
An Eco-Traffic Signal System Based on Connected Vehicle Technology

A Thesis

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Science

with a

Major in Computer Science

in the

College of Graduate Studies at

University of Idaho

by

Anup Chitrakar

Major Professor: Axel Krings, Ph.D.

Committee Members: Robert Rinker, Ph.D.; Ahmed-Abdel Rahim, Ph.D.

Department Administrator: Frederick Sheldon, Ph.D.

April 2016

ii

Authorization to Submit Thesis

This thesis of Anup Chitrakar, submitted for the degree of Master of Science with a major

in Computer Science and titled “An Eco-Traffic Signal System Based on Connected

Vehicle Technology,” has been reviewed in final form. Permission, as indicated by the

signatures and dates given below, is now granted to submit final copies to the College of

Graduate Studies for approval.

Major Professor: Date
Axel Krings, Ph.D.

Committee
members: Date

Robert Rinker, Ph.D.

Date
Ahmed-Abdel Rahim, Ph.D.

Department
Administrator: Date

Frederick Sheldon, Ph.D.

iii

Abstract

The Intelligent Transportation System uses Dedicated Short Range Communications (DSRC)

for vehicle-to-vehicle and vehicle-to-infrastructure communication. This technology is used for

applications that intend to increase safety and to improve traffic management and operation.

For the latter it promises applications with advanced features in order to reduce fuel consump-

tion.

This research presents the design and implementation of a system architecture, diverse

algorithms, and communication methods of an Eco-Traffic Signal System. The application

uses vehicle-to-infrastructure communications to control traffic light timing with the goal of

avoiding unnecessary stops of heavy vehicles, which in turn results in energy savings. The

architecture takes advantage of Basic Safety Messages in connected vehicle technology and

executes an application inside of the Road Side Unit employed in future traffic intersections.

This unit facilitates the necessary algorithms and communication support to instruct the traffic

controller to manage signal timing. A proof of concept of the Eco-Traffic Signal System was

implemented and its functionality was verified in field tests using commercial DSRC equipment.

iv

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Prof. Dr. Axel Krings for

the continuous support on my MS study and research, for his patience, motivation, enthusiasm,

and immense knowledge. His guidance helped me in all time during the research and writing

this thesis. I could not have imagined having a better advisor and mentor for my MS study.

I would also like to thank my committee members, Dr. Ahmed-Abdel Rahim and Dr. Robert

Rinker for their valuable input in my thesis. I am grateful to all the staffs and faculty from the

Computer Science Department of the University of Idaho for providing an enabling environment

for me to work. A special thanks to all my professors and teachers who have helped to impart

the knowledge in my academic career.

This project would not have been possible without funding from the National Institute

For Advanced Transportation Technology (NIATT) at the University of Idaho. Furthermore, I

would like to acknowledge the Idaho Global Entrepreneurial Mission (IGEM) for their support,

which was used to purchase the Arada Systems DSRC equipment used in the implementation

and field experiments.

Last but not least, I would like to thank my friends and family who have been supportive

of my endeavors.

v

Dedication

This work is dedicated to my family, who have always loved me unconditionally and whose

good examples have taught me to work hard for the things that I aspire to achieve.

My father, Arun Kumar Chitrakar.

My mother, Ram Devi Chitrakar.

My brother, Anish Chitrakar.

vi

Table of Contents

Authorization to Submit Thesis . ii

Abstract . iii

Acknowledgments . iv

Dedication . vi

Table of Contents . vi

List of Figures . ix

List of Tables . xi

List of Listings . xii

List of Acronyms . xiii

1 Introduction . 1

1.1 Intelligent Transportation Technologies . 3

1.2 Connected Vehicles . 4

1.3 Motivation . 6

1.4 Contributions . 6

1.5 Thesis Outline . 7

2 Background and Overview . 9

2.1 Application Overview . 9

2.2 Dedicated Short Range Communications . 9

2.3 WAVE Protocol Stack . 11

2.4 MAC Protocol . 12

2.5 ETSS Equipment Details . 13

2.6 Basic Safety Message . 14

2.7 National Transportation Communication for ITS Protocol (NTCIP) 16

2.8 NTCIP Standards Framework . 17

2.9 SNMP, MIBs and OIDs . 20

vii

2.10 Traffic Signal Timing . 23

2.10.1 Pre-Timed Operation . 25

2.10.2 Actuated Operation . 25

3 System Architecture . 27

3.1 System Hardware Configuration . 27

3.2 Software Architecture and Communications . 28

3.2.1 Creating a Basic Safety Message . 30

3.2.2 Transmit Basic Safety Message . 37

3.2.3 Receive Basic Safety Message . 37

3.3 Communication with Traffic Controller . 39

3.3.1 NTCIP Objects . 39

3.3.2 Data Structures . 42

3.3.3 Important C Functions in ETSS . 49

3.3.4 ETSS Algorithm . 52

3.4 Arada Locomate Application . 57

3.5 Multi-threaded ETSS Application . 59

4 Experimental Validation of ETSS . 61

4.1 Experiment Details . 62

4.2 Results . 64

5 Conclusion and Future Work . 67

Bibliography . 69

Appendix . 73

A Communicating with the Traffic Controller . 73

A.1 Global Variables . 73

A.2 DYNAMIC SIGNAL CONTROL S . 74

A.3 Controller Access Utility . 78

A.4 Phase Information . 81

A.5 Main Program . 86

viii

B Toolchain Setup . 87

B.1 Linux 64 bit Version . 87

B.1.1 Resolution . 87

B.2 Linux 32 bit Version . 88

B.2.1 Install WinSCP . 88

C Setup Development Environment . 90

C.1 Import Arada Locomate source codes into Eclipse IDE 90

C.2 Import ASC-3 source codes into Eclipse IDE . 91

D NTCIP Object Identifiers . 92

E Arada Locomate Application Parameter List .100

ix

List of Figures

1.1 Intelligent Transportation System . 1

1.2 Subset of Technologies used by ITS . 3

1.3 Connected Vehicles at an Intersection (adapted from [5]) 5

2.1 Eco-Traffic Signal System Applications . 9

2.2 DSRC Channel Spectrum . 10

2.3 WAVE Protocol Stack . 11

2.4 WSMP Packet format . 12

2.5 CSMA . 13

2.6 Block Diagram of LocoMate with Host Computer Connection (adapted from [35]) 14

2.7 ASN.1 definition of the BSM . 15

2.8 Enumeration of DE DSRC MessageID . 15

2.9 J2735 BSM ASN.1 Notation . 16

2.10 NTCIP and National ITS Architecture (Source: [27]) 18

2.11 ITS Integration Using NTCIP (Source: [27]) . 18

2.12 NTCIP Framework . 19

2.13 OSI Layers and NTCIP Levels mapping . 19

2.14 Object Identifier for Min Green (1.3.6.1.4.1.1206.4.2.1.1.2.1.4) 22

2.15 Traffic Signal Control at four way intersection . 23

2.16 Phase Information . 24

2.17 Signal Timing . 26

3.1 System Hardware Configuration . 27

3.2 Software Architecture . 29

3.3 Host Vehicle and Remote Vehicle . 31

3.4 Vehicle Classification (adapted from [38]) . 33

3.5 Data Elements for Latitude and Longitude . 34

3.6 Data Frame and Data Element for Transmission and Speed 35

3.7 Calculating Speed and Transmission . 36

3.8 Bits to Phases assignment . 40

3.9 Set Operation Using SNMP Over UDP/IP/Ethernet 45

x

3.10 Socket Concept . 50

3.11 Flowchart showing Socket Connection . 50

3.12 A vehicle approaching an intersection in ETSS 53

3.13 Flowchart for Eco-Traffic Signal Application . 55

3.14 Multi-threaded Application . 59

4.1 Location for Experiment Setup . 61

4.2 Traffic Controller - Timing plan . 63

4.3 Experiment Results for Different Scenarios . 65

xi

List of Tables

3.1 List of Vehicle Types . 34

3.2 List of NTCIP Objects . 39

3.3 SetRequest-PDU (set-request) . 44

3.4 SNMP Error codes . 45

4.1 RSU Field Test Configuration . 62

4.2 Expected output from the experiment . 64

D.1 List of NTCIP Global Objects . 92

D.2 List of ASC Object Identifiers . 92

D.2 List of ASC Object Identifiers . 93

D.2 List of ASC Object Identifiers . 94

D.2 List of ASC Object Identifiers . 95

D.2 List of ASC Object Identifiers . 96

D.2 List of ASC Object Identifiers . 97

D.2 List of ASC Object Identifiers . 98

D.2 List of ASC Object Identifiers . 99

E.1 Common Options . 100

E.1 Common Options . 101

E.2 Provider Options . 101

E.3 User Options . 101

E.4 Default Values . 101

E.4 Default Values . 102

xii

List of Listings

3.1 Calculation Logic for Longitude and Latitude . 32

3.2 Calculation Logic for Transmission State and Speed 37

3.3 Typedef for some primitive data types . 43

3.4 SNMP Message structure . 43

3.5 Data structure for the GetRequest PDU . 46

3.6 Data structure for the GetResponse PDU and SetRequest PDU 46

3.7 SnmpMsgGet . 48

3.8 SnmpMsgPOXOF . 48

3.9 SnmpMsgPOXOFresp . 48

3.10 PhaseStatus . 49

3.11 Functions for accessing Traffic Controller . 51

3.12 Functions Providing Phase Information . 52

samplecodes/asc3/incl/DTC GLOBAL DEFS.h . 73

samplecodes/asc3/incl/DYNAMIC SIGNAL CONTROL S.h 74

samplecodes/asc3/ControllerAccessUtility.h . 78

samplecodes/asc3/PhaseInformation.h . 81

samplecodes/asc3/mainProgram.c . 86

xiii

List of Acronyms

AASHTO American Association of State Highway and Transportation Officials

ABS Anti-Lock Brake System

AC Access Category

AIFS Arbitration Interframe Space

ASC Actuated Signal Controller

ASN Abstract Syntax Notation

ASN.1 Abstract Syntax Notation One

BER Basic Encoding Rules

BSM Basic Safety Message

C2F Center to Field

CCH Control Channel

CCTV Closed Circuit Television

CDT C/C++ Development Tooling

DER Distinguished Encoding Rules

DSRC Dedicated Short Range Communications

EDCA Enhanced Distributed Channel Access

ETSS Eco-Traffic Signal System

FTP File Transfer Protocol

GPS Global Positioning System

GSM Global System for Mobile Communication

HV Host Vehicle

I2V Infrastructure-to-Vehicle

IDE Integrated Development Environment

IP Internet Protocol

ISO International Organizations of Standards

ITE Institute of Transportation Engineers

ITS Intelligent Transportation Systems

xiv

LLC Logical Link Control

MAC Medium Access Control

MIB Management Information Base

MIPS Microprocessor without Interlocked Pipeline Stages

NEMA National Electrical Manufacturers Association

NTCIP National Transportation Communication for ITS Protocol

OBU On Board Unit

OFDM Orthogonal Frequency-Division Multiplexing

OID Object Identifier

OSI Open Systems Interconnection

PMPP Point-to-Multi-Point Protocol

PoE Power over Ethernet

PPP Point-to-Point Protocol

RSU Road Side Unit

RV Remote Vehicle

SCH Service Channel

SNMP Simple Network Management Protocol

STMP Simple Transportation Management Protocol

TCP Transmission Control Protocol

TFTP Trivial File Transfer Protocol

UDP User Datagram Protocol

USDOT United States Department of Transportation

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

V2X Vehicle-to-X

VANET Vehicular Ad Hoc Network

WAVE Wireless Access in Vehicular Environments

WSM WAVE Short Message

WSMP WAVE Short Message Protocol

1

Chapter 1

Introduction

The United States Department of Transportation (USDOT) uses the term Intelligent Trans-

portation Systems (ITS) to address improvements in transportation safety and mobility through

the integration of advanced communications technologies into the transportation infrastructure

and vehicles [1]. The ITS encompasses a broad range of diverse communications and electronics

technologies. At the core of ITS are wireless and wired communications, e.g, between vehicles

and/or the fixed infrastructure which is shown in Figure 1.1. In the figure wireless communi-

cation between vehicles is indicated by green circles. Communication between vehicles and the

fixed infrastructure is shown by brown lines, converging at the fixed device.

Figure 1.1: Intelligent Transportation System1

The USDOT’s ITS program focuses on intelligent vehicles and infrastructures. The ITS

focuses on improving transportation safety and mobility, with an additional focus on minimizing

the energy consumption of vehicles [6].

1Picture designed by Manisha Shilpakar, a Graduate Student in the College of Art and Architecture at the
University of Idaho.

2

Furthermore, productivity is enhanced by using various advanced technologies such as com-

puter vision and character recognition for a license plate recognition [2]. The ITS includes a

wide suite of technologies and applications which have been widely impacting people’s life for

the last few decades. Some benefits that ITS provides include the following:

A) Increased safety: The ITS attempts to improve the safety of drivers and pedestrians.

According to [4], on the world’s roadway, annually, there are 1.2 million fatalities. In

2014, there were 32,675 people killed in motor vehicle crashes on U.S. roadways. The

accidents caused approximately 2.3 million injuries. ITS began addressing vehicle safety

by introducing mandatory installation of seat belts and airbags in the late 90’s [3]. Those

technologies assumed that there would be crashes. However, now ITS also implies re-

thinking safety in terms of crash avoidance.

B) Improved performance by reducing congestion: Reducing traffic congestion is one

of the principal benefits of ITS. Americans spend a total of 4.2 billion hours per year

commuting, wasting over 2.8 billion gallons of fuel [3]. There are various ITS applications

deployed that enhance the operational performance of a transportation network. Actuated

traffic signal lights have contributed to improving traffic flow significantly, reducing stops,

cutting gas consumption, and reducing travel time.

C) Enhanced mobility: By decreasing congestion and maximizing operational efficiency

of the transportation system, ITS has managed to enhance driver mobility. It has also

made it easier for the drivers by providing real-time traveler information and enhanced

route selection.

D) Environmental benefits: The ITS is delivering environmental benefits by reducing

congestion, by enabling traffic to flow more smoothly, and by coaching drivers how to

drive most efficiently. For example, vehicles traveling at 60 kmph (37 mph) emit 40

percent less CO2 than vehicles traveling at 20 kmph (12 mph) [4]. Eco-driving enabled

vehicles provide feedback to the motorist on how to operate vehicles at the most fuel-

efficient speeds across all driving situations.

E) Improved productivity and economic growth: By improving the performance of the

transportation system, ITS tries to ensure that people and products reach their appointed

3

destinations as quickly and efficiently as possible. This enhances the productivity of

workers and businesses, boosting economic competitiveness.

There are many other benefits of ITS in addition to those listed above. Many applications

have been proposed, from surveillance of the roadways, rapid evacuation during a natural

disaster or threat, to finding open parking spaces.

1.1 Intelligent Transportation Technologies

The ITS uses diverse technologies such as car navigation, traffic signal control systems, auto-

matic number plate recognition, Closed Circuit Television (CCTV) systems, weather-responsive

systems. Some key technologies are shown in Figure 1.2, and are described below:

Figure 1.2: Subset of Technologies used by ITS

A) Inductive Loop Detection and Sensing Technologies: Inductive loop detection

mechanisms are often employed in road surveillance. These mechanisms are widely used

especially at intersections with actuated traffic signals. An inductive loop detection system

consists of an inductive loop and a detector, which is typically installed in a signal cabinet.

This system links the signal controller to the inductive loop [5]. When a vehicle enters

or crosses the loop, it induces a magnetic field and the detector module will output a

detection signal. The actuated signal controller relies on the detector output to decide

whether a green signal should be extended for the vehicle passing over an inductive loop.

4

Installation of such detectors can be intrusive to traffic, as traffic must be interrupted

for installation and maintenance. Although an inductive loop detector is able to monitor

traffic on a regular basis under all weather and lighting conditions, such detectors can fail

under extreme weather conditions, especially snow, ice [5] and often fail to detect light

vehicles such as motorcycles or bicycles.

