.543	0.2190	102.85
45	42.66851	-114.82436	35.0	8.69	5.95	0.19	61.69	3.41	0.060	13.972	3.423	31.303	0.1290	54.05
46	42.66778	-114.82673	35.5	8.41	7.62	0.45	56.44	4.10	0.060	11.689	3.435	24.773	0.1318	54.47
48	42.70501	-114.85701	31.8	9.55	1.93	0.01	121.63	1.62	0.043	51.925	24.128	33.132	0.5790	83.31
51	42.58050	-114.47089	37.7	8.81	3.99	0.22	86.28	2.99	0.021	25.815	8.609	45.376	0.1851	60.92
52	42.59755	-114.40018	43.0	9.16	1.22	0.01	118.11	2.19	0.027	21.127	15.821	36.321	0.2846	69.27
53	42.61390	-114.48799	43.0	9.18	1.30	0.01	109.33	2.12	0.014	26.716	16.473	30.771	0.3172	71.55
54	42.57256	-114.45175	31.0	7.77	39.91	8.98	55.41	4.92	0.031	37.515	2.353	76.026	0.1073	59.11
55	42.57750	-114.28870	37.0	9.05	1.50	0.02	126.50	3.10	0.070	34.418	23.373	37.391	0.4955	66.02
Site	HCO3	dD	d180	TDS	CO3	Be	Al	\mathbf{As}	Rb	\mathbf{Sr}	Ba	Br	NO3	
8	80.52	-145	-18.3	396.5	I	<lod< th=""><th>0.00703</th><th>0.04621</th><th>0.00423</th><th>0.02194</th><th>0.0012</th><th>0.796</th><th>1.211</th><th></th></lod<>	0.00703	0.04621	0.00423	0.02194	0.0012	0.796	1.211	
6	143.96	-134	-17.0	251.6	I	<lod< td=""><td>0.0001</td><td>0.00769</td><td>0.0188</td><td>0.15614</td><td>0.00356</td><td>0.374</td><td>5.372</td><td></td></lod<>	0.0001	0.00769	0.0188	0.15614	0.00356	0.374	5.372	
10	126.88	-133	-17.2	292.5	I	<lod< td=""><td>0.00019</td><td>0.00678</td><td>0.01918</td><td>0.17674</td><td>0.00187</td><td>0.351</td><td>4.746</td><td></td></lod<>	0.00019	0.00678	0.01918	0.17674	0.00187	0.351	4.746	
11	92.72	-142	-18.0	422.5	I	<lod< td=""><td>0.02234</td><td>0.06626</td><td>0.00617</td><td>0.00117</td><td><lod< td=""><td>ND</td><td>ND</td><td></td></lod<></td></lod<>	0.02234	0.06626	0.00617	0.00117	<lod< td=""><td>ND</td><td>ND</td><td></td></lod<>	ND	ND	
12	95.16	I	I	559	I	<lod< td=""><td>0.00492</td><td>0.02335</td><td>0.00494</td><td>0.06262</td><td>0.00636</td><td>0.818</td><td>1.435</td><td></td></lod<>	0.00492	0.02335	0.00494	0.06262	0.00636	0.818	1.435	
13	97.6	-134	-17.0	565.5	I	<lod< th=""><th>0.01628</th><th>0.02386</th><th>0.00737</th><th>0.0652</th><th>0.01489</th><th>2.975</th><th>ND</th><th></th></lod<>	0.01628	0.02386	0.00737	0.0652	0.01489	2.975	ND	
14	127	-134	-17.3	331.5	I	<lod< th=""><th>0.00136</th><th>0.01742</th><th>0.00788</th><th>0.01879</th><th>0.0005</th><th><lod< th=""><th>4.893</th><th></th></lod<></th></lod<>	0.00136	0.01742	0.00788	0.01879	0.0005	<lod< th=""><th>4.893</th><th></th></lod<>	4.893	
40	212	-139	-17.8	494	I	0.0001	0.0744	0.0611	0.0084	0.0013	0.0004	ND	ND	
42	168	-137	-17.5	331.5	I	<lod< th=""><th>0.0146</th><th>0.0420</th><th>0.0067</th><th>0.0012</th><th>0.0004</th><th>ND</th><th>ND</th><th></th></lod<>	0.0146	0.0420	0.0067	0.0012	0.0004	ND	ND	
45	140	I	I	227.5	I	0.0001	0.0023	0.0248	0.0085	0.0098	0.0009	0.037	ND	
46	139	I	I	221.7	I	<lod< th=""><th>0.0107</th><th>0.0176</th><th>0.0104</th><th>0.0176</th><th>0.0016</th><th>0.011</th><th>0.025</th><th></th></lod<>	0.0107	0.0176	0.0104	0.0176	0.0016	0.011	0.025	
48	232	1	I	429	I	<lod< th=""><th>0.0108</th><th>0.0604</th><th>0.0024</th><th>0.0074</th><th>0.0015</th><th>0.031</th><th>ND</th><th></th></lod<>	0.0108	0.0604	0.0024	0.0074	0.0015	0.031	ND	
51	153.72	I	I	312	I	0.0001	0.0028	0.0172	0.0072	0.0168	0.0006	ND	3.501	
52	187.88	I	I	396.5	I	0.0003	0.0053	0.0143	0.0071	0.0024	0.0007	ND	36.824	
53	153.72	1	I	377	I	<lod< th=""><th>0.0042</th><th>0.0292</th><th>0.0045</th><th>0.0038</th><th>0.0002</th><th>ND</th><th>1.087</th><th></th></lod<>	0.0042	0.0292	0.0045	0.0038	0.0002	ND	1.087	
54	161.04	1	I	390	1	0.0001	0.0020	0.0060	0.0115	0.1854	0.0161	ND	6.737	
55	246.44	I	ı	422.5	ı	<lod< th=""><th>0.0236</th><th>0.1410</th><th>0.0086</th><th>0.0039</th><th>0.0019</th><th>ND</th><th>0.100</th><th></th></lod<>	0.0236	0.1410	0.0086	0.0039	0.0019	ND	0.100	

Table 1. Chemical concentrations of hydrothermal water samples from the Twin Falls – Banbury area taken in 2014 for this study. All concentrations are given in units of mg/L. HCO_3 and CO_3 values are alkalinity measurements given in mg/L.

Table 2. Selected chemical concentrations of hydrothermal water samples from previous studies. All concentrations are given in units of mg/L. Decimal degree coordinates (WGS84) are approximated from original township and range values. Bold values correspond to TDS values generated by summing major cation and anion concentrations. Site names correspond to a particular study: LY82/89 = Lewis and Young, 1982; 89 and M91 = Mariner et al., 1991.

DS	331	253	267	266	408	ı	246	246	259	262	268	283	356	304	263	388	272	341	326	301	299	371	223	262	175	279	95	76
L O	· ·		•••		4		6.9	2			.1	••	.8	2		、 ·	6.9	. L.	. 6.9	7	7	4.	5.7	.1	4.	7	4.	
δ^{18}		1	1	1	1	1	-16	-17	1	1	-17	1	-16	-17	1	1	-16	-17	-16	7	-	-16	-16	-17	-15	-	-16	-17
δD	'	Т	I	I	ı	1	-132	-132	1	1	-131		-130	-134	1	ı	-131	-137	-135	-132	-138	-129	-127	-132	-123	-133	-127	-126
Alkalinity as HCO3	145	134	121	100	195	207	150	140	150	140	150	160	170	78	95	160	110	140	140	110	120	160	130	110	120	270	34	30
SiO2	67	LL	55	50	60	99	53	60	64	82	71	87	66	75	52	72	67	82	74	99	67	71	59	55	48	19	56	35
В	1	ı	ı	ı	ı	ı	0.11	0.09	0.09	0.014	0.09	0.02	0.12	0.2	0.3	0.1	0.11	0.33	0.22	0.16	0.11	0.08	0.08	0.1	0.02	0.12	0.02	0.02
S04	20	16	26	51	28	32	24	25	27	21	27	22	61	24	28	75	20	18	15	25	20	69	17	26	11	21	7	S
Γ ι	11	3.6	11	1	26	14	3.6	3.6	2.5	4.8	2.5	2.4	1.9	16	11	1.7	12	22	16	14	11	1.6	3.7	11	0.2	1.9	0.2	0.2
C	15	11	21	31	36	17	11	12	13	9.9	13	14	31	14	20	38	11	10	16	15	15	35	11	21	6	6.3	1.6	3.1
Li	0	0	0	0.03	0	0	0.06	0.06	0.06	0.08	0.06	0.05	0.07	0.03	0.02	0.07	0.021	0.02	0.004	0.006	0	0.07	0.03	0	0.006	0.05	0.004	0.004
K	2.8	4.3	6.3	4.9	2.5	1.9	3.9	4.1	5.8	5.6	9	7.5	10	1.5	1.9	11	2.9	3.5	1.9	1.9	2.8	12	٢	6.3	2.9	11	S	2.6
Na	96	61	74	31	130	120	61	58	55	62	54	53	61	96	73	65	82	110	110	66	96	63	37	74	13	43	9	5.9
Mg	0.06	0.17	0.4	6.8	0.08	0.01	0.5	1.2	2.3	0.2	2.2	1.1	5.4	0.1	2.4	5.6	0.05	0.1	0.1	0.1	0.06	4.5	3.9	0.4	8.4	13	1.3	1.2
Ca	1.6	5.1	8.6	37	1.7	1.5	11	13	16	7.4	18	17	36	1.5	8.9	39	0	1.9	2.5	1.9	1.6	35	20	8.6	23	31	5.4	7.2
Ηd	9.3	8.6	8.6	7.8	6	9.2	8.4	8.1	×	8.3	7.8	8.1	7.9	6	9.1	∞	6	6	8.8	6	9.3	∞	∞	6	7.8	×	6.7	٢
TEMP	39	27	30.5	30.5	41.5	42	33	37	28.5	26	32.5	25	29	4	23	31	30.5	27	42	39.5	39	25	31.5	30.5	18.5	37	6	12
Long	-114.477722	-114.606826	-114.48118	-114.436857	-114.509924	-114.287802	-114.812514	-114.791887	-114.795266	-114.754192	-114.785566	-114.778469	-114.760739	-114.650688	-114.652208	-114.751276	-114.597327	-114.473657	-114.488068	-114.481012	-114.478121	-114.738609	-114.490768	-114.480819	-114.691588	-114.509176	-114.359743	-114.785594
Lat	42.603164	42.569362	42.583616	42.549979	42.589664	42.578624	42.66191	42.661228	42.654022	42.636971	42.646829	42.63448	42.597701	42.654938	42.648856	42.596158	42.631739	42.617975	42.615389	42.594962	42.605808	42.575903	42.566417	42.583859	42.395919	42.345552	42.27131	42.22385
Site	M91-7	M91-8	M91-11	M91-12	M91-13	M91-14	LY89-1	LY89-2	LY89-3	LY89-4	LY89-5	LY89-6	LY89-7	LY89-8	LY89-9	LY89-10	LY89-11	LY89-12	LY89-13	LY89-14	LY89-15	LY89-17	LY89-18	LY89-22	LY89-29	LY89-30	LY89-32	LY89-33
TDS	200	183	174	208	62	503	505	485	438	359	414	379	331	302	310	299	316											
-----------------------	-------------	-------------	------------	-------------	-------------	-------------	-------------	-------------	------------	-------------	-------------	------------	-------------	-----------	-------------	------------	-------------											
$\delta^{18}O$	-16.9	-16.7	-16.8	-14.6	-16.2	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı											
δD	-130	-131	-132	-120	-123	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı											
Alkalinity as HCO3	120	110	100	120	20	168	168	177	163	148	160	154	120	124	144	134	150											
SiO2	58	60	65	52	38	8	82	86	86	67	88	2	86	56	53	51	51											
В	0.05	0.01	0.02	0.06	0.005	0.49	0.51	0.34	0.23	0.17	0.23	0.21	0.06	0.12	0.11	0.12	0.11											
S04	10	12	8.8	17	3.4	35	33	34	29	28	27	28	35	30	26	26	25											
F	0.7	9	0.8	0.3	0.1	15	27	21	26	9.4	12	13	1.8	3.7	3.1	3.2	2.9											
CI	6.8	6.4	6.5	16	1.3	48	51	34	30	14	52	20	16	13	11	11	11											
Li	0.034	0	0.02	0.004	0.004	0.05	0.06	0.04	0.04	0.04	0.04	0.03	0.05	0.05	0.05	0.05	0.05											
K	6.9	5.8	4.7	3.6	2.6	1.4	1.5	1.5	1.8	1.7	1.8	1.6	7.9	2.9	2.8	2.8	3.5											
Na	18	19	18	19	3.4	150	140	130	100	90	100	97	35	66	62	63	62											
Mg	2	2.6	2.3	5.4	0.7	0.1	0.1	0.1	0.1	0.1	0.1	0.1	3.9	0.2	0.2	0.3	0.5											
Ca	21	22	18	34	2.6	0.7	1.5	0.9	0.9	1.3	3.3	0.9	26	5.4	∞	7.5	10											
pH	7.8	7.5	7.6	7.6	9	9.4	9.5	9.4	9.1	9.3	9.4	9.3	9.2	8.7	8.4	8.6	8.3											
TEMP	32	26	32	7.5	4.5	62	71.5	57	45.5	42.5	44.5	30	42	34	32	31.5	32.5											
Long	-114.664984	-114.697878	-114.66585	-114.586984	-114.306916	-114.856527	-114.854331	-114.866789	-114.84012	-114.834978	-114.829093	-114.82902	-114.943824	-114.8236	-114.814894	-114.81414	-114.810791											
Lat	42.20179	42.201144	42.158264	42.200441	42.213508	42.701575	42.701842	42.691328	42.6881	42.683574	42.684873	42.68251	42.599928	42.669042	42.661493	42.660011	42.658855											
Site	LY89-34	LY89-35	LY89-36	LY89-37	LY89-38	LY82-3	LY82-4	LY82-5	LY82-6	LY82-7	LY82-11	LY82-12	LY82-13	LY82-15	LY82-18	LY82-19	LY82-20											

3.2 Principle Component and Hierarchical Cluster Analysis

With each sample being characterized by several chemical and physical variables, the aqueous geochemistry study of the area becomes a multivariate problem. The multivariate statistical method chosen for this study is hierarchical cluster analysis (HCA). This method was chosen as an unbiased means to separate waters into discrete groupings based on concentrations of several chemical components as opposed to the more graphical means provided by Piper diagram analysis. HCA is a widely utilized data classification practice in Earth sciences (Davis, 1986) and has begun to be utilized more extensively in groundwater geochemical studies in recent years (Meng and Maynard, 2001; Cloutier et al., 2008; Kanade and Gaikwad, 2011). HCA produces a hierarchy of clusters, ranging from small clusters of very similar items to larger clusters of increasingly dissimilar items without assuming any underlying trend in the data as opposed to several partitioning methods which assume a specific number of clusters outright. The measure of similarity in this instance of HCA is provided by the Euclidean distance, given by the Pythagorean Theorem. Sample groups are joined with a linkage rule until all of the observations are sorted into different clusters. The linkage method utilized in this study is Ward's methods which uses an analysis of variance approach to establish the distance between clusters. Many studies have found that the use of the Euclidean distance and Ward's method produce the most distinctive groupings within which samples are more or less homogeneous (Adar et al., 1992; Guler et al., 2002; and Zumlot et al., 2012).

It is usually suggested that prior to HCA, some sort data reduction be done in order to both gain insight into the correlation of variables and source of major variance, and ultimately to simplify the data into a more meaningful and manageable set. Principle component analysis (PCA) is utilized for data reduction in this study. The premise of PCA is that every sample can be represented as a single point in a K-dimensional space (depending the number of variables being analyzed). All points within the data set can essentially be approximated by a single plane (whose axes are principle components and Eigen vectors) space by a least squares regression. The result is a few orthogonal components (Eigenvalue > 1) that explain the majority of the variance within the data set (Meng and Maynard, 2001).

PCA produces factor or component scores which are essentially coordinates corresponding to individual data points within each principle component. These scores can then be utilized in HCA as opposed to clustering based on the raw values for all variables. Like the Piper diagram analysis, major cations and anions were chosen in this study as the variables for PCA. Other constituents such as SiO²⁻ and F⁻ did not account for much of the variance within the data and were omitted. Both PCA and HCA ordinarily require a normal distribution of all variables included or a transformation is suggested. Key components (K⁺ and Na⁺) are normally distributed within this data set while other components contain a slight right skew. A log transformation was performed prior to PCA and HCA but resulted in erroneous partitioning of water samples incongruent with Piper diagram classification. For this reason, the data presented here are not transformed. The Eigenvalues for the principle components produced are shown below in Table 3. The principle components used are highlighted in bold.

Table 3. Principle components and corresponding % variance

	F1	F2	F3	F4	F5	F6	F7
Eigenvalue	3.096	2.088	1.068	0.373	0.210	0.111	0.054
Variability (%)	44.225	29.828	15.258	5.330	3.007	1.584	0.768
Cumulative %	44.225	74.052	89.311	94.641	97.648	99.232	100.0

Pearson's correlation coefficients are shown below in Table 4. Na⁺ and Cl⁻, K⁺ and Ca²⁺, Mg⁺ and K⁺, and SO4²⁻ and Cl⁻ are all significantly and positively correlated as is the case in a majority of groundwater studies. In contrast, K⁺ and Cl⁻ are shown to be very weakly correlated in this study where they are commonly correlated in many groundwater studies (Rani and Babu, 2008; Muthulakshmi et al., 2013). However, the groundwater samples in this study tend to have higher potassium concentrations and do not follow the Na⁺ > Ca²⁺ > Mg⁺ > K⁺ trend exhibited in other studies. This source of potassium is significant in mixing trends and will be discussed further in section 3.5. Additionally, it is worth noting that bicarbonate alkalinity does not seem to be correlated strongly with any other chemical component and may not be useful in further evaluation of mixing trends. Figure 6 (below) is a biplot of the first two principle components representing about 74% of the variance within the data set. Negative and positive correlations can be seen here. It is important to note that SO4²⁻ and HCO₃- lie close to the principle component (F2) axis meaning they are not responsible for much of the variance within the dataset.

Variables	Ca	Mg	Na	Κ	Cl	SO4	HCO3
Ca	1	0.855	-0.568	0.784	-0.021	0.184	0.012
Mg		1	-0.507	0.631	-0.073	0.059	0.135
Na			1	-0.518	0.715	0.436	0.421
Κ				1	-0.160	0.007	0.100
Cl					1	0.684	0.323
SO4						1	-0.019
HCO3							1

Table 4. Pearson's (n) correlation table of PCA variables (chemical components)

Figure 6. Biplot of principle components 1 and 2 with variables (red lines) and samples (blue dots

HCA was run using the XLSTAT (a) add-in for Microsoft (a) Excel. HCA was run using both principle component scores and raw chemical data. The PCA proved valuable in producing only three water types as opposed to the six produced without data reduction. The dendrograms in Figures 7 and 8 represent the final cluster output. Water types are listed in Tables 5-8 with the corresponding author initials and dates preceding the sample numbers. Two of the waters classified as type 3 waters (CC-12 and CC-13) are believed to have been influenced by local irrigation water (evident by much higher sulfate and chloride values than surrounding areas). For this reason, they have been grouped into type 2 waters for mixing trend applications. The waters fall into two main end members:

- Na-HCO₃ (Type 1) waters characterized by high temperatures, high Na⁺ concentrations, and low Ca²⁺ and Mg⁺ concentrations.
- Ca-HCO₃ (Type 2) waters characterized by lower temperatures, low Na⁺ concentrations, and high Ca²⁺ and Mg⁺ concentrations.

Figure 7. Dendrogram showing clusters of samples provided by HCA on principle components.

Figure 8. Simple dendrogram showing the resultant 3 water types.

3.3 Evidence for Mixing Between Thermal Water and Groundwater

After the completion of water classification by cluster analysis, the samples were plotted on a Piper diagram (Piper, 1944) to gain a visual representation of sample distribution. The Piper diagram is perhaps the most common method used in classifying waters (Fetter, 2001) due to it being an easy to comprehend graphical representation based on concentrations of all major anions (SO_4^{2-} , Cl^- , and CO_3^{2-} + HCO_3^-) and major cations (Ca^{2+} , Mg^{2+} , and Na^+ + K^+). Two separate trilinear diagrams are used to plot the relative percentages of cations and anions. These two separate points are then projected onto the Piper diagram diamond using a matrix transformation to form a single point, which can then be used to classify a water.

Earlier hydrothermal studies in regions of the ESRP have noted the characteristic trend between the two aforementioned end member waters (Mann, 1986; Wood and Lowe, 1988, Mariner et al., 1991; McLing et al., 2002). Na-HCO₃ type waters are generally associated with deeper groundwater sources with increased ion-exchange reactions replacing calcium with sodium during hydrothermal alteration of feldspars as a result of longer residence times and higher temperatures (White, 1967; Edmunds and Shand, 2009). Giggenbach (1991) described the formation of Ca-Na-HCO₃ and Ca-HCO₃ type thermal waters as a result of mixing with a ground water component like the Ca-Mg-HCO₃ waters that dominate the upper aquifer system of the ESRP (McLing et al., 2002; Wood and Lowe, 1988). Deep wells (> 1km) that penetrate the upper basalt hosted portion of the aquifer, e.g. the INEL-1 and Project Hotspot: Kimberly and Kimama wells (Shervais et al., 2013), reveal the pure Na-HCO₃ thermal end member. Mann (1986) described the change in composition from deep rhyolite hosted Na-HCO₃ water to mixed Ca-Na-HCO₃ basalt hosted water in the INEL-1. McLing et al. (2002) showed perhaps the best visual representation of this trend with a Piper diagram consisting of thermal waters throughout the ESRP. Lewis and Young (1989) also observed this trend in the Twin Falls area. However, due to sporadic and regional sample population and small sample density, these studies lacked a significant number of mixed intermediate Ca-Na-HCO₃ type samples to fully support this mixing hypothesis (Figure 9).

Figure 9. Piper trilinear diagram showing the relationship between Na-HCO₃ thermal waters (black) and Ca-HCO₃ thermal waters (green). Yellow samples appear to have been altered by nearby irrigation.

Piper diagram analysis for the 62 water samples utilized in this study gives a strong visual representation of the trend between water types. Figure 9 shows the distribution between Type 1 (Na-HCO₃) waters in the upper left corner of the diagram and Type 2 (Ca-

 HCO_3) type waters in the lower right corner. A significant trend and overlap can be seen between water types. In particular, the trend observed in the cation portion of the diagram demonstrates the gradual exchange between Na⁺ and Ca²⁺. It is important to note that anion concentrations (Cl, HCO_3^- , and SO_4^{2-}) seem to be independent of water type and the degree of mixing.

Sample compositions are also plotted on a Giggenbach ternary diagram (Figure 10) to determine evidence of equilibration and/or mixing. The Giggenbach ternary diagram (1988) was developed as a means to classify waters into fully equilibrated (mature) waters, partially equilibrated, and immature waters (dissolution of rock without equilibration). The latter two categories show evidence of mixing with cool meteoric waters. The diagram uses the full range of equilibrium relationships between the Na, K, and Mg alteration minerals expected to form after recrystallization to determine the degree of equilibration between the water and the rock of thermal influence at depth. Few previous geothermal investigations in south central Idaho and the ESRP made use of the Giggenbach diagram as evidence for mixing. No previous studies in the Twin Falls – Banbury thermal area have utilized this diagram.

In Figure 10 below, most samples plot in the partially equilibrated and immature portions of the diagram with only a few plotting near or within the mature portion. The majority of Ca-HCO₃ type waters are grouped in the far right corner of the diagram reflecting the influence of high magnesium concentrations presumably from mixing with groundwater. Both the Piper and Giggenbach diagram sample distributions provide particularly valuable evidence for mixing in this area.

Figure 10. Giggenbach ternary diagram showing the distribution of the two water types with respect to degree of equilibration. Blue points represent Ca-HCO₃ thermal waters and red points represent Na-HCO₃ waters.

3.4 Binary Diagram Mixing Trend Analysis

Binary diagrams consisting of conservative species that are not be incorporated into geothermal minerals have been utilized in mixing evaluations for many years (Fournier, 1979; Arnórsson, 1985; Huenges and Ledru, 2011). The evaluation of linear relationships between components including Cl^- , B, F⁻ and δD provide particularly good evidence for mixing as the ratio between conservative elements will remain fixed as concentrations are simply lowered through dilution. This study utilizes mixing relationships between conservative components (non-reactive mixing) and also those between reactive components in order to obtain a more complete picture of the overall controls on mixing. Preliminary results show that the MEG

tool RTEst does not result in satisfactory convergence of mineral saturation index lines when a local groundwater sample is mixed with Na-HCO₃ thermal waters. While Na-HCO₃ thermal waters show evidence for mixing, they may not mix directly with groundwater. Instead, an "intermediate" composition between the two thermal waters may be the mixing component. Additionally, secondary reactive processes may alter thermal waters after mixing resulting in re-equilibration. Binary diagram trends between the two water types may reveal controls on mixing in greater detail and may determine an intermediate end member composition for use in MEG reservoir temperature predictions.

Figure 11. Plot of δD vs $\delta^{18}O$ showing the shift of sample waters from the local meteoric water line.

Thermal water samples with available deuterium and oxygen-18 isotope data are plotted in Figure 11 above. Samples display a significant right shift from the local meteoric water line (USGS, 2004). The isotopic shift in ¹⁸O is typical of geothermal waters and is most likely a result of increased water-rock interaction at depth resulting in oxygen enrichment (Taylor, 1974; Clark, 2015). Deuterium shifts, on the other hand, are likely not explained by any hydrothermal process as it is conserved through these processes. A likely explanation is

that recharge occurred during an older and colder time (Pleistocene) in which precipitation concentrations were isotopically lighter with respect to deuterium. This explanation is consistent with carbon-14 age data of waters in the area provided by Mariner et al. (1991). Another possible explanation for shifts in δD concentration is the enrichment of deuterium through isotopic fractionation due to boiling (Bottinga, 1968; Taylor, 1974; Truesdell, et al.; 1978) .The possibility of boiling is discussed further in chapter 4.2. The relationship between these two isotopes shows a gradational trend with waters becoming more depleted with

Figure 12. Plots of conservative components (Cl⁻, B, δ^{18} O, and δ D).

respect to oxygen-18 in the deeper Na-HCO₃ type waters.

Gradational trends between conservative constituents such as boron and chloride are thought to constitute some of the best evidence for mixing (Huenges and Ledru, 2011). Boron and chloride concentrations are much higher in geothermal waters than in cold waters as can be seen by the linear relationship between boron and surface water temperature in the Figure 12D. The ratio of chloride to boron will not be affected by mixing, as these constituents are not considered to be incorporated into geothermal minerals. The concentrations will simply decrease with dilution from mixing between thermal and cold waters will result in a steady decline as seen in Figure 12C with a B/Cl⁻ slope of about 0.1/10 with the exception of a few circled values from the Lewis and Young (1982) study. The intersection of the Cl⁻/B trend is expected to meet the chloride axis in the range of 10 ppm (chloride precipitation and cold water range) with a 0 ppm boron concentration (Arnórsson, 1985). Linear relationships between these two components and δ^{18} O and δ^{2} H also constitute sufficient evidence for mixing (Huenges and Ledru, 2011).

Figure 13. Plot showing the lack of relationship between HCO3 and Cl- and Temperature.

It is important to note that some chemical components cannot be used in distinguishing between the two waters and that no mixing trend may manifest itself. This is the case with carbonate alkalinity of this system, seen in Figure 13 above. There does not appear to be any discernible relationship between bicarbonate concentrations and temperature or chloride. This observation signifies that bicarbonate concentration acts

Figure 14. Binary plots between several reactive components showing simple mixing relationships.

independently of the mixing process. For this reason, either a local groundwater bicarbonate concentration or an average bicarbonate concentration should be utilized in RTEst modeling.

When examining relationships between major cations and anions for the thermal water samples, some distinct linear relationships become evident. The Na⁺/Cl⁻ relationship as well as the Na⁺ vs temperature relationship observed in Figures 14A and B shows the distinct transition between the sodium rich thermal end member to cooler more dilute waters. The Na⁺/Cl⁻ trend passes through the origin signifying that little to no sodium and chloride need to be utilized in the dilution portion of MEG modeling. Figures 14 C and D show the positive relationship between both Mg²⁺ and K⁺ and Ca²⁺ and K⁺. Na-HCO₃ thermal waters are depleted with respect to Mg⁺ and K⁺ compared with the Ca-HCO₃ type waters. The Na-HCO₃ type waters begin with virtually no magnesium and grade into higher concentrations perhaps with increasing dilution. The same trend is seen between Ca²⁺ and K⁺ where Na-HCO₃ type waters begin with little to no calcium and grade into more calcium rich waters. An important observation gained here is that if an "intermediate" reactive mixing component is to be used in RTEst modeling, it will require the addition of potassium.

Fluoride concentrations in the thermal water samples yield two separate trends. The Ca-HCO₃ type waters contain little to no amount of fluoride while the Na-HCO₃ type shows a steep trend in fluoride concentrations. Elevated fluoride concentrations are common throughout the ESRP and are often attributed to increased reaction with rhyolites (Mitchell et al., 1980). The sharp separation in fluoride trends between the two waters could signify that the Ca-HCO₃ type waters are mixed with a small amount of thermal water or have had little water-rock interaction with rhyolites. There is also a positive relationship between SiO₂⁻ and Na⁺ as shown in Figure 14 F showing increased silica concentration towards Na-HCO₃ thermal end member waters. Unlike many other solute trends, which begin at near zero concentrations, SiO₂⁻ begins at around 40 ppm corresponding to high SiO₂⁻ concentrations in the groundwater of the study area compared to most of the ESRPA (Lewis and Young, 1989).

Figure 15. Binary plots showing the complex relationship between Na^+ *and* K^+ *and* Na^+ *and* Ca^{2+}

While the previously discussed relationships have been relatively simple, the relationships between K^+ , Ca^{2+} , and Mg^{2+} vs Na^+ are more complex. In both these trends (shown in Figure 15 above) there is a sharp near-vertical boundary that separates the trends of the two water types. Possible explanations for the sharp increase in Ca^{2+} and K^+ exhibited by the Ca-HCO₃ type waters include:

- A significant source of Ca²⁺, K⁺, and Mg²⁺ within the basalts and sediments of the Banbury formation that overly the rhyolites of the Idavada volcanics (source of Na-HCO₃ waters).
- Re-equilibration via an exchange reaction resulting in an increase in Na⁺ and K⁺ and a decrease in Ca²⁺ and Mg²⁺ concentrations resulting in the formation of Ca-HCO₃ thermal waters.
- Two separate and distinct flow paths (different temperatures and host rocks) resulting in the two thermal water types.

The use of binary diagrams presented in this section provides support for mixing between thermal water and groundwater as well as provides information about the concentrations of constituents to be used in the mixing portion of inverse MEG modeling. Mixing and/or reequilibration mechanisms will be explored further in Chapters 4-6.

3.5 Areal and Geologic Distribution of Water Types

Water samples were plotted by type (according to HCA) on digital orthoimagery (USDA, 2011) and geologic maps (Gillerman et al., 2005; Othberg et al., 2005). The spatial distribution shown below in Figure 16 shows the progression from Ca-HCO₃ type waters from the Cassia Mountain recharge zone to Na-HCO₃ type waters towards the boundary of the Snake River. Figure 16 shows the direction of groundwater movement from a potentiometric surface created using water level data from the USGS National Water Information System. Figures 17 and 18 show detailed views of the Banbury and Twin Falls area clusters. All of the thermal samples within the Banbury cluster fall along a major normal fault, which parallels the path of the Snake River. This distribution shows the gradation from Ca-HCO₃⁻ type waters to more thermal Na-HCO₃⁻ type waters northward along the fault away from the recharge zone. A likely scenario for this observed gradation is the ascension of thermal waters through the normal fault and the increase in the amount of mixing southward of the fault. The Twin Falls cluster shows the same gradation away from the area of recharge towards the Snake River. Shervais et al. (2013) suggest that the thermal system in the Twin Falls area is controlled by a caldera margin. The geology and hydrology of these two areas will be discussed further in Chapter 5.

Figure 16. Map of water samples showing the gradation from Ca-HCO₃⁻ type (blue) waters to Na-HCO3⁻ type waters (red) away from the recharge zone. Groundwater flow lines (blue) produced from inverse distance weighting of water level data from the USGS National Water Information System.

Figure 17. Banbury thermal area geologic map showing distribution of $Ca-HCO_3$ (blue) and $Na-HCO_3$ (red) waters along a normal fault. Geologic map (Gillerman et al., 2005) shows transition from Tertiary basalt flows south of the river to Quaternary basalt flows to the north. Green lines represent flood lines of the Bonneville Flood (c.15 ka). Red stipple areas correspond to dune trends.

Figure 18. Twin Falls thermal area showing distribution of Ca-HCO₃- (blue) and Na-HCO₃⁻ (red) waters. Geologic map (Othberg et al., 2005) shows the contacts between different Quaternary basalt flows south of the river and the outcropping of Idavada Volcanics (Shoshone Falls Rhyolite) near the river (dark purple).

CHAPTER 4: GEOTHERMOMETRY ESTIMATION OF RESERVOIR TEMPERATURES IN THE TWIN FALLS – BANBURY THERMAL AREA

The following section details the various approaches to calculate reservoir temperatures using geothermometry techniques as well as account for the effects of the mixing described in the previous section. Conventional along with recently developed techniques are utilized in order to show differences in temperature estimation and also to account for both simple and reactive mixing. While chemical and isotope geothermometry have been applied to the Twin Falls – Banbury area, mixing models and multicomponent equilibrium geothermometry techniques have not been applied prior to this study.

4.1 Conventional Geothermometry

Conventional geothermometers (as referred to in this study) are empirically or experimentally determined equations that are often utilized in geothermal exploration to predict deep reservoir temperatures from surface expressions or water wells. They are based on the relationship between fluid constituents (solutes, gases, and isotopes of elements) and fluid temperature. Most are based on temperature dependent chemical equilibrium reactions involving an assemblage of hydrothermally altered minerals. Various solute geothermometers have been continuously developed and improved upon since the 1960s. Of the many chemical and isotope geothermometers developed, the most prevalent cation geothermometers and silica geothermometers will be discussed and utilized in this study. It is important to note that all of the geothermometers discussed in this section make several key assumptions as outlined by Fournier et al. (1974):

- Dissolved "indicator" constituent concentrations are fixed by temperature-dependent reactions between water and rock.
- 2) An adequate supply of all reactants is available.
- 3) Equilibrium with respect to indicator constituents in the reservoir is attained.
- 4) No re-equilibration occurs after the water leaves the reservoir
- 5) There is no mixing of different waters during ascension.

The assumption of equilibrium has been generally accepted as valid in the geothermal community through the study of well discharges among several geothermal fields. However, the assumption that no secondary processes have altered the fluid during its ascent from reservoir to the surface is rarely a reality. Fluids may cool adiabatically (boil) during ascent or mix with more dilute waters resulting in oversaturation and undersaturation of certain geothermal indicator constituents respectively. While some conventional geothermometers have attempted to account for the effects of boiling, none of the conventional geothermometers presented herein have accounted for dilution. For these reasons, it is important to keep the limitations and suitability of a particular geothermometer to a rock/fluid type in mind when utilizing for temperature estimation.

4.1.1 Silica Geothermometers

Silica geothermometers were first proposed by Fournier and Rowe (1966). They are based on the prograde relationship between silica solubility and rising fluid temperature. They are widely used in almost all geochemical investigations of geothermal systems around the world (Verma, 2000). Silica geothermometers have been developed for a variety of silica mineral species but they are based on the basic reaction producing dissolved silica in the form H_4SiO_4 from various silica minerals:

$$SiO_2(s) + 2H_2O \rightarrow H_4SiO_4(aq)$$

Dissolved silica concentrations in most natural waters are not influenced by "common ion effects" or the formation of complex ions like other geothermal indicators (Fournier, 1977). Additionally, the assumption of adequate reactant supply is generally valid for dissolved silica. In the case of the Twin Falls – Banbury thermal area, thermal waters are hosted within rhyolites of the Idavada volcanics making the silica geothermometers the most appropriate of the conventional geothermometers for temperature estimation.

Quartz solubility seems to control the dissolved silica content of most geothermal systems > 180 °C. Quartz geothermometers are suggested for use in the temperature range of 120-330 °C if certain conditions are met: equilibrium with quartz, pore-fluid pressure fixed by vapor pressure of pure water, no mixing, no conductive cooling or adiabatic cooling (Fournier and Rowe, 1966). The quartz geothermometer was later modified to account for oversaturation produced by steam loss (Fournier, 1973). Two geothermometers were produced, one based on silica concentration with maximum steam loss at 100 °C and one with no steam loss at all. However, the most widely used quartz geothermometer was developed by Fournier and Potter (1982). All are shown below where concentrations of silica (SiO₂ and S) are in units of mg/kg.

Quartz - Maximum Steam Loss (Fournier, 1977)

$$t = \frac{1522}{5.75 - \log(SiO_2)} - 273.15$$

Quartz - No Steam Loss (Fournier, 1977)

$$t = \frac{1309}{5.19 - \log(SiO_2)} - 273.15$$

Quartz Geothermometer (Fournier and Potter, 1982)

$$t = -42.198 + 2.883 \times 10^{-1} \text{S} - 3.668 \times 10^{-4} \text{S}^2 + 3.1665 \times 10^{-7} \text{S}^3 + 70.34 \log \text{S}$$

Another widely utilized silica geothermometer is the chalcedony geothermometer. Chalcedony is widely regarded to be applicable for lower temperatures. However, Fournier (1991) pointed out the ambiguity between Quartz and Chalcedony as quartz controls solubility below 180 °C at some locations and chalcedony at others. Residence time, fluid temperature, rock type and fluid type all effect the controlling phase. Chalcedony, which is comprised largely of very fine quartz and mogonite crystals, probably all changes to quartz with time which makes the age of a thermal fluid of particular importance (Gíslason et al., 1997).

Chalcedony – Maximum Steam Loss (Arnòrsson et al., 1983)

$$t = \frac{1264}{5.31 - \log(SiO_2)} - 273.15$$

Chalcedony – No Steam Loss (Arnòrsson et al., 1983)

$$t = \frac{1112}{4.91 - \log(SiO_2)} - 273.15$$

A less commonly applied silica geothermometer is the amorphous silica geothermometer (Fournier, 1977). Due to the much higher solubility of amorphous silica compared to other silica polymorphs (Figure 19 below), the amorphous silica geothermometer yields very low temperature estimates for waters if amorphous silica is not the dominant species.

Figure 19. Solubility of silica polymorphs vs. temperature: A = Amorphous silica, B = Opal - CT, $C = \alpha$ -cristobalite, D = chalcedony, and E = quartz (Fournier, 1977).

Amorphous Silica (Fournier, 1977)

$$t = \frac{731}{4.52 - \log(SiO_2)} - 273.15$$

Unfortunately, there is a wide dispersion in temperature predictions amongst silica geothermometers even when applying one geothermometer to all the wells in a geothermal field (Verma, 2000). This is primarily due to secondary alteration effects: steam loss, mixing, and re-equilibration (Trusedell and Fournier, 1977).

The silica geothermometers applied to the two water types of the Twin Falls – Banbury thermal area give varied results with the chalcedony temperature estimates being consistently less than the quartz estimates. This is to be expected and the amorphous silica estimates yielding unrealistically low (below surface temperature and negative values). Overall, The Ca-HCO₃ type waters yield lower temperature estimates than the Na-HCO₃ type waters due to the higher silica concentrations of the Na-HCO₃ type waters. Quartz temperature estimates for the Na-HCO₃ type waters averaged 117 °C with a 36 °C range between all measurements while the Ca-HCO₃ type waters yielded a 108 °C average with a much higher range of 68 °C due to the larger range of SiO₂⁻ concentrations. Chalcedony temperature estimates yield an average of 91 °C with a 39 °C range for the Na-HCO₃ type waters while the Ca-HCO₃ type waters averaged 80 °C with a range of 73 °C. There appears to be no significant correlation between silica-based predicted temperatures and field temperatures with many cooler water samples yielding higher estimates than some hotter samples.

4.1.2 Cation Geothermometers

The other often utilized type of chemical geothermometers are called cation geothermometers. These geothermometers are based on empirical and experimental cation exchange reactions with temperature-dependent equilibrium constants. A widely used cation geothermometer is the Na/K geothermometer (Fournier, 1979; Giggenbach 1988; Truesdell, 1976; Arnòrsson et al., 1983) based on the exchange of Na⁺ and K⁺ between two coexisting alkali feldspars like the exchange between albite and various K-feldspars shown in the equation below.

$$NaAlSi_3O_8 + K^+ \rightarrow KAlSi_3O_8 + Na^+$$

The reaction results in a decreasing Na/K ratio with increasing fluid temperature. While ratios may be still affected by secondary processes they are considered less likely to be affected by dilution and steam loss. The Na/K geothermometer is suitable for temperatures between 100 °C and 350 °C as it is slower to re-equilibrate than the quartz geothermometers. However, the Na/K geothermometer is not useful in acidic waters which would not be in equilibrium with feldspars. More importantly for this study, the Na/K geothermometer is not useful in waters with high calcium concentrations like many of the mixed thermal waters found in and around the ESRP.

