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Abstract

An analytical approach based on the derivative of the absorption spectra was used

to explore the nature of the band-edge of ZnO and MgZnO thin films grown via the

sputtering technique. It was found that the band-edge is composed of a Gaussian

where the width and peak position were employed to model the electron-phonon (e-

p) interaction and defect characteristics of the film. These characteristics were studied

via transmission experiments in the temperature range of 77 K to 532 K. The as-grown

film was found to exhibit weak e-p coupling relative to the static contribution of

defects similar to the behavior of amorphous-like semiconductors. Upon successive

controlled annealing of the ZnO film, up to 800
oC, the defect component diminished

and the phonon contribution became dominant. Specifically, the e-p interaction was

similar to semiconductors with long range order. X-ray diffraction and imaging

studies agree with these results. The defects in the ZnO films are discussed in terms

of structural inhomogeneities and Zn interstitials prevalent in ZnO films grown via

sputtering. MgZnO alloys show similar defect and e-p coupling behavior. Further-

more, building on the derivative analysis, we show an analytical technique capable

of separating signal/fringe-pattern convolution at the band-edge. Finally, we develop

an analytic set of models that can be applied to the full range of nonlinear band-

edges. We show that, in the limiting case of linearity, our model is consistent with

and produces the same results as the linear Urbach model. Our new model is capable

of bypassing “tailing” as an indirect measure of the spatially varying local potential

and gives a direct measure of this quantity.
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chapter 1

Introduction

Semiconductors have been the foundation of modern technology. First generation

semiconductors such as Si and GaAs are still the most prolific semiconductor materi-

als in use today. While first generation semiconductor technology is mature and very

well established, these materials have presented some important limitations in the

advancement of the technology. As shown in Fig. 1.1, the limitations in application

parameters mainly include high voltage operation, high temperature applications and

high frequency switching.1 High voltage operation requires a large energy gap and

high critical electric field (related to the breakdown or blocking voltage capacity).

High frequency switching also requires a large energy gap but requires high electron

velocity or mobility. High temperature applications require high thermal conduc-

tivity and a high melting point. Some semiconductor devices include BJTs (bipolar

junction transistors), HEMTs (High Electron Mobility Transistors), IGBTs (Insulated

Gate Bipolar Transistors), JFETs (Junction Gate Field Effect Transistors), MOSFETs

(Metal-Oxide-Semicondcutor Field Effect Transistor) and thyristors.

F igure 1 .1 : Semiconductor material properties important for applications mainly
include high voltage, high temperature and high frequency switching.1
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The advent of wide-bandgap (WBG) semiconductors, such as GaN, SiC and ZnO,

have addressed some of these shortcomings. While GaN and SiC are relatively equal

in high voltage and high frequency applications, GaN provides a higher critical elec-

tric field, while SiC provides higher thermal conductivity. ZnO also provides high

electron mobility.1

The United States has led the way on WBG research. In 2002, DARPA initiated the

Wide Bandgap Semiconductor Technology Initiative (WBGSTI) that lasted from 2002-

2009 and included phases of material development, device development and reliabil-

ity and performance optimization.2 This initiative has effected advances in technology

such as high RF wireless communication, next generation jammers, air-missile defense

radars, Active Electronically Scanned Array detection, and long-distance, small target

detection. The enhanced detection is attributed to the ability of WBG semicondutors

to amplify signals without adding noise. Replacing Si with SiC, for example cuts

system power consumption to 1/25 of original levels. It has also enhanced switching

speeds by up to 200 times. WBG semiconductors have also assisted in carbon emission

reduction due to enhanced efficiency of DC to AC power conversion in hybrid electric

vehicles.

Ultimately, the improved efficiency of WBG semiconductors markedly reduce heat

dissipation which make cooling systems smaller, lighter and simpler. In addition to

extending the range of vehicles and aircraft from these improved systems, there is

additional reduction in production costs.2

Recently, semiconductors with bandgaps significantly wider than 3.4 eV have at-

tracted attention due to their potential to access previously inaccessible levels of

performance.2 The bandgap scales nonlinearly with device performance and Ultra-

Wide Bandgap (UWBG) semiconductors offers higher breakdown fields, higher tem-

perature stability and higher irradiation robustness than currently available WBG

technology. Recent advances in growth and substrate development have opened a
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new era of UWBG semiconductor materials. Some UWBG materials include AlGaN,

β-Ga2O3 and boron nitride.

Future applications in WBG and UWBG semiconductors will be in satellite commu-

nications, high speed computers, precision-guided early warning detection systems,

intelligence and reconnaissance, electronic warfare and intelligent fire control systems.

1 .1 multidisciplinary approach

It is the intention of the author to draw information from a wide array of knowledge

bases, including solid-state physics and chemistry, electromagnetism, optics, and

material science, in hopes of more clearly resolving the complexity of their interaction

in the field of semiconductor study, if only in a qualitative sense. History shows that

scientists have long used heuristic models to better communicate the abstract qualities

of the physical phenomena they wish to describe, usually independent of mathemat-

ical treatment. These models serve as a method of communicating large amounts

of information in a condensed fashion in an attempt to accelerate scientific thought.

While mathematics is important in Science and provides a rigorous framework for

physics, it represents operational or computational knowledge of subjects that can also

be communicated qualitatively. For this reason, this work will attempt to use models

that do not operationally describe all aspects of this work, but which have some

pedagogical value and lend qualitative perspective on the issues at hand. The models

should provide self-consistency throughout a wide array of disciplines and promote

meaningful and insightful interpretation of experimental data. The majority of data

analysis in this work is based in statistics and treats the bulk behavior of electrons

in semiconductors. Statistical treatments are useful as a starting point to bridging

explanatory gaps between emergent phenomena in semiconductors and fundamental

rules that govern individual electrons, however, this function is performed best when
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coupled with our most current models of electrons. As such, a large portion of this

work will attempt to interpret the statistical behavior of electrons in semiconductors

through the pedagogical lens of molecular orbital theory and electron wave functions,

which offers some insight into the physical forces that give rise to various selection

rules observed in transitions at the band-edge.
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chapter 2

The Electron-Phonon Interaction

Abstract — This chapter is dedicated to the keystone advances and developments

in the field of solid-state physics which underlie the electron-phonon interaction in

semiconductor materials. The chapter draws from fundamental texts in the fields of

solid-state physics and molecular orbital theory of bonding from physical chemistry.

Sec. 2.1 begins with a modern understanding of the electron from quantum wave

mechanics. Sec. 2.2 discusses the orbital energy levels associated with electrons. Sec.

2.3 describe how electrons become associated through wavefunction overlap. Sec. 2.4

outlines how solids are formed through the association of atoms. Sec. 2.5 describes

the three classes into which solids are grouped. The physics of excited states and their

interaction with vibrational modes are described in Sec. 2.6 and Sec. 2.7, respectively.

Momentum and k vectors are introduced in Sec. 2.8. Phonons in real (imperfect)

solids are discussed in Sec. 2.9. Finally, the electron-phonon interaction is introduced

in Sec. 2.10.

2 .1 the electron

Electrons are small and light and thus show properties of both particles and waves.

In 1923, Louis de Broglie suggested that the properties of electrons in atoms are better

explained by treating the electrons as waves rather than as particles.

Electrons that are bound to nuclei occupy an area of space referred to as an

orbital. The Heisenberg uncertainty principle states that we can never determine

exactly where the electron is. We can, however, determine the electron density—the

probability of finding the electron in a particular part of the orbital. The orbital is

thus defined as an allowed energy state for an electron, with an associated probability

function that defines the distribution of electron density in space.1
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2 .2 energy levels

Atomic orbitals are grouped into different "shells" at different distances from the

nucleus. Each shell is identified by a principal quantum number n, with n = 1 for the

lowest-energy shell closest to the nucleus. As n increases, the shells are farther away

from the nucleus—higher in energy—and can hold more electrons.

The first electron shell contains just the 1s orbital which is spherically symmetric.

The electron density decays exponentially as a function of the distance from the

nucleus. The second electron shell consists of the 2s and 2p orbitals. The 2s orbital

is also spherically symmetric—although not simply an exponential function. Because

most of the 2s electron density will be farther from the nucleus than that of the 1s, the

2s orbital will be higher in energy. In addition to the 2s orbital, the second shell also

contains three 2p atomic orbitals, one oriented in each of the three spatial directions.

These orbitals are called 2px, 2py and 2pz. The 2p orbitals are higher in energy than

the 2s, because the average location of the electron in a 2p orbital is farther from the

nucleus.

2 .2 .1 Spherical Harmonics

The electron in an atomic orbital is like a stationary, bound, vibration—a standing

wave in three dimensions—and spherical harmonics are used in the computation of

their configurations.1 In essence, an electron’s energy in an orbital must be described

by an integer number of standing waves to be stable, otherwise some of the waves

would be radiated as light or lost as heat.2

Fundamental Frequency–1s — The waveform of a 1s orbital is like a vibrat-

ing guitar string at its fundamental frequency1), except in three-dimensions. The

time-dependent wave function, ψ, is a mathematical description of the shape of the
1The fundamental frequency of a guitar string is a standing wave with the entire string alternately

displaced upward and downward
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wave as it vibrates and the electron density at any point is given by ψ2, the square of

the wave function at that point.

Blue and yellow regions of the wave functions in Fig. 2.1 indicate the instantaneous

phase of the constantly changing wave function.

F irst Harmonic–2p — If you place a finger at the center of a guitar string, while

plucking the string, your finger keeps the midpoint of the string from moving. The

displacement at the midpoint is always zero; this point is a node. The string now

vibrates in two parts, with the two halves vibrating in opposite directions—the two

halves of the string are out of phase. When one is displaced upward, the other is

displaced downward.

The first harmonic of the guitar string resembles the higher energy 2p orbital. The

2p orbitals are represented as two "lobes" separated by a node. The two lobes of the

p orbital are out of phase with each other. Whenever the wave function is positive in

one lobe, it is negative in the other.

Fig. 2.1 shows the forms of the first few real spherical harmonic functions.

2 .3 chemical bonds

In 1915, G.N. Lewis proposed several new theories describing how atoms bond.3 One

of these theories states that a filled shell of electrons is especially stable and atoms

transfer or share electrons in such a way as to attain a filled shell of electrons. This

principle has become known as the octet rule because a filled shell implies eight

valence electrons for the elements in the second row of the periodic table.

It is known today that atomic orbitals can combine and overlap to give more

complex standing waves. We can add and subtract their wavefunctions to give the

wave function of new molecular orbitals (MO). This process is described in one way
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F igure 2 .1 : Visual representations of the first four bands of real spherical harmonic
functions. Blue portions are regions where the function is positive, and yellow
portions represent regions where it is negative. (Inigo Quilez 2014)

by the linear combination of atomic orbitals (LCAO), developed in 1929 by Sir John

Lennard-Jones. 2

Valence Bond Theory (VB), largely replaced today by LCAO, is also founded in

quantum mechanics and demonstrated that electrons hold nuclei together, that is,

forms bonds when shared by two nuclei. In 1927, calculations by W. Heitler and F.

London established this fact.4 The results showed that an energy minimum occurs

at a certain internuclear distance if the electrons are free to associate with either

nucleus. There is always an equilibrium distance for the two bonded nuclei—if they

are too close together, their electrostatic repulsion pushes them apart; if they are too

far apart, their attraction for the bonding electrons is diminished. The internuclear

distance where attraction and repulsion are balanced, which also gives the minimum

energy—and the strongest bond—is the bond length. Electron density accumulates

the area in space between the two nuclei, creating a bond orbital. Non-bonding

orbitals are typically more diffuse than bonding ones.5

2It is worth noting that orbitals between different atoms can interact as well as orbitals within the
same atom.
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F igure 2 .2 : Schematic of the bonding
and anti-bonding orbitals formed by over-
lapping 1s orbitals.1

The hydrogen molecule is the sim-

plest example of covalent bonding in

LCAO. As two hydrogen atoms ap-

proach each other, their 1s wavefunctions

can add constructively or destructively

where they overlap, depending on the

phase. This is illustrated in the schematic

in Fig. 2.2. When they are in phase in the

region between the nuclei, the wave func-

tions "reinforce" each other and increase

the electron density in this bonding

region. The result is a σ bonding

molecular orbital. When two hydrogen

1s orbitals overlap out of phase, a σ∗ anti-

bonding molecular orbital results. The

two 1s wave functions have opposite

signs and cancel out where they overlap.

The result is a nodal plane separating the

two atoms.

The function which describes the new electron distribution, the molecular orbital,

is called σ, and ψ1 and ψ2 are the atomic 1s wave functions on atoms 1 and 2.

σ = c1ψ1 + c2ψ2 (2.1)

The coefficients, c1 and c2, are a measure of the contribution which the atomic

orbital is making to the molecular orbital. In this case, they are of course equal in
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magnitude, but they may be positive or negative to indicate the phase. To obtain the

electron density, we square the function in Eq. 2.1, which gives:

σ2 = (c1ψ1)
2 + (c2ψ2)

2 + 2c1ψ1c2ψ2 (2.2)

We see that σ2 differs from the superposition of the two atomic orbitals (c1ψ1)
2 +

(c2ψ2)
2 by the term 2c1ψ1c2ψ2. This leads to the two solutions shown in Fig. 2.2 The

case where both c1 and c2 are positive correspond to the electron density increasing

between the two atoms, and the formation of a bonding orbital. The case where c1

and c2 are of opposite sign models the decreasing of electron density between the two

atoms and the formation of an anti-bonding orbital.

The physical interpretation of orbital phase is illustrated by recalling that wave-

functions describe the time-dependent nature of electron density in space. When

electrons in orbitals are in phase they move in-sync and alternately occupy the same

region in space. The electrons form a molecular orbital by keeping out of each others’

way with one electron on one side of the orbital, while the other is on the opposite side

most of the time. Thus, we are allowed to put two electrons into one orbital if they

have opposite spins, even if they still repel each other from having the same charge

provided that the electron motion is synchronized. This is referred to as electron

correlation.6

Conversely, when out-of-phase, they move out-of-sync and try to occupy the same

region in space simultaneously. The electrostatic repulsion results in a nodal plane

and a significant reduction in electron density in this region. Furthermore, the reduc-

tion in electron density allows the nuclei to repel each other ever more strongly. As

will be shown in detail shortly, σ bonding molecular orbitals are lower in energy than

that of σ∗ anti-bonding molecular orbitals.

The force holding the two atoms together is dependent on the extent of the overlap

in the bonding orbital. If we bring the two 1s orbitals from a position where there
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is essentially no overlap through the bonding arrangement to superimposition, the

extent of overlap steadily increases. The mathematical description is called the overlap

integral:

S12 =
∫

ψ1ψ2dτ (2.3)

For a pair of 1s orbitals, the overlap integral rises from zero at infinite separation

to 1 at superimposition as shown in Fig. 2.3.

F igure 2 .3 : The overlap integral S for two 1sH orbitals as a function of internuclear
distance.6

The energy E of an electron in a bonding and anti-bonding orbital is given by:

E =
α + β

1 + S
(2.4)

and

E =
α− β

1− S
(2.5)

respectively.

α represents the energy of an electron in an isolated atomic orbital, and is called a

Coulomb integral. The function represented by the β contributes to the energy of an
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electron in the field of both nuclei, and may be called the delocalization integral. It is

roughly proportional to the overlap integral so it appears in the equations twice. The

function β is negative, lowering the value of E in Eq. 2.4 and raising it in Eq. 2.5.

F igure 2 .4 : Electronic attraction, nuclear repulsion and the overall effect as a function of
internuclear distance for two 1sH atoms.6

The overall effect on the energy of the hydrogen molecule relative to that of two

separate hydrogen atoms as a function of the internuclear distance is given in Fig. 2.4.

If the bonding orbital is filled, the energy derived from the electronic contribution

in Eq. 2.4 steadily falls as the two hydrogen atoms are moved from infinity towards

one another, shown by curve "A." At the same time, the nuclei repel each other and

the nuclear contribution to the energy goes steadily up, shown by the curve "B." The

sum of these two is the familiar Morse plot "C" for the relationship between inter-

nuclear distance and energy, with a minimum at the bond length. If we had filled the

antibonding orbital instead, the resultant curve would be a steady increase in energy

as the nuclei are pushed together.
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The detailed form of α and β is where mathematical complexity appears, even in

the simple Hydrogen molecule. They come from the Schrödinger equation and they

are integrals over all coordinates and are given by:

α =
∫

ψ1Hψ1dτ (2.6)

β =
∫

ψ1Hψ2dτ (2.7)

where H is the Hamiltonian, or energy operator written as:

H = −
h̄2∇2

1
2me

− h̄2∇2
2

2me
+

e2

4πεo

(
1
R
+

1
|~r1 −~r2|

− 1
|~R1 −~r1|

− 1
|~R2 −~r2|

− 1
|~R1 −~r2|

− 1
|~R2 −~r1|

) (2.8)

~R1 and ~R2 are locations of the two nuclei, |~R2 − ~R1| = R, ~r1 and ~r2 are the

coordinates of the electrons belonging to the first and second nucleus, respectively.

The first two terms refer to the kinetic energy of the two electrons. The operators

∇2
1 and ∇2

2 act only on the coordinates~r1 and~r2, respectively. The electrostatic term

contains the repulsion between the two nuclei and the repulsion between the two

electrons as well as the attraction of each electron to each nucleus. It is easy to see

how the solution to this problem is not trivial.

Higher energy orbitals overlap in the much the same way as s orbitals to yield

bonding and anti-bonding orbitals. Interestingly, bonding and anti-bonding inter-

actions have been observed in isolated dielectric spheres which support resonant

electromagnetic modes analogous to electronic orbitals.7

The standing-wave model of electrons are useful in describing resonance events that are

characteristic of the absorption of radiation.
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2 .4 bonding in solids

Now that the reader has been introduced to LCAO, we can use this model in shaping

the way we envision many atoms coming together to form a solid. Bonding in solids

is more complex than in diatomic molecules, but the fundamental principles in LCAO

still hold. For instance, the overlap for metals containing d-orbitals is more complex,

but gives rise to σ, π, and δ bonding/anti-bonding molecular orbitals as shown in Fig.

2.5.

3d 3d

4s

Ti Ti
Ti₂

σ4s

π

π*

δ
δ*

σ*4s

σ

σ*

4s

F igure 2 .5 : Molecular orbital diagram for the homonuclear diatomic molecule, Ti2,
showing the discrete energy gap between filled and empty molecular orbitals.

It can be expected that finding the quantum mechanical eigenstates (energy states)

of all the electrons in the solid is a formidable problem. We would have to construct a

wave function that depends on the coordinates of all the electrons and also of all the

nuclei, which make up the positive part of the potential. The first approximation we

can make is to ignore the motion of the ions by "freezing" them into their equilibrium

position. We are allowed to make this assumption based on the relative mass between

electrons and nuclei. When nuclei move out of position, their motion is so slow that

the electrons readjust their distribution such that they stay in a modified ground state,
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but still in the ground state. When the nuclei move back, the electrons readjust once

more. This separation of nuclear motion from electronic motion is known as the

Born-Oppenheimer approximation and will be useful in later discussion. The other

simplification made in treating a solid system is that we do not consider the correlated

motion of all electrons. We only calculate the electronic states for one electron moving

in an effective potential given by all nuclei and other electrons.

The stationary Schrödinger equation for the one-electron states then becomes:

− h̄2∇2

2me
ψ(r) + U(r)ψ(r) = Eψ(r) (2.9)

One great help in finding the eingenstates is the symmetry of the lattice. No matter

how complicated the potential U(r) is, we know that is must be lattice periodic, that

is:

U(r) = U(~r + ~R) (2.10)

Finally, when we have found the eigenstates in the one-electron picture, we fill

them with all the electrons according to the Pauli principle. This gives the correct

occupation of the states but only for zero temperature.

A key concept in LCAO molecular orbital theory is the formation of the same

number of molecular orbitals as the number of atomic orbitals that are combined, e.g.

there are 12 molecular orbitals formed when 4s and 3d orbitals combine in the Ti2

molecule, as shown in Fig. 2.5.8 Thus, we end up with the same number of molecular

orbitals as atomic orbitals, but due to spin-pairing, not all the molecular orbitals will

be occupied.

As the number of atoms increases to infinity within a crystal lattice, the differ-

ence in energy between bonding and antibonding states goes approximately to zero,

resulting in a continuum of states as shown in Fig. 2.6 for a conducting solid.
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F igure 2 .6 : Band diagram for a metallic solid illustrating the continuum between
valence and conduction bands, i.e. no bandgap, for increasing numbers of atoms.

In semiconducting solids, the formation of a distinct energy gap appears between

the continuum of bonding and antibonding states as shown in Fig. 2.7. The figure de-

picts a band diagram and can be thought of as being constructed of many such Morse

potentials as that in Fig. 2.4, with all the energies slightly adjusted to accommodate

the Pauli exclusion principle. In semiconductors, the exclusion principle leaves us

with all electrons occupying the bonding states while the antibonding states above

the gap remain unfilled. The electron occupied band of states is known as the valence

band and comprises the lowest allowed energy states. The unfilled band at higher

energies constitute the conduction band. The energy gap, Eg, between these levels is

known as the bandgap. In essence, the bandgap is the energetic barrier to conduction

and delocalized excitation. In the absence of the energy described by this barrier, one

would not expect to find an electron within the energy range described. For similar

reasons, one would not expect to find an electron in the nodal plane of an orbital due

to the massive (infinite) energetic requirement of this state.
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F igure 2 .7 : Energy bands in diamond as a function of atomic separation. The lattice
constant of the crystal gives the lowest energy states.9 The covalent bonds in diamond are
constructed from the linear combination of the 2s orbital and three 2p orbitals. This results
in four sp3 orbitals that stick out in a tetrahedral configuration from the carbon atoms.9

(b) Schematic illustrating the energetic barrier between valence and conduction states in
semiconductors.
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When a band is filled, and all electron states are occupied, the solid cannot carry

a current. However, the conduction band contains no electrons, so an electron must

assume energies available here in order to traverse the crystal and produce a net

current.