B) Video Detection: Unlike inductive loop detectors, video vehicle detection is a non-

intrusive method of traffic detection. Usually cameras are mounted on poles or structures

either above or adjacent to the roadways. Video captured from the camera is fed into

processors for analyzing the changing characteristics of the video image as the vehicle

passes the intersection. Such systems need an initial configuration, which trains the

device based on the distance between lane lines and the height of the camera above the

roadway [5].

C) Computational Technologies: In the early 2000s, a typical vehicle would had between

20 and 100 networked micro-controller/programmable logic controller modules with non-

real-time operating systems [5]. The current trend focuses on fewer, but more powerful

and costly microprocessor modules with hardware management and real-time operating

systems. This allows these new embedded system platforms to run computationally com-

plex tasks for more sophisticated software applications.

D) Wireless Communications: Various forms of wireless communication technologies have

been proposed for ITS. Short-range communication of up to 350 meters can be accom-

plished using IEEE 802.11 protocols. Dedicated Short Range Communications (DSRC)

is being promoted by USDOT and ITS of America. Long-range communications using

WiMAX (802.16), Global System for Mobile Communication (GSM), or 3G require ex-

tensive and very expensive infrastructure deployment.

1.2 Connected Vehicles

Vehicular Ad Hoc Network (VANET)s are becoming more important to enhance road traffic

safety. These networks are the core of applications aiming at increasing passenger safety by

exchanging safety messages between vehicles wirelessly. Such wireless communications “increase

the line-of-sight of the driver”, making vehicles aware of their environment [8]. In VANET

vehicles are able to transmit speed, location and vehicle status data to other vehicles and the

5

roadway infrastructure in the form of a Basic Safety Message (BSM). In an Ad hoc network,

collection of nodes dynamically forms a network without existing infrastructure or centralized

administration [7]. Figure 1.3 shows in instance of a VANET consisting of a set of vehicles

equipped with an On Board Unit (OBU) and a stationary unit called Road Side Unit (RSU).

Omnidirectional communications, e.g., linear dipole, of OBUs and the RSU are indicated by

concentric circles. Communication links between OBUs and/or RSUs are established on the fly

via ad-hoc connections when they are in the communication range. Connected vehicles refer to

the wireless connectivity enabled vehicles that communicate with external environments. For

this reason, two architectures have been proposed - a Vehicle-to-Vehicle (V2V) architecture

and a Vehicle-to-Infrastructure (V2I) architecture. Safety systems such as seat belt and air

bags help passengers survive during a crash, whereas V2V and V2I communications are used

to prevent the accident.

Figure 1.3: Connected Vehicles at an Intersection (adapted from [5])

6

a) V2V Communication: The idea behind V2V communication is that cars will be able

to know each other’s exact position as they are driving. This can be used to help avoid

accidents by informing cars about each other’s current location and status, e.g., in a

forward collision warning application. In V2V communication, a vehicle is capable of

sharing its information such as position, direction and speed using wirelessly with other

nearby vehicles on the road.

b) V2I Communication: Vehicles can also communicate with the fixed infrastructure, e.g.,

traffic controllers and signals, via an RSU using V2I communications. It is envisioned

that roads will be equipped with RSUs, which allow establishing communication to the

infrastructure. Whereas Infrastructure-to-Vehicle (I2V) implies communications between

the infrastructure and vehicles, V2I and I2V can be used interchangeably. Collectively,

the V2V and the V2I are known as Vehicle-to-X (V2X) communication.

1.3 Motivation

In general, drivers waste fuel and time by stopping vehicles at the signalized intersection.

In transportation systems, VANETs can be used to derive various approaches for reducing

fuel consumption. This research is driven by an approach for fuel conservation using DSRC

technology. The core of this project is to use communicate real-time data from the vehicle

to the traffic controller, which then can make decisions resulting in reduce unnecessary stops

and delay time at the signalized intersection. Deployment of infrastructure sensors to monitor

traffic conditions in current ITS is often expensive. Furthermore, the sensors have limited

capabilities to provide accurate traffic information [9]. According to the AERIS simulation [10],

such applications attempt to reduce a vehicle’s fuel consumption by 1 to 10 percent along the

intersection. The data from connected vehicle applications involving vehicle location and speed,

can reduce the number of stops by an average of 18%.

1.4 Contributions

This research project2 focuses on the development of a prototype for an eco-traffic signal system.

It provides a proof-of-concept that it is feasible to use connected vehicle technology to control

the traffic infrastructure in a adaptive fashion. Specifically, it is demonstrated that it is possible

2This research was funded by the U.S. Department of Transportation (USDOT) grant number DTRT12-G-
UTC17 through the University of Idaho’s National Institute for Advanced Transportation Technology (NIATT)

7

to communication information from vehicles to legacy traffic controllers via RSUs. Thus, cutting

edge technology can be used together with equipment, which could predate it by decades. We

hope that this proof-of-concept may inspire practical applications to improve signal timing

procedures, e.g., to reduce fuel consumption.

The specifics of the contributions of this thesis can be summarized as follows:

1. A communication framework was established allowing communication between DSRC

equipment. Specifically, communication primitives needed to be derived to facilitate V2V

and V2I message exchanges.

2. The support framework allowing communication with the traffic controller was derived.

This communication included mechanisms to change timing parameters in the traffic

controller.

3. A multi-threaded application was developed to implement the ETSS and its associated

decision support algorithms.

4. The ETSS was verified in a fully equipped signalized intersection, including the traffic

cabinet with a controller, support hardware, and traffic lights.

1.5 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2, Background and Overview, gives an overview of the application developed. This

chapter introduces the DSRC technology and provides a basic outline of the Wireless Access in

Vehicular Environments (WAVE) system. Fundamental concepts like accessing the transmis-

sion medium in DSRC systems and Basic Safety Message, which is the most important message

giving information about the state of a vehicle, are explained in detail. Since in our application

the roadside infrastructure needs to communicate with the traffic controller, which is required

to be National Transportation Communication for ITS Protocol (NTCIP) compliant, the foun-

dation for this infrastructure will be established and an overview of this protocol along with

the traffic signal timing concepts is given.

Chapter 3, System Architecture, first presents the system hardware configuration for the

proposed application. Subsequently, the designed software architecture is discussed, including

the algorithm and implementation details of the application. The motivation for creating our

own custom applications are discussed here.

8

Chapter 4, Experimental Validation of ETSS, provides an overview of a field experiment. It

further describes various scenarios that the ETSSis designed to work for. Finally, the results

obtained from the field experiments are presented.

Chapter 5, Conclusion and Future Works, present the conclusions, along with some direc-

tions for future work.

Several appendices are provided. Appendix A, Communicating with the Traffic Controller,

presents framework implementation details. Appendix B, Toolchain Setup, explains the proce-

dures for downloading the Software Development Kit (SDK) and installing it on the development

machine. Subsequently, Appendix C, Setup Development Environment, lists steps to set up the

development environment by importing projects into the Eclipse Integrated Development En-

vironment (IDE). The Eclipse IDE has been used throughout this research project to write and

debug C programming code. A list of NTCIP Global Objects is given in Appendix D, NTCIP

Object Identifiers. Finally, Appendix E, Arada Locomate Application Parameter List, provides

a list of application parameters available in the Arada Locomate application.

9

Chapter 2

Background and Overview

2.1 Application Overview

The Eco-Traffic Signal System (ETSS) consists of a fixed RSU, which is installed at the in-

tersection, OBU equipped vehicles, and a Traffic Controller connected to traffic signals. A

scenario for ETSS is shown in Figure 2.1, which depicts a truck approaching the intersection

sending BSMs to the RSU. The RSU first verifies if the vehicle is a heavy load. Next, the

application checks to see if the approaching vehicle satisfies certain conditions, i.e., if the speed

of the vehicle is over a predefined threshold speed, and if the time to reach the intersection is

before a predetermined threshold time, and current signal status. A heavy vehicle satisfying

both conditions qualifies for an extension of the green light if the traffic signal is green. Thus, if

the vehicle qualifies for the signal extension, the RSU sends a Green Signal Hold command to

the traffic controller, thereby allowing the heavy load to pass the intersection. Once the vehicle

passes the intersection, the application releases the hold command, allowing the normal traffic

cycle to continue. By extending the green cycle, the qualifying vehicle avoids a stop, thereby

saving fuel associated with idling and consequent acceleration.

Figure 2.1: Eco-Traffic Signal System Applications

2.2 Dedicated Short Range Communications

As previously indicated, communication of a vehicle’s OBU with the RSU and other OBUs

is based on DSRC, which provides short to medium range wireless communication support

10

between moving and stationary devices. Specifically, DSRC is a wireless protocol similar to

WiFi that implements the V2V and V2I communication. In the United States, the Federal

Communications Commission (FCC) has allocated 75 MHz of the spectrum in the 5.9 GHz

band for DSRC. The spectrum consists of seven 10 MHz channels from 5.850 GHz to 5.925

GHz, as shown in Figure 2.2. There is one Control Channel (CCH), i.e. channel CH178, and

six Service Channel (SCH)s, i.e., CH172, CH174, CH176, CH180, CH182, and CH187. The

remaining 5 MHz band is reserved for further use [16] [20] [21].

Figure 2.2: DSRC Channel Spectrum

The USDOT proposed power limits of the DSRC standard as shown in the upper part

of Figure 2.2. Public safety DSRC channel CH172 is designated for applications involving

the safety of life and property. Similarly, private channels CH174, CH175, and CH176 are

used to implement small and medium range operations. Transmissions in these three channels

should not exceed power levels of 33dBm. In the control channel, i.e., CH178, public safety

transmissions should not exceed 44.8dBm, whereas the private transmissions are limited to

33dBm. The DSRC channels CH180, CH181, and CH182 are used for short range services.

Public safety and private safety transmissions in these channels should not exceed 23dBm.

Finally, DSRC channel CH184 is designated for public safety applications and their operations

shall not exceed 40dBm.

11

2.3 WAVE Protocol Stack

The IEEE 802.11p [13] standard, which is the approved amendment to the IEEE 802.11 stan-

dard, added WAVE for vehicular communication. The WAVE protocol architecture with its

major components is shown in Figure 2.3.

Figure 2.3: WAVE Protocol Stack

The PHY protocol defined in IEEE 802.11 [13], which was published in 2007, specified

5/10/20 MHz channels. A change to this edition has been proposed in IEEE 802.11p [13]. This

amended version adopts Orthogonal Frequency-Division Multiplexing (OFDM) modulation on

10 MHz channels in the 5.9 GHz frequency band. In contrast, Wi-Fi, defined in IEEE 802.11,

implements the OFDM PHY modulation on the 20 MHz channels. The data rates and subcarrier

spacing in WAVE PHY are half that of the Wi-Fi PHY. Therefore, the WAVE OFDM receiver

is more sensitive to carrier frequency offset [22].

WAVE units might require time to switch between control and service channels, i.e., the

CCH and SCHs. The Medium Access Control (MAC) sublayer extension IEEE 1609.4 [19]

is dedicated to controlling such multichannel operation [23]. In general, IEEE 802.11p and

IEEE 1609.4 are used to describe the physical and the MAC layer of the WAVE system respec-

12

tively. The Logical Link Control (LLC) elements are defined in IEEE 802.2 [15], and the Internet

Protocol (IP) traffic is sent and received through this layer. Furthermore, IEEE 1609.2 [17], with

its two supported stacks, i.e., the Internet Protocol version 6 (IPv6) stack and the WAVE Short

Message Protocol (WSMP) stack, i.e. IEEE 1609.3 [18], is used to describe the Network and

Transport Layers of the Transmission Control Protocol (TCP)/User Datagram Protocol (UDP)

stack. The WSMP is a WAVE network layer protocol that supports high priority and time sen-

sitive communication [24]. The main motivation for developing the WSMP was to reduce the 52

bytes header overload of the typical UDP/IPv6. The format of a WSMP packet is depicted in

Figure 2.4. The packet contains 11 bytes of header information. Verification of a valid WSMP

Figure 2.4: WSMP Packet format

packet is done via the WSM version number. If this version number is not supported by the

device, the received packet is discarded [22]. The Security Type identifies the nature of the

packet, i.e., Unsecured, Signed or Encrypted. The radio parameters are directly controlled by

the Channel Number, Data Rate, and TX Power. The Provider Service ID (PSID) field is sim-

ilar to the port number of the TCP/UDP packet, which identifies the upper layer application

that will process the WSM data. The Length field specifies the total number of bytes in the

WSM data. Security Services are described by the IEEE 1609.2 standard protocol.

2.4 MAC Protocol

The IEEE 802.11 Distributed Coordination Function (DCF) MAC protocol is based on Carrier

Sense Multiple Access with Collision Avoidance (CSMA/CA), and originally developed for

Wireless Local Area Networks (WLANs). This DCF MAC protocol has been adopted by the

IEEE 802.11p standard for DSRC.

The Carrier Sense Multiple Access (CSMA) mechanism with collision avoidance is shown

illustrated in Figure 2.5. In DCF, all nodes compete for channel access by using the CSMA/CA

13

Busy

Medium
Backoff Window

DIFS

PIFS

SIFSDIFS

Contention Window

Slot Time

Select Slot and decrement

backoff as long as medium

stays idle

Next Frame

Immediate access when

medium is idle >= DIFS

Defer Access

Figure 2.5: CSMA

protocol. When a transmitter has a packet to send, the channel must be sensed idle for a certain

period of time equal to the distributed interframe space (DIFS). If the channel becomes busy in

that period of time, a backoff process is initiated, which randomly sets its backoff counter within

the range of its Contention Window (CW). The channel access is deferred until the channel

becomes idle again. The backoff timer is decreased as long as the medium is sensed to be idle

for a DIFS. It is frozen when a transmission is detected in the medium and resumed when the

channel is detected as idle again for a DIFS interval. The station transmits the packet when

the backoff counter reaches 0. The size of CW depends on the history of transmissions [32]. In

the 802.11p MAC sub-layer an Enhanced Distributed Channel Access (EDCA) mechanism was

added with Arbitration Interframe Space (AIFS) for each Access Category (AC).

2.5 ETSS Equipment Details

The ETSS was not just specified, but it was also implemented. The DSRC devices used in the

ETSS implementation are the LocoMateTM OBU and RSU developed by Arada Systems [33].

The block diagram of a LocoMate device is shown in Figure 2.6. These devices are equipped

with a 680 MHz Microprocessor without Interlocked Pipeline Stages (MIPS) processor and

integrate IEEE 802.11p and Bluetooth capabilities [33, 34]. They also contain 16 MB of Flash

memory, 64 MB of SDRAM, a Gigabit Ethernet Interface, an integrated Global Positioning

System (GPS) device, and transceivers with external RF antennas. By default, the device

transmits its position and other information continuously on the safety channel, encoded in a

BasicSafetyMessage format [35].

14

Figure 2.6: Block Diagram of LocoMate with Host Computer Connection (adapted
from [35])

2.6 Basic Safety Message

The DSRC Message Set Dictionary [25] specifies a message set, its data frames, and data

elements. This dictionary contains 15 message types, 72 Data Frames, 146 Data Elements,

and 11 External Data Entries. The connected vehicle safety applications are built around the

standard SAE J2735 [25]. The BSM is the most important message type for these applications.

BSMs are often referred to as the “heartbeat” messages. A BSM consists of two parts. The first

part, which is mandatory, includes the core data elements, such as vehicle size, position, speed,

heading, acceleration, and brake system status. The second part of a BSM contains a variable

set of data elements that are optional. It is added to Part I and depends on various events, e.g.

Anti-Lock Brake System (ABS) activation. Its availability varies and depends on the vehicle

model. They are transmitted less frequently in comparison to the Part I of a BSM. The BSM is

usually transmitted over DSRC and for safety applications the range of transmission provides

a 300m detection range [26]. BSMs are broadcast to nearby vehicles at a rate of 10 messages

per second, i.e., one BSM every 100 ms.

Figure 2.7 shows the Abstract Syntax Notation One (ASN.1) definition of the BSM [25].

The ASN.1 is a standard and a formal notation used for describing data in telecommunications

and computer networking. It describes the rules and structures for representing, encoding,

transmitting, and decoding the data. Four top level discrete parts (DSRCmsgID, BSMblob,

VehicleSafetyExtension and VehicleStatus) form a BSM. The first one-byte data element, DSR-

15

Figure 2.7: ASN.1 definition of the BSM

CmsgID, is an extensible enumeration. This data element differentiates one message type from

another. A list of DSRC message types is shown in Figure 2.8 with the BSM ID highlighed.