Na/K (Truesdell, 1976)

$$t = \frac{856}{\log(\frac{Na}{K}) + 0.857} - 273.15$$

Na/K (Fournier, 1979)

$$t = \frac{1217}{\log(\frac{Na}{K}) + 1.483} - 273.15$$

Na/K (Arnòrsson, 1983)

$$t = \frac{933}{\log(\frac{Na}{K}) + 0.993} - 273.15$$

To account for the effects of increased calcium concentrations, Fournier and Truesdell (1973) suggested the use of a Na-K-Ca geothermometer. While the amount of total Ca in most hydrothermal systems is controlled by the solubility of calcium-bearing carbonates (usually calcite), calcium also enters into various silicate reactions and in turn is in competition with sodium and potassium. Because natural waters are generally comprised of much more sodium than potassium and aqueous potassium tends to change so as to satisfy an equilibrium expression with a given Na/Ca ratio; a change in aqueous potassium in response to an increase in calcium will be far more evident in calculations involving the Na/K ratio. If waters pick up additional calcium as they migrate upward, the temperature estimates made using the Na/K geothermometer will be too low. Waters already containing increased concentrations in calcium ($\sqrt{M_{ca}/M_{Na}} > 1$) capable of depositing calcium carbonate upon descent will result in temperature estimations that are too high. For this reason, the reaction configurations involving only Ca²⁺, Na⁺, K⁺ were transposed into a generalized form:

Log $K_e = \log (Na/K) + \beta \log (\sqrt{Ca / Na})$, where β depends upon the stoichiometry of the reaction.

Based on the distribution of natural thermal waters, Fournier and Truesdell (1973) originated a geothermometer equation which could be used to calculate temperatures based upon the relationship between Ca²⁺, Na⁺, and K⁺. The equation works for two possible β values: $\beta = 1/3$ for waters equilibrating above 100 °C and $\beta = 4/3$ for waters equilibrating

under 100 °C. The user of the geothermometer must calculate log (\sqrt{Ca} / Na) + 2.06. If the value is positive, the user applies $\beta = 4/3$ and if negative $\beta = 1/3$. The equation utilizes the assumptions of: 1) excess silica is present (generally valid) and 2) aluminum is conserved in solid phases (not true but so little aqueous aluminum is usually present that it can be neglected).

$$t = \frac{1647}{\log \frac{Na}{K} + \beta \log \frac{\sqrt{Ca}}{Na} + 2.24} - 273.15$$

Mg correction for the Na-K-Ca geothermometer

Because most geothermal fluids > 180 °C contain < 0.2 mg/kg magnesium, a correction is necessary for those fluids which contain higher amounts of magnesium (Fournier and Potter, 1979). The temperature dependence of magnesium is largely controlled by formation of chlorite in thermal waters and also biotite and actinolite at very high temperature. In cooler thermal systems, magnesium may be incorporated into clays and carbonates. The correction was devised empirically to account for waters that have high magnesium concentrations because they are saline or because the reservoir temperature is below 180 °C. It was not intended to deal with waters that have been subjected to mixing and have high magnesium concentrations because of cold groundwater influence. In general, the presence of high magnesium gives anomalously high temperature results when using the Na-K-Ca geothermometer. However, the use of a magnesium correction on a mixed thermal water will result in an underestimation of true reservoir temperature. The correction is applied as such:

 If the temperature estimate from the Na-K-Ca geothermometer is < 70 °C, do not apply.

- 2) Calculate correction factor R using equivalent units:
- Do not apply the correction if R > 50 and assume the water is from cool equilibrium conditions with temperatures close to measured surface temperature regardless of geothermometry.
- 4) If the Na-K-Ca estimated temperature is > 70 °C and R < 50, apply the correction equation (Fournier and Potter, 1979) to obtain Δt .
- 5) Subtract Δt from the Na-K-Ca estimated temperature.

$$R = \frac{Mg}{Mg + Ca + K} (100)$$

$$\Delta t_{mg} = 10.66 - 4.7415(R) + 325.867\log(R) - \frac{1.0321x10^5(\log R)^2}{T} - \frac{1.96683x10^7(\log R)^2}{T^2} + \frac{1.6053x10^7(\log R)^3}{T^2} + \frac{1.6053x10^7(\log R)^3}{T^2}$$

K-Mg Geothermometer

The K-Mg geothermometer (Giggenbach et al., 1988) was developed for application to systems where sodium and calcium are not in equilibrium between the thermal fluid and rock. Unfortunately, the K-Mg system is distinct from other geothermal indicators in that fluid-rock equilibrium is often attained at lower temperatures. Due to this fast re-equilibration, results from the K-Mg geothermometer are often underestimations particularly in mixed waters with elevated magnesium concentrations.

$$t = \frac{4410}{14.0 + \log(K^2/Mg)} - 273.15$$

The Na-Li geothermometer (Fouillac et al., 1981) is based on the decrease in the Na/Li ratio with increasing fluid temperature. Lithium is regarded as one of the more conservative elements in hydrothermal systems and is slow to re-equilibrate during ascent. The controlling equilibria of this geothermometer are based on cation exchange reactions between clays and zeolites. Two geothermometers were created: one to be applied for low to moderately saline waters (<11000 mg/kg Cl⁻) and the other for marine waters. All of the waters in this study fall in the first category with the applicable geothermometer listed below.

$$t = \frac{1195}{0.130 + \log(mNa/mLi)} - 273.15$$

When applied to the water samples collected in this study, the cation geothermometers give highly varied results for the exact same well/spring. The Na/K geothermometers tend to yield very high results for Ca-HCO₃ waters likely because of high calcium concentrations. In contrast, Na-HCO₃ waters with lower calcium concentrations likely picking up additional calcium during ascent to the surface yield much lower Na/K temperature predictions some of which are below measured field temperatures. Because of the presence of calcium and the lack of magnesium in the Na-HCO₃ waters, the Na-K-Ca geothermometer is likely to yield more realistic results for these thermal features. Temperature estimates for Na-HCO₃ waters using this technique range from 98 °C to 166 °C with an average of 126 °C. In contrast, the abundance of magnesium in the Ca-HCO3 waters yields much higher temperature predictions ranging from 82 °C to 258 °C.

The high magnesium concentrations of the Ca-HCO₃ waters also makes the Mgcorrection for the Na-K-Ca geothermometer inapplicable likely resulting in overcorrections yielding lower than actual temperature estimates according to its originators (Fournier and Potter, 1979). The Na-Li geothermometer results are highly variable while the K-Mg geothermometer yields temperature estimates that are unrealistic (below surface temperatures or negative values). All of the temperature estimates produced by conventional geothermometry are listed below in Tables 5-8. The large disparity in temperature estimates produced by these techniques highlights the shortcomings of estimators based on few chemical species under very precise conditions that may not be present in the thermal reservoir of this study area. The results from conventional geothermometry methods support further evaluation using both models to account for mixing and multicomponent equilibrium geothermometry methods that utilize reservoir specific alteration minerals to provide more realistic temperature estimates.

Na-HCO3	Qtz (No Steam Loss)	Qtz (Steam Loss)	Amorphous Silica	Chalcedony	Quartz	Chalcedony (Steam Loss)	Chalcedony (No Steam Loss)
Type Waters		Fournier	r (1977)		Fournier and Potter (1982)	Arnorsson et al. (1983)	Arnorsson et al. (1983)
CC-11	137	132	17	110	137	108	109
CC-14	114	113	-4	85	114	88	85
CC-51	111	111	-6	82	112	85	83
CC-52	118	116	0	89	118	91	89
CC-53	119	118	1	91	120	93	91
CC-55	115	114	-2	86	116	89	87
CC-40	133	130	14	106	134	105	105
CC-42	139	134	18	112	139	110	111
CC-45	105	106	-11	76	106	80	77
CC-46	106	106	-11	76	106	81	77
CC-48	127	124	8	100	127	100	99
LY82-3	128	125	8	100	128	100	99
LY82-4	126	124	7	99	127	99	98
LY82-5	129	126	10	101	129	101	101
LY82-6	129	126	10	101	129	101	101
LY82-7	116	115	-2	87	116	90	87
LY82-11	130	127	11	103	130	102	102
LY82-12	114	113	-4	85	114	88	85
LY82-15	107	107	-9	78	108	82	79
LY82-18	105	105	-12	75	105	79	76
LY82-19	103	103	-13	73	103	78	74
LY82-20	103	103	-13	73	103	78	74
LY89-1	105	105	-12	75	105	79	76
LY89-2	111	110	-7	81	111	85	82
LY89-4	126	124	7	99	127	99	98
LY89-8	122	120	3	93	122	95	93
LY89-9	104	104	-12	74	104	79	75
LY89-11	116	115	-2	87	116	90	87
LY89-12	126	124	7	99	127	99	98
LY89-13	121	119	3	93	121	94	93
LY89-14	115	114	-2	86	115	89	87
LY89-15	116	115	-2	87	116	90	87
LY89-22	106	106	-10	77	107	81	78
M91-7	116	115	-2	87	116	90	87
M91-8	123	121	4	95	123	96	95
M91-11	106	106	-10	77	107	81	78
M91-13	111	110	-7	81	111	85	82
M91-14	115	114	-2	86	115	89	87

Table 5. Silica geothermometer temperature estimates for the Na-HCO₃ type waters of the Twin Falls – Banbury hydrothermal system. All estimates are given in degrees Celsius.

	Qtz (No	Qtz (Steam	Amorphous	Chalandamy	Questa	Chalcedony	Chalcedony
Ca-HCO3	Steam Loss)	Loss)	Silica	Chalcedony	Quartz	(Steam Loss)	(No Steam Loss)
Type Waters		E	(1077)	•	Fournier and	Arnorsson et al.	Arnorsson et al.
		Fournier	r (1977)		Potter (1982)	(1983)	(1983)
CC-8	104	104	-12	74	104	79	75
CC-9	120	118	1	91	120	93	91
CC-10	118	116	0	89	118	91	89
CC-12	98	99	-18	67	98	73	69
CC-13	100	101	-15	70	101	75	72
CC-54	110	109	-7	80	110	84	81
LY82-13	129	126	10	101	129	101	101
LY89-3	114	113	-4	85	114	88	85
LY89-5	119	117	1	90	119	92	90
LY89-6	130	126	10	102	130	102	101
LY89-7	115	114	-2	86	115	89	87
LY89-10	120	118	1	91	120	93	91
LY89-17	119	117	1	90	119	92	90
LY89-18	110	109	-7	80	110	84	81
LY89-29	100	101	-16	70	100	75	71
LY89-30	62	67	-48	29	62	40	33
LY89-32	107	107	-9	78	108	82	79
LY89-33	86	89	-28	55	86	62	57
LY89-34	109	109	-8	79	109	83	80
LY89-35	111	110	-7	81	111	85	82
LY89-36	114	113	-3	86	115	88	86
LY89-37	104	104	-12	74	104	79	75
LY89-38	89	92	-25	59	90	66	61
M91-12	102	103	-14	72	102	77	73

Table 6. Silica geothermometer temperature estimates for the Ca-HCO₃ type waters of the Twin Falls – Banbury hydrothermal system. All estimates are given in degrees Celsius.

	Na-K				Na-K-Ca	Na-K-Ca (Mg Corrected)	Na-Li	K-Mg
Na-HCO3	Truesdell	Fournier	Giggenbach	Arnorsson	Fournier and		Fouilliac et al.	Giggenbach et al.
Type waters	(1976)	(1979)	(1988)	(1983)	Truesdell (1973)	Fourmer and Potter (1979)	(1988)	(1988)
CC-11	45	93	114	57	112	112	119	-19
CC-14	96	140	160	107	132	132	63	7
CC-51	96	140	160	107	131	131	99	9
CC-52	58	105	126	69	118	118	95	-7
CC-53	60	108	128	72	118	118	69	-6
CC-55	74	120	141	85	129	129	144	-9
CC-40	34	83	104	46	103	103	124	-11
CC-42	52	101	121	64	112	112	119	-17
CC-45	132	171	189	141	144	144	184	6
CC-46	156	191	208	164	154	140	190	10
CC-48	40	89	110	52	102	102	118	-3
LY82-3	23	73	95	35	98	98	114	15
LY82-4	30	79	101	42	98	98	128	14
LY82-5	33	83	104	45	103	103	110	14
LY82-6	56	104	125	68	116	116	124	11
LY82-7	59	106	127	70	114	114	131	12
LY82-11	56	104	125	68	108	108	124	11
LY82-12	51	100	120	63	113	113	110	13
LY82-15	113	155	174	124	136	136	165	9
LY82-18	116	157	176	126	133	133	169	10
LY82-19	114	156	175	125	133	133	168	13
LY82-20	133	172	190	143	141	136	169	13
LY89-1	144	181	199	153	146	140	184	12
LY89-2	153	189	206	162	149	118	188	18
LY89-4	177	208	224	185	166	165	205	-1
LY89-8	48	97	118	60	107	107	111	14
LY89-9	77	124	144	89	112	61	104	38
LY89-11	98	142	161	109	136	136	100	-1
LY89-12	90	135	155	101	136	136	84	1
LY89-13	54	102	123	65	109	109	22	10
LY89-14	59	107	128	71	114	114	39	10
LY89-15	85	130	150	96	132	132	-	0
LY89-22	171	204	220	179	165	154	-	3
M91-7	85	130	150	96	132	132	-	0
M91-8	153	189	206	162	157	156	-	2
M91-11	171	204	220	179	165	154	-	3
M91-13	60	107	128	71	118	118	-	4
M91-14	49	97	118	61	110	110	-	-7

Table 7. Cation geothermometer temperature estimates for the Na-HCO₃ type waters of the Twin Falls – Banbury hydrothermal system. All estimates are given in degrees Celsius.
Ca HCO3]	Na-K		Na-K-Ca	Na-K-Ca (Mg Corrected)	Na-Li	K-Mg
Type Waters	Truesdell	Fournier	Giggenbach	Arnorsson	Fournier and	E	Fouilliac et al.	Giggenbach et al.
Type waters	(1976)	(1979)	(1988)	(1983)	Truesdell (1973)	Fourmer and Potter (1979)	(1988)	(1988)
CC-8	101	144	163	111	135	107	50	14
CC-9	221	243	257	227	175	107	184	15
CC-10	231	250	263	235	177	106	186	16
CC-12	23	73	94	35	82	82	203	26
CC-13	39	88	110	51	94	94	206	27
CC-54	175	207	223	183	150	65	144	32
LY82-13	296	298	307	296	194	102	214	17
LY89-3	194	222	237	200	165	99	192	18
LY89-5	199	226	241	206	167	108	193	17
LY89-6	229	249	262	233	180	148	181	8
LY89-7	248	263	275	251	183	98	196	16
LY89-10	252	267	278	256	186	102	191	14
LY89-17	270	279	290	271	193	113	193	11
LY89-18	269	279	289	271	188	84	170	19
LY89-29	294	297	306	294	176	39	133	42
LY89-30	318	313	320	315	204	40	197	21
LY89-32	641	506	487	597	258	106	156	15
LY89-33	433	389	387	419	211	101	157	26
LY89-34	399	368	368	389	215	140	239	14
LY89-35	351	336	340	345	201	119	-	19
LY89-36	321	316	323	319	193	111	193	21
LY89-37	269	279	289	271	171	87	91	34
LY89-38	606	488	472	568	247	95	198	21
M91-12	243	260	272	247	169	78	183	30

Table 8. Cation geothermometer temperature estimates for the Ca-HCO₃ type waters of the Twin Falls – Banbury hydrothermal system. All estimates are given in degrees Celsius.

4.2 Silica-Enthalpy Mixing Models for the Twin Falls – Banbury Thermal Area

The evidence for mixing provided by the use of binary diagram trends and Giggenbach diagram analysis (partial equilibration) suggests that conventional geothermometry techniques cannot be taken at face value. Adjustments for dilution should be made to enable more accurate temperature prediction. Several models have been developed to deal with simple mixing (non-reactive dilution) including the silica-enthalpy model (Fournier and Truesdell, 1974) and the silica-carbonate mixing model (Arnórsson, 1985). The silicaenthalpy diagram was chosen for use in this study due to the abundance of silica within the reservoir rocks satisfying the second geothermometry assumption discussed previously. The silica-carbonate model was excluded due to the variability in carbonate measurements from field titrations and the effects of CO₂ degassing on carbonate concentrations. The silicaenthalpy mixing model is based on the positive relationship between silica solubility and increasing temperature. To apply the model, temperatures for both the cold water and thermal components must be known. However, in this model, respective enthalpies of sample waters calculated from field temperatures are used as plot coordinates rather than temperature because enthalpy is conserved as waters mix and boil whereas temperature is not (e.g., Fournier and Truesdell, 1974).

The model yields two temperature estimates representing one situation in which waters are subjected to boiling prior to mixing and one where no boiling occurs. Enthalpy vs quartz solubility curves are used corresponding to the two separate scenarios. A straight line is drawn from the point representing the non-thermal component of the mixed water (lowest silica and enthalpy), through the mixed water thermal samples. The intersection of this line with the quartz solubility curve gives the enthalpy of the hot-water component at reservoir conditions if there was no boiling prior to mixing. The enthalpy at the boiling temperature (100°C) which is 419 J/g is intersected with the projected trend line. From this intersection, a horizontal line is drawn to the quartz maximum steam loss line. This new enthalpy value can be used to calculate the reservoir temperature if boiling occurred prior to mixing (Fournier, 1977).

In order to better constrain the temperature estimates from the mixing models, evidence for and against the possibility of boiling must be considered. As mentioned previously, shifts in δD concentrations may be explained by boiling. Truesdell et al. (1978) demonstrated the enrichment of deuterium from fractionation due to boiling in both a singlestage and continuous steam loss scenario. They observed increases of 1.44 times and 9.1% for chloride and δD concentrations respectively for single-stage steam loss and 1.41 times 3.1% for continuous steam loss for some of the thermal waters in Yellowstone National Park. These calculations were made utilizing a known recharge water deuterium concentration and assuming all heat loss was due to boiling from 360 °C parent water to the 93 °C boiling point.

Because local area groundwater deuterium concentrations differ from thermal water concentrations and thermal waters are likely much older (Pleistocene), a local Pleistocene deuterium concentration would be needed for such calculations. However, given a likely reservoir temperature of about 160 °C (Conrad et al., 2015) and a local boiling point of about 95 °C, one can approximate how much boiling may occur in the system. Assuming that all of the heat loss in the system is due to steam loss (not likely due to evidence for groundwater mixing), we can estimate a percentage of water lost to boiling. The total enthalpy lost due to vaporization from 160 °C to 95 °C is about 277 kJ/kg and the latent heat of enthalpy for water is about 2257 kJ/kg (Marsh, 1987). Relating heat loss and latent heat of vaporization to evaporative mass, a maximum of about 12 % of thermal water per kg could potentially be lost to boiling. Due to low chloride concentrations of thermal waters in the study area and lack of recharge deuterium values, effects from this small proportion of boiling are not likely to be evident in water chemistry. Additionally, the lack of fumaroles, sinter deposits, and supersaturation of silica suggest that influence of boiling is of minimal importance to this area.

The model developed by Fournier and Truesdell (1974) used only quartz as the controlling dissolved silica component. This approach has been modified in this study to include a chalcedony-enthalpy mixing model in addition to the quartz-enthalpy model in order to account for the possibility of chalcedony controlling silica solubility. The results are

presented below in Figures 20-21. Because there is little evidence supporting a maximum boiling scenario in the study area, temperature estimates from these models are likely constrained to the lower (no steam loss) estimates. The estimated reservoir temperatures from the quartz-enthalpy diagram are about 143 °C (no steam loss) to 175 °C (max steam loss). The fraction of thermal water incorporated into mixing for the no steam loss scenario is about 39%. The chalcedony-enthalpy model yields a lower temperature range of 120 °C (no steam loss) to 142 °C (max steam loss). The fraction of thermal water incorporated into mixing for the most incorporated into mixing for the no steam loss scenario is about a lower temperature estimates of the mixing for the no steam loss scenario is about 49%. While the temperature estimates of the mixing models may be more realistic than those of conventional geothermometers, the mixing models applied in this section account only for simple non-reactive mixing and are based on only one dissolved indicator constituent.

Figure 20. Silica-enthalpy model (quartz) applied to the thermal waters of the Twin Falls – Banbury system. The trend line (yellow) passes through both end member waters and is projected to the no steam loss line (orange). The intersection of the trend line with the boiling point (419 kJ/kg) is projected to the max steam loss line (blue). Temperature estimations are obtained from the resulting two enthalpy values.

Figure 21. Silica-enthalpy model (chalcedony) applied to the thermal waters of the Twin Falls – Banbury system. The trend line (yellow) passes through both end member waters and is projected to the no steam loss line (orange). The intersection of the trend line with the boiling point (419 kJ/kg) is projected to the max steam loss line (blue). Temperature estimations are obtained from the resulting two enthalpy values.

4.3 MEG Analysis of the Twin Falls – Banbury Area

Recent developments in multicomponent equilibrium geothermometry (MEG) have led to appreciable improvement in the reliability and accuracy of reservoir temperature estimations compared with conventional geothermometry (Spycher et al., 2011; Smith et al., 2012; Neupane et al., 2013, 2014; Palmer et al., 2014; Cannon et al., 2014; Neupane et al., 2015). The concept behind MEG originated in the 1980s (Michard and Roekens, 1983; Reed and Spycher, 1984) and is based on the estimation of reservoir temperature through saturation indices of several minerals likely to be in equilibrium with the thermal water. The use of an entire chemical suite rather than a couple of basis species has an obvious advantage over conventional techniques. While MEG is still affected by the same secondary processes that violate the assumptions of geothermometry (boiling, dilution, etc.), new techniques allow for the correction of these processes if they can be identified. RTEst (Reservoir Temperature Estimator) is one such tool that can accomplish these corrections by reconstructing the last equilibrated composition of a given thermal fluid (Palmer et al., 2014; Neupane et al., 2015). Validation of the RTEst tool was demonstrated by Neupane et al. (2015) through the successful matching of estimated reservoir temperatures and actual bottom-hole temperatures of five geothermal power plants.

RTEst uses a likely reservoir mineral assemblage (RMA) in the prediction of the thermal fluid temperature within the reservoir. The reservoir temperature is taken to be the one in which all of the mineral saturation indices are in equilibrium shown by having a summed $log(Q_i/K_{i,T})$ of zero where Q_i and $K_{i,T}$ are the ion activity product and temperature dependent equilibrium constant for the ith mineral respectively. RTEst accomplishes temperature estimation by utilizing the React module of The Geochemist's Workbench® (Bethke and Yeakel, 2012) in order to model equilibrium conditions among minerals, aqueous species, and gaseous phases with respect to geochemical reactions. RTEst couples the React module with the model-independent optimization software PEST (Doherty, 2013) to optimize parameters including CO₂ fugacity, amount of water gained or lost, and temperature. These parameters correspond to secondary alteration processes that affect fluid composition. Through the use of these parameters alone, RTEst is capable of compensating for the effects of boiling and simple (non-reactive mixing). However, if a cooler water end member composition is known, RTEst can "extract" this end member through inverse modeling thereby accounting for reactive mixing.

The equilibrium reservoir temperature is calculated through the minimization of the objective function, ϕ . The objective function is essentially a weighted sum of squares of the saturation indices of the chosen RMA where RTEst acts to minimize the collective distances

away from zeros for all saturation indices. The objective function is given by the following equation:

$$\Phi = \sum (SI_i w_i)^2$$

where SI_i is the saturation index for the *i*th mineral and w_i is the weighting factor. The weighting factor w_i is based on the number of thermodynamic components within each mineral to ensure that each mineral contributing to equilibrium with the thermal fluid is considered equally and not skewed by reaction stoichiometry (Neupane et al., 2015).

Figure 22. Temperature estimation for Banbury Hot Springs showing the log Q/K_T curves for minerals (Calcite, Chalcedony, Beidellite – Mg, Clinoptilolite-K, and Albite) calculated using original water chemistry. A) Without optimization of H_2O mass and CO_2 fugacity B) Optimized log Q/K_T curves showing field temperature (58.4°C), estimated temperature (158 °C), and error bar (black bar on x-axis).

The reservoir mineral assemblages used here are based on alteration mineral assemblages present in hydrothermally altered basalts and rhyolites. Early work has shown that rock type has less of an effect on geothermal alteration compared with temperature, fluid composition, and permeability (Browne, 1978; Henley and Ellis, 1983). Browne (1978)

demonstrated that basalts, rhyolites, andesites, and sandstones were all dominated by an alteration mineral assemblage including illite, calcite, pyrite, epidote, k-feldspar, albite, and quartz in the temperature range of 250 – 285 °C. However, there are important differences between basalt and rhyolitic alteration mineral assemblages particularly at lower (<200 °C) temperatures. At lower temperatures, secondary mineralization within geothermally altered basalts and rhyolites typically includes phyllosilicates, zeolites, oxides, hydroxides, and carbonates (Neuhoff et al., 1999; Weisenberger and Selbekk, 2009; Rodriguez, 2011). As temperatures increase, zones of mixed illite-smectite clays begin to dominate at 200-250 °C, chlorite-epidote at 250-300 °C, and epidote-actinolite at >300 °C. At temperatures < 200 °C kaolinite and smectite clays predominate with other minerals including zeolites, quartz and chalcedony, K-feldspar, calcite, and chlorite (Lonker et al., 1993; Larsson et al., 2002).

The main differences in geothermal alteration between basalts and the more silicic rhyolites and andesites are observed in clay mineralogy. Clays formed from the alteration of rhyolites and andesites are more Na^+ and K^+ rich compared to those formed in basalts. These clays are typically mixed illite-smectite clays as well as montmorillonites. In addition to being enriched with respect to Na^+ and K^+ , alteration clay and zeolites in rhyolites and andesites tend to be more deficient in magnesium due to the low magnesium concentrations within these rock types (Bethke, 1986; Reyes, 1990; Mas et al., 2006).

The alteration minerals particular to this study area were based largely on the work of Sant (2012) who analyzed the alteration minerals within basalt core samples from the Kimberly well of the Project Hotspot (Shervais et al., 2013). This well lies just to the east of the study area in Burley, ID and penetrates the basalts of the upper aquifer system. Of particular importance are the smectite clays observed in core samples from 1042 meters to

1829 meters (3126 – 5487 ft.). Morse and McCurry (2002) also analyzed basalt core samples from the deep aquifer penetrating INEL-1 well located to the northeast of the study area on the Idaho National Laboratory. Both of these studies have attributed the boundary between the upper and lower aquifer systems to the development of these smectite clays. RTEst provides a means of selecting minerals based on five rock types (Tholeitic, Calc-alkaline, Silicic, Siliciclastic, and Carbonates), 3 temperature ranges (low, 50-100 °C; moderate 150 to 300 °C; and high, >300 °C), and two water types (neutral and acidic) based on a review of 48 different geothermal systems (Palmer et al., 2014). Minerals used in this study along with their corresponding weighting factors are listed below in Table 9.

Table 9. Alteration minerals used in RTEst inverse modeling with corresponding weighting

factors (V	V _i)
------------	------------------

Mineral	W_i
Calcite	1/2
Chalcedony	1
Beidellite Mg	1/6.65
Kaolinite	1/4
Clinoptilolite-Ca	1/13
Clinoptilolite-K	1/14
Saponite-Na	1/7.33
Saponite-K	1/7.165
Illite	1/6.65
Heulandite	1/7
Fluorite	1/3
Talc	1/7
Muscovite	1/7
Paragonite	1/7

4.4 RTEst Results for the Twin Falls – Banbury Thermal Area

The following reservoir temperature estimates were made utilizing the MEG tool RTEst in order to both better predict temperatures as compared with more conventional techniques and also test the rationale behind the three mixing scenarios presented in Chapter 1 (Simple Mixing, Flow-Pathway Mixing, and Mixing with Re-equilibration). The inverse modeling performed using RTEst is capable of accounting for both simple mixing and reactive mixing through the removal of a mixing component. Pure water, local groundwater (recharge area), and an idealized intermediate water (based on binary diagram trends) were used in this study as mixing components.

No Mixing

Despite evidence for mixing, the possibility of no mixing was considered in the MEG approach. Allowing only temperature and CO₂ fugacity to fluctuate as optimization parameters, adequate convergence of saturation indices was not obtained for either Ca-HCO₃ or Na-HCO₃ type thermal waters using likely alteration mineral assemblages found in basalts and rhyolites. Results were slightly better for Ca-HCO₃ type waters but far from meaningful with objective function (ϕ) values greater than or equal to 0.1.

Simple Mixing

The possibility of simple mixing between groundwater and thermal waters was considered in RTEst modeling through the use of a 6 °C recharge area groundwater sample (Sample LY89-38) as the mixing component between the Ca-HCO₃ and Na-HCO₃ type thermal waters. Mixing between groundwater and the Na-HCO₃ type thermal waters is not supported through the use of RTEst as all attempts of modeling this scenario resulted in a lack of saturation index convergence for all likely mineral assemblages. However, mixing between groundwater and Ca-HCO₃ type thermal waters is supported through the use of RTEst. Objective function values (ϕ) of less than 1x10⁻⁶ are obtained for some waters. These values are better than all previous studies utilizing RTEst in MEG analyses including those which successfully validated actual bottom-hole temperatures of geothermal power plants (Cannon et al., 2014; Neupane et al., 2014; 2015). Simple mixing is also supported through the use of pure water as the mixing component in mixing with Na-HCO₃ type thermal waters.

Flow Pathway Reactive Mixing

Flow Pathway or reactive mixing was investigated using an "intermediate" composition water created from the binary diagram analysis in Chapter 3. Na-HCO₃ type thermal waters were mixed with water that contained amounts of K⁺, Ca²⁺, and Mg²⁺ taken from the intersection of the two trends presented in Figure 15. Na-HCO₃ type thermal waters were modelled with waters containing between 0.12-0.15 meq/kg K⁺, 0.5-0.7 meq/kg Ca²⁺, and 0.15-0.2 meq/kg Mg²⁺. This type of mixing was not supported in the attempts to mix thermal water with this "intermediate" composition as adequate conversion was not attained and temperatures at or near surface temperatures were predicted with standard deviations of temperatures reaching over +/- 150 °C. Additionally, mixing between Ca-HCO₃ and Na-HCO₃ type thermal waters is not supported through the use of RTEst.

Re-equilibration

The possibility of re-equilibration may be gleaned from the RTEst results. The reconstructed equilibrium water compositions produced by RTEst modeling of the Ca-HCO₃ type thermal waters may be significant in that if the Ca-HCO₃ type thermal waters were the

Figure 23. Initial (green) vs MEG reconstructed (yellow) compositions of Ca-HCO₃ thermal waters. A and B show the relationship between Na⁺ vs K⁺ while C and D show Ca²⁺ and Mg²⁺ vs Na⁺. result of simple mixing between groundwater and deep Na-HCO₃ type waters, the reconstructed (optimized) waters would be similar in composition to the Na-HCO₃ type waters and follow the general trends displayed in Figure 15. However, reconstructed water compositions do not resemble Na-HCO₃ waters suggesting that re-equilibration from the Na-HCO₃ waters to the Ca-HCO₃ is a possibility. The initial and reconstructed water

compositions of the Ca-HCO₃ type waters are plotted with respect to K^+ , Ca^{2+} , Mg^{2+} , and Na^+ concentrations in Figure 23.

The pure water mixing with Na-HCO₃ type thermal waters mentioned previously also opens up the possibility of re-equilibration in this system. In order for pure water to mix with the deep Na-HCO₃ type thermal waters of the system, a mechanism by which recharge area groundwater transitions into pure or very dilute water prior to mixing may be needed. A reaction in which Ca²⁺ and Mg²⁺ concentrations are diminished while Na⁺ concentrations are increased would explain this phenomenon. Cation exchange reactions between alteration clays and zeolites or a precipitation reaction in which cation concentrations are diminished due to falling out of solution may be the driving forces behind this mechanism. Cation exchange reactions are more likely than reactions involving precipitation as precipitation reactions would likely result in a similar decrease of anion concentrations as both cations and anions would drop out of solution together due to the ionic bond formed during precipitation. A series of re-equilibration zones may explain the gradational change in composition from Na-HCO₃ to more Ca-rich thermal wares. This re-equilibration mechanism is supported by the apparent relationship between:

1) Mg-rich smectite clays (Beidellite-Mg) used in the Ca-HCO₃ RMA and the Na-rich smectite clays (Saponite-Na) used in the Na-HCO₃ RMA. The high cation exchange capacity of smectite clays supports these findings (Carroll, 1954; Robin et al., 2015).

2) Clinoptilolite-Ca (zeolite) used in Ca-HCO₃ RMA and Clinoptilolite-K used in the Na-HCO₃ RMA. Cation exchange between these two Clinoptilolite end members is explained by Pabalan and Bertetti (2001). RTEst modeling of Na-HCO₃ type thermal waters mixing with pure water yields temperature estimates ranging from 108 °C to 160 °C. These results are in agreement with sulfate-water isotope geothermometry estimates of 150 °C for Banbury Hot Springs (Conrad et al., 2015). Modeling of Ca-HCO₃ type thermal waters mixing with local groundwater yields temperature estimates ranging from 84 °C to 104 °C. These results may either constitute evidence for two distinct flow paths and equilibration temperatures resulting in the two water types or relationship between the two waters defined by a re-equilibration. Possible conceptual models resulting from geothermometry results will be discussed in detail in Chapter 5. Below are the RTEst temperature estimations and mineral assemblages for both Ca-HCO3 and Na-HCO3 type thermal waters.

Table 10. RTEst temperature estimates (a), mass of thermal water component per 1 kg solution used in mixing (c), log of CO_2 fugacity, RTEst objective function (Φ), selected RMAs, and (b) associated standard deviations of each measurement.

Na-HCO3 Type Water RTEst Results - Pure Water Mixing						
Site ID	Name	$T^a \pm \sigma^b$	$M^c \; H_2 O \pm \sigma^b$	$logf_{CO_2} \pm \sigma^b$	ф	RMA
CC-11	Miracle Hot Springs	160 ± 2.5	0.49 ± 0.01	-0.56 ± 0.058	1.23E-4	Beidellite-Mg, Calcite, Chalcedony, Clinoptilolite-K, Paragonite
CC-14	CSI Well 2	136 ± 11	0.43 ± 0.06	-0.23 ± 029	2.05E-3	Saponite-K, Calcite, Chalcedony, Clinoptilolite-Ca,
CC-40	1000 Springs (Sliger's Well)	134 ± 2.1	0.34 ± 0.005	-0.1 ± 0.051	2.93E-4	Calcite, Chalcedony, Illite, Paragonite, Heulandite, Fluorite
CC-42	Banbury Hot Springs	158 ± 9	0.49 ± 0.04	-0.26 ± 0.21	2.25E-3	Beidellite-Mg, Calcite, Chalcedony, Clinoptilolite-K, Albite
CC-45	Leo Ray Hill	121 ± 6	0.46 ± 0.02	-0.4 ± 0.14	2.34E-3	Saponite-Na, Calcite, Chalcedony, Clinoptilolite-K, Paragonite
CC-46	Leo Ray Road	120 ± 1	0.48 ± 0.045	-0.31 ± 0.02	5.15E-5	Saponite-Na, Calcite, Chalcedony, Clinoptilolite-K, Paragonite
CC-48	Hensley Well	134 ± 17	0.52 ± 0.09	-0.36 ± 0.47	8.28E-3	Beidellite-Mg, Calcite, Chalcedony, Clinoptilolite-K, Paragonite
CC-51	CSI Well 1	134 ± 11	0.42 ± 0.06	-0.14 ± 0.3	2.28E-3	Calcite, Chalcedony, Clinoptilolite-Ca, Saponite-K
CC-52	Larry Anderson Well	108 ± 3	0.73 ± 0.09	-1.5 ± 0.09	5.75E-4	Saponite-Na, Calcite, Chalcedony, Fluorite, Talc
CC-53	Pristine Springs	130 ± 10	0.54 ± 0.08	-0.92 ± 0.3	2.18E-3	Saponite-Na, Calcite, Chalcedony, Fluorite, Tak
CC-55	Anderson Campground Well	123 ± 3	0.56 ± 0.01	-0.77 ± 0.07	7.43E-4	Beidellite-Mg, Calcite, Chalcedony, Clinoptilolite-K, Paragonite

Ca-HCO3 Type Water RTEst Results - Groundwater Mixing						
Site ID	$T^a\pm\sigma^b$	$M^c \ H_2 O \pm \sigma^b$	$logf_{CO_2} \pm \sigma^b$	ф	RMA	
CC-9 (Campbell Well 1)	95 ± 0.46	$0.97{\pm}\ 0.005$	-1.17 ± 0.01	1.95E-05	Beidellite-Mg, Calcite, Chalcedony, Kaolinite, Clinoptilolite-Ca	
CC-10 (Campbell Well 2)	93 ± 0.27	$0.97{\pm}\ 0.003$	-1.25 ± 0.007	6.48E-06	Beidellite-Mg, Calcite, Chalcedony, Kaolinite, Clinoptilolite-Ca	
CC-54 (Twin Falls High School)	80 ± 2.3	1.0 ± 0.01	-1.32 ± 0.06	4.11E-04	Beidellite-Mg, Calcite, Chalcedony, Muscovite, Clinoptilolite-Ca	
LY82-13	98 ± 0.91	1.0 ± 0.04	-1.06 ± 0.02	7.35E-05	Beidellite-Mg, Calcite, Chalcedony, Kaolinite, Clinoptilolite-Ca	
LY89-3	94 ± 0.58	0.86 ± 0.006	-1.16 ± 0.01	2.95E-05	Beidellite-Mg, Calcite, Chalcedony, Kaolinite, Clinoptilolite-Ca	
LY89-5	97 ± 0.59	0.91 ± 0.009	-1.13 ± 0.02	3.06E-05	Beidellite-Mg, Calcite, Chalcedony, Kaolinite, Clinoptilolite-Ca	
LY89-6	104 ± 1.1	0.98 ± 0.012	-1.04 ± 0.03	9.67E-05	Beidellite-Mg, Calcite, Chalcedony, Kaolinite, Clinoptilolite-Ca	
LY89-7	84 ± 2.1	1.0 ± 0.02	-1.23 ± 0.04	4.08E-04	Beidellite-Mg, Calcite, Chalcedony, Kaolinite, Clinoptilolite-Ca	
LY89-10	88 ± 1.5	1.0 ± 0.008	-1.21 ± 0.02	2.01E-04	Beidellite-Mg, Calcite, Chalcedony, Kaolinite, Clinoptilolite-Ca	
LY89-17	88 ± 1.3	1.0 ± 0.008	-1.20 ± 0.02	1.72E-04	Beidellite-Mg, Calcite, Chalcedony, Kaolinite, Clinoptilolite-Ca	
LY89-18	89 ± 0.61	0.88 ± 0.002	-1.29 ± 0.003	3.44E-05	Beidellite-Mg, Calcite, Chalcedony, Kaolinite, Clinoptilolite-Ca	
LY89-34	89 ± 0.69	0.88 ± 0.011	-1.33 ± 0.02	4.66E-05	Beidellite-Mg, Calcite, Chalcedony, Kaolinite, Clinoptilolite-Ca	
LY89-35	91 ± 0.31	0.86 ± 0.0006	$\textbf{-1.37} \pm 0.001$	9.36E-06	Beidellite-Mg, Calcite, Chalcedony, Kaolinite, Clinoptilolite-Ca	
LY89-36	98 ± 1.60	$0.\overline{84\pm0.018}$	-1.33 ± 0.03	2.34E-04	Beidellite-Mg, Calcite, Chalcedony, Kaolinite, Clinoptilolite-Ca	
M91-12	80 ± 1.23	0.91 ± 0.02	-1.54 ± 0.04	1.35E-04	Beidellite-Mg, Calcite, Chalcedony, Kaolinite, Clinoptilolite-Ca	

CHAPTER 5: CONCEPTUAL MODELS FOR THE TWIN FALLS – BANBURY HYDROTHERMAL SYSTEM

The following section details the competing possible conceptual models for the Twin Falls-Banbury hydrothermal system and provides evidence for the dismissal of all but one. Four conceptual models based on the previously defined mixing scenarios are presented herein. Results from chemical analyses, mixing analyses, reservoir temperature predictions, and regional geology are utilized to support or dismiss these models.

5.1 No Mixing Conceptual Model

Mixing between local groundwater and thermal waters is supported by the partial equilibration and immature classifications of thermal waters made by the Giggenbach ternary diagram, the linear relationships between conservative species chloride and boron, and the linear relationship between ¹⁸O and Deuterium. Mixing has been attributed as a possible explanation for the masking of geothermal signatures throughout the ESRP (McLing et al., 2002; Neupane et al., 2014; Dobson et al., 2015). However, the possibility that no mixing occurs in this system is considered unlikely due to inadequate (high) Φ value for both Ca-HCO₃ and Na-HCO₃ thermal waters using only temperature and CO₂ fugacity as optimization parameters.

5.2 Simple Mixing Conceptual Model

The idea of simple mixing is supported by gradational trends exhibited by some chemical constituents (Cl/B, ¹⁸O/D, ¹⁸O/Cl, Na/Cl, Na/SiO₂, etc.) and is accounted for by silica-enthalpy mixing diagrams in Chapter 4. RTEst modeling of mixing between recharge area groundwater and Ca-HCO₃ type thermal water supports simple mixing between these

two components (Table 10). However, trends exhibited in the relationships between Na⁺, K⁺, Ca²⁺, and Mg²⁺ among Na-HCO₃ and Ca-HCO₃ thermal waters suggest that either some reaction has taken place in addition to mixing or that the two water types are representative of two distinct flow paths. Simple mixing between local groundwater and Na-HCO₃ type thermal waters is not supported by MEG modeling through RTEst while the use of pure water as the mixing component is supported. Simple mixing with pure water may be explained by dilution through precipitation as thermal water is rapidly mixed at the surface as is the case in conventional mixing models (Fournier, 1977; Arnorsson, 1985). While this concept may hold up for thermal springs, it does not provide a mechanism by which pure water is mixed with Na-HCO₃ thermal waters in deep wells.