It is not instructive to think of solid structures as materials in which there are

singly definable molecules.10 Instead, molecular orbital theory concludes that the

orbitals used to describe bonds can encompass many atoms of the structure and are

not necessarily associated with particular bonds between any atom pairs.5 This leads

to a model of solids as comprising nuclei periodically embedded in widely distributed

electronic clouds. We show the electron density plots for ZnO in Fig. 2.8.

F igure 2 .8 : Electron wavefunctions of Zn 3d- and O 2p-orbitals via Dv-xα (Discrete
Variational Xα) method. Blue indicates the negative region and red indicates the positive
region of the wavefunction. (b) The electron density in ZnO by MEM (Maximum Entropy
Method). Generally in ZnO, it is the 2s22p4 electrons in O and the 3d104s2 electrons in Zn
that are relevant in chemical bonding. In the semiconductor, it is believed that hybridization
of localized Zn 3d electron orbitals with O 2p electron orbitals plays a crucial role in energy
band formation formation in ZnO.

Generally in ZnO, it is the 2s2
2p4 electrons in O and the 3d10

4s2 electrons in

Zn that are relevant in chemical bonding. In the semiconductor, it is believed that

hybridization of localized Zn 3d electron orbitals with O 2p electron orbitals plays a

crucial role in energy band formation formation in ZnO.11
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As the number of atoms increases to infinity within a crystal lattice, the change in

energy between energy levels within bonding and anti-bonding regions goes approx-

imately to zero, resulting in a continuum of states. This is an application of the Pauli

exclusion principle, which states for N electrons, there must be N/2 available states

to distribute electron density.

The electron occupied band of states is known as the valence band and comprises

the lowest allowed energy states. The unfilled bands at higher energies constitute the

conduction band. If present, the energy gap, Eg, between these levels is known as the

bandgap as shown in Fig. 2.7a. In essence, the bandgap is the energetic barrier to

conduction as illustrated in the schematic in Fig. 2.7b. In the absence of the energy

described by this barrier, one would not expect to find an electron within the range

described therein. For similar reasons, one would not expect to find an electron in the

nodal plane of an orbital due to the massive (infinite) energetic requirement of this

state.

When a band is filled, and all electron states are occupied, the solid cannot carry

a current. However, the conduction band contains no electrons, so an electron must

assume energies available here in order to delocalize and facilitate energy transfer.

2 .5 classification of solids

Solids are generally classified as conductors (or metals), semiconductors, or insula-

tors depending on the range of the energy gap, if present, and the relative room-

temperature population of conduction electrons.

In semiconductors, the energy gap may extend over a range of about three electron-

volts (eV) and the number of electrons per cubic centimeter in the upper band, having

enough energy for mobility, is less than 10
20 cm−3. In a conductor, the upper band is

populated on the order of about 10
23 cm−3 at energies significantly higher than that
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of the maximum gap energy.9 Lastly, insulators are characterized as having a large

energy gap, greater than 3 eV, and negligible electron concentration at energies in the

conduction band. However, with the rise of UWBG semiconductors and higher enery

devices, energy gaps greater than 3 eV are still attributed to semiconductor materials.

The energy diagram model, shown in Fig. 2.9, highlights the differences among

the three primary classes of solids.

E  

a) Insulator b) Semiconductor c) Conductor

Valence Band

Conduction
Band

Conduction
Band Conduction

Band

Valence Band

Fermi
Level

Valence Band

Large 
Energy Gap

F igure 2 .9 : Solids are generally classified as conductors, semiconductors or
insulators depending on the range of the energy gap and the relative availability of
conduction electrons.12

2 .6 excitation

As discussed, electrons with sufficient energy occupy higher energy orbitals at average

distances farther away from the nucleus. Fig. 2.10 shows electron transitions from

the highest occupied molecular orbital (HOMO) transition to the lowest unoccupied

molecular orbital (LUMO) from density functional theory calculations by Azpiroz

et al.14 Generally, it is the valence electrons involved in bonding which undergo

excitation. The excitation of core electrons is possible, but requires much higher

energies, generally corresponding to X-rays.
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Electron excitation into conduction can be visualized as electrons possessing enough

energy to traverse the crystal largely unimpeded by the attraction to the positive

charge in atomic nuclei. It is worth noting that the Coulomb force of nuclei on

electrons are always present in a solid, but the energy of electrons determines—and

is inversely proportional to—the effect of this attraction.

HOMO LUMO

F igure 2 .10 : Isodensity Plots showing the highest occupied molecular orbital (HOMO)
and the lowest unoccupied mocular orbital (LUMO) in wurtzite type ZnO. Light blue = Zn,
red = O, and white = H atoms.14

In inorganic as well as organic solids, energy states are generally available below

those required for conduction. These states are said to occupy the band-edge region and

correspond to electrons, due to their lower energy, still remains largely coupled to atomic

nuclei and are therfore localized. These electronic states may include those introduced

by defects, discussed in detail in following sections, and states commonly referred

to as excitonic states.12 Generally, excitonic states are more stable than defect states

and can thus contribute to energetic transfer processes in semiconductors as well be

outlined presently.13

During excitation into an excitonic state, the electron density decreases at the

valence level. It is well known that electron density screens nuclear charge1,5,15,
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thus the decrease in nuclear screening corresponds to a positive charge and the

introduction of a Coulomb potential given by:16

U(~r1) =
∫

ψ∗c (~r2)
e2

|~r1 −~r2|
ψc(~r2)dr2 (2.11)

which may interact with other valence electrons in the crystal. As a result, a

valence electron and the electron in the excitonic energy level may undergo nuclear

"swapping" and the excitation can be imagined as moving through the solid as a wave.

Due to symmetry of the lattice, the de-screened nucleus appears to move through the

lattice in company with the excitation wave as shown in Fig. 2.11. The associated

positive charge is commonly referred to as a "hole."

These coupled, electron-hole pairs are called excitons and are treated, in practice,

as a quasiparticle. These quasiparticles, being neutral as a unit, cannot transport charge

but do transport energy by the mechanism described above.

Excitons may be tightly bound (localized) and involve coupling to nearby nuclei or

weakly bound (delocalized). The following sections illustrate the qualitative difference

using an example in quartz.
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F igure 2 .11 : (a) A silicon lattice with valence electrons in the ground state. (b)
When a valence electron in a Silicon lattice is excited to an excitonic level, it becomes
mobile and can conduct current but only while paired with the "hole." (c) The electron
and hole are free to move through the lattice.13
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2 .6 .1 Exciton Localization

When an exciton is created in an ideal crystal, it can propagate freely and is thus

quite delocalized. However, there are situations in which the exciton can be highly

localized. The following Figs.—2.12 & 2.13—shows delocalized and localized excitons

in the ideal quartz crystal structure created via density functional theory calculations.

The silicon atoms have a tetrahedral bonding configuration with four oxygen atoms

lying at each corner of the tetrahedron. Red indicates silicon, while blue indicates

oxygen. The figures were generated via density functional theory calculations for a

self-trapping exciton mechanism by Ismail-Beigi et al.17

a)

a)

F igure 2 .12 : Free exciton delocalization in SiO2. (a) The probability contours for finding
the hole-component of a free exciton. As seen, the hole is quite delocalized over different O
atoms. (b) we select one location from the set in (a) for the hole location and calculate the
probability density of finding the electron-component of the exciton. As seen, the distribution
is quite delocalized as well.17
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In Fig. 2.12a, we see the probability contours for finding the hole-component of

a free exciton. As seen, the hole is quite delocalized over different O atoms. In

(b) we select one location from the set in (a) for the hole location and calculate the

probability density of finding the electron-component of the exciton. As seen, the

distribution is quite delocalized as well. In Fig. 2.13, when the exciton is trapped, due

to an unsaturated bond between Si & O, the hole is now completely localized on the

O atom as shown in (a). Now, the electron-component probability density is highly

localized around the unsaturated bond, thus leading to a highly localized excited state,

with both electron- and hole-components localized around the unsaturated bond. This

qualitative picture for free and localized excitons will be important in later discussion.

a)

b)

F igure 2 .13 : Exciton localization near a SiO2 unsaturated bond. The exciton is trapped,
due to a broken bond between Si & O. The hole is now completely localized on the O atom.
Now, the electron-component probability density is highly localized around the unsaturated
bond, thus leading to a highly localized excited state, with both electron- and hole-components
localized around the unsaturated bond.17



26

2 .7 excited states and vibrational modes

E

k

Eo

E1

ђω

F igure 2 .14 : A transition from a valence band state to and excited state. Each electron
energy level is associated with a spectrum of vibrational modes.

Electrons in solids exist in a lattice periodic potential. It is therefore customary

to consider only a single Morse curve (associated with any unit cell of the lattice) in

modeling electron dynamics as shown in Fig. 2.14. The lower curve corresponds to

an electronic ground or valence state and the upper curve corresponds to an excited

state. It is possible to vibrationally excite the lattice structure, so the energy and the

overall wavefunction of electrons can be divided approximately into vibrational and

electronic contributions. These vibrational modes can be modeled by wavefunctions

described by Felix Bloch, to be detailed shortly. One interesting note is that the

Heisenberg uncertainty principle tells us that the energy of a system described by

a quantum harmonic oscillator potential cannot have zero energy. Thus, physical

systems such as atoms in a solid lattice cannot have zero energy even at absolute
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zero temperature. The energy of the ground vibrational state is often referred to as

"zero-point vibration." One concept that will be useful in the upcoming section is the

concept of the Fourier transform. Much in the way that a waveform in one dimension

can consist of a superposition of many frequencies, so too can three dimensional

vibrations of orbitals consist of a superposition of many frequencies. This concept is

illustrated in Fig. 2.15.

f1
f2

f3
f4

f5

t

f

A

F igure 2 .15 : A function f (red) is resolved into a Fourier series: a linear combination of
sines and cosines (in blue). The component frequencies of these sines and cosines spread across
the frequency spectrum and are represented as Dirac delta functions in the frequency domain.
The original function can be thought of as being the "amplitude at a given time, t", and the
Fourier transform of the function is the "amplitude at given frequency, f ". (Lucas V. Barbosa
2013)
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2 .8 momentum and bloch waves

In 1928, Bloch showed that electron motion may be modeled with plane waves mod-

ulated by a lattice periodic function. The form of the wavefunction showed that the

electronic states are spread out over the entire crystal as plane waves. In other words,

the wavefunction is a stationary solution for a perfectly periodic potential in some

agreement with our previous model in LCAO. Thus, Bloch showed that electrons

traveled through the entire crystal without bouncing into lattice nuclei at all. We can

then envision vibrational modes as perturbations of electronic wavefunctions. This

allows us to relate the momentum possessed by electrons to the wavevector, k, of the

constantly vibrating field.

Momentum Space — Momentum space is analogous to real or coordinate

space. In coordinate space, each position is fully described by a single 3-component

vector, while in momentum space, each value of momentum is fully described by a

single 3-component wavevector. The real lattice in coordinate space corresponds to

the reciprocal lattice in momentum space. Classical particles may be described by

momentum p, whereas wavefunctions may be described by the wavevector k. When

a particle is described by a quantum state, it is worth remembering that this quantum

state can be represented as a superposition (i.e. a linear combination) of basis states.

If one chooses the eigenfunctions of the position operator as a set of basis functions,

one speaks of a state as a wavefunction ψ(~r) in position space. If one chooses the

eigenfunctions of the momentum operator as a set of basis functions, the resulting

wavefunction φ(~k) is said to be the wavefunction in momentum space. Thus, the

wavefunctions ψ(~r) and φ(~k) both describe the behavior of a particle in different ways.

Due to the periodic nature of the lattice, and consequently, of momentum space, the

forms of the Bloch waves need only be found for a single unit cell. (A single unit cell

in momentum space is commonly referred to as the Brillouin zone.) Bloch showed
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that the general form of the wavefunction describing electron motion has the very

simple form of:18

ψk(~r) = ei~k·~ruk(~r) (2.12)

where uk(r) takes advantage of the periodicity of the lattice as:

uk(~r) = uk(~r + ~R) (2.13)

The index k refers to the fact that the function uk(r) and ψk(r) can vary depending

on the wavevector k. Fig. 2.16 shows the isosurface of the square modulus of the

Bloch wave in Silicon corresponding to the lower valence band in the Brillouin zone.

F igure 2 .16 : Isosurface of the square modulus of the Bloch wave in Silicon corresponding
to the lower valence band in the Brillouin zone. (Lorenzo Paulatto)

To illustrate Bloch’s theorem, we use a cubic crystal of side, L and Born-von

Kármán boundary conditions. The Born-von Kármán boundary conditions are cyclic

boundary conditions which model a finite chain of atoms in which the "end" is tied

to the "beginning" and states that uN+n(t) = un(t). Every solution of the Schrödinger
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equation given in Eq. 2.9 consistent with these boundary conditions can be written as

a sum of plane waves:

ψ(~r) = ∑
k

ckei~k·~r (2.14)

The lattice periodic potential is written as a Fourier series, using the reciprocal

lattice vectors ~G:

U(~r) = ∑
G

Ugei~G·~r (2.15)

where we require U−G = U∗G

Therefore,

− h̄2∇2

2me
ψ(r) = ∑

k

h̄2k2

2me
ckei~k·~r (2.16)

and

U(r)ψ(r) = ∑
k′,G

UGck′−Gei~k′·~r (2.17)

Thus, the Schrödinger equation is reduced to a set of equations:

(
h̄2k2

2me
− E

)
ck + ∑

G
UGck−G = 0 (2.18)

We can view this equation as a set of equations for every allowed k in the first

Brillouin zone.

Technically, the set consists of infinitely many equations but in practice, it is often

sufficient to take only a few coefficients to be different from zero. If we take one such

equation for a certain k it contains the coefficients for k itself and those for k plus all
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possible reciprocal lattice vectors. This implies that our original wavefunction given

in Eq. 2.14 has non-vanishing terms with these coefficients and can be written as:

ψ(r) = ∑
G

ck−Gei(~k−~G)·~r (2.19)

or

ψ(r) = ei~k~r
(

∑
G

ck−Gei~G·~r
)

(2.20)

The term in brackets is a Fourier series over the reciprocal lattice vectors and

therefore is a lattice periodic function, which is the essence of Bloch’s theorem.

For a one-dimensional solid with lattice constant a, the reciprocal lattice is spanned

by "vectors" of length g = 2π/a and the potential can be written as a Fourier series:

U(x) = ∑
n

Uneingx (2.21)

The only coefficients we are going to keep are U1 = U−1 and we call them simply

U. For a given k, we can write equations of the type given in Eq. 2.18 for ck, ck − g,

ck + g. We get:

(
(h̄− g)2k2

2me
− E

)
ck−g + Uck = 0 (2.22)

(
h̄2k2

2me
− E

)
ck + Uck−g + Uck+g = 0 (2.23)

(
(h̄ + g)2k2

2me
− E

)
ck+g + Uck = 0 (2.24)

This is a linear system of equations that has three solutions, E1, E2 and E3 for every

value of k. The solutions are shown in Fig. 2.17 with higher order contributions of
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the potential. Note the range of energies for which there are no states at all, which

correspond to bandgaps.

k

F igure 2 .17 : Solution of Bloch waves for a one-dimensional solid and higher order
contributions of the lattice potential. This plot is commonly referred to as a dispersion
relation.18
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The relationship between n energy eigeinvalues and allowed values of k is the

dispersion relation for the electronic states and is usually called the electronic band

structure of the solid. In this context, k can be interpreted as either the wavevector

of the electron wavefunction and can also be viewed as a quantum number of the

electronic states. In comparison to the atomic analogue, n is the main quantum

number specifying the shell containing the electrons and l and m are the parameters

of the spherical harmonic functions. In this sense, l and m are quantum numbers that

are related to the spherical symmetry of the atom. In the solid, the symmetry of the wave

solution is given by the periodic lattice structure and k can be viewed as the quantum number

related to this symmetry.

F igure 2 .18 : Solid line: A schematic of a typical Bloch wave in one dimension. (The actual
wave is complex; this is the real part.) The dotted line is from the ei~k·~r factor. The light circles
represent atoms.(Nicoguaro)

2 .8 .1 Thermal Transport and Phonons

The solution of Bloch waves given by Eq. 2.20 describes a set of modulated plane

waves that is delocalized over the whole crystal. Such solutions in and of themselves

cannot be used to describe energy transport throughout a crystal. In Bloch waves,

the phase velocity does not describe the velocity of energy in the solid.3 "Monochro-

matic" Bloch waves as shown in Fig. 2.18 are distorted as they travel through the

medium and this distortion makes it difficult to define their average velocity. For

3This is a general statement of wave mechanics, the exception being waves in vacuum.
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this reason, we define a group of waves or wave packet of finite length consisting of

only a limited number of frequencies. In other words, to describe energy transport,

we must consider a superposition of Bloch waves within a certain ∆k, close to the k

of interest. These wave packets are commonly referred to as phonons in analogy to

photons. Fig. 2.19 shows three waves (light green) of varying frequencies and phase

velocities superposed to give a wave packet (dark green).

F igure 2 .19 : Three waves (light green) of varying frequencies and phase velocities
superposed to give a wave packet (dark green).

The energy velocity is proportional to the velocity of this wave packet and in the

limit that the frequencies become equal, is known as the group velocity, vg given by:

vg =
dω

dt
=

1
h̄

dE(k)
dk

(2.25)

In words, the group velocity is given by the slope of the bands in Fig. 2.17. We see

that the group velocity is zero at the Brillouin zone boundaries, which means that we

have standing waves there. It is worth mentioning that zero group velocity does not

imply that electrons do not move. If we could measure the velocity of a wave packet

at the zone boundary, the expectation value would be zero, so we could not say if it

moves to the right or to the left. However, the expectation value for the kinetic energy

would not be zero.
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2 .9 phonons in real solids

Phononic phenomena defines the propagation of energy through condensed material

media, as opposed to photonic phenomena, which does not require condensed mate-

rial media. It is worth repeating that this energy exists as packets of vibrational energy

in the bond orbitals of the periodic arrangement of atoms (whose solution depend on

the lattice periodic potential) wherein the energy is proportional to the frequency of

vibration.

The previous derivation of phonons from Bloch waves in solids is based on a

perfectly periodic lattice and our example is confined to the one-dimensional case.

While this suffices for a fundamental qualitative understanding of these concepts, we

must note the differences between the real and ideal cases. For three-dimensional

cases, the band energy depends on a three-dimensional ~k and the Brillouin zone is

not always easy to identify (without prior labeling of the Γ point). Generally, at low

energies, the bands still look like parabolas near the Γ point. Usually the bands will

also be given for different high-symmetry directions in the first Brillouin zone as

well. The bands are filled up to the Fermi level which usually corresponds to zero

energy. For metals, there are many bands which may cross the Fermi level. For

semiconductors and insulators, bandgap openings at the Brillioun zone is typical. In

both materials, this corresponds to an "absolute bandgap," which defines the gap

opening in the entire band structure. In semiconductors and insulators, there will be

no bands which cross the Fermi level. No electrons could increase their energy by a

small amount in order to become conduction electrons; as seen previously, the energy

must correspond to the amount defined by the gap. It is worth noting once more, that

at elevated temperatures a small distribution of electrons will manage to accomplish

this.

The band structures of materials may be determined experimentally by using

angle-resolved photo-emission, based on the photoelectric effect. The sample under-
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goes neutron scattering or exposure to UV-radiation and electrons are emitted, which

are then sorted by their ~k and energy. From here, it possible to work backward to

obtain the band structure of the sample.

It is also possible to theoretically derive the phonon dispersion of real solids by

using density functional theory calculations in addition to implementing various

approximations. Calzolari et al. have demonstrated accurate calculations of both

the electronic and vibrational spectrum of ZnO allowing for the simulation of phonon

modes as well as high and low-frequency dielectric constants. Fig. 2.20 shows the

phonon dispersion of ZnO used in this work.19

F igure 2 .20 : Phonon dispersion of ZnO

2 .9 .1 Type of Phonons

In general, solids may assume two types of phononic behavior—acoustical and op-

tical—which correspond to the lower and upper branches of solutions shown in Fig

2.20, respectively. The solutions that go to zero for small k is called the acoustic branch.

It corresponds to the propagation of acoustic waves through the crystal. The solution
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that has a finite ω at k = 0 is called the optical branch. Vibrations in the optical branch

may coupl to an electromagnetic field.

Fig. 2.21, based on theoretical calculations, shows the optical phonon modes in

wurtzite ZnO quantum dots. This image is a useful basis for envisioning phonon

modes in ZnO nanocrystals and, depending on the crystal structure, may give the

same frequency spectrum.

F igure 2 .21 : Calculated optical phonon modes in wurtzite ZnO quantum dots. The
quantity k, related to ω can be interpreted as an additional quantum number of the electron
wavefunction. V.A. Fonoberov and A.A. Balandin, Phys. Rev. B (2004)

2 .10 electron -phonon interaction

In real solids, Bloch waves see some interaction with core ions that lead may lead to

the scattering of Bloch wave packets. If the ions move, then the electrons must move in

a changing potential field. Generally speaking, all the explanations come down to the

fact that real lattices are not perfect. A thermally excited environment can lead to the

destruction of the perfect translational symmetry in the lattice and cause scattering

of the Bloch electrons. The interaction between Bloch electrons and vibrations of
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F igure 2 .22 : The schematic highlights available vibronic transitions into excitonic levels.
The probability of vibronic transitions is proportional to the overlapping phase of initial and
final states. The electron–phonon interaction is proportional to the range of vibronic transitions
available (base width of unresolved peak (light blue)).
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core ions is called the electron-phonon interaction. The underlying mechanism can

be understood as potential fluctuations in the Bloch wave environment that destroy

their symmetry. By definition, when Bloch waves are scattered, this generally leads

to inhibition of their propagation throughout the lattice. Although scattering from

lattice vibrations are important, scattering can occur at very low temperatures due to

remaining imperfections in the crystal. It is worth repeating that Bloch wave packets

are the main mechanism being used herein to describe thermal transport (as well

as electrical transport) in a solid. Consequently, the electron-phonon coupling defines the

efficiency with which the energy is transferred between Bloch electrons and vibrations of the

lattice.