Figure 2.8: Enumeration of DE DSRC MessageID

Each of the assigned possible legal values for messages is represented as a named item in

the enumeration present in the C programming language. It includes message identifiers for

BasicSafetyMessage(BSM), CommonSafetyRequest(CSR), EmergencyVehicleAlert(EVA), Inter-

sectionCollisionAlert(ICA), RoadSideAlert(RSA), SignalPhaseAndTimingMessage(SPAT), etc.

Following the DSRCmsgId is the 38 byte BSMblob. The mandatory part of the BSM

message is shown in Figure 2.9. Normally, the data element BSMBlob is build up from the

16

16Feb2010 page 40 of 210 DSRC Implementation Guide

For the purpose of clarity, below is the single data element verbose view of the same ASN (used
when the developer specifically wants to encode each data item independently in ASN DER; it is
not used in the BSM when transmitted over WSM). The data content and order is the same,
however here the bulk of the Part I content is not constructed as a single octet blob (a topic
discussed further in a moment). As a result, this variant is substantially longer and larger.

BasicSafetyMessageVerbose ::= SEQUENCE {
 -- Part I, sent at all times
 msgID DSRCmsgID, -- App ID value, 1 byte

 msgCnt MsgCount, -- 1 byte
 id TemporaryID, -- 4 bytes
 secMark DSecond, -- 2 bytes
 -- pos PositionLocal3D,
 lat Latitude, -- 4 bytes
 long Longitude, -- 4 bytes
 elev Elevation, -- 2 bytes
 accuracy PositionalAccuracy, -- 4 bytes

 -- motion Motion,
 speed TransmissionAndSpeed, -- 2 bytes
 heading Heading, -- 2 bytes
 angle SteeringWheelAngle, -- 1 bytes
 accelSet AccelerationSet4Way, -- 7 bytes

 -- control Control,
 brakes BrakeSystemStatus, -- 2 bytes

 -- basic VehicleBasic,
 size VehicleSize, -- 3 bytes

 -- Part II, sent as required
 -- Part II,
 safetyExt VehicleSafetyExtension OPTIONAL,
 status VehicleStatus OPTIONAL,
 ... -- # LOCAL_CONTENT
 }

Again, the reader must seek out the Part II content to determine what it allows. Below is the critical
two elements of the Part II definition (the VehicleSafetyExtension and VehicleStatus elements)
taken from the standard itself, which allows a sequence of possible items and is quite lengthy.
Refer to the standard for the precise definition of all these additional data elements.

VehicleSafetyExtension ::= SEQUENCE {
 events EventFlags OPTIONAL,
 pathHistory PathHistory OPTIONAL,
 pathPrediction PathPrediction OPTIONAL,
 theRTCM RTCMPackage OPTIONAL,
 ... -- # LOCAL_CONTENT
 }

and
VehicleStatus ::= SEQUENCE {
 lights ExteriorLights OPTIONAL, -- Exterior Lights
 lightBar LightbarInUse OPTIONAL, -- PS Lights

 wipers SEQUENCE {
 statusFront WiperStatusFront,
 rateFront WiperRate,
 statusRear WiperStatusRear OPTIONAL,
 rateRear WiperRate OPTIONAL
 } OPTIONAL, -- Wipers

 brakeStatus BrakeSystemStatus OPTIONAL,

Figure 2.9: J2735 BSM ASN.1 Notation

GPS position and the vehicle motion readings. In case of the blob defined in Figure 2.9, a large

number of other data items must be built up in the correct order [25]. It should be noted that

the ASN.1 library does not perform content checking for such blobs, only the length is checked.

Any additional checking becomes the responsibility of the application layer to perform.

2.7 National Transportation Communication for ITS Protocol (NTCIP)

The NTCIP is a family of standards for transmitting data and messages between different

devices used in ITS [27]. It is the key to managing the ITS infrastructure. According to

the American Association of State Highway and Transportation Officials (AASHTO), the

Institute of Transportation Engineers (ITE), and the National Electrical Manufacturers As-

sociation (NEMA), the NTCIP allows for interoperability and interchangeability between com-

puters and electronic traffic control equipment from different manufacturers [30]. On one hand,

interoperability refers to the capability of placing different types of devices on the same com-

munication circuit. On the other hand, interchangeability means the capability to use different

brands or models of the same device within a system. The NTCIP compliant devices exchange

17

data interpreted through common communication interfaces. For a successful communication,

the same specification is used at each end of a data transmission, which is called a commu-

nication protocol. It is somehow analogous to a language consisting of a set of alphabets,

vocabulary, and grammar rules [27].

The NTCIP 1202 - Actuated Signal Controller (ASC) defines an open and standard commu-

nications protocol for data exchange between software applications and traffic signal hardware.

It defines elements for controlling, managing, and monitoring actuated traffic signal controller

units such as phases, detectors, coordination, time base control, and preemption. NTCIP pro-

vides communications standards for two fundamentally different types of ITS communications,

which will be discussed next.

Center to Field (C2F) Communications: This type of communication normally involves

devices at the roadside communicating with a central management system. An example of this

type of communications is a traffic signal management system communicating with traffic signal

controllers at the intersection. Other examples that include C2F are a traffic management

system controlling CCTV cameras, advisory radio transmitters, environmental sensors, and

traffic count stations on roadways.

Center to Center (C2C) Communications: In this type of communications, messages

are send between two or more central management systems. C2C involves peer-to-peer com-

munications between any number of system computers in many-to-many networks [27], which

is similar to the Internet. The role of NTCIP in the National ITS Architecture is shown in

Figure 2.10.

For both C2F and C2C applications, NTCIP supports systems and devices used in traffic,

transit, emergency management, traveler information, and planning systems. Figure 2.11 il-

lustrates how various transportation management systems and devices can be integrated using

NTCIP.

2.8 NTCIP Standards Framework

Similar to the layering approach to data communications adopted by the International Orga-

nizations of Standards (ISO), NTCIP uses a layered approach to communications standards.

The Open Systems Interconnection (OSI) Reference Model defines seven layers, each being re-

sponsible for performing a particular role in the transmission of data over a medium. NTCIP

18

Figure 2.10: NTCIP and National ITS Architecture (Source: [27])

Figure 2.11: ITS Integration Using NTCIP (Source: [27])

uses the term “levels” instead of “layers” to distinguish the hierarchical architecture from those

defined by the ISO. The five NTCIP levels are Information Level, Application Level, Transport

Level, Subnetwork Level and Plant Level. Figure 2.12 illustrates the five levels of the NTCIP

framework and Figure 2.13 shows the mapping of NTCIP levels to the OSI layers. These levels

are described below.

19

Figure 2.12: NTCIP Framework

Figure 2.13: OSI Layers and NTCIP Levels mapping

(i) Plant Level: The Plant Level includes the communications infrastructure over which the

NTCIP communication standards are to be used. This level consists of the physical transmission

media used for communication. It includes copper wire, coaxial cable, fiber optic cable, wireless,

and twisted pair. This plant level selection will have a direct impact on the selection of an

20

appropriate Subnetwork Level with which it must interface. However, the NTCIP standards

do not prescribe any one media type over another, it is totally an infrastructure choice.

(ii) Subnetwork Level: This Level defines the rules and procedures for exchanging data

between two adjacent devices over a chosen communications medium. These standards are

roughly equivalent to the Data Link and Physical Layer of the OSI model. This level also

contains standards for the physical interfaces, e.g., modem, network interface card, and the

data packet transmission methods, such as Point-to-Point Protocol (PPP), Ethernet, or Point-

to-Multi-Point Protocol (PMPP).

(iii) Transport Level: The transport level contains standards for data packet subdivision,

packet reassembly, and routing, when needed, e.g., TCP, UDP, or IP. The transport level is

roughly equivalent to the Transport and Network Layers of the OSI model.

(iv) Application Level: This level contains standards for the data packet structure and

session management, e.g., Simple Network Management Protocol (SNMP), Simple Transporta-

tion Management Protocol (STMP), File Transfer Protocol (FTP), or Trivial File Transfer

Protocol (TFTP). These standards are roughly equivalent to the Session, Presentation and

Application Layers of the OSI model.

(v) Information Level: The Information Level contains standards for the data elements,

objects, and messages that need to be transmitted. This level comprises of C2C data dictionaries

and standard publications from the NTCIP 1200 series, which is illustrated in Figure 2.12. This

is similar to defining a dictionary and phrase list within a language. These standards are above

the traditional ISO seven-layer OSI model and represent the functionality of the system to be

implemented.

2.9 SNMP, MIBs and OIDs

The Simple Network Management Protocol [31], SNMP, is a popular protocol for network

management. It allows servers to share information about their current state. Additionally,

SNMP also provides a channel through which an administer can modify pre-defined values.

The SNMP is an application-level protocol initially designed by the Internet community to run

over UDP/IP. However, it can be forced to run over TCP/IP. It is a simple, but bandwidth

21

inefficient protocol for Center to Field (C2F) applications. This protocol is suitable only for

networks with high bandwidth or low volumes of messages.

The SNMP consists of an SNMP Manager, Managed Devices, SNMP Agents and Man-

agement Information Database or a Management Information Base (MIB) that are explained

below.

(i) SNMP Manager: An SNMP manager is a separate entity that is configured to poll

an SNMP agent for information. It sends query requests to SNMP agents. This entity is

mainly responsible for getting responses from agents and setting variables in agents. The com-

mands defined in the SNMP protocol include GetRequest, GetNextRequest, GetBulkRequest,

SetRequest, InformRequest, and Response.

(ii) Managed Devices: Managed devices are the network nodes that require some form of

monitoring and management. Such devices include routers, switches, servers, workstations,

and printers. These nodes implement SNMP interfaces that allow unidirectional (read-only) or

bi-directional (read and write) access to node-specific information.

(iii) Agent: An SNMP agent is a program that runs on a managed device. It gathers infor-

mation about the local system and stores it in a format that can be queried. The agent collects

the Management Information Base (MIB) from the device locally and makes it available to the

SNMP manager. An agent configures which managers should have access to its information.

The agents respond to commands defined by the SNMP protocol.

(iv) Management Information Base (MIB): The MIB is a hierarchical, pre-defined struc-

ture that stores information that can be queried. An MIB module defines a collection of appli-

cation specific objects. It contains a standard set of control values defined for hardware nodes

on a network. SNMP allows the extension of these standard values with values specific to a

particular agent through the use of private MIBs.

The MIB is a top-down hierarchical tree, where each node is labeled with an identifying

number or string. The identifying number and string for a node should be unique for a particular

level of the hierarchy. Successive identifiers of the nodes, starting at the root of the tree, identify

each node in the tree by forming a series of unique identifications separated by dots. This address

is known as an Object Identifier (OID). MIBs are comprised of managed objects, which are

22

Root

CCITT(0) ISO (1)

Standard(0) Reg. Authority (1) Member Body (2) Organization (3)

DOD(6)

Internet (1)

Directory(1) MGMT(2) Experimental(3) Private(4)

Enterprise (1)

NEMA (1206)

Private (3)

Peek (1)

Naztec (2)

Siemens (17)

Transportation (4)

Devices (2)

Global (6) ASC (1)

Phase (1)

Phase Table (2)

Phase Entry (1)

Min Green (4)

Security (5) SNMP V2(6)

Joint ISO CCITT(2)

Figure 2.14: Object Identifier for Min Green (1.3.6.1.4.1.1206.4.2.1.1.2.1.4)

identified by the OID and uniquely represent specific characteristics of a managed device. In the

MIB, every Object ID is organized hierarchically, which can be represented in a tree structure

with individual variable identifier. Typically, an Object ID is a dotted list of integers. For

example, the OID for “Min Green” is: 1.3.6.1.4.1.1206.4.2.1.1.2.1.4. The tree structure for this

OID is shown in the Figure 2.14. The path of “Min Green” is identified by green fields in the

figure.

23

2.10 Traffic Signal Timing

Traffic system timing will be explained using a specific example. Consider a four-way intersec-

tion with one main street and a crossing side street, as shown in Figure 2.15. The main street

is assumed to be busy in comparison to the side street. The figure also shows a state diagram

of traffic signals for this intersection, one on the main street and the other on the side street.

Note that for a single traffic light only one color is displayed at a time. The logical progression

between the four states can be seen in the figure.

Figure 2.15: Traffic Signal Control at four way intersection

In State 1, the main street signal is Green and the side street signal is Red. This state

persists for at least the minimum green time or as long as there is no vehicle waiting on the

side street, assuming vehicle detection capability. But, if there is a vehicle waiting in the side

24

street and the minimum green time has passed, the waiting vehicle should get a chance to pass

the intersection. Therefore, in the next state, i.e., State 2, other vehicles in the main street are

warned about the changing light. This transition should last for an appropriate time. Now,

every vehicle on the main street has been warned about the changing light. So, in State 3, the

main street signal turns Red and the side street signal turns Green, which allows the vehicle

waiting in the side street to pass the intersection. This transition is going to last at least for

another minimum green time period or as long as vehicles are detected in the side street, but

not larger than the “Max Green” time. In State 4, the side street signal turns yellow warning

about the changing light. Finally, the state transition goes from State 4 to State 1. This

indication to a particular traffic or pedestrian link is known as a Phase, which is basically a

green interval plus the change and clearance intervals that follow it. The concept of phases is

illustrated in Figure 2.16. Usually, a four-way intersection with two lanes consists of 8 phases.

Even numbered phases (2, 4, 6, 8) imply going straight, whereas the odd numbered phases (1,

3, 5, 7) are for taking a left turn.

Figure 2.16: Phase Information

Traffic Signal Timing is a technique used to determine the right-of-way at an intersection.

Signal timing involves decisions that the traffic lights shall provide. Such decision can be a

25

green time and/or pedestrian walk signal. There are various modes, Pre-timed or Actuated

(semi, fully), that a traffic signal can operate in, as will be described next.

2.10.1 Pre-Timed Operation

In pre-timed control, there is a series of intervals that are fixed in duration. Each signal phase is

serviced in a programmed sequence, which is repeated. Therefore, the traffic signal behavior at

such fixed cycle length intersection is a deterministic sequence, which changes its signal state,

e.g., from green to yellow to red. Pre-timed control is suitable for closely spaced intersections

with consistent traffic volumes and patterns [36].

2.10.2 Actuated Operation

Vehicle detection in actuated control is used for providing information about the traffic demand

to the controller. In response to the vehicle detectors, the intervals in the controller are called

and extended. Modern traffic signal controllers are designed for actuated operation. Actuated

signals consist of two types: semi-actuated and fully-actuated.

While driving a vehicle, drivers only see the cycle of changing Green, Yellow, and Red colors

in traffic lights at the intersection. The timing of such transitions is explained in Figure 2.17.

Primarily, there are three parameters, i.e., minimum green, maximum green and extension

time, which play an important role in such transition. A signal remains green for at least the

Minimum Green time. At the very end of the Minimum Green time, if a vehicle is detected

by the vehicle detection technology, a request for more time is sent to the traffic controller so

that the detected vehicle can pass the intersection. It should be noted that the total green

time, including extension times, can not exceed the maximum green time. Traffic signals at the

intersection change their state from green to yellow, to red and this cycle continues. Timing

periods for such parameters must be NTCIP compliant, and requests for timing periods violating

this compliance are ignored. As a result, it cannot be that a yellow period of a “split second”

is initiated, which most certainly would be hazardous.

(a) Semi-Actuated: In Semi-actuated, vehicle detectors are installed on the minor street,

whereas the traffic signal on the major street remains green. The signal or phase associated

with the major road is non-actuated, i.e., detection information is not provided. In contrast to

the pre-timed control, semi-actuated control reduces delay due to the availability of actuated

control on the minor streets. However, continuous vehicle calls on the phases associated with

26

Figure 2.17: Signal Timing

minor streets can cause excessive delay to the major road. Therefore, maximum green and

passage time parameters should be set appropriately.