5.3 Reactive Mixing

In order for pure water or dilute Na-HCO₃ water (as discussed in Chapter 4) to mix with thermal Na-HCO₃ type waters of the deep system, there must either be 1) a flow pathway by which pure water from precipitation infiltrates directly into the deep system and mixes with thermal water or 2) a mechanism by which Ca-Mg-HCO₃ type groundwater gradationally transitions into dilute Na-HCO₃ water during infiltration. For these reasons, a conceptual model with and without re-equilibration are investigated. Recharge area groundwater is thought to pick up its enriched Ca⁺ and Mg²⁺ signature from the Paleozoic (Pennsylvanian and Permian) marine sediments that are exposed at the surface in the mountainous recharge area to the southeast of Buhl, ID (Lewis and Young, 1989; Mariner et al., 1997). While all nonthermal groundwater samples in between the recharge area and both the Twin Falls and Banbury hydrothermal areas are Ca-HCO₃ in type, the regional geology supports the possibility of a flow path for precipitation directly into the Idavada volcanics which are also exposed in the hills to the south of the study area. The depth and extent of the Paleozoic carbonates is largely unknown although over 1,524 meters (5,000 ft.) sections of carbonate sediments are reported in the mountains of northern Nevada (Schroeder, 1912). Additionally, lead isotope data from thermal waters in the study area provide a carbonate signature providing evidence that carbonates persist beneath the Idavada volcanics throughout the study area (Mariner et al., 1997)

While the possibility exists for a rhyolite exclusive flow pathway, the likelihood of pure water remaining dilute from the surface to depths up to 3 km (Lewis and Young, 1989) is not favorable. Data from many natural geothermal systems shows that local equilibria between fluid and host rock is attained at temperatures as low as 50 °C (Arnórsson et al., 1983; Stefánsson and Arnórsson, 2002). Pure water from precipitation would likely obtain a similar signature to that of the deep Na-HCO₃ thermal waters having flowed through rhyolites to extensive depths. Without the possibility of re-equilibration at a lower temperature, it would follow that an increase in the fraction of thermal water component in MEG analysis would result in higher temperature estimations. This is not found to be the case as can be seen in the RTEst results presented in Chapter 4, Table 10. For instance, Miracle Hot Springs has a predicted reservoir temperature of 160 °C with an optimized thermal water component of 0.49 whereas the Larry Anderson Well has an optimized thermal composition comprised of 73% thermal water at 130 °C.

5.4 Re-equilibration

The gradational transition between Na-HCO₃ type thermal waters of the deep system to more Ca-HCO₃ type thermal waters nearer to the surface is found throughout the ESRP (Mann, 1986; McLing et al., 2002;). A re-equilibration mechanism may explain this relationship. As shown in the Figure 24 below, a mechanism by which Ca^{2+} and Mg^{2+} are diminished with increasing temperature and depth while Na+ concentrations rise explains the rationale behind pure water or dilute Na-HCO₃ water mixing. Conversely, the reduction of Na+ and rise of Ca^{2+} and Mg^{2+} during ascension may explain the transition between deep Na-HCO₃ thermal waters to more Ca-HCO₃ type thermal waters through re-equilibration. This mechanism is supported by the apparent exchange between Ca^{2+} and K^+ rich zeolites and Na⁺ and Mg^{2+} rich smectite clays. For the reasons mentioned in this chapter, a conceptual model including re-equilibration is the most likely. However, the possibility of two flow paths and equilibration temperatures resulting in the two observed thermal water types cannot be ruled out.

Figure 24 shows a cross sectional view of regional geology from the recharge area in the Cassia Mountains to Banbury Hot Springs. Suggested possible flow pathways, water types, and a re-equilibration mechanism are also represented and explained through the 4 stages listed below. This cross section was created from available well log data and local geologic maps (Gillerman et al., 2005; Othberg et al. 2005). Figure 25 shows the location of the cross section line in map view.

Figure 24. Conceptual model for the Twin Falls – Banbury thermal area showing possible flow pathways, water types, regional geology, and possible re-equilibration mechanism.

- 1) Precipitation infiltrates into the subsurface likely picking up Ca-Mg-HCO₃ signature from Paleozoic carbonates.
- 2) The mixing of Ca-Mg-HCO₃ groundwater with Na-HCO₃ thermal water at intermediate temperature and depth. Reequilibration (purple arrows) results in the loss of Ca^{2+} and Mg^{2+} and the gaining of Na⁺ resulting in dilute Na-HCO₃ water.
- 3) Na-HCO₃ thermal water mixes with dilute water during ascension resulting in the manifestation of mixed Na-HCO₃ thermal water at the surface.
- 4) An alternate flow path through basalt results in the re-equilibration of Na-HCO₃ thermal water into Ca-HCO₃ thermal water.

Figure 25. Cross sectional line of Figure 24 with geologic units and water type distribution (Red: Na-HCO₃, Blue: Ca-HCO₃)

Thermal water in the Banbury hydrothermal area seems to be structurally controlled with the majority of thermal surface manifestations located along a single northwest trending normal fault associated with Basin and Range extension (Street and DeTar, 1987; Lewis and Young, 1989). According to the Idaho Geological Survey, most of the normal faults within the study area are contained within the units of the Idavada volcanics and do not offset the overlying younger basalts (Othberg et al., 2012). The normal fault near the cluster of Na-HCO₃ thermal waters near Banbury Hot Springs appears to be one of the exceptions. Offset to both overlying Quaternary and Tertiary basalts (Banbury basalt) is shown in a nearly 2 km

Figure 26. Geologic cross section through the Banbury Hot Springs area.

long cross section which cuts across the fault in this area. As discussed in Chapter 3, Ca-HCO₃ type thermal waters are more prevalent southward towards the area of recharge and within wells completed within basalts. A possible explanation for the spatial distribution of the two thermal waters is that the Ca-HCO₃ type thermal waters are found in areas where faults are constrained within Idavada volcanic units thus allowing for increased residence times and re-equilibration into Ca-HCO₃ type waters within basalt as shown in Figure 24. Logs of wells used in cross section construction are available in Appendix D.

Figure 27. (Top Map of the cross section line through the Banbury area. (Bottom) Reference map.

A similar transition from Ca-HCO₃ thermal waters to Na-HCO₃ thermal waters away from the zone of recharge is observed in the cluster of thermal expressions near the city of Twin Falls, ID. However, there is no evidence for a fault-controlled system like the one observed in the Banbury area. Figure 28 depicts the local geology of the area in cross section view with no apparent offset. Shervais et al. (2013) suggests that upflow zones in this area may be controlled by permeability associated with a buried caldera margin. The concentration of hotter Na-HCO₃ type waters near the Snake River where units of Idavada volcanics are exposed shows that thermal water occurrence may be controlled by thinning basalt units. Aside from the lack of faulting in the Twin Falls area, the other major difference in geology from the Banbury area are the presence of the Shoshone Falls Rhyolite (andesite unit of the Idavada volcanics) and a significant layer of lacustrine sediments above the rhyolites of the

Figure 28. Geologic cross section through the Twin Falls thermal area.

Idavada volcanics. The lacustrine sedimentary layer comprised of oolitic siltsone and claystone (Street and DeTar, 1987) may serve as the confining layer for the artesian thermal aquifer in this area.

Figure 29. (Top) Map of the cross section line through the Twin Falls area. (Bottom) Reference map.

5.5.1 Aquifer Test and Analysis

As discussed previously, flow pathways and residence times may be very important in allowing for re-equilibration from Na-HCO₃ type waters into more Ca-rich thermal waters Declines in hydraulic head in the Twin Falls – Banbury area have been observed for over thirty years (Lewis and Young, 1982; 1989; Street and DeTar, 1987) due to increased utilization of the resource with several areas showing hydraulic heads below land surface. Monitoring of thermal wells in the study area revealed that the Twin Falls and Banbury hydrothermal areas are interconnected with development and increased utilization in one area resulting in declines in the other. Flow throughout the aquifer is thought to be controlled primarily by fractures resulting from tectonic movement, cooling joints, porosity of non-welded ash flow tuff units, and contacts between successive flows (Street and DeTar, 1987).

Aquifer parameters of the rhyolites of the Idavada volcanics were estimated first in 1982 through a pumping test of two of the deeper wells in the area (CSI 1 and 2) performed by CH2M Hill. CSI 1 and 2 (2200 and 1480 ft. deep) are geothermal wells used for spaceheating located on the campus of the College of Southern Idaho and were sampled for chemical analysis (CC-51 and CC-14) as part of this study in 2014. While water temperatures seem to have remained constant (37 °C) since drilling was completed in 1979, a significant decline in hydraulic head has been observed. Street and DeTar (1987) reported hydraulic head values around 14 meters above land surface. Both of these wells are no longer flowing artesian with water levels of about 1.2 meters below land surface at present day. Due to the observed decline in water levels and the erroneous listing of CSI 1 at 1191 ft. deep (cased portion of the well) in the initial pump test report, a new pump test was conducted for both CSI wells from 9/1/15 - 9/5/15 in an effort to establish a vertical gradient and thermal water travel times.

A 24-hr drawdown test and a 24-hr recovery test was performed for both wells. Pumping of CSI 2 began at 10:00 AM on 9/1/15 and continued until 10:00 AM on 9/2/15 after which it was allowed to recover for a full 24 hours. CSI 1 was pumped immediately after the recovery test of CSI 2 beginning around 10:00 AM on 9/3/15 continuing until around 10:00 AM on 9/4/15. Recovery of CSI 1 was also monitored and ended on 10:00 AM on 9/5/15. Solinst ® Levelogger ® (Model 3001) pressure transducers were installed in both wells and hung at approximately 50 ft. beneath land surface from ports on the well heads. A Solinst ® Barologger ® barometric pressure transducer was kept securely at the same location as CSI 1. All transducers were set to obtain measurements every minute. Both wells were pumped at a rate of 300 gpm although data from the pressure transducers show the pumping

Figure 30. Plot of uncorrected drawdown from CSI Well 2 vs time since transducer installation.

rate may have taken about an hour to stabilize after initial over pumping (Figure 30).

Due to difficulty in retrieving the pressure transducer from CSI 1, only data from CSI 2 as the pumped well and observation well is available. Figure 30 shows the pressure readings (meters of water) from CSI 2 during the entirety of both pumping and recovery tests. A cyclic antecedent trend is observed prior to the start of pumping showing a sinusoidal fluctuation of about 0.1 meters every 600 minutes. This is probably caused by a pump cycling on and off somewhere within the aquifer. At the start of the test, it can be seen that 18 meters of over pumping occurred due to the pump rate exceeding the target rate of 300 gpm until flow was regulated. Drawdown was about 5 meters during the steady pumping rate of 300 gpm. When the pump was shut off at 1440 minutes, it can be seen that the water level over recovered by 1.2 meters as noted by the double headed arrow to the left in Figure 31. Also recorded in Figure 31 is the temperature (red line) during pumping which rose nearly 15 °C. There are at least two plausible explanations for the over recovery observed during the tests: 1) electronic

Figure 31. Plot of CSI Well 2 temperature (red) vs drawdown (blue) highlighting possibilities of electronic drift or stretch in synthetic line resulting in the observed overpumping.

instrument drift corresponding to heating; and 2) stretch in the graduated synthetic line used to hang the transducer. As temperatures approach initial values near the end of the CSI 1 pumping test, transducer water level measurements near background levels prior to pumping.

Over pumping in the early time data and the observed over recovery in the CSI 2 pumping tests deemed the data set from CSI 2 pumping as unusable. However, timedrawdown pairs were generated for both the pumping and recovery tests for this well when CSI 1 was being pumped. Aquifer parameters were estimated using the hydrologic type curve matching software AQTESOLV®. From previous hydrologic research in the area (Street and DeTar, 1987; Lewis and Young, 1989) and the local artesian conditions, analysis was focused on confined and leaky-confined aquifer solutions. Based on cross section analysis (Figure 28) and CSI well logs (Appendix D), the lacustrine sediment layer consisting of oolitic siltstone and sandstone (Street and Detar, 1987) may serve as the confining unit for this system. The best match of the data to type curves was achieved using the Cooper-Jacob (1946) straightline method. This method is a variation of the classic Theis (1935) well function that relates the transmissivity (T), storativity, (S), radial distance of drawdown (r), and pumping time (t) to the pumping rate (Q) in an infinite series shown below:

$$W(u) = (-.5772 - \ln u + u - \frac{u^2}{2 \times 2!} + \frac{u^3}{3 \times 3!}....)$$

where W(u) is the well function and (u) is given by:

$$u = \frac{r^2 S}{4Tt}$$

The final relationship between drawdown and aquifer parameters is given by:

$$dd = \frac{Q}{4\pi T} W(u)$$

Cooper and Jacob (1946) approximated the relationship between drawdown and log (t) as a straight-line relationship by making the recognition that the second-order and higher terms in the infinite series become negligible with small (u) values given by long pumping times (t) or short radial distances (r). Solutions to the pumping and recovery test for the CSI 1 wells are shown below in Figure 32. Calculated transmissivity values of 930 m^2/d (75,000 gpd/ft) are within the same order of magnitude and in close agreement with the values reported by Street and Detar (1987) of 554-923 m^2/d (44,600 – 74,300 gpd/ft). Based on the well logs of CSI 1 and 2, thermal water appears to come from a fracture zone at approximately 350 - 370 meters (1150 - 1215 ft) below land surface. Because both wells are open across the entire water bearing zone, calculation of a vertical gradient is not possible. Available data are insufficient to define the anisotropy of the Idavada volcanics. Thus, the data set precludes making a reasonable estimate of vertical travel times. Because of the strong artesian conditions of the deep thermal aquifer, the vertical gradient is known to be upward. However, without additional well data and depth discrete pumping tests, it is not possible to accurately quantify the vertical flow rate. Future work including detailed flow path analysis within the Idavada volcanics and the investigation into possible thermal flow paths between rhyolites and basalts is highly recommended.

Figure 32. Cooper Jacob straight-line solution applied to barometric pressure corrected pumping (A) and recovery (B) limbs of the CSI Well 1 aquifer test.

CHAPTER 6: WATER-ROCK INTERACTION AND MIXING EXPERIMENTS

The concept of re-equilibration in the Twin Falls – Banbury hydrothermal system may explain the modeling results of pure water mixing with Na-HCO₃ type thermal waters and the apparent gradational transition between deep Na-HCO₃ waters and shallower Ca-HCO₃ thermal waters (Figure 24). Bench scale water-rock interaction and mixing experiments were constructed in order to test the validity of the potential re-equilibration mechanism which results in the exchange of Ca and Mg with Na. This exchange results in the downward transition from local groundwater to very dilute water after mixing with Na-HCO₃ thermal waters after mixing during ascension.

Experiments were modelled after the study area with an initial thermal water coming into equilibrium within the Idavada volcanics at 150 °C (Banbury Hot Springs temperature estimate) and subsequently being mixed with a local groundwater sample within the basalts of the ESRP and maintained at an intermediate temperature (70 °C). Thermal water was produced within closed system stainless steel reactor cells maintained at 150 °C and saturation vapor pressure. This water was then mixed with local groundwater in three different proportions comprised of 60%, 40%, and 20% thermal water. Chemical concentrations of mixed water samples over time are used to better understand the implications of flow pathway mixing and re-equilibration.

6.1 Rock Samples

Rock sample for the initial water-rock interaction were collected from the Shoshone Falls Rhyolite within the Idavada volcanics. Because core samples in sufficient quantity were possible to obtain, samples were obtained from an outcropping unit of Idavada volcanics near the city of Twin Falls, ID. Street and Detar (1987) gave a sample location (42.598158°, -114.463464°) and detailed description of an easily accessed portion of the Shoshone Falls Rhyolite within the Snake River Canyon. Despite the apparent misnomer, this rock is actually thought to constitute a single andesitic flow unit within the Idavada volcanics. The sample location can be seen in Figure 33A below. Basalt rock samples for the second portion of the experiment were collected from an outcrop within the ESRP at the Pleistocene Hell's Half Acre basalt flow (Figure 33C). Samples were collected here and used as a proxy for Twin Falls area basalts due to difficulty in gaining access to basaltic outcrops on private property.

6.2 Rock Sample Preparation

In order to increase reaction rates through increased particle surface area (Savage et al., 1992; Neupane et al., 2013), blocky samples from outcrops were reduced to a finer grain size prior to heating and interaction with sample water. Rock samples were first cut using a rock a saw into manageable sized pieces prior to being crushed into approximately 5 cm diameter pieces using a ball peen hammer (Figure 34). Samples were then reduced to finer grain sizes using a Braun ® Chipmunk rock crusher. The pulverized samples were then sieved (dry) and wet sieved (Figure 34) through brass (ASTM Sieve # 60– 120) sieves to separate out 0.25 - 0.125 mm particle sizes. Grain sizes in this range have been utilized for past waterrock interaction experiments to increase reaction rates (Savage et al. 1992, Rodriguez, 2011; Neupane et al., 2013). Samples were then decanted using deionized water to remove any suspended fine-grained particles and organic material. Samples were then allowed to dry for 48 hours prior to obtaining dry mass values by scale.

Figure 33. A) Idavada volcanics sampling location on a geologic map showing unit outcrop (dark pink). B) Idavada and groundwater sample locations map view. Inset – View of Idavada volcanics outcrop C) Reference map showing Hell's Half Acre location compared to study area. D) ESRP basalt sample location map view.

Figure 34. A) Idavada volcanics sample preparation prior to crushing. B) Wet sieving setup with deionized water line. C) Decanting process of rock sample after wet sieving. D) Final dry Idavada sample.

6.3 Initial Water Sample

A local groundwater sample was collected in order to use as both the source water for the formation of the Na-HCO₃ thermal water and as the mixing component in the second phase of the experiment. Samples were collected from a city water supply well (Blue Lakes Well) in coordination with the Twin Falls Department of Water Resources office. Sample location can be seen in Figure 33B. Samples were collected for major cation, major anion, and trace element analysis in the same manner as other geothermal samples throughout this study (Appendix A). Five additional 1 liter non-acidified samples were collected for use in both portions of the experiment. Initial water chemistry is presented in Table 12 and is comparable to cooler groundwater samples from earlier studies of the area (Chapter 3, Table 2).

6.4 Experimental Procedure: Part 1

The thermal water component for the mixing experiment was created using two stainless steel 1.0 L (Type 316) reaction vessels (Model 4523 Parr® Instrument) in which temperature, pressure, and stirring within the reactors were controlled independently. Maximum operating pressures and temperatures of these reactors are rated at 1900 psig (131 bars) and 350 °C, respectively (Parr Instruments Company, 2011). These reaction vessels are constructed so that fluids can be sampled at operating pressure and temperature without disassembling the reactor or affecting experimental conditions. Reactor vessels were cleaned thoroughly through sanding, acid washing with a 5% HNO₃ solution, rinsing with Milli-Q Nanopure water, and finally heating at 150 °C while partially filled with Milli-Q Nanopure water for 24 hours. Additionally, reactor vessels were pressurized with ultra-pure N₂ gas and left for 24 hours in order to monitor any pressure leaks due to faulty connections and/or gaskets.

After assuring the reactor vessels were clean and there were no apparent pressure leaks or temperature losses in the test runs, samples were added to two clean and empty reactor vessels (4/8/2015). 60 grams of Idavada volcanics samples were added to each vessel with 600 mL of groundwater sample in accordance with Parr® instrument fill volume limitations. Reactors were then gradually heated to 150 °C and a stirring frequency of 200 rpm for 30 seconds every hour was established in order for the fluid-rock mixture to remain well mixed. Temperature and pressure were monitored remotely to assure there were no deviations from
the set temperature and saturation vapor pressure at 150 °C (\sim 4.76 bars). Reactors ran for a total of 101 days with sampling taking place at 82 days (6/28/15) and 101 days (7/17/15). Based on previous silicic water-rock interaction experiments where equilibrium conditions were observed in as few as 1-32 days (Rodriguez, 2011; Neupane et al., 2013) and personal communication with Dr. Hari Neupane, 101 days was deemed a sufficient time frame to

Figure 35. Water-rock interaction experiments conducted at 150 °C using bench top Parr 1 L reactor vessels. Inset – a reactor vessel and its cooling coil.

obtain equilibrium at 150 °C. Equilibrium conditions are also supported by reaction path modeling using The Geochemist's Workbench (Bethke and Yeakel, 2013) where calculated near zero saturation index values are observed for chalcedony, calcite, and fluorite. The absence of apparent equilibrium conditions with the clays and zeolites mentioned previously in Chapters 3 and 4 may be explained by the use of the andesitic Shoshone Falls Rhyolite sample as opposed to the more abundant rhyolites within the Idavada volcanics. Additionally, the remarkably high silica concentrations observed in initial water samples may suggest that volcanic silicic glass is controlling silica equilibrium. Future work examining secondary alteration mineralization within experimental rock samples along with experimental runs with varied rock types would aid in reducing uncertainties regarding equilibrium.

Prior to sample collection, a small 5-10 mL volume was extracted in order to purge the sampling vessel of "dead sample" stuck from the previous sample collection. Three samples of approximately 5-8 mL were taken for cation, anion, and trace elemental analyses in pre-washed 25 mL HDPE bottles. All samples were filtered through a 0.45 μm filter. Cation and trace metal samples were preserved through acidification to a pH < 2 with concentrated optima grade HNO₃. An additional 3-4 mL sample was taken to obtain a pH measurement immediately after sampling. Major anions were analyzed with ion chromatography (Dionex ICS-2100), major cations were analyzed with Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES iCAP 6500), and trace elements were analyzed with Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS Agilent 7500ce). Water chemistry results for the initial thermal component are shown in Table 12.

6.5 Experimental Procedure: Part 2

Prior to mixing thermal waters from Reactors #5 and #6 with groundwater and new host rock samples, the cleaning and leak test procedure described above was repeated for four new reactor vessels (#s 1,3,4, and 8). The water rock ratio of 600 mL water to 60 g of rock sample was maintained throughout the mixing portion of the experiment. Reactors #5 and #6 were brought down to 70°C individually and transferred rapidly (5 min) into new reactors with cold groundwater where the mixture was heated to 70 °C, maintained at saturation vapor pressure, and stirred for 30 seconds at 200 rpm every hour. Thermal to mixed water ratios of 60%, 40%, and 20% thermal water were utilized for reactor #s 4, 3, and 1 respectively. Reactor #8 was established as the experimental control in which no ESRP basalt rock sample was added. Water to rock and thermal water to groundwater ratios are presented in Table 11.

Initial Experimental Waters										
Reactor	T (°C)	P (bars)	Idavada Sample Solution Volume		Duration (days)					
		H_{H_20} (bars)	Mass (g)	(mL)	Duration (days)					
# 5	150	4.76	60	600	101					
# 6	150	4.76	60	600	101					
Mixed Experimental Waters										
Reactor	T (°C)	P (hore)	Basalt Sample	Thermal Solution	Groundwater Solution	Duration (days)				
		H_{H_2O} (bars)	Mass (g)	Volume (mL)	Volume (mL)	Duration (days)				
# 1	70	0.31	60	120	480	4				
# 3	70	0.31	60	240	360	40				
# 4	70	0.31	60	360	240	40				
# 8	70	0.31	0	240	360	40				

Table 11. Water-rock Interaction Experimental Matrix

Because reactor #s 3 and 8 contained thermal water derived from reactor #5, the thermal water to groundwater ratio of 40 % thermal water to 60% groundwater was utilized in control reactor # 8 to match the ratio of reactor # 3. 60 g of ESRP basalt sample was added to

Figure 36. Experimental diagram showing the transfer of thermal water to mixed water reactors. Water to groundwater ratios are shown for Reactors # 1, 3, 4, and 8.

each reactor vessel. All reactors were sampled at 4 hr, 8 hr, 24 hr, 48 hr, 96 hr, 10 days, 20 days, 30 days, and 40 days with the exception of reactor # 1 which ran dry after the 96 hr sample most likely due to the development of a pressure leak. Samples were taken for major cations, anions, and trace metals and analyzed in the same manner as the first portion of the experiment. The water chemistry results for all reactors are presented in Table 12 below.

6.6 Results

Experimental results with respect to solution concentration over time are shown in Table 12 for all analyzed chemical constituents. Results are presented graphically for select chemical constituents of interest in Figures 37-40.

		Initial Experimental Waters											
Sample	pН	Temp	F	Cl	SO4	NO3	Ca	Mg	Na	K	SiO2	Al	В
-	-	°C	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Groundwater Sample	7.47	15.9	0.5	46.2	59.3	9.36	57.2	19.78	35.4	6.45	41.6	1.00E-04	-
CC-150-5 (6-28-15)	6.85	150	2.61	42.5	57.4	7.30	12.3	0.11	42.5	21.4	242	0.41	-
CC-150-6 (6-28-15)	6.91	150	3.42	49.3	61.8	9.26	2.65	0.21	69.1	38.6	270	1.79	-
CC-150-5 (7-17-15)	6.88	150	3.02	46.77	63.87	8.23	16.5	0.10	47.9	23.5	255	0.60	0.107
CC-150-6 (7-17-15)	6.96	150	3.55	47.48	58.71	8.95	<10	0.10	70.4	35.9	235	1.98	0.107
	Mixed Experimental Waters												
Sample	pН	Temp	F	Cl	SO4	NO3	Ca	Mg	Na	K	SiO2	Al	В
		°C	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L
CC-1-20/80-7-17-15 (4 Hr)	7.59	70	2.32	50.0	71.4	22.5	23.6	5.66	61.5	23.3	127	1.045	0.114
CC-1-20/80-7-17-15 (8 Hr)	7.96	70	2.08	48.9	70.4	9.12	22.4	5.31	66.7	24.0	109	0.119	0.136
CC-1-20/80-7-18-15 (24 Hr)	7.62	70	1.84	50.0	86.2	9.25	18.9	4.25	79.5	24.4	77.7	0.161	0.166
CC-1-20/80-7-19-15 (48 Hr)	7.35	70	1.29	49.7	107	8.99	13.9	2.82	91.7	23.8	60.5	0.221	0.162
CC-1-20/80-7-21-15 (96 Hr)	7.72	70	0.544	48.6	168	8.58	<1	1.21	138	23.6	27.9	0.476	0.150
CC-1-20/00-7-21-15 (50 m)			0.0		100	0.00			100	2010	>	01170	0.120
CC-3-40/60-7-17-15 (4 Hr)	7.94	70	1.63	48.1	63.2	9.17	34.5	9.59	54.9	21.1	127	0.351	0.117
CC-3-40/60-7-17-15 (8Hr)	7.91	70	1.64	48.5	63.9	9.24	38.3	10.85	51.6	18.3	110	0.184	0.100
CC-3-40/60-7-18-15 (24 Hr)	7.75	70	1.58	47.9	66.1	9.12	37.2	10.32	51.8	17.8	103	0.074	0.119
CC-3-40/60-7-19-15(48 Hr)	7.28	70	1.53	48.5	70.1	9.26	39.6	10.41	55.6	18.4	109	0.072	0.104
CC-3-40/60-7-21-15 (96 Hr)	7.35	70	1.30	48.3	77.4	9.15	34.9	10.29	60.3	18.6	101	0.101	0.114
CC-3-40/60-7-28-15 (10Day)	7.1	70	1.01	48.7	90.0	9.10	29.7	10.26	70.6	19.1	94.1	0.130	0.122
CC-3-40/60-8-5-15 (20 Days)	6.86	70	0.851	48.2	98.8	9.09	27.2	9.91	75.6	19.2	90.3	0.110	0.122
CC-3-40/60-8-16-15 (30 Day)	6.98	70	0.771	48.3	104	8.91	25.8	9.23	83.0	18.7	91.2	0.130	0.111
CC-3-40/60-8-29-15 (40 Day)	7.15	70	0.65	47.95	107.18	8.98	21.1	8.58	87.4	18.9	78.7	0.117	0.126
CC-4-60/40-7-17-15 (4 Hr)	7.92	70	1.48	51.0	69.4	9.22	42.1	10.74	47.7	14.6	130	0.078	0.156
CC-4-60/40-7-17-15 (8 Hr)	7.82	70	1.49	50.8	70.2	9.18	40.6	10.37	46.5	14.3	119	0.050	0.157
CC-4-60/40-7-18-15 (24 Hr)	7.75	70	1.41	50.7	73.0	9.11	41.3	10.05	49.8	15.1	114	0.050	0.155
CC-4-60/40-7-19-15(48 Hr)	7.45	70	1.28	52.0	80.0	9.10	38.2	9.32	53.6	15.2	112	0.059	0.144
CC-4-60/40-7-21-15 (96 Hr)	7.36	70	0.939	51.9	91.7	9.06	31.0	8.54	60.6	15.2	93.6	0.092	0.342
CC-4-60/40-7-28-15 (10 day)	7.21	70	< 0.5	50.6	122	9.05	25.6	7.56	72.0	15.7	74.9	0.067	0.175
CC-4-60/40-8-5-15 (20 Day)	7.01	70	< 0.5	49.1	125	8.59	21.3	5.86	83.7	15.6	61.2	0.105	0.256
CC-4-60/40-8-16-15 (30 Day)	7.06	70	< 0.5	47.6	127	8.33	14.6	3.80	96.6	16.2	47.3	0.192	0.162
CC-4-60/40-8-29-15 (40 Day)	7.21	70	< 0.5	46.37	139.66	8.01	10.7	3.00	105	16.1	50.8	0.198	0.183
CC-8-NoRock-7-17-15- (4 Hr)	8.18	70	1.57	47.7	63.0	8.97	39.2	9.77	41.9	15.4	145	0.155	0.119
CC-8-NoRock-7-17-15 (8 Hr)	8.14	70	1.57	47.7	63.5	8.93	41.0	10.72	43.6	16.0	146	0.097	0.086
CC-8-NoRock-7-18-15 (24 Hr)	8.04	70	1.52	47.7	62.1	8.92	39.6	10.41	42.6	15.2	139	0.091	0.208
CC-8-NoRock-7-19-15 (48 Hr)	7.86	70	1.48	47.4	61.3	8.77	37.2	10.17	42.6	15.0	134	0.075	0.102
CC-8-NoRock-7-21-15 (96 Hr)	7.84	70	1.45	47.6	61.2	8.76	33.9	9.47	41.8	14.6	126	0.051	0.110
CC-8-NoRock-7-28-15 (10 Day)	7.44	70	0.872	46.8	54.9	8.64	19.2	5.68	36.1	12.6	69.9	0.050	0.144
CC-8-NoRock-8-5-15 (20 Day)	7.48	70	< 0.5	44.1	45.5	8.09	<10	2.49	30.6	10.1	15.9	0.050	0.100
CC-8-NoRock-8-16-15 (30 Day)	7.5	70	< 0.5	40.5	37.7	7.31	<10	1.12	26.2	8.5	<10	0.081	0.100
CC-8-NoRock-8-29-15 (40 Day)	7.4	70	< 0.5	31.41	28.18	5.61	<10	1.07	35.4	11.8	<10	0.076	0.100

Table 12. Chemical analysis results from initial and mixed experimental waters.

Figure 37. Calcium concentrations of experimental mixed thermal water samples over time. Ratios of thermal to groundwater are given in parentheses.

Figure 38. Magnesium concentrations of experimental mixed thermal water samples over time. Ratios of thermal to groundwater are given in parentheses.

Figure 39. Silica concentrations of experimental mixed thermal water samples over time. Ratios of thermal to groundwater are given in parentheses.

Figure 40. Sodium concentrations of experimental mixed thermal water samples over time. Ratios of thermal to groundwater are given in parentheses.

Ca and Mg concentrations show an immediate increase after initial mixing with groundwater progressing from initial concentrations (< 10 - 16.5 ppm Ca and 0.1 ppm Mg) to values around 35-40 ppm Ca and 9.5 – 10.5 ppm Mg (Reactors # 3,4, and 8). Reactor # 1, containing 20 % thermal water, exhibits a less prominent initial increase in Ca and Mg concentrations rising to only about 23.6 ppm Ca and 5.66 ppm Mg. After fluctuating about the initial point of increase, all reactors show significant declines in Ca and Mg concentration after the 4 day mark. The rate of decline of Ca and Mg seems to be effected by the ratio of initial thermal water to groundwater as a sharper decline for both constituents is exhibited in Reactor # 4 containing the highest ratio (60% thermal water) compared to Reactor # 3 (40 % thermal water). Reactor # 8 (control) shows a steeper decline than the previous two reactors for both Ca and Mg. Due to sample loss from a likely vessel leak, Reactor # 1 only has available data for 4 days. A very steep decline in both Ca and Mg is observed in Reactor # 1 but the rate of decline may be influenced by the open system created by the apparent leak.

SiO₂ concentrations show a dramatic decline after the initial mixing of thermal water and groundwater samples dropping from between 235-255 ppm SiO₂ to between about 130-145 ppm at the 4 hour mark in all reactors. However, unlike Ca and Mg concentration trends which show no sign of leveling off, SiO₂ seem to level off in Reactors # 3 and 4 at around the 20 day mark. Again, Reactor # 3 (60 % thermal water) with a greater percentage of thermal water component results in lower concentrations compared with Reactor # 4 (40% thermal water). Reactor # 8 (control) does not appear to be leveling off given its sharp decline.

In contrast to the previously discussed trends, Na concentrations increase in Reactor #s 1, 3, and 4 after initial mixing. Reactor # 4 (60 % thermal water) exhibits a steeper rate of increase over time than Reactor # 3 (40% thermal water). Reactor # 8 (control) is the only

reactor which exhibits a fairly constant decline in Na concentrations over time. The steepest rate of increase of sodium concentrations is observed in Reactor # 1. However, this trend may or may not be significant due to the aforementioned equipment malfunctions manifesting around the 4 day mark.

6.7 Discussion

The experiments conducted in this chapter replicated the mixing of a felsic volcanic derived thermal water (150 °C) with a more dilute Ca-Mg-HCO₃ type groundwater at an intermediate temperature (70 °C) and the subsequent composition altering processes of the mixed water. These experiments show that the rates of change for select cations (Ca, Mg, and Na) and SiO₂ within mixed thermal waters may be dependent on the ratio of thermal water to groundwater within solution. A greater percentage of thermal water is correlated to a steeper rate of decline in Ca, Mg, and SiO₂ concentrations and a steeper rate of increase in Na concentrations. An increase number of experiments with varying thermal water to groundwater ratios may show whether this correlation is significant or not. Significant differences in concentrations between thermal water, groundwater, and mixed water are observed almost immediately.

After the 4 day mark, waters begin showing significant decreasing trends with respect to Ca, Mg, and SiO₂ concentrations and a significant rising trend with respect to Na concentrations. Reactor #8, which contained no basalt rock samples, is the only experiment to not show an increasing Na trend after mixing which may suggest that the transition into a more mafic rock type is necessary for the observed trends. With the exception of SiO₂, these trends do not show signs of levelling off. This observation is congruent with a mechanism for re-equilibration by a precipitation or cation exchange reaction explaining the apparent mixing between pure or dilute Na-HCO₃ water with thermal Na-HCO₃ type waters of the Twin Falls – Banbury hydrothermal system. The inverse of the trends displayed above may explain the possible re-equilibration of rising Na-HCO₃ type water into more Ca-HCO₃ type thermal waters at cooler temperatures.

CHAPTER 7: SUMMARY AND CONCLUSIONS

The Eastern Snake River Plain, formed by successive caldera formation associated with the migration of the Yellowstone hotspot, is considered to have some of the highest geothermal potential within the state of Idaho and the entire country (Tester et al., 2006). Geothermal potential is made evident through the many hydrothermal expressions (springs and wells) that line the periphery of the plain, anomalously high geothermal gradients (Brott et al., 1976) and heat flow values (Blackwell and Richards, 2004), and high mantle signature ³He/⁴He ratios (Dobson et al., 2015). Despite all of the potential within the region, geothermal development has been limited to low temperature resources and attempts at reservoir temperature estimation have resulted in lower than expected estimates. Many believe that this is due to the masking of the deep geothermal signature by the prolific overlying groundwater aquifer of the ESRPA (McLing et al., 2002; Neupane et al., 2014; Cannon et al., 2014; Dobson et al., 2015). While previous studies have acknowledged the possibility of mixing between ascending thermal waters and groundwater, few have attempted to compensate for its effects on reservoir temperature estimation through geothermometry. Because of sample density and preliminary temperature estimation results, the Twin Falls – Banbury hydrothermal system was chosen as the location for an in depth investigation into the possibility of mixing and re-equilibration in thermal waters of the ESRP.

Through principle component and hierarchical cluster analyses, two distinct thermal water types (Na-HCO₃ and Ca-HCO₃) were identified in the Twin Falls – Banbury area. Na-HCO₃ waters are separated by from Ca-HCO₃ waters by higher temperatures, higher TDS, and higher Na⁺ concentrations. Ca-HCO₃ waters are characterized by high Ca²⁺ and Mg²⁺ concentrations and cooler temperatures. Na-HCO₃ waters emanate exclusively from thermal

109

springs and a select few wells that are completed within the rhyolites of the Idavada volcanics whereas the Ca-HCO₃ thermal waters are found in wells completed within the overlying basalts. This is consistent with the trend from Na-K-HCO₃ thermal waters and Ca-Na-HCO₃ thermal waters with decreasing temperature and depth observed in the deep INEL-1 well that penetrates the basalt units of the ESRPA (Mann, 1986; McLing et al., 2002).

Evidence for mixing in the study area is provided by a linear trend between these two water types on a Piper diagram (Piper, 1944), partial equilibration and immature classification of most thermal water samples on the Giggenbach ternary diagram (Giggenbach, 1988), and linear trends between several conservative chemical constituents (Cl, B, δD , etc.). In addition to the evidence for simple mixing between the two water types, relationships between some reactive chemical constituents (Na, K, Mg, and Ca) display two separate and distinct trends for the two water types which suggests either:

- The waters may be the result of two separate and unrelated flow pathways, host rocks, and/or equilibration temperatures.
 - Or
- 2) The waters have undergone some form of reactive mixing and/or re-equilibration resulting in the transition from Na-HCO₃ thermal waters to Ca-HCO₃ thermal waters and vice versa depending on the reservoir temperature, rock types, and thermal water to groundwater ratio.

Reservoir temperature estimations were made utilizing conventional geothermometry techniques, silica-enthalpy mixing models, and multicomponent equilibrium geothermometry. Silica and cation conventional geothermometers yield highly varied results and many of them are limited in their application due to high calcium and magnesium concentrations of many thermal water samples. Silica-enthalpy mixing models are capable for accounting for dilution effects from simple mixing and are considered to yield more reliable temperature estimations. However, these models yield a wide range of possible reservoir temperatures and are incapable of accounting for the apparent reactive mixing and/or re-equilibration. In contrast, MEG through the use of the inverse modeling tool RTEst, is capable of accounting for a mixing component while utilizing an entire assemblage of likely reservoir alteration minerals to obtain a reservoir temperature. RTEst was utilized for both Ca-HCO₃ and Na-HCO₃ thermal waters. Simple mixing between groundwater and thermal water is not supported for Na-HCO₃ thermal waters yet is supported for Ca-HCO₃ thermal waters yielding temperature estimates between around 90 – 100 °C. The reconstructed compositions for Ca-HCO₃ waters produced by inverse modeling do not resemble the compositions of the Na-HCO₃ waters signifying that the Ca-HCO₃ thermal waters may be the result of re-equilibration if there exists a relationship between the two thermal water types.

An "intermediate" composition obtained from the intersection of the reactive constituent trends was utilized as the mixing component in RTEst modeling of Na-HCO₃ waters. This type of mixing is not supported through the use of RTEst as adequate saturation index convergence of likely reservoir minerals is not obtained. However, the use of pure water as the mixing component in RTEst modeling of Na-HCO₃ results in adequate saturation index convergence and reservoir temperatures as high as 160 °C. The same results are achieved when dilute Na-HCO₃ water is used as the mixing component for Na-HCO₃ RTEst modeling. In order to explain this phenomenon, a mechanism for re-equilibration was proposed in which groundwater (Ca-Mg-HCO₃ type) loses Ca²⁺ and Mg²⁺ and gains Na⁺ upon mixing with a Na-HCO₃ thermal water with increasing temperature and depth resulting in dilute water that further mixes with Na-HCO₃ thermal waters. Conversely, this reequilibration mechanism explains the transition from Na-HCO₃ thermal waters into more Ca-HCO₃ thermal waters by the increase of Ca²⁺ and Mg²⁺ and decrease of Na⁺ from mixing during ascension through a series of equilibration zones. The RMAs utilized in MEG inverse modeling show that Ca-HCO₃ waters in equilibrium with Ca²⁺ and Mg²⁺ rich smectite clays and zeolites gradually shift to Na-HCO₃ waters in equilibrium with Na⁺ and K⁺ rich smectite clays and zeolites through several zones of re-equilibration resulting in thermal water types in between the two end members.

A possible re-equilibration mechanism was tested using high temperature water-rock interaction experiments. In the experiments, a 150 °C thermal water derived from equilibration with Idavada volcanics was mixed with a local groundwater at an intermediate 70 °C within the basalts of the ESRP. Samples taken over 40 days reveal that Ca²⁺, Mg²⁺, and SiO²⁻ concentrations decrease significantly at about 4 days after initial mixing. Na+ concentrations increase dramatically within the same observation time thus providing support for the possibility of re-equilibration of thermal waters within the Twin Falls – Banbury hydrothermal area.