2 .11 thermal broadening from electron -phonon

interaction

In absorption spectra of semiconductors, phonon broadening is caused by the mecha-

nisms outlined in Sec. 2.10 wherein absorbing species participate in lattice vibration.

Since resonance is a requirement for absorption, at increased temperatures, the fluctu-

ations in orbital configurations result in a wider variance of probability of resonance

with radiation. The Franck-Condon principle states that phase will be conserved for

these transitions, therefore, transitions can occur into a wide range of excited-state

vibrational modes as well, so long as this requirement is met. In semiconductors,

phonon broadening can be observed even at room temperature.

Conclusion — We have seen that the rules governing individual electron in-

teractions remain in effect in solid structures, in an admittedly more complex configu-

ration. The correlated motion of electrons in a solid is constrained by both electronic

and vibrational wavefunctions, which lead to distinct energetic pathways within the

solid. We have seen that in ZnO, the proposed hybridization of a localized Zn 3d
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electron with an O 2p electron is thought to play a crucial role in giving ZnO its

electrical properties—leading most notably to the formation of the energy bands and

the band gap.
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chapter 3

Thin Film Synthesis and Methodology

Abstract — In this chapter, we outline the growth approach used in this work.

We specifically discuss the measures implemented in order to ensure the repeatability

of growth experiments in addition to ensuring optimum sample quality. The ZnO

and Mg0.07Zn0.93O thin films studied in this work were grown via DC magnetron

sputtering using custom sputtering targets.

3 .1 physical vapor deposition & sputtering

Physical vapor deposition methods comprise techniques such as RF (Radio Frequency)

and DC (Direct Current) magnetron sputtering, the latter being used in this work.

Aside from common use in the semiconductor industry, sputter deposition has found

utility in industrial tool bit coating applications and optical coating for glass and stor-

age media and has been used as long ago as 1877 to coat mirrors.1–3 The phenomenon

of sputtering was first described over 150 years ago by William Robert Grove in 1852

and independently by Julius Plücker in 1858 who reported vaporization and film

formation of metal films by sputtering.4,5

Formerly known as cathode disintegration, sputtering, as its former name implies,

fundamentally involves the disintegration of a material and subsequent deposition of

this material onto a substrate.6 The process involves several components including

electrodes, sputtering targets or coating material, sputtering gases (that may be inert

or reactive) and substrates.

The working gas is introduced into the sputtering chamber, initially placed under

vacuum. This gas is then ionized in the chamber via an applied electric field. A

cascade of positively charged ions is then initiated in the plasma; these ions are accel-

erated toward the anodic sputtering target and collide with target surface molecules.
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This bombardment results in molecular ejection via the transfer of momentum. Upon

displacement, the displaced target material falls and deposits uniformly onto the

substrate aligned below. Generally, the dislodged target material is electrically neutral

and is able to pass through the applied electric field uninhibited. This process is

illustrated in Fig. 3.1.

Target
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F igure 3 .1 : A schematic illustrating the process of DC sputtering. (a) The chamber is filled
with the working gas and electrons are accelerated by the applied electric field. (b) The electron
collides with a working gas atom—an ion and more electrons are generated. (c) The ion is
accelerated toward and bombard the target, ejecting a small portion of the target. The ejected
material travels and deposits onto the substrate. (d) This process is repeated over time until
the substrate is coated with a thing layer of the target material.

Reactive sputtering occurs when the sputtered material undergoes a reaction with

a reactive gas on the path from target to substrate. In this work, Zn and Zn–Mg

sputtering targets are bombarded by Argon ions which act as the inert gas and Oxygen

gas acts as the reactive agent. This combination results in the deposition of ZnO
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and Mg0.07Zn0.93O type thin film alloys, respectively. Sputtering, despite the many

parameters present, provide a great degree of control over the microstructure and

growth of thin films.

These parameters include, but are not limited to, those mentioned previously—target

material, working and reactive gases—in addition to the flow rate of both gasses,

chamber temperature and pressure, target power source, sputtering power, magnetron

configuration of the sputtering gun, and magnetic shielding of the substrate. Each of

the aforementioned parameters and their effect on thin film growth will be discussed

herein.

The average number of target atoms released per incident ion is known as the

sputtering yield. Simply put, this yield is a function of both ion and target atom(s)

masses, ion incident angle and energy, and the surface binding energy of atoms on

the target surface.7 In addition to these considerations, in crystalline targets, the

orientation of crystal axes can be modified with respect to the surface orientation,

thereby affecting the surface binding energy, albeit usually negligibly so.

3 .2 sputtering gases

Working and reactive gases play a crucial role in controlling thin-film properties. As

mentioned previously, the working gas atom transfers momentum to the target atom

and thus, if both species possess a mass of similar order, this transfer takes place

most efficiently. When working with gases, pressure becomes a significant variable to

consider. The chamber pressure throughout sputtering comprises a preliminary base

pressure, Pbase, the plasma strike pressure, Pstrike, initial working gas pressure, PAr,

and a working pressure, Ptotal. In this work, Argon is used as the working gas.

The chamber is first pumped down to its minimum base pressure before growth.

Argon is then introduced into the chamber to strike the plasma. Following this, the
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Argon flow is adjusted and pressure is lowered in preparation for growing. If a

reactive gas, Preactive is required, it is now introduced to achieve the total, or working,

pressure needed for growing.

Dalton’s law of partial pressure states that the total pressuring of the mixture of

non-reactive gases is equal to the sum of the partial pressure of individual gases.

Therefore, the total pressure in the sputtering chamber during the sputtering process

is given by the following:

Ptotal = Pbase + Pworking + Preactive (3.1)

Sputtering power should ensure that ions posses enough momentum for collision,

while partial pressures and flow rate ideally ensure the minimization of mean free

path, allowing Ar ions to travel to the target efficiently.

In general there is an optimum total operating pressure to maximize deposition

rate. The trick to picking an optimum pressure is a compromise in the interplay

between increasing the number of Ar ions available for sputtering and increasing the

scattering events (reduced mean free path) between Ar ions and neutral Ar atoms.

3 .3 arc suppression

When using a conductive target, a DC power source is preferable because it increases

the rate of sputtering and in turn reduces total sputtering time. DC power sources,

however, are more prone to arcing, which is a source of several unwanted, and

sometimes also dangerous, issues in sputtering. When the uniform glow of a plasma

develops intense, localized concentrations of energy, usually due to the formation of

insulating regions, arcing results—a phenomenon similar to lightning.8 The intense

energy evolved near arcing sites can result in explosive, and potentially harmful, ejec-

tion of macro-particles. There are several methods to combat arcing when sputtering
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in the DC regime. Reverse-voltage pulsing has been shown to dramatically reduce

arcing, while other electronics, equipped for arc detection and suppression, attenuate

this phenomenon, but unfortunately do not prevent it completely.9 Sputtering with

highly pure targets is required since small impurities on the surface of the target can

lead to arcing.

When using an insulating target, consistent bombardment of the insulator results

in significant build-up of positive charge, which in turn repels incoming ions of the

working gas. As this phenomenon continues over time, an increased sputtering power

is required to maintain sputtering rate, in some cases up to 10
12 volts. In many

instances sputtering rate is dramatically reduced and possibly halted altogether. One

method of circumventing this problem is in using RF sputtering.

In RF sputtering, the polarity of the applied electric field is alternated by driving

the sputtering gun at a particular frequency, unlike the fixed voltage in DC sput-

tering. For the first half of the alternating cycle, positively charged ions are driven

toward the target and electrons are driven toward the substrate. This portion of the

cycle is similar to that of DC sputtering and thus the target begins to be affected by

charging. However, the alternating cycle reverses the polarity of the applied field and

drives electrons back toward the target, neutralizing it. This cycle of brief charging

and subsequent neutralization significantly reduces the occurrence of ion repulsion,

unfortunately, at the cost of sputtering rate—a direct result of only sputtering over

half-cycles.

3 .4 substrates

The substrate chosen for sputtering has the ability to affect the structural properties of

deposited thin films. Generally, growing on material that has a similar if not the same

lattice parameters (and crystal orientation) as the film is beneficial. In cases where



47

lattice parameters are not similar enough between substrate and alloy, a buffer layer

could first be introduced which serves as an average to "bridge" lattice parameters.

Differently cut substrates will have different lattice parameters, namely, z, x, y, m and

n-cut.

Potential interference of substrates with spectroscopic techniques also bears con-

sidering. For example, when a chemical element is common to both substrate and

sample, EDS alloy compositional readings may detect elemental traces from the sub-

strate. Another example of possible instrumental interference is a substrate with high

potential for photoluminescence, which can interfere with UV-Photoluminescence

measurements.

If crystal orientation is not a concern, i.e. in polycrystalline materials, mechanical

properties of the substrate come into consideration. Quartz and Sapphire may be

chosen for their high melting point, transparency to UV or relative durability while

fluorinated ethylene propylene (FEP) may be chosen for its flexibility.
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F igure 3 .2 : During sputtering, a substrate is magnetically shielded. A magnetic field
(yellow) is created directly beneath the substrate and the resulting field captures charged
particles, particularly electrons, preventing them from damaging the substrate and sputtered
coating.
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3 .5 magnetic shielding

Due to the high energy environment of the sputtering chamber, safety measures must

be implemented to protect substrates and deposited material. As an example of

why these measures are sometimes necessary, consider the alternating polarity of

the applied electric field in RF sputtering. This reversed polarity not only reduces

charge buildup on the target, but redirects ions from the working gas toward the

substrates, potentially reversing deposition achieved heretofore, if not damaging the

substrates completely. Polymer substrates are notably susceptible to damage in this

fashion. Upon collision with the substrate, even in DC sputtering, the mean free

path of electrons is so confined to the thin surface layer that all the kinetic energy

is directed into virtually boiling this layer of the substrate. To combat collisions of

charged particles with the substrate, we introduce magnetic shielding based on the

Lorentz Force Law:

~F = q(~E +~v× ~B) (3.2)

where q represents the charge of the particle, E is the electric field, v is the velocity

of the charged particle and B is the magnetic field.

As seen in the Fig. 3.2, a magnet placed beneath the substrates generates the field

that protects the substrate from damage by electrons and ions, in both DC and RF

sputtering, but allow through sputtered material.

3 .6 magnetron sputtering

Further adjustments may be implemented to the sputtering system in order to increase

the sputtering rate. "Surface magnetron" sputtering configurations were introduced

in the 1960s and early 1970s after the effects of a magnetic field on the trajectories

of electrons had been realized.10 These magnetron sources use a magnetic field that
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loop in and out of the target surface in a closed "racetrack" pattern as shown in Fig.

3.3. Electrons are then confined to this "racetrack" thereby resulting in high density

plasma near the target surface. This high density plasma area contains more ions and

in turn contributes to the increase in sputtering rate. Magnetron configurations can

be utilized in conjunction with DC or RF sputtering.

Substrate

N SS

Substrate

Working
Gas

Gun

a) b)

F igure 3 .3 : (a)A cross section view of the magnetron configuration used in this
work. (b) A sputtered Zn-Mg target. The racetrack shaped pattern on the target
suggests an area with enhanced sputtering rate by confining electrons within a certain
region via the magnetic field.

3 .7 sputtering system in this work

The sputtering chamber utilized in this work is custom built. The following paragraphs outline

some of the system’s components and capabilities.

The sputtering chamber uses a Varian V200 molecular Turbo pump coupled with

a Welch model 1402 DuoSeal belt-drive mechanical roughing pump and interlocking

system that monitors flow. The chamber is vacuum sealed using Viton elastomer

flanges and copper conflate-style flanges. Pressure in the system is determined via

a triple-gauge configuration. A Duniway Convection gauge measures in the range
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1000–10−4 Torr, a capacitive gauge measures in the range 100–10−4 Torr, and a Bayard-

Alpart style hot cathode ion gauge measures in the range 10−3–10−10 Torr. The pre-

ceding configuration takes the chamber to a well-monitored 2.6× 10−6 Torr. Despite

the mixture of multiple gases in the chamber, the capacitive gauge monitors pressure

during growth independent of chamber gas composition. This feature is most useful

during reactive sputtering.

F igure 3 .4 : A photograph of sputtered Mg0.07Zn0.93O samples studied in this work. The
samples were grown on Quartz and Sapphire substrates.

The sputtering system utilizes a double-gun configuration capable of dual-target

sputtering. However, only single-target sputtering is used in this work via a water

cooled ST20 magnetron sputtering gun from AJA International. This gun is only com-

patible with 2–inch diameter disk targets. Flow of both working and reactive gasses,

Argon and Oxygen, is monitored independently upstream from the sputtering cham-

ber. Flow is regulated by MKS Type P4B digital Mass Flow Controllers (MFC) based

on differential heat transfer between temperature-sensing heater elements attached

to the exterior of the sensing tube. Real-time gas flow control is achieved through a

computer-based flow control application. The MFC and flow control application work

in conjunction to gauge flow with a resolution of 0.07 standard cubic centimeters per

minute (sccm) and an accuracy of approximately ±1%.
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F igure 3 .5 : A photograph of the sput-
tering system used in this work. On the
right is the growth chamber, beneath which
can be seen the turbo molecular vacuum
pump backed by the mechanical roughing
pump. On the left is an equipment rack
with all accompanying control electronics
and power sources.

By closely monitoring the introduction of each gas to the sputtering system and

the contribution of each gas to Dalton’s law of pressure we insure the repeatability of

experiments with reasonable accuracy.

3 .8 sputtering targets

The targets used in this work were custom-made Zn–Mg and Zn–metal targets. The

Zn–Mg targets were made by mixing Mg and Zn metal powders in desired ratios

followed by pressing the mixture into a 2–inch die by a Carver hydraulic press, at

50,000 lbs for over 24 hours. The Mg and Zn metal powders were purchased from

Alfa Aesar and are of 99.8% and 99.9% purity, respectively.
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The most significant advantage of pressed metal targets lies in the freedom of

controlling the Zn-Mg ratio, as compared to the limited choices of commercially

available ones. However, pressed metal targets cannot endure high input power due

to its relatively lower density and higher probability for having internal flaws.

For the growth of Mg0.07Zn0.93O and Mg0.15Zn0.85O films, conductive Zn–Mg tar-

gets were sputtered and thus a DC power source was utilized. The DC source used in

this work is an MDX 500 by Advanced Energy with a maximum power of 500 W and

built in arc-suppression circuitry.

F igure 3 .6 : A photograph of a custom made Mg0.07Zn0.93O target, made to contain 7%
Mg, pressed by a Carver hydraulic press.

3 .9 methodology

Cold and room temperature transmission measurements were performed using an

Agilent 300 Cary UV-Vis transmission system in double beam mode to remove sub-

strate effects. Cold temperature measurements were performed using an Instec 621 V

microcell customized for UV measurements and a sorption pump to keep the sample

chamber at a pressure of 10−2 Torr.

All analyses were conducted in OriginLab 2018 scientific graphing and data anal-

ysis software and PeakFit Peak Analyzer. The data analyzed from the literature
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(c-Si in Chap. 8) was digitized via Engauge Digitizer in point match mode. The

absorption coefficient was calculated using α(E) = −ln(T)
d , where T is the normalized

transmission and d is the film thickness.13 The thicknesses were calculated using a

well-established method of interference fringe pattern analysis described in Chap.

7.11,12

3 .9 .1 ZnO Thin Films

The ZnO films analyzed in this work were grown on quartz substrates using a DC

magnetron sputtering system. The sputtering chamber was evacuated to a base

pressure of 10−5 Torr and deposition of the films was carried out by sputtering the Zn

metal target in an oxygen-argon gas mixture at a pressure of 12 mTorr and a delivered

power of 30 W. The films were grown for 90 min. at 250
◦C. The thickness of the ZnO

films were ≈700-800 nm.

3 .9 .2 Wurtzite MgZnO Thin Films

The Mg0.07Zn0.93O and Mg0.15Zn0.85O films analyzed in Chap. 6 were grown on quartz

substrates using a DC magnetron sputtering system. The sputtering chamber was

evacuated to a base pressure of 10−6 Torr and deposition of the films was carried out

by sputtering the Mg-Zn target pf the given stoichiometry in an oxygen-argon gas

mixture at a pressure of 11 mTorr and a delivered power of 30 W. The films were

grown for 120 min. at 250
◦C. .

3 .9 .3 Wurtzite-Cubic Mixed-Phase MgZnO Thin Films

The mixed-phase Mg0.75Zn0.25O film analyzed Chap. 8 were grown on sapphire

substrates using a RF magnetron sputtering system. The sputtering chamber was

evacuated to a base pressure of 10−5 Torr and deposition of the films was carried out
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by sputtering the Mg-Zn target in an oxygen-argon gas mixture at a pressure of 17

mTorr and a delivered power of 70 W. The films were grown for 210 min. at 250
◦C.

The thickness of the Mg0.75Zn0.25O film was ≈300 nm.

The ZnO film discussed in Sec. 8.7.3 and 8.8 was subjected to post-growth anneal-

ing treatments at 200, 400, 600, 800
◦C, all for 1 h under a controlled Ar environment

in a Lindberg furnace. The as-grown ZnO and Mg0.75Zn0.25O films discussed in Chap.

8 were subjected to the same post-growth annealing treatment at 900
◦C.
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Conclusion — Many variables were shown to influence semiconductor thin-

film growth and this chapter has outlined the sputtering growth methods used to

synthesize ZnO thin films and MgZnO thin film alloys in addition to outlining the

customized features used. We have shown that numerous measures were taken

to ensure as much control over the growth environment as possible which in turn

ensures minimal variation in experimental samples.
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chapter 4

Semiconductors & Bandgap Engineering

Introduction — The bandgap is perhaps the single most useful property of semi-

conductor materials. The bandgap allows the semiconductor to operate as an en-

ergetic switch, facilitating the flow of energy into (or out of) the semiconductor at

pre-determined values. The energy of the bandgap is dependent on the chemical

interactions between sub-unit atoms in the solid; therefore, we can engineer bandgaps

by altering the semiconductor at the atomic level.

4 .1 alloying—zno & mgo

Currently in the field of bandgap engineering, there remains a limited number of

accessible bandgap energy ranges. If the need arises for a device that operates in

a particular energy range that is not available naturally, the appropriate materials

must be created. One method of bandgap engineering focuses on introducing a

substitutional impurity (or multiple impurities) to create a semiconductor alloy, which,

in essence, is a solid solution of multiple materials. This work focuses on the extrinsic

semiconductor ZnO and its alloy MgxZn1−xO. In the MgxZn1−xO alloy system, Zn

lattice points are substituted with Mg atoms to create the ternary compound.

To understand the interaction between alloyed semiconductors, we must first be

familiar with the component parts. ZnO is a semiconductor with a wurtzite crystal

structure, a bandgap of approximately 3.3 meV and an exciton binding energy of

approximately 60 meV. MgO, more an insulator, has a cubic crystal structure, a

bandgap of approximately 7.8 eV and an exciton binding energy of 100 meV.1

Substituting Mg for Zn in the ZnO lattice changes the optical properties of the

lattice as a whole. The changes are largely based on the ratio of electronegativities

of Mg to Zn, the ratios of their covalent radii, and also on the ratio of their mass.
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The ratio of the mass of Mg to Zn is considered to be ≈ 1, and the two atoms have

comparable covalent radii, although Mg is slightly larger.

As shown in Tab. 4.1, the electronegativity of Mg is less than that of Zn. The

ratio of electronegativities of O to Mg is ≈ 2.63. Therefore the electron density of

MgO is located around O and MgO is said to be ionically bonded. In the case of

ZnO, the ratio of electronegativities of O to Zn is ≈ 2.08—less than that of 2.63 in

MgO. Therefore the electron density accumulates between Zn and O more equally in

a semi-ionic-covalent bond.

MgO crystal structures exist in the rocksalt cubic phase, whereas ZnO crystal

structures exist in the hexagonal wurtzite phase as shown in Fig 4.1.2 The mismatch

in crystal structures of the alloy end-members gives MgxZn1−xO varying crystal

structure depending on Mg concentration. Additionally, solubility plays a key role

in governing the properties of this alloy.

a) b) c)

F igure 4 .1 : (a) The wurtzite hexagonal crystal structure of ZnO. (b) The rocksalt cubic
crystal structure of MgO. (c) At low concentrations, MgxZn1−xO retains a wurtzite structure.

4 .1 .1 Solubility of Crystal Structures

The extent of the solubility of a substitutional impurity in a semiconductor is mea-

sured by the saturation concentration. Saturation concentration in MgxZn1−xO is the
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point at which the wurtzite-type alloy can dissolve no more Mg without precipitating

cubic-phase MgO. This results in a mixed-phase wurtzite-cubic material and is known

as phase segregation. Saturation in MgxZn1−xO has been shown to occur at about 40%

Mg. This mismatch in crystal structure between ZnO and MgO leads to a limitation

in solubility on both ends of the alloy composition spectrum, that is, Mg-doped ZnO

and Zn-doped MgO, at equilibrium.4 Accordingly, extremely high concentrations of

Mg lead to cubic structure MgxZn1−xO.3

Table 4 .1 : Material properties of MgO and ZnO and constituent atoms, Mg, Zn & O.