(b) Fully-Actuated: In Fully-Actuated control, all phases at the intersection are actuated

by vehicle detection loops and/or pedestrian push buttons. This type of actuated operation

is highly suitable for the intersections with high traffic density and nondeterministic traffic

patterns that vary especially during the day time. It also helps improve performance at the

intersections with lower traffic volume. This results in fewer stops, which ultimately leads to a

decrease in fuel consumption.

27

Chapter 3

System Architecture

3.1 System Hardware Configuration

The modern traffic intersection is a blend of various controllers, sensors, and networking devices.

In the ITS, which plays an important role in safety and traffic management, the traffic signal

controllers are a core component. This project uses the Econolite Advanced System Controller

Series 3 (ASC/3-2100) model, which is currently installed in many intersections. It provides

NTCIP compliance and most advanced and innovative traffic technologies.

Figure 3.1: System Hardware Configuration

The proposed hardware architecture of the ETSS is shown in Figure 3.1. The traffic con-

troller, which is housed in a metal cabinet and placed near an intersection, is the core of this

architecture. Information such as red, yellow, and green timing, along with the coordination

plan timing, are all stored in this device. Furthermore, it reads sensor inputs and controls

the traffic lights. In order to determine the current state of the traffic lights, sensors are con-

28

nected directly to the controller, allowing it to combine vehicle detection information with

preprogrammed timing controls [37]. The controller is connected to a networking device, e.g.,

a router, using an Ethernet cable.

Another key component in the architecture shown in Figure 3.1 is the RSU. It is an add-on

component, powered by a Power over Ethernet (PoE) injector, which is connected to the same

network. The PoE passes electrical power along with data on the Ethernet cable. The injector

consists of two ports - “Data IN” and “Data OUT”. The Data IN port is connected to the

Ethernet hub, the router, and Data OUT port is connected to the PoE device, the RSU. As

discussed in Section 2.1, in ETSS, the RSU first collects BSMs from vehicles equipped with

OBUs. Then it executes the ETSS algorithm to determine potential action, in which case it

sends a command to the traffic controller, e.g., a green extension.

The final component in this architecture is a workstation or a monitor1, which is an optional

component. It should be noted that it is not necessary to have the workstation near every metal

cabinet in the intersection. They can be placed remotely and should be able to access the RSU

in order to execute various RSU commands, such as starting or halting an application. This

workstation could be placed in a traffic center that monitors various traffic signals around the

city.

3.2 Software Architecture and Communications

The software architecture of ETSS is shown in Figure 3.2. It consists of three components: an

On Board Component, a Road Side Component, and a Traffic Controller Component. The On

Board Component communicates only with a Road Side Component, whereas the Road Side

Component communicates with both, the On Board, and the Traffic Controller Components.

There is no way for an On Board Component to directly communicate with the Traffic Controller

Component.

As shown in the figure, the architecture as a whole consist of a total of seven modules, where

three modules are in the On Board Component, and four are in the Road Side Component.

Each module is assigned to a specific task as described below.

1Workstation is an optional module for configuration and observation. It is not part of a functioning eco-traffic
signal system.

29

Figure 3.2: Software Architecture

A) On Board Component: The vehicle’s OBU implements the following modules in ETSS.

Once OBUs will be installed in production vehicles, these modules do not have to be explicitly

implemented, as their functionality will be already available from the car manufacturer.

i) GPS Receiving Module: The OBU equipped with a GPS device is used as a navigation

device for a vehicle. This module is mainly responsible for polling the vehicle’s current

GPS coordinates and the speed.

ii) BSM Creation Module: After receiving the longitude, latitude, elevation, and speed

from the GPS Receiving Module, the BSM Creation Module creates and encodes a BSM.

Implementation details about structuring a BSM will be discussed in Section 3.2.1.

iii) Tx Module: This module takes the encoded BSM and transmits it over the DSRC safety

channel. It also logs the number of BSMs transmitted.

B) Road Side Component: The RSU is responsible for providing the following modules,

which, unlike the OBUs above, will need to be implemented for ETSS.

i) Rx Module: This module continuously senses the DSRC safety channel for BSMs trans-

mitted by Tx Modules of OBUs. During this polling, it furthermore logs the total number

of packets received.

ii) Polling Module: This is a module in the roadside component that communicates bidi-

rectionally with the traffic controller. Specifically, after a BSM is received, and provided

30

the BSM is of a qualifying vehicle, it polls the traffic controller for the current status of

the green light in all available phases of the intersection.

iii) Logic Calculation Module: Based on the status of the green signal and the received

BSM, this module processes the data and calculates metrics such as the velocity of the

vehicle, its distance from the intersection, and the projected time to reach the intersection.

An algorithm, which will be described in Subsection 3.3.4, then determines if the Green

Signal Extension Module, described next, should be activated or deactivated.

iv) Green Signal Extension Module: This module issues the Green Signal Hold command

to the traffic controller if instructed by the Logic Calculation Module to extend the green

light. Such hold command has an impact of a brief duration of time. If no further hold

command is issued, e.g., by subsequent requests of the Logic Calculation Module, the

hold is deactivated automatically after the brief duration. Alternatively, the green signal

hold could be terminated forcefully by a command phaseControlGroupForceOff.

C) Traffic Controller Component: This component communicates with the Polling Mod-

ule and the Green Signal Extension Module of the roadside component in the RSU. There are

mainly two tasks this component is designed to perform. In the first task, a value representing

the current status of the green signal in all phases is sent to the Polling Module. The second

task of this component is to receive a request to hold the green signal for a particular phase.

This request is sent to the traffic controller by the Green Signal Extension Module of the Road

Side Component. The traffic controller addresses such request sent by issuing a signal hold

command only if the green signal is on. Otherwise, the request is discarded. It should be

noted that the ETSS does do not require any modifications to the traffic controller hardware

or software. It simply reads the timing parameters from the traffic controller and may issue

configuration changes.

3.2.1 Creating a Basic Safety Message

The basic structure of a BSM has been discussed in Section 2.6. The usage of these beacon

messages is shown in Figure 3.3, where the OBU of the Remote Vehicle (RV) transmits BSMs

and the OBU of the Host Vehicle (HV) receives the BSMs at regular intervals. The basic steps

for creating and encoding a BSM is shown in Algorithm 1.

31

Figure 3.3: Host Vehicle and Remote Vehicle

Algorithm 1 Constructing a Basic Safety Message Algorithm

1: procedure buildWSMRequestPacket()
2:

3: bsm.msgID.buf [0]← DSRCmsgID basicSafetyMessage
4: bsm.blob1.size← 38
5:

6: / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗PART I ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/
7: bsm.blob1.buf [0] = count % 127
8: memcpy(bsm.blob1.buf + 1, val, 4)//setTemporaryID
9: memcpy(bsm.blob1.buf + 5, val, 2)//setSecMark

10: memcpy(bsm.blob1.buf + 7, val, 4)//setlatitude
11: memcpy(bsm.blob1.buf + 11, val, 4)//setlongitude
12: memcpy(bsm.blob1.buf + 15, val, 2)//setelevation
13: memcpy(bsm.blob1.buf + 17, val, 4)//setacceleration
14: memcpy(bsm.blob1.buf + 21, val, 2)//setSpeed
15: memcpy(bsm.blob1.buf + 23, val, 2)//setHeading
16: memcpy(bsm.blob1.buf + 25, val, 1)//setAngle
17: memcpy(bsm.blob1.buf + 26, val, 7)//setAccelerationSet
18: memcpy(bsm.blob1.buf + 33, val, 2)//setBreakStatus
19: memcpy(bsm.blob1.buf + 35, val, 3)//setvehicleSize
20:

21: / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗PART II ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/
22: vhType.buf [0]← [0..15]
23: vehicleIdent.vehicleType← vhType
24: status.vehicleIdent← vehicleIdent
25: bsm.status← status
26:

27: Encode using der encode to buffer()

The first level of a BSM is DSRCMsgID. It differentiates one message type from another.

According to standard SAE J2735 the value for a basicSafetyMessage is 2, which was shown in

Figure 2.8. This value is assigned to the message id of a BSM in Line 3 of Algorithm 1. The

second level of the discrete part of a BSM is BSMBlob. It consists of 38 bytes, packed with

information like message count, temporary id, timestamps in milliseconds, position, motion,

32

brake status, and vehicle size. The latitude, longitude, and speed from Part I of the BSM are

important elements for the ETSS. The third and fourth levels of a BSM form it’s Part II and

are optional. However, in ETSS, the fourth level, i.e., VehicleStatus, is an important field.

The VehicleStatus element is defined as DE VehicleType in SAE J2735 [25]. A numerical value

referring to the vehicle type of an RV is encapsulated in the VehicleStatus element. This value

is stored in a variable vhType, which is shown in Line 22 of the algorithm. The default value for

this variable is 0 (zero), meaning that the vehicle type is not known. The value to be assigned

to a vehicle type depends on the type of vehicle. SAE J2735 defines 16 entries for vehicle types,

from 0 to 15, as shown in Table 3.1. Graphical representation of each vehicle types is shown in

Figure 3.4. Since ETSS considers only heavy loaded vehicles, the vehicle type should be given

a value in a range between 7 and 15, inclusive.

After creating the BasicSafetyMessage, the packet is encoded into an Abstract Syntax

Notation (ASN) format. This encoding is done with the help of a Distinguished Encoding

Rules (DER) encoder using the der encode to buffer() function, which is shown in Line 27.

BasicSafetyMessage is an abstract data type. Lines 7 to 19 of this algorithm explain how

data is stored in their respective placeholders in a BSM. As explained earlier, the latitude,

longitude, and speed mentioned in Line 10, Line 11, and Line 14 respectively, are the most

important information for ETSS. Details on obtaining those fields are explained below.

Listing 3.1: Calculation Logic for Longitude and Latitude

1 i f (wsmgps . l a t i t u d e == 0) {
2 l a t i t u d e v a l = 900000001;
3 } else {
4 l a t i t u d e v a l = (long) ((wsmgps . l a t i t u d e) * 10000000) ;
5 }
6

7 i f (wsmgps . l ong i tude == 0) {
8 l o n g i t u d e v a l = 1800000001;
9 } else {

10 l o n g i t u d e v a l = (long) ((wsmgps . l ong i tude) * 10000000) ;
11 }

Latitude and Longitude Calculation: The Data Elements DE Latitude and DE Longitude

shown in Figure 3.5 are described in standard SAE J2735. The GPS receiver might provide an

invalid location of the OBU if a value fault is experienced. Not receiving a GPS signal could

also result in invalid values for latitude and longitude. To avoid such scenarios, maximum range

values allowed by the standard for those metrics are set. According to standard SAE J2735,

latitude and longitude should be represented in 1/10 micro degrees. The values of latitude and

33

Figure 3.4: Vehicle Classification (adapted from [38])

longitude are obtained by multiplying the corresponding valid data obtained from the GPS

device by 10,000,000 (i.e. 1/10 micro), as shown in Listing 3.1. The maximum range of values

34

Table 3.1: List of Vehicle Types

Value Vehicle Type Description

0 VehicleType none Not Equipped, Not known or unavailable

1 VehicleType unknown Does not fit any other category

2 VehicleType special Special use

3 VehicleType moto Motorcycle

4 VehicleType car Passenger car

5 VehicleType carOther Four tire single units

6 VehicleType bus Buses

7 VehicleType axleCnt2 Two axle, six tire single units

8 VehicleType axleCnt3 Three axle, single units

9 VehicleType axleCnt4 Four or more axle, single unit

10 VehicleType axleCnt4Trailer Four or less axle, single trailer

11 VehicleType axleCnt5Trailer Five or less axle, single trailer

12 VehicleType axleCnt6Trailer Six or more axle, single trailer

13 VehicleType axleCnt5MultiTrailer Five or less axle, multi-trailer

14 VehicleType axleCnt6MultiTrailer Six axle, multi-trailer

15 VehicleType axleCnt7MultiTrailer Seven or more axle, multi-trailer

for the latitude is ±90◦, i.e. −900, 000, 000 to 900, 000, 001. Similarly, the maximum range of

values for the longitude is ±180◦, i.e. −1800, 000, 000 to 1800, 000, 001.

Figure 3.5: Data Elements for Latitude and Longitude

Speed Calculation: The ETSS requires the Data Frame DF TransmissionAndSpeed. This

frame stores the Data Elements DE TransmissionState and DE Speed, which are shown in

Figure 3.6. According to standard SAE J2735 DF TransmissionAndSpeed is a string of two

35

bytes (16 bits). The 3 most significant bits (bits 16 - 14) are for the Transmission State and

the remaining 13 bits (bits 13 - 1) are for the Speed. In our case the latter is obtained from the

GPS device2.

Figure 3.6: Data Frame and Data Element for Transmission and Speed

If the GPS device receives invalid data, the transmission state and speed will be calculated

using the maximum speed allowed by the standard. The maximum value allowed for the speed

is (213 − 1), i.e. 8191, based on the 13 bits allowed for storing a value of the speed. According

to standard SAE J2735, a value of 8191 for data element DE Speed indicates that the speed is

unavailable, which is shown in Figure 3.6. The derivation of the Transmission State and Speed

is shown in Figure 3.7. Level L0 of the figure depicts the original data of 13 bits, representing

the speed of the vehicle as obtained from the GPS device. The transmission state and speed

needs 16 bits, as required by the standard SAE J2735. Therefore, 3 preceding zeros are added

to the original data in Level L0 to create a new data stream of 16 bits as shown in Level L1.

Two sets of operations are performed in this newly created stream of 16 bits data, each set

producing 8 bits.

In Set B, a mask of 0x00FF in Level L2 is used in an AND operation with the data in Level

L1 to get the result in Level L3, as shown in the figure. At Level L4, 8 bits of data are extracted

from the data by ignoring preceding 8 zeros available in the data stream at Level L3.

2This may be different in future production vehicles, as the information may be provided from the vehicles
themselves.

36

Figure 3.7: Calculating Speed and Transmission

In Set A, a mask of 0xFF00 in Level L2 is used to extract the 8 leftmost bits of the data

from Level L1. This AND operation, however still results in 16 bits in Level L3 with the 8

rightmost bits of this steam being all zeros. Each bit at Level L3 is then shifted right 8 times,

as shown in Level L4. At Level L5, the preceding 8 zeros are ignored and only the rightmost

8 bits are considered for further operations. The extracted 8 bits at Level L5 are now OR’ed

with a mask of 0xE0 and the result is stored at Level L6. This mask 0xE0, i.e., 111000002, is

currently a static value in ETSS, and the three most significant bits of this mask are all 1s,

which indicates that the transmission state is currently unavailable. Later, the value of this

mask should be obtained dynamically based on the input provided by sensors available in the

vehicle.

Finally, the result in Level L6 of Set A and the result in Level L4 of Set B is brought

together in Level L7, which represents the transmission state and the speed of the vehicle. In

37

summary, as shown in Figure 3.7, the three most significant bits of the result from Set A are

the transmission state, whereas the remaining 13 bits from both Set A and Set B represent

the speed as specified by Standard SAE J2735. Note that the speed of a vehicle is an integer

representing units of 0.02 m/s (i.e. 1
50 = 0.02). Therefore, the value received for speed should

be multiplied by 50 before performing the operation above at Level L0. The implementation of

the above-described approach using the C programming language is shown in Listing 3.2.

Listing 3.2: Calculation Logic for Transmission State and Speed

1 i f (wsmgps . speed != GPS INVALID DATA) {
2 t r an smi s s i on speed [0] = (u i n t 8 t) (((u i n t 8 t) (wsmgps . speed

*50) & 0xFF00) >> 8) ;
3 t r an smi s s i on speed [1] = (u i n t 8 t) (((u i n t 8 t) (wsmgps . speed

*50) & 0x00FF)) ;
4 t r an smi s s i on speed [0] = t ransmi s s i on speed [0] | 0xE0 ;
5 }
6 else {
7 t r an smi s s i on speed [0] = ((8191 & 0xFF00) >> 8) ;
8 t r an smi s s i on speed [1] = (8191 & 0xFF00) ;
9 t r an smi s s i on speed [0] = t ransmi s s i on speed [0] | 0xE0 ;

10 }

3.2.2 Transmit Basic Safety Message

The general mechanism for a BSM transmission is given in Algorithm 2. The main idea behind

the algorithm is to get valid GPS information, create a BSM, transmit this packet and log the

total number of packets transmitted. This algorithm begins by defining two variables count and

drops in Line 2 and Line 3 respectively. These variables are initially set to zero. It should be

noted that the number of packets that were not transmitted for some reason was also logged.