A detailed look into local geology and hydrology reveals that the thermal system is likely recharged from the Cassia Mountains to the south of the study area. Groundwater likely picks up its Ca-Mg-HCO₃ signature from the Paleozoic carbonates exposed in the area before travelling northwesterly towards the Twin Falls and Banbury thermal clusters. The Banbury hydrothermal system appears to be controlled by a single northwest trending normal fault with Ca-HCO₃ thermal waters grading into Na-HCO₃ thermal waters away from the recharge zone. A similar distribution of thermal waters is observed in the Twin Falls thermal area without the presence of a major fault. Na-HCO₃ thermal waters are located near the Snake River where overlying Quaternary and Tertiary basalt units thin allowing for Tertiary Idavada volcanics to be exposed at the surface. A pumping test was performed on two deep rhyolite-penetrating wells on the campus of the College of Southern Idaho. Estimates of aquifer transmissivity from pump/recovery test analysis agree with a previous area study (Street and DeTar, 1987) at values of 930 m²/d (7.5 x 10^4 gpd/ft). While there appears to be no decline in temperature of the Twin Falls area resource in the last 30 years, a significant decline in hydraulic head of about 15 meters (50 ft.) is observed with head values dropping from about 14 meters (45 ft.) above land surface to about 1.2 meters (4 ft.) below land surface at present day.

In its entirety, this work has resulted in the redefining of the conceptual model for the Twin Falls – Banbury thermal system. Advanced geothermometry techniques have been utilized to provide evidence for a high temperature (150+ °C) resource in the Twin – Falls Banbury area, historic and newly collected geochemical data have been used to provide evidence for both mixing and re-equilibration of thermal waters, and the possibility of a re-equilibration mechanism has been tested through a series of high temperature water-rock interaction and mixing experiments. The RTEst temperature estimates made for Na-HCO₃ waters are consistent with an estimate of 150 °C for Banbury Hot Springs made using sulfate-water isotope geothermometry earlier this year (Conrad et al., 2015).

In addition to providing new insights into reservoir temperature and mixing relationships, this study has raised questions that may be answered by future work. Although the possibility of the two thermal water types being unrelated and the product of two separate flow paths is considered unlikely, it cannot be ruled out from the work presented here. Additionally, the results of the mixing portion of the water-rock interaction experiments lead to the assumption that the transition from silicic volcanics to basalt is necessary for reequilibration to take place. Further work regarding possible flow paths between the Idavada volcanics and overlying basalts is warranted to answer both of these questions. An expansion of the experiment to include the possibility of re-equilibration without mixing, rhyolite exclusive mixing, and temperature decreases in rhyolites and basalts without mixing may also aid in the understanding of the system. Lastly, x-ray powder diffraction (XRD) and scanning electron microscopy (SEM) analysis of post experimental rock samples would aid in both the understanding of alteration mineral assemblages and the exchange or precipitation reactions responsible for re-equilibration.

REFERENCES

- Adar, E.M., E. Rosenthal, A.S. Issar, and Batelaan, O. (1992). Quantitative assessment of the flow pattern in the Southern Arava Valley (Israel) by environmental tracers and a mixing cell model. J. Hydrol., 136, p. 333-352.
- Arnòrsson, S., Gunnlaugsson, E., and Svavarsson, H. (1983). The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions. Geochim. Cosmochim. Acta, 47, p. 547-566.
- Arnòrsson, S. (1985). The use of mixing models and chemical geothermometers for estimating underground temperature in geothermal systems. J. Volc. Geotherm. Res., 23, p. 299-335.
- Basharina, L.A. (1958). Water extracts of the ashes and the ash-cloud gases of the
 Bezymyannyi volcano: Akad. Nauk SSSR, Lab. Vulkanol., Vulkanol. Stantsii Biull, v.
 27, p. 38-42.
- Bethke, C.M. (2008). Geochemical and Biogeochemical Reaction Modeling. *Cambridge University Press*, p 547.
- Bethke, C.M. and Yeakel, S. (2012). The Geochemist's Workbench ® Release 9.0. Reaction Modeling Guide. *Aqueous Solutions, LLC*, Champaign, Illinois.
- Blackwell, D.D., and M.C. Richards. (2004). "Geothermal Map of North America." American Association of Petroleum Geologists, 1 sheet, scale 1:6,500,000.
- Bottinga, Y. (1968). Hydrogen isotope equilibria in the system hydrogen-water. Journal of Physical Chemistry, v. 72, p. 4338-4340.
- Brott, C.A., D.D. Blackwell, and J.C. Mitchell. (1976). Geothermal Investigations in Idaho
 Part 8: Heat Flow in the Snake River Plain Region, Southern Idaho. *Water Information Bulletin* 30, Idaho Department of Water Resources.
- Browne, P.R.L. (1978). Hydrothermal Alteration in Active Geothermal Fields. *Annual Review* of Earth and Planetary Sciences, 6: p. 229-250.
- Cannon, C., Wood, T., Neupane, G., McLing, T., Mattons, E., Dobson, P., and Conrad, M. (2014). Geochemical Sampling for Traditional and Multicomponent Equilibrium Geothermometry in Southeast Idaho. *Geothermal Resources Council Transcations*, Vol. 38, p. 425.

- Carroll, D. (1959). Ion exchange in clays and other minerals. Geological Society of America, v. 70, p. 749-779.
- Clark, I.D. (2015). *Groundwater Geochemistry and Isotopes*. "Tracing the Water Cycle. Taylor and Francis Group, LLC, p. 127-129.
- Cloutier, V., Lefebvre, R., Therrien, R., and Savard, M.M. (2008). Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of ground water in a sedimentary rock aquifer system. J. Hydrol., 353, p. 294-313.
- Cooper, H.H. and Jacob, C.E. (1946). A generalized graphical method for evaluating formation constants and summarizing well field history, Am. Geophys. Union Trans., vol. 27, p. 526-534.
- Cooper, D.C., Palmer, C.D., Smith, R.W., & McLing, T.L. (2013). Multicomponent equilibrium models for testing geothermometry approaches. *Proceedings*. 38th
 Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA.
- Conrad, M.E., Dobson, P.F., Sonnenthal, E.L., Cannon, C., Wood, T., McLing, T., Neupane,
 G., and Mattson, E. (2015) Isotopic Insights into Deep Geothermal Systems in the
 Snake River Plain in Southeastern Idaho. 25th Goldschmidt Conference, Prague,
 Czech Republic.
- Creed, J.T., Brockhoff, C.A., and Martin, T.D. (1994). EPA Method 200.8. Determination of Trace Elements and Wastes by Inductively Coupled Plasma-Mass Spectrometry.
- D'Amore, F., Fancelli, R., and Caboi, R. (1987). Observations on the application of chemical geothermometers to some hydrothermal systems in Sardinia. *Geothermics*, 16, p. 271-282.
- Davis, J. (1986). Statistics and Data Analysis in Geology. 2nd Edn. Wiley, New York, p. 646
- Davis, A.C., Bickle, M.J. and Teagle, D.A.H. (2003). Imbalance in the oceanic strontium budget. *Earth and Planetary Science Letters*, 211(1-2) p. 173-187.
- Dobson, P.F., Kennedy, M.B., Conrad, M.E., Mcling, T., Mattson, E., Wood, T., Cannon, C.,
 Spackman, R., van Soest, M., and Robertson, M. (2015). He Isotopic Evidence for
 Undiscovered Geothermal Systems in the Snake River Plain. Proceedings, 40th
 Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA,
 p. 2-4

- Doherty J. (2005). PEST, Model-Independent Parameter Estimation User Manual, 5th Edition. Watermark Numerical Computing, www.pesthompage.org.
- Edmunds, M.W., and Shand, P. (2009). *Natural Groundwater Quality*, "Geochemical Modeling of Processes Controlling Baseline Compositions. John Wiley & Sons, p. 85-89.
- Ellis, A.J. (1970). Quantitative interpretation of chemical characteristics of hydrothermal systems. *Geothermics*, 2(Part 1), p. 516-528.
- Ellis, A. J. (1971). Magnesium ion concentrations in the presence of magnesium chlorite, calcite, carbon dioxide, quartz. *Amer. J. Sci.* 271, p. 481-489.
- Ellis A. J. and Mahon W. A. J. (1967) Natural hydrothermal systems and experimental hot water-rock interactions (Part II). Geochim. Cosmochim. Acta 31, p. 519–538.
- Fetter, C.W., 2001. *Applied Hydrogeology (4th ed.)*, Prentice-Hall, Upper Saddle River, New Jersey, p. 374.
- Fleischmann, D.J. (2006). Geothermal development needs in Idaho. Geothermal Energy Association report for the U.S. Department of Energy, p. 51
- Fouilliac, C., and Michard, G. (1981). Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs, Geothermics, 10, p. 55-70.
- Fournier, R.O. (1977). Chemical geothermometers and mixing model for geothermal systems. Geothermics, 5, 41-50.
- Fournier, R.O., and A.H. Truesdell. (1973). "An empirical Na-K-Ca geothermometer for natural waters." *Geochim. Cosmochim. Acta*, v. 37 p. 1255-1275.
- Fournier, R.O., and R.W. Potter. (1979). "Magnesium correction to the Na-K-Ca chemical geothermometer." *Geochim. Cosmochim. Acta* v. 43, p. 1543-1550
- Fournier R.O., and R.W. Potter II. (1982). "A revised and expanded silica (quartz) geothermometer." *Geotherm. Resourc. Counc. Bull.*, v. 11, p.3-12
- Fournier, R. O. and Rowe, J.J. (1966). Estimation of underground temperatures from the silica content of water from hot springs and wet steam wells. Am. J. Sci., 264, p. 685-691.
- Fournier, R.O., and Truesdell, A.H., (1973): An empirical Na-K-Ca geothermometer for natural waters. Geochim. Cosmochim. Acta, 37, 1255-1275.

- Fournier, R.O., and Truesdell, A.H. (1974). Geochemical indicators of subsurface temperaturePart 2, Estimation of temperature and fraction of hot water mixed with cold water:U.S. GeoLSurvey Jour. Research, v.2, no.3, p. 263 270
- Giggenbach, W.F. (1988). Geothennal solute equilibria. Deviation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta, 52, p. 2749-2765
- Giggenbach, W.F. (1991). Chemical techniques in geothermal exploration; Application of Geochemistry in Geothermal Reservoir Development (D'Amore F., Ed.), UNITAR/UNDP Center on Small Energy Resources, Rome, p. 119-144.
- Gillerman, V.S., Kauffman, J.D., and Othberg, K.L. (2005) Geologic Map of the Thousand Springs Quadrangle, Gooding and Twin Falls Counties, Idaho. Idaho Geological Survey
- Gíslason, S.R., Heaney, P.J., Oelkers, E.H., Schott, J. (1997). Kinetic and thermodynamic properties of moganite, a novel silica polymorph. *Geochimica et Cosmochimica Acta*, (6), p.1193-1204.
- Guler, C., Thyne, G., McCray, J. and Turner, K. (2002). Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol. J., 10, p. 455-474.
- Hautman, D.P., and Munch, D.J. (1997) EPA Method 300.1. Determination of Inorganic Anions in Drinking Water by Ion Chromatography.
- Henley, R.W. and Ellis, A.J. (1983). Geothermal Systems Ancient and Modern a Geochemical Review. Earth-Science Reviews, 19(1): 1-50.
- Huang, M., and Hieftje, G.M. (1989). Simultaneous Measurement of Spatially Resolved Electron Temperature, Elctron Number Densities and Gas Temperatures by Laser Light Scattering from the ICP. Spectrochimica Acta, v. 44, p. 739-749.
- Huenges, E., and Ledru, P. (2011). *Geothermal Energy Systems: Exploration, Development, and Utilization.* Wiley Publishing, pp. 97-100
- Hughes, S.S., R.P. Smith, W.R. Hackett, and S. R. Anderson. (1999). "Mafic volcanism and environmental geology of the eastern Snake River Plain." *Idaho Guidebook to the Geology of Eastern Idaho. Idaho Museum of Natural History*, p. 143-168

- Hughes, S.S., Wetmore, P.H. and Casper, J.L. (2002). Evolution of Quaternary Tholeiitic
 Basalt Eruptive Centers on the Eastern Snake River Plain, Idaho. In B. Bonnichsen,
 C.M. White, and M. McCurry, eds., Tectonic and Magmatic Evolution of the Snake
 River Plain Volcanic Province, Idaho Geological Survey Bulletin 30, p. 23.
- Hull, C.D., Reed, M.H., and Fisher, K. (1987). Chemical geothermometry and numerical unmixing of the diluted geothermal waters of the San Bernardino Valley Region of Southern California. *GRC Transactions*, 11, p. 165-184.
- Kanade, S. and Gaikwad V.B. (2011). A multivariate statistical analysis of bore well chemistry data-Nashik and Niphad Taluka of Maharashtra, India. Univer. J. Env. Res. Technol., 1, 193-202.
- Khitarov, N.I., Lebedev, E.B., Rengarten, E.B., and Arsena, R.V. (1959). The solubility of water in basaltic and granitic melts. Geochemistry, 5, p. 479-492.
- Kuntz, M.A, Covington, H.R., and Schorr, L.J. (1992) Chapter 12 An Overview of Basaltic Volcanism of the Eastern Snake River Plain, Idaho. In Link, P.K., Kuntz, M.A., and Platt, L.B., eds., Regional Geology of Eastern Idaho and Western Wyoming, *Geological Society of America Memoir* 179, p. 227–267.
- Larsson, D., Grönvold, K., Oskarsson, N. and Gunnlaugsson, E. (2002). Hydrothermal alteration of plagioclase and growth of secondary feldspar in the Hengill Volcanic Centre, SW Iceland. Journal of Volcanology and Geothermal Research, 114, p. 275-290.
- Leeman, W.P., Annen, C. and Dufek, J. (2008). Snake River Plain Yellowstone Silicic Volcanism: Implications for Magma Genesis and Magma Fluxes. In Annen, C. and Zellmer, G. F. (eds) Dynamics of Crustal Magma Transfer, Storage and Differentiation. Geological Society, London, Special Publications, **304**, p. 235–259.
- Lewis, R.E., and H.W. Young (1982). "Geothermal resources in the Banbury Hot Springs Area, Twin Falls County, Idaho." U.S. Geological Survey Water-Supply Paper 2186, p. 27.
- Lewis, R.E. and H.W. Young. (1989). The hydrothermal system in central Twin Falls County, Idaho: U.S. Geological Survey Water Resources Investigations Report 88-4152, p. 44

- Lesher, C.M., Gibson, H.L. and Campbell, I.H. (1986). Composition-volume changes during hydrothermal alteration of andesite at Buttercup-Hill, Noranda-District, Quebec. *Geochimica Et Cosmochimica Acta*, 50(12), p. 2693-2705.
- Lonker, S.W., Franzson, H. and Kristmannsdottir, H., 1993. Mineral-Fluid Interactions in the Reykjanes and Svartsengi Geothermal Systems, Iceland. American Journal of Science, 293(7): 605-670.
- Mabey, D.R. (1982) Geophysics and tectonics of the Snake River Plain, Idaho, in Bonnichsen,B., and Breckenridge, R.M., eds., Cenozoic Geology of Idaho: Idaho Bureau of Mines and Geology Bulletin 26, p. 139
- Malde, H. E., and Powers, H. A. (1972). Geologic map of the Glenns Ferry-Hagerman area, west-central Snake River Plain, Idaho: U.S. Geol. Survey Misc. Geol. Inv. Map 1-696
- Mann, L.J. (1986). Hydraulic properties of rock units and chemical quality of water for INEL1: A 10,365-foot-deep test hole drilled at the Idaho National Engineering Laboratory,
 Idaho: U.S. Geological Survey Water Resources Investigations Report 86-4020, p. 23.
- Marsh, K.N. (1987) Recommended Reference Materials for the Realization of Physiochemical Properties. Blackwell, Oxford.
- Mas, A., Guisseau, D., Patrier Mas, P., Beaufort, D., Genter, A., Sanjuan, B. and Girard,
 J.P. (2006). Clay minerals related to the hydrothermal activity of the Bouillante
 geothermal field (Guadeloupe). Journal of Volcanology and Geothermal Research,
 158(3-4) p. 380
- Mariner, R.H., H.W. Young, W.C. Evans, and D.J. Parliman. (1991). "Chemical, isotopic, and dissolved gas compositions of the hydrothermal system in Twin Falls and Jerome Counties, Idaho. *Geothermal Resources Council Transactions*, v. 15, p. 257-263.
- Mariner, R.H., H.W. Young, T.D. Bullen, and C.J. Janik. (1997). Sulfate-water isotope geothermometery and lead isotope data for regional geothermal system in the Twin Falls area, south-central Idaho. *Geothermal Resources Council Transactions*, v. 21, p. 197-201.
- Martin, T.D, Brockhoff, C.A., and Creed, J.T. (1994). EPA Method 200.7 Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry.

- McLing, T.L., R.W. Smith, and T.M. Johnson. (2002). "Chemical Characteristics of Thermal Water Beneath the Eastern Snake River Plain Aquifer." GSA Special Paper 353, p.13.
- McLing, T., McCurry, M., Cannon, C., Neupane, G., Wood, T., Podgorney, R., Welhan, J.,
 Mines, G., Mattson, E., Wood, R., Palmer, C. and Smith, R. (2014) David Blackwell's
 Forty Years in the Idaho Desert, The Foundation for 21st Century Geothermal
 Research. *Geothermal Resources Council Transactions*, 38, p. 143–153.
- Meng, S.X., and Maynard, J.B. (2001). Use of statistical analysis to formulate conceptual models of geochemical behavior: Water chemical data from the Botucatu aquifer in Sao Paulo state. Brazil. J. Hydrol., 250, p. 78-97.
- Mitchell, J.C., Johnson, L.L., and Anderson, J.E. (1980). Geothermal Investigations in Idaho
 Part 9: Potential for Direct Heat Application of Geothermal Resources. *Idaho Department of Water Resources Water Information Bulletin No. 30*
- Morgan, L.A., Doherty, D.J., and Leeman, W.P. (1984). Ignimbrites of the eastern Snake River Plain, Idaho: Evidence for major caldera-forming eruptions: Journal of Geophysical Research, v. 89, p. 8665–8678.
- Morse, L.H. and McCurry, M. (2002). Genesis of alteration of Quaternary basalts within a portion of the eastern Snake River Plain aquifer. Special Papers Geological Society of America, p. 213-224.
- Muthulakshmi, L., Ramu, A., Kannan, N., and Murugan, A. (2013). Application of Correlation and Regression Analysis in Assessing Ground Water Quality. *International Journal of ChemTech Research Vol. 5*, p. 355-356.
- Needleman, SB., and Romberg, R.W. (1990). Limits of linearity and detection of some drugs of abuse, Journal of Analytical Toxicology, v.14, p. 8
- Neuhoff, P.S., Fridriksson, T., Arnorsson, S. and Bird, D.K. (1999). Porosity evolution and mineral paragenesis during low-grade metamorphism of basaltic lavas at Teigarhorn, eastern Iceland. American Journal of Science, 299(6): 467-501.
- Neupane, G., Smith, R.W., McLing, T.L., Palmer, C.D., and Smith, W.W. (2013). Constraining Multicomponent Equilibrium Geothermometer Temperature Using Laboratory Experiments: Preliminary Results. Geological Society of America, v. 45, p.774.

- Neupane, G., Smith, R. W., Palmer, C. D., and McLing, T. L (2013). Multicomponent equilibrium geothermometry applied to the Raft River geothermal area, Idaho: preliminary results. In *Geological Society of America Abstracts with Programs*, 45.
- Neupane, G., E.D. Mattson, T.L. McLing, C.D. Palmer, R.W. Smith, and T.R. Wood.
 (2014). Deep geothermal reservoir temperatures in the Eastern Snake River Plain, Idaho using multicomponent geothermometry. Proceedings, 39th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 24-26, 2014 SGP-TR-202, p.12.
- Neupane, G., Baum, J.S., Mattson, E.D., Mines, G.L., Palmer, C.D., and Smith, R.W.,
 (2015). Validation of Multicomponent Equilibrium Geothermometry at Four
 Geothermal Power Plants. Fortieth Workshop on Geothermal Reservoir Engineering
 Stanford University, Stanford, California, January 26-28, SGP-TR-204, p. 1-9.
- Othberg, K.L., Kauffman, J.D., and Gillerman, V.S. (2005) Geologic Map of the Twin Falls Quadrangle, Jerome, and Twin Falls Counties, Idaho. Idaho Geological Survey.
- Othberg, K.L., Kauffman, J.D., and Gillerman, V.S. and Garwood, D.L. (2012) Geologic Map of the Twin Falls 30 x 60 Minute Quadrangle, Idaho. Idaho Geological Survey. Geologic Map 49
- Pabalan, R.T., and Bertetti, P.F. (2001). Cation-Exchange Properties of Natural Zeolites. Mineralogilca Society of America, v. 45, p. 453-518.
- Palmer, C.D. 2013. Installation manual for Reservoir Temperature Estimator (RTEst), Idaho National Laboratory, Idaho Falls, ID.
- Parliman, D.J. and Young H.W. (1992). Compilation of Selected Data for Thermal-Water Wells and Springs in Idaho, 1921 through 1991. U.S. Geological Survey Open-File Report 92-175, p. 201.
- Pierce, K.L. and Morgan, L.A. (2009). Is the Track of the Yellowstone hotspot Driven by a Deep Mantle Plume? – Review of Volcanism, Faulting, and Uplift in Light of New Data, *Journal of Volcanology and Geothermal Research*, 188, p. 1–25.
- Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analyses. *Transactions. American Geophysical Union* 25, p. 914.

- Ralston, D.R., J.L. Arrigo, J.V. Baglio Jr., L.M. Coleman, K. Souder, and A.L. Mayo. (1981)."Geothermal evaluation of the thrust area zone in southeastern Idaho." Idaho Water and Energy Research Institute, University of Idaho, p. 110.
- Rani, A.L. and Babu S. (2008). A statistical evaluation of ground water chemistry from the west coast of Tamil Nadu, India. *Indian Journal of Marine Sciences vol 37*.
 p. 189-192.
- Reed, M. and Spycher, N. (1984). Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochimica et Cosmochimica Acta, 48, p. 1479-1492.
- Rember, W.C., and Bennett, E.H. (1979) Geologic map of the Twin Falls quadrangle, Idaho: Moscow, Idaho, Idaho Bureau of Mines and Geology, Geologic Map Series, Twin Falls Quadrangle, scale 1:250,000.
- Reyes, A.G. (1990). Petrology of Philippine geothermal systems and the application of alterationmineralogy to their assessment. *Journal of Volcanology and Geothermal Research*, 43 p. 279-309.
- Robin, V., Tertre, E., Beaufort, D., Regnault, O., Sardini, P., and Descostes, M. (2015). Ion exchange reactions of major cations (H⁺, Na⁺, Ca²⁺, Mg²⁺, and K⁺) on beidellite:
 Experimental results and new thermodynamic database. Toward a better prediction of contaminant mobility in natural environments. *Applied Geochemistry v. 59*, p. 74-84.
- Rodgers, D.W., H.T. Ore, R.T. Bobo, N. McQuarrie, and N. Zentner. (2002). "Extension and subsidence of the eastern Snake River Plain, Idaho." In: C.M. White and M. McCurry, eds., Tectonic and Magmatic Evolution of the Snake River Plain Province: *Idaho Geologic Survey Bulletin* 30, p. 121-155.
- Rodriguez, A. (2011). Water-Rock Interaction of Silicic Rocks: An Experimental and Geochemical Modeling Study. United Nations University Training Programme Reykjavik, Iceland. P. 2-21.
- Ross, S.H. (1971). "Geothermal potential of Idaho." Idaho Bureau of Mines and Geology, Pamphlet 150, p. 72.
- Rounds, S.A., and Wilde, F.D. (2001). U.S. Geological Survey TWRI Book 9. Chapter 6.6: Alkalinity and Acid Neutralizing Capacity.

- Sant, C.J. (2012). Geothermal Alteration of Basaltic Core from the Snake River Plain, Idaho. Utah State University. All Graduate Theses and Dissertations Paper 1451.
- Savage, D., Bateman, K., and Richards, H.G. (1992). Granite-water interactions in a flowthrough experimental system with applications to the Hot Dry Rock geothermal system at Rosemanowes, Cornwall, U.K. Applied Geochemistry, v. 7 p. 226
- Schroeder, F.C. (1912) A reconnaissance of the Jarbidge, Contact, and Elk Mountain mining districts, Elko County, Nevada: U.S. Geological Survey Bulletin 497, p. 36
- Shervais, J.W., Schmidt, D.R., Nielson, D., Evans, J.P., Christiansen, E.H., Morgan, L.,
 Shanks, W.C.P., Prokopenko, A.A., Lachmar, T., Liberty, L.M., Blackwell, D.D.,
 Glen, J.M., Champion, D., Potter, K.E. and Kessler, J.A. (2013). First Results from
 HOTSPOT: The Snake River Plain Scientific Drilling Project, Idaho, U.S.A., *Scientific Drilling*, 15, p. 36–45.
- Smith, R.W., Palmer, C.D., and Cooper, D.: Approaches for multicomponent equilibrium geothermometry as a tool for geothermal resource exploration. AGU Fall Meeting, San Francisco, 3-7 December 2012.
- Spycher, N.F., Peiffer, L., Sonnenthal, E.L., Saldi, G., Reed, M.H., Kennedy, B.M. (2014) Integrated multicomponent solute geothermometry), Geothermics, 51, p. 113–123
- Street, L.V., and DeTar, R.E. (1987). Geothermal Resource Analysis in Twin Falls County, Idaho: Idaho Department of Water Resources: Water Information Bulletin No. 30, Part 15, p. 46
- Stefánsson, A. and Arnórsson, S. (2002). Gas pressures and redox reactions in geothermal fluids in Iceland. *Chemical Geology*, 190(1-4), p. 251-27
- Taylor, H. P., Jr. (1974). The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition: *Economic Geology, vol.* 69, p. 843-883.
- Tester, J.W., Anderson, B.J., Batchelor, A.S., Blackwell, D.D., DiPippo, R., Drake, E.M., Garnish, J., Livesay, B., Moore, M.C., Nichols, K., Petty, S., Toksöz, M.N., and Veatch, R. W. (2006). The future of geothermal energy - impact of enhanced geothermal systems (EGS) on the United States in the 21st century. Massachusetts Institute of Technology, p. 372.

- Theis, C.V. (1935). The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Am. Geophys. Union Trans., vol. 16, p. 519-524.
- Tole, M.P., Ármannsson, H., Pang, Z.H., and Arnórsson, S. (1993). Fluid mineral equilibrium calculations for geothermal fluids and chemical geothermometry. Geothermics 22, p. 17-37.
- Truesdell, A.H., 1976. "Summary of section III geochemical techniques in exploration." Proceedings of the 2nd U.N. Symposium on the Development and Use of Geothermal Resources, San Francisco, v. 1, p. 31.
- Truesdell, A.H., and Fournier, R.O., 1977: Procedure for estimating the temperature of a hot water component in a mixed water using a plot of dissolved silica vs. enthalpy. U.S. Geol. Survey J. Res., 5, p. 49- 52.
- Truesdell, A.H., M. Nathenson, and R.O. Rye. 1977. The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters. Journal of Geophysical Research 82, p. 3694–3704.
- USDA (2011). Digital Orthoimagery Series of Idaho (2011, 1-meter, Natural and False Color) USDA-FSA-APFO Aerial Photography Field Office. Salt Lake City, Utah.
- USGS (2004) Development of a local meteoric water line for southeastern Idaho, western Wyoming, and southcentral Montana. Scientific Investigations Report 2004-5126
- Verma, M.P. (2000). Limitations in applying silica geothermometers for geothermal reservoir estimation. 25th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 24026, 2000. SGP-TR-165
- Weisenberger, T. and Selbekk, R.S., 2009. Multi-stage zeolite facies mineralization in the Hvalfjordur area, Iceland. International Journal of Earth Sciences, 98(5) p. 985-999.
- White, D.E. (1968). Thermal Waters of Volcanic Origin. *Bulletin of the Geological Society of America vol. 58*, p. 1649-1650.
- Williams, C.F., and DeAngelo, J. (2011). Evaluation of Approaches and Associated Uncertainties in the Estimation of Temperatures in the Upper Crust of the Western United States, Geothermal Resources Council Transactions, 35, p. 1599–1605.

- Williams, C.F., Reed, M.J., Mariner, R.H., DeAngelo, J. and Galanis, S.P., Jr. (2008).
 Assessment of Moderate- and High-Temperature Geothermal Resources of the United States, U.S. Geological Survey Fact Sheet 2008-3082, p. 4.
- Wood, W.W., and W.H. Low. (1988). "Solute chemistry of the Snake River Plain Regional Aquifer System, Idaho and Eastern Oregon." U.S. Geological Survey Professional Paper 1408-D, p. 79.
- Young, H.W., and J.C. Mitchell (1973). "Geothermal Investigations in Idaho Part 1: Geochemistry and Geologic Setting of Selected Thermal Waters." USGS, *IDWR Water Information Bulletin* No. 30, p. 23-28.
- Zumlot, T., Batayneh, A., Nazal, Y., Ghrefat, H., Mogren, S., Zaman, H., Elawadi, E., and Laboun A. (2012). Using multivariate statistical analyses to evaluate groundwater contamination in the northwestern part of Saudi Arabia. Environ Earth Sci. DOI 10.1007/s12665-013-2392-1

APPENDIX A: SAMPLE COLLECTION

Sampling Phase 1: Field Parameters, Filtration, and Collection

A mobile field sampling trailer was constructed to protect equipment and staff from harsh environmental conditions often present in southern Idaho. Sampling took place in a two phase fashion. Phase one includes the measurement of field parameters, rinsing of bottles with sample water, and bottling of samples. If sampling from a thermal spring, a piece of 0.25-inch stainless steel pipe attached to MasterFlex ® peristaltic tubing (both prewashed in 10% trace grade HNO_3) was used as an inlet. The stainless steel tubing often includes a non-reactive Nalgene [®] bottle cap acting as a stabilizer to keep the inlet above sediment or algal mats and may be extended to the center of the spring using an extendable swimming pool cleaning rod. The spring water is then pumped from the source using a Geotech ® Geopump Peristaltic Pump (Series II). If measuring from a thermal well, a variety of prewashed spigot fittings and couples can be used to connect to the well head outlet. Thermal water is pumped from the source into a flow through cell (YSI® 6850) where the YSI Professional Plus Multi-parameter Meter is used to record the field parameters. The YSI multimeter is calibrated daily prior to sampling. The calibration procedure and checklist can be found on page 131. If warranted, the sample water may be cooled to < 60 °C (YSI sensor limitation) using a coiled stainless steel rod submerged in ice water within a 5-gallon cooler as shown in the picture below. Relevant field parameters include pH, oxidation-reduction potential, dissolved oxygen, temperature, conductivity, and total dissolved solids. Once field parameters are stabilized and logged, sample water travels through an EMD Millipore [®] 0.45 µm Groundwater Capsule filter prior to bottling in order to rid the sample of various suspended particles.

Three separate water samples are taken from each source in order to analyze for major cations Ca, K, Mg, Na, and SiO2 (aq)), major anions (F, Cl, SO4, and NO3), and various trace elements (Al, B, Li, Br, Sr, Se, Rb, Ba, and Bi). Bottles are prepared prior any sampling campaign. Cation and anion samples are collected in 250 mL HDPE bottles whereas trace element samples are collected in 1 L HDPE bottles. All bottles are filled with nanopure (18.2 M Ω) deionized water and left to sit for 24 hours. They are subsequently rinsed with this same solution before preparation. Major cation and trace element bottles are partially filled with a 10% trace grade HNO₃ solution and agitated to clean the entirety of the bottle. Anion sample bottles are simply filled with nanopure deionized water once more due to the impending analyses of NO₃ and NO₂. Prior to being filled with sample water in the field, all bottles are emptied of their cleaning solutions (neutralized in waste container with baking soda to a pH of >6). Once emptied bottles are rinsed 3 times with sample water before being capped and preserved.

Figure A1. (A) Sample team comprised of U of I graduate student Cody Cannon (mid left), INL scientist Travis McLing (mid right), Dr. Mark Conrad (foreground) of the LBNL, and Dr. Pat Dobson (background) of the LBNL. (B) Sample equipment set up showing the peristaltic pump and tubing, 0.45µm filter, YSI ® Professional Plus Multimeter and Flow-Through Cell, and three sample bottles. (C) Sampling of Driscoll Spring near Twin Falls, ID. (D) Utilization of a coiled cooling system prior to sampling collection at Worswick Hot Springs, ID.

Sampling Phase 2: Preservation and Titration

A separate 50 mL filtered sample will be collected in an acid-washed graduated cylinder to be

used in titration in order to determine the amount of dissolved carbonate (as CO₃ and HCO₃).

A Hach ® Digital Titrator (Model 1690001) equipped with either 1.6N or 0.16N sulfuric acid

is used to titrate the sample. A pH meter is rinsed with sample water and then used to monitor the samples pH as the acid is applied. The number of titrations it takes for the sample water to be lowered to a pH of 4.5 is recorded from the titrator and subsequently used to calculate the amount of carbonate in the sample. The total alkalinity calculation procedure for a digital titrator can be found in the USGS field manual chapter 6.6 (Rounds and Wilde, 2001). Simultaneously or soon after titration is complete, the major cation and trace element bottles are preserved with 70% optima grade nitric acid until a pH of ≤ 2 is reached. Preservation is done to prevent precipitation of constituents or adsorption onto the bottle walls. Anion samples are not preserved and should be analyzed within approximately 28 days of sample collection as per EPA method 300.1. Cation and trace element samples have a shelf life of 6 months as per EPA Methods SW-846 and 200.8 respectively. After preservation and capping, water samples are sealed with strips of ParaFilm® and refrigerated at 4 °C until chemical analysis. Upon completion of sampling, all used tubing is cleaned by pumping 10% trace grade nitric acid from one carboy into a baking soda laden waste carboy.

All field parameters for samples utilized in this study are listed below.

						Temperature		Conuctivity	Dissolved			Alkalinity
Timestamp	Date In Lab	Lat	Long	Site	Unit ID	(C)	рΗ	(uS/cm)	Oxygen (mg/L)	ORP (mV)	TDS (g/L)	(mg/L as HCO3)
3/10/2014 13:30	3/14/2014	43.64283	-111.68768	001	Heise Hot Springs	48.2	6.3	14789	0.43	-269.2	7.0005	986
3/11/2014 8:13	3/14/2014	44.14558	-112.55494	002	Lidy Hot Springs 1	56.1	7.2	836	0.34	-177.5	0.364	132
3/11/2014 9:13	3/14/2014	44.14166	-112.55240	003	Lidy Hot Springs 2	52.3	7.2	815	0.87	-140.9	0.3835	163
3/11/2014 13:12	3/14/2014	43.79211	-111.44009	004	Green Canyon Hot Springs	44	7.2	1152	2.84	96.9	0.585	137
3/11/2014 16:40	3/14/2014	44.09325	-111.43534	005	Sturm Well	31.4	8.7	183	4.5	44.5	0.106	66
3/12/2014 12:15	3/14/2014	43.33278	-113.91790	006	Condie Hot Springs	50.5	7	1075	0.6	-71.8	0.481	315
3/12/2014 15:09	3/14/2014	43.60234	-113.24214	007	Greenhouse Well	36.3	7.1	882	2.89	101.5	0.481	285
3/13/2014 8:53	3/14/2014	42.69940	-114.91040	008	Eckart Office Well	24.7	9.5	610	4.71	39.7	0.3965	81
3/13/2014 10:30	3/14/2014	42.64497	-114.78706	009	Campbell 1	34.5	8	457.7	4.06	64.2	0.2516	144
3/13/2014 11:13	3/14/2014	42.64432	-114.78294	010	Campbell 2	34.4	8	527	4.57	64.6	0.2925	127
3/13/2014 14:34	3/14/2014	42.69457	-114.85592	011	Miracle Hot Springs	58.4	9.5	1002	0.29	-162.1	0.4225	93
3/13/2014 16:19	3/14/2014	42.54479	-114.94855	012	Driscoll Well	37.5	8.6	1070	5.36	-13.8	0.559	95
3/13/2014 16:52	3/14/2014	42.54348	-114.94897	013	Driscoll Spring	36.2	8.7	1027	4.62	27.8	0.5655	98
3/14/2014 8:13	3/14/2014	42.58318	-114.47496	014	CSI Well 2	38.1	8.8	631	3.97	75.5	0.3315	127
6/6/2014 9:14	6/6/2014	43.44244	-111.90484	015	Comore Loma #6	20.9	6.7	828	6.82	176.6	0.585	222
6/6/2014 10:56	6/6/2014	43.43774	-111.93018	016	Comore Loma #5	27.7	6.9	943	6.28	121.5	0.585	251
6/6/2014 12:56	6/6/2014	43.43142	-111.94501	017	Blackhawk #2	26.8	6.6	1249	6.55	114.2	0.83683	271
6/6/2014 12:56	6/6/2014	43.43121	-11.94469	018	Blackhawk #1	25.1	6.8	1176	7.14	109.7	0.7605	268
6/11/2014 11:01	6/11/2014	42.10207	-113.38434	020	Raft River Geothermal #1	150	7.1	5972	0.06	-217.8	2.3335	34
6/11/2014 11:52	6/11/2014	42.11042	-113.37519	021	Raft River Geothermal # 2	150	6.9	4079	0.07	-218.8	1.846	38
6/11/2014 12:44	6/11/2014	42.08359	-113.35865	022	Raft River Geothermal # 7	150	6.3	11474	0.08	-218.8	5.1805	33
6/11/2014 13:39	6/11/2014	42.09787	-113.38541	023	Raft River Geothermal #4	150	7.1	4846	0.09	-219.3	2.1775	44
6/17/2014 13:33	6/17/2014	42.72589	-112.87381	024	Indian Hot Springs	32.7	7.2	1452	2.38	-61.2	0.8255	223
6/18/2014 9:57	6/18/2014	42.23667	-113.36971	025	Grush Dairy	54.7	9.2	1196	0.04	-146.5	0.494	283
6/18/2014 11:31	6/18/2014	42.107989	-113.39206	026	Raft River USGS Well	79.6	8.1	5463	1.5	-179.8	2.5805	95
6/18/2014 12:07	6/18/2014	42.10776	-113.39186	027	Raft River Frasier Well	78.6	7.7	4900	0.2	-175.2	2.444	60
6/18/2014 13:18	6/18/2014	42.09656	-113.37800	028	Raft River Crook Well	81	8.3	7297	0.46	-85.5	4.6475	35
6/23/2014 10:18	6/26/2014	43.36414	-113.78943	029	Milford Sweat	38.1	7.3	792	-	69.3	0.416	251
6/23/2014 12:48	6/26/2014	43.32777	-114.39941	030	Magic Hot Springs Landing Runoff	39.1	8.6	2227	-	-24.6	1.1375	710
6/23/2014 15:46	6/26/2014	43.42341	-114.62857	031	Elk Creek 1	50.0	9.1	758	-	-126	0.338	93
6/23/2014 16:15	6/26/2014	43.42322	-114.62865	032	Elk Creek 2	55.5	9.1	812	-	-82.6	0.3445	90
6/24/2014 9:13	6/26/2014	43.29241	-114.91002	033	Barron Well	38.0	8	1195	-	-104.8	0.624	181
6/24/2014 10:24	6/26/2014	43.38290	-114.93224	034	Wardrop Hot Springs (Gonzales' House)	67.5	9	553	-	-130.8	0.2145	193
6/24/2014 13:10	6/26/2014	43.32777	-114.39941	035	Magic Hot Springs Landing Well	75.0	6.8	2951	-	-84	1.183	703

Table A1. Field parameters for select ESRP thermal samples collected in 2014.