Compound Structure Lattice Constants (Å) Bandgap (eV)

MgO Rocksalt Cubic a = 4.2 7.8
ZnO Hexagonal Wurtzite a = 3.2 3.4

c = 5.2

Atom Covalent Radius (Å) Electronegativity† Oxidation States

Mg 1.36 1.31 +2
Zn 1.25 1.65 +2
O 0.73 3.44 −2, −1
† Pauling’s

After obtaining the ternary compound MgxZn1−xO, the bandgap settles some-

where between the two bandgaps of the end-members, based on composition of the

compound, and lies between 3.3–7.8 eV. The value of the energy gap of a ternary

semiconductor alloy is determined by the following equation:4

Eg,MgZnO(x) = (1− x)Eg,ZnO + xEg,MgO − bx(1− x) (4.1)

where x is the composition fraction, E are the respective bandgap energies, and b is

the bowing parameter. The quantity b incorporates the mismatch in electronegativities

and covalent radii between the substituting atomic species in the determination of the

4Equilibrium refers to a state in which the relative phase composition is stable and the concentration
of atoms in any given phase remains constant in time.
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alloy bandgap.5,6 Thus, the bowing parameter describes the deviation from linear

behavior of the bandgap with composition in the alloy system.

When b = 0, the bandgap of the alloy changes linearly with respect to the relative

composition of the two binary compounds. When b > 0, the behavior of the resultant

bandgap exhibits a bowing effect, which makes it possible to create an alloy with a

bandgap lower than that of either end binaries. One of the first reports of the synthesis

of MgxZn1−xO with a Mg content of up to 33% was by Ohtomo et al.7 by pulsed laser

deposition (PLD). Ohtomo found a linear increase in the bandgap with composition

up to 4.15 eV for 0 < x < 0.36.

Bandgap bowing in MgxZn1−xO is therefore not an issue in practice, and this

ternary system is created to increase the bandgap in ZnO.8 Fig. 4.2 shows that

bandgap engineering of ZnO with Mg achieves a wide range of bandgap energies

from UV well into the visible.

The MgxZn1−xO alloy investigated in this work consists of 7%, 15% and 75% Mg

by composition. The 7 % and 15 % MgZnO which corresponds to a wurtzite type alloy

with a bandgap slightly wider than that of ZnO. The 75 % MgZnO alloy corresponds

to a mixed-phase structure with a wide bandgap.
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F igure 4 .2 : Bandgap engineering of ZnO can achieve a wide range from UV into the visible.
Squares represent the bandgap energy of MgxZn1−xO. The shadowed area indicates the phase
segregation region where cubic and wurtzite crystal structures coexist. Figure adapted from
Hui (2014).9

4 .2 defects

While alloying offers many benefits to semiconductor technology, impurities form

additional energy levels and cause band edges to be distorted via Coulomb interaction.

This distortion leads to the "tails" at the band-edge. The nature and source of tailing

in semiconductors, and the Urbach model of tailing is the focus of Chap. 8.

In addition to band distortion and tailing, other mechanical changes in doped

semiconductors may come about. Since a substitutional impurity would normally

possess a covalent radius that is larger or smaller than the host atom, mechanical

strain is introduced in the lattice, and can be either compressive or dilatational. An

interstitial can also introduce a compressional strain whereas a vacancy can introduce

a dilational strain. Compression and dilation can increase and reduce the energy
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gap, respectively, due the presence of additional atomic nuclei, or lack thereof. This

effect is directly linked to the band edge perturbation previously discussed. Crystallo-

graphic defects known as dislocations also contribute to irregularities within a crystal.

Dislocations occur at the edge of an extra plane of atoms and are characterized by

the mismatch between planes of atoms, especially at grain boundaries. Dislocations

produce both compressional and dilational strains which also perturb the band edges.

More information on structural defects and their effects on the band-edge is given

in Chap. 6.

Conclusion — We have seen in this chapter that altering the intrinsic nature

of semiconductors may result in potentially changing any number of its electrical,

optical, and mechanical properties. In MgxZn1−xO we widen the bandgap of ZnO

but expect to see an increased presence of defects intrinsic in the nature of alloying.
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chapter 5

Optical Spectroscopy and Imaging

Abstract — This chapter explores the nature of electromagnetic radiation and

provides several mechanisms for the interaction of radiation and semiconducting

solids. We will see that the basis for the interaction, and ultimately the transfer of

energy, is a coupling between the radiation field and the fields existing within the solid

structure. In spectroscopy, we experimentally observe the interaction of radiation

with matter, and in this work, our semiconductors, ultimately gaining insight into

the band structure of the thin films and thin-film alloys. This chapter focuses on UV-

Visible absorption spectroscopy, the relationship between transmission and absorption

of radiation, Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) in ZnO

and Mg0.07Zn0.93O.

5 .1 optical spectroscopy

Spectroscopy is science that deals with the interaction of radiation with matter. Histor-

ically, the interactions between electromagnetic radiation and matter were of primary

interest, but spectroscopy has expanded to include acoustic waves and particle beams

such as ion or electron beams. Still, electromagnetic radiation is most widely used.

Electromagnetic radiation comprises a vast spectrum, including visible light, infrared,

gamma rays, X-rays, ultraviolet (UV), microwave and radio-frequency radiation.

5 .2 electromagnetic radiation

Electromagnetic radiation is most easily described by the wave model which involves

quantities such as wavelength, frequency, velocity and amplitude. In contrast to

phononic phenomenon, electromagnetic radiation propagates readily through the
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F igure 5 .1 : The electromagnetic spectrum encompasses a vast range of energies—a range
so great that a logarithmic scale is required. This spectrum has been qualitatively divided based
on the methods used to generate and detect the different types of radiation. Some overlaps do
occur. (Inductiveload, 2007)

vacuum of space. In a vacuum, the velocity of radiation is independent of wavelength

and is at its maximum—denoted by the symbol, c—and has been determined to be

2.998× 108 m/s. The velocity of radiation in air differs only slightly from c, and is

written, for vacuum or air, as c = 3 × 108m/s. As the density of matter increases,

propagation of radiation through a medium slows by the interaction between the

electromagnetic field of the radiation and the elementary particles that constitute the

medium. Since frequency is fixed by the source, the wavelength must decrease as

radiation passes from vacuum to denser media.

5 .3 transmission of radiation

The rate at which radiation propagates through a transparent substance, as noted

previously, is less than its velocity in a vacuum and depends on the kinds and

concentration of atoms, ions or molecules in the medium. Therefore, the radiation
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F igure 5 .2 : As radiation passes from a less dense medium to a more dense medium a change
in wavelength occurs. The reverse change occurs as the radiation re-enters the air.

must be interacting in some way with the matter. A change in frequency is not

observed—so, the interaction does not involve a permanent energy transfer.

The interaction involved in transmission can be attributed to periodic polarization

of the atoms, ions or molecules that constitute the medium.1 Polarization in this

context is the temporary deformation of the electron clouds associated with atoms

by the alternating field of the electromagnetic radiation. The polarizability of the

valence shell electrons depend on the strength of their interaction with the nucleus

and intervening filled shells. Provided that the radiation is not absorbed, the energy

required for polarization is only retained for 10−14–10−15 s by the species and is re-

emitted without alteration as the substance returns to its original state.5 Since there

is no net energy transfer, the frequency of the emitted radiation is unchanged, but the

rate of its propagation is slowed by the time it takes for retention and re-emission to

occur.
5Radiation from polarized particles should be emitted in all directions in a medium. If the

particles are small, however, destructive interference prevents the propagation of significant amounts
of radiation in any direction other than that of the original path.
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The refractive index is related to polarizability and is a measure of a medium’s in-

teraction with radiation, and therefore the speed of radiation propagation, as defined

by:

η(ν) =
c

v(ν)
(5.1)

where η(ν) is the refractive index at a specific frequency, v is the velocity of the

radiation in the medium and c its velocity in vacuum.

The velocity of radiation in matter is wavelength dependent and since c in Eq. 5.1 is

independent of wavelength, the refractive index of a substance must also change with

wavelength. The variation of refractive index with wavelength or frequency is called

dispersion. Dispersion plots exhibit two types of regions, normal and anomalous. In

normal dispersion, the slope is gradual, whereas in anomalous dispersion the slope

is sharp.

5 .4 absorption & the significance of resonance

Anomalous dispersion always occurs at frequencies that correspond to the natural

harmonic frequency associated with ionic, inter-atomic or orbital perturbation of a

substance. At such a frequency, resonance occurs and a permanent energy transfer

takes place.

Resonance is a requirement for the absorption of radiation and depends on both

the frequency of the driving electromagnetic field and the natural frequency of the

oscillator. The absorption of UV-visible radiation by electrons can be described clas-

sically by the frequency-dependent dielectric function of a material. Furthermore,

light can only couple to optical phonons very close to the center of the Brillouin

zone at k = 0 and the electromagnetic excitation of such a mode corresponds to the

introduction of a time-varying dipole within the crystal.
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5 .5 general spectroscopic techniques

In absorption spectroscopy, we measure the amount of radiation absorbed as a func-

tion of wavelength. In semiconducting solids, the onset of the absorption of radi-

ation indicates that the electromagnetic energy meets that required by electrons in

overcoming the bandgap energy. In photoluminescence spectroscopy, the emission

of photons is measured after absorption which yield information about radiative

relaxation pathways in a sample. Furthermore, Raman spectroscopy uses inelastic

scattering to glean information about the vibrational modes of a sample. Absorption,

photoluminescence and Raman spectroscopy generally yield complementary informa-

tion about a sample and are usually used in conjunction, however, the primary focus

of this work is absorption spectroscopy.

5 .6 transmittance & absorbance

In practice, calculating the energy of radiation absorbed is determined by the experi-

mental measurement of transmittance, T, of samples. The transmittance of a material

is given by the following equation which is a ratio of the intensities of incoming, Io,

and outgoing, I′, electromagnetic radiation.

T =
I′

Io
(5.2)

Reflection, R, also occurs at air/sample/substrate interfaces during a measure-

ment, along with multiple internal reflections within the film itself. Taking these into

consideration, the transmittance is then given by the following:2

T =
I′

Io
=

(1− R)2e
−4πνκχ

c

(1− R2)e
−8πνκχ

c

=
(1− R)2e

−αt
c

(1− R2)e
−2αt

c
(5.3)

where α = 4πνκ
c is equivalent to the absorption coefficient of the film described above.
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F igure 5 .3 : Normalized transmission of electromagnetic radiation in ZnO thin film as a
function of photon energy (blue) and corresponding absorption as a function of photon energy
(red). The conversion to absorption is a simple negative logarithm. Note the film thickness has
not been included in the conversion.
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For semiconductor materials, the reflectivity, R is negligible even near the ab-

sorption edge.3 For the purposes of band edge analysis, the transmittance, T, of a

semiconductor with film thickness, t, can be expressed as an approximation of the

form:

T = e−αt (5.4)

Consequently, with measured transmittance and film thickness, t, the absorption

coefficient, α, can be obtained:

α = −t−1lnT (5.5)

5 .7 scanning electron microscopy (sem )

Scanning electron microscopy (SEM) is a non-destructive surface analyzing technique

with unique capabilities. It works in similar fashion to an optical microscope just

with a different source of radiation4. While an optical microscope forms images from

visible light reflected from a sample’s surface, an SEM uses a beam of electrons to

scan across a specimen’s surface in a television-like raster. These electrons interact

with atoms in the specimen, inelastically scattering and lose some of their energy to

produce various signals such as secondary electrons, X-rays, and Auger electrons.

Secondary electrons contain information about the specimen’s surface morphology

and is the most common imaging mode. With an appropriate detector, emitted sec-

ondary electrons can be captured and analyzed, producing readily available images

of the specimen. Compared to visible light, electrons have much shorter wavelengths

which are capable of conveying information with much higher resolution and higher

magnification can be obtained without loss of detail. The practical maximum resolu-
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F igure 5 .4 : An SEM image taken of the back of a leaf showing the raised wall of cells.
(Museum of Science, Boston)
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tion of an SEM can reach to 750,000x,4 which is about 375 times the resolution limit

of the best optical microscope.

Secondary electrons are generated by scattering of the primary electron beam by

the loosely bound conduction-band electrons of the specimen5. Due to the small

energy associated with this electronic transition, secondary electrons have a low exit

energy of only a few eVs which constrains their trajectory. Although secondary

electrons are generated along the entire trajectory of the beam electron within the

specimen, only the ones generated within a few nanometers beneath the specimen’s

surface are likely to escape and be detected. Such shallow escaping depth of sec-

ondary electrons makes SEM suitable for imaging the surface of a specimen.

Another area in which SEM is superior to optical microscopy is in the narrow elec-

tron probe aperture which leads to a large depth of field, which means the ability of

maintaining focus across a larger range of distance. As a result, the three-dimensional

details on a specimen’s surface will appear sharp, regardless of surface roughness. Fig.

5.4 gives an example SEM image of the back of a bean plant leaf. The texture from

raised wall of cells in the vein can been observed clearly under 350x magnification.

The combination of a large magnification, small signaling depth, and, a large depth

of field makes SEM a favorable technique for studying surface topography of the thin

film materials grown for this work.

5 .8 x -ray diffraction (xrd )

X-ray diffraction (XRD) is a nondestructive analytical technique for the study of crystal

structures and atomic spacing in crystalline materials. A crystal consists of a periodic

arrangement of atoms into a lattice and such arrangement can be viewed as sets of

evenly spaced atomic planes. When irradiated by a monochromatic beam of X-ray, an

atomic plane can act as a partially transparent mirror. Part of the X-ray beam will be
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reflected and part will be transmitted and may be reflected by another plane of atoms

deeper into the material. Fig. 5.5 shows a set of atomic planes with spacing d being

irradiated by a beam of X-ray of wavelength λ, at an angle Θ. Since the wavelength of

X-rays are comparable to the spacing between atomic planes, constructive interference

between two reflected beams can occur when the path difference between the two

beams equals a multiple of the incident wavelength. This condition is know as Bragg’s

law and can be summarized by the equation:6

nλ = 2dsinθ (5.6)

where n is an integer, d is the interatomic spacing, λ is the wavelength and Θ is

the angle of incidence.

Typically, the intensity of the scattered X-ray beam is detected as a function of

2Θ and the measurement is based on the first-order reflected beam so that n = 1 in

Eq. 5.6. For a given wavelength of incident X-rays, narrow and intense peaks can be

observed at angles where constructive interference occurs. Each crystalline material

usually has its unique set of d-spacings which gives rise to diffraction peaks at specific

angles. By comparing the detected pattern of peaks with standard references, the

crystal structure of the examined specimen can be identified. The peak position,

relative intensity of peaks, and, line shapes also contain information such as strain

in the lattice planes and the lattice constants. The peak Full-width half-max (FWHM)

also contains information and is inversely proportional to the grain size. Typically,

broadened XRD peaks are an indication of small grain size.6
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F igure 5 .5 : A schematic illustrating Bragg’s law. An X-ray beam of wavelength λ is
incident on a set of atomic planes with spacing d, at an angle Θ. If the path difference between
the two reflected beams equal to a multiple of the incident wavelength, constructive interference
will occur and cause an enhancement in the intensity.
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Conclusion — In this chapter we have seen that the interaction of radiation

or electron beams with semiconductors in controlled experiments can yield valuable

information about the sample. In absorption spectroscopy we measure the intensity

of radiation transmitted to calculate the amount of radiation absorbed, or absorption

coefficient. The absorption coefficient can be used to gain valuable information about

the band structure of semiconductors and alloys. SEM can be used to image the

surface of samples, while XRD gives valuable information about the structure of the

sample.



76

references

[1] D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of Instrumental Analysis, 6th
ed. (Brooks Cole, Belmont, CA, 2006).

[2] J. I. Pankove, Optical processes in semiconductors (Prentice-Hall, Englewood Cliffs,
NJ, 1971).

[3] S. T. Tan, B. J. Chen, X. W. Sun, X. Hu, X. H. Zhang, and S. J. Chua, Journal of
Crystal Growth 281, 571 (2005).

[4] J. I. Goldstein and D. B. Williams, Journal of
Electron Microscopy Technique 5, 105 (1987), _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jemt.1060050111.

[5] D. E. Newbury, Advanced scanning electron microscopy and X-ray microanalysis (1986)
oCLC: 861706289.

[6] C. Suryanarayana and M. G. Norton, X-Ray diffraction: a practical approach (1998)
oCLC: 861706202.

http://dx.doi.org/ 10.1016/j.jcrysgro.2005.04.093
http://dx.doi.org/ 10.1016/j.jcrysgro.2005.04.093
http://dx.doi.org/10.1002/jemt.1060050111
http://dx.doi.org/10.1002/jemt.1060050111
http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=3086342


77

chapter 6

The Temperature Dependent Band-Edge as a Function of

Annealing

Abstract — In this chapter we demonstrate the relationship between the band-

edge defect distribution, controlled via annealing, and the of degree electron-phonon

(e-p) coupling in ZnO, Mg0.07Zn0.93O and Mg0.15Zn0.85O. We demonstrate that the

band-edge in derivative spectra is composed of a Gaussian related to the random

distribution of defects in the material. We show, based on UV-Vis absorption spectra

at 77 K, that the band-edge distribution of defects was decreased as a function of

increasing annealing temperature. Furthermore, we show that the broadening of

the Gaussian obeys a one-to-one correlation with the XRD Full-Width Half Max

(FWHM) indicating that the dominant defects leading to band-edge broadening are

structural inhomogeneities such as grain boundaries.1 We show that ZnO undergoes

an amorphous-to-polycrystalline phase transition at 400
◦C. In the amorphous-like

morphology, ZnO exhibits none-to-weak e-p coupling. Following the phase transi-

tion, ZnO exhibits traditional electron-phonon coupling typical of more crystalline

structures. Mg0.07Zn0.93O and Mg0.15Zn0.85O demonstrate similar behavior to ZnO in

the as-grown/900
◦C annealing temperature limits, respectively.

6 .1 introduction

There are trends in the literature which indicate that defects, specifically cation-cation

disorder in semiconductor ternary alloy systems such as CuInTe and CuInSe, signif-

icantly impact the e-p interaction of the material.2–8 The relationship between the

temperature broaadening term and the defect broadening term of the band-edge

slope for these materials, in comparison to ZnO and MgZnO, is shown in Fig. 6.1.

The effects of e-p interaction include thermal broadening and thermal redshift of the
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optical gap. Exploring this relationship is critical to the continued rational application

of semiconductor technology in variable temperature environments such as in space

exploration.9 Rincón proposes that, in general, in the presence of defects, only a frac-

tion of the phonon modes excited at a given temperature can interact with electrons,

thereby reducing the effect of thermal broadening.5 We set out to more generally

establish this dependence by investigating the e-p interaction via thermal broadening

of the optical gap in ZnO thin film as function of annealing. As will be shown, this

investigation also gives insight into the defect types present in the as-grown and

annealed films.

Annealing thin films at elevated temperatures allows the evolution into a more

stable state, removing defects and contributing to more ordered morphology.10 The

samples were annealed following the procedure described in Chap. 3.

6 .2 defect distribution

To uncover the defect distribution in our samples, we analyzed the log of the energy

derivative of α(E), shown in Fig. 6.2(a). The rationale for this is treated in detail in

Chap. 8.

In Fig. 6.3 (b) we show that the form of d(lnα(E))/dE can be described with good

accuracy by a Gaussian. Fig. 6.3 (b) shows the data after the removal of interference

patterns. The features at the band-edge comprise (i) an artefact from interference and

(ii) the actual absorption signal of the material. Analysis described in detail in Chap. 7

confirms that the former is an artefact from interference.11 The present chapter focuses

on the extracted absorption signal, modeled excellently by the following Gaussian

form:

d(lnα(E))
dE

=
1

Eu
e
−(E−Eo)2

2w2 (6.1)
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F igure 6 .1 : The relationship between the temperature broadening term and the defect
broadening term of the band-edge slope for various stoichiometries of CuInTe and CuInSe,
ZnO and MgZnO.2–8
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F igure 6 .2 : (a) The absorption coefficient (b) energy derivative of the logarithm of the
absorption coefficient of ZnO thin film annealed at 800 ◦C acquired at temperatures from
77− 532 K. The interference artefacts have been removed from the plots of d(lnα(E))/dE.
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F igure 6 .3 : (a) Semi-logarithmic plot of α(E), lnα(E), and (b) energy derivative of lnα(E)
for ZnO thin film annealed at 800 ◦C acquired at 77 K. (c) Energy derivative of lnα(E)
for Mg0.2Zn0.8O thin film annealed at 900 ◦C acquired at 77 K. The interference artefacts
have been removed from the plots of d(lnα(E))/dE. The parameters of the Gaussian model in
Eq. 6.1 are shown. The inset in (a) shows Eu as a function of the variance w2

o of the defect
distribution. The line is a fit to Eq. 6.2.
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F igure 6 .4 : (a) The energy derivative of lnα(E) for the ZnO thin film sample as-grown
and annealed (Ta) at 200, 400, 600, and 800 ◦C after removal of the interference artifact. The
standard deviation of the Gaussians (dotted fits to data) are shown to narrow with increased
annealing temperature while the UBE, Eo, shown at 3.33 eV by the vertical dotted line,
remains invariant to defects. The inset shows the XRD diffraction pattern for ZnO thin
film as-grown and annealed at 200, 400, 600, and 800 ◦C.
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where, Eu is the Urbach energy, Eo is the UBE and w is the Gaussian standard

deviation, (where w2 is the variance of the distribution).