However, such scenario was never observed.

First of all, the most recent valid GPS information about the RV is extracted, as shown in

Line 6 of Algorithm 2. Then, a BSM packet is created. Creation of a BSM has been described

in Section 3.2.1. The function txWSMPacket(int pid, WSMRequest *req) in Line 8 allows the

application to pack a WAVE Short Message (WSM) packet, i.e., WSMPacket and pass a

pointer to it for transmission. Based on the status of the transmission of every packet, either

the packet sent (count) or the packet non-transmitted (drops) counter is increased by 1.

3.2.3 Receive Basic Safety Message

The steps to extract the BSM transmitted from the RV is shown in the Algorithm 3. This

algorithm also explains how the received packets are decoded. Furthermore, the algorithm

38

Algorithm 2 Transmit Basic Safety Message Algorithm

1: procedure txWSMPPkts(pid)
2: count← 0
3: drops← 0
4:

5: while 1 do
6: if (getGPSInfo() == 0) then
7: buildWSMRequestPacket()
8: if (txWSMPacket(pid, wsmreq) < 0) then
9: if drops > (maxInt− 1) then

10: drops = 0
11: drops← drops+ 1
12: else
13: drops← drops+ 1

14: else
15: if count > (maxInt− 1) then
16: count = 0
17: count← count+ 1
18: else
19: count← count+ 1

implements the steps outlined in the Rx Module of the Road Side Component, which was

described in Section 3.2.

Algorithm 3 Receive Basic Safety Message Algorithm

1: procedure rxClient()
2: count← 0
3: pid← getpid()
4:

5: while 1 do
6: if (rxWSMMessage(pid, rxmsg) > 0) then
7: extract contents
8: decode bsm using ber decode
9: if count > (maxInt− 1) then

10: count = 0
11: count← count+ 1
12: else
13: count← count+ 1

From an implementation point of view, the algorithm to receive a BSM seems to be much

simpler than that for transmitting BSMs. The HV receives the WSM packets using the rxWS-

MMessage() function as shown in Line 6 of the algorithm. Received packets are in ASN encoded

format, and they are decoded using the generic Basic Encoding Rules (BER) decoder, i.e., ber -

decode(). Variable count defined in Line 2 will be incremented by 1 for every successful reception

39

of the BSM. An attempt to receive a BSM is a continuous poll. In the absence of RVs in the

surrounding of the HV, there is a chance for many blank polls, where nothing is received 3.

3.3 Communication with Traffic Controller

In this section, first we list all the object identifiers that will be used in the implementation.

Then various data structures along with some support functions that have been created will be

explained. Finally, the mechanism to access the traffic controller will be discussed.

3.3.1 NTCIP Objects

Selected NTCIP Global Objects that were used in ETSS are listed in Table 3.2 and will be

discussed next. A complete list of such objects is provided in Appendix D.

Table 3.2: List of NTCIP Objects

NTCIP 1202 OID Object Name Accessibility

1.3.6.1.4.1.1206.4.2.1.1.4.1.1 phaseStatusGroupNumber read-only

1.3.6.1.4.1.1206.4.2.1.1.4.1.2 phaseStatusGroupReds read-only

1.3.6.1.4.1.1206.4.2.1.1.4.1.3 phaseStatusGroupYellows read-only

1.3.6.1.4.1.1206.4.2.1.1.4.1.4 phaseStatusGroupGreens read-only

1.3.6.1.4.1.1206.4.2.1.1.5.1.4 phaseControlGroupHold read-write

1.3.6.1.4.1.1206.4.2.1.1.5.1.5 phaseControlGroupForceOff read-write

phaseStatusGroupNumber: This row stores a read-only integer, which contains the Phase

StatusGroup number of objects [27]. This value shall not exceed the maximum number of

phase groups. The Actuated Controller Unit used during this research project supports a

maximum of 8 phases per group. The value for phaseStatusGroupNumber is equal to TRUN-

CATE[(maxPhases + 7) / 8].

phaseStatusGroupGreens: This is a read-only object that provides a value representing

the status of a green signal in all phases at an intersection. It stores an integer ranging from 0

to 255. When a bit is 1, the Phase Green is currently active. When a bit is 0, the Phase Green

is NOT currently active. The bits are interpreted as follows:

3The reason for using polling, rather than interrupt driven operation for sensing available packets, was due
to the DSRC equipment manufacturers’ [ARADA] software.

40

Bit 7 = Phase number = (phaseStatusGroupNumber * 8)

Bit 6 = Phase number = (phaseStatusGroupNumber * 8) - 1

Bit 5 = Phase number = (phaseStatusGroupNumber * 8) - 2

Bit 4 = Phase number = (phaseStatusGroupNumber * 8) - 3

Bit 3 = Phase number = (phaseStatusGroupNumber * 8) - 4

Bit 2 = Phase number = (phaseStatusGroupNumber * 8) - 5

Bit 1 = Phase number = (phaseStatusGroupNumber * 8) - 6

Bit 0 = Phase number = (phaseStatusGroupNumber * 8) - 7

When the traffic controller is queried for the phaseStatusGroupGreens, it returns an integer

value. The equivalent 8 bit binary number for the integer returned by the traffic controller can

be used to identify phases that have their green signal on. This mapping between the individual

bit with the associated phase number can be obtained by the above relation. As can be seen

in above expression, phaseStatusGroupNumber is required to determine the relation between a

bit and a phase. The formula to calculate the value for phaseStatusGroupNumber is given by:

phaseStatusGroupNumber = TRUNCATE[(maxPhases+ 7)/8].

If we consider a scenario with a traffic controller supporting a maximum of 8 phases, then

maxPhases = 8, and

phaseStatusGroupNumber = TRUNCATE[(8 + 7)/8], or

phaseStatusGroupNumber = TRUNCATE[1.875], results in

phaseStatusGroupNumber = 1.

When this value for phaseStatusGroupNumber is substituted in the above Bit/Phase num-

ber calculation logics, the Bit to Phase mapping is obtained as shown in Figure 3.8. As the

bit number increases from 0 to 7, the phase number for the corresponding bit decreases from

8 to 1. For example, let us assume the traffic controller is queried for phaseStatusGroupGreens

and it returned the value 3410. This value is equivalent to 001000102 and thus represents that

Phase 2 and Phase 6 have the Green Signal turned on.

Figure 3.8: Bits to Phases assignment

41

phaseControlGroupHold: This is a read-write object that is used to allow a remote entity

to hold phases in the device when they are Green. When a bit is 1, the device activates the

System Phase Hold control for that phase. When a bit is 0, the device does not activate the

System Phase Hold control for that phase. The bits are interpreted as follows:

Bit 7 = Phase number = (phaseControlGroupNumber * 8)

Bit 6 = Phase number = (phaseControlGroupNumber * 8) - 1

Bit 5 = Phase number = (phaseControlGroupNumber * 8) - 2

Bit 4 = Phase number = (phaseControlGroupNumber * 8) - 3

Bit 3 = Phase number = (phaseControlGroupNumber * 8) - 4

Bit 2 = Phase number = (phaseControlGroupNumber * 8) - 5

Bit 1 = Phase number = (phaseControlGroupNumber * 8) - 6

Bit 0 = Phase number = (phaseControlGroupNumber * 8) - 7

phaseStatusGroupReds: This is a read-only object that provides phase group red status.

It stores an integer ranging from 0 to 255. When a bit is 1, the Phase Red is currently active.

When a bit is 0, the Phase Red is NOT currently active. The bits are interpreted as follows:

Bit 7 = Phase number = (phaseStatusGroupNumber * 8)

Bit 6 = Phase number = (phaseStatusGroupNumber * 8) - 1

Bit 5 = Phase number = (phaseStatusGroupNumber * 8) - 2

Bit 4 = Phase number = (phaseStatusGroupNumber * 8) - 3

Bit 3 = Phase number = (phaseStatusGroupNumber * 8) - 4

Bit 2 = Phase number = (phaseStatusGroupNumber * 8) - 5

Bit 1 = Phase number = (phaseStatusGroupNumber * 8) - 6

Bit 0 = Phase number = (phaseStatusGroupNumber * 8) - 7

phaseStatusGroupYellows: This is a read-only object that provides phase group yellow

status. It stores an integer ranging from 0 to 255. When a bit is 1, the Phase Yellow is

currently active. When a bit is 0, the Phase Yellow is NOT currently active. The bits are

interpreted as follows:

Bit 7 = Phase number = (phaseStatusGroupNumber * 8)

Bit 6 = Phase number = (phaseStatusGroupNumber * 8) - 1

Bit 5 = Phase number = (phaseStatusGroupNumber * 8) - 2

42

Bit 4 = Phase number = (phaseStatusGroupNumber * 8) - 3

Bit 3 = Phase number = (phaseStatusGroupNumber * 8) - 4

Bit 2 = Phase number = (phaseStatusGroupNumber * 8) - 5

Bit 1 = Phase number = (phaseStatusGroupNumber * 8) - 6

Bit 0 = Phase number = (phaseStatusGroupNumber * 8) - 7

phaseControlGroupForceOff: This is also a read-write object similar to the phaseControl-

GroupHold. A phase hold command can be terminated in two ways: either by not sending

a phaseControlGroupHold command or by sending a phaseControlGroupForceOff. The latter

forcefully terminates the hold command on a per phase basis. When a bit is 1, the device

activates the System Phase Force Off control for that phase. When a bit is 0, the device does

not activate the System Phase Force Off control for that phase. After terminating the phase

green, the associated bit is set to 0. The bits are interpreted as follows:

Bit 7 = Phase number = (phaseControlGroupNumber * 8)

Bit 6 = Phase number = (phaseControlGroupNumber * 8) - 1

Bit 5 = Phase number = (phaseControlGroupNumber * 8) - 2

Bit 4 = Phase number = (phaseControlGroupNumber * 8) - 3

Bit 3 = Phase number = (phaseControlGroupNumber * 8) - 4

Bit 2 = Phase number = (phaseControlGroupNumber * 8) - 5

Bit 1 = Phase number = (phaseControlGroupNumber * 8) - 6

Bit 0 = Phase number = (phaseControlGroupNumber * 8) - 7

3.3.2 Data Structures

A keyword called typedef is used in the C programming language to give a type a new name.

All such identifiers used in ETSS are shown in Listing 3.3. Using typedef, one can give a name

to user defined data types as well. In ETSS, primitive data types such as char, unsigned char,

int, unsigned int, long and unsigned long, are all expressed as new user defined data type. The

convention is to express them as Int followed by a number that represents the total number of

bits used to store that particular data type. If the data type is unsigned, ‘U’ is inserted at the

beginning of the new user defined data type.

43

Listing 3.3: Typedef for some primitive data types

1 typedef char Int8 ;
2 typedef unsigned char UInt8 ;
3 typedef unsigned char Byte ;
4 typedef int Int16 ;
5 typedef unsigned int UInt16 ;
6 typedef long Int32 ;
7 typedef unsigned long UInt32 ;

Consider the typedef in Line 1. Here char is a data type that requires 8 bits to store data.

So it is expressed as Int8. UInt8 in Line 2 represents the unsigned version of Int8 in Line 1. As

a whole, a char is represented as Int8 in ETSS, int as Int16, and long as Int32. The unsigned

version of int and long are expressed as UInt16, and UInt32 respectively, whereas an unsigned

char can be represented either as UInt8 or a Byte.

Messages of the SNMP will be explained next. Each SNMP message contains a Protocol

Data Unit (PDU), which is used for communication between the SNMP manager and SNMP

agents. The ASN.1 structure of an SNMP Message is shown in Listing 3.4. It contains four

types of PDUs: GETREQUEST PDU [A0], GETNEXTREQUEST PDU [A1],GETRESPONSE

PDU [A2], and SETREQUEST PDU [A3]. The SNMP manager sends the GetRequest PDU to

retrieve one or more requested MIB variables and the GetNextRequest PDU to retrieve the next

MIB variable that is specified in the PDU [31]. The SNMP manager also sends the SetRequest

PDU to set one or more MIB variables specified in the PDU with the value specified in the

PDU. On the other hand, the GetResponse PDU is sent by the SNMP agent in response to a

GetRequest, GetNextRequest, or SetRequest PDU, which are sent by the SNMP manager.

Listing 3.4: SNMP Message structure

1 Message : := SEQUENCE {
2 v e r s i on INTEGER { vers ion −1(0) } ,
3 community OCTET STRING,
4 data CHOICE {
5 get−r eque s t GetRequest−PDU (with a data type value o f 0xA0) ,
6 get−next−r eque s t GetNextRequest−PDU (data type value = 0xA1) ,
7 get−re sponse GetResponse−PDU (data type value = 0xA2) ,
8 set−r eque s t SetRequest−PDU (data type value = 0xA3
9 }

10 }

Table 3.3 shows a sample byte stream used in various fields for the SetRequest PDU data.

The SNMP message fields for this PDU, which is sent over a typical UDP/IP Transport Profile

over an Ethernet Subnetwork profile, is shown in Figure 3.9. This message format is made up of

several layers of nested fields. In an SNMP message, the outer layer is a sequence representing

the entire SNMP message consisting of the SNMP version (Integer), Community String (Octet

44

Table 3.3: SetRequest-PDU (set-request)

Field Byte Stream

SEQUENCE - Type and Length (Value is be-
low)

[30][2f]

version - INTEGER of 1 byte, value 0 [02] [01] [00]

community - OCTET STRING of 6 bytes
(”public”)

[04] [06] [70] [75] [62] [6c] [69]
[63]

data - Type and Length (Value below) [a3] [22]

request-id [02] [01] [00]

error-status [02] [01] [00]

error-index [02] [01] [00]

variable-bindings SEQUENCE OF [30] [17]

SEQUENCE [30] [15]

name [06] [0d] [2b] [06] [01] [04] [01]
[89] [36] [04] [02] [06] [03] [01]
[00]

value [02] [04] [37] [31] [9a] [28]

String), and SNMP PDU (GetRequest, or SetRequest). The SEQUENCE has been always a

combination of sequence type i.e., 0x30 and the length or the number of bytes that follow. The

hexadecimal values for the most common types that are defined by the SNMP are listed below:

� INTEGER: 0x02

� OCTET STRING: 0x04

� NULL (Placeholder): 0x05

� OBJECT IDENTIFIER: 0x06

� SEQUENCE: 0x30

� COUNTER: 0x41

The SNMP Version field is represented as an Integer (0x02) of 1 byte (0x01) and the value

is zero (0x00). Similarly, the Community field is an Octet string (0x04) of 6 bytes (0x06) for

“public”, i.e., 0x70 0x75 0x62 0x6c 0x69 0x63. The SNMP PDU field contains the body of the

SNMP message. It consists of a PDU type, request id, error status, error index and variable

bindings. For a SetRequest PDU, the PDU type consists of a PDU tag of 0xA3, as explained

earlier in Listing 3.4, followed by the length representing a number of bytes that follow. The

Request Id is an Integer (0x02) that identifies a particular SNMP request. The error status

45

Figure 3.9: Set Operation Using SNMP Over UDP/IP/Ethernet

Table 3.4: SNMP Error codes

Error
Code

Description

[00] No error occurred

[01] Response message too large to transport

[02] The name of the requested object was not found

[03] A data type in the request did not match the data type in
the SNMP agent

[04] The SNMP manager attempted to set a read-only parameter

[05] General Error (some error other than the ones listed above)

field is also an Integer, which is set to 0x00 in the request sent by the SNMP manager. The

SNMP agent places an error code in this field in the response message if an error occurred while

processing the request. The list of error codes is shown in Table 3.4. If an error occurs, the

46

Error Index field holds a pointer to the Object that caused the error, otherwise the Error Index

is (0x00).