						Temperature		Conuctivity	Dissolved			Alkalinity
Timestamp	Date In Lab	Lat	Long	Site	Unit ID	(C)	рН	(uS/cm)	Oxygen (mg/L)	ORP (mV)	TDS (g/L)	(mg/L as HCO3)
6/24/2014 16:48	6/26/2014	43.12966	-115.33841	036	Prince Albert Hot Springs	57.7	9.1	472.9	-	-134.6	0.1963	105
6/25/2014 10:44	6/26/2014	42.17334	-113.86163	037	Oakley Warm Spring	46.9	9.3	667	-	-172.7	0.3185	107
6/25/2014 13:30	6/26/2014	42.08533	-113.93984	038	Richard Austin Well 1	45.7	9	733	-	-107.6	0.351	205
6/25/2014 16:28	6/26/2014	42.47663	-113.50770	039	Marsh Creek Well	59.6	8.2	1055	-	-147.7	0.429	124
6/26/2014 10:14	6/26/2014	42.70399	-114.85699	040	1000 Springs (Sliger's Well)	72.0	9.5	1266	-	-127.2	0.494	212
6/26/2014 11:55	6/26/2014	42.68841	-114.82680	041	Banbury Hot Springs Well	58.8	9	798	-	-112.8	0.3315	249
6/26/2014 12:16	6/26/2014	42.68841	-114.82680	042	Banbury Hot Springs	58.5	9	820	-	-115	0.3315	168
7/15/2014 15:01	7/17/2014	42.95543	-115.29997	043	Diamond Laundry	35.0	8.9	829	0.1	-290.2	0.442	315
7/15/2014 18:48	7/17/2014	43.00294	-115.19222	044	Johnston Well	39.0	9.3	499.4	0.2	-212.1	0.2626	117
7/16/2014 12:02	7/17/2014	42.66851	-114.82436	045	Leo Ray Hill	35.0	8.7	414.9	0.1	-24.1	0.2275	140
7/16/2014 12:34	7/17/2014	42.66778	-114.82673	046	Leo Ray Road	35.5	8.4	409.7	0.3	-89.4	0.2217	139
7/16/2014 13:32	7/17/2014	42.65772	-114.79054	047	Kanaka Rapids (Zigler's House)	30.1	8	427.3	3.8	69.3	0.2529	120
7/16/2014 14:29	7/17/2014	42.70501	-114.85701	048	Hensley Well	31.8	9.6	741	0.6	-263.5	0.429	232
7/16/2014 17:38	7/17/2014	43.11025	-115.31258	049	Latty Hot Prings	65.0	9.3	323.1	1.7	-96.2	0.1735	107
7/16/2014 19:50	7/17/2014	42.94632	-115.49423	050	Laib Well	32.5	7.6	1621	0.1	-203.7	0.923	886
7/17/2014 10:03	7/17/2014	42.58050	-114.47089	051	CSI Well 1	37.7	8.8	586	3.3	38.7	0.312	154
7/17/2014 11:25	7/17/2014	42.59755	-114.40018	052	Larry Anderson Well	43.0	9.2	816	0	-205.1	0.3965	188
7/17/2014 12:42	7/17/2014	42.61390	-114.48799	053	Pristine Springs	43.0	9.2	769	0.3	-107.2	0.377	154
7/17/2014 15:16	7/17/2014	42.57256	-114.45175	054	Twin Falls High School	31.0	7.8	660	5.6	-13.7	0.39	161
7/17/2014 16:49	7/17/2014	42.57750	-114.28870	055	Anderson Campground Well	37.0	9.1	786	1.2	-191.1	0.4225	246
7/22/2014 14:00	7/22/2014	43.60827	-113.24432	056	Butte City Well	32.5	7.4	720	4.2	611.2	0.432	386
7/23/2014 14:45	7/23/2014	43.02583	-112.02551	057	Quidop Springs 1	21.0	6.7	1288	2.3	324.4	0.9165	617
7/23/2014 15:49	7/23/2014	43.03717	-112.00427	058	Quidop Springs 2	38.1	6.6	2112	0.5	-139.1	1.0985	710
7/23/2014 18:03	7/23/2014	43.11448	-112.16660	059	YaNDell Warm Springs	22.2	7.3	635	3.2	-22.2	0.4355	266
7/24/2014 12:07	7/24/2014	42.43758	-113.43432	060	Skaggs Ranch	33.3	7.7	396.6	0.4	-28.8	0.2223	181
7/24/2014 14:02	7/24/2014	42.10008	-113.63354	061	Durfee Hot Springs	44.9	8.8	690	4.1	119.3	0.325	107
7/24/2014 18:01	7/24/2014	42.22333	-113.79167	062	Basin Cemetery	30.7	7.9	482	3.3	-15.8	0.2827	122
7/24/2014 19:17	7/24/2014	42.48216	-113.97341	063	Wybenga Dairy	33.9	7.5	331.3	3.7	22	0.1839	115
7/29/2014 12:00	7/29/2014	42.13944	-111.93709	064	David Bosen Well	90.0	6.7	22609	2.56	147	14.5	583
7/30/2014 12:00	7/30/2014	43.87717	-111.55890	065	SchweNDiman Well	28.0	7.6	363	5.9	156	0.3	165
7/30/2014 12:00	7/30/2014	43.88566	-111.55949	066	Clyde Well	32.7	7.5	398	4.11	147	0.3	183
7/30/2014 12:00	7/30/2014	43.90127	-111.50967	067	Cinder Block Well	26.3	7.4	360	3.66	146	0.3	182
7/30/2014 12:00	7/30/2014	43.88308	-111.6186	068	Newdale City Well	30.0	7.3	575	4.45	575	0.3	251
7/30/2014 12:00	7/30/2014	43.85840	-111.67870	069	Spackman Well	14.1	7.2	336	7.15	145	0.2	190
8/15/2014 12:00	8/15/2014	42.97813	-112.41654	070	Fort Hall Thermal Well	21.1	7.9	557	6.6	160.1	0.39	223
6/17/2015 14:10	6/19/2015	43.33723	-115.04430	077	Wolf H.S.	50	9.5	400.5	2.9	-27.3	0.1898	107

YSI® Professional Plus Calibration Procedure

The following contains the order and manner in which the YSI Professional Plus instrument should be calibrated. Tips and troubleshooting not covered in this guide can be found in the YSI Professional Plus Manual and Dissolved Oxygen Handbook.

Temperature:

The YSI temperature sensor does not need to be calibrated as it is accurate to ± -0.15 °C and does not drift. However, you should verify that the temperature sensor is reading accurately by comparing it to a traceable thermometer before calibrating any of the other sensors.

Conductivity:

The conductivity calibration should be verified every day the instrument is used. However, the conductivity sensor is very stable and may hold its calibration for several weeks. Whether calibrating in the lab or in the field, you should use a conductivity standard and ensure that you calibrate conductivity and not specific conductance as you will most likely not be in exactly 25.0 °C water. Never use a calibration fluid that is more than a month old after opening. Rinse the cal cup and all sensors with DI water and then rinse with conductivity calibration solution. Fill the cal cup to where the top vent holes of the conductivity sensor are fully submerged. Input the standard value into the YSI calibration menu. Allow enough time for the temperature and conductivity values to stabilize and accept the calibration. Record the calibration values on the calibration sheet.

The pH calibration should be verified every day the instrument is used. However, a new pH sensor may be capable of holding its calibration for several days. If you're absolutely certain that the waters being sampled will all be over or below pH 7, then a 2 point calibration is all that is necessary. Otherwise, it is best to use a 3 point calibration. Rinse the cal cup and all sensors with DI water. Proceed to rinse the cal cup and sensors with a small amount of pH 7 buffer solution. Next, fill the cal cup with enough pH 7 buffer so that the pH sensor tip and temperature sensor are submerged. Input the buffer standard into the pH calibration menu in the YSI. Allow enough time for pH values and temperature values to stabilize. Accept the calibration value. Repeat this process for pH 4 and 10 buffers to complete the calibration. Record the stabilized pH values as well as the pH values in mV. Ensure the mV values fall within the accepted range listed on the calibration sheet.

ORP:

pH:

The ORP calibration should be verified every day the instrument is used. However, a new ORP sensor may be capable of holding its calibration for several days. Rinse the cal cup and all sensors with DI water. Proceed to rinse the cal cup and sensors with a small amount of ORP Zobell calibration solution. Fill the cal cup with enough ORP calibration solution so that the ORP sensor is fully submerged. Input the standard value into the YSI handheld. Allow enough time for the temperature and ORP values to stabilize and accept the calibration. Record the pre-calibrated stabilized ORP value and ensure the post-calibrated value matches the standard.
DO:

The dissolved oxygen sensor should be calibrated every day the instrument is used. It is not necessary to calibrate in both % and mg/L or ppm. Calibrating in % will simultaneously calibrate mg/L and ppm and vice versa. Before calibrating the DO sensor note the age of the DO membrane from previous calibrations. If it has not been changed within 8 weeks, change it. If any silver chloride has built up on the silver anode, try to simply mechanically clean it with the YSI cleaning brush. If the buildup is too heavy, use wet 400-grit sandpaper to clear away any build up. If you require chemical cleaning, soak the silver anode in a 3% (household ammonium cleaner) for 8-12 hours. Following the soak, rinse thoroughly with DI water and wipe the residue with a paper towel ensuring that no build up is trapped under the membrane. For correct sensor operation, the gold cathode must be textured properly. Use wet 400-grit sandpaper to remove build up and lightly scratch the cathode to allow more surface area for the electrolyte solution under the membrane (2-3 twists of sandpaper is usually sufficient). If any cleaning is required, make sure to record this information in the notes section of the calibration sheet.

The best way to calibrate the DO sensor is by using water saturated air. Fill the cal cup with about 1/8 inches of DI water. Ensure that the DO sensor and temperature sensor are not submerged. Engage 1 or 2 threads to allow for venting into the cal cup. Wait about 10 minutes for the calibration chamber to become completely saturated. While waiting, determine the calibration % value by dividing the true barometric pressure by 760 (cal. value will only be 100% at sea level or 760 mmHg) and multiplying by 100. Allow time for readings to stabilize around calibration value and accept calibration. Record values on calibration sheet.

Note: Chemical cleaning should be performed as infrequently as possible (1 or 2 times per year depending on use).

Post Calibration Values:

After completing calibration record the following values from the .glp file for the day's calibration to ensure the calibration was successful: Conductivity Cal Cell Constant (Range 5.0 ± 1.0 acceptable), DO Sensor Value (yellow membrane: 4.31μ A - 8.00μ A), pH Slope (\approx 55 to 60 mV/pH, 59 ideal).

	YSI Professional Pl	us Cali	brati	on		
Date of Calibration:				Technician:		
Temperature:						
	Reading:			Accurate:	Y	Ν
Conductivity:						
	Standard (µS/cm):			Pre Cal:		Post Cal
pH:						
	<u>pH 7</u>	Pre Ca	l:		pH mV:	
	pH <u>4</u>	Pre Ca	l:		pH mV:	
	рН <u>10</u>	Pre Ca	l:		pH mV:	
					-	
	pH 7	Range	: 0 m'	V ± 50 mV		
	<u>р</u> Н 4	Range	: +165	5 to +180 from	7 buffer n	nV value
	<u>рН 10</u>	Range	: -165	5 to -180 from 7	7 buffer m	V value
ORP:						
	Standard (mV):			Pre Cal:		Post Cal
DO:						
	DO Membrane Age:			Changed:	Y	N
	Sensor Anode Cleaned:	Y	N	*Chemically:	Y	N
	Sensor Cathode Cleaned:	Y	N	*Chemically:	Y	N
	Barometric Pressure:		-	Standard %		
	Calibrated %					
	Post Calibration	on Valu	es			
Conductivity Cell Con	nstant: Range: 5.0 +/- 1.0	Υ	Ν	Value:		
DO Current Value (μ	Α): (4.31μΑ - 8.00μΑ)	Y	Ν	Value:		
pH Slope: (≈ 55 to 60	mV/pH, 59 ideal)	Y	Ν	Value:		

Figure A2. YSI® Professional Plus Calibration Form

APPENDIX B: CHEMICAL ANALYSIS AND QUALITY CONTROL

Chemical analysis was performed by Cody Cannon under the supervision of analytical chemist Debbie Lacroix and the analytical chemistry laboratory lead Joanna Taylor at the Center for Advanced Energy Studies, Idaho Falls, Idaho. Samples were analyzed in accordance with their respective holding times (preserved and non-preserved) and appropriate dilutions were made to each sample when necessary. Calibration standards for each analytical instrument were prepared from various batch solutions provided by Inorganic Ventures ™ in order to obtain valid concentrations in the desired range based upon previous geothermal research (0.1 to 500+ ppm for major cations and anions) and trace elemental needs for multicomponent equilibrium geothermometry calculations (1 ppb to 1ppm) for constituents including aluminum, magnesium, boron, etc. Analyses were conducted using the Dionex ™ ICS-2100 Ion Chromatograph (IC) or major anions, the Thermo iCAP ™ 6500 Inductively-Coupled Plasma Mass Spectrometer (ICP-MS) for trace elements. The following sections detail the analysis and processing of samples 001-070.

Ion Chromatography for Major Anions

Samples are injected into a stream of eluent, passed through a series of ion exchange columns, and into a conductivity detector. The first column, a guard column, protects the analytical column by removing particulate and organic matter. The analytical column separates anions or cations by their relative affinities for column resins. The suppressor (between the analytical column and the conductivity detector) provides continuous suppression of background conductivity of the eluent and enhances response of the target analytes. The separated anions or cations are measured by conductivity. The compounds are identified based on retention times and quantified by conductivity or absorbance. Control of the instrument is provided by PC-based Chromeleon software

Ion-exchange chromatography is a means of retaining target analytes by separating out the target anions from cations in a separator column. Once separated in the column, the Dionex TM ICS-2100 IC detects the concentrations of chosen anions by means of measuring conductivity. Calibration standards 1-7 were prepared from an Inorganic Ventures[™] stock solution IC-FAS-1A containing the solutes: F⁻, Cl⁻ NO2⁻, NO3⁻, Br⁻, SO4²⁻, and PO4³⁻. Solutions were prepared by means of dilutions by weight, resulting in seven standards ranging in concentrations from 0 ppm Cl⁻ (nanopure water) to 100 ppm Cl⁻. Standard concentrations are listed below in Table 1. Analysis was carried out using a modified form of the EPA 300.1 Method (Hautman and Munch, 1997). Each run began with the analysis of 3 blank samples (nanopure water) followed by the seven standards in order to establish background levels and a calibration curve. A calibration curve coefficient of determination value of $R^2 = 0.995$ was used for all analyses in accordance with EPA 300.1. A laboratory control standard (LCS) was analyzed following the calibration standards to verify the validity of the calibration curve, followed by a nanopure dilution blank. The dilution blank was analyzed to ensure there was no analyte contamination in the water use to dilute the samples. Every ten samples, a blank sample was analyzed followed by all seven standards analyzed as samples. The blank analysis was used to verify there was no carryover during the run and the reanalysis of standards as samples was used to determine instrument drift and to aid in the LOD calculation for each analyte in the analytical run. Samples were diluted prior to analysis based on any previous water chemistry for specific samples or surrounding areas (diluted for >100 ppm Cl⁻ and

SO4²⁻). Samples were diluted and re-run after initial analysis if necessary so that the concentrations would fall within the calibration range. Duplicate samples were run at a frequency of one sample per run, modified from the 10% recommended by EPA 300.1. Adherence to the recommended 90-110% recovery and 10% difference values for spikes and duplicates respectively was obtained for adequate quality control. Conductivity peak analysis was performed for each sample to ensure no interference or deviation in baseline provided by the calibration curve influenced sample concentration readings. Quality control information for standard solutions and LOD values for anions are provided in Table 1.

ICP-OES analysis for Major Cations

Samples are pumped through a nebulizer to produce a fine spray. The large droplets are removed by a spray chamber and the small droplets then pass through to the plasma. The plasma is formed by an intense magnetic field produced by radio frequency (RF) passing through a copper coil. The plasma generates photons of light by the excitation of atoms and ions. The emission of light which occurs as discrete lines, are separated according to their wavelength by diffractive optics using an Echelle optical design. The analytical signals are measured using a Charge Injection Device (CID) as the detector. The samples can be analyzed using either the radial or axial plasma views depending on the sensitivity needed. Various interferences must be considered and addressed appropriately. Control of the spectrometer is provided by PC-based iTEVA software.

Inductively-Coupled Plasma Optical Emission Spectrometry is performed by ionizing argon gas in an intense electro-magnetic field and "igniting" the plasma. Water samples are then transported via a peristaltic pump into the analytical nebulizer where the sample is made into an aerosol and forced to collide directly with the plasma flame. The sample is thereby broken down into charged ions after collision with electrons and charged ions of the plasma. The continuous breaking up of molecules into their respective atoms emits signature wavelengths of light that can be read and quantified by the spectrometer (Huang and Hieftje, 1989). In a similar manner to the IC analysis, standards were prepared from an Inorganic Ventures[™] stock solution: OCP-CICV-1 containing the cations Ca²⁺, K⁺, Mg⁺, Na⁺, Ba²⁺, Al³⁺, and Fe³⁺. However, concentrations of aluminum and magnesium proved to be too low in many samples to obtain a reading above the LOD. For this reason, these elements were analyzed separately using the ICP-MS. Standards were prepared in the ranges of 1-25 ppm Ca²⁺, K⁺, Mg⁺, Na⁺ and 1-20 ppm SiO₂⁻. Additional standards were added to account for geothermal waters with high (100+ ppm) SiO_2^- and waters with higher TDS with elevated Na⁺ (up to 1500 ppm) concentrations. A calibration curve was established with a 99.5% confidence, $R^2 = 0.995$ in accordance with EPA Method 200.7 (Martin et al., 1994). Analysis began with the running of blanks followed by all calibration standards in order to establish background levels and a calibration curve. Blanks and standards were analyzed again after every 10 samples to determine carryover, instrument drift and LODs. Duplicate and spiked samples were added randomly and run at a frequency of one sample per run, modified from the 10% recommended by EPA 200.7. Adherence to the recommended 70-130% recovery and 10% difference values for spikes and duplicates respectively was obtained for adequate quality control.

Multiple wavelengths of every constituent are read by the ICP-OES for each run as some wavelengths have more interferences than others. In order to pick the appropriate wavelength for each constituent, percent difference deviations from true values were calculated for each standard and the wavelength with the least percent difference (< 10% difference) were chosen

and concentrations were reported from each respective wavelength. Quality control information for standard solutions and LOD values for major cations are provided in Table 2.

ICP-MS analysis for Trace Elements

The sample is pumped with a peristaltic pump into a nebulizer where it is converted into a fine aerosol. The fine droplets are separated from the larger droplets by means of a spray chamber. From there, it is transported into the plasma torch. The plasma is formed by an intense magnetic field produced by radio frequency passing through a copper coil. The plasma generates positively charged ions. The ions are directed through the interface region, kept at a vacuum that consists of two metallic cones (sampler and skimmer) that allow the ions to pass through to the electrostatic lenses called the ion optics. These optics stop photons, particulates, and neutral species from reaching the detector. The ions travel through the octapole in the reaction cell which minimizes polyatomic spectral interferences. The ions reach the quadrupole where they are separated according to their mass-to-charge ratio (m/z) by electrostatically steering the ions of a selected mass down the middle of the rods to the detector while ejecting the other unstable ions. The ions are converted into an electronic signal with a detector called an electron multiplier. Control of the spectrometer is provided by PC-based MassHunter® software.

Standards were prepared from Inorganic Ventures[™] stock solutions: CCS-4 (alkali, alkaline, non-transition elements) and CCS-5(fluoride soluble elements). CCS-4 was utilized for the constituents: Li, Be, Al, Mg, Se, As, Rb, Sr, Ba, and Bi. CCS-5 was utilized solely for boron. Boron is often regarded as an important conservative tracer in geothermal fluids. Standards utilizing CCS-4 solution were prepared for the range of 1-500 ppb of all elements. CCS-5 standards were prepared for the range 1 ppb to 1 ppm boron based on previous ESRP

geothermal studies which included boron. Magnesium and aluminum were analyzed separately for all samples in order to fill in data gaps where concentrations fell below the LOD with the ICP-OES. Magnesium and aluminum standards were prepared in the range of 1 ppb to 1 ppm for both elements.

Analysis was accomplished using a modified form of EPA method 200.8 (Creed et al., 1994). Collision cell technology was utilized to eliminate interference from polyatomic ions due to the high TDS nature of geothermal waters. A calibration curve was established with a 99.5% confidence, $R^2 = 0.995$ in accordance with EPA method 200.8. Analysis began with the running of blanks followed by all calibration standards in order to establish background levels and a calibration curve. Blanks and standards were run again after every 10 samples to verify lack any contamination, to determine drift and establish the LOD for the run an internal standard of rhodium (Rh) was analyzed with the samples to correct for any matrix interferences. Duplicate and spiked samples were added randomly and run at a frequency of one sample per run, modified from the 10% recommended by EPA 200.8. Adherence to the recommended 70-130% recovery and 10% difference values for spikes and duplicates respectively was obtained for adequate quality control. Unless a deviation greater than 10% occurred for a particular QC standard, concentration values for samples were reported from raw data. Quality control information for standard solutions and ILOD values for trace elements are provided in Table 3.

Limit of Detection, Precision and Accuracy

The Limit of detection is the lowest concentration of a given analyte that is likely to be consistently distinguished from analysis (Needleman et al., 1990). Ordinarily, it is calculated from background analyte levels provided by blank samples. In this study, ILOD was calculated using a "limit of blank" approximation where a Gaussian distribution of blank concentrations is assumed. An approximation assuming infinite degrees of freedom would use the student's t distribution value of 1.645 for a 95% confidence interval where LOD =Average_{blank} + (1.645 x Standard Deviation_{blank}). However, in an effort to produce a more conservative approximation due to sample sizes of blanks varying from 4-5 blanks to 20, the standard deviation of blank was multiplied by 3 instead. ILOD values for all chemical constituents in 5% HNO₃ can be seen with the blank values in Tables B1-3.

Tables B1-3 also provides information on average instrument precision and accuracy. Accuracy refers to the closeness of a measured value to a standard or known value. Accuracy can been seen in the % Recovery column in Tables 1-3. Sample data was considered valid if the % recoveries were ± 10% of the known value. Therefore, data not within the 10% acceptable window was not considered valid and the data was not used. Precision refers to the closeness of two or more measurements to each other. Precision was determined by calculating the standard deviation(s) of the standards. The standard deviation provides an indication of the range of variation in the measurements. The relative standard deviation (RSD), expresses the standard deviation as a percentage, with the smaller the relative standard deviation (or standard deviation), the more precise the measurements. The average precision for this sample set can be seen in the %RSD column in tables 1-3 below.

Table B1. Anion QC Table

Fluoride							
True	# of	Average	%	RSD (%)	Standard	3 Times	10 Times
Concentration	points	Concentration	Recovery		Deviation	Standard	Standard
(mg/L)		(mg/L)			(mg/L)	Deviation	Deviation
						(mg/L)	(mg/L)
						(ILOD)	(ILOQ)
Blank	25	0.027	NA	133%	0.036	0.108	0.361
0.05	5	0.052	104%	13%	0.007	0.020	0.066
0.2	5	0.199	100%	7%	0.014	0.043	0.143
0.5	19	0.565	113%	19%	0.105	0.316	1.053
1.0	17	1.10	110%	21%	0.236	0.708	2.359
2.0	5	2.07	104%	2%	0.050	0.151	0.502
3.0	12	3.19	106%	7%	0.238	0.713	2.378
5.0	12	5.45	109%	15%	0.796	2.388	7.961
7.0	12	7.23	103%	3%	0.229	0.688	2.293
10	12	9.94	99%	2%	0.219	0.657	2.189
Chloride							
Blank	25	0.060	NA	112%	0.067	0.200	0.666
2.5	5	2.53	101%	10%	0.253	0.759	2.53
5.0	14	5.22	104%	4%	0.191	0.573	1.91
10	17	10.1	101%	4%	0.390	1.17	3.90
25	17	25.1	100%	4%	1.03	3.08	10.3
50	17	51.7	103%	3%	1.40	4.20	14.0
75	12	75.9	101%	2%	1.14	3.42	11.4
101	16	102	101%	3%	3.04	9.12	30.4
Nitrite							
Blank	16	0.088	NA	130%	0.114	0.343	1.14
0.2	5	0.203	102%	7%	0.015	0.046	0.154
1.0	17	0.850	85%	9%	0.080	0.241	0.802
2.0	5	2.18	109%	1%	0.032	0.096	0.321
5.0	15	5.12	102%	11%	0.586	1.76	5.86
10	15	10.2	102%	11%	1.14	3.43	11.4
20	10	20.5	103%	1%	0.271	0.712	2.71
35	10	36.0	103%	1%	0.461	1.38	4.61
50	9	49.5	99%	1%	0.326	0.979	3.26
Sulfate							
Blank	16	0.045	NA	171%	0.077	0.232	0.772
0.4	5	0.400	100%	8%	0.031	0.094	0.314
1.0	9	1.07	107%	15%	0.161	0.483	1.61
1.5	5	1.55	103%	5%	0.084	0.252	0.839
4.0	5	3.85	96%	2%	0.068	0.205	0.684

10	11	10.0	100%	4%	0.352	1.06	3.52
16	5	15.6	98%	1%	0.144	0.432	1.44
25	12	25.5	102%	1%	0.308	0.925	3.09
50	12	49.8	100%	1%	0.648	1.95	6.49
75	12	75.1	100%	1%	0.995	2.99	9.96
100	11	99.1	99%	1%	1.25	3.75	12.5
Bromide							
True	# of	Average	%	RSD	Standard	3 Times	10 Times
Concentration	points	Concentration	Recovery		Deviation	Standard	Standard
(mg/L)		(mg/L)			(mg/L)	Deviation	Deviation
						(mg/L)	(mg/L)
						(ILOD)	(ILOQ)
Blank	16	0.040	NA	393%	0.157	0.472	1.58
0.25	5	0.236	94%	2%	0.004	0.011	0.035
1.0	17	1.04	104%	10%	0.104	0.313	1.04
2.5	5	2.47	99%	2%	0.060	0.180	0.601
5.0	15	4.78	96%	7%	0.355	1.07	3.55
10	15	9.74	97%	5%	0.472	1.42	4.72
20	10	20.1	101%	2%	0.354	1.06	3.54
35	10	35.7	102%	2%	0.714	2.14	7.14
50	9	50.8	102%	2%	1.09	3.27	10.9
Nitrate							
Blank	16	0.024	NA	175%	0.042	0.126	0.421
0.25	5	0.261	104%	2%	0.005	0.016	0.053
1.0	17	1.16	116%	4%	.0510	1.53	5.10
2.5	5	2.76	110%	5%	0.142	0.427	1.42
5.0	15	5.02	100%	13%	0.661	1.98	6.61
10	19	10.1	101%	9%	0.871	2.61	8.71
20	10	20.0	100%	3%	0.520	1.56	5.20
35	10	35.7	102%	2%	0.804	2.41	8.04
50	9	50.8	102%	1%	0.655	1.97	6.56

Calcium							
True	# of	Average	%	RSD	Standard	3 Times	10 Times
Concentration	points	Concentration	Recovery		Deviation	Standard	Standard
(mg/L)		(mg/L)			(mg/L)	Deviation	Deviation
						(mg/L)	(mg/L)
						(ILOD)	(ILOQ)
Blank	16	-0.052	NA	-79%	0.041	0.124	0.413
1.0	7	0.994	99%	8%	0.083	0.248	0.825
2.5	2	2.86	114%	5%	0.154	0.462	1.54
5.0	6	5.13	103%	6%	0.319	0.957	3.19
10	6	10.7	107%	19%	2.02	6.06	20.2
25	3	26.0	104%	11%	2.95	8.85	29.5
50	4	48.5	97%	1%	0.650	1.95	6.50
Potassium							
Blank	16	0.278	NA	72%	0.200	0.599	2.00
1.0	7	1.28	128%	20%	0.258	0.773	2.58
2.5	2	2.74	110%	13%	0.368	1.10	3.68
5.0	6	5.22	104%	5%	0.237	0.710	2.37
10	7	10.3	103%	4%	0.442	1.33	4.42
25	3	24.3	97%	5%	1.13	3.40	11.3
50	4	48.4	97%	2%	0.951	2.85	9.51
Magnesium							
Blank	16	-0.071	NA	-96%	0.068	0.204	0.680
1.0	7	0.980	98%	19%	0.182	0.546	1.82
2.5	2	2.91	116%	11%	0.319	0.958	3.19
5	6	5.28	106%	8%	0.438	1.31	4.38
10	7	10.5	105%	12%	1.22	3.65	12.2
25	3	26.3	105%	16%	4.12	12.4	41.2
50	4	49.0	98%	1%	0.582	1.75	5.81
Sodium							
Blank	16	0.711	NA	74%	0.529	1.59	5.30
1.0	7	1.76	176%	23%	0.404	1.21	4.04
2.5	2	3.22	129%	4%	0.127	0.380	1.27
5	6	5.22	104%	6%	0.311	0.934	3.11

10	7	10.5	105%	4%	0.432	1.30	4.32
25	3	24.7	99%	3%	0.713	2.14	7013
50	4	47.5	95%	2%	0.803	2.41	8.03
Silica							
Blank	16	-0.029	NA	-186%	0.054	0.161	0.536
1.0	6	1.08	108%	11%	0.119	0.358	1.20
5.0	7	5.24	105%	6%	0.317	0.951	3.17
10	7	10.4	104%	5%	0.494	1.48	4.94
20	7	20.9	105%	4%	0.846	2.54	8.47

Table B3. Trace Element QC Table

Boron							
True	# of	Average	%	RSD %	Standard	3 Times	10 Times
Concentration	points	Concentration	Recovery		Deviation	Standard	Standard
(ug/L)		(ug/L)			(ug/L)	Deviation	Deviation
						(ug/L)	(ug/L)
						(ILOD)	(ILOQ)
Blank	19	3.98	NA	40%	1.58	4.7	16
1.0	13	3.03	303%	76%	2.29	6.9	23
5.0	13	5.95	119%	26%	1.56	4.7	16
10	13	11.1	111%	13%	1.43	4.3	14
20	13	24.8	124%	7%	1.85	5.6	19
50	13	49.0	98%	7%	3.35	10	33
100	13	108	108%	8%	8.86	27	89
500	13	541	108%	9%	46.9	141	469
1000	13	1022	102%	8%	84.7	254	847
Lithium							
Blank	18	0.392	NA	145%	0.57	1.71	5.70
1.0	7	1.35	135%	97%	1.31	3.93	13.1
5.0	5	5.67	113%	5%	0.257	0.770	2.57
25	5	26.8	107%	4%	1.08	3.25	10.8
50	13	48.1	96%	11%	5.47	16.4	54.7
100	5	105	105%	4%	3.89	11.7	38.9
150	7	144	96%	11%	15.2	45.6	152
200	5	197	99%	3%	4.99	15.0	49.9
250	8	238	95%	9%	21.3	64.0	213
300	7	293	98%	10%	29.2	87.5	292
350	7	338	97%	9%	30.5	91.4	305
400	7	398	100%	7%	26.1	78.4	261
500	12	495	99%	5%	22.7	68.0	227
Beryllium							
Blank	18	0.214	NA	114%	0.244	0.732	2.44

1.0	7	1.33	133%	52%	0.694	2.08	6.94
5.0	5	5.38	108%	4%	0.195	0.584	1.95
25	5	25.9	104%	3%	0.892	2.68	8.92
50	13	49.3	99%	10%	4.98	14.9	49.8
100	5	99.9	100%	2%	2.31	6.92	23.1
150	7	151	101%	2%	3.13	9.39	31.3
200	5	196	98%	2%	3.25	9.74	32.5
250	8	248	99%	4%	9.26	27.8	92.6
300	7	308	103%	4%	11.5	34.4	115
350	7	353	101%	3%	10.2	30.5	102
400	7	410	103%	3%	10.5	31.4	105
500	12	505	101%	3%	15.7	47.0	157
Magnesium							
Blank	17	0.120	NA	233%	0.28	0.839	2.80
1.0	8	5.00	500%	74%	3.72	11.2	37.2
5.0	13	4.53	91%	44%	2.00	6.00	20.0
25	5	27.0	108%	4%	1.01	3.04	10.1
50	13	54.1	108%	14%	7.78	23.3	77.8
100	5	103	103%	3%	2.62	7.85	26.2
150	7	165	110%	3%	4.67	14.0	46.7
200	5	194	97%	2%	3.92	11.8	39.2
250	7	272	109%	1%	4.06	12.2	40.6
350	7	329	94%	2%	5.92	17.7	59.2
400	7	384	96%	1%	3.21	9.64	32.1
450	6	440	98%	1%	4.93	14.8	49.3
500	5	482	96%	2%	10.6	31.7	106
Aluminum							
Blank	25	0.76	NA	NA	0.861	2.58	8.61
1.0	15	2.26	226%	113%	1.23	3.70	12.3
5.0	13	3.53	71%	54%	2.32	6.97	23.2
25	5	27.3	109%	66%	1.20	3.61	12.0
50	20	55.2	110%	4%	5.37	16.1	53.7
100	5	104	104%	10%	3.37	10.1	33.7
150	14	159	106%	3%	6.13	18.4	61.3
200	5	195	98%	4%	5.16	15.5	51.6
250	15	260	104%	3%	12.1	36.2	121
300	7	311	104%	5%	7.11	21.3	71.1
350	21	356	102%	2%	22.5	67.6	225
400	7	417	104%	6%	8.56	25.7	85.6
450	6	440	98%	2%	4.35	13.0	43.5
500	12	504	101%	1%	17.2	51.7	172
Arsenic							
Blank	18	0.35	NA	125%	0.437	1.31	4.37
1.0	7	1.57	157%	40%	0.623	1.87	6.23

5.0	5	5.16	103%	6%	0.311	0.93	3.11
25	5	25.8	103%	2%	0.580	1.74	5.80
50	13	48.6	97%	8%	3.84	11.5	38.4
100	5	99.1	99%	2%	1.53	4.60	15.3
150	7	145	97%	3%	3.84	11.5	38.4
200	5	191	96%	2%	3.67	11.0	36.7
250	7	239	96%	2%	5.75	17.2	57.5
300	7	295	98%	3%	8.27	24.8	82.7
350	7	340	NA	2%	6.99	21.0	69.9
400	7	402	157%	3%	13.4	40.2	134
500	12	496	103%	2%	11.1	33.3	111
Selenium							
Blank	18	0.55	NA	119%	0.654	1.96	6.54
1.0	7	1.93	193%	33%	0.638	1.91	6.38
5.0	5	5.35	107%	9%	0.507	1.52	5.07
25	5	25.7	103%	2%	0.441	1.32	4.41
50	13	49.5	99%	8%	4.06	12.2	40.6
100	5	102	102%	2%	1.76	5.29	17.6
150	7	147	98%	3%	3.77	11.3	37.7
200	5	197	99%	1%	2.85	8.55	28.5
250	8	240	96%	4%	8.42	25.3	84.2
300	7	296	99%	3%	7.53	22.6	75.3
350	7	339	97%	1%	4.35	13.1	43.5
400	7	403	101%	3%	10.8	32.3	108
500	12	494	99%	2%	9.50	28.5	95.0
Rubidium							
Blank	18	0.35	NA	106%	0.371	1.11	3.71
1.0	7	1.40	140%	48%	0.668	2.00	6.68
5.0	5	5.61	112%	2%	0.120	0.36	1.20
25	5	26.9	108%	1%	0.274	0.82	2.74
50	12	50.1	100%	6%	3.21	9.63	32.1
100	5	105	105%	1%	1.03	3.10	10.3
150	7	151	101%	2%	2.54	7.62	25.4
200	5	199	100%	1%	1.86	5.57	18.6
250	8	245	98%	3%	7.16	21.5	71.6
300	7	303	101%	1%	4.20	12.6	42.0
350	7	345	99%	1%	3.90	11.7	39.0
400	7	403	101%	2%	6.09	18.3	60.9
500	12	499	100%	2%	8.90	26.7	89.0
Strontium							
Blank	18	0.22	NA	110%	0.243	0.728	2.43
1.0	7	1.38	138%	46%	0.630	1.89	6.30
5	5	5.62	112%	2%	0.121	0.362	1.21
25	5	26.8	107%	1%	0.267	0.801	2.67

50	13	50.1	100%	6%	3.18	9.53	31.8
100	5	105	105%	1%	0.989	2.97	9.89
150	7	151	101%	2%	2.60	7.80	26.0
200	5	197	99%	1%	1.63	4.90	16.3
250	8	243	97%	3%	6.95	20.9	69.5
300	7	300	100%	1%	3.70	11.1	37.0
350	7	344	98%	1%	4.02	12.1	40.2
400	7	402	101%	1%	4.96	14.9	49.6
500	12	499	100%	2%	7.97	23.9	79.7
Barium							
Blank	18	0.25	NA	105%	0.263	0.788	2.63
1.0	7	1.32	132%	52%	0.691	2.07	6.91
5.0	5	5.40	108%	3%	0.138	0.414	1.38
25	5	25.9	104%	1%	0.372	1.12	3.72
50	13	48.7	97%	8%	4.03	12.1	40.3
100	5	101	101%	2%	1.94	5.83	19.4

Table B4. Chemical concentrations for geothermal samples collected throughout the ESRP in 2014.