Urbach theory asserts that defects alter the gap value locally through local band

deformation.12,13 Defects are assumed to be randomly distributed in a material, so the

distribution of energy at the band-edge can be described by a normal distribution.12,14

Our results show that derivative analysis is required to experimentally uncover the

normal distribution of defects. The thoery supporting this transformation is described

in Chap. 8.

Economou shows by first-principles calculation that Eu is proportional to the vari-

ance, w2, in the bandgap energy distribution at the band-edge due to the defect

distribution in the material:12

Eu = 2Aw2 (6.2)

To analyze our relationship between w2 and Eu, it was first necessary to separate

defect broadening from thermal broadening. We analyzed the spectra at 77 K where

thermal contributions to band-edge broadening are negligible.5,8,14

Fig. 6.3 shows our plot of Eu vs. wo
2 for the ZnO thin film at 77 K for each

annealing condition. This allows the analytical extraction of A which was found to be

0.003 eV−1, within the range of values reported by Bacalis et al for various materials.15

6 .3 annealing experimental results

Analysis of the defects at 77 K for each annealing stage—starting at 200 ◦C and

increasing by 200 ◦C up to 800 ◦C —revealed that the UBE, Eo, is invariant to the

defect concentration in the material, measuring between ≈ 3.33− 3.34 eV throughout

all stages of annealing treatment as shown in Fig. 6.4. Values of Eo are shown in

Table 6.1. Regardless of defect concentration, broadening is centered about Eo. In
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agreement with our results, Economou predicts that Eo represents the average value

of the fluctuating local energy environment.15

Furthermore, the defect broadening parameter, wo, decreases with each increase

in annealing temperature, as shown in Fig. 6.4. XRD measured at each annealing

temperature, as shown in the inset of Fig. 6.4, agreed with this finding. As expected,

the XRD FWHM (Full-width Half-Max) also decreased with each increase in annealing

temperature. A key finding of this dissertation, as shown in Fig. 6.5, is that the

defect parameter wo obeys a one-to-one correlation (Pearson’s r = 0.99) with the

XRD FWHM. This suggests that the dominant defects measured by wo are structural

inhomogeneities such as grain boundaries. The results are compiled in Table 6.1.

6 .4 solid -state phase transition

The analysis of wo and the XRD FWHM as a function of annealing in Fig. 6.5

shows that both parameters are drastically reduced at 400 ◦C, corresponding to a

39% decrease for the XRD FWHM and 49 % for wo. This indicates the activation of

an amorphous-to-polycrystalline solid-state phase transition corresponding to grain

growth activation. This agrees with the results of Vishwas et al. who also found this

phase transition at 400 ◦C via XRD for ZnO thin film grown by the sol-gel method.16

Grain-growth activation is further supported by the SEM images shown in Fig. 6.5

which compares the morphology of the as-grown sample and the sample annealed at

800
◦C. The as-grown sample shows clustering and no well-defined grains while the

sample annealed at 800
◦C shows well defined grains. In contrast, the XRD intensity

shows a gradual improvement over all stages of annealing as shown in Fig. 6.5.
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F igure 6 .5 : The defect parameter, wo plotted with the XRD FWHM for ZnO thin film
as-grown and annealed at 200, 400, 600, 800 ◦C. The Pearson’s correlation is 0.99 between
these two parameters. The top inset shows the XRD intensity and the bottom inset shows
SEM images of ZnO thin-film as-grown (top) and annealed at 800 ◦C.
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Table 6 .1 : Eo (0K), wo and Eu obtained by fitting the absorption signal of d(lnα(E))/dE
at 77 K to Eq. 6.1, the XRD FWHM obtained by XRD peak analysis, the e-p coupling constant
(αo), phonon temperature (Θ) and phonon frequency (hνp) from fitting the BET model to w(T)
for the ZnO film as-grown (AG) and annealed successively by 200 ◦C up to 800 ◦C, and for
the Mg0.2Zn0.8O film as-grown and annealed at 900◦C

ZnO Eo(0K)
(eV)

wo
(meV)

XRD
FWHM (◦)

Eu (meV) αo
(10−3K−1)

Θ(K) hνp(meV)

AG 3.32 85 0.52 73.64 0 0 0

200 ◦C 3.32 80 0.51 72.94 1.41 1277 110

400 ◦C 3.33 41 0.31 40.90 2.70 850 73

600 ◦C 3.33 39 0.28 47.37 3.29 893 77

800 ◦C 3.34 33 0.25 37.37 3.16 857 74

MgZnO
AG(15% Mg) 3.65 136.7 - 113.38 0 0 0

900 ◦C (7% Mg) 3.52 33.74 - 28.53 6.49 840.25 72
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6 .5 defect -mediated electron -phonon coupling

We now consider the effect of defects such as grain boundaries on the thermal broad-

ening of the band-edge. w for the as-grown sample (Fig. 6.6) shows no temperature

dependence, and in the sample annealed at 200 ◦C, w shows negligible temperature

dependence. Studies on the thermal contribution to band-edge broadening of amor-

phous materials using Urbach analysis indicates a constant slope, or Eu, or little to no

thermal response of the band-edge slope, for a broad range of temperatures in amor-

phous materials.17–20 Some amorphous materials that display this behavior include

α-Ge20 (amorphous Ge), hydrogenated α-Si21, α-As2S3
22 and α-GeTe alloys.23 These

results further support the conclusion that the structure of our as-grown ZnO (and the

sample annealed at 200 ◦C to a lesser degree) exists mainly as disordered networks.

Wasim suggests that in Cu ternaries, maximum structural disorder corresponds to no

thermal broadening at the band-edge and asserts that near this threshold, a structural

phase transition in these materials is expected to occur.7 This correspondence of a

structural phase transition with enhanced thermal broadening is in agreement with

our results.

Following the structural phase transition at 400 ◦C annealing, and for 600 ◦C and

800 ◦C annealing, a significant thermal broadening response is seen (Fig. 6.6). The

prevalence of thermal broadening as opposed to defect broadening is characteristic of

more crystalline solids.18 The broadening as a function of temperature, w(T), shows

a trend similar to that predicted by the Wasim model, which is reasonable as we show

in Chap. 8, Eu is proportional to w2. To our knowledge, no model has yet been

developed for the temperature dependence of w(T) extracted via derivative absorption

spectra.
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F igure 6 .6 : The Gaussian standard deviation as a function of sample temperature for the
ZnO film as-grown and annealed at 200, 400, 600 and 800 ◦C, and for the Mg0.15Zn0.85O
film as-grown and the Mg0.07Zn0.93O film annealed at 900 ◦C. The solid lines are the fits to
the BET model in Eq. 6.3.
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6 .6 model of temperature -dependent band -edge

distribution width

There are many models that describe the temperature-dependent width of broadening

in photo-luminescence (PL), ellipsometry and the absorption spectra. We applied a

Bose-Einstein-type (BET) model to the temperature dependence of w(T) extracted via

derivative absorption spectra:24–27

w(T) = wo

(
1 +

2α(T)
eΘ/T − 1

)
(6.3)

where wo quantifies the defect baseline. Θ is the phonon temperature of the

material involved in broadening and corresponds to the average phonon frequency

in the material via kbΘ = hνp. α(T) quantifies the degree of e-p coupling and is a

weight-factor on the Bose-Einstein term. α(T) is usually regarded in the literature as

having no temperature dependence, however, assuming this factor is independent of

temperature did not yield physically reasonable results. As shown in Fig. 6.7, our

analysis shows that α(T) is approximately linearly temperature dependent and can

be approximated by α(T) = αoT, where αo is defined as the e-p coupling constant.

The results of fitting Eq. 6.3 to the data in Fig. 6.6 are shown in Table 6.1. The

results of hνp for the sample annealed at 400, 600, and 800 ◦C indicate phonon

frequencies of 73, 77 and 74 meV, respectively. These are in good agreement with

measured values of the A1(LO) mode in ZnO (≈ 550 cm−1), ≈ 70 meV.28–30 In

contrast, assuming α(T) has no temperature dependence yields phonon frequencies

of 52, 121 and 119 meV, respectively, which is not physically reasonable since the

A1(LO) mode is the highest available optical mode in ZnO as shown in Fig. 2.20.

We also note that values for Θ for the sample annealed at 200 ◦C give a value

for hνp higher than the the A1(LO) mode in ZnO. Wasim proposes that unusually

high values for Θ may indicate higher-than usual frequency modes at localized sites5

which are more prevalent in disordered networks.31
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F igure 6 .7 : Solving for α(T) in Eq. 6.3 by substituting experimental values for wo, T and
a known value for Θ for ZnO yields the following form.
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Fig. 7.5 summarizes the results of applying the model in Eq. 6.3 to the temperature-

dependent data shown in Fig. 6.6. This more generally establishes the trend found in

the literature.

6 .7 evidence for Zni out -diffusion/lattice

incorporation

At 200 ◦C annealing, minor thermal broadening is activated. We assert that this

annealing temperature, at which there is insufficient energy to induce a structural

change—as shown by XRD—causes the out-diffusion and lattice incorporation of

Zni. Shown in Fig. 6.9, our previous work confirmed via visible PL that Zni are

the dominant native defect in sputtered as-grown ZnO.10 Theoretical predictions by

Kohan et al. also indicate that Zni are highly unstable and as a result are expected to

be thermally active at this relatively low annealing temperature.32

The presence of Zni in the thin flim studied here can be attributed to the DC

sputtering technique used. This growth technique is commonly reported in literature

to lead to the growth of Zn-rich films, thereby favoring the formation of Zni-related

defects.33–35 This can be understood by noting that sputtering involves the competing

processes of target oxidation and removal of target material. To achieve sputtering

growth, target material must be removed at a sufficient rate to prevent oxide overcoat

formation. However, by removing target material at a higher rate than the oxidation

process occurs, the sputtered material may not completely oxidize. The net result of

these competing processes is a Zn-rich film.

Conclusion — In summary, we observe an amorphous-to-polycrystalline phase

transition in the ZnO thin film at 400 ◦C. The e-p coupling constant, αo, shows an

inverse relationship to the defect parameter, wo. With each successive annealing

treatment, following the removal of Zni at 200 ◦C and grain growth at 400 ◦C, an

increase in the degree of the band-edge thermal broadening was observed. Paired
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F igure 6 .8 : αo, the electron-phonon coupling constant, as a function of wo, the defect
concentration, from applying the model in Eq. 6.3 to the temperature-dependent data shown
in Fig. 6.6
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F igure 6 .9 : PL spectra of the ZnO films: (a) as grown film showing two peaks at 2.80 and
3.25 eV, were obtained with a voigt profile fitting to the experimental curve. The 3.25 eV is
attributed to UV band-edge emission and 2.80 eV is due to Zni related defects. (b) Ar annealed
ZnO film showing the significantly enhanced UV PL with nearly quenched visible emission
peak.10
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with Wasim’s investigation of this effect for disorder via alloy inhomogeneity, this

suggests that any defect mechanism which interrupts lattice periodicity is sufficient,

though perhaps to varying degrees, in reducing the e-p coupling properties of a

material. Further investigations into the inverse relationship between defects and e-p

interaction of other semiconductor systems are underway. While the prediction of this

trend by Wasim is further confirmed through our experimental work, investigation

into the physical mechanism via localization is required.
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chapter 7

Analysis of Interference Fringe Patterns in Thin Film

Absorption Spectra

Abstract — In this chapter we discuss the physical origin of interference patterns

in the transmission (and absorption) spectra of thin films. We show, based on the

theory, that it is possible to predict where these features will arise in the spectra.

Consequently, we show that especially in the derivative spectra—which magnifies fine

features —interference fringes persist deeply into the band-edge region. Following

the confirmation of interference fringe features at the band-edge, we demonstrate an

analytical technique which deconvolves the interference fringe from the band-edge

signal.

7 .1 introduction

Experimental measurements can be decomposed into two parts:

• Signal, which carries information about the sample that is of specific interest to

the scientist

• Noise, which is made up of unwanted extraneous information which degrades

the accuracy and precision of analysis.1

In optical spectroscopy, anomalies, artefacts and interference are common sources

of noise. At times, these may only be a nuisance and do not undermine quantitative

analysis but at other times can be catastrophic and lead to incorrect conclusions if not

properly mitigated.
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F igure 7 .1 : As shown by the vertically dotted lines, the normalized transmission spectrum
can be broadly categorized into (from left to right) a weakly absorbing, an intermediately
absorbing and strongly absorbing region.
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The transmission spectrum of thin, non-scattering films of uniform thickness de-

posited on substrates has an undulating sinusoidal baseline originating from multi-

ple internal reflections within the film; these features are commonly referred to as

“thin-film interference" or simply "interference fringes."2 As shown in Fig. 7.1, the

normalized transmission spectrum can be divided into three distinct regions:

• a weakly absorbing region (T>0.6)

• an intermediately absorbing region (0.6> T > 0.4)

• a strongly absorbing region (T < 0.4)

Interference fringes usually diminish gradually from the weakly absorbing to the

strongly absorbing regions. However, in the intermediately absorbing region—the

band-edge—interference fringes are convolved with spectral features of interest and

the extracted quantitative parameters have the potential to be inaccurate. To current

knowledge of the author, fringe patterns in thin-film absorption spectroscopy have

not been reported to significantly affect the determination of parameters such as the

optical gap or Urbach energy.

Interference fringes can in fact be useful and are used in determining the refractive

index or thickness of a thin film. In this chapter, we show that although interference

patterns gradually diminish in intensity, remnants of their features extend well into

the strongly absorbing region (T<0.1). This is especially significant when analyzing

derivative spectra as a means of magnifying fine-features. In fact, it is through the

derivative spectra that the extent of interference fringes in affecting the lineshape of

the band-edge becomes clear. Here, fringe patterns have the potential to significantly

affect the accuracy of quantitative analysis. Derivative spectra is analyzed here in

order to determine the temperature- and energy-dependent density-of-states at the

band-edge as discussed in Chap. 6. The quantitative usefulness of extracting preci-

sion density-of-state measurements from differential UV-Vis absorption spectra rests
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F igure 7 .2 : ZnO thin film sample showing interference fringes while the bulk ZnO sample
does not.
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largely on accurate fringe-baseline corrections. It is worth noting that in samples

where interference is not present, such as in bulk materials, analysis of derivative

spectra is relatively straightforward. Fig. 7.2 illustrates the difference between bulk

and thin-film ZnO.

7 .2 overview of analytical approach

There are several ways of accounting for or eliminating fringe patterns. Some physical

approaches include alteration of the sample, involving roughening of the surface or

crushing or wedging the sample, or measuring absorption at non-orthogonal angles of

incidence, specifically at or near Brewster’s angle.3 Some computational approaches

include performing a sinusoidal baseline correction or more complex corrections from

explicit optical theory.4

This chapter outline the initial steps in accounting for interference, i.e. determining

where in the spectra we can expect to find higher order interference maxima/minima

and whether or not these are responsible for spectral features at the band-edge in

the derivative spectra. When present, Sec. 7.7 describes the removal of interference

from the signal. This analysis follows that outlined in “The Envelope Method” by

Manifacier et al.5 Using this method, the refractive index (n), extinction coefficient (k)

and film thickness (d) can be determined from interference fringes in the transmission

spectrum alone. It is worth nothing that the envelope method is applicable only in the

weak and intermediately absorbing regions.5 Here, the envelope method is applied

within these regions to determine the film thickness. The film thickness is then used

to predict higher order interference maxima and minima in the strongly absorbing

region.



102

7 .3 analysis

The analysis begins with the equation:

dn,m =
λnλm

2(n(λn)λm − n(λm)λn)
(7.1)

where n(λn) and n(λm) are the refractive indices at two adjacent maxima or minima

at λn or λm. Values of the wavelength-dependent refractive index of ZnO thin film

(determined via ellipsometry measurements) were referenced from Stelling et al.6 By

using the an “envelope" drawn onto the fringe patters, as shown in Fig. 7.3, the film

thickness is calculated for each pair of adjacent maxima and minima and an average

of these values is taken as the final measured film thickness, as shown in Table 7.2.

The relationship between fringe order (m), wavelength (λ) and film thickness (d)

is given by:

2n(λ)d = mλ (7.2)

Eq. (7.2) is derived from the optical geometry of multiple internal reflections

within a single film for an orthogonally incident beam of light.7 This is illustrated

in Fig. 7.4.8 Here, m is either an integer or half-integer for maxima or minima. By

solving for m, this equation is used to predict the “location” of the higher order

maxima and minima in the spectra. Using the average thickness of the film and the

wavelength value at the maxima (or minima) within the weakly and intermediately

absorbing regions, we can determine their assigned “order" m as shown in Table 3.

Next, knowing the sequence of m, we can work in the inverse direction and plug

in values for the next integer up (m+1) (or half-integer up (m+1
2 ) to determine its

wavelength value, i.e. location on the spectra in the strongly absorbing region where

our interest lies. It should be noted that the value of the wavelength-dependent

refractive index, n(λ), was not known a priori, so the value of n(λ) from the previous
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F igure 7 .3 : The envelope functions wrapping the maxima and minima points of the
interference fringe patterns in the weakly and intermediately absorbing regions.
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Table 7 .1 : Values of λ, n(λ), Tmax(λ), Tmin(λ) and d for adjacent minima for Zno thin
film at 77 K.

λ (nm) n(λ) (-) Tmax(λ) (-) Tmin(λ) (-) d (nm)

Maxima

1 759.73 1.6055 0.9946 0.9342 694.81

2 570.41 1.6159 0.9994 0.9325 882.91

3 482.53 1.6402 0.9866 0.9242 788.88

Minima

1 759.73 1.6055 0.9946 0.9342 694.81

2 570.41 1.6159 0.9994 0.9325 882.91

3 482.53 1.6402 0.9866 0.9242 788.88
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fringe order was used as an initial guess and an iterative process in n and λ was

performed until n converged to the 4th decimal place. The final row in Table 7.2 and

7.3 show the conversion from wavelength to energy (eV).

Table 7 .2 : Calculated values of order m (up to 6.0) from the known maxima/minima
locations, λ.

m 3.5 4.0 4.5 5.0 5.5 6.0

λ (nm) 759.73 656.39 570.41 522.04 482.53 443.02

Energy (eV) 1.632 1.889 2.174 2.375 2.570 2.799

Table 7 .3 : Predicted values of λ for m > 6.0.

m 6.5 7.0 7.5 8.0 8.5

λ (nm) 408.17 385.46 367.68 335.42 313.88

Energy (eV) 3.038 3.217 3.372 3.696 3.950

The data in Table 7.2 and 7.3 was fitted to a power function in Figure 7.5 indicating

that this relationship is m ∝ 1/λ0.91. Since we expect m ∝ 1/λ1.0 from theory, it follows

that our analysis has accumulated error. These errors stem from many possible

sources including the deviation from ideal sinusoidal behavior of the fringe patterns,

illustrated in Fig. 7.6, the free-hand drawing of the envelope functions, averaging of

the film thicknesses from multiple fringe-order pairs (average standard deviation of

9%), rounding errors to obtain integer and half-integer values from calculated m, and

lastly, the error in using the refractive index of a different ZnO thin-film sample.

The results of the analysis indicate that the location of the 7.0 and 7.5 fringe orders

overlap the band-edgeas shown in Fig. 7.7. We can conclude from a theoretical anal-

ysis alone that at least one (m = 7.0) fringe maximum may be significantly convolved

with the band-edge. Sec. 7.6 provides experimental support or this conclusion. First,

the following section will outline a comparison of observed fringe-patterns with an

idealized case study.
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F igure 7 .4 : When incident light travels through a film, reflections occur on the two
interfaces and multiple internal reflections occur within the film. The change in the phase
angle each time the light wave propagates in the film will cause constructive and destructive
interference between different orders of transmitted light wave when certain conditions are
met, resulting in interference fringes in the transmittance spectrum.8
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F igure 7 .5 : The relationship between fringe order, m, and wavelength, λ. An inverse
relationship is expected from theory.
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F igure 7 .6 : A sine curve overlaid onto the interference fringe pattern illustrate the
deviation of the spectra from this ideal.
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F igure 7 .7 : The transmission spectra (upper) alongside the derivative spectra (lower) and
indicates the energy location of fringe maxima and minima as shown in Table 3.
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7 .4 qualitative interpretation of analysis

It is useful to get a more qualitative understanding of the form of interference fringes

as we manipulate the spectra down the analytical pipeline, i.e. as we transform

fringes in the transmission spectra to the (logarithmic) absorption spectra, and as

we transform that to the derivative spectra. We have performed similar transforma-

tions on an ideal sinusoidal function. Figure 7.9 shows the original sine function

(analogous to interference in Transmission), the conversion to ln(A) or ln(−ln(T)),

and d(ln(A))/dE.

Figure 7.8 shows the sequential transformation of the analyzed spectra. Notice

similar forms to that in Figure 7.9. The purpose of this exercise is to get perspective

on the ’first order’ behavior of the interference baseline pattern. As is the case with

any scientific investigation, understanding spectra from a qualitative perspective is the

first step in opening up new lines of inquiry for quantitative analysis. The derivative

represents the interference as sharp inflections or pulses. Seen in all three forms

of the spectra, there is a diminishing of the intensity of the interference pattern as

we approach the strongly absorbing regime—this is most noticeable in the derivative

spectra, which again, magnifies fine features. The sharp inflections become attenuated

and gradually become somewhat saw-tooth in form.

7 .5 temperature dependent interference

In addition to spectra taken at 77 K, the previous analysis was performed for the

additional temperatures 287 K, 437 K, and 527 K to investigate the temperature depen-

dence of interference. Since features at the band-edge have a significant dependence

on temperature it is reasonable to expect that the spectrum at each temperature will

require its own special correction. As shown in Figure 7.10, the average relationship

between wavelength, λ, and fringe-order, m, did not vary for spectra over a wide
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F igure 7 .8 : The sequential transformation of the analysed spectra. Notice similar forms to
that in Figure 7.9
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F igure 7 .9 : (a) an ideal sinusoidal function (top) representing fringe patterns in
transmission spectra (T). The change in the functional form is illustrated as we move down
the analytical chain: (b) conversion to absorption (−ln(T)) and subsequent logarithmic
representation ln(−ln(T)), and finally (c) the first derivative of this quantity.