Listing 3.5: Data structure for the GetRequest PDU

1 typedef struct {
2 //********************SNMP MESSAGE FIELDS*************//
3 Byte seqTag ;
4 Byte seqLen ;
5 Byte vers ionTag ;
6 Byte vers ionLen ;
7 Byte ver s ionVa l ;
8 Byte communityNameTag ;
9 Byte communityNameLen ;

10 Byte communityNameVal [6] ;
11

12 //********************SET REQUEST PDU NUMBER**********//
13 Byte pduType ;
14 Byte pduLen ;
15 Byte requestIdTag ;
16 Byte r e q u e s t I d l e n ;
17 Byte request IdVal ;
18 Byte errorStatusTag ;
19 Byte er rorStatusLen ;
20 Byte e r ro rS ta tusVa l ;
21 Byte errorIndexTag ;
22 Byte errorIndexLen ;
23 Byte error IndexVal ;
24

25 //********************VARIABLE BINDINGS***************//
26 Byte seqVarBinding ;
27 Byte seqVarBindingLen ;
28

29 //********************BINDING************************//
30 Byte seqBinding ;
31 Byte seqLenOrId ;
32 Byte varTag ;
33 Byte varLen ;
34 Byte varId [1 5] ;
35 Byte varValueTag ;
36 Byte varValueLen ;
37 } SnmpMsgPublicOidGet ;

Listing 3.6: Data structure for the GetResponse PDU and SetRequest PDU

1 typedef struct {
2 //***************SNMP MESSAGE FIELDS****************//
3 Byte seqTag ;
4 Byte seqLen ;
5 Byte vers ionTag ;
6 Byte vers ionLen ;
7 Byte ver s ionVa l ;
8 Byte communityNameTag ;
9 Byte communityNameLen ;

10 Byte communityNameVal [6] ;
11

12 //*********SETREQUEST OR GETRESPONSE PDU NUMBER*****//
13 Byte pduType ;
14 Byte pduLen ;
15 Byte requestIdTag ;

47

16 Byte r e q u e s t I d l e n ;
17 Byte request IdVal ;
18 Byte errorStatusTag ;
19 Byte er rorStatusLen ;
20 Byte e r ro rS ta tusVa l ;
21 Byte errorIndexTag ;
22 Byte errorIndexLen ;
23 Byte error IndexVal ;
24

25 //**************VARIABLE BINDINGS******************//
26 Byte seqVarBinding ;
27 Byte seqVarBindingLen ;
28

29 //********************BINDING*********************//
30 Byte seqBinding ;
31 Byte seqLenOrId ;
32 Byte varTag ;
33 Byte varLen ;
34 Byte varId [1 5] ;
35 Byte varValueTag ;
36 Byte varValueLen ;
37 Byte varValueVal ;
38 } SnmpMsgPublicOidSizeOXOF ;

The Variable Bindings field is the nested field that consists of a SEQUENCE and another

nested field called VarBinds. The nested field VarBinds further contains a SEQUENCE, Object

Identifier and a Value. This Object Identifier field points to a particular parameter in the

SNMP agent. Finally, the Value field of the SetRequest PDU contains a value that is applied

to the specified OID of the SNMP agent. However, this value could vary for other PDUs. For

a GetRequest PDU, this value is set to NULL and acts as a placeholder for the return data,

whereas for a GetRequest PDU, the value in this field represents the returned value from the

specified OID of the SNMP agent.

Next, the data structures derived from the NTCIP 9001 Standard [27], which were explained

earlier for the PDUs, are presented in Listing 3.5 and Listing 3.6. With reference to the standard

NTCIP 9001 [27], there are two main data types defined. First, a 47 bytes SnmpMsgPublicOid-

Get shown in Listing 3.5 and is mainly used by the GetRequest PDU. Similarly, a 48 bytes

SnmpMsgPublicOidSizeOXOF is defined in Listing 3.6 and is used by either the GetResponse

PDU or the SetRequest PDU. The first 47 bytes of the SnmpMsgPublicOidSizeOXOF are all

identical to the bytes of the SnmpMsgPublicOidGet. One extra byte in SnmpMsgPublicOid-

SizeOXOF is used to store values obtained by the GetResponse PDU or the SetRequest PDU

via the SNMP agent.

48

Listing 3.7: SnmpMsgGet

1 union {
2 SnmpMsgPublicOidGet snmpMsg ;
3 char bu f f [SNMP MSG SIZE Get] ;
4 } SnmpMsgGet ;

Listing 3.8: SnmpMsgPOXOF

1 union {
2 SnmpMsgPublicOidSizeOXOF snmpMsg ;
3 char bu f f [SNMP MSG POID15 SIZE] ;
4 } SnmpMsgPOXOF;

Listing 3.9: SnmpMsgPOXOFresp

1 union {
2 SnmpMsgPublicOidSizeOXOF snmpMsgResp ;
3 char b u f f e r [SNMP MSG POID15 SIZE] ;
4 } SnmpMsgPOXOFresp ;

In any application, memory management is one of the main concerns in order to run a

program effectively and efficiently. The structures shown in Listing 3.5 and Listing 3.6 occupy

a fixed size memory of 47 bytes and 48 bytes respectively. Such a huge memory usage can affect

the performance of an application in the long run. The memory usage can be optimized to some

extent by using the concept of the union data structure in the C programming language. It

allows storing different data types in the same memory location. A union with many members

can be defined, but only one member can contain a value at any given time, thereby providing

an efficient way of using the same memory location for multiple purposes. The data structures

shown in Listing 3.7, Listing 3.8, and Listing 3.9 use this concept of union to effectively handle

memory usage. First, the union SnmpMsgGet shown in Listing 3.7 is used when the application

is sending a GetRequest PDU to the traffic controller. This union uses the SnmpMsgPublicOid-

Get structure from Listing 3.5. Next, the union SnmpMsgPOXOFresp, shown in Listing 3.9,

is used while the application actually gets some reply from the traffic controller, i.e., the Ge-

tResponse PDU. Finally, the union SnmpMsgPOXOF, shown in Listing 3.8, is used to send a

request to the traffic controller for changing some timing parameters in the controller, i.e., the

SetRequest PDU. Note that the variable SNMP MSG SIZE GET in Listing 3.7 is equivalent

to sizeof(SnmpMsgPublicOidGet), i.e., 47 bytes. Similarly, the variable SNMP MSG POID15 -

SIZE in Listing 3.8 and Listing 3.9 is equivalent to size(SnmpMsgPublicOidSizeOXOF), i.e., 48

bytes.

49

The last data structure that is introduced is for the Phase Status and is defined in List-

ing 3.10. This data structure keeps track of the status (1 for On and 0 for Off) of each color

(Red, Yellow, and Green) of the traffic light at each phase (1-8) in the ETSS. It contains 3

member variables: phaseNumber, phaseColor and phaseStat. The variable phaseNumber can

store values from 1 to a maximum number of phases (8 in our case). The variable phaseColor

stores a character either R for Red, Y for Yellow, and G for Green. The variable phaseStat

indicates if the selected color/signal in any phase is On (1) or off (0).

Listing 3.10: PhaseStatus

1 typedef struct {
2 int phaseNumber ; // 1 to 8 (MAXPHASE)
3 char phaseColor ; // R, Y, G
4 int phaseStat ; // 1 f o r ON and 0 f o r OFF
5 } PhaseStatus ;

3.3.3 Important C Functions in ETSS

In this section, important functions used to send and get requests to and from the traffic

controller are explained in more detail. This section includes the most important functions

that are used to initiate communication. It also explains some support functions used to set

values in the traffic controller as well as to get data from the traffic controller. Furthermore,

it contains a number of functions that are required to extract phase related information from

the traffic controller, such as, whether the green signal is on, or to get the current status of a

signal in a particular phase. Each of those functions will be explained in detail next.

Controller Access Utility Functions: Establishing a connection is the first step to perform

in many types of communication. Consider a client-server configuration, where the traffic

controller is the server, and the computer or RSU that requests data from the server is the

client. The server and client communicate via a socket. A socket is an endpoint of a two-

way communication link between two programs running on a network. It is bound to a port

number so that the TCP layer can identify the application that the data is destined to be sent

to. In general, an IP address along with a port number form a socket. Figure 3.10 shows the

client-server relation with sockets.

In a client-server communication, a client initiates the communication process, whereas the

server responds to incoming client requests. It should be noted that a server typically starts

before the client does, and waits for the client to request connections. Figure 3.11 shows the

50

Figure 3.10: Socket Concept

interaction between a server and a client as a flowchart, where every block in the flowchart has

an important role in the network connection. First, a server and client create a socket S. Then

the server binds the socket S to a local address, which is optional for a client. The server then

listens to the incoming connection requests from clients to alert the TCP/IP machine of the

willingness to accept connections. The client now connects socket S to a foreign host. By this

time, the server accepts the connection and receives a second socket NS. The server uses this

new socket NS, whereas the client uses socket S to read and write data by using sendto() and

recv() calls until all data has been exchanged. Finally, the server closes socket NS, the client

closes socket S and ends the TCP/IP session. The server again accepts a connection if there

are any pending connection requests from the client and this phenomenon continues.

Figure 3.11: Flowchart showing Socket Connection

51

Keeping these concepts of client-server communication in mind, a connection manager utility

has been created in the ETSS. Shown in Listing 3.11 are some important functions that are used

to establish the communication channel between a server and a client, which will be explained

next.

Listing 3.11: Functions for accessing Traffic Controller

1 void d s c i n i t g l o b a l v a r s (void) ;
2 void d s c i n i t (void) ;
3 Byte t c g e t (const unsigned char * oid , Byte phase) ;
4 Byte t c g e t g r o u p s (const unsigned char * o id) ;
5 Byte t c s e t (const unsigned char * oid , Byte phase , Byte va lue) ;
6 int getValue () ;

1. void dsc init global vars(void): The main purpose of this function is to initialize some

global variables. It initializes two socket status flags to keep track of the message sent to

the traffic controller and a message received from the traffic controller during the commu-

nication. This function also allocates 48 bytes for storing the SNMP GetResponse PDU

or/and SNMP SetRequest PDU information and 47 bytes for storing SNMP GetRequest

PDU information.

2. void dsc init(void): This function is mainly responsible for creating a new socket. It

initializes all the storage elements by calling function dsc init global vars(). This function

requires the IP address and the port number of the traffic controller.

3. Byte tc get(const unsigned char * oid, Byte phase): The first parameter in this

function is the object identifier of the traffic controller parameter whose value needs to be

extracted. The second parameter is the phase number (1 to 8) whose information needs

to be queried. This function returns 1 if the traffic controller fails to provide data and

returns 2 otherwise.

4. Byte tc get groups(const unsigned char * oid): Using function tc get() we can get

phase information about a specific phase. However, function tc get groups() is used to

extract information about all phases at once. This function works only for certain object

identifiers.

5. Byte tc set(const unsigned char * oid, Byte phase, Byte value): This function

takes three parameters, i.e., the object identifier of the traffic controller parameter to

set, the phase number (1 to 8), and a value to be written to the traffic controller. This

function returns 1 if the traffic controller failed to write data and returns 2 if it succeeded.

52

6. int getValue(): Using the functions tc get() and tc get groups() one can obtain data from

the data structure SnmpMsgPublicOidSizeOXOF. It is obtained from the varValueVal field

of SnmpMsgPublicOidSizeOXOF.

Data Access Utility Functions: The functions provided in Listing 3.12 are used by the

application to query for a particular color of light in a specific phase at the intersection.

Listing 3.12: Functions Providing Phase Information

1 int isGreenLightOn (int phase) ;
2 int queryForLight (int phase , char c o l o r) ;
3 int i sLightOn (int phaseNum , char c o l o r) ;
4 int *decimalToBinary (int num) ;
5 void getPhaseInformat ion (int *x , char c o l o r) ;

1. int isGreenLightOn(int phase): This function queries the status of green signal in a

particular phase that is provided as an argument to the function. It returns TRUE if the

signal at the given phase is green and returns FALSE otherwise.

2. int queryForLight(int phase, char color): This function takes two arguments. The

first argument is the phase number and the second argument is the signal for which this

function wants to get the status. The function checks if the Green (G), Yellow (Y), or

Red (R) signal is active at a given phase.

3. int isLightOn(int phaseNum, char color): This function is called by queryForLight().

It contains the main logic to check if any of the signals (G, R, or Y) is active in a partic-

ular phase. The phase number is sent as the first argument of this function, whereas the

signal color is sent as the second parameter to this function.

4. int *decimalToBinary(int num): This function converts an integer into a binary

number. Every bit of this stream of the converted binary number is later stored in an

array of integers.

5. void getPhaseInformation(int *x, char color): This function gathers information

about the signal status of each phase. Data Structure mentioned in Listing 3.10 is used

to store information about each signal status.

3.3.4 ETSS Algorithm

The ETSS considers heavy loaded vehicles only, but could be easily modified to include other

vehicles types. This application allows a heavy loaded vehicle to pass the intersection by

53

extending a green traffic signal. However, the vehicle has to satisfy certain conditions to qualify

for an extension.

Figure 3.12: A vehicle approaching an intersection in ETSS

The ETSS will be described using Figure 3.12. In the figure, an intersection is shown with the

RV at point p1 approaching the intersection. The RSU, which is mounted somewhere near the

intersection is initialized with the GPS coordinates representing the center of the intersection,

which is point p2. The shaded area bounded by a circle indicates the termination zone with the

center being point p2. The distance from p2 to the outbound of this area is denoted by offset.

This offset is later used to cancel the granted extension request. The distance from the RV to

the center of the intersection is calculated from the GPS information. However, the distance

alone is not sufficient to grant the extension, as it depends on the speed as well. Based on

the current speed and the distance, the projected time for a vehicle to reach the intersection

is calculated. Several cases will be differentiated. First, if the current speed is higher than the

predefined speed threshold and the projected time to reach the intersection is less than the time

threshold, then an extension can be granted for the target vehicle. However, if the speed is too

low and the distance to traverse takes too much time, then the extension will not be granted.

Finally, if the speed and time are sufficient, but later on the application determines the vehicle

slowed down so that the thresholds are violated, the extension is revoked and the request is

terminated by not sending any more extension requests to the controller.

54

Recall the offset of the intersection. When the vehicle is determined to be in this offset

region, the hold is terminated as it indicates the vehicle is in the process of passing.

Conditions that need to be met so that the ETSS triggers an extension are summarized

below.

1. The vehicle should be heavy loaded.

2. The heavy loaded vehicle should travel at a speed greater than a predefined threshold

speed.

3. The heavy loaded vehicle should reach the intersection within a predefined threshold time.

4. The hold request implementing the extension applies only if the signal is Green in that

instance.

5. Once the intersection is reached, a hold request should get terminated.

6. The extension shall not be granted beyond maximum green (MAX GRN1).

The flowchart in Figure 3.13 shows how a vehicle gets qualified for the extension. The

logic of the flowchart is implemented in Algorithm 4. The algorithm indicates that it needs

to determine if the target vehicle type is correct. This can be done by querying if the vehicle

type is in the range from 7 to 15. In Line 7 of the algorithm, VehicleType axleCnt2 = 7 and

VehicleType axleCnt7MultiTrailer = 15 represent the vehicle types and the values within this

range signifying heavy loaded vehicles. A complete set of vehicle types was shown in Table 3.1.

If the vehicle type of the RV falls in this range, then the variable isHeavyLoad defined in Line 2 of

this algorithm, is set to TRUE. The rest of the algorithm executes only if the vehicle type of the

RV qualifies as a heavy load. Once the ETSS verifies the message from the heavy load, it checks

if the target vehicle qualifies for an extension based on various parameters explained earlier.

The logic to determine if the RV qualifies for an extension, i.e., extensionDecisionLogic, is

presented in Algorithm 5. The status of the green light is queried only if the vehicle qualifies

for an extension. The main reason for this approach is to avoid unnecessary communication

between the RSU and the traffic controller. Finally, if all the extension qualifications are met

and the current status of green signal is ON, then a request to hold the current green signal is

sent to the traffic controller.