G *4	T - 4	T	11-14 ID	Alkalinity			ICP-OE	S			IC	P-MS							I	C	
SILE	Lat	Long	Unit ID	as HCO3	Ca	Mg	Na	K	SiO2(aq)	Li	Be	Al	As	Rb	Sr	Ba	В	F	Cl	SO4	NO3
001	43.64283	-111.68768	Heise Hot Springs	985.76	487.66	93.79	1539.72	206.21	33.63	2.48	1.17E-03	0.131	0.032	0.652	5.466	0.057	4.550	4.00	2267.48	712.26	ND
002	44.14558	-112.55494	Lidy Hot Springs 1	131.76	66.24	15.58	25.43	13.22	37.76	0.05	<lod< td=""><td>0.001</td><td>0.014</td><td>0.019</td><td>0.597</td><td>0.086</td><td>0.093</td><td>4.60</td><td>7.29</td><td>101.91</td><td>ND</td></lod<>	0.001	0.014	0.019	0.597	0.086	0.093	4.60	7.29	101.91	ND
003	44.14166	-112.55240	Lidy Hot Springs 2	163.48	64.16	16.34	27.65	13.47	34.21	0.05	<lod< td=""><td>0.001</td><td>0.014</td><td>0.019</td><td>0.611</td><td>0.078</td><td>0.092</td><td>4.68</td><td>6.94</td><td>98.28</td><td>ND</td></lod<>	0.001	0.014	0.019	0.611	0.078	0.092	4.68	6.94	98.28	ND
004	43.79211	-111.44009	Green Canyon Hot Springs	136.64	144.20	33.75	4.99	4.46	27.01	0.01	<lod< td=""><td><lod< td=""><td>0.003</td><td>0.007</td><td>1.172</td><td>0.034</td><td>0.020</td><td>1.46</td><td>0.94</td><td>314.24</td><td>2.12</td></lod<></td></lod<>	<lod< td=""><td>0.003</td><td>0.007</td><td>1.172</td><td>0.034</td><td>0.020</td><td>1.46</td><td>0.94</td><td>314.24</td><td>2.12</td></lod<>	0.003	0.007	1.172	0.034	0.020	1.46	0.94	314.24	2.12
005	44.09325	-111.43534	Sturm Well	66.12	3.18	0.05	33.25	0.89	63.14	0.05	<lod< td=""><td>0.005</td><td>0.012</td><td>0.004</td><td>0.005</td><td>0.001</td><td>0.039</td><td>2.09</td><td>3.28</td><td>5.77</td><td>0.63</td></lod<>	0.005	0.012	0.004	0.005	0.001	0.039	2.09	3.28	5.77	0.63
006	43.33278	-113.91790	Condie Hot Springs	314.76	61.09	11.47	62.40	22.49	29.51	0.09	<lod< td=""><td>0.003</td><td>0.005</td><td>0.047</td><td>0.932</td><td>0.284</td><td>0.258</td><td>1.58</td><td>13.97</td><td>33.47</td><td>2.69</td></lod<>	0.003	0.005	0.047	0.932	0.284	0.258	1.58	13.97	33.47	2.69
007	43.60234	-113.24214	Greenhouse Well	285.48	77.81	27.75	33.83	9.36	31.58	0.04	<lod< td=""><td><lod< td=""><td>0.010</td><td>0.021</td><td>0.723</td><td>0.096</td><td>0.151</td><td>0.74</td><td>22.24</td><td>57.52</td><td>6.59</td></lod<></td></lod<>	<lod< td=""><td>0.010</td><td>0.021</td><td>0.723</td><td>0.096</td><td>0.151</td><td>0.74</td><td>22.24</td><td>57.52</td><td>6.59</td></lod<>	0.010	0.021	0.723	0.096	0.151	0.74	22.24	57.52	6.59
008	42.69940	-114.91040	Eckart Office Well	80.52	5.74	0.74	112.83	4.16	52.04	0.01	<lod< td=""><td>0.007</td><td>0.046</td><td>0.004</td><td>0.022</td><td>0.001</td><td>0.190</td><td>12.16</td><td>46.46</td><td>90.87</td><td>1.21</td></lod<>	0.007	0.046	0.004	0.022	0.001	0.190	12.16	46.46	90.87	1.21
009	42.64497	-114.78706	Campbell 1	143.96	23.47	3.00	57.54	7.69	71.89	0.06	<lod< td=""><td>0.000</td><td>0.008</td><td>0.019</td><td>0.156</td><td>0.004</td><td>0.107</td><td>2.21</td><td>23.09</td><td>40.46</td><td>5.37</td></lod<>	0.000	0.008	0.019	0.156	0.004	0.107	2.21	23.09	40.46	5.37
010	42.64432	-114.78294	Campbell 2	126.88	26.66	3.47	55.93	8.04	69.37	0.06	<lod< td=""><td>0.000</td><td>0.007</td><td>0.019</td><td>0.177</td><td>0.002</td><td>0.106</td><td>2.46</td><td>20.03</td><td>31.78</td><td>4.75</td></lod<>	0.000	0.007	0.019	0.177	0.002	0.106	2.46	20.03	31.78	4.75
011	42.69457	-114.85592	Miracle Hot Springs	92.72	0.84	0.00	128.20	1.87	99.53	0.05	<lod< td=""><td>0.022</td><td>0.066</td><td>0.006</td><td>0.001</td><td><lod< td=""><td>0.332</td><td>22.37</td><td>31.69</td><td>33.72</td><td>ND</td></lod<></td></lod<>	0.022	0.066	0.006	0.001	<lod< td=""><td>0.332</td><td>22.37</td><td>31.69</td><td>33.72</td><td>ND</td></lod<>	0.332	22.37	31.69	33.72	ND
012	42.54479	-114.94855	Driscoll Well	95.16	11.23	0.36	149.41	1.38	45.54	0.19	<lod< td=""><td>0.005</td><td>0.023</td><td>0.005</td><td>0.063</td><td>0.006</td><td>0.117</td><td>2.42</td><td>53.31</td><td>188.04</td><td>1.44</td></lod<>	0.005	0.023	0.005	0.063	0.006	0.117	2.42	53.31	188.04	1.44
013	42.54348	-114.94897	Driscoll Spring	97.60	11.14	0.79	146.61	1.92	48.37	0.19	<lod< td=""><td>0.016</td><td>0.024</td><td>0.007</td><td>0.065</td><td>0.015</td><td>0.113</td><td>2.45</td><td>53.59</td><td>186.65</td><td>ND</td></lod<>	0.016	0.024	0.007	0.065	0.015	0.113	2.45	53.59	186.65	ND
014	42.58318	-114.47496	CSI Well 2	126.88	4.54	0.19	94.90	3.27	64.23	0.01	<lod< td=""><td>0.001</td><td>0.017</td><td>0.008</td><td>0.019</td><td>0.001</td><td>0.150</td><td>9.64</td><td>26.44</td><td>46.81</td><td>4.89</td></lod<>	0.001	0.017	0.008	0.019	0.001	0.150	9.64	26.44	46.81	4.89
015	43.44244	-111.90484	Comore Loma #6	222.04	50.80	15.25	96.66	15.97	65.34	0.12	<lod< td=""><td>0.002</td><td>0.003</td><td>0.042</td><td>0.311</td><td>0.163</td><td>0.216</td><td>0.38</td><td>126.11</td><td>32.19</td><td>5.90</td></lod<>	0.002	0.003	0.042	0.311	0.163	0.216	0.38	126.11	32.19	5.90
016	43.43774	-111.93018	Comore Loma #5	251.32	51.96	18.54	89.75	15.77	85.12	0.09	<lod< td=""><td>0.002</td><td>0.004</td><td>0.042</td><td>0.243</td><td>0.225</td><td>0.215</td><td>0.27</td><td>120.31</td><td>25.60</td><td>2.76</td></lod<>	0.002	0.004	0.042	0.243	0.225	0.215	0.27	120.31	25.60	2.76
017	43.43142	-111.94501	Blackhawk #2	270.84	77.43	22.10	124.43	17.29	83.67	0.13	<lod< td=""><td>0.002</td><td>0.004</td><td>0.045</td><td>0.405</td><td>0.247</td><td>0.341</td><td>0.23</td><td>204.93</td><td>36.98</td><td>2.84</td></lod<>	0.002	0.004	0.045	0.405	0.247	0.341	0.23	204.93	36.98	2.84
018	43.43142	-11.94469	Blackhawk #1	268.40	75.34	21.04	122.23	16.74	81.99	0.13	<lod< td=""><td>0.002</td><td>0.004</td><td>0.044</td><td>0.430</td><td>0.229</td><td>0.335</td><td>0.26</td><td>196.52</td><td>39.07</td><td>3.48</td></lod<>	0.002	0.004	0.044	0.430	0.229	0.335	0.26	196.52	39.07	3.48
020	42.10207	-113.38434	Raft River Geothermal # 1	34.16	59.89	0.16	567.72	39.89	132.81	1.57	1.31E-03	0.085	0.010	0.420	1.527	0.028	0.269	9.08	956.09	58.43	1.40
021	42.11042	-113.37519	Raft River Geothermal # 2	38.06	52.49	0.10	418.22	37.89	157.34	1.05	5.92E-04	0.086	0.005	0.388	1.224	0.015	0.193	9.49	979.92	63.69	6.30
022	42.08359	-113.35865	Raft River Geothermal # 7	32.94	199.21	0.10	1258.19	150.28	226.84	2.57	9.33E-04	0.069	0.018	1.306	4.931	0.080	0.488	6.05	2197.12	59.30	1.33
023	42.09787	-113.38541	Raft River Geothermal # 4	44.41	59.79	0.14	542.55	38.82	133.60	1.57	6.62E-04	0.066	0.007	0.396	1.413	0.023	0.249	7.15	790.36	59.32	0.06
024	42.72589	-112.87381	Indian Hot Springs	222.53	80.84	19.52	126.03	11.48	20.37	0.08	<lod< td=""><td>0.002</td><td>0.025</td><td>0.028</td><td>2.115</td><td>0.288</td><td>0.104</td><td>0.50</td><td>216.27</td><td>19.81</td><td>0.36</td></lod<>	0.002	0.025	0.028	2.115	0.288	0.104	0.50	216.27	19.81	0.36
025	42.23667	-113.36971	Grush Dairy	283.04	0.90	0.09	164.01	2.49	72.97	0.15	<lod< td=""><td>0.112</td><td>0.003</td><td>0.011</td><td>0.016</td><td>0.006</td><td>0.093</td><td>6.70</td><td>68.97</td><td>24.02</td><td>ND</td></lod<>	0.112	0.003	0.011	0.016	0.006	0.093	6.70	68.97	24.02	ND
026	42.108	-113.39206	Raft River USGS Well	95.16	70.72	0.14	621.47	24.85	84.27	1.50	6.77E-04	0.040	0.006	0.287	1.612	0.017	0.274	7.04	976.46	56.47	0.05
027	42.10776	-113.39186	Raft River Frasier Well	59.78	67.22	0.21	598.27	22.61	77.42	1.45	1.08E-03	0.033	0.007	0.280	1.543	0.017	0.264	5.82	857.85	54.42	0.06
028	42.09656	-113.37800	Raft River Crook Well	35.38	157.70	0.31	1186.92	35.88	95.91	2.57	1.45E-03	0.059	0.015	0.430	3.117	0.118	0.480	6.07	1679.69	56.51	0.18
029	43.36414	-113.78943	Milford Sweat	251.32	66.49	13.68	42.95	8.45	24.58	0.04	5.82E-05	0.003	0.073	0.021	0.449	0.092	0.172	1.85	6.61	49.92	0.01
030	43.3278	-114.39941	Magic Hot Springs Runoff	709.59	13.17	1.29	333.02	20.93	109.44	1.17	1.39E-03	0.007	0.006	0.123	0.646	0.147	1.237	10.57	79.07	52.95	ND
031	43.42341	-114.62857	Elk Creek 1	92.72	2.33	0.00	90.18	1.66	65.02	0.21	<lod< td=""><td>0.022</td><td>0.005</td><td>0.008</td><td>0.109</td><td>0.001</td><td>0.254</td><td>15.13</td><td>23.17</td><td>42.57</td><td>ND</td></lod<>	0.022	0.005	0.008	0.109	0.001	0.254	15.13	23.17	42.57	ND
032	43.42322	-114.62865	Elk Creek 2	90.28	2.27	0.00	91.23	1.57	65.30	0.21	<lod< td=""><td>0.026</td><td>0.005</td><td>0.008</td><td>0.112</td><td>0.001</td><td>0.252</td><td>15.17</td><td>23.14</td><td>42.60</td><td>ND</td></lod<>	0.026	0.005	0.008	0.112	0.001	0.252	15.17	23.14	42.60	ND
033	43.29241	-114.91002	Barron Well	180.56	16.90	0.62	156.25	2.97	51.70	0.36	1.83E-04	0.010	0.001	0.020	0.356	0.009	0.173	7.08	9.48	210.93	ND
034	43.38290	-114.93224	Wardrop Hot Springs	192.76	1.18	0.27	56.01	0.88	76.82	0.05	<lod< td=""><td>0.086</td><td>0.003</td><td>0.005</td><td>0.045</td><td>0.000</td><td>0.047</td><td>3.35</td><td>5.06</td><td>11.49</td><td>0.00</td></lod<>	0.086	0.003	0.005	0.045	0.000	0.047	3.35	5.06	11.49	0.00
035	43.3278	-114.39941	Magic Hot Springs Well	702.72	22.34	1.39	310.54	19.79	103.74	1.18	2.37E-03	0.009	0.004	0.126	0.931	0.223	1.200	9.95	74.11	50.34	ND

G .4.	T	T		Alkalinity			ICP-OE	S			IC	P-MS							Ι	С	
Site	Lat	Long	Unit ID	as HCO3	Ca	Mg	Na	K	SiO2(aq)	Li	Be	Al	As	Rb	Sr	Ba	В	F	Cl	SO4	NO3
036	43.12966	-115.33841	Prince Albert Hot Springs	104.92	0.26	0.01	55.28	2.67	110.10	0.01	1.24E-04	0.017	0.009	0.007	0.001	0.001	0.037	6.95	2.55	8.42	ND
037	42.17334	-113.86163	Oakley Warm Spring	107.36	2.23	0.02	85.72	2.18	79.21	0.03	1.26E-04	0.015	0.001	0.015	0.053	0.001	0.052	7.61	52.57	21.40	ND
038	42.08533	-113.93984	Richard Austin Well 1	204.96	2.14	0.06	105.97	1.89	29.71	0.07	1.01E-04	0.025	0.007	0.006	0.038	0.014	0.071	2.42	16.17	22.80	ND
039	42.47663	-113.50770	Marsh Creek Well	124.44	9.08	0.41	107.78	4.28	62.55	0.07	1.69E-04	0.007	0.001	0.029	0.094	0.012	0.063	13.18	51.77	50.26	ND
040	42.70399	-114.85699	1000 Springs (Sliger's Well)	212.28	0.94	0.00	136.44	1.59	93.53	0.05	5.54E-05	0.074	0.061	0.008	0.001	0.000	0.499	24.22	50.45	30.06	ND
041	42.68841	-114.82680	Banbury Hot Springs Well	248.88	0.88	0.00	96.77	1.65	103.40	0.03	8.87E-05	0.014	0.042	0.007	0.001	0.000	0.216	11.39	16.86	23.50	ND
042	42.68841	-114.82680	Banbury Hot Springs	168.36	1.04	0.00	94.90	1.60	102.85	0.03	<lod< td=""><td>0.015</td><td>0.042</td><td>0.007</td><td>0.001</td><td>0.000</td><td>0.219</td><td>11.36</td><td>16.76</td><td>23.54</td><td>ND</td></lod<>	0.015	0.042	0.007	0.001	0.000	0.219	11.36	16.76	23.54	ND
043	42.95543	-115.29997	Diamond Laundry	314.76	1.66	0.18	142.30	1.29	30.13	0.02	<lod< td=""><td>0.013</td><td>0.000</td><td>0.002</td><td>0.007</td><td>0.001</td><td>0.890</td><td>13.07</td><td>23.26</td><td>4.30</td><td>304.06</td></lod<>	0.013	0.000	0.002	0.007	0.001	0.890	13.07	23.26	4.30	304.06
044	43.00294	-115.19222	Johnston Well	117.12	2.42	0.05	77.41	1.27	40.93	0.02	<lod< td=""><td>0.009</td><td>0.002</td><td>0.002</td><td>0.002</td><td>0.000</td><td>0.329</td><td>16.96</td><td>5.95</td><td>10.29</td><td>0.44</td></lod<>	0.009	0.002	0.002	0.002	0.000	0.329	16.96	5.95	10.29	0.44
045	42.66851	-114.82436	Leo Ray Hill	140.30	5.95	0.19	61.69	3.41	54.05	0.06	5.11E-05	0.002	0.025	0.008	0.010	0.001	0.129	3.42	13.97	31.30	ND
046	42.66778	-114.82673	Leo Ray Road	139.08	7.62	0.45	56.44	4.10	54.47	0.06	<lod< td=""><td>0.011</td><td>0.018</td><td>0.010</td><td>0.018</td><td>0.002</td><td>0.132</td><td>3.44</td><td>11.69</td><td>24.77</td><td>0.02</td></lod<>	0.011	0.018	0.010	0.018	0.002	0.132	3.44	11.69	24.77	0.02
048	42.70501	-114.85701	Hensley Well	231.80	1.93	0.01	121.63	1.62	83.31	0.04	<lod< td=""><td>0.011</td><td>0.060</td><td>0.002</td><td>0.007</td><td>0.001</td><td>0.579</td><td>24.13</td><td>51.93</td><td>33.13</td><td>ND</td></lod<>	0.011	0.060	0.002	0.007	0.001	0.579	24.13	51.93	33.13	ND
049	43.11025	-115.31258	Latty Hot Prings	107.36	0.20	0.01	53.91	1.90	103.21	0.02	5.64E-05	0.020	0.009	0.006	0.001	0.000	0.043	6.85	2.73	11.45	0.09
050	42.94632	-115.49423	Laib Well	885.72	9.43	0.55	291.73	9.84	57.73	0.34	4.50E-04	0.176	0.002	0.018	0.093	0.094	2.167	1.74	66.20	10.37	164.00
051	42.58050	-114.47089	CSI Well 1	153.72	3.99	0.22	86.28	2.99	60.92	0.02	8.49E-05	0.003	0.017	0.007	0.017	0.001	0.185	8.61	25.81	45.38	3.50
052	42.59755	-114.40018	Larry Anderson Well	187.88	1.22	0.01	118.11	2.19	69.27	0.03	3.12E-04	0.005	0.014	0.007	0.002	0.001	0.285	15.82	21.13	36.32	36.82
053	42.61390	-114.48799	Pristine Springs	153.72	1.30	0.01	109.33	2.12	71.55	0.01	<lod< td=""><td>0.004</td><td>0.029</td><td>0.005</td><td>0.004</td><td>0.000</td><td>0.317</td><td>16.47</td><td>26.72</td><td>30.77</td><td>1.09</td></lod<>	0.004	0.029	0.005	0.004	0.000	0.317	16.47	26.72	30.77	1.09
054	42.5726	-114.4518	Twin Falls High School	161.04	39.91	8.98	55.41	4.92	59.11	0.03	1.04E-04	0.002	0.006	0.012	0.185	0.016	0.107	2.35	37.51	76.03	6.74
055	42.57750	-114.28870	Anderson Campground Well	246.44	1.50	0.02	126.50	3.10	66.02	0.07	<lod< td=""><td>0.024</td><td>0.141</td><td>0.009</td><td>0.004</td><td>0.002</td><td>0.495</td><td>23.37</td><td>34.42</td><td>37.39</td><td>0.10</td></lod<>	0.024	0.141	0.009	0.004	0.002	0.495	23.37	34.42	37.39	0.10
056	43.6083	-113.24432	Butte City Well	385.52	51.55	20.88	32.45	7.53	33.17	0.03	<lod< td=""><td>0.002</td><td>0.006</td><td>0.016</td><td>0.558</td><td>0.118</td><td>0.164</td><td>0.62</td><td>19.81</td><td>49.43</td><td>3.78</td></lod<>	0.002	0.006	0.016	0.558	0.118	0.164	0.62	19.81	49.43	3.78
057	43.02583	-112.02551	Quidop Springs 1	617.32	165.42	55.84	28.40	22.96	16.05	0.13	2.45E-04	0.005	0.009	0.034	1.824	0.026	0.094	0.81	23.30	223.91	1.97
058	43.0372	-112.0043	Quidop Springs 2	710.04	199.48	68.95	33.80	34.11	19.61	0.21	1.15E-02	0.416	0.027	0.050	2.598	0.125	0.129	0.81	15.16	344.95	8.84
059	43.11448	-112.16660	Yandell Warm Springs	265.96	72.47	26.33	13.55	3.95	16.57	0.02	<lod< td=""><td>0.000</td><td>0.003</td><td>0.004</td><td>0.489</td><td>0.045</td><td>0.036</td><td>0.60</td><td>16.29</td><td>90.37</td><td>1.97</td></lod<>	0.000	0.003	0.004	0.489	0.045	0.036	0.60	16.29	90.37	1.97
060	42.4376	-113.4343	Skaggs Ranch	180.56	27.73	1.99	32.62	3.86	44.06	0.02	<lod< td=""><td>0.000</td><td>0.001</td><td>0.007</td><td>0.134</td><td>0.075</td><td>0.031</td><td>1.52</td><td>20.37</td><td>14.52</td><td>ND</td></lod<>	0.000	0.001	0.007	0.134	0.075	0.031	1.52	20.37	14.52	ND
061	42.1001	-113.63354	Durfee Hot Springs	107.36	8.21	0.35	84.27	3.30	67.87	0.09	5.88E-05	0.003	0.002	0.025	0.124	0.012	0.075	6.19	59.19	28.16	0.34
062	42.2233	-113.7917	Basin Cemetery	122.00	18.33	2.42	57.98	1.98	40.20	0.01	1.81E-04	0.001	0.002	0.003	0.168	0.013	0.064	3.58	47.41	21.01	1.40
063	42.4822	-113.97341	Wybenga Dairy	114.68	25.03	1.07	20.90	8.71	69.43	0.01	8.25E-05	0.002	0.002	0.016	0.212	0.129	0.052	0.70	13.13	15.74	0.83
064	42.1394	-111.9371	David Bosen Well	583.16	206.92	18.48	4523.31	794.93	95.12	6.07	6.75E-03	0.078	0.076	4.972	20.351	3.235	5.555	5.21	7128.94	49.19	ND
065	43.8772	-111.55890	Schwendiman Well	164.70	26.86	6.87	39.27	5.49	61.53	0.05	<lod< td=""><td>0.002</td><td>0.007</td><td>0.017</td><td>0.080</td><td>0.022</td><td>0.087</td><td>2.57</td><td>13.67</td><td>25.25</td><td>4.50</td></lod<>	0.002	0.007	0.017	0.080	0.022	0.087	2.57	13.67	25.25	4.50
066	43.8857	-111.5595	Clyde Well	183.00	24.67	7.29	45.65	5.32	65.03	0.06	6.09E-05	0.002	0.010	0.018	0.078	0.027	0.119	3.17	15.41	22.97	5.62
067	43.9013	-111.50967	Cinder Block Well	181.78	18.17	3.50	52.25	5.04	70.48	0.07	8.85E-05	0.002	0.013	0.018	0.050	0.021	0.151	4.18	12.18	17.19	1.08
068	43.8831	-111.6186	Newdale City Well	251.32	27.56	4.70	70.89	8.12	70.41	0.12	5.39E-05	0.002	0.012	0.031	0.086	0.052	0.215	5.03	24.86	29.74	7.18
069	43.85840	-111.67870	Spackman Well	190.32	37.16	13.68	11.64	3.00	29.60	<lod< td=""><td><lod< td=""><td>0.001</td><td>0.002</td><td>0.004</td><td>0.108</td><td>0.033</td><td>0.065</td><td>0.46</td><td>5.82</td><td>12.91</td><td>7.71</td></lod<></td></lod<>	<lod< td=""><td>0.001</td><td>0.002</td><td>0.004</td><td>0.108</td><td>0.033</td><td>0.065</td><td>0.46</td><td>5.82</td><td>12.91</td><td>7.71</td></lod<>	0.001	0.002	0.004	0.108	0.033	0.065	0.46	5.82	12.91	7.71
070	42.9781	-112.4165	Fort Hall Thermal Well	223.26	55.35	21.27	29.30	7.14	49.98	0.03	< 0.0001	< 0.01	0.005	0.311	0.311	0.065	0.054	ND	ND	ND	ND

APPENDIX C: WATER TYPES AND CHARGE BALANCE

Table C1. Major cations and anions for Na-HCO₃ type thermal waters utilized in this study. Charge balances listed are given as the ratio of cations to anions calculated from meq/L units. Values with more than a 20% difference from a 1:1 balance are highlighted in red.

Site	Lat	Long	T (°C)	pН	Ca	Mg	Na	K	Cl	F	SO4	Alkalinity as HCO3	TDS	Charge Balance
M91-7	42.60316	-114.477722	39	9.3	1.6	0.06	96	2.8	15	11	20	145	331	1.14
M91-8	42.56936	-114.606826	27	8.6	5.1	0.17	61	4.3	11	4	16	134	253	1.00
M91-11	42.58362	-114.48118	30.5	8.6	8.6	0.4	74	6.3	21	11	26	121	267	1.04
M91-13	42.58966	-114.509924	41.5	9	1.7	0.08	130	2.5	36	26	28	195	408	0.94
M91-14	42.57862	-114.287802	42	9.2	1.5	0.01	120	1.9	17	14	32	207	272	1.01
LY89-11	42.63174	-114.597327	30.5	9	2	0.05	82	2.9	11	12	20	110	272	1.18
LY89-12	42.61798	-114.473657	27	9	1.9	0.1	110	3.5	10	22	18	140	341	1.21
LY89-13	42.61539	-114.488068	42	8.8	2.5	0.1	110	1.9	16	16	15	140	326	1.27
LY89-14	42.59496	-114.481012	39.5	9	1.9	0.1	99	1.9	15	14	25	110	301	1.28
LY89-15	42.60581	-114.478121	39	9.3	1.6	0.06	96	2.8	15	11	20	120	299	1.28
LY89-22	42.58386	-114.480819	30.5	9	8.6	0.4	74	6.3	21	11	26	110	262	1.09
CC-14	42.58318	-114.47496	38.1	8.79	4.54	0.19	95	3.3	26	10	47	127	332	1.03
CC-51	42.58050	-114.47089	37.7	8.81	3.99	0.22	86	3.0	26	9	45	154	312	0.87
CC-52	42.59755	-114.40018	43.0	9.16	1.22	0.01	118	2.2	21	16	36	188	397	1.00
CC-53	42.61390	-114.48799	43.0	9.18	1.30	0.01	109	2.1	27	16	31	154	377	1.02
CC-55	42.57750	-114.28870	37.0	9.05	1.50	0.02	126	3.1	34	23	37	246	423	0.81
LY82-3	42.70158	-114.856527	62	9.4	0.7	0.1	150	1.4	48	15	35	168	503	1.17
LY82-4	42.70184	-114.854331	71.5	9.5	1.5	0.1	140	1.5	51	27	33	168	505	0.98
LY82-5	42.69133	-114.866789	57	9.4	0.9	0.1	130	1.5	34	21	34	177	485	1.01
LY82-6	42.6881	-114.84012	45.5	9.1	0.9	0.1	100	1.8	30	26	29	163	438	0.81
LY82-7	42.68357	-114.834978	42.5	9.3	1.3	0.1	90	1.7	14	9	28	148	359	1.04
LY82-11	42.68487	-114.829093	44.5	9.4	3.3	0.1	100	1.8	22	12	27	160	414	1.03
LY82-12	42.68251	-114.82902	30	9.3	0.9	0.1	97	1.6	20	13	28	154	379	0.99
LY82-15	42.66904	-114.8236	34	8.7	5.4	0.2	66	2.9	13	4	30	124	302	1.00
LY82-18	42.66149	-114.814894	32	8.4	8	0.2	62	2.8	11	3	26	144	310	0.94
LY82-19	42.66001	-114.81414	31.5	8.6	7.5	0.3	63	2.8	11	3	26	134	299	1.00
LY82-20	42.65886	-114.810791	32.5	8.3	10	0.5	62	3.5	11	3	25	150	316	0.97
LY89-1	42.66191	-114.812514	33	8.4	11	0.5	61	3.9	11	4	24	150	246	0.97
LY89-4	42.63697	-114.754192	26	8.3	7.4	0.2	62	5.6	10	5	21	140	262	0.99
LY89-8	42.65494	-114.650688	44	9	1.5	0.1	96	1.5	14	16	24	78	304	1.43
CC-40	42.70399	-114.85699	72.0	9.5	0.94	0.00	136	1.59	50	24	30	212	494	0.89
CC-42	42.68841	-114.82680	58.5	9	1.04	0.00	95	1.60	17	11	24	168	332	0.98
CC-45	42.66851	-114.82436	35.0	8.69	5.95	0.19	62	3.41	14	3	31	140	228	0.87
CC-46	42.66778	-114.82673	35.5	8.41	7.62	0.45	56	4.10	12	3	25	139	222	0.90
CC-48	42.70501	-114.85701	31.8	9.55	1.93	0.01	122	1.62	52	24	33	232	429	0.75
LY89-2	42.66123	-114.791887	37	8.1	13	1.2	58	4.1	12	4	25	140	246	1.01
CC-11	42.69457	-114.85592	58.4	9.53	0.84	0.00	128	1.87	32	22	34	93	423	1.32
LY89-9	42.64886	-114.652208	23	9.1	8.9	2.4	73	1.9	20	11	28	95	263	1.18

Site	Lat	Long	T (°C)	рН	Ca	Mg	Na	K	Cl	F	SO 4	Alkalinity as HCO3	TDS	Charge Balance
LY89-17	42.5759	-114.738609	25	8	35	4.5	63	12	35	2	69	160	371	1.01
LY82-13	42.59993	-114.943824	42	9.2	26	3.9	35	7.9	16	2	35	120	331	1.03
LY89-3	42.65402	-114.795266	28.5	8	16	2.3	55	5.8	13	3	27	150	259	1.00
CC-9	42.64497	-114.78706	34.5	7.98	23.47	3.00	58	7.69	23	2	40	144	252	1.04
CC-10	42.64432	-114.78294	34.4	7.96	26.66	3.47	56	8.04	20	2	32	127	293	1.24
CC-12	42.54479	-114.94855	37.5	8.59	11.23	0.36	149	1.38	53	2	188	95	559	1.00
LY89-10	42.59616	-114.751276	31	8	39	5.6	65	11	38	2	75	160	388	1.03
LY89-5	42.64683	-114.785566	32.5	7.8	18	2.2	54	6	13	3	27	150	268	1.02
LY89-6	42.63448	-114.778469	25	8.1	17	1.1	53	7.5	14	2	22	160	283	0.95
LY89-7	42.5977	-114.760739	29	7.9	36	5.4	61	10	31	2	61	170	356	1.02
M91-12	42.54998	-114.436857	30.5	7.8	37	6.8	31	4.9	31	1	51	100	266	1.07
LY89-18	42.56642	-114.490768	31.5	8	20	3.9	37	7	11	4	17	130	223	1.04
LY89-29	42.39592	-114.691588	18.5	7.8	23	8.4	13	2.9	9	0	11	120	175	1.01
LY89-30	42.34555	-114.509176	37	8	31	13	43	11	6	2	21	270	279	0.93
LY89-32	42.27131	-114.359743	9	6.7	5.4	1.3	6	5	2	0	2	34	95	1.17
LY89-33	42.22239	-114.785594	12	7	7.2	1.2	6	2.6	3	0	5	30	76	1.13
LY89-34	42.20179	-114.664984	32	7.8	21	2	18	6.9	7	1	10	120	200	0.90
LY89-35	42.20114	-114.697878	26	7.5	22	2.6	19	5.8	6	6	12	110	183	0.90
LY89-36	42.15826	-114.66585	32	7.6	18	2.3	18	4.7	7	1	9	100	174	0.97
LY89-37	42.20044	-114.586984	7.5	7.6	34	5.4	19	3.6	16	0	17	120	208	1.10
LY89-38	42.21351	-114.306916	4.5	6	2.6	0.7	3	2.6	1	0	3	20	62	0.91
CC-54	42.57256	-114.45175	31.0	7.77	39.91	8.98	55	4.92	38	2	76	161	390	0.97
CC-8	42.69940	-114.91040	24.7	9.47	5.74	0.74	113	4.16	46	12	91	81	397	1.04
CC-13	42.54348	-114.94897	36.2	8.65	11.14	0.79	147	1.92	54	2	187	98	566	0.99

Table C2: Major cations and anions for $Ca-HCO_3$ type thermal waters utilized in this study. Charge balances listed are given as the ratio of cations to anions calculated from meq/L units.

APPENDIX D: SELECT WELL DRILLER'S LOGS

Form 23'8-7 REE 27 1980 WELL DRILLE T78 FEB 27 1980 WELL DRILLE State law requires that this report be filed with Department of Water Resources 30 days after the completion of the filed with the second	DF IDA WATER ER'S th the Di ation or	AHO R RE S R irector aband	SOUF EP r, Depa	RCES ORT		PEN
1. WELL OWNER	7.	WATE		VEL Papartment of Wa	stor Resources	
Name Calles a South and Idaka		Static	water	Invol Alexant feet below land	FICE UTING	
Name College & Southark + od NO		Flowi	ng?	Yes \Box No G.P.M. flow	\$0C	
Address (Lin 12115, 20240		Artesi Contre	an clos olled b	sed∙in pressure p.s.i. av: Ny Valve □ Cap □ I	Plug	
Owner's Permit No.	· ·	Temp	erature	102 OF. Quality goid		
2. NATURE OF WORK	8.	WELL	TEST	DATA		
New well Deepened Replacement	1	🗆 Pu	mp	🗆 Bailer 🗀 Air 🗆 🕻	Other	
Abandoned (describe method of abandoning)	Di	ischarg	e G.P.M	I. Pumping Level	Hours Pump	ed
3. PROPOSED USE						
Departie Distance Differ Difference					<u>40</u>	
Industrial Stock Waste Disposal or Injection	9.	LITH	OLOG	IC LOG		
E Other has time part / Compulspecify type)	Diam.	From	To	Material		Yes No
4. METHOD DRILLED	12	Ś	9	Brown Clay		×
Rotary Air Hydraulic Reverse rotary		20	14	Brown Silt		×
Cable Dug C Other		<u>24</u> 35	35	Brenn silt		x ×
5. WELL CONSTRUCTION		73	47	Broken Wasalt		×
Casing schedule:		44	82	Brown Clay		× Y
Thickness Diameter From To		82	103	Black basalt		×
		12C	153	Brown basalt		- î
inches inches feetfeet	\vdash	153	162 187	Brey basalt		X
Inches inches feetfeetfeet		187	227	Gury basalt(205.	227 bery da	-d} >
Was a packer or seal used? U Yes Privo		227 832	\$ 35 \$ 35	Grey basalt		- ×
How perforated? I Yes Work The Torch		235	244	Brown clay		ĸ.
Size of perforation inches by inches		283	365	Grey Clay	·	×
perforations feet feet		305	335	Brownelog Wissing	Prise cl	<u>×</u>
perforations feet feet feet feet		378	843	Grey Clay		x
Well screen installed? Yes WNo		543 417	9/17 • 25	Ever basalt (ever	iced 1	×
Type Model No.	4	425	433	Ever clay		X
Diameter Slot size Set from feet to feet	3	451	495	Grey hasait (hard)	
Gravel packed? Yes Yes Gravel I I I I I I I I I I I I I		495	563	Grey basalt delag	- layers	×
Surface seal depth 12C Material used in seal: IF Cement grout		510	583	Groy basalt -/clay	SCOMS	X
Puddling clay Well cuttings Sealing procedure under		585	585	Grey basalt (hav	d)	×
Sealing procedure used: I Sturry pit I remp, surrace casing	5	175	610	Grey basalt	()	X
Method of joining casing: Threaded Welded Solvent Weld	Ğ	135	\$33	Bruw & clay	rd /	X
Cemented between strata		33	660	Grey Andesiti (ut	ry Hand)	1×
Describe access port (a cc. / n c (r l	10.	Wor	'k start	red 7/25/78 finished /	1/21/79	<u>/</u>
6. LOCATION OF WELL	11. 1	DRIL	LERS	CERTIFICATION	<u> </u>	
Sketch map location must agree with written location.		l/We o	certify	that all minimum well construct	tion standards	were
Subdivision Name	F	irm N	ame	Balers Henry Eim	No 86	
W E		ddres	. M.	untauch Talan	1 Om 1	an
Lot No Block No		ligned	by (Fi	rm Official) Bla . R	olu.	4
County I Win falls	3		SF (FI	and and a start	A	_
SE X SU X Sec. 4 T. 10 HUS. R. 17 E/AG			(0	Operator)	行派化	
USE ADDITIONAL SHEETS IE NECESSARY - EC	BWAR	DTH	E WHI	TE COPY TO THE DEPARTMENT		

WEELD RILLER'S REPORT State tow regime that this rayor be filed with the Directory, Department of the wall. File of the with the Directory, Department of the wall. IF I also I well of the with the Directory, Department of the wall. IF I also I well of the Well of the Directory, Department of the wall. IF I also I well of the Directory of the Well of the Well of the Directory of the Well of the Directory of the Well of the Well of the Directory of the Directory of the Directory of the Directory of the Well of the Directory of the Di	Form 238-7	DF IDAHO USE TYPEWRITER OR NATER RESOURCES BALLPOINT PEN
1. WELL OWNER Name College Sufficer Resources Address Turing College Sufficer Resources Address Turing College Sufficer Resources Static water lengt Foot Sufficer Resources Owner's Permit No. Demost's Permit No. 2. NATURE OF WORK Bandoned (Genome method of abandoning) Demostis Frei Sufficer Resources Bandoned (Genome method of abandoning) Demostis Frei Sufficer Resources Bandoned (Genome method of abandoning) Dependent Of Matter Resources Bandoned (Genome method of abandoning) Dependent Of Matter Resources Bandoned (Genome method of abandoning) Dependent Of Matter Resources Bandoned (Genome method of abandoning) Dependent Of Matter Resources Bandoned (Genome method of abandoning) Dependent Of Matter Resources Bandoned (Genome method of abandoning) Dependent Of Matter Resources Cable Ormer Cell Accellance (Interpolation Interpolation In	State law requires that this report be filed wit within 30 days after the complete	R'S REPORT
2. NATURE OF WORK B. WELL TEST DATA Abandondel (describe method of abandoning) Discharge 0.P.M. Pump Bailer Air Other Inclustry 10 Pumping Lowi Hours Pumping 3. PROPOSED USE Discharge 0.P.M. Pumping Lowi Hours Pumping Hours Pumping 0. Domestic Irrigation Test Municipal Discharge 0.P.M. Pumping Lowi Hours Pumping Hours Pumping 1. Industrial Stock Waste Disposal or Injection Discharge 0.P.M. Pumping Lowi Hours Pumping Wasterial 4. METHOD DRILLED Bailer Air Hydraulic Reverse rotary E 12 E 13 Discharge 0.P.M. Pumping Lowi Hydraulic Yater E 12 E 13 Discharge 0.P.M. Yater Yater Yater Yater Yater E 12 E 13 Discharge 0.P.M. Yater Yater Yater Yater Yater Yater E 12 E 13 Discharge 0.P.M. Yater E 12 Discharge 0.P.M. Yater	1. WELLOWNER Name College of Susthern Idalo Address Twin Palls, Idaho Owner's Permit No.	7. WATER LEVEL (P31 ← Department of Water Resources Static water levelfeet below uther Resources Flowing? IB Yes □ No G.P.M. flow 800 Artesian closed-in pressure 31 p.s.i. Controlled by: IB Yelve □ Cap □ Plug Temperature 62 °F. Quality get
3. PROPOSED USE	2. NATURE OF WORK New well Deepened Replacement Abandoned (describe method of abandoning)	8. WELL TEST DATA Pump Bailer Air Other Discharge G.P.M. Pumping Level Hours Pumped
□ Rotary ∩ Air □ Hydraulic □ Reverse rotary 272 Case Data 114 L/O Lay 124 cr.2 □ Cable □ Dug ○ Other 723 To you will all you ock \$ 1 5. WELL CONSTRUCTION 725 733 To you will all you ock \$ 1 Casing schedule: □ Steel □ Concrete Other 735 To you will all you ock \$ 1 Thickness □ Diameter From To 765 Girst,,	3. PROPOSED USE Domestic Irrigation Test Municipal Industrial Stock Waste Disposal or Injection Other Certher (specify type) 4. METHOD DRILLED	9. LITHOLOGIC LOG Hole Depth Diam. From To Material Water J. 2. 660 678 Crey Andersite (veryhand) X 2. 2. 8. 8.2 Distance of Law
Casing schedulie: Steel Concrete Other Thickness Diameter From To Minches inches inches inches feet f	Cable Construction	6987 698 Grey basalt 4/0104 104075 698 705 Grey basalt 4/0104 104075 705 733 15 row clay 4 vocks 735 750 Grey basalt
	Casing schedule: Steel Concrete Other Thickness Diameter From To inches inches feet feet inches Inches No Perforated? Yes No Perforated? Inches by inches inches Size of perforation inches by inches Number From To perforations feet feet	755 185 Grey Clay 785 160 Grey Andesite (very hard) 860 870 Grey very 901 903 Grey Clay 903 907 Grey week 903 907 Grey very 963 978 Hard yrey Clay 963 978 Hard yrey Clay 978 981 Grey Andesite (very hard) 1012 1012 Iticky Clay 1012 1000 Grey Andesite (very hard) 1020 1030 Grey Andesite (very hard)
Cemented between strata 10. Work started 7/25/78 finished 11/21/29 Cemented between strata 10. Work started 7/25/78 finished 11/21/29 Cemented between strata 10. Work started 7/25/78 finished 11/21/29 Cemented between strata 10. Work started 7/25/78 finished 11/21/29 Cemented between strata 10. Work started 7/25/78 finished 11/21/29 Cemented between strata 10. Work started 7/25/78 finished 11/21/29 Cemented between strata 10. Work started 7/25/78 finished 11/21/29 Cemented between strata 10. Work started 7/25/78 finished 11/21/29 Cemented between strata 10. Work started 7/25/78 finished 11/21/29 Cemented between strata 10. Work started 7/25/78 finished 11/21/29 Cemented between strata 10. Work started 7/25/78 finished 11/21/29 Cemented between strata 10. Work started 7/25/78 finished 11/21/29 Cemented between strata 10. Work started 7/25/78 finished 11/21/29 Cemented between strata 10. Work started 7/25/78 finished 11/21/29 Cemented between strata 10. Work started 7/25/78 finished 11/21/29 Cemented between strata Cemented between strata 10. Work started 7/25/78 finished 11/21/29 Cemented between strata 10. Note: the started reserved strata s		1030 10-5 Tar clay 1055 1050 Brown Sand 1050 1020 Grey brew Sand 1050 1080 Dark grey Sand Some Chy Seam X 1050 1085 Dark grey Sand Stone Chy Seam X 105 105 Dark grey Sand Stone Shy Stok F 105 105 Dark grey Sand Stone Shy Stok F 102 1105 Crey Yock 102 1123 Grey Yock 102 1155 Brown Yhyolite 1155 1175 Brown Yhyolite 1170 1415 Brown Yhyolite 1170 1415 Brown Yhyolite 1170 1415 Brown Yhyolite 1170 1415 Brown Yhyolite
Sketch map location must agree with written location. I/We certify that all minimum well construction standards were complied with at the time the rig was removed.	Cemented between strata Describe access port	10. Work started 7/25/78 finished 11/21/29 11. DRILLERS CERTIFICATION
W Subdivision Name Firm Name Firm Name Firm Name Subdivision Name W E Lot No. Block No. Signed by (Firm Official) Si	Sketch map location must agree with written location. N Subdivision Name E Lot No. Block No. Scounty falls	I/We certify that all minimum well construction standards were complied with at the time the rig was removed. Firm Name Boley + Henry Firm No. 86 Address MLC Hough Tab Date 1 Dec 1979 Signed by (Firm Official) Board Tab Date 1 Dec 1979 and Goperator) of Complete States

USE ADDITIONAL SHEETS IF NECESSARY - FORWARD THE WHITE COPY TO THE DEPARTMENT

Form 238-7 1778 Statedaw requires that this report be filed with Statedaw requires that this report be filed with within 30 days after the comple	DF IDAHO VATER RESOURCES ER'S REPORT In the Director, Department of Water Resources tion or abandonment of the well.
1. WELLOWNER Name <u>College</u> Southern Idaho Address <u>Twin</u> folls, Idaho Owner's Permit No.	7. WATER LEVEL P ≥ 96 part Static water level feet below Mudsurface Flowing? E Yes No G.P.M. flow Artesian closed-in pressure <u>A9</u> Controlled by: M Valve Cap Plug Temperature <u>A0</u> S. WELL TEST DATA
New well Deepened Replacement Abandoned (describe method of abandoning)	Pump Bailer Air Other Discharge G.P.M. Pumping Level Hours Pumped
3. PROPOSED USE □ Domestic □ Irrigation □ Industrial □ Stock □ Other Geo Geo 4 Lev mal (specify type)	9. LITHOLOGIC LOG Hole Depth Water Diam, From To Material Yes No 12 ⁺ /2/5/1556 K ² c dd 5k by m c hug /1/2 X
4. METHOD DRILLED	12 1550 1655 Goog bow + hyllice 1 12 1655 1240 Goog y hydlite 12 1740 1800 Goog y hydlite 8" Yrdwred hele to 8"at 1760' 1800 1820 Goog y hydlite 1800 1820 Goog y hydlite
Casing schedule: Steel Concrete Other Thickness Diameter From To	1837/882 Crea vayality 1882/1907 Crea - browny & hyalite 1907 Browny & hyalite 1908 1962 Crey & hyalite 1938 1962 Crey & hyalite 1948 1962 Crey & hyalite 1963 2080 Crey Andesite 2008 2000 Crey Andesite
Perforated?	AIST BID ALGER DVN V 4481.44
Manufacturer's name	
Puddling clay Overbore to seal depth Method of joining casing: Threaded Welded Weld Weld Describe access port	
6. LOCATION OF WELL Sketch map location must agree with written location.	11. DRILLERS CERTIFICATION I/We certify that all minimum well construction standards were complied with at the time the rig was removed.
W E Lot No. Block No. County Twin fall c	Firm Name Do Ley Han vy Firm No. 86 Address Mut to u GH Jolako Date / Oz. 1979 Signed by (Firm Official) Star, Boly J and Utphin Laron
<u>SE 14 SW 14 Sec. 4</u> , T. <u>10</u> ST/S, R. <u>17</u> E/95	(Operator) Nitoria Perry

Figure C1. CSI Well 1 Driller's Log

State 0 DEPARTMENT OF Y WELL DRILLE Grad	F IDAHO ATER RESOURCES R'S REPOR the Director, Department ion S7 abandooment of 1	AT AT Mater Researces Ja	EINE	r 2
L WELL COMMER CST# 2	7. WATER LEVEL	1. C	Par Am	a de s
Home College of Seathern Idehe	Static water level	fort below lan	1100	1.00
Ann There Calls Idaho	A-teslan closed in	Pressure 3C PAL	Pag	
Owner's Permit Ho.	Temperature / 0	LOF. Quetty		-
T NATURE OF WORK	E. WELL TEST DA	ТА	÷.,	1.1
There well Despand Replacement	D Pump D	Baller 🗆 Air 🗆	Other	
Abandoned (describe method of abandoning)	Diseburge G.P.M.	f land	Hours Periptid	- 1 335
3. PROPOSED USE		L		
Domestic Irrigation Test Municipal Industrial Stock Wasts Disposal or Injection	9. LITHOLOGICL	Manual -1	10	
Other frether (specif type)	Dians. From To	Drawn Clay		Y
4. METHOD DRILLED	1 15 22	Clay + breken VB	¥ ¥	
Botany D Air D Hydraulic D Hevene rotary D Cable D Dug D Other	49 63	Grey basalt		2
5. WELL CONSTRUCTION	(43 76 76 85	Clay Ever basalt		Į.
Casing schedule: If Steel Concrete COther	98 130	Clay breed ba	salt 1	ŧ.
+250 inches 16 inches + 1 test 5/2 test	130 144	Brien basalt		
+ 23:0 inches 10 inches 1124 feet 1345 fee	218 220	Tale		R.
Vision casing drive those used? Bryan Child Total Short	220 844 9	Brewe Tree els	y Ygered	E.
Was a packer or seel used?	378 384	hey basalt	ARRITE	1
How perforated? D Factory D Knite D Toron Size of perforation	1 146 242	Crey chy	THE SHALL	X
S' haver "BTRIM 10 16 vers Phili Fort in	499 508	Corry cher		Ŧ.
then 100 performance The Part Port Last to	16 232 543	Brane chy	Constant of the Solarian A	F
Metacharer's nerve		Crey Stady Ch	Rogers y Marine in Southeast Control	¥.
TypeStot sizeSet fromfeet tofeet	211 23	Sher Sherty Ch	a provide a portado en a provide de la	
Gravel packed? Yes JE No Size of gravel	778 786	Readist brown C		
Burface seel depth 240 Meterial used in seel: If Coment pro-	1 22 23	Bring Che	af stely ely	-
Sealing procedure used: Sharry pit Comp. earlies calling III Overbere to and day	764 855	Grey basale (
Mothed of joining caling: C Threaded # Weided C Schurt Weid	10114	Grow Charalt	in the second second	1
Describe access port (sw jac well	- Nork starts	- 22 Aur 1980 -	- 21.00-L	tei
& LOCATION OF WELL	11. DRILLING C	ENTIFICATION CO	dL	
		at the time the rig will fell		
	Firm Name	D CHey + Hen xy	From Ho. A.C.	CONT.
	Address Mar	more Bla	General May	
A A A A A A A A A A A A A A A A A A A		- Gh-	. Cu	
NG - SN + M + 10 malt u	0.2908625		a Bert	earth.