113

temperature range; specifically at 77, 287, 437 and 527 K. The data was fitted to a

power function which yielded the relationship m ∝ 1/λ0.92. Note the line which

separates the experimentally determined location of fringe-order and those predicted

from theory.

The average standard deviation of λ (for all m) across this wide temperature range

is small, which comes to ± 2.66 nm. This implies that for any fringe order m, across

the range 77—527 K, we observe no temperature dependence (within error) of its

energy location. In short, interference fringe patterns are invariant to temperature in

the sample studied here.

Figure 7.12 shows the same with special interest at a) the error region and b)

the Urbach region. The error region has been named as such because fringe max-

ima/minima in this region, the intermediately absorbing region, will yield a large

error for their energy assignment and should not be used in experimental analysis.

This is not to say that the fringes themselves have a dependence on temperature but

that the strong shift from transmission to absorption dominates the behavior in this

region and takes precedent over the fringe pattern. The Urbach region highlights the

strong temperature shift of this region for the four spectra analyzed.

7 .6 modulating interference fringes

As a final check for confirming the presence of interference fringe features at the band-

edge, we conducted a controlled condensation experiment. The surface roughness

leading to surface scattering of incident light has been shown to affect the response

of interference fringe patterns in thin films.9 We utilized condensation as a non-

destructive means of increasing the scattering at the surface of the film. The ability of

condensed thin ice films on a substrate to affect interference fringes was demonstrated

by Teolis et al. and investigated via reflectance spectrometry.3 We first acquired an
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F igure 7 .10 : Averaged relationship between wavelength, λ, and fringe-order, m, for spectra
over a wide temperature range, specifically 77, 287, 437 and 527 K. The data was fitted to a
power function which yielded the relationship m ∝ 1/λ0.92. Note the line which separates
experimentally determined fringe-order location and those predicted from theory. The error
bars indicate the standard deviation in λ from the average of all temperatures. The average
standard deviation for all m was 2.66 nm.
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F igure 7 .11 : Transmission spectra (upper) and corresponding derivative spectra (lower)
for 77 and 527K. This highlights the significant temperature shift of band-edge features and
conversely the non-temperature-dependence of interference maxima/minima. The white and
red dotted lines represent the expected location of fringe maxima and minima in spectra at any
temperature, respectively, obtained from data in Figure 7.10.
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F igure 7 .12 : The transmission spectra (upper) and corresponding derivative spectra (lower)
for 77, 287, 437 and 527 K. Of special interest is a) the error region and b) the Urbach region.
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F igure 7 .13 : Derivative absorption spectra of ZnO with (red) and without (blue)
condensation and increased surface scattering. The red curve shows a clear modulation
and attenuation of the interference pattern intensity, while the band-edge signal remains
unchanged.
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F igure 7 .14 : Derivative absorption spectra of ZnO with the interference pattern shown in
grey and and the band-edge signal shown in red.
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absoprtion spectrum under vacuum at pressure at 10
−2 Torr at 77 K. Following this,

we vented the sorption pump 3 times for equal amounts of time to allow controlled

condensation on the thin film then returned the chamber back to pressure at 10
−2

Torr. We then acquired another spectrum with condensation and increased surface

scattering. The results, shown in Fig. 7.13, shows a clear modulation and attenuation

of the interference pattern intensity, while the band-edge signal remains unchanged.

7 .7 interference pattern removal

The convolution of interference patterns with the spectroscopic signal of semicon-

ducting thin films is a rich and ongoing area of research.2,4 As shown these patterns

are roughly described by a sinusoidal function in energy.5 Thus, taking the energy

derivative of a logarithmic sinusoidal function yields the roughly cotangent baseline

seen in Fig. 7.8. However, approaching the absorbing region of the band-edge reduces

the “contrast"10 of the interference pattern resulting in an attenuated cotangent. Ul-

timately this is reasonably approximated by a Gaussians shown in Fig. 7.14. Owing

to the reasonable fit of this approximation, the interference pattern can be removed

via deconvolution analysis, which treats the fringe pattern as a unique and separate

signal.

7 .8 conclusion

In conclusion, it was determined that the features at the band-edge in the derivative

spectra do not originate from interference. The interference pattern, magnified in the

derivative spectra, are instead a baseline and are convolved with these features. The

nature of the convolution is yet to be characterized. It was also determined that the

interference patterns are invariant to temperature across the range 77-527 K. Future

work will seek to quantify the effect of and deconvolve interference from spectral fea-
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tures in order to accurately extract the Urbach energies and energy-dependent density-

of-states from the band-edge. In addition, future work should seek to determine the

index of refraction from interference fringes (or extinction coefficient from absorption

spectra) and checked against externally referenced indices of refraction. This analytic

approach will become important for novel materials wherein the energy-dependent

index of refraction is not yet known.
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chapter 8

Analysis and Modeling of the Band-Edge

8 .1 history of urbach theory

Einstein’s general theory of relativity was first proven by measurements of the deflec-

tion of light around the Sun (gravitational lensing) during the solar eclipse of May

29, 1916. The deflection of light by the warped space of the sun was to be imprinted

on photographic plates. These plates used to document the images played one of

many crucial roles in marking the success of the experiment. The deflection was

to be measured as accurately as possible by calipers and compared to the predicted

deflection made by the relativistic theory.

As research into photographic plates progressed into the 1950s, Franz Urbach

discovered in 1953 that a region in the absorption spectra of AgBr had a familiar shape.

Urbach noticed that the band-edge, where the material began to absorb light, could

be approximately described by an exponential function. The exponential function was

known earlier in the optics of photographic layers in 1952
1 and was later applied in

1955 to the analysis of the spectral distribution of photo-plate sensitivity.2 Instead of

the ideal “step-function” form of absorption from hitting the band gap energy, there

was instead a softer and more gradual increase. He referred to this general feature as

“tailing,” since he imagined the step-function as acquiring a “tail.”

Urbach further observed that this tailing effect was proportional to the material

temperature. At higher temperatures the tailing effect became more pronounced

and “stretched” the band-edge over a wider range of energies. When the material

is thermally excited, a broader range of energies of light was observe to be absorbed

approaching the band-gap. Inversely, when the material is thermally quenched, a
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narrower range of energies of light was observed to be absorbed approaching the

gap.

Many models have been developed to describe the exponential dependence of

absorption on photon energy. Many of the first theoretical papers on the shape of the

tail were developed for the alkali-halides. The first theoretical interpretation of the

exponential model was attempted by Dexter who proposed that the tail in the absorp-

tion spectra was due to the energy of the excited electron state changing due to the

lattice deformation by thermal vibrations.2 At high temperatures the vibrating lattice

atoms can be approximated by independent harmonic oscillators which modifies the

energy by a linear term. This model can obtain a curve that resembles the Urbach rule

but cannot describe the behavior within a wide energy of absorption and temperature

ranges.

Building on the work of Dexter, in 1959, Toyazawa3 proposed that the energy of

absorption be modified by a nonlinear deformation term. As the absorption increases

with temperature at the low-energy tail, one can assume that the main contribution

in the tail formation comes from regions in the crystal that are significantly deformed.

One difficulty with this model is connected to the linear term. It gives the main con-

tribution to the center of the band-edge and will give some contribution to the band

tail. Toyazawa introduced another assumption that the vibrations responsible for the

band tail differ from those contributing to the width of the central part of the band-

edge. This was known as the “two-modes” model. The two modes model was further

developed in the one-dimensional case considering the Condon approximation. As

mentioned in Chap. 2, the approximation states that during an electronic transition,

a change from one vibrational energy level to another will be more likely to happen

if the two vibrational wave functions overlap more significantly. For these conditions

the absorption band shape was modeled as Gaussian at the top and exponential at

lower energy assuming that two types of vibrations take part in the formation of
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the tail. The main theoretical developments by Toyazawa do not take into account

the electronic structure and phonon dispersion in the crystals when considering the

shape of the band tail. Therefore, as cited by Kurik,2 the sensibility of the parameters

in the Urbach model to these characteristics remain unclear. However, under different

approximations, specific relations between the Urbach parameters and the interaction

of excitation with phonons are obtained.

In 1968, Davydov proposed that the tail of the absorption band are due to the

quantum transitions from the vibrational sublevels of the crystal lattice to the first

electron excitation level.4 Davydov shows that the absorption shape, both exponential

at the tail and Gaussian at the top can be obtained for a single type of lattice vibration.

He used a Franck-Condon type model to describe the overlapping vibrations between

ground and excited states. Davydov first introduced the idea that the Urbach rule

arises from a large number of phonon states filled according the Boltzmann law at

a given temperature and interacting with electron excitation. It is assumed in these

works that the Urbach rule is seen largely at higher temperatures due to electron

coupling to the Boltzmann distribution of phonons. This was the first divergence

of the temperature dependent theory between low and high temperatures because of

possible absorption structure observed at lower temperatures. The works of Toyazawa

and other theoretical treatments such as by Seagall2 differ in that Toyazawa assumes

the Urbach rule is due to the self-trapping of excitons while Seagall does not assume

such self-trapping. Still, both theories offer insight into the Urbach rule.

Since the 1950s, many refinements have been made to Urbach’s theory, indeed

due to its investigation in a host of many diverse semiconductor systems. On the

whole, all have built on the fundamental assumption of an approximately exponential

absorption edge. The theory which underlies the experimental investigation in this

dissertation builds on Urbach’s theory of the absorption edge in semiconductors but

from a different direction than most. Instead of building on Urbach’s theory by
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accepting this fundamental assumption as true, we inspect the assumption which

underlie Urbach’s theory and seek an improvement. In this we offer new grounds on

which Urbach theory can rest and, in so doing, allow the theory to capture even more

within its scope.

8 .2 the basic urbach theory

The Urbach rule models an exponential dependence of the absorption coefficient,

α(E), on the photon energy, E, at the band-edge.

α(E) = αoe
E−Eo

Eu (8.1)

Here, the Urbach energy, Eu, is a “rate parameter" in the exponential increase. αo

is a scaling factor and Eo is the Urbach focus. This parameter in the basic Urbach

model is described by Economou5 as corresponding to the “ideal" or “unperturbed"

band-edge (UBE). In essence, Eo is defined as the energy of the band-edge in an ideal

structural environment. Following conventional Urbach analysis, Eo is reported to

be observed in experiment as the Urbach focus in temperature-dependent absorption

spectra and found at higher energies relative to the band-edge as shown in Fig. 8.4

(top).

Urbach analysis requires plotting the absorption coefficient on a logarithmic scale

to linearize the Urbach rule:

lnα(E) =
1

Eu
(E− Eo) + ln(αo) (8.2)

This models a linear band-edge with the constant 1/Eu as the slope:
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d(lnα(E))/dE =
1

Eu
(8.3)

Since Eu and the slope are inversely related, a sharp slope at the band-edge

corresponds to a small Eu and vice versa.

It has been shown by experiment that disorder of many kinds in a material lead

to a greater degree of tailing. This is seen as broadening in the band-edge and

“softening" or reduction in the slope.

In other words, Eu measures tailing at the band-edge in absorption spectra of

semiconductors and quantifies two closely related phenomena:

1. the general degree of disorder in the material, and

2. the variability in the local potential.

As mentioned in Chap. 1, the development of the Urbach rule and subsequent

Urbach analysis stems from the assumption of the exponential dependence of the

absorption coefficient on photon energy at the band-edge. This trend has been report-

edly identified in direct- and indirect-gap semiconductors, crystalline and amorphous

materials, in and nanodimensional structures, ferroics, superionic conductors and

organics.6–34 The Urbach rule has been applied in so many instances that it is generally

accepted as a universal rule in semiconductor physics.

Despite this widely accepted universality, the following reasons indicate that the

Urbach rule only approximately describes the band-edge.

If the band-edge is exponential, we expect to see strictly linear band-edges in

logarithmic plots. In general, however, the linearity of the band-edge in logarithmic

absorption plots is not universal. It was noted by Dow and Redfield in 1972 that

experimental observations of the full Urbach rule are very rare.35 As mentioned
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F igure 8 .1 : (Top left) Transitions from the valence band to the conduction band in
ideal semiconductor systems occur at the same energy in a perfectly crystalline lattice. (Top
right) This appears as a sharp transition to absorption at the bandgap, Eg, in absorption
spectra. (Bottom left) Transitions from the valence band to the conduction band in
disordered semiconductor systems occur at variable energies in due the fluctuating local energy
environment caused by defects. (Bottom Right) This appears as a soft transition to absorption
at the band-edge, in absorption spectra.
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in Chap. 1, in many cases, especially at low temperature, the band-edges have

structure—they are nonlinear.

In his original letter, Urbach states that the logarithmic plot only “approaches a

straight line." He states further, “In the region of the band-edge, the relation dlogε/dν =

−1/kT is closely approached."

8 .3 urbach analysis in the literature

The Urbach rule has been developed extensively through experiment and theory.

Building on this substantial progress, we fulfill the need for a nonlinear model evident

in the literature.36–42 A survey of the literature indicates challenges to application of

the linear model and analysis of the Urbach energy parameter from experimental

spectra. There are many examples throughout the literature of very loosely defined

Urbach fitting regions. In some cases, only a small range of the band-edge is used

to obtain Urbach slopes.38,39,42 An example of this is shown in Fig. 8.4 (top). In one

case, Rai explicitly notes that the absorption data is complex43 and, like other authors,

select a small but consistent range of the absorption coefficients to obtain the Urbach

slopes for spectra taken at different temperatures.36,38 In other cases, the fitting ranges

or regions change as a function of temperature or alloy concentration.40,41,44 In fact,

Sadigh et al. showed, using density functional theory (DFT) calculations of the Ur-

bach tail in silica glass, that the upper and lower limits of the Urbach region in the

band-edge shows significant temperature dependence.45 Finally, in the most extreme

fitting cases, the model is applied to highly nonlinear band-edges as in the case of

crystalline Si (c-Si).8 To our knowledge, only one instance of quantifying linearity at

the logarithmic band-edge has been stated when applying the linear model.27

Challenges to standardization of Urbach analysis is likely rooted in the fact that

the Urbach rule does not describe the full range of the logarithmic band-edge in
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many cases. In these cases, the Urbach rule only approximates an energy dependent

exponential increase in the absorption coefficient at the band-edge and that the actual

functional form is more complicated. This dissertation was in part motivated from a

survey of the current literature on Urbach analysis and in part by the need for a more

complete model of tailing at the band-edge.

8 .4 differential approach

Using differential and deconvolution analysis, we uncover the detailed form of the

components of the complex nonlinear band-edge. From the results of this analysis, we

develop a new model of the band-edge using a few key physical principles and four

free parameters. We show that nonlinear band-edges arise as a result of the inherent

nature of broadening at the band-edge. Nonlinear band-edges may acquire additional

fine structure from a convolution of the absorption edge signal with artifacts such

as other absorption edge signals or interference fringe patterns. The convolution of

multiple absorption edges will be illustrated using the cubic Mg0.75Zn0.25O (cubic and

wurtzite mixed-phase) thin film alloy at 292 K and c-Si at 299 K while the convolution

of absorption edges with interference fringe patterns will be illustrated using ZnO

thin film at 77 K and 377 K and in the wurtzite Mg0.75Zn0.25O (cubic and wurtzite

mixed-phase) thin film alloy at 292 K.

Furthermore, we will show that the basic Urbach model is a limiting case of our

model, giving insight into the theory of normally distributed varying local potentials.

8 .5 model basis

The nucleus of model development is the deconvolved peaks of d(lnα(E))/dE, which

were modeled accurately by Gaussian distributions. We have already discussed in

Chap. 7 that at least one feature in the derivative spectra originates from thin film
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interference. Additionally, we showed that the fringe feature could be approximated

well by a Gaussian. For the band-ege signal, the probability density function (PDF)

of the normal distribution was approximated by the PDF of the logistic distribution

given generally by the following:

f (x) =
ae
−(x−xo)

s

s(1 + e
−(x−xo)

s )2
(8.4)

Eq. 8.4 is plotted in Fig. 8.2b) for various values of xo and s, a = 1.

a is the integrated area of the distribution, xo is the center location of the distribu-

tion on the x-axis and s determines the spread of the distribution. Eq. 4 is plotted in

Fig. 4(b) for various values of xo and s; a = 1.

Since lnα(E) is the integral of d(lnα(E))/dE, lnα(E) was found to be modeled by

the integral of the logistic PDF. The integral of the PDF is known as the cumulative

distribution function or CDF and is given generally by the following:

∫
f (x)dx = F(x) =

a

1 + e−
(x−xo)

s

+ Fo (8.5)

Eq. 8.5 is plotted in Fig. 8.2a) for various values of xo and s, a = 1.

Here the parameters are the same but display graphically in a different way since

we have taken the integral. a is the maximum value of the curve, xo is the inflection

point of the curve and s is inversely proportional to the steepness of the curve. Fo is

an arbitrary constant of integration and corresponds to a shift on the y-axis. Eq. 5 is

plotted in Fig. 4(a) for various values of xo and s; a = 1, Fo = 0.

Having a model for lnα(E), obtaining a model for α(E) is simple, it is given

generally by the following:
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F igure 8 .2 : a) General forms of Cumulative Distribution Functions as given by Eq. 8.5 for
various values of xo and s, a = 1. b) General forms of Probability Density Functions as given
by Eq. 8.4 for various values of xo and s, a = 1.
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G(x) = eF(x) = Foe
a

1+e−
(x−xo)

s (8.6)

All parameters here are as previously described even though the shape of the

curve is different.

8 .6 model development

8 .6 .1 Differential Analysis & Deconvolution of the Absorption-edge

The band-edge is often modeled as a complicated function of many absorption regimes.5

In general, different energy ranges of the band-edge are described piece-wise and

mutually exclusive by different functional forms. In order of increasing energy some

notable regions are: the Urbach region, Halperin-Lax region, Anderson region and

the Tauc region.5

In order to accurately study and separate band-edge regions, we have employed

differential analysis on band-edges with fine structure in ln(α(E)/αo) to obtain

d(lnα(E))/dE (lnαo drops out as a constant). The analysis includes a ZnO thin film

at 77 K shown in Fig. 8.5, Mg0.75Zn0.25O (wurtzite and cubic mixed-phase) thin film

alloy shown in Figs. 8.6, 8.7 and 8.8, and c-Si shown in Fig. 8.9. The results are

illustrated by the green solid curves in Figs. 8.5(c), 8.7(c), 8.8(c) and 8.9(b). We have

followed the analysis of Cody8 who used d(lnα(E))/dE to analyze the fine structure

of the band-edge in c-Si. Fig. 8.9(b) includes our replication of the results of Cody’s

differential analysis.

Differential analysis is widely employed as an analytical tool in spectroscopic

techniques such as absorption and reflectance.46–50 The reference text Spectrochemical

Analysis gives an extensive overview of its many applications.51 Here, differential

analysis is useful for quantitatively unmasking the characteristic slope behavior of
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F igure 8 .3 : (a) Absorption coefficient, α(E) (b) logarithmic absorption coefficient,
ln(α(E)/αo) and (c) the energy derivative of the logarithmic absorption coefficient,
d(lnα(E))/dE at the band-edge for ZnO thin film from 77-527 K. The expansion in (a) and
the vertical dotted line qualitatively show the interference fringe pattern persisting into the
band-edge. The non-shaded region indicates the general energy range used for analysis in this
work (≈ 3.10− 3.40 eV).
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F igure 8 .4 : (Top) Conventional Urbach analysis of temperature-dependent UV-Vis
absorption spectra for ZnO thin film from 77− 527 K. Shown is the “Urbach focus" at 3.59 eV
which indicates the point of convergence of the Urbach slopes (red). The expansion shows the
limited range and varying regions of the band-edge analyzed (shown by the bold line sections)
due to prioritizing the Urbach focus in the basic Urbach model. (Bottom) Differential Urbach
Analysis on temperature-dependent absorption spectra for ZnO thin film from 77− 527 K.
The tangents do not converge. The expansion shows more clearly the tangents at the inflection
points of the curves obtained from the derivative spectra shown in Fig. 8.3(c).
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F igure 8 .5 : (a) Absorption coefficient, α(E),(b) ln(α(E)/αo), (c) energy derivative of
ln(α(E)/αo) and (d) inverse plot of d(lnα(E))/dE for a ZnO thin film at 77 K. The green
solid lines show the experimental spectra. The grey and red solid lines show the analyzed
components of the spectra. The black dashed lines are the fits to Eqs. (8.9), (8.8) and
(8.7), respectively, and the black dotted lines are the fits to Eqs. (8.15), (8.14) and (8.13),
respectively. The fitted parameters are shown in Table 8.1. The solid blue line in (c) is the
fit from deconvolution analysis. The Urbach energy, Eu, is shown in (d) corresponding to
the value of the inverse slope at the inflection point, Eo. Comparison of this value with Eu
calculated from Eq. (8.17) is shown in Table 8.1.
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the components of the complex band-edge function. To this end, we further applied

deconvolution analysis to the differential spectra in order to fully separate the compo-

nents. The results of deconvolution are shown by the grey, red and blue solid curves

in Figs. 8.5(c), 8.7(c), 8.8(c) and 8.9(b).

As will be treated in depth shortly, the results indicate that

• the differential absorption signal is well modeled by a Gaussian in all cases and

• this signal may be convolved with other artifacts.