The aforementioned logic that determines if the target vehicle qualifies for an extension

is implemented in Algorithm 5. Three main parameters that should be considered for the

55

Figure 3.13: Flowchart for Eco-Traffic Signal Application

extension qualification are Speed (S), Time (T) and Distance (D). First, the vehicle speed S

in mph should be greater than some predefined threshold speed. This criterion is set to avoid

granting an extension to slow moving vehicles, under the assumption that they will benefit

less in terms of energy savings from an avoided stop. Another qualification parameter is the

time T measured in seconds. Since the RSU can get BSMs from vehicles far away from the

intersection, only those target vehicles qualify, which are projected to reach the intersection

within some pre-configured threshold time. Even if the vehicle is beyond the threshold speed, if

it takes a longer time to reach the intersection, or if the fast moving vehicle slows down below

the threshold, the ETSS will not qualify the target vehicles for an extension.

The time T to reach the intersection is the function of speed S and distance D, i.e., T = D
S .

The distance between the vehicle at point p1 and the center of an intersection at point p2 is

56

Algorithm 4 Eco Traffic Application Algorithm

1: procedure ecoTrafficLogic()
2: isHeavyLoad← UNDEFINED
3: qualifyForExtension← FALSE
4:

5: if count > 0 then
6:

7: if 7 ≤ (bsm→ vehicleType) ≤ 15 then
8: isHeavyLoad← TRUE

9:

10: if isHeavyLoad← TRUE then
11: qualifyForExtension← extensionDecisionLogic()
12:

13: if qualifyForExtension← TRUE and isGreenOn← TRUE then
14: Send Green Hold Request to Controller
15: Print “ Extension Qualified ”
16: else
17: Print “ Extension NOT Qualified ”

Algorithm 5 Extension Decision Logic Algorithm

1: procedure extensionDecisionLogic()
2: distance, velocity, time← 0.0
3: currentOBUPosition← (bsm→ longitude), (bsm→ latitude)
4: speed← (bsm→ speed)
5:

6: velocity ← getSpeedInMilesPerHour(speed)
7: distance← getDistanceInMiles(rsuPosition, currentOBUPosition)
8:

9: if 0 ≤ distance ≤ OFFSET then
10: return FALSE
11:

12: if velocity! = 0.0 then
13: time← (distance/velocity) ∗ 3600.0
14: else
15: time← 100000000
16: return FALSE
17:

18: if (velocity < THRESHOLD SPEED) OR (time > THRESHOLD TIME) then
19: return FALSE
20: else
21: return TRUE

denoted by Dp1,p2. This distance is calculated based on the longitude and latitude, which are

given either in radian or in degrees and can be expressed by the following formula:

57

Dp1,p2 = ACOS[SIN(θlat1)∗SIN(θlat2)+COS(θlat1)∗COS(θlat2)∗COS(αlon2−αlon1)]∗6371000

In ETSS, the longitude and latitude obtained are in degrees, therefore

θlat1 = lat1∗π/180,

θlat2 = lat2∗π/180,

αlon1 = lon1∗π/180,

αlon2 = lon2∗π/180,

where lat1 and long1 are the latitude and the longitude of p1 of the vehicle, and lat2 and long2

are the latitude and the longitude of p2 at the center of the intersection.

However, if the longitude and latitude are obtained in radians, the values could directly be

obtained as follows:

θlat1 = lat1,

θlat2 = lat2,

αlon1 = lon1,

αlon2 = lon2.

Once the extension is granted, it needs to be terminated if the vehicle reached the intersec-

tion. For this reason, the term Offset was introduced to define the Termination Zone. When the

qualified target vehicle reaches this zone, the traffic controller should terminate the extension,

signaling that this vehicle is in the process of passing the intersection. The green signal hold

can be terminated in two ways. First, if no more signal hold command requests are sent to the

traffic controller, the existing hold automatically gets terminated after a brief duration of time.

Otherwise, it can be terminated forcefully. However, ETSS will not forcefully terminate the

green signal hold. If the vehicle reaches the Termination Zone, it simply does not get qualified

for an extension.

3.4 Arada Locomate Application

Arada Systems provides the default application getwbsstxrxencdec for its locomate OBUs and

RSUs, that is used to transmit and receive BSMs. This integrated application can be configured

with different parameters and supports different message sets. However, one first has to log

into the Arada devices in order to start any application. This can be done by using the default

username and password provided by the device manufacturer. In a real systems these defaults

should be changed however according to the security policies in place. A simple example of the

usage of the application is shown below.

58

Transmit BSM: After a user logs in onto the device, the Command Line Interface (CLI)

is used to execute commands. To transmit the BSMs, the following sample command can be

used:

getwbsstxrxencdec -s 172 -t BSM -o norx -a 0

This command registers and starts a provider, which sends the BSMs. The option -s signifies

using a service channel. This option is followed by the channel number used for transmitting

the message, in this case CH172. Similarly, option -t represents the type of message, which in

the above example signifies the message to be a BSM. Other message types that are supported

are: Prove Vehicle Data (PDV), Road Side Alert (RSA), Intersection Collision Alert (ICA),

Signal Phase And Timing (SPAT), Map Data (MAP), and Traveler Information Message (TIM).

Option -o is used to indicate the transmission mode. This option is followed by norx, which

means this command only transmits the message but does not receive anything from other

transceivers. Finally, option -a is used to identify the service channel access mode. The value

1 represents alternating mode, whereas 0 represents a continuous mode.

Receive BSM: The procedure for executing a command to receive BSMs is similar to that

of transmitting a BSM. However, the arguments for the command are different in this case. For

receiving the BSMs, the following command can be used:

getwbsstxrxencdec -w User -s 172 -o notx -u 2 -x 1

The command getwbsstxrxencdec is followed by the option -w, which represents a service type.

A service type could be either a User or a Provider. A provider transmits the BSMs, whereas

a user receives the BSMs. The next option -s 172 is similar to the option used by the BSM

transmitter and indicates the user is sensing BSMs in channel 172. Furthermore, option -o

notx indicate the user is not transmitting any message but is sensing BSMs. User option -u

represents a user request type. The value for this option is set to 2, which means that the user

request type is unconditional. Finally, the option -x is used by the user, which is similar to

the option -a used by the provider. In this case, the parameter for -x 1 represents continuous

extended access.

A complete set of parameter options with their default values is given in Appendix E.

59

3.5 Multi-threaded ETSS Application

The application getwbsstxrxencdec provided by Arada Systems contains many useful features

for V2V and V2I communication. The ETSS is not limited only to V2I communication, but

needs to communicate with the Traffic Controller. To facilitate communication between an

RSU and a traffic controller, a new custom application has been designed.

Figure 3.14: Multi-threaded Application

The ETSS is a multi-threaded application and consists of three threads, as shown in Fig-

ure 3.14. The responsibility of the first thread, i.e., Thread 1, is to receive BSMs from vehicles,

if there are any in the surrounding. The second thread, i.e., Thread 2, communicates with the

traffic controller to check if the green signal is active in a particular phase that ETSS is config-

ured to monitor. The third thread, i.e., Thread 3, identifies if the approaching vehicle qualifies

for an extension. Thus, it makes the decision if an extension should be granted. Furthermore,

if the extension is granted for the approaching vehicle, this thread sends a command to the

traffic controller in order to hold the current green signal.

As can be seen in Figure 3.14, the application uses two boolean flags: isGreenOn for checking

the green status and qualifyForExtension for storing information if the vehicle qualifies for an

extension. The flags can be accessed by Thread 2 and Thread 3. First, Thread 1 receives a BSM

from a pool of BSMs, which is forwarded to Thread 3 in order to verify if the vehicle qualifies

60

for an extension based on its speed and current geographical position. If the vehicle qualifies,

it updates the qualifyForExtension variable. When Thread 2 gets notified of this extension

qualification, it queries the traffic controller about the status of the green light. If the green

light is on, Thread 2 updates the isGreenOn variable and Thread 3 gets notified. Finally, after

getting notified that the green signal is on, Thread 3 sends the green signal hold command to

the traffic controller.

The exact detail of the RSU and controller communication is given in Appendix A.

61

Chapter 4

Experimental Validation of ETSS

The ETSS was tested in the field. Due to liability reasons, the tests could not be conducted

using real traffic lights in the Idaho Transportation Department’s traffic system. Therefore, an

intersection was emulated on the University of Idaho campus. Figure 4.1 shows a map of the

field test area, where the blue dotted line indicates the path of the test vehicle on 7th Street,

with the intersection positioned at the west end of the test area. The red marker indicates

the center of the intersection, in front of the Engineering Physics Building (EPB). The GPS

coordinates of the red marker in the figure were also the reference point for the RSU, which

was mounted on the traffic controller cabinet installed on the concrete platform between the

marker and the EP building to the north.

Figure 4.1: Location for Experiment Setup

The following is the list of equipment used in the experiment:

� One Econolite Traffic Controller, Model ASC-3/2100, and all supporting hardware in-

stalled in the traffic controller cabinet.

� One RSU (Arada Locomate), mounted on top of the traffic controller cabinet.

� One OBU (Arada Locomate) installed in the test vehicle emulating the heavy loaded

vehicle.

� One laptop to observe the activities of the RSU and one laptop in the test vehicle to

observe the functions in the OBU.

62

� Traffic Lights for a simple intersection connected to the Traffic Controller.

The test parameters for the RSU are summarized in Table 4.1. The phase indicating the

street traveled by the test vehicle was phase 1. Whereas the RSU was positioned next to

the intersection, the GPS latitude and longitude coordinates used by the application are the

coordinates of the center of the intersection, i.e., those of the red marker in Figure 4.1. For the

demonstration of the ETSS, the speed threshold was set to 5 mph. This speed was intentionally

set so low, as the intersection was positioned in the campus walkway area. Accordingly, the time

threshold was set to 20 seconds, given this slow speed threshold. The offset, which determines

the radius of the termination zone from the center of the intersection was set to 5 meters.

Table 4.1: RSU Field Test Configuration

Parameters Value

Phase Number 1

Latitude 46.72888

Longitude -117.01

Speed Threshold 5 miles per hour

Time Threshold 20 seconds

Offset 5 meters

The traffic controller timing parameters had to be adjusted for the experiment. Figure 4.2

shows the timing plan, which was configured in the traffic controller. Whereas the figure shows

information for eight phases, only phase 1 and 2 were used in the experiment, representing the

test vehicle’s street and the crossing side street respectively. As can be seen in the figure, the

minimum green times (MIN GRN) for phase 1 and 2 were set to 4 and 3 seconds respectively.

These short times were used for reasons of practicality for the experiment only. The maximum

green times (MAX1) were also specified.

4.1 Experiment Details

Several experiments were conducted to verify the ETSS functionalities. In all cases, the test

vehicle with the installed OBU was configured to represent a heavy load. There are three

scenarios that needed to be verified as explained in the experiments below.

A) Experiment 1 - Vehicle qualifies for an extension: In this experiment, the test

vehicle approached the intersection at a speed higher than the minimum threshold. Recall

63

Figure 4.2: Traffic Controller - Timing plan

that vehicles only qualify for a possible extension if their projected time to reach the

intersection is less than the time threshold, in our case 20 seconds, and the speed of the

vehicle is greater than the speed threshold, which is 5 mph in our case. As soon as the

green light of phase 1, corresponding to the street of the test vehicle, was on, the vehicle

started accelerating toward the intersection. The starting point of the vehicle was selected

so that it would not be able to reach the intersection within MIN GRN. Thus, without

the ETSS the vehicle would have needed to stop on red.

Expected Outcome: After MIN GRN (4 seconds), the green light should get extended until

the test vehicle reaches the intersection, allowing it to continue without stopping. After

the vehicle crosses the intersection, the ETSS should terminate the green extension.

B) Experiment 2 - Vehicle qualifies first, but gets disqualified later: Similar to the

previous experiment, the test vehicle approached the intersection. But this time, in the

beginning, the vehicle approached the intersection at a speed higher than the minimum

threshold, while satisfying the time threshold. However, this higher speed was later

dropped below the minimum threshold before reaching the intersection. This represents a

scenario, where a fast-moving test vehicle has to slow down before reaching the intersection

due to some circumstance, e.g., a vehicle in front moving slowly.

Expected Outcome: An extension should be granted while the vehicle qualifies, given the

high speed, but when the vehicle slows down below the threshold, the extension should

get revoked.

64

C) Experiment 3 - Vehicle does not qualify for an extension: In this experiment the

test vehicle approached the intersection at a speed lower than the minimum threshold.

Similar to previous experiments, as soon as the green light of phase 1 turned on the vehicle

started moving slowly towards the intersection. The ETSS should not qualify this test

vehicle for an extension and let the traffic signal continue its normal cycle.

Expected Outcome: In this experiment the test vehicle should not be granted an extension

and this would not affect regular flow of the traffic cycle. Recall that the minimum

speed threshold was introduced to avoid extensions for vehicles with low energy saving

for avoided stops.

The summary of the expected output of the experiments above are shown in Table 4.2.

Table 4.2: Expected output from the experiment

Experiment Number Exp
1

Exp
2

Exp
3

Green signal extended? Y Y N

Extension revoked before reaching the intersec-
tion?

N Y -

Two scenarios needed to be verified for each of the experiments. First, it should be verified if

the green signal was extended. Secondly, if the green signal was extended, it should be validated

if at any point in the experiment the extension got revoked.

4.2 Results

The results for three interesting scenarios from the field experiments are shown in Figure 4.3.

The figures represent scenarios in which all BSM messages were captured and processed in real-

time to determine if extensions should be granted. The BSM indices are shown on the x-axis

of the plots, for 125 messages, which covers approximate 12.5 seconds for the experiment. The

y-axis shows the speeds that were extracted from the relevant BSMs. The speed is indicated

as a solid plot. Of interest is the dotted plot, which identifies when an extension is granted or

revoked. A value of 1 indicates that an extension is granted, and 0 implies that it is not granted

or revoked. The red horizontal line represents the speed threshold, which was set to 5 mph.

65

Figure 4.3: Experiment Results for Different Scenarios

The plot in Figure 4.3a) refers to the first experiment. When the vehicle’s speed surpassed

the predetermined speed threshold and the projected time to reach the intersection became

lower than the predefined time threshold, the ETSS requested an extension from the traffic

controller. It can be seen that the speed and time threshold constraints were met when the

22nd BSM, i.e., BSM22, was received.

The plot in Figure 4.3b) depicts the scenario when the vehicle first traveled at a speed

higher than the threshold. The traffic controller granted the extension for the time interval

corresponding to BSMs from BSM24 to BSM81, when the speed and time threshold constraints

66

were met. Later, the test vehicle reduced its speed below the threshold, which caused the

granted extension to be revoked.

Finally, a scenario is shown, which was originally intended to demonstrate that no extension

would be granted when the speed threshold was not met. However, the interesting result shown

in Figure 4.3c) prompted us to keep this case where the threshold was not surpassed initially,

but where the final speed oscillated around the threshold. Specifically, due to the fact that a

speed of below 5 mph was difficult to maintain, the vehicle’s speed occasionally rose above and

consequently fell below the threshold. Even in this situation did the ETSS maintain its correct

function, by revoking the extension each time when the vehicle slowed below the threshold.

The functionality of not granting an extension if the speed threshold was not met is verified by

the behavior during the first 64 BSMs, i.e., no extension was granted during that period.

It should be noted that in the current implementation of the ETSS extensions are initiated

by sending signal hold commands to the controller. Each qualifying BSM causes such command

to be sent. However, sequences of hold commands are non-cumulative, i.e., a new hold command

overrides the hold timing for the previous hold command.

67

Chapter 5

Conclusion and Future Work

The thesis described an eco-traffic signal system application, where connected vehicle technol-

ogy is used to avoid unnecessary stops of heavy vehicles at signalized intersections in order

to conserve fuel. The work is a proof of concept that demonstrates the usage of V2I commu-

nication to control the fixed signaling infrastructure in an adaptive way. It gives testimony

that the new technologies of connected vehicles can be used in applications with legacy traffic

controllers in the intersections. Specifically, it was shown that BSM information from OBUs of

the target vehicles can be used to communicate important information to the RSU, positioned

in an intersection. The speed and distance information in the BSM, together with the GPS

coordinates of the vehicle, also encapsulated in the BSM, and the center of an intersection, can

be used to calculate if the green period should be extended to allow the vehicle to pass, thereby

avoiding stops with the associated energy loss. An algorithm was presented that determined

that a heavy vehicle qualifies for an extension of the green period if it satisfied certain speed and

distance requirements. This algorithm also revokes extensions from vehicles should they fall

short of maintaining their qualifying parameters. The communication framework for allowing

the RSU to send commands to the NTCIP compliant traffic controllers were also developed.