STATE OF DEPARTMENT OF W. WELL DRILLE Basis law requires that this report to filed with within 30 days after the consider	IDAHO ATER RESOURCES R'S REPORT the Director, Department of Water Resources an or abandomnent of the well
Nome College of Southern Idaho Address Their Falls, Idaho Owner Durin Falls, Idaho	7. WATCH LEVEL Static water level feet below and ar article Flowing? U Ya D No GPM, Row Artesian closed in pressure Controlled by: U Valve Lin Lab Tamperature oF, Quality
2. NATURE OF WORK New well Abandoned (Secribe method of abandoning)	WELL TEST DATA Drump D Bailer Di Alfred Di Oddet <u>Resources</u> Disolarge 0.7 M. Pumping Lovel
3. PROPOSED USE	8. LITHOLOGIC LOG
Industrial Stock Wate Disposal or lejection Other	Hole Depth Nature Classifier To Material Water Classifier To Material Vel Hor Classifier Alexandre Alexand
4. METHOD DRILLED Cable Dug Other Cable Dug Other B. WELL CONSTRUCTION Casing scheckule: Steel Concrete Thisteen Diemeter Frem Te Thisteen Diemeter Frem Te Thisteen Diemeter Frem Te Thisteen Inches Inches feet feet Was casing scheckule: Steel Yes No No Was casing scheckule: Yes No No	16. 9(12) 1861 (Sect. Clay. 9(12) 1861 (Sect. Clay. 9(12) 1962 (Sect. Clay. 1963 1962 (Sect. Clay. 1963 1962 (Sect. Clay. 1963 1966 (Sect. Clay. 1968 1967 (Sect. Clay. 1978 1968 (Sect. Clay. 198 1968 (Sect. Clay. 198 1968 (Sect. Sact. 198 1968 (Sect. Sact. <
Dearths and part and are other banks.	Wet works

Figure C2. CSI Well 2 Driller's Log

	DF ID/ WATE	AHO R RE	SOUR	CES	US S	E TYPEWRITI BALLPOINT P	ER O EN	R
JAN 12 1987 State law requires that this report be filed with	ER'	S R	EP		RT nt of Water Resources			
Depresent of Stater Resources within 30 days after the comple	etion or	r abanc	onmen	t of	the well.	9B.		_
Sounary Region Office 1. WELL OWNER	7.	WAT		/EL				
Name Barbury Hot Springs		Static	water	evel	feet below lan	d surface.		
R+3 Bubl Tt		Flowi	ng? 🛙	₽⁄¥e ad.in	no G.P.M. flow	N		-1
Address 101 0 10041 20 -		Contr	olled b	Y:	De Valve 🗆 Cap	Plug		1
Owner's Permit No.		Temp	erature Des	ribe	oF. Quality get artesian or temperature zones	below.		_
2. NATURE OF WORK	8.	WEL	TEST	DA'	ТА			
New well Deepened Replacement		D PL	mp		Bailer 🗆 Air 🗆	Other		_
Abandoned (describe abandonment procedures such as materials, plug depths, etc. in lithologic log)		Discharg	e G.P.M	,	Pumping Level	Hours Pur	nped	
		25	0 (Es	timete)			
B PROPOSED LISE								
	<u> </u>					800	20	
Domestic I Irrigation I Test I Municipal Industrial I Stock I Waste Disposal or Injection	9.		OLOG		DG	- 007	10	_
Other geothermal (specify type)	Diam.	From	To		Material		Yes	No
4. METHOD DRILLED	8*	273	276	17,	Black basalt		_	¥
□ Rotary □ Air □ Hydraulic □ Reverse rotary	8	279	290	3	Black baselt			
Cable Dug Other	8	290	314	- 6	Red - brown clay	(sticky)	-	+
	1 S	374	333	Ĩ	Red clay			1
Selected to Part Free Free	8	333	341		Brown Clay		-	+
Thickness Diameter From To	7	363	408	T,	Slack baselt, S	haletclay		
.250 inches 6 inches + 1 feet 3/3 feet	6	408	416	- ï	Black Basalt			
inches inches feet feet	6	416	453	4	Alternating la	yers 1	×	~
inches inches feet feet	#"	153	520	Ģ	ry tout I	hydre	×	
Was a packer or seal used? If Yes IPNo	4	مدى	535	1	avens of green	Shale	x	
Perforated? Ves Pro How perforated? Eactory Knife Torch	4	535	543	Ğ	vey vhyolite		×	_
Size of perforation inches by inches	7"	543	550	in	SHOWN Thyol	1. 14	x	
Number From To	<u> </u>							
perforationsfeetfeetfeet			L					_
Well screen installed? Ves Vo		-	-					
Manufacturer's name Type Model No.							_	-
DiameterSlot sizeSet fromfeet tofeet			D	E.	C . 12			
Gravel packed? Yes PNo Size of gravel			-M.	5				_
Placed from feet to feet		-	22		IAN 1 6 1987			_
Bentonite Puddling clay				_	MIN 10 1001			
Sealing procedure used: Slurry pit Temp, surface casing			Der	artm	ient of Water Resources		_	
Method of joining casing: Threaded Welded Solvent								
Cemented between strata	l							-
Describe access port flow in g well	10.	We	rk star	ted	15 Aug finished	15 of	1981	
					· · · · · · · · · · · · · · · · · · ·	22		-
Sketch man location must addres with written location	11.	DRH	Cartify	CER	TIFICATION	uction standar	de wa	_
N		comp	ied wit	hat	the time the rig was remov	ed,	us we	""
Subdivision		Firm	Vame	3	ley + Henry Fi	rm No. 82		
w × E					trul TI -		100	_
Lot No Block No.		Addre	28 TN	00	C C -		196	
33		Signe	iby (F	irm (Official) Deene	Soly	Î	-
County Twin falls				ar Orea	ratori Bla	Bol		
SW X NW X Sec. T. 8 B/S. R. 14 EAS			(oper	alor) <u>Collega</u>	Cooly of		-
USE ADDITIONAL SHEETS IF NECESSARY - F	ORWA	RD TI	IE WH	TE (COPY TO THE DEPARTM	ENT	_	

Figure C3. Banbury Hot Springs Well Driller's Log

State	Eda	ho		ſ			(B)	
USE TYPEWRITER OR Department of BALL POINT PEN	Water	Reso	urces		Location Correc	ted by IDW	₹To:	Contraction (1990)
WELL DRILLE	R'S	RE	POR	T	T09S R14E Sec	.4 SENW		1
State law requires that this report be filed with the days after the completion or	Directo abando	nment o	rtment of the w	of Water ell.	By: segbert	2010-10-15		
1. WELL OWNER	7. W	ATER	LEVEL		Departme	nt of water ke	sourc	es
Nome DICK PATTOR Kaster	St	atic wa	ter level		_ feet below land su	face	~~	
Hacroman Toallo	F	owing?	X Ya	es ⊑ >4/°⊧	No G.P.M. flow	300	<u> </u>	-
Address_HHatISMHN, LORHO	A	rtesian	closed-in	n pressur	e 58 p.s.i.			-
Owner's Permit No		ontrolle	d by	X Valv	e 🗆 Cap	_ Plug		
2. NATURE OF WORK	8. W	ELLTE	EST DA	ТА				
New well Deepened Replacement	D	Pump scharge	Ġ.P.M.	Baile	Draw Down	Hours Pu	mped	
C Abandoned (describe method of abandoning)								
3. PROPOSED USE								
Domestic Irrigation Test Other (specify type)	9. L	ітноі	OGIC L	.OG	(045806	3	
🔄 Municipal 🔲 Industrial 💭 Stock 🗔 Waste Disposal or	Hole	De	pth		Material		Wat	No
Injection	8"	O	10	Bo	HDERS			X
4. METHOD DRILLED		18	19	GRE	Y LAVA		$\left \right $	-+-
🗆 Cable 🛛 🛱 Rotory 🗆 Dug 🗂 Other		24	26	Rac	K			
5. WELL CONSTRUCTION	├	26	30	RC	<i>φγ</i>			+
8 Jan 1975 for		32	34	CIA				
Casing schedule: Steel Concrete	├	34	38	ROC CLA	<u>مح</u> ــــــــــــــــــــــــــــــــــــ			
Thickness Diameter From To		40	60	ROC	A		-	<u>۱</u>
inches inches + feetfeet		60-	81	HAG	ERTALC + CAUA PO SHALE			i
inches feet feet feet		81	101	GRE	V LAVA		1	
inches feet feet	<u> </u>	101	160	SAR	Et ROCK	VE	+	++-
Was casing drive shoe used? Yes No		200	250	R/U	CLAY		X	
Perforated? Yes No	<u> </u>	250	375	BLAC	CH LAVA + LI	TTLE	×.	
How perforated? Factory Knife Torch				WH / C	THE LA SPOTS			
Size of perforation inches by inches							+	-
perforations feet feet							1	<u> </u>
perforations feet feet	<u> </u>	+					+	
8				1			1	ļ
Tranciacturer's name				+		· · · · · · · · · · · · · · · · · · ·	+	+
Model No							Τ.	
Drameter Slot size Set from feet to feet	-						+	
Gravel nacked? Ves No Size of gravel		ļ					-	-
Placed from feet to feet		-					+	1
Surface seal depth 28 Material used in seal DAT Cement arout			ļ				+	
Puddling clay Well cuttings			1	1			1	1
Sealing procedure used Sturry pit Temporary surface casing	 	1					<u> </u>	L
U Overbors to seal depen	10.				> 0-			
6. LOCATION OF WELL Sketch map location must agree with written location 11	<u> </u>	Vork sta	arted _	0	5~ 75 finished	10-7-1	<u>s</u>	_
<u> </u>	н.		RS CER	TIFICATK	W	C	10	
Subdivision Name		Firm Ne		STAGA	VEN DRILLIA	<u>16</u> Firm 1	<u>5</u>	Ĺ
W E		Add	Pol	Boxs	19 Tok	Data 2/	2/7	K
Lot No. 10/18 Block No.	1	-1001 855			A. ll	Eh	/	
s or m	1	Signed I	oy (Firma	Official)	_ unrord	my		_
county_ / we Falls			(O=	erator) £	tat Sillen	i.		_
NE 1 SW 14 Sec. 4 T. 9 N/S. R. 14 E/M	ł							
USE ADDITIONAL SHEETS IF NECESSARY FORWARD	THE	VHITE	COPY 1	TO THE	DEPARTMENT			

Figure C4. Dick Kaster Well 1 Driller's Log

ToyRegState ToyRegState Control of Weil No. 902-97S0117OOO 114 Links pressure 114 Links pressure Control of No. 9201288 Control of No. 9201288 Control of Weil Links pressure North reg	MAR 16 1998 O DEPERTMENT OF WATER RES WELL DRILLER'S REPOR	OURCE Office Use Only Inspected by
Snuthern Realion DRILLING PERMIT NO. 41.92.1.5.0117000 11. WELL TESTS:	tment of Water Resource Use Typewriter or Ballpoint Pen	Twp RgeSec
DRILLING PERMIT NO. 47 9.1-S0.17 0.000 I1. WELL TESTS: Lat: Long::: :: Long::: Trep. 5. Litt:::::::::::::::::::::::::::::::::::	Southern Region	1/41/4
Demorp □	NG PERMIT NO. <u>47 97 S 0117 000</u> 11. WELI	TESTS: Lat: : : Long: : :
OWNER: me Marce LASTER, EDITH & BLCMARD doress 1124-0; 5 3673.5 doress 1124-0; 5 3673.5 LOCATION OF WELL by legal description: ketch map location must agree with written location. N	No P0002080 □ P	np 🗇 Bailer 🗇 Air 🔂 Flowing Artesian
ame	Yield gal.	in. Drawdown Pumping Level Time
driess 124_CE 135 S iv	TER, EDITH & RICHARD 25	
Ny	224-C E 3675 S	
Image: Construction of the second	State0_Zip83316	
I. LOCATION OF WELL by legal description: Water Cuality less or comments: Depth first Water Encountered North or South X N Image: A comments: Image: A comments: Depth first Water Cuality & Tempursture 12 250 2 SAND 102501L Image: A comments: Depth first Water Cuality & Tempursture 12 250 2 SAND 102501L Image: A comments: Depth first Water Cuality & Tempursture 12 250 2 SAND 102501L Image: A comments: Depth first Water Cuality & Tempursture 12 250 2 SAND 102501L Image: A comments: Depth first Water Cuality & Tempursture 12 250 2 SAND 102501L Image: A comments: Depth first Water Cuality & Tempursture 12 251 SAND Genv Load Comment: Comment: Depth first Water Cuality & Tempursture 12 252 3 SAND 102501L Image: A comment Comment: Depth first Water Cuality & Tempursture 12 112 SAND Genv Load Comment: Comment: Depth first Water Cuality & Tempursture 12 141 SAND Genv Load Genv Load Genv Load Genv Load Genv Load 12 112 SAND Genv Load Genv Load Genv Load SA	Water Tem	Bottom hole temp
N North or South North or South North Image: South North South North North South North No	ION OF WELL by legal description: Water Qua	/ test or comments:
N Tz. LIHOLOGIC LOG: (DC::Decribe repairs or abandoment) K Twp_g Noth □ or South □ x K Twp_g Noth □ or South □ x Sec Twp_g Lat East □ x or New York South □ x Count of the count o	location must agree with written location.	Depth first Water Encountered
K Twp_g	12. LITH	LOGIC LOG: (Describe repairs or abandonment) W
Imp	Bore Bore From	To Remarks: Lithology, Water Quality & Temperature Y
Sec. 4 Display Display Display Govi Lot Confight Till & ALL All and the figure SARD Sard Sec. 4 Lat: : Long: Sard Sard Sard S Address of Well Site_ Long: Sard Sard Sard Sard Sard (0ve at watching of not // Congression City Sard	Rep. 11 East TV or West T 11/250	3 CANNY TOPSOIL
Gov County Fill # Artig Webwei S Address of Weil Site City State State (Dive atward row of Near Clooned) City State State State (Dive atward row of Near Clooned) City State State State (Dive atward row of Near Clooned) City State State State (Dive atward row of Near Clooned) City State State State (Dive atward row of Near Clooned) Control Internal State State (Dive atward row of Near Clooned) Control City State State (Dive atward row of Near Clooned) Control City State State (Dive atward row of Near Clooned) City State State State (Dive atward row of Near Clooned) City State State	$= \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} $	51 SAND
S Lat: Long: S Address of Weil Site City Give atteances of hear - Delaces of Mean City S SAND SAND Give atteances of hear - Delaces of Mean City S SAND SAND SAND Give atteances of hear - Delaces of Mean City S	Gov't ot County TWIN Falls	54 SAND & GRAVEL
\$ Address of Well Site		65 SAND
City	Address of Well Site	69 BOULDERS
IC: Dear Have Head of Dearce & PRAFE (Lowers) Image: Dearce & PRAFE (Lowers) It	City	85 SAND
t3	name of road + Distance to Road or Landmark)	87 SAND & GRAVEL
102 112 SAND & GRAYEL	Bik. 2 Sub. Name OREGON TRAIL SUBD. 87	102 SAND
JUSE: Domestic Municipal Monitor Irrigation Thermal Other III 112 117 BOULDERS Thermal Modify Abandonment Other 10 140 187 GRY BASALT SHALE New Well Modify Abandonment Other 10 140 187 GRY BASALT SHALE New Well Modify Abandonment Other 117 208 BROWN GRY BASALT SHALE DILL METHOD Mit Rotary Other 117 208 FROM GRY BASALT SEALING PROCEDURES SEALTFLITER PACK Amountr METHOD 117 208 FROM SKALT SEALING PROCEDURES 210 216 246 GRY BASALT ERESUME 210 212 SEALING PROCEDURES 211 208 FROM SKALT ERESUME 211 214 AFRACTURED Associal 211 214 ASSALT ERESUME 214 247 248 SOFTE BLACK BASALT ERESUME 221 221 SIALKE BASALT ERESUME 213 24		112 SAND & GRAVEL
Domessic Municipal Monitor Irrigation Dipomessic Municipal Other 112 120 GRAYEL Dipomessic Municipal Other 120 140 187 GRAYEL Stream Monitor Other 120 140 187 GRAYEL Material Monitor Other 117 120 140 187 GRAYEL Material Monitor Other 117 140 187 GRAYEL 110 117 140 187 GRAYEL 110 117 110 117 117 GRAYEL 110 117 110 117 117 GRAYEL 110 117 110 117 110 117 117 110 117 117 110 117 110 117 110 117 110 117 110 117 110 117 110 117 110 117 110 117 110 117 110 117 110 110 110 110 110 110 110 110	11	117 BOULDERS
Thermal Injection Other Thermal Injection Other TyPE OF WORK check all that apply (Replacement etc.) Thermal Modify Abandonment Other 1140 IST Thermal Modify Abandonment Other Thermal Indextor IST GREY BASALT SHALE Thermal Fom Other 1170 BROWN GREY BASALT SEALING PROCEDURES SEALIFILTER PACK AMOUNT METHOD SEALIFILTER PACK AMOUNT METHOD 218 214 SOFTER CEWENT -5 144 75 <sacks< td=""> PRESSURE GROUT 240 241 SOFTER BLACK BASALT Vas drive shoe used? Y N ShoeNpath(s) 242 243 SACK MRAUT Vas drive shoe used? Y N How? 223 SACK MAND RAV RHYOLITE Socasing/Liner Casing Liner Weided Threaded 234 346 HAD BROWN AND GRAY RHYOLITE Socasing/Liner India India India India SACK SACK</sacks<>	estic Municipal Monitor Irrigation	120 GRAVEL
S. TYPE OF WORK check all that apply (Replacement etc.) II 140 167 GREY & & & & & & & & & & & & & & & & & & &	mal Injection Other12	140 GREY BASALT SHALE
X New Well Modify Abandonment Other X New Well Modify Abandonment Other DRILL METHOD Nir Rotary Cable Mud Rotary Other X New Well Cable Mud Rotary Other 177 GREY BASALT X New Well Cable Mud Rotary Other 177 GREY BASALT X New Well Addunt Other 177 GREY BASALT 174 X New Well Form To Sacks or 208 210 215 GREY BLACK BASALT X New Well Form To Sacks or Method 210 215 GREY BLACK BASALT 208 214 SOFTER 214 241 SOFTER 240 SOFTER 241 SOFTER 241 215 216 241 SOFTER 241 216 241 SOFTER 241 241 SOFTER 241 241 SOFTER 241 218 SOFTER 241 218 SOFTER 241 SOFTER 241 SOFTER 242 432 SOFT 242 432 <t< td=""><td>F WORK check all that apply (Replacement, etc.) 10 14</td><td>167 GREY BASALT SHALE</td></t<>	F WORK check all that apply (Replacement, etc.) 10 14	167 GREY BASALT SHALE
S. DRILL METHOD Air Rotary Cable Mud Rotary Other // Sector // CEWENT // SEAL/FILTER PACK AMOUNT Meterial From To Sector Sector // Sector Perforations // Stress Stress // Screens Screen Type // Screens Casing Liner // Screens Screen Type // Screens Screen Type // Screens Screen Type // Screens Casing Liner // Screens Screen Type // Screens Casing Liner // Screens Screen Type // Screens Screen Type // Screens Material // Screens Material // Screens Screen Type // Screens Screen Type // Screens Screen Type <td>Vell 🗌 Modify 🗌 Abandonment 🗌 Other 16</td> <td>170 BROWN GREY BASALT</td>	Vell 🗌 Modify 🗌 Abandonment 🗌 Other 16	170 BROWN GREY BASALT
Nir Rotary Cable Mud Rotary Other 177 208 HABD GREY BASALT X. SEALING PROCEDURES SEALFILTER PACK AMOUNT METHOD 210 215 240 SOFTER LACK BASALT Material From To Sacks or 210 215 240 GREY BLACK BASALT CEVENT -5 14 75 SACKS PRESSURE GROUT 240 241 SOFTER BLACK BASALT Vas drive shoe used? Y N Shoe/Depth(s) 221 223 SOFT BLACK BASALT Was drive shoe used? Y N Shoe/Depth(s) 221 224 SOFT BLACK BASALT Was drive shoe seal tested? M New? 322 344 FRACTURED BROWN AND GRAY RHYOLITE Soc ASING/LINER: Casing Liner X X 324 346 HARD BROWN AND GRAY RHYOLITE Soc ASING/LINER: Casing Liner X X 335 355 FRACTURED GREY CLAY Soc ASING/LINER: Casing Liner X X X 344 FARD BROWN AND GRAY RHYOLITE 346 345	METHOD17	177 GREY BASALT SHALE
7. SEALING PROCEDURES SEAL/FILTER PACK AMOUNT Material From To Seclar, Filter 210 215 CEWENT -5 140 7.5 OF WIT 0 30 190 SACK Was drive shoe used? Y N Noe/bepth(s) 242 205 BLACK BASALT 208 219 SOFTER 240 244 SOFTER 240 244 SOFTER Was drive shoe used? Y N Shoe/bepth(s) 240 247 218 BLACK BASALT Vas drive shoe used? Y N Shoe/bepth(s) 232 304 HARD BROWN AND GRAY RHYOLITE 30 220 STEEL Casing Liner Weided Threaded 10.15 5 133 .250 STEEL X 242 346 HARD BROWN AND GRAY RHYOLITE 323 324 HARD BROWN AND GRAY RHYOLITE 346 358 358 1420 HARD BROWN AND GRAY RHYOLITE 324 345 SOFT CLAY 342 343 BOWN AND GRAY	otary 🗆 Cable 🛛 Mud Rotary 🗆 Other 17	208 HARD GREY BASALT
Z. SEALING PHOCEDURES SEAL/FILTER PACK AMOUNT Material From To CEVENT -5 144 210 213 GREY SHALE 240 240 GREY SHALE 240 241 SOFTER BLACK BASALT 240 247 218 240 247 SOFTER BLACK BASALT 240 247 SOFTER BLACK BASALT 240 247 SOFTER BLACK BASALT 243 248 SOFT BLACK BASALT 243 247 SOFTER BLACK BASALT 243 248 SOFT BLACK BASALT 244 SOFT BLACK BASALT 249 244 HARD BROWN AND GRAY RHYOLITE 242 242 SOFT BLACK BASALT		210 SOFTER
SEAL/FLIEF PACK AMCUNI METHOD Meterial From To Secks or Pounde PRESSURE GRUT CEMENT -5 14 75 SACK PRESSURE GROUT CEMENT 0 30 19.0 SACK PRESSURE GROUT Vas drive shoe used? Y N ShoeNoe/Depth(s) 247 278 BLACK BASALT Vas drive shoe seal tested? Y N How? 323 309 HARD BROWN AND GRAY RHYOLITE 3. CASING/LINER: Diameter From To Gauge Material Casing Liner Weided Threaded 10fs -5 139 250 STEEL X X 366 365 FRACTURED GRAY RHYOLITE 2.street From To Gauge Material Casing X X 363 420 HARD BROWN AND GRAY RHYOLITE 2.street From To Gauge Liner X X Interial 366 365 FRACTURED GRAY RHYOLITE 2.streens Screens <t< td=""><td></td><td>219 GREY SHALE</td></t<>		219 GREY SHALE
Material Pounds Pounds CENERNT -5 140 75 SACKS PRESSURE GROUT CENERNT 0 301 190 SACK PRESSURE GROUT CENERNT 0 301 190 SACK PRESSURE GROUT Vas drive shoe used? Y N Shoe/Depth(s) 247 228 205 F RACTURED Vas drive shoe used? Y N Shoe/Depth(s) 323 324 F RACTURED 3. CASING/LINER: Diameter From To Gauge Material Casing Liner Weided Threaded 3. CASING/LINER: Imaterial Casing Imaterial Casing X Imaterial 324 346 HARD BROWN AND GRAY RHYOLITE 3. CASING/LINER: Imaterial Casing Imaterial Casing X Imaterial	SEAL/FILTER PACK AMOUNT METHOD 21	240 GREY BLACK BASALI
CFUERT -5 140 75 SACKS PRESSURE GROUT CFUERT 0 301 190 SACK PRESSURE GROUT CFUERT 0 301 190 SACK PRESSURE GROUT Was drive shoe used? Y N Shoe/Depth(s)	enal Promition Pounds	24 SUFIER BLACK BASALI
CENENT 0 301 190 SACK PRESSURE GRUUI Vas drive shoe used? Y N Shoe XDepth(s)	-5 140 75 SACKS PRESSURE GROUI 24	2/8 BLACK BASALI
Vas drive shoe used? Y N Shoe/Depth(s)	0304190_SACHPRESSURE_GRUU12	282 SUFI BLACK BASALI
Was drive shoe used? Y N Shoe/Depth(s)		
Was drive side sear resider Intension <	hoe used? V N Shoe/Depth(s)	224 EDACTIDED
Diameter From To Gauge Material Casing Liner Welded Threaded 10. 15 5 139 2.50 STEEL X X 366 366 HARD BROWN AND GRAY RHYOLITE 6. 625 +1 304 2.50 STEEL X X 366 365 FRACTURED GRAY RHYOLITE ength of Headpipe Length of Tailpipe - - - 422 423 SOFT CLAY 9. PERFORATIONS/SCREENS - - - - 438 438 SOFT 9. PERFORATIONS/SCREENS - - - - 422 438 BROWN AND GRAY RHYOLITE 9. PERFORATIONS/SCREENS - - - - 438 438 SOFT 9. Perforations Method - <		344 HARD BROWN AND GRAV RHYOLITE
Diameter From To State Material Casing Liner Material Casing Liner 10. STATIC WATER LEVEL OR ARTESIAN PRESSURE: ft. below ground Artesian pressure lb. Material Casing Liner 10. STATIC WATER LEVEL OR ARTESIAN PRESSURE: ft. below ground Artesian pressure lb. Material Casing Liner 10. STATIC WATER LEVEL OR ARTESIAN PRESSURE: ft. below ground Artesian pressure lb. Material Casing Material Casing Material Casing Material Casing Completed Depth 479 ' (Meas 0. Static Number Diameter Material Casing Liner 13. DRILLER'S CERTIFICATION VMeas 02/11/198 10. STATIC WATER LEVEL OR ARTESIAN PRESSURE: ft. below ground Artesian pressure lb. Firm Official Material Casing Material 03/12	CALINET.	366 HARD BROWN AND GRAY RHYOLITE
10.10 103 1.200 1121 1		369 FRACTURED GREY CLAY
420 421 423 SOFT SOFT CLAY ength of HeadpipeLength of Tailpipe 421 423 435 BROWN AND GRAY RHYOLITE 9. PERFORATIONS/SCREENS 438 438 SOFT 421 423 438 SOFT 9. PERFORATIONS/SCREENS 438 438 SOFT 479' (Meas 9. Screens Screen Type To BE CONTINUED ON NEXT PAGE Completed Depth 479' (Meas From To Slot Size Number Diameter Material Casing Liner 13. DRILLER'S CERTIFICATION IVe certify that all minimum well construction standards were complited 02/11/198 13. DRILLER'S VERTIFICATION We certify that all minimum well construction standards were complited 10. STATIC WATER LEVEL OR ARTESIAN PRESSURE: MALKER WATER SYSTEMS INC. Firm No. ft. below ground Artesian pressure Ib. Firm Official July July July July July July July July	+1 304 250 STEFL UX U UX U	420 HARD BROWN AND GRAY RHYOLITE
ength of HeadpipeLength of Tailpipe D. PERFORATIONS/SCREENS Perforations Method Screens Screen Type From To Stot Size Number Diameter Material Casing Liner 13. DRILLER'S CERTIFICATION IVe certify that all minimum well construction standards were complite IVe certify that all minimum well construction standards were complite IVe certify that all minimum well construction standards were complite IVe certify that all minimum well construction standards were complite IVe certify that all minimum well construction standards were complite IVe certify that all minimum well construction standards were complite IVe certify that all minimum well construction standards were complite IVe certify that all minimum well construction standards were complite IVe certify that all minimum well construction standards were complite IVe certify that all minimum well construction standards were complite IVe certify that all minimum well construction standards were complite IVe certify that all minimum well construction standards were complite IVe certify that all minimum well construction standards IVe certify that all minimum well construction standar		423 SOFT SOFT CLAY
9. PERFORATIONS/SCREENS 9. Perforations Method	eachine Length of Tailpipe	438 BROWN AND GRAY RHYOLITE
Perforations Method		439 SOFT
Screen S Screen Type Completed Depth 479' (Measure Date: Started From To Slot Size Number Diameter Material Casing Liner Image: Screen Type To Slot Size Number Diameter Material Casing Liner Image: Screen Type To Slot Size Number Diameter Material Casing Liner Image: Screen Type To Slot Size Number Diameter Material Casing Liner Image: Screen Type To Slot Size Number Diameter Material Casing Liner Image: Screen Type To To To Slot Size Number Diameter Material Completed Depth	ions Method	TO BE CONTINUED ON NEXT PAGE
From To Slot Size Number Diameter Material Casing Liner Bate: Started 01/08/98 Completed 02/17/98 Bate: Started Bate: Started 01/08/98 Completed 02/17/98 Bate: Started Bate: Started Bate: Started 02/17/98 Bate: Started Bate: Started Bate: Started 02/17/98 Bate: Starter Starter Starter Starter Starter Starter Bate: Sta	Screen Type Complete	Depth 479' (Measura
From To Slot Size Number Diameter Matenal Casing Liner Image: State Size Size Size Size Size Size Size Siz	Date: Sta	ed 01/08/98 Completed 02/17/98
13. DRILLER'S CERTIFICATION 13. DRILLER'S CERTIFICATION 13. DRILLER'S CERTIFICATION 14. UP 100 15. DRILLER'S CERTIFICATION 16. STATIC WATER LEVEL OR ARTESIAN PRESSURE: 17. Drive certify that all minimum well construction standards were complitive the time the rig was removed. 18. DRILLER'S CERTIFICATION 19. UP 100 10. STATIC WATER LEVEL OR ARTESIAN PRESSURE:	To Slot Size Number Diameter Material Casing Liner	
Image: Static water level or artesian pressureib. Image: Static water level or artesian pressureib. Image: Static water level or artesian pressureib. Image: Static water level or artesian pressureib.		ER'S CERTIFICATION
Image: Static water level or artesian pressureib. Image: Static water level or artesian pressureib. Image: Static water level or artesian pressureib. Image: Static water level or artesian pressureib. Image: Static water level or artesian pressureib. Image: Static water level or artesian pressureib.	I/We certif	hat all minimum well construction standards were complied
IO. STATIC WATER LEVEL OR ARTESIAN PRESSURE: ft. below ground Artesian pressureIb. Firm Official Walk Date	the time th	rig was removed.
10. STATIC WATER LEVEL OR ARTESIAN PRESSURE: ft. below ground Artesian pressureIb. Firm Official Level Walk	Firm Nam	WALKEN WATER SYSTEMS INC.
ft, below ground Artesian pressureIb. Firm Official WalkDate	IC WATER LEVEL OR ARTESIAN PRESSURE:	P A LA AA MALAN
	below ground Artesian pressure 36 Ib. Firm Offici	Jul Walk Date 03/12/90
Depth flow encounteredft. Describe access port or and	encounteredft. Describe access port or and	
control devices: Supervisor or Operator Date 03/12	rices: Supervisor	r Operator Date 03/12/9

UDAHO DEHARIMENT OF WA	TER F REP(RESO DRT	OUR -	CF	Ins Tw	Off pected	ice Use by Bae	only Sec		
				CONT	INUATIO	1/A	1/4	1/4		
DRILLING PERMIT NO	11. W	/ELL	TES	TS:	Lat:		 Lon	g: :	:	
her IDWR No	_	🗆 Pu	mp	🗆 Bailer		Nir (□ Flowin	ng Artesian		-
OWNER:	Yie	id gal./n	nin.	Draw	down	Pum	ping Level		ime	
ame					-,	 		_		
		•								
tyState2ip	L	T								
LOCATION OF WELL by legal description:	Water	i emp Oualit		or comment	he -		_ Botto	m nole tem	D	
retch man location must agree with written location	, alo	adam	y 1001 (enth fire	t Mater i	Encountoro		
N	12. LI	тно	LOG	C LOG:	(Describ	e repairs	s or abai	ndonment)		
	Bore	_ 1	-		·				114	
Twp North □ or South □	Dia.	From	To	Remarks:	Lithology,	Water Qu	Jality & To	emperature	۲.	L*
Rge East or West		439	460	BROWN	AND GRAY	RHYOL	E			Ļ
Sec 1/4	-	460	461			BUYOL L				┞
		- 40 !		01/09/	ANU GRAI. GR	BRIVEL.	F	09/17/08		┢
S Address of Well Site					4.H			-967 (11 30	<u> </u>	t
City										T
(Give at least name of road + Distance to Road or Landmark)										Ľ
BlkSub. Name			MALK	ER WATER	SYSTEMS	INC.			15	
									L	
USE:									03/	12
Domestic Municipal Monitor Irrigation				···					+	
									1 03	11
. IYPE OF WORK check all that apply (Replacement etc.)										-
New Well Modify Abandonment Other					1				-	
New Well Modify Abandonment Other DRILL METHOD Air Rotary Cable Mud Rotary Other										
New Well Modify Abandonment Other DRILL METHOD Air Rotary Cable Mud Rotary Other										
New Well Modify Abandonment Other DRILL METHOD Air Rotary Cable Mud Rotary Other SEALING PROCEDURES						l W i	<u> </u>			
New Well Modify Abandonment Other DRILL METHOD Air Rotary Cable Mud Rotary Other SEALING PROCEDURES SEAL/FILTER PACK AMOUNT METHOD				<u> </u>		IV į	ŝ			
New Well Modify Abandonment Other DRILL METHOD Air Rotary Cable Mud Rotary Other SEALING PROCEDURES SEAL/FILTER PACK AMOUNT Method From To Sacks or Pounds			E	ਸੂ <u>ਤਿ</u> (V (<u>en</u>			
New Well Modify Abandonment Other DRILL METHOD Air Rotary Cable Mud Rotary Other SEALING PROCEDURES SEAL/FILTER PACK AMOUNT METHOD Material From To Sacks or Pounds			L	දා (දු (M/	2 IS (IR 16	V (1998	<u>En</u>			
New Well Modify Abandonment Other DRILL METHOD Air Rotary Cable Mud Rotary Other SEALING PROCEDURES SEALFILTER PACK AMOUNT Material From To Sacks or Pounds				망 년 ((MA Partment	R 16	I998	ŝ Iŋ			
New Well Modify Abandonment Other DRILL METHOD Air Rotary Cable Mud Rotary Other SEALING PROCEDURES SEAL/FILTER PACK AMOUNT Material From To Sacks or Pounds Other Material From To Sacks or Pounds Other			L	אר (שלים) אולים אולים אולים אולים אולים	IF LE	1998 1998				
New Well Oddify Abandonment Other DRILL METHOD Air Rotary Cable Mud Rotary Other SEALING PROCEDURES SEAL/FILTER PACK AMOUNT METHOD Material From To Sacks or Pounds Air Rotary Other as drive shoe used? Y N Shoe Depth(s) as drive shoe seal tested? Y N How?				אן אר אין אר אין	R 16	1998 1998 Pr Resi Bolian				
New Well Oddify Abandonment Other DRILL METHOD Air Rotary Cable Mud Rotary Other SEALFILTER PACK AMOUNT METHOD SEALFILTER PACK AMOUNT METHOD Material From To Sacks or Pounds as drive shoe used? Y N Shoe Depth(s) as drive shoe seal tested? Y N How? CASING/LINER:				בין אב MA Partment Sout	R 16	1998 1998 Pr Resi Poion				
New Well Modify Abandonment Other DRILL METHOD Air Rotary Cable Mud Rotary Other SEALING PROCEDURES SEAL/FILTER PACK AMOUNT METHOD Material From To Sacks or Pounds as drive shoe used? Y N Shoe Depth(s)				אן אב MA Partment Sout	NR 16	1998 1998 Pr Rest Baion	<u>urce</u>			
New Well Modify Abandonment Other			L	אן אר (MA Partment Sout	NR 16	1998 1998 Bar Resu Baian	<u>الا</u>			
New Well Modify Abandonment Other			L	Artment	NR 16	1998 1998 Pr Rest Poion	<u></u>			
New Well Modify Abandonment Other				ATTER	NR 16	1998 1998 Pr Rest	<u>Surce</u>			
New Well Modify Abandonment Other			· · r	Artment	NR 16	1998 1998 Pr Rest	<u>Surce</u>			
New Well Modify Abandonment Other				Artment	NR 16	1998 1998 Pr Resi Paion	<u>Surce</u>			
New Well Modify Abandonment Other DRILL METHOD Air Rotary Cable Mud Rotary Other SEALFILTER PACK MUDIT METHOD SEALFILTER PACK AMOUNT METHOD Material From To Sacks or Pounds as drive shoe used? Y N Shoe Depth(s) As drive shoe seal tested? Y N How? CASING/LINER: Nameler From To Gauge Material Casing Liner Welded Threaded angth of HeadpipeLength of Tailpipe PERFORATIONS/SCREENS Perforations Method				Artment	NR 16	1998 1998 Pr Res 20ion	<u>Surce</u>			
New Well Modify Abandonment Other		pleted	yr Depthherd	Artment	IS I	1998 97 Rest		(Mee	surab	
New Well Modify Abandonment Other		pleted	L Depth	Sy IS (IS I	1998 97 Res 20/an	Durce	(Mea	surab	
New Well Modify Abandonment Other	Com Date	pleted : Start	L Depth	Artment South	IS I	1998 Pr Resi Baion Con	Durce	(Mee	surab	
New Well Modify Abandonment Other	Com Date	pleted : Start	I Depth eed	Artment South South Sector	R 16	1998 Pr Resi Baion Con DN ruction st	Durce	(Mee were comp	surab	ple)
New Well Modify Abandonment Other	Com Date	pleted : Start PRILL ertify t	L Depth Red	MA Artment Sout	R 16	1998 Pr Rest Baion Con DN ruction st	Durce	(Mee	iied w	pile)
New Well Modify Abandonment Other	Com Date	pleted : Start PRILL ertify t te the	I Depth eed ER'S hat all	MA Artment South Sou	R 16	1998 Pr Resi Baion Baion Con DN ruction st	Durce	(Mea	lied w	vith
New Well Modify Abandonment Other	Com Date	pleted : Start PRILL ertify t te the	I Depth eed ER'S hat all irig was	MA Partment South So	R 16	1998 Fr Rest Balan Balan Con DN ruction st	Durce	(Mea	lied w	ple)
New Well Modify Abandonment Other	Com Date 13. D I/We c the tim Firm N	pleted : Start PRILL ertify t e the lame_ official	I Depth Red ER'S hat all irig was	MA Sartment South So	R 16	1998 Pr Resi Daion Baion Con DN ruction st	Durce	(Mea	lied w	ple)
New Well Modify Abandonment Other	Com Date 13. D I/We c the tim Firm N Firm C and	pleted : Start PRILL ertify t ee the lame_ official	I Depth Red ER'S hat all rig was	S CERTIF minimum v s removed.	R 16	1998 Pr Resi 20/an 20/an Con DN ruction st	Durce	(Mea	lied w	