In order to successfully apply deconvolution analysis, we found that the artifacts

are best treated on a case-by-case basis. Analysis beyond the scope of this work

indicated that the low-energy artifact of ZnO at 77 K in Fig. 8.5(c) and wurtzite

Mg0.75Zn0.25O in Fig. 8.7(c) originate from thin film interference. In cubic Mg0.75Zn0.25O

shown in Fig. 8.8(c), the convolving artifact (grey solid curve) is the lower-energy

wurtzite absorption baseline. In contrast, as shown in Fig. 8.9(b), the fine structure

in c-Si does not originate from artifacts but, as stated by Cody,8 from the two indirect

edges of c-Si.

The interference artifacts shown by the grey solid curve in Fig. 8.5(c) for ZnO and

Fig. 8.7(c) for wurtzite Mg0.75Zn0.25O were approximated by Gaussians. It must be

stressed that, unlike the absorption signal wherein the Gaussian has physical meaning,

there is no physical significance, only a good approximation of form.

Conversely, the artifact in the cubic Mg0.75Zn0.25O spectra shown in Fig. 8.8(c) does

not originate from thin film interference because the cubic signal lies well beyond the

energy range of interference effects in the deeply absorbing region. This is highlighted

in Fig. 8.6. This presents the unique opportunity to test our model against an already

interference-free band-edge. Nevertheless, this signal was found to be shifted by the

absorption baseline from the wurtzite signal as shown in Fig. 6(c) by the grey solid

curve.
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Deconvolution of the absorption signal in the derivative spectra highlights a key

point. The results show that the step-wise, mutually exclusive picture of the band-

edge can be more simply represented by a single function—the Gaussian. Further-

more, the convolution of the Gaussian signal—hereafter denoted by d(lnαs(E))/dE—

with artifacts of varying origins fits the experimental data in d(lnα(E))/dE to very

good accuracy as shown by the solid blue curves in Figs. 8.5(c), 8.7(c), 8.8(c) and

8.9(b).

While unexpected, it is not too surprising that statistical theory can be applied to

the derivative of the band-edge. In fact, Pankove52 states that the absorption coeffi-

cient is proportional to the cumulative or integral probability of transitions between

states. It is known in statistics that the derivative of a cumulative probability function

(CDF) is a probability density function (PDF). Therefore, we propose that the signal

component d(lnαs(E))/dE represents a probability density and is the experimental

observation of the normally distributed variability in the local potential due to the

random distribution of material defects as predicted by semiconductor theory.5,35,53–56

One instance in the literature has recently appeared simulating the band-edge using

a Gaussian PDF.57 Another has also suggested a band-edge modeled by a Gaussian

distribution of band gap energies centered at a mean value and characterized by a

standard deviation.58 We further propose that the probability density function repre-

sented here corresponds to the density of states (DOS) at the band-edge. The units of

the derivative plots are (eV−1), consistent with units of DOS.

Continuing with model development, if d(lnαs(E))/dE is Gaussian, its integral

lnαs(E) is given by an error function. This, however, cannot be represented using

elementary functions. We instead represent the normal distribution of the analyzed

signal component d(lnαs(E))/dE to good approximation using the simpler form of

the probability density function (PDF) of the logistic distribution:
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d(lnαs(E))
dE

=
ace

−(E−Eo)
γ

γ

(
1 + e

−(E−Eo)
γ

)2 (8.7)

In Eq. (8.7), ac represents the total population of photons absorbed or relative

photon capacity and corresponds to the integral area of the signal peaks shown in

d(lnα(E))/dE of Fig. 8.5(c), 8.7(c), 8.8(c) and 8.9(b). Eo is the energy of the UBE and is

found at the peak center. This corresponds to the photon energy with the maximum

probability density of absorption. Finally, γ represents the spread or variability in

the energy about the UBE as a result of the variability in the local potential. This

is reflected in the width of the distribution. The results of fitting Eq. (8.7) to the

component data is shown by the black dashed line(s) in d(lnα(E))/dE of Figs. 8.5(c),

8.7(c), 8.8(c) and 8.9(b). The fitted parameters are given in Table 8.1.

As early as 1845, logistic distributions were employed as a model for normal distri-

butions in science and statistics specifically in fields such as growth curve analysis and

population dynamics.59 The logistic function now finds applications in a wide range

of fields, including biology, ecology, chemistry, economics, geoscience, mathematical

psychology, sociology, political science, financial mathematics, hydrology, bioassay

and quantal response data problems.60–68

Again, the central assumption in all these applications is that the phenomenon

modeled is a normally distributed random variable. In our case, the normally dis-

tributed random variable is the absorption of a photon of energy, E, by an electron

(corresponding to the local potential) and subsequent occupation of an excited state.

In physics, we model the statistical distribution of fermions occupying the energy

states of a system in thermal equilibrium via the Fermi-Dirac distribution. In fact, the

Fermi-Dirac distribution is also of the logistic form.
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Table 8 .1 : Fitted parameters to Eq. (8.7), Eq. (8.8) and Eq. (8.9) for analyzed band-edge
signal components and Eq. (8.13), Eq. (8.14) and Eq. (8.15) for as-is experimental spectra of
ZnO thin film, mixed-phase Mg0.75Zn0.25O thin film and c-Si (Cody). 〈x〉 and±σ indicate the
mean value and standard deviation of parameters obtained for all analyzed signal components
and as-is experimental spectra. The final two columns compare Eu derived from our model
parameters and E∗u extracted analytically from the spectra via the inverse slope method.

Material Eq. Signal αo (cm −1) ac (-) Eo (eV) γ (meV) Eu (meV) E∗u (meV)
8.7 1 - 1.88 3.34 16.04 34.13 34.97

8.8 1 - 1.58 3.34 13.11 33.19 34.97

ZnO
(77 K)

8.9 1 2.6x103
1.62 3.34 14.18 35.01 34.97

8.13 1 - 2.37 3.34 17.31 29.21 34.97

8.14 1 - 2.57 3.34 18.23 28.37 34.97

8.15 1 2.7x103
2.08 3.35 14.84 28.60 34.97

〈x〉 2.02 3.34 15.62 31.42

±σ 0.37 0.004 1.78 2.75

8.7 1 - 1.75 3.25 21.30 48.69 50.00

8.8 1 - 1.70 3.26 20.13 47.36 50.00

ZnO
(377 K)

8.9 1 3.4x103
1.74 3.26 21.15 48.62 50.00

8.13 1 - 2.27 3.25 25.22 44.44 50.00

8.14 1 - 2.29 3.25 24.11 42.11 50.00

8.15 1 3.4x103
2.48 3.25 25.72 41.48 50.00

〈x〉 2.04 3.25 22.94 45.45

±σ 0.32 0.005 2.16 2.95

8.7 1 - 1.42 3.43 25.58 72.06 74.18

8.8 1 - 1.39 3.44 24.33 70.01 74.18

MgZnO
(75%)
(292 K)

8.9 1 1.5x105
1.40 3.44 24.80 70.86 74.18

8.13 1 - 1.11 3.44 23.75 85.58 74.18

8.14 1 - 1.31 3.44 23.78 72.61 74.18

8.15 1 1.5x105
0.95 3.45 21.76 91.62 74.18

〈x〉 1.26 3.44 24.00 77.12

±σ 0.17 0.006 1.18 8.34

8.7 2 - 1.72 6.04 113.29 263.00 274.00

8.8 2 - 1.67 6.04 108.22 259.19 274.00
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Table 8 .2 : Table 8.1 continued.

Material Eq. Signal αo (cm −1) ac (-) Eo (eV) γ (meV) Eu (meV) E∗u (meV)
MgZnO
(75%)
(292 K)

8.9 2 2.0x106
1.76 6.04 117.67 267.43 274.00

7 2 - 1.93 6.04 125.17 259.42 274.00

8 2 - 3.07 6.1 164.82 257.40 215.08

9 2 2.0x106
2.02 6.04 129.00 255.45 274.00

〈x〉 2.03 6.05 126.36 260.32

±σ 0.48 0.022 18.54 3.92

8.7 1 - 2.07 1.03 3.38 6.53 6.70

8.8 1 - 1.85 1.03 2.85 6.16 6.70

c-Si
(299 K)

8.13 1 - 2.02 1.03 3.33 6.59 6.70

8.14 1 - 1.84 1.03 2.72 5.91 6.70

〈x〉 1.95 1.03 3.07 6.30

±σ 0.1 0 0.29 0.28

8.7 2 - 2.22 1.05 3.68 6.63 6.60

8.8 2 - 2.09 1.05 3.38 6.47 6.60
6

c-Si
(299 K)

8.13 2 - 2.19 1.05 3.63 6.63 6.60

8.14 2 - 2.24 1.05 3.53 6.30 6.60

〈x〉 2.19 1.05 3.56 6.51

±σ 0.06 0 0.11 0.14
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Since the phenomenon being modeled obeys Fermi-Dirac statistics, it is fitting that

we also use the logistic distribution as the basis for our model.

To obtain the more familiar form of this distribution from the PDF in d(lnα(E))/dE,

we take the integral of Eq. (8.7) to obtain the CDF. This models lnαs(E) as:

ln(αs(E)/αo) =
ac

1 + e−
(E−Eo)

γ

= fs(E) (8.8)

Here the parameters are the same as in Eq. (8.7) but manifest graphically in a

different way since we have taken the integral. αo is introduced as a constant of

integration and functions as a normalization factor. It is obtained from the initial

value of the absorption coefficient in the range selected for analysis. It is useful to

define the normalized signal function in Eq. (8.8)
[
ac/1 + e−

(E−Eo)
γ

]
as fs(E). ac again

represents the total population of photons absorbed or relative photon capacity and

corresponds to the maximum of the red (and grey for c-Si) solid curves shown in

ln(α(E)/αo) in Figs. 8.5(b), 8.7(b), 8.8(b) and 8.9(a). Eo is the energy of the UBE and

corresponds to the greatest rate of increase in absorption. Eo is found at the inflection

point of the red (and grey for c-Si) solid curves in ln(α(E)/αo), marked by the vertical

dotted line(s) of Figs. 8.5, 8.7, 8.8 and 8.9. Finally, γ represents the spread or variability

in the energy about the UBE as a result of the variability in the local potential. This

is reflected in the steepness of the red (and grey for c-Si) solid curves in ln(α(E)/αo)

of Figs. 8.5(b), 8.7(b), 8.8(b) and 8.9(a). Here, the parameter γ makes a more concrete

connection between the variability in the local potential illustrated by the spread of

d(lnαs(E))/dE and the phenomenon of “tailing" in the absorption spectra. The results

of fitting Eq. (8.8) to the signal component data is shown by the black dashed lines in

ln(α(E)/αo) of Figs. 8.5(b), 8.7(b), 8.8(b) and 8.9(a). The fitted parameters are given

in Table 8.1.
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In the following three paragraphs we discuss in more detail the physical signifi-

cance of applying statistical theory to the modeling of the experimental data.

The logistic CDF lnαs(E) models the probability of absorbing a photon of a given

energy. Cumulative in “CDF" implies that the value of the absorption coefficient at

a given energy is a cumulative measurement of transitions occurring both at and less

than the given energy. Energy bands in semiconducting solids perhaps allow for this

cumulative effect in contrast to systems such as absorbing molecules which do not

form energy bands.

To gain perspective on the probability of absorption, we consider the derivative of

the CDF, or the rate of change in the probability of absorption. This yields the PDF, which

shows the probability per unit energy of absorption. In essence, the PDF reveals

the discrete DOS contributions to the cumulative value measured in the absorption

coefficient. It must be stressed that, unlike the CDF, the PDF itself does not correspond

to a physically “real" probability. Integrating the PDF gives the physically observable

probability of absorption.

We see in the PDFs of d(lnα(E))/dE in Figs. 8.5(c), 8.7(c), 8.8(c) and 8.9(b), the

energy of maximum probability density of absorption lies at the center of the normal

distribution, corresponding to the UBE, Eo. Integrating the PDF yields the maximum

rate of increase in the probability of absorption approaching Eo, found at the inflection

point in the CDF. In general, the integral population of photons absorbed is at first

low preceding Eo, increases significantly approaching Eo, then gradually saturates as

energy increases past Eo.

Now that functional forms for d(lnαs(E))/dE and ln(αs(E)/αo) have been de-

scribed, obtaining the functional form of the absorption coefficient signal αs(E) is

relatively straightforward. Using Eq. (8.8), we raise ln(αs(E)/αo) to the exponent of e

and obtain:
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αs(E) = αoe
ac/

(
1+e−

(E−Eo)
γ

)
= αoFs(E) (8.9)

All parameters in Eq. (8.9) are the same as previously described. It is useful to

define the normalized signal function in Eq. (8.9)
[
e

ac/

(
1+e−

(E−Eo)
γ

) ]
as Fs(E).

We now summarize the premises on which the model stands:

1. The absorption coefficient αs(E) (or ln(αs(E)/αo) on a log scale) is proportional

to the cumulative probability of absorption.

2. The energy derivative of the cumulative probability, d(lnαs(E))/dE, represents

the probability density.

3. The UBE corresponds to the maximum probability density of absorption in the

PDF or the maximum rate of change in the probability of absorption in the CDF.

4. The variability in the energy about the UBE is a result of the variability in the

local potential due to the random distribution of defects in the material.

It must be stressed in closing that the model presently discussed was derived

for the signal components of the absorption spectra analyzed via deconvolution. As

shown, the results of analysis illustrate that the experimental spectra may represent a

convolution of this signal with any arbitrary artifact. To model the experimental data

as is (meaning not analyzed via deconvolution) requires rigorous treatment, discussed

in the following section.

8 .6 .2 Piece-wise Reconstruction of the Complex band-edge

So far, we have only discussed fitting the deconvolved signal components of the exper-

imental spectra. It was shown in Sec. 8.6.1 that the analyzed signal, d(lnαs(E))/dE,
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F igure 8 .6 : (a) ln(α(E) (top) and d(lnα(E))/dE (bottom) for mixed-phase Mg0.75Zn0.25O
thin film at 292 K. The wurtzite band-edge is shown by the vertical dotted line at 3.43 eV and
the cubic band-edge is shown by the vertical dotted line at 6.03 eV. In contrast to the cubic
band-edge, the wurtzite band-edge is seen to be convolved with the interference pattern.
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F igure 8 .7 : (a) Absorption coefficient, α(E), (b) ln(α(E)/αo), (c) energy derivative of
ln(α(E)/αo) and (d) inverse plot of d(lnα(E))/dE for wurtzite Mg0.75Zn0.25O (cubic and
wurtzite mixed-phase) thin film at 292 K. The green solid lines show the experimental spectra.
The grey and red solid lines show the analyzed components of the spectra. The black dashed
lines are the fits to Eqs. (8.9), (8.8) and (8.7), respectively, and the black dotted lines are the
fits to Eqs. (8.15), (8.14) and (8.13), respectively. The fitted parameters are shown in Table
8.1. The solid blue line in (c) is the fit from deconvolution analysis. The Urbach energy,
Eu, is shown in (d) corresponding to the value of the inverse slope at the inflection point, Eo.
Comparison of this value with Eu calculated from Eq. (8.17) is shown in Table 8.1.

was fitted to good accuracy by the normal distribution represented by the logistic PDF.

Furthermore, the integrated signal, ln(αs(E)/αo), was fitted to good accuracy by the

logistic CDF.
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F igure 8 .8 : (a) Absorption coefficient, α(E), (b) ln(α(E)/αo), (c) energy derivative of
ln(α(E)/αo) and (d) inverse plot of d(lnα(E))/dE for cubic Mg0.75Zn0.25O (cubic and
wurtzite mixed-phase) thin film at 292 K. The green solid lines show the experimental spectra.
The grey and red solid lines show the analyzed components of the spectra. The black dashed
lines are the fits to Eqs. (8.9), (8.8) and (8.7), respectively, and the black dotted lines are the
fits to the experimental spectra. The fitted parameters are shown in Table 8.1. The solid blue
line in (c) is the fit from deconvolution analysis. The Urbach energy, Eu, is shown in (d)
corresponding to the value of the inverse slope at the inflection point, Eo. Comparison of this
value with Eu calculated from Eq. (8.17) is shown in Table 8.1.
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As discussed in Sec. 8.6.1, the signals at the band-edge were found to be convolved

with artifacts of varying origins. Further analysis indicated that the as-is experimental

spectra in d(lnα(E))/dE and ln(α(E)/αo) can be fitted from a linear combination

of the signal(s) and artifact. This is described by Eq. (8.10) and Eq. (8.11) below.

This surprisingly simple result is facilitated by logarithmic and subsequent derivative

transformation of the data. Inversely, this implies that the absorption coefficient can

be modeled as a product of the signal(s) and artifact, described by Eq. (8.12). This

section will expand on the mathematical details of this general result.

To summarize the crucial Eqs. of piece-wise reconstruction:

d(lnα(E))
dE

= ∑
s,a

d( fs,a(E))
dE

(8.10)

ln(α(E)/αo) = ∑
s,a

fs,a(E) (8.11)

α(E) = αo ∏
s,a

Fs,a(E) (8.12)

In the equations above, d( fs(E))/dE is given by Eq. (8.7) and fs(E) and Fs(E) are

given by Eqs. (8.8) and (8.9), respectively. These represent the signal components of

the experimental spectra.

Furthermore, d(( fa(E))/dE, fa(E) and Fa(E) represent signal modification func-

tions arising from the effects of artifacts.

As shown in Fig. 8.5(c) for ZnO and Fig. 8.7(c) for wurtzite Mg0.75Zn0.25O, the form

of both d( fs(E))/dE and d( fa(E))/dE were represented by Eq. (8.7). Additionally,
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while no artifacts were found in c-Si, both indirect edges in d(lnα(E))/dE shown in

Fig. 8.9(b) were found to be represented by Eq. (8.7). Therefore, in these cases the

as-is experimental spectra is given generally by the following forms for any arbitrary

number, n, of band-edge components corresponding to PDFs of the logistic function

or interference patterns approximated by the same.

d(lnα(E))
dE

=
n

∑
i=1

ac,ie
−(E−Eo,i)

γi

γi

(
1 + e

−(E−Eo,i)
γi

)2 (8.13)

ln(α(E)/αo) =
n

∑
i=1

ac,i

1 + e−
(E−Eo,i)

γi

(8.14)

α(E) = αo

n

∏
i=1

e
ac,i/

1+e
−
(E−Eo,i)

γi


(8.15)

Fits of the as-is experimental spectra to Eqs. (8.13),(8.14) and (8.15) are shown by

the black dotted lines of d(lnα(E))/dE, ln(α(E)/αo) and α(E), respectively, in Figs.

8.5, 8.7 and 8.9. The results are given in Table 8.1 and are in excellent agreement with

the data.

Exact modeling the interference pattern is the subject of future work and can be

easily substituted for the Gaussian approximation made here. This is the reason we

have included the interference pattern in our model. Even though it can be considered

as extrinsic to the physics of “tailing," it is complementary to the band-edge signal and

is required for fitting purposes. Improving the accuracy of the interference pattern function

will result in more accurate extraction of the band-edge signal and parameters.
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As discussed in Sec. 8.6.1, the origin of the artifact in cubic Mg0.75Zn0.25O is

hypothesized to be the absorption signal of the lower-energy wurtzite band-edge. For

this special case, in Eq. (8.10), d( fa(E))/dE = c, a constant, while d( fs(E))/dE is

given by the logistic PDF in Eq. (8.7). Furthermore, in Eq. (8.11), fa(E) = cE and

fs(E) is given by Eq. (8.8). Finally, in Eq. (8.12), Fa(E) = ecE and Fs(E) is given by Eq.

(8.9).

Fits of the as-is experimental spectra to Eq. (8.10), Eq. (8.11) and Eq. (8.12)

for the case described above are shown by the black dotted lines of d(lnα(E))/dE,

ln(α(E)/αo) and α(E), respectively, in Fig. 8.8. The results are given in Table 8.1. The

fits are in excellent agreement with the data.

In general, there is a large number of free parameters involved in fitting the as-is

experimental spectra with the generalized forms (Eq. (8.10), Eq. (8.11) and Eq. (8.12)).

As can be seen, depending on which functional form of the band-edge is used, the

extracted parameters vary for the same experimental data. This variation is however

negligible as shown in Table 8.1, which shows the mean value and standard deviation

of the band-edge parameters extracted from both the as-is experimental spectra (using

Eqs. (8.10), (8.11) and (8.12)) and from the spectra analyzed via deconvolution (using

Eqs. (8.7), (8.8) and (8.9)). This analysis illustrates the precision of both approaches.

Despite this close agreement, for simplicity and ease-of-use, it is recommended to

first analyze the signal components via deconvolution and fit these individually to

the functions given in Sec. 8.6.1.

This concludes the segment of this work relating the development of the new

model and its testing against the complex band-edges of ZnO at 77 K, Mg0.75Zn0.25O

(cubic and wurtzite mixed-phase) at 292 K and c-Si at 299 K. The following section

will illustrate that our nonlinear model and the linear Urbach model converge to the

same results.
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8 .7 limiting and special cases of nonlinear model

8 .7 .1 A Limiting Case: The Basic Urbach Model

As mentioned previously, surveying the literature indicates a challenge in standardiza-

tion of Urbach analysis in many instances. A limit analysis of our model gives some

insight into this variability. In parallel, this limit analysis shows that our nonlinear

model and the basic Urbach model converge to the same results when both are

applied to approximately linear regions in the spectra.