Figure C5. Dick Kaster Well 2 Driller's Log

USE TYPEWRITER BALL POINT PEN Department of Wa	ter Ad	o Iministi	ration	RECE	VEN		
WELL DRILLE State law requires that this report be filed with the Dira days after the completion or	ector, D	epartme	POR ant of Wa	ter Administration NG thin 30 ell.	1974	N	_
1. WELL OWNER	7. W	ATER	LEVEL	Department of Wa Southern Dist	ter Resources rict Office		
Name SHIP CONFER	F	tatic wa lowing?	ter level	feet below land sur s I No G.P.M. flow	40.gpn	2	-
Address 776 793028 WR 47-7279	A	emperat rtesian ontrolle	closed-in	pressurep.s.i.			-
2. NATURE OF WORK	8. W	ELL TI	EST DA				
New well Deepened Deplacement	C] Pump		🗆 Bailer 🖾 Other			
Abandoned (describe method of abandoning)	P	ischarge	G.P.M.	Draw Down	Hours Put	mped	
	<u> </u>						
3. PROPOSED USE HEAT OF HOME					4094	e	1
Domestic I trrigation Test 2 Other (specify type)	9. 1	LITHOL	OGIC L	OG	4064	0	
Municipal 🗋 Industrial 🔲 Stock 🛄 Wasts Disposal or injection	Hole Diam.	From	To To	Meterial		Yes	No
4. METHOD DRILLED	6	9	1	TOP SOIL			শ
		16	18	SANOSTONE			
Cable A Rotory Dug Other		18	30	BOULDERS			\square
5. WELL CONSTRUCTION	<u>}</u>	30	39	GREY CLAY			H
		20	98	BIACH RIOLITE+	TALC	x	
Diameter of hole inches Total depthfeet		98	102	BROWNCLAY+BR	OHEN	-	X
Thickness Diameter From To		100	110	RECIVARIA	LTE	Y	1
_250 inches _6_ inches +_/ feet 52 feet		102	110	WATER TA	40	n	
Inches feet feet		110	118	GREY CLAY + BIA	CA RIGITZ	E	X
inches inches feetfeet		118	138	GREYCLAY			Ϋ́
inches feetfeet		138	190	BIACK RIOLITE			-
		245	255	BROHEN BOCK + R	UESAME	X	
Perforated? Yes No		255	300	SHALE.			X
How perforated? Gractory Knife Torch	\vdash					\vdash	\vdash
Size of perforation inches by inches							
Number From To perforations feet feet							
perforations feet feet		+	<u> </u>				\vdash
perforations feet feet							
Well screen installed?							
Manufacturer's name		+	-				
Type Model No							
DiameterSlot sizeSet fromfeet tofeet							
		+					
Gravel packed? Yes No Size of gravel						1	
reaced from feet to feet						-	
Surface seal depth_S/Material used in seal) Coment grout							\vdash
D Puddling clay 🕺 Well cuttings	-		1				
(Stilling procedure used Starry pit C Temperary surface casing	<u> </u>	1	1				
P Overbore to seel depth	1						
8. EDCATION OF WELL	v.	Nork sta	rted 9	<u>-19-74</u> finished	9-24-	74	_
A States N	1					1	2
	1 11.1	ORILLEI	RS CERT	IFICATION		0,	<u> </u>
Subdivision Name	1	Firm No	me E/	SING WELL DRILL	ZTUG Firm N	0.31	4
W E Lot No Block No		Address	<u>P.O. I</u>	SOX 919 TUTN FAL	1/2 gove let	281	274
OK Line Falls		Signed b	y (Firm	official) Unrel	clag		-
305 x 10 x Soc 33, T. 8 N/S. R. 14 EAN	ł		(Op	erotor) Stat Sille	nie		-
NW SW GOVT LOT 6 ISSARY FORWARD	THE	HITE	COPY T	O THE DEPARTMENT			i

Figure C6. Sam Collier Well Driller's Log

		V STATE	WELL LO RECLA	OG AND REPORT OF THE MATION ENGINEER OF ID		B 2 3 1960
Permit No.		Wel	II No	County Twin Falls	Locate wel	in section
Owner	ity of	Twin Fa	115	·		
Address	Twin Fa	alls, Id	laho		NW1/4	NE1/4
Driller_BO	bley, He	enry, We	ech & Ma	ack Gray		
Address_M ろい Well locat Size of dri	furtaug) N SW Hon Lym Hed hole	1 & Kimb NW Mgod Add 201 to	0 105 10 105 11 tion , (12"	iaho NTE / J	5W1/4	SE 1/4
Size of pur Length of t If flowing	mp and mos time of test well, give	tor used to n	nake test_10 hours c.f.s. or_12	D [#] pump, 300 H.P. Diesel, 5 minutes. 20p.m. and of shut off pressure no	00 ft. set	ting.
Size of pur Length of 1 If flowing Water will Thickness of Diameter, I at bo	mp and mot time of test. well, give well, descri be used for of casing length and ttom.	tor used to n 15 flow	nake test 10 hours c.f.s. or 12 works00 ipal Casing ma casing47	D" pump, 300 H.P. Diesel, 5 minutes. 20 g.p.m. and of shut off pressure_DO 10 	00 ft. set	ented in
Size of pur Length of 1 If flowing 1 If flowing 1 Water will Thickness of Diameter, 1 at bo	mp and mot time of test. well, give well, descri be used fo of casing length and ttom.	tor used to n 15 flow	nake test 10 hours _c.f.s. or 12 works00 ipal Casingd7	D" pump, 300 H.P. Diesel, 5 minutes. 20_g.p.m. and of shut off pressure_no ae	00 ft. set	ented in
Size of pur Length of 1 If flowing 1 If flowing 1 Water will Thickness of Diameter, 1 at bo Diam. Casing	mp and mot time of test. well, give well, descri be used fo of casing length and ttom. From Feet	tor used to n 15 flow	hours hours c.f.s. or 12 works 100 ipal Casing ma casing 47	D" pump, 300 H.P. Diesel, 5 minutes. 20_g.p.m. and of shut off pressure_no ae(TYPE AND SIZE OF VALVE.E Weight of casing per lineal therial(STEEL. CONCRETE, WO ft of 22" OD & 514 ft of 1 (CASING IS" IN DIAMETER OR LESS, GIVE CASING OVER 12" IN DIAMETER. GiVE OUT CASING RECORD Remarks—seals, gro	00 ft. set	ented in
Size of pur Length of 1 If flowing If flowing water Water will Thickness of Diameter, I at bo Diam. Casing	mp and mot time of test. well, give well, descri be used fo of casing length and ttom. From Feet	tor used to n 15 flow	Length	D" pump, 300 H.P. Diesel, 5 minutes. 20_g.p.m. and of shut off pressure_no be	00 ft. set	ented in
Size of pur Length of 1 If flowing If flowing Water will Thickness of Diameter, I at bo Diameter, I at bo Diameter, I at bo	mp and mot time of test. well, give well, descri be used for of casing length and ttom. From Feet 0	tor used to n 15 flow	Longth	D" pump, 300 H.P. Diesel, 5 minutes. 20 g.p.m. and of shut off pressureDO te	00 ft. set	ented in
Size of pur Length of 1 If flowing If flowing Water will Thickness of Diameter, I at bo Diameter, I at bo Diameter, I at bo	mp and mot time of test. well, give well, descri be used fo of casing length and ttom. From Feet O	tor used to n 15 flow	Length	D* pump, 300 H.P. Diesel, 5	OO ft. set	ented in tom.

. . 166

10517E 10 SN SN NW

-

2 .

	WELL LOG						
From Foet	To Feet	Type of Material	Water-bearing Formation Ann. Yes or No	Costing Perfornted Ans. Yes or No			
		· · · · · · · · · · · · · · · · · · ·					
				<u> </u>			
		· · · · · · · · · · · · · · · · · · ·					
	<u> </u>						
	<u> </u>						
		· · · · · · · · · · · · · · · · · · ·					
		If more space is required use Sheet No. 2					

WELL DRILLER'S STATEMENT

This well was drilled under my supervision and the above information is true and correct to the best of my know-

ledge and belief.

a Signed 7 By

 License No. 150

758

775

💌 i se 🖌 karja

SHEET NO. 2

Well Owner___

Well Driller

Well Location_____

WELL LOG Water-bear Formatios Ans. Yes or From То **Type of Material** Feet Feet 0 9 Dirt and rock 9 22 Grey Java 22 31 Black lava 31 56 Grey lava 56 73 Brown clay & rocks 73 86 Black lava 86 93 Grev lava 93 102 Brown clay 102 113 Grey lava broken 118 113 Clay 140 _118 Grey lava 153 140 Brown lava 153 174 Grey lava 174 218 Brown lava ____218_ 258 Grev lava 300 258 Clay & fine gravel 375 Brown clay 375 418 Grey clay 418 458 Tan clay <u>458</u> 483 Grey clay & gravel _____483____ 487 Clay & rhyolite 503 Brown clay __503 579 Black rhyelite 730 ___579 Grey rhyolite 746 730 Black rhyolite 746 758 Black rhyolite & clay

IOS /7E

Grey rhyolite (very hard)

usel nated in

SHEET NO. 2

Well Owner College Free Free Well Driller Barry Start Total Well Location 1 0 517

WELL LOG							
From Foet	To Feet	Typo of Material	Water-bearing Formation Ans. Yes or No	Cusing Perforated Ans. Yes or No			
775	.858	Brown clay & rocks					
858	876	Grey rhyolite					
876	895	Grey rhyolite (very hard)					
The	e above drilled by Boley, Henry & Weech, Murtaugh, Idaho.						
		May 4, 1959 to August 4, 1959.					
The	follow	April 4, 1960 to August 1, 1960.					
895	950	Hard grey basalt					
950	970	Blue shale					
970	1050	Black basalt					
1050	1120	Blue shale sticky					
1120	1140	Grey sandstone					
1140	1250	Grey shale sticky					
1250	1275	Grey basalt (very hard)					
1275	1290	Brown shale sticky					
1290	1310	White soft shale					
_1310	1370	Decomposed limestone					
1370	1375	Grey sand					
1375	1400	Red rhyolite. Well started to flow at 1390'. T	emp. @	14°.			
1400	1510	Red rhyolite solid. Flowing 54 g.p.m. Temp. 85	•				
1510	1530	Broken loose rhyolite caving.					
Wel	flowin	ng 100 g.p.m. Water Temp. 87°.					
Wate	r temp.	taken at bottom of well with recording theromete	r gave	a			
readin	g_of 10	po. Flow increased 20 g.p.m. after testing.					

Figure C7. City of Twin Falls Well Driller's Log

· • •

Form 238-7 STATE C 9/82 DEPARTMENT OF V	OF IDAHO USE TYPEWRITE VATER RESOURCES BALLPOINT PE	R OR EN			
State law requires that this report be filed wit within 30 days after the comple	R'S REPORT h the Director, Department of Water Resources tion or abandonment of the well.				
1. WELL OWNER	7. WATER LEVEL				
Name <u>Twin Falls School District No. 411</u> 201 Main Avenue West Address <u>Twin Falls, Idaho 83301</u>	Static water level 0 feet below land surface. Flowing? SI Yes No G.P.M. flow Artesian closed-in pressure 0 p.s.i. Constrained how SI Artesian SI Artesian				
Owner's Permit No. 47-7964	Temperature <u>96</u> °F. Quality Describe artesian or temperature zones below.				
2. NATURE OF WORK	8. WELL TEST DATA				
 New well Deepened Replacement Abandoned (describe abandonment procedures such as materials, plug depths, etc. in lithologic log) 	Pump Bailer Air Other Discharge G.P.M. Pumping Level Hours Pumped				
3. PROPOSED USE					
Domestic Irrigation Test Municipal Industrial Stock Waste Disposal or Injection Other Heating (specify type)	9. LITHOLOGIC LOG Pg 1.1 2 (15:23)8 Bore Depth Material	Water			
	Diam. From To Material 0 12 Top Soil	Yes No			
	12 48 Gray Lave D) F G F TV	ចែក			
□ Cable □ Dug □ Other	53 130 Gray Lava	य			
5. WELL CONSTRUCTION	137 165 Brown Leve JAN 11 1985				
Casing schedule: 🗊 Steel 🗆 Concrete 🗆 Other	170 238 Gray Lava Department of Wetter D				
Thickness Diameter From To	230 258 Brown Lava 258 263 Brown Lava	ources			
	263 274 Brown Rhyolite 274 315 Gray Rhyolite				
inches feet feet feet feet	315 438 Gray Rhyolite	_			
Was casing drive shoe used? I Yes No Was a packer or seal used? Yes No	430 420 Softer Gr. Rayolite More water 458 471 Red & Gray Broken RhyWater 471 518 " " Lots of water				
How perforated? Factory Knife Torch	518 528 Brown Rhyolite 528 531 Broken Gray Rhy, Water				
Size of perforation inches by inches	531 557 Hard Gray Rhyolite				
perforations feet feet	557 583 Broken Softer Red Rhyolite 583 587 Solid Gray Rhyolite				
perforationsfeetfeet	587 606 Very Hard Gray Rhyolite				
Well screen installed? 🗆 Yes 🚘 No Manufacturer's name	612 625 Solid Gray Rhyolite				
Type Model No	625 638 Broken Gray Rhy. More Water 638 698 Hard Gray Rhyolite				
Diameter Slot size Set from feet to feet to feet to feet	698 714 Gray Shale Some Black				
Gravel packed? Yes No Size of gravel	714 797 Black Rhy. Broken - Water				
Surface seal depth Material used in seal: 2 Cement grout	797 808 Broken Brown Rock	-+			
□ Bentonite □ Puddling clay □ Sealing procedure used: □ Slurry pit □ Temp, surface casing	809 842 Green Clay & Shale				
Overbore to seal depth Method of joining assing: Threaded Welded Seture	870 879 Soft Red Rhyolite				
Weld	910 926 Hard Black Rock				
Describe access port Valve	10. (See Page 2) Work started Aug. 15, 198 ¹⁴ finished Sept.	1984			
6. LOCATION OF WELL	11. DRILLERS CERTIFICATION $\partial \mathcal{P}$				
Sketch map location <u>must</u> agree with written location.	I/We certify that all minimum well construction standards were complied with at the time the rig was removed.				
Subdivision Name	Firm Name Elsing Drilling Firm No. 31				
Lot No Block No	Address <u>Twin Falls, ID</u> Date Nov. 6, 1984 Signed by (Firm Official) Amald Flam				
S County Twin Falls	and and S. S. S.				
<u>SE % NW % Sec. 10, T. 10 NOR. 17 @W.</u>	Uperatori Xoya Collegator				
LISE ADDITIONAL SHEETS IS NEGEDOADY		_			

 FORWARD THE WHITE COPY TO THE DEPARTMENT SAI
Form 238-7 9/82

STATE OF IDAHO DEPARTMENT OF WATER RESOURCES

USE TYPEWRITER OR BALLPOINT PEN

State law requires that this report be filed with the Director, Department of Water Resources within 30 days after the completion or abandonment of the well.

Name Twin Falls School District No. 411							
Name Twin Falls School District No. 411	<i>'</i> .	WATE	R LEVI	EL			
INGILIT THE SAFE ANTIMAR AND STARA MAR ATT	1	Static	vater le	vel feet below lan	d surface.		
		Flowin	g? 🗆	Yes 🗆 No G.P.M. flow	v		
Address 201 Main Ave. West		Artesia	n close	d-in pressure p.s.i.	Plua		
Twin Falls, Idaho 83301		Contro	iled by	: Li Valve Li Cap □ 0F Ouslity	riug		
Owner's Permit No.	L	i empe	Descr	ibe artesian or temperature zones	below.		_
	9	WELL	TEST				
2. NATURE OF WORK	°.				0.		
New well Deepened Replacement	1	🗆 Pun	np	⊔ Baller ⊔ Air 🛛	otner		-
Abandoned (describe abandonment procedures such as materials, plug denths, etc. in lithologic log)		ischarge	G.P.M.	Pumping Level	Hours Pur	nped	_
materiors, pray depuis, etc. In hunologic rogi							_
·							
3. PROPOSED USE							_
							_
Domestic Irrigation Test Municipal Industrial Stock Waste Disposal or Injection	9.		JLOGI	LUG Page 2	1	1.00	
Other Other	Bore	Dep	nth T	/ Material		Wate	יי ד
internet int	Diam.	r rom	10	Soft Brown Rock	: n		
4. METHOD DRILLED		932	901	Hard Black Rock			_
Potent O Air O Buildentia O Buildentia		991	1055	Soft Brown Sandsto	ne	$\downarrow \neg \downarrow$	_
□ notary □ Air □ myoraulic □ Reverse rotary □ Cable □ Duo □ Other		1055	1085	Gray Decomposed Rh	<u>yolite</u>	┢┼┼	
	╉──	100-	1100	Gray Decorroad Ph	volite	┼╌┼	_
5. WELL CONSTRUCTION		11005	1264	Red Rhvolite			-
		1246	1284	Broken Red Rhyolit	e 89°F	I	_
Using schedule:		1284	1408	Solid Brown Rhyoli	te	+	_
inickness Unameter From To inches inches feet feet fee	·	1408	1416	Red Rhyolite	b Physit	╧╌┼	
inches inches feet fee	·	1416	1420	Some Vator	ALYOIIC	1	
inches inches feet fee	1	1420	1504	Solid Brown Rhvoli	te		
inches feet	۰ <u>۲</u>	1505	1700	Gray Rhyolite		$\downarrow \Box$	
Was casing drive shoe used? Yes No Was a people of a section of the section of t		1				ſ	
vvas a packer or seal used ? Li Yes Li No Perforated ? Li Yas Li No					9	+	_
How perforated? Factory Knife Torch						++	
Size of perforation inches by inches							_
Number From To		L				\square	_
perforations feet fee	۲ <u> </u>	L				┼─┤	_
perforations feet fee	i	 	├		KI)	+-+	-
Well screen installed? Ves No		1	<u>⊦</u>	DEREIVE			
Manufacturer's name	. E	1		n-v-	<u>e</u>		_
Type Model No,	: [+ $-$	_
Diameter Slot size Set from feet to fee	;	<u> </u>	╞──┤	JAN 8 1985		+	
Gravel packed?	m	P. (7)	10	TATAL - Water Res	DUICES	┿	
Placed from feet to feet	יושיי	F.G	<u>Lil</u>	District Offi	CS		_
Surface seal depth Material used in seal: Cement grou	1 11 1 2 C	-		- SIII		+	_
Li Bentonite Li Puddiing clay Li	- <u>µv</u>		$\left[-\frac{1}{2} \right]$	1985		╆╾╄	_
Sealing drocedure used: II Sunny bit II Lemb surfsed sealers	∖	- JAN		MICRI	il II MEU	+	_
Searing procedure used: I Sturry pit I remp, surface casing		+			5 MA	++	
Method of joining casing: Threaded University of the Welded Solvent	n .						_
Seeming procedure used: District Seeming procedure used: District Seeming District Seeming Coverbore to seal dept Method of joining casing: District Welded District Welded Welded Weld	Depa	tinent	of Wate	r Resources			_
Seeming procedure used: I Silling procedure used: Overbore to seal dept Method of joining casing: Hitraded Welded Overbore to seal dept Weld Cemented between strata	Depa 10	rtment -	of Wate	er Resources			
Method of joining casing: Threaded Welded Cernented between strata	Depa 10	rtment - Wc	of Wate	er Resources finishe	d 9/26	-/8%	
Method of joining casing: Threaded Velded Solvent Weld Cemented between strata Describe access port	Depa 10	rtment - Wo	of Wate	r Resourc es ted finishe	d 9/20	:/89	¥
Seeiing procedure used. Seeiing procedure used. Overbore to seal dept Method of joining casing: Threaded Weld Cemented between strata Describe access port 6. LOCATION OF WELL	Deps 10	tment - Wo	of Wate ork star	ir Resources ted finishe CERTIFICATION	d 9/20	-/84	<u>×</u>
Seeiing procedure used: Seeiing procedure used: O temp, surface casing O verbore to seal dept Method of joining casing: Threaded Weid Cemented between strata Describe access port Cemented between strata Cemente	Deps 10. 11	. DRII I/We	of Wate	IT Resources ted finishe CERTIFICATION If that all minimum well const	$d \frac{9}{20}$	- <u>/8</u> 9	× re
Seeiing procedure used: Sintry procedure used: Overbore to seal dept Method of joining casing: Overbore to seal dept Weid Cemented between strata Describe access port 6. LOCATION OF WELL Sketch map location must agree with written location.	Depa 10.	Wc . DRIL I/We comp	of Wate ork star LERS certify lied wit	IT RESOURCES ted finishe CERTIFICATION It hat all minimum well const that the time the rig was remo	$\frac{9}{2}$	<u> /8 /</u> ards we	re
Seeiing procedure used: Seeiing procedure used: O verbore to seal dept Method of joining casing: Threaded Weided Solvent Weid Cemented between strata Describe access port C. LOCATION OF WELL Sketch map location must agree with written location, N Subdivision Name	Deps; 10. 11	. DRIL I/We Comp	of Wate ork start LERS certify lied wit	IT RESOURCES ted finishe CERTIFICATION If that all minimum well const that the time the rig was remo $\mathcal{E}\left(s_{1}^{\prime} \sim s_{2}^{\prime} = D_{-1}^{\prime} = 0\right)$	$\frac{9}{20}$	<u>- /89</u> ards we	re
Seeiing procedure used:	<mark>. Дер</mark> а 10. 11.	· Wc · DRIL I/We comp Firm	ork start LERS certify lied wit	IT RESOURCES ted finishe CERTIFICATION It that all minimum well const that the time the rig was remo $E \int s r_{-S} D r_{-}$ I	$d \frac{9}{20}$	= <u>/8</u> / ards we	re
Seeiing procedure used: Constrained of joining casing: Constr	Deps. 10. 11.	. DRIL I/We comp Firm Addro	ork start . LERS . certify lied wit Name_	IT RESOURCES ted finishe CERTIFICATION It that all minimum well const that the time the rig was remo E / s - s - D - 1	d <u>9/20</u> ruction standa wed. Firm No. <u>5</u> Date	- <u>/8</u> 9 ards we	re
Seeiing procedure used: Seeiing procedure used: Seei	<mark>. Дерза</mark> 10. 11.	. DRIL . DRIL I/We comp Firm Addre	ork start . LERS certify lied wit Name_ ess	Ir Resources finishe ted finishe CERTIFICATION that all minimum well const th at the time the rig was remo E / s - s D - F	d <u>9/20</u> ruction standa wed. Firm No. <u>5</u> Date	= <u>/8</u> 9 ards we	re
Seeing procedure used: Seeing procedure used: Seeing procedure used: Seeing procedure used: Seeing procedure used: Seeing procedure used: Seeing procedure used: Seeing procedure used: Seeing procedure used: Seeing procedure used: Seeing procedure used: Seeing procedure used: Seeing procedure used: Seeing procedure used: Seeing procedure used: Seeing procedure used: Cemented between strata Cemented between str	. 10. 11.	. Wo . DRIL I/We comp Firm Addro Signe	pf Wata ork start . LERS certify lied wit Name ess d by (F	IT RESOURCES ted finishe CERTIFICATION that all minimum well const that the time the rig was remo E / s - s - b = b irm Official)	d _9/21 ruction standa wed. =irm No Date		re
Seeing procedure used: Seeing procedure used: Seeing procedure use	. 10. 11.	· Wo · DRIL I/We comp Firm Addro Signe	ork start LERS certify lied wit Name ass d by (F	IT RESOURCES $ted finishee$ $CERTIFICATION$ That all minimum well const that at the time the rig was remo E / s - s - b - c If irm Official) and	d <u>9/2</u> ruction standa wed. Firm No. <u>5</u> Date	- <u>/8</u> 9 ards we	
Seeining procedure used: Situry pit Situry pit Situry pit Situry pit Situry pit Situry pit Solution pip Solution pip Solution pip Solution pip Solution pip Situry Situr	Deps 10.	· Wo · DRIL I/We compi Firm Addre Signe	of Wata ork start LERS certify lied wit Name_ ess d by (F	IT RESOURCES ted finishe CERTIFICATION that all minimum well const th at the time the rig was remo $\mathcal{E} \ / \ s \ ' \sim \ s \ D \ r$ irm Official) and (Operator)	d <u>9/26</u> ruction standa ved. Firm No. <u>9</u> Date	- <u>/8</u> 9 ards we	
Seeing procedure used: Seeing procedure used: O temp, surface Casing O verbore to seal dept Method of joining casing: Threaded Weid Cemented between strata Describe access port Cemented between strata Describe access Cemented between strata Descri	Dep: 10. 11.	· Wo · DRIL I/We compi Firm Addre Signe	of Wate ork star LERS certify lied wit Name_ ess d by (F	IT RESOURCES ted finishe CERTIFICATION It that all minimum well const that the time the rig was remo $E \ / s \ / \sim g \ D_{res}$ irm Official) and (Operator)	d <u>9/20</u> ruction standa wed. Firm No. <u>9</u> Date	- <u>/8</u> 9 ards we	

Figure C8. Twin Falls High School Well Driller's Log

Form 238-7 RECELVE DEPARTMENT OF	DF IDAHO USE TYPEWR WATER RESOURCES BALLPOIN	ITER OF
JUL 25 1983 WELL DRILLI State law requires that this report be filed wi Decomment of the state o	ER'S REPORT	A
Department of Water Rose	Ton .	98
1. WELL OWNER	7. WATER LEVEL	10 all
Name Mike Archibald	Static water level feet below this strace	10
Allen Pt 2 Ruhl Idaho	Flowing? The Yes I No G.P.M. flow	
Address IIC. 5 Dulli, Idallo	Controlled by: $\mathbf{\Delta}$ Valve \Box Cap \Box Plug	
Owner's Permit No	Temperature <u>113</u> oF. Quality <u>very good</u>	
2. NATURE OF WORK	8. WELL TEST DATA	
🖾 New well 🗆 Deepened 🖾 Replacement	□ Pump □ Bailer □ Air □ Other	
Abandoned (describe method of abandoning)	Discharge G.P.M. Pumping Level Hours Pu	mped
	12	
	2010	
3. PROPOSÉD USE		
🗇 Domestic 🖂 Irrigation 🗔 Test 🗇 Municipal	88526	
Industrial Stock Waste Disposal or Injection	Hole Depth	Water
Other Geo Cherman (specify type)	Diam. From To Material	Yes No
	12 0 8 Brown clay	X
	8 B5 Brown sand	XX
☐ Rotary ☐ Air ☐ Hydraulic ☐ Reverse rotary	48 67 Grev-brown clay	1
	67 72 Grey basalt	
5. WELL CONSTRUCTION	22 92 Brown clay	+++
Coring schedules 🗚 Starl 🗔 Consults 🗔 Other	0 92 137 Grey pasalt	+
Thickness Diameter From To	" 142 168 Grey basalt	
250 inches 12 inches + 1 feet 19 feet	"168 75 Dark graybrown clay	+
-200 inches -3 inches 12 feet 270 feet	209 213 Brown clay & hmn hagalt	+ + +
inches inches feet for	213 219 Brown basalt	
Was casing drive shoe used? The Yes I No on liner	219 253 Brown basalt	
Was a packer or seal used? 🗆 Yes 🞽 No top	253 257 Green clay	+++
Perforated? Yes X No	of basalt	
Size of perforation inches by inches	6 270-306 Tan clay w/shale layers	<u> '</u>
Number From To	306 327 Hard grey shale	X
perforations feet feet	in layers	
perforationsfeetfeet	352 378 Grey-brown shale w/clay	x
Well screen installed? Yes X No	378 409 Grev clay	$++\epsilon$
Manufacturer's name Type Model No	409 416 Light tan clay	$\left \right\rangle$
Diameter Slot size Set from feet to feet	416 420 Dark green shale	I
Diameter Slot size Set from feet to feet	441 450 Grev-brn shale	
Gravel packed? □ Yes Lot No □ Size of gravel	550 470 Grey shale	
Surface seal depth Material used in seal: Cement grout	470 487 Dark grey shale	<u>↓ </u>
I Puddling clay □ Well cuttings	507 510 Black rhvolite	×
Sealing procedure used: U Slurry pit Ø Temp, surface casing R Overhors to each doubt	510 556 Brown rhyolite	1
Method of joining casing:	556 578 Black rhyolite	
Weld	584 632 Black rhvolite	
Describe access port flowing well	10.	
	Work started <u>1 May 198</u> 3finished <u>1 July</u>	1983
6. LOCATION OF WELL	11. DRILLERS CERTIFICATION	
Sketch map location must agree with written location.	I/We certify that all minimum well construction standar complied with at the time the rig was removed	ds were
Subdivision Name	complied with at the time the rig was removed,	
· · · · · · · · · · · · · · · · · · ·	Firm Name_Boley & Henry Firm No. 86	
W	Address Murtaugh, Idaho Date 5 Jul	v.198
Lot No Block No	D(- 0)	<u>, 1 - 7</u> ,
	Signed by (Firm Official) 15 and Joliyo	
County Twin Falls	and	
54 54 37 8	(Operator) Kuss Boly	
2W 1/2 DW 1/2 Sec. J. T. 22/S, R, 4 E/2.		

STATE O	FID	ано		(D)	SE TYPEW	RITER	
				CES ∂∦ູເ ∩DTĩ ∧/n	. Crein		
WELL DRILLE	the D		Depar	uni Grater Resources ジル	7 50	SAT	
within 30 days after the comple	tion or	abando	nment	t of the well. D _{epyman}	`_~15 193 ≥	9	
	7.	WATE	B LEV	EL Southern	States 6.		
Nike Archibold					Seriel Chica	a [
Name MIKE AFCHIDAIG		Static	water l 1a? 🗆	evel feet below lan] Yes 🗆 No 🛛 G.P.M. flow	d surface. N	· .	
Address Rt. 3 Buhl, Idaho		Artesia	n close	ed-in pressure p.s.i.	D	2.5	
Owner's Permit No. 47-7577		Contro	erature	/: Li Valve Li Cap Li OF, Quality	r Piug		
2. NATURE OF WORK	8.	WELL	TEST	DATA			
New well Deepened Replacement Attractional definition		🗆 Pur	np	🗆 Bailer 🛛 Air 🖂	Other		
□ Abandoned (describe method of abandoning)		Discharge	G.P.M.	Pumping Level	Hours P	umped	
3. PROPOSED USE							
					88625		
Industrial Stock Waste Disposal or Injection	9.				000.	Wate	
□ Other (specify type)	Diam.	From	То	Material		Yes	
4. METHOD DRILLED	6	632	682	Black rhyolite w	/thin	+	
🗆 Rotary 🗀 Air 🗀 Hydraulic 🗀 Reverse rotary		682	743	Brown rhyolite	<u> </u>	171	
□ Cable □ Dug □ Other		743	800	<u>Grey-brown</u> rhyol	ite	+++	
b. WELL CONSTRUCTION						+ +	
Casing schedule: Steel Concrete Other Thickness Diameter To To							
inches inches + feet feet							
inches inches feet feet							
inches feet feet							
Was casing drive shoe used? Li Yes Li No Was a packer or seal used? Di Yes Di No				-12			
Perforated? Q Yes Q No				21			
Size of perforation inches by inches	<u> </u>		{	9		++	
Number From To			¥				
perforationsfeetfeet						+	
perforations feet feet							
Manufacturer's name				DERETVE	<u>m</u>		
Type Model No Diameter Slot size Set from feet to feet				M BOB G G	<u>u</u>		
Diameter Slot size Set from feet to feet	-			.1111 25 1983			
Placed from feet to feet	-			Don	1008		
Surface seal depth Material used in seal:				ochartment of Mater Mesor			
Sealing procedure used: Slurry pit Temp. surface casing						+-+	
Method of joining casing: Threaded Welded Schurt						FI	
Weld							
Cemented between strata Describe access port	10.				1		
		Wo	rk star	ted finished	15/7	198	
6. LOCATION OF WELL MICHIELI MET	11.	DRIL	LERS	CERTIFICATION			
Sketch map location must agree with written location		1/We	certify	that all minimum well constr	uction stand	ards we	
N Subdivision Name	complied with at the time the rig was removed.						
┝╌- <u>┤</u> <u>┤</u> ┤		Firm N	Vame_	Boley & Henry F	irm No. <u>86</u>		
W	1	Addre	ss]	Murtaugh,Idaho D	ate <u>5</u> Ju	ly,19	
Lot No. Z Block No		Siene		im Official) Bai	Bole	0	
Sa. Au		Signed	, DÀ (L	and _		1-	
County 1 Win Talls			((Operator) Rugs	Boler		
Sul y sul you 33 - 8 mon led more							

Figure C9. Mike Archibald Well Driller's Log

Form 238 RECEIVED DEPARTMENT OF V 1/78 RECEIVED WELL DRILLE JUN 7 State of V WELL DRILLE State of V WELL DRILLE within 30 days after the complet	DFID WATE ER' th the D etion of	AHO R RE S R Director	SOUR EP , Depa	CES OF rtmer	DEEE RT to f Water Resourties J		
Department of Water Resources	-				Department of V	Vater Resourc	es
1. WELL'OWNER District Office	/ /.	WATE	RLEY	/EL	_		
Name Canyon Springs Golf Course		Static	water	level Xv	0 feet below lan	id surface. 6300	
Address Twin Falls, ID 83301	Artesian closed in pressure 240 p.s.i.						
Owner's Permit No. 47-7758		Contro Temp	olled b [.] erature	y: 102 10	XX Valve ⊡ Cap ⊡ −oF. Quality <u> </u>	00 0	
2. NATURE OF WORK	8.	WELL	. TEST	DAT	A		
□ New well IZ Deepened □ Replacement	🗆 Pump 🗖 Bailer 🗆 Air					Other	ow
		Discharg	e G.P.M		Pumping Level	Hours Pur	mped
		6300			0		
3. PROPOSED USE							
° □ Domestic □ Irrigation □ Test □ Municipal	9.	LITH	OLOGI		G	73889	
□ Industrial □ Stock □ Waste Disposal or Injection [¥ Other Heating clubhouse(specify type)	Hole	De	pth				Water
	Diam.	From	To	Gr	Material	hard	Yes No
4. METHOD DRILLED		274	280	Br	own basalt-har	d	
💥 Rotary 🖄 Air 🖾 Hydraulic 🗆 Reverse rotary		280	312	BI	ack basalt-har	d	
I Cable □ Dug □ Other		314	315	BI	ack basalt-som	e brown	
5. WELL CONSTRUCTION Denton drilling installed]	315	329	BI	ack basalt-big	or	
Carina ashadular XI Start [] Cananata [] Other		329 ¹ 2	377	Gr	ey basalt-very	hard	
Thickness Diameter From To		277	300	P P	ndesite ?	-1+ 2	
250 inches 24 inches $+$ 1 feet 26 feet	:	311	305	A	ndesite ?	alt :	
.375 inches 12 inches 1 feet 128 feet		389	394	BI	ack basalt ? A	ndesite	?
.250 inches 8 inches 1 feet 592 feet		413	438	Gr	ev basalt-verv	hard	
Was casing drive shoe used? 🖸 Yes 🛛 XS No		438	452	Sc	fter broken ba	salt	
Perforated?				<u>''</u>	<u>'race of cold f</u> /ater	lowing	T
How perforated? Factory Knife Torch Size of perforation inches by inches		452	460	Sc	lid basalt		
Number From To		460	552	La	yers of sandst	one &	x
perforations feet feet foot	_à*.	552	592	La	yers of clay &	rock	
perforations feet feet				V	<u>Jater increasin</u>	g-about	
Well screen installed? Ves X No		-		f	rom 80° to 92°	F	
Type Model No		592	670) <u>Br</u> 1	oken ryolite w	reased	e
Diameter Slot size Set from feet to feet				3	bout 600 GPM t	emp 99°	-
Gravel packed? Gravel packed? Gravel packed?		670	750	Br	oken ryolite w	reases	e
Placed from feet to feet				i	n water Temp i	ncreased	
Puddling clay Well cuttings	·]	<u>02-103°</u>		
Sealing procedure used: Slurry pit Temp, surface casing		<u> </u>					
Method of joining casing: Threaded Welded Weld Weld				See Dri	report filed 111ing 12/27/81	by Dentc	n
Cemented between strata Describe access port	10.	R	otar ork star	ted _]	lrilling starti -26-82 finished	ng det 2 3-11-8	32
6 LOCATION OF WELL	11	יופח	LEBS	CEP			
Sketch mapped in must agree with written location.	"	I/We	certify	that	all minimum well constr	uction standar	ds were
Subdivision Name		Firm	Nan	iker V	Nater Systems, Inc. F	irm No15	5
₩ ₩ E		Addre	ss_Tv	624 vin F	alls, Idaho 83301 D	ate <u>3/30/8</u>	32
Lot No Block No		Signed	d by (F	irm C	Official Scalence	B. W	Ob_
County ZXX Twin Falls				an (Oper	d tederik	B. 4)	lek
<u>NW</u> ¼ <u>NW</u> ¼ Sec. <u>33</u> , T. <u>9</u> XI/S, R. <u>17</u> E/W.							

USE ADDITIONAL SHEETS IF NECESSARY - FORWARD THE WHITE COPY TO THE DEPARTMENT

Figure C10. Canyon Springs Golf Course Well Driller's Log

TITT 238-7 50 STATE DEPARTMENT OF WELL DRILL	UF ID WATE	AHO ER RE		CES CRT T09S R17E S	rected by IDV Sec. 29 NWN	WR ⁻ IWS	Го: Е	
State law requires that this report be filed w within 30 days after the comp	ith the l letion a	Directo rabano	r, Depa donmen	ntment of War By: mciscell Int of the well	2012-12-14	4		
		WAT						
News Pristine Springs, Inc.	7. WATER LEVEL Flowing Static water level feet below land surface.							
Name								
Address 4074 N 2000 E FITEE, 10 85528		Flow	ing? (ian clor	XIYes □ No G.P.M. flo				
Drilling Permit No. 38-91-2-003		Cont	rolled b	y: 🛛 Valve 🗆 Cap	J Plug			
Water Right Permit No. <u>36-7130</u>		Temp	erature	•OF Quality				
			Des	cribe artesian or temperature zones	s below.			
	8.	8. WELL TEST DATA						
X New well L Deepened C Replacement		D Pu	ımp	🗆 Bailer 🛛 Air 🗆	Other			
Abandoned (describe abandonment procedures such as		Discharg	e G.P.M	. Pumping Level	Hours Pu	mped		
materials, plug depths, etc. in lithologic log)							_	
. PROPOSED USE								
Domestic Irrigation Test Municipal	9	ПЛТН	IOLOG	IC 1 0G	83922			
Industrial Stock Waste Disposal or Injection	Born		oth	1		Water		
B Other Fish Propagation & (specify type) Power Generation	Diam	From	То	Material		Ye	s N	
	12	270	302	Very hard Andesite			1	
		1302	1 311	andesite	cace brown		+	
ע אסנary L Air L Hydraulic L Reverse rotary Cable Dug D Other		311	359	Very hard black and	lesite		\Box	
		359	366	Softer black andesi	ite		Į.	
WELL CONSTRUCTION		406	406	Very hard	Thite /ta-		┢	
Casing schedule: 🕅 Steel 🔲 Concrete 🗔 Other				clay	while/ Lan		\square	
Thickness Diameter From To	·	424	440	Greenish clay with	black			
inches 8 5/8 inches +1 feet 582 fee	t	457	457	Tannish clay & grey	bagalt	T	60	
inches inches feet fee	t	465	480	Greenish grey sands	tone with	1.	100	
inches inches feet fee	<u>ا</u>	400	1.01	sand & some clay			88	
Was casing drive shoe used? Yes X No	-	480	484	Overnight drops t	on 20 gram		92	
Was a packer or seal used? Yes X No Perforence?		484	490	Whitish tan clay or	shale			
How perforated? Factory Knife Torch Gun		490	502	Greenish grey sand	& sand-			
Size of perforation inches by inches	-	502	530	Soft black rhvolite			┢──	
Number From To		530	551	Grey & greenish sha	le or clay	Х		
perforations feet feet	·	551	574	Soft grey shale wit	h layers			
perforations feet fee	·	574	590	Brown rhyolite		X	98	
Well screen installed? U Yes UX No Manufacturer's name	8	590	605	Brown rhyolite				
Type Model No		605	67/	Brown rhyolite		X	┢┈	
Diameter Slot size Set from feet to fee	·	624	630	Brown rhyolite		x	10	
Gravel packed? Gravel packed? Gravel view XX No Gravel view view view view view view view view	۲ <u>ـــــــ</u>	630	770	Brown rhyolite		x		
Placed from feet to fee				We man comes most 1	frem		<u> </u>	
Surrace seal depth Material used in seal: Cement grou	۲ <u> </u>	50 N.		1105-770 V				
Sealing procedure used: Slurry pit Temp, surface casing			⊨ −		32		\vdash	
Overbore to seal depth		<u>i.u</u> s C		DECOMPT	32,*		\vdash	
wiethoo of joining casing: 🗀 I hreaded 📙 Welded 🗔 Solvent	-	56-	.se	1992	Racourace			
Cemented between that a			Gar	Department Of Materia	Ausources		L	
Describe access port	10.	ి. •••	-1	2/22/02 during	A /24 /02			
		••0	- K atari		4/24/92		_	
LOCATION OF WELL	11.	DRIL	LERS	CERTIFICATION				
Sketch map location must agree with written location.	ľ	I/We	certify	that all minimum well constru	uction standard	ds w	ere	
N Subdivision Name	1	compl	ied with	h at the time the rig was remov	red.			
	1	Firm f	Wame_	aiker Water Systems, Inc. 624 Pierce Street Fi	rm No. 15			
W E Bottom of Blue Lakes			т	win Falls, Idaho 83301				
	1	Addre	SS	D	ate		-	
		Signed	l by (Fi	rm Official)	Jalk			
S Teroma		_		and				
			((Operator)		5		
<u>_SW_ ¼NE ¼ Sec29</u> , T9 S 🗹 R17 . w 🗗	1 ·	-					-	

USE ADDITIONAL SHEETS IF NECESSARY - FORWARD THE WHITE COPY TO THE DEPARTMENT

Figure C11. Pristine Springs Well Driller's Log