We begin by taking the classical definition of the Urbach energy as the inverse slope

of the “linear" band-edge. A glance back at Fig. 8.3 shows that the logarithmic band-

edge is not linear when the energy derivative (the slope) is not a constant. The best

we can say for a nonlinear band-edge is that it is “practically linear" at the inflection

point, corresponding to the peak centers of the deconvolved signals. An example of

this can be found at the vertical dotted line of Fig. 8.5(b) and (c). If the location

of the extraction of the Urbach energy parameter is vanishingly small (an inflection

point), this would explain the trend in the variable linear analysis in the literature.To

illustrate this, we take the limit of Eq. (8.7) as E → Eo, which models the slope of

lnαs(E) approaching the inflection point. We obtain the following:

lim
E→Eo

d(lnαs(E))
dE

=
1
4

ac

γ
(8.16)

Finally, taking the inverse of Eq. (8.16) gives the inverse slope at the inflection point

as:

(
lim

E→Eo

d(lnαs(E))
dE

)−1

= 4
γ

ac
= Eu (8.17)
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This result illustrates three key points:

1. the Urbach energy corresponds to an inflection point in nonlinear band-edge

signals,

2. the Urbach energy, represented by the spread per unit area, is physically defined

as the spread in the local potential per unit photon capacity and (

3. while the Urbach energy is proportional to the spread in the local potential, γ

gives a direct measure of this quantity. Table 8.1 compares analytical values of

Eu with values calculated from the relation in Eq. (8.17).

The analytical values were extracted from the inverse slope at the inflection point

in the spectra for ZnO, wurtzite and cubic Mg0.75Zn0.25O and c-Si shown by the

horizontal dotted lines in Figs. 8.5(d), 8.7(d), 8.8(d) and 8.9(c), respectively. The

results of this comparison are in excellent agreement.

We reiterate that this limit analysis shows the Urbach energy is found in the curve,

ln(α(E)/αo), only in the place that is approximately linear, i.e. the inflection point at

Eo in nonlinear band-edges. This approximation of the sigmoidal curve in ln(α(E)/αo)

as linear is the basis of the basic Urbach model. Here we demonstrate that it is a

limiting case of a more complete model [Eq. (8.7), Eq. (8.8) and Eq. (8.9)] of tailing at

the band-edge.

Utilizing the energy derivative of ln(α(E)/αo) is advantageous by providing an

entirely experimental determination of the Urbach energy, removing all ambiguity in

locating and determining the slopes of interest and most critically, bypassing any as-

sumptions “built-in" to the basic Urbach model, such as linearity or the Urbach focus.

It must be emphasized that this approach also offers consistent criteria for directly

measuring the variability in the local potential in addition to the corresponding UBE

and can do so for multi-component band-edges.
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Cody utilized the derivative spectrum d(lnα(E))/dE but only to locate the energy

position of the indirect gaps of Si.8 Cody did not mention the connection between

the values of the slope on the abscissa and the definition of the Urbach energy—the

value of the inverse slope. This is understandable as the author was primarily arguing

for the existence of an Urbach edge in c-Si in the first place, which was not clearly

understood at the time. This was done by drawing a straight line through the highly

nonlinear edge shown in Fig. 8.9(a). A value of 9.6 meV was obtained, which is close

to the values of Eu,1 and Eu,2 we obtained—6.70 meV and 6.60 meV, respectively. We

briefly note that at least one instance in the literature reports multiple Urbach energies

at the band-edge corresponding to different structural phases in the sample.23

In this section we have shown that in the limit of linearity the new and basic

models converge to the same results. In the following section we show that linear

band-edges may also represent a special case.

8 .7 .2 A Special Case: Appearance of a Linear Band-Edge

It is not the intention of this work to downplay the appearance of linear band-edges

in the literature. A significant number of band-edges are (or least appear to be) linear.

Our analysis shows that linear band-edges are compatible with our model but may

represent a special case as illustrated by the following.

Urbach observed an approximately linear band-edge in ln(α(E)/αo) for AgBr,

however, this was a classic example of a material with fine structure at low-temperature

as noted by Dow and Redfield.35 Structure in the band-edge is mostly observed in

materials at low temperature—here we have shown that this can be due to distinct

band-edge components corresponding to direct or indirect gaps, or in the case of thin

films, artifacts of interference.

This section focuses on the spectra of ZnO thin film affected by interference ar-

tifacts. This can be seen in Fig. 8.3(b) and (c). As shown, we found that as sample
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Table 8 .3 : Fitted parameters of the electron-phonon interaction model applied to the data
in the inset of Fig. 8.10(a), showing the temperature dependence of Eo.

E (0K) (eV) Θ (K) h̄ω (meV) α (meV)

3.34 511 44 0.12
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temperature is increased from low-temperature (77 K) the fine structure is diminished.

This is highlighted in the inset of Fig. 8.10(b) showing the same dataset presented

in Fig. 8.3(c). In essence, the interference artifact and signal become increasingly

convolved due to thermal broadening. This subject is treated in depth in Chap. 7.

At some temperature, the form of the components are such that their superposition

yields a practically constant slope, or “plateau" in d(lnα(E))/dE, which gives a linear

band-edge in ln(α(E)/αo). This occurs near 377 K for the dataset shown in the inset

of Fig. 8.10(b) and was chosen for further analysis shown in Fig. 8.11.

The results of this analysis indicate that the interference pattern may be convolved

with the signal in such a way as to give the appearance of a linear band-edge in the

experimental data of ln(α(E)/αo). This would lead to the erroneous conclusion that

the Urbach rule applies to the entire linear region when, in fact, it is applied to the

effects of an artifact. While this may not be the case in all instances, care should be

taken when analyzing the spectra of thin films so that accurate data may be extracted.

8 .7 .3 The Urbach Focus and the Unperturbed Band-Edge

As mentioned in the introduction, Eo is reportedly observed in experiment as the

Urbach focus shown in Fig. 8.4 (top). Analysis using the inflection point from the as-is

derivative spectra in Fig 8.3(c) shows the absence of an Urbach focus in temperature-

dependent spectra for ZnO as shown in Fig. 8.4 (bottom) for the same data as in Fig.

8.4 (top) which shows a focus. The slopes in Fig. 8.4 (top) were acquired by assuming

the presence of the Urbach focus in the basic Urbach model. We also investigated

this trend on the deconvolved signal of the differential band-edge in ZnO as shown in

Fig. 8.10. These tangents in ln(αs(E)/αo) were acquired from the maximum value at

the inflection point in d(lnαs(E))/dE. The results also indicate no Urbach focus. An

Urbach focus is acquired from a constant rate of change of the slope with temperature.

Instead, via derivative analysis, we see an increase in the rate of change of the slope
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F igure 8 .9 : (a) ln(α(E)/αo) for Si single crystal (c-Si) at 299 K (Cody8, reprinted with
permission from Elsevier.) (b) Energy derivative of ln(α(E)/αo) and (c) inverse plot of
d(lnα(E))/dE. The green solid lines show the experimental spectra. The grey and red solid
lines show the analyzed components of the spectra. The black dashed lines are the fits to Eqs.
(8.8) and (8.7), respectively, and the black dotted lines are the fits to Eqs. (8.14) and (8.13),
respectively. The fitted parameters are shown in Table 8.1. The solid blue line in (c) is the
fit from deconvolution analysis. The Urbach energies, Eu, are shown in (d) corresponding to
the value of the inverse slope at the inflection point, Eo. Comparison of this value with Eu
calculated from Eq. (8.17) is shown in Table 8.1.
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F igure 8 .11 : (a) Absorption coefficient, α(E), (b) ln(α(E)/αo), (c) energy derivative of
ln(α(E)/αo) and (d) inverse plot of d(lnα(E))/dE for ZnO thin film at 377 K. The green
solid lines show the experimental spectra. The grey and red solid lines show the analyzed
components of the spectra. The black dashed lines are the fits to Eqs. (8.9), (8.8) and
(8.7), respectively, and the black dotted lines are the fits to Eqs. (8.15), (8.14) and (8.13),
respectively. The fitted parameters are shown in Table 8.1. The solid blue line in (c) is the
fit from deconvolution analysis. The Urbach energy, Eu, is shown in (d) corresponding to
the value of the inverse slope at the inflection point, Eo. Comparison of this value with Eu
calculated from Eq. (8.17) is shown in Table 8.1.
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with temperature. The inset in Fig. 8.10(a) shows that the temperature dependence

of Eo in our model obeys the trend expected from the electron-phonon interaction

model:

Eo(T) = Eo(0K)− 2α/(eΘ/T − 1) (8.18)

where Θ = h̄ω. The results of fitting this model to the data is given in Table 8.3.

Note that h̄ω for ZnO is significantly underreported at 44 meV. The accepted literature

value for this quantity is approximately 70 meV69? ,70, as mentioned in Chap. 6.

Based on the presently refined model, we see that, experimentally, the UBE, Eo,

lies at the center of the PDF shown in d(lnα(E))/dE. It follows that the spread in the

PDF, γ, represents the variability in this ideal energy as a result of the nonuniform

local potential.

Theoretically approaching ideal crystal structure with a perfectly uniform local

potential, we can write the limit of Eq. (8.8) as γ → 0. Here, the mathematics predict

that the PDF in Eq. (8.7) will be described by a Dirac delta function, δ(E− Eo), cen-

tered at the energy of the UBE. In statistics, it is known that as the standard deviation

of a normally distributed random variable narrows and tends to zero, the normal

distribution tends toward a Dirac delta function.71 In this limiting case, integration of

the Dirac delta function gives the CDF in ln(α(E)/αo) as a Heaviside step-function,

H(E− Eo), at the energy of the UBE, Eo, with maximum value of photon absorption,

ac.72 This is illustrated by the following:
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F igure 8 .12 : (a) d(lnα(E))/dE at 77 K for ZnO thin film as-grown (grey) and annealed
at 200 (red), 400 (blue), 600 (green) and 800 (purple) oC. The dotted fits to the spectra are the
result of fitting Eq. (8.7) to the deconvolved signal component. Eo, shown by the dotted line at
3.33 eV, were given by these fits. The top inset shows the corresponding XRD diffractogram for
the ZnO wurtzite peak (0002) for the same succession of annealing treatments. (b) Absorption
coefficient plots, α(E), at 77 K for ZnO thin film as-grown and annealed at 200, 400, 600 and
800oC corresponding to the derivative plots in (a).
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Table 8 .4 : The unperturbed band-edge, Eo and defect broadening, γo, measured at 77 K
and FWHM from XRD for ZnO thin film as-grown and annealed at 200oC increments up to
800oC .

Temp. (oC) Eo (eV) γo (meV) XRD FWHM (o)

0 3.324 54.0 0.52

200 3.321 49.8 0.51

400 3.326 25.9 0.31

600 3.332 24.9 0.28

800 3.338 18.8 0.25
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lim
γ→0

ln(α(E)/αo) = ac lim
γ→0

1

1 + e−
(E−Eo)

γ

(8.19)

= ac(H(E− Eo)) (8.20)

=


ac E > Eo

0 E < Eo

(8.21)

To test this mathematical result experimentally we have analyzed d(lnα(E))/dE for

ZnO thin film acquired at 77 K for the sample as grown and annealed incrementally

by 200
oC up to 800

oC. Post-growth annealing treatment has been shown to remove

defects and improve the crystal quality of thin films. The results in Fig. 8.12(a) show

that, as predicted by the definition of the UBE, Eo, found at 3.33 eV, is invariant to the

defect concentration in the sample. This indicates that the UBE can be recovered from

the spectra in d(lnα(E))/dE irrespective of the degree of “tailing" in α(E), shown in

Fig. 8.12(b). Here, Eo varies by approximately 14 meV over the full range of annealing

treatment. Furthermore, we show that the improvement from post-growth annealing

is reflected in γo (γ at 77 K), which decreases for higher annealing temperatures,

shown in Fig. 8.13. At temperatures above 77 K, γ has contributions from both

thermal broadening in addition to diverse defect broadening mechanisms. This is

discussed further in the following section.

8 .8 inhomogeneous broadening

In solid state systems, Gaussian broadening such as that found in this work is in-

dicative of inhomogeneous broadening which is a result of a fluctuating local electric

field.51 This fluctuating local electric field is caused by local perturbations of varying

sources such as structural defects, impurities, thermal fluctuations and others.
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F igure 8 .13 : The XRD full-width half-max (FWHM) (open circles) and defect broadening
parameter γo (solid squares) obtained from fitting Eq. (8.7) to the deconvolved spectra at 77
K for ZnO thin film as-grown and annealed at 200, 400, 600 and 800oC. All parameters are
shown in Table. 8.4. The correlation (Pearson’s R) between these two physical parameters was
found to be 0.998.
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Cody36 and Wasim73 have described an equivalent effect on band-edge broadening

due to perturbations from thermal excitation and perturbation from defects. This

has been studied through the temperature dependence of the band-edge slope and

ultimately, Eu. In Fig. 8.10(b), we show the temperature dependence of the Gaussian

lineshape and in the top inset of Fig. 8.10(a), the temperature dependence of the

broadening parameter, γ(T). For the range of temperatures studied, the Gaussian

lineshape of the band-edge was found to be conserved. Furthermore, the temperature

dependence of γ(T) was found to have a similar trend as the temperature dependence

of Eu(T) found in the literature.36 This is reasonable to expect since these parameters

are linearly proportional, as shown by Eq (8.17). To our knowledge, there is no

model to describe the temperature dependence of the broadening parameter, γ(T),

in absorption spectra.

Illustrated in the top inset of Fig. 8.10(a), lowering the sample temperature below

a certain threshold no longer reduces the broadening parameter, indicating only the

presence of defect broadening. The lineshape of the differential band-edge was then

analyzed here in the absence of thermal perturbation (electron-phonon interactions)

at 77 K. As shown in Fig. 8.12(a), the lineshape was also found to be Gaussian. The

broadening effect of thermal perturbation from electron-phonon interaction appears

to be indistinguishable from the broadening effect of defects on the band-edge. That

is, the Gaussian lineshape is conserved for both, in agreement with the predictions of

Cody and Wasim.

The thorough characterization of the temperature dependence of the broadening

parameter, γ(T), and its relationship to defects in the material is the subject of Chap.

??. Some results of this chapter are reiterated in brief as follows. Through successive

annealing experiments at 200, 400, 600 and 800
oC, we study the change of the 77 K

band-edge distribution as a function of defects as shown in Fig. 8.12(a). At 200
oC

annealing, we found a small reduction to the band-edge broadening. At 400
oC, we
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found significant reduction of the band-edge broadening. Furthermore, at 600 and 800

oC, we found some small reduction in the broadening. We correlated γo with the XRD

FWHM and show there is 0.99 Pearson’s correlation between these two parameters.

All parameters are shown in Table. 8.4. The significant reduction in the XRD FWHM

at 400
oC indicates grain growth activation at this temperature. This agrees with the

results of Vishwas et al. who also found this activation at 400
oC via XRD for ZnO

thin film grown by the sol-gel method.74 These facts strongly suggest that the main

defect contribution to the band-edge broadening and ultimately to the Urbach tail in

the ZnO thin film studied here at 77 K originates from grain boundaries.

While the main contribution to the band-edge tail originates from grain bound-

aries, there are also likely contributions from Zn interstitial (Zni) point defects in the

as-grown film shown by the grey curve in Fig. 8.12(a). Our previous work showed

that our samples grown via sputtering are rich in Zni.75 While annealing at 200
oC

does not seem to affect grain boundaries, Zni are highly unstable and are expected

to be thermally active at relatively low annealing temperatures.75 We conclude that

the small improvement to the band-edge broadening parameter at 200
oC annealing is

likely attributed to the migration of Zni, readily out-diffused or lattice-incorporated

at this temperature.

The key result of this experimental investigation relative to this chapter is the

invariance of the band-edge lineshape to the defect type, specifically grain boundaries

and Zni in ZnO and alloy inhomogeneity in MgZnO. As discussed in the previous

section, the effect on the band-edge of removing both defect types via annealing is to

change the width of the distribution. The distribution itself remains centered about

Eo and, more importantly, the normal distribution is changed symmetrically. This

remains true for every increase in annealing temperature and at 400
oC where the

most significant changes to the band-edge broadening is observed.
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This supports the conclusion that the underlying physical phenomena is, at its core, local

electric field fluctuation, and shows an equivalent effect on the band-edge of thermally induced

and defect-induced electric field fluctuation and, further, between electric field fluctuation from

multiple defect types. Importantly, we found the Gaussian lineshape to be invariant to the

source of electric field fluctuation, thus meeting the standard definition of inhomogeneous

broadening.

This suggests that, in the ZnO sample studied, the full range of the band-edge

uniformly includes broadening contributions from all the sources mentioned here.

Specifically, the defect contributions to broadening do not seem to be exclusive to any

distinct part of the tail. This is in contrast to theories in which the low-, medium-,

and high-energy regions of the tail are hypothesized to correspond to specific defect

types.5 We note that for the data shown in Fig. 8.12, the excitonic region corresponds

to the high-energy tail of the Gaussians and likely contribute to small asymmetries

here. Due to the approximately one-to-one correlation between γo and the XRD

FWHM we assert that the effect of excitons is negligible compared to the effect of

grain boundaries on the broadening of the band-edge in our ZnO thin film. In

conclusion, we uncover the Gaussian lineshape resulting from perturbation by in-

homogeneous sources—such as possible Zni, grain boundaries and electron-phonon

interactions—which are uniformly distributed across the full range of the band-edge

tail.

8 .9 further discussion & conclusion

Many physical mechanisms have experimentally been shown to perturb the band-

edge and change the nature of tailing in the absorption spectra of semiconductors.

These include but are not limited to alloy inhomogeneity, thermal excitation, impuri-

ties, and structural defects. In addition, the band-edge states have been proposed to
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comprise bound excitons interacting with lattice vibrations as proposed by Toyozawa

(1959, 1964)76, electric field broadening of an exciton line as proposed by Dow and

Redfield (1970)76, or electric field broadening of direct transitions between parabolic

bands.76 Mott and Davis summarize a short review by Hopfield (1968) on the various

models that have been proposed for giving rise to the Urbach edge.76 These widely

varying mechanisms have all been hypothesized to reflect general disordering which

varies the local potential in the material. In the words of Economou (1987), this

“proliferation of formalisms and physical mechanisms tend to obscure the common

feature of a fluctuating potential being the source of the exponential tails."55 He

proposes that the general character of the exponential tails suggests “a quasi-universal

mechanism that bypasses the complexity of real materials."55 John et al.,77 states it is

strongly suggested that “the underlying physics is both simple and general."

Advancing in this spirit, we have made no assumptions about the form, exponen-

tial or otherwise, of the band-edge.

In his published work of 1953,5 Economou’s theoretical investigations into the

tailing in absorption spectra are primarily based on the assumptions that:

1. the tail in the measured absorption coefficient is a result of tailing in the DOS

and

2. a Gaussian probability distribution of the local potential is responsible for tailing

in the DOS.5,56

He proceeds to derive the theoretical (and causal) connection between (2) and

(1). That is, he proceeds to show that the nonuniform local potential leads to the

exponential DOS, which is then observed in the absorption coefficient.

We base our work largely on Economou’s theoretical considerations but make

slight variations mostly in the number and nuance of the assumptions being made.

We do not seek to show that the nonuniform local potential leads to an exponential
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tail in the DOS because, as we have shown, the tail in the absorption spectra is, on

the whole, not exponential. We instead assume the validity of Economou’s more

fundamental assumption of the presence of a Gaussian probability distribution in the

local potential and show directly its connection to the observed absorption coefficient

without introducing an intermediate assumption about the DOS.

Still, we are able to analytically show the connection between the theoretically

predicted nonuniform local potential and the experimentally observed absorption

coefficient.

To this end, we show that the form of the nonuniform local potential can be ex-

perimentally uncovered in derivative spectra and described by a normally distributed

probability density corresponding to the DOS at the band-edge. Due to the cumulative

probabilistic observation of absorption in semiconductors, the probability densities

integrate directly to the form of the tail in the absorption spectra. The form was

found instead to be exponential-logistic. As we show, this form can be approximated

under certain conditions—and for limited ranges—by the simple exponential form

given by the linear Urbach model.

In summary, we have built conceptually on the foundation of basic Urbach theory

and, by examining the assumption of band-edge exponentiality, have taken one step

further toward a more complete and experimentally accurate model of tailing at the

band-edge. While being consistent with the linear Urbach model, our generalized

model fits complex, nonlinear band-edges and is capable of extracting much more

quantitative data from absorption spectra than previously anticipated.

Furthermore, by outlining a procedure for utilizing derivative spectra, we have

provided a simple solution to two problems:

1. the convolution of artifacts with the band-edge signal and

2. the variability in Urbach analysis from application of the linear Urbach model

to nonlinear band-edges.
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Coupled with this more standardized analytical approach, our model is capable of

extracting band-edge parameters in a more objective and universally consistent way as

shown from successful applications to the nonlinear band-edges of ZnO thin film (at

various temperatures), mixed-phase Mg0.75Zn0.25O thin film, and c-Si. Additionally,

in the limit of zero variability in the local potential, our model predicts the ideal

form of absorption, a step function, at the energy of the UBE, Eo, corresponding to

the maximum probability density of absorption. As mentioned before, transitions

at the band-edge may be defect-related, exciton-related, related to direct or indirect

transitions between parabolic bands. It must be stressed that it is not the intention

of this work to distinguish or characterize the type of transitions occurring at the

band-edge but to show that our model may be capable of being applied to many such

cases.

Finally, several limitations may arise in the application of our current model,

mostly associated with the limitations of deconvolution analysis. Here we have inves-

tigated easily identified normal distributions in the derivative spectra, however, there

may be cases where the convolution of band-edge components is highly complex.

Additionally, further sensitivity analyses of the fitting parameters of this model is

required. This becomes especially important when fitting linear combinations of the

model functions (given in Sec. 8.6.2) as this significantly increases the number of free

parameters with each additional band-edge component.

Application to a wider variety of semiconducting materials is necessary to test the

model further and to explore its strengths and limitations. It is anticipated that the

current development will contribute to the study of band-edges in novel systems of

soft matter, organics, bioinorganics and nanobioconjugated systems.
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