A mechanism to extend the green light was implemented using the object identifier phaseCon-

trolGroupHold. The extension is revoked when the target vehicle enters the termination zone

in the intersection.

The architecture of the eco-traffic system application has been specified and implemented.

To validate the functionality, field tests with commercially available DSRC equipment, in this

case, Arada Systems Locomate OBU and RSU were conducted. The field tests, which used a

fully equipped signalized intersection, including the traffic cabinet with a controller, support

hardware and traffic lights, allowed testing different scenarios of the ETSS.

Several aspects of this project could be investigated in future work. It would be interesting

to determine the computational impact such application has on the RSU. This may be most

important if the traffic density is high, as computations would appear to scale linear with

the number of vehicles in the RSU’s reception range. Such overhead investigation should also

consider computations associated with features necessary for real implementations. Specifically,

the ETSS in its current form is a proof of concept only and lacks features needed for real

68

implementations. First, currently only one heavy loaded vehicle is considered. However, in

real traffic multiple vehicles need to be considered. This however will require that the RSU

manages all qualifying vehicles in a way that will not cause potential monopolizing of the phase

when many such vehicles approach. A mechanism needs to be derived that will comply with

the maximum green time of the traffic controller. Secondly, in the current implementation,

the direction of the vehicle is not considered. Incorporating the heading of a vehicle will allow

for different phases to be considered concurrently. In addition, the vehicle’s direction can be

used to terminate the green extensions after it has reached the intersection. Currently the sign

of the two distances is used to differentiate approaching from departing vehicles. Thirdly, the

elevation information of the BSM is currently not used by the application. Including elevation

may further refine the accuracy of the vehicle positions. This will be needed to resolve situations

where bridges or overpasses are close to or part of the intersection.

There were several important lessons learned, which may be of interest to system imple-

mentors. Most importantly, the lack of detailed information for the DSRC equipment and the

communication specifications for communicating with the traffic controllers was challenging in

the development of solutions. The term “bleeding edge” technology came to mind at many

times. The second important lesson was that field testing is very time and resource consum-

ing. A fair number of personnel was necessary to prepare field tests, get vehicles ready and

verify that all equipment was fully functional, all under the assumption that the weather would

cooperate, which was not always a given.

69

Bibliography

[1] United States Department of Transportation, Office of the Assistant Secretary for Research

and Technology, Intelligent Transportation Systems Joint Program Office, http://www.its.

dot.gov/

[2] C. Anagnostopoulos, I. Anagnostopoulos, V. Loumos and E. Kayafas, “A license plate-

recognition algorithm for intelligent transportation system applications”, IEEE Trans. In-

tell. Transp. Syst. , vol. 7, no. 3, pp.377 -392, 2006.

[3] Ezell, S., “Explaining International IT Application Leadership: Intelligent Transportation

Systems”, ITIF - The Information Technology & Information Foundation, Washington,

USA, 2010.

[4] Traffic Safety Facts 2014. Washington, DC: National Highway Traffic Safety Administration;

20015, http://www-nrd.nhtsa.dot.gov/Pubs/812219.pdf.

[5] N. Daiheng, “Traffic Flow Theory: Characteristics, Experimental Methods, and Numerical

Techniques”, November 9, 2015.

[6] M. K. Nasir, R. Md Noor, M. A. Kalam, and B. M. Masum, “Reduction of fuel consumption

and exhaust pollutant using intelligent transport systems”, The Scientific World Journal,

vol. 2014, Article ID 836375, 13 pages, 2014.

[7] H. Omar, W. Zhuang and L. Li, VeMAC: A TDMA-based MAC protocol for reliable broadcast

in VANETs, IEEE Trans. Mobile Comput., vol. 12, no. 9, pp.1724 -1736 2013.

[8] J. Petit and Z. Mammeri, “Authentication and consensus overhead in vehicular ad hoc

networks”, Telecommun. Syst., vol. 52, no. 4, 2013

[9] R. Bauza, J. Gozalvez, and J. Sanchez-Soriano., Road traffic congestion detection through

cooperative vehicle-to-vehicle communications, In Proc. IEEE Conf. on Local Computer

Networks, pages 606-612, 2010.

[10] Chang, J., et al. Estimated Benefits of Connected Vehicle Applications: Dynamic Mobil-

ity Applications, AERIS, V2I Safety, and Road Weather Management Applications. No.

FHWA-JPO-15-255. 2015.

http://www.its.dot.gov/
http://www.its.dot.gov/
http://www-nrd.nhtsa.dot.gov/Pubs/812219.pdf

70

[11] H. Alturkostani, A. Chitrakar, R. Rinker and A. Krings, “On the Design of Jamming-

Aware Safety Applications in VANETs”, in Proc. 10th Cyber and Information Security

Research Conference, (CISR 2015), Oak Ridge, Tennessee, April 7-9, 2015.

[12] IEEE 802.11, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications, IEEE Std., June 2007.

[13] IEEE Standard for Information technology–Telecommunications and information exchange

between systems–Local and metropolitan area networks–Specific requirements Part 11: Wire-

less LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amend-

ment 6: Wireless Access in Vehicular Environments, IEEE Std 802.11p, 2010.

[14] “WiMAXTM operators and vendors from around the world announce new deployments,

growing commitments at the 2nd Annual Annual WiMAX Forum® Global Congress”. New

release (WiMAX Forum). IEEE Std 802.16TM, June 4, 2009.

[15] IEEE Standard for Information technology – Telecommunications and information ex-

change between systems–Local and metropolitan area networks–Specific requirements. Part 2:

Logical Link Control. New York: The Institute of Electrical and Electronics Engineers. IEEE

Std 802.2TM, May 7, 2008.

[16] IEEE Draft Guide for Wireless Access in Vehicular Environments (WAVE) -Architecture,

IEEE P1609.0TM/D5, September 2012.

[17] IEEE Standard for Wireless Access in Vehicular Environments - Security Services for

Applications and Management Messages, IEEE Std 1609.2TM, 2013.

[18] IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Networking

Services, IEEE Std 1609.3TM, 2010.

[19] IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Multi-Channel

Operation, IEEE Std 1609.4TM, 2010.

[20] Amendment of the Commission’s Rules Regarding Dedicated Short-Range Communication

Services in the 5.850-5.925 GHz Band (5.9 GHz Band), Federal Communications Commis-

sion FCC 03-324, 2004.

71

[21] Standard Specification for Telecommunications and Information Exchange Between Road-

side and Vehicle Systems - 5 GHz Band Dedicated Short Range Communications (DSRC)

Medium Access Control (MAC) and Physical Layer (PHY) Specifications, ASTM E2213-03,

2010.

[22] Y.J. Li, “An Overview of the DSRC/WAVE Technology”, in Quality, Reliability, Security

and Robustness in Heterogeneous Networks, Springer, 2012.

[23] R. A. Uzcategui and G. Acosta-Marum, “WAVE: A Tutorial”, IEEE Commun. Mag., vol.

47, no. 5, pp. 126-133, 2009.

[24] S.A.M. Ahmed, S.H.S. Ariffin, N. Fisal, “Overview of Wireless Access in Vehicular Envi-

ronment (WAVE) Protocols and Standards””, Indian Journal of Science and Technology,

2013.

[25] Dedicated Short Range Communications (DSRC) Message Set Dictionary. Society of Au-

tomotive Engineers, SAE J2735, November 2009.

[26] Status of the Dedicated Short-Range Communications Technology and Applications. Re-

port to Congress, Final Report, July 2015 FHWA-JPO-15-218.

[27] NTCIP 9001: National Transportation Communications for ITS Protocol - The NTCIP

Guide, Version, v04, American Association of State Highway and Transportation Officials,

Washington, D.C.; Institute of Transportation Engineers, Washington D.C.; and National

Electrical Manufacturers Association, Rosslyn, VA, July 2009.

[28] A. Krings, A. Serageldin, and A. Abdel-Rahim, A Prototype for a Real-Time Weather

Responsive System, Proc. Intelligent Transportation Systems Conference, ITSC2012, An-

chorage, Alaska, 16-19 September, pp. 1465 - 1470, 2012.

[29] A. Serageldin, and A. Krings, The Impact of Redundancy on DSRC Safety Application Reli-

ability under Different Data Rates, Proc. 6th International Conference on New Technologies,

Mobility and Security, (NTMS 2014), Dubai, March 30 April 2, 2014.

[30] NTCIP website: http://www.ntcip.org/.

[31] J. Case et al., “A Simple Network Management Protocol”, IETF RFC 1175, 1990.

http://www.ntcip.org/

72

[32] V. Harigovindan, A. Babu and L. Jacob, “Ensuring fair access in IEEE 8002.11p-based

vehicle-to-infrastructure”, EURASIP J. Wireless Commun. Netw., vol. 2012, no. 168, 2012.

[33] Arada Systems, www.aradasystems.com.

[34] Transportation Systems and Engineering: Concepts, Methodologies, Tools, and Applica-

tions, Information Resources Management Association, USA, 2015.

[35] Arada Systems, LocoMate User’s Guide, Version 1.26, 2013.

[36] Traffic Signal Timing Manual, Kittelson & Associates, Inc. For FHWA, 2008.

[37] B. Ghena, W. Beyer, A. Hillaker, J. Pevarnek, and J.A. Halderman. “Green lights for-

ever: Analyzing the security of traffic infrastructure”, 8th USENIX Workshop on Offensive

Technologies, August 2014.

[38] Federal Highway Administration (FHWA), Texas Department of Transportation(txdot),

http://onlinemanuals.txdot.gov/txdotmanuals/tri/images/FHWA Classification Chart

FINAL.png

[39] “MIPS32 Architecture”,. Imagination Technologies. Retrieved 4 Jan 2014.

www.aradasystems.com
http://onlinemanuals.txdot.gov/txdotmanuals/tri/images/FHWA_Classification_Chart_FINAL.png
http://onlinemanuals.txdot.gov/txdotmanuals/tri/images/FHWA_Classification_Chart_FINAL.png

73

Appendix A

Communicating with the Traffic Controller

A.1 Global Variables

This utility file contains a set of global variables. It also redefines some of the primitive data

types.

1 /*
2 * DTC GLOBAL DEFS. h
3 *

4 * Created on : Apr 1 , 2015
5 * Author : Anup Chi t rakar
6 */
7

8 /*** BeginHeader */
9 //*********************************

10 #ifndef DTC GLOBAL DEFS H
11 #define DTC GLOBAL DEFS H
12 #endif
13

14 // GENERAL DEFINATIONS
15 //*********************************
16 #ifndef CLEAR
17 #define CLEAR 0
18 #endif
19 #ifndef SET
20 #define SET 1
21 #endif
22 #ifndef FALSE
23 #define FALSE 0
24 #endif
25 #ifndef TRUE
26 #define TRUE 1
27 #endif
28 #ifndef ON
29 #define ON 1
30 #endif
31 #ifndef OFF
32 #define OFF 0
33 #endif
34

35 //PRIMITIVE DATA TYPES DEFINATIONS
36 //*********************************
37 typedef char Int8 ;
38 typedef unsigned char UInt8 ;
39 typedef unsigned char Byte ;
40 typedef int Int16 ;
41 typedef unsigned int UInt16 ;
42 typedef long Int32 ;
43 typedef unsigned long UInt32 ;
44 /*** EndHeader */

74

A.2 DYNAMIC SIGNAL CONTROL S

This file defines a set of data structures that are required for communicating with the traffic

controller. Furthermore, it also defines a collection of required object identifiers.

1 /*
2 * DYNAMIC SIGNAL CONTROL S. h
3 *

4 * Created on : Apr 2 , 2015
5 * Author : Anup Chi t rakar
6 */
7

8 /*** BeginHeader */
9 //*********************************

10 #ifndef DYNAMIC SIGNAL CONTROL C H
11 #define DYNAMIC SIGNAL CONTROL C H
12 #endif
13

14 // DEBUG DEFINATIONS
15 //*********************************
16 #ifde f DSC DEBUG
17 #define DSC DEBUG debug
18 #else
19 #define DSC DEBUG nodebug
20 #endif
21

22 //ENTERNET SPECIFIC DEFINATIONS
23 //*********************************
24 /* IP Address o f T r a f f i c C o n t r o l l e r */
25 #define TC IP ” 1 9 2 . 1 6 8 . 1 . 1 0 2 ”
26

27 /* T r a f f i c C o n t r o l l e r s Port . See TC Setup */
28 #define TC PORT 2222
29

30 /*Required f o r SNMP Data*/
31 #define TC SET MSG PORT 162
32

33 //APPLICATION SPECIFIC DEFINATIONS
34 //*********************************
35 #define SNMP MSG POID15 SIZE s izeof (SnmpMsgPublicOidSizeOXOF)
36 #define SNMP MSG SIZE Get s izeof (SnmpMsgPublicOidGet)
37

38 //SNMP TAGS AND SIZE
39 //*********************************
40 /* Current ly s u p p o r t s on ly OID s i z e o f 15*/
41 #define OID SZ 0x0F
42

43 //SNMP DYNAMIC OBJECT CONTROL COMMANDS
44 // −− MSN−>cmd and LSN−>o b j e c t number
45 //*********************************
46 #define SNMP SET 0x90
47 #define SNMP GET 0x80
48 #define DYN OBJ REQ PACKET SZ 0x01 //snmp g e t packe t s i z e (1

b y t e)
49
50 #define TC GETRES MSG RECV 0x02
51 #define TC SETRES MSG RECV 0x04
52
53 stat ic Byte s e t s o c k s t a t u s f l a g ;

75

54 stat ic Byte g e t s o c k s t a t u s f l a g ;
55

56 /*** BeginHeader */
57 //*********************************
58 //CONSTANT BYTES STREAMS FOR SNMP GET MESSAGES

. .
59 //SEE PAGE 53−56 OF THE NTCIP GUIDE 9001 FOR DECODING SNMP

MESSAGES PAGE 129/250
60 const Byte g e t g l o b a l t i m e e n c o d e d [] = {0x30 , 0x2b , 0x02 , 0x01 ,

0x00 , 0x04 , 0x06 , 0x70 , 0x75 , 0x62 , 0x6c , 0x69 , 0x63 , 0xa0 ,
0x1e , 0x02 , 0x01 , 0x00 , 0x02 , 0x01 , 0x00 , 0x02 , 0x01 , 0x00 , 0
x30 , 0x13 , 0x30 , 0x11 , 0x06 , 0x0d , 0x2b , 0x06 , 0x01 , 0x04 , 0
x01 , 0x89 , 0x36 , 0x04 , 0x02 , 0x06 , 0x03 , 0x01 , 0x00 , 0x05 , 0
x00 } ;

61 const Byte in i t snmp se t msg [] = {0x30 , 0x2e , 0x02 , 0x01 , 0x00 ,
0x04 , 0x06 , 0x70 , 0x75 , 0x62 , 0x6c , 0x69 , 0x63 , 0xa3 , 0x21 ,

0x02 , 0x01 , 0x00 , 0x02 , 0x01 , 0x00 , 0x02 , 0x01 , 0x00 , 0x30 , 0
x16 , 0x30 , 0x14 , 0x06 , 0 x0f , 0x2b , 0x06 , 0x01 , 0x04 , 0x01 , 0
x89 , 0x36 , 0x04 , 0x02 , 0x01 , 0x01 , 0x02 , 0x01 , 0x06 , 0x01 , 0
x02 , 0x01 , 0x23 } ;

62 const Byte in i t snmp get msg [] = {0x30 , 0x2d , 0x02 , 0x01 , 0x00 ,
0x04 , 0x06 , 0x70 , 0x75 , 0x62 , 0x6c , 0x69 , 0x63 , 0xa0 , 0x20 ,

0x02 , 0x01 , 0x00 , 0x02 , 0x01 , 0x00 , 0x02 , 0x01 , 0x00 , 0x30 , 0
x15 , 0x30 , 0x13 , 0x06 , 0 x0f , 0x2b , 0x06 , 0x01 , 0x04 , 0x01 , 0
x89 , 0x36 , 0x04 , 0x02 , 0x01 , 0x01 , 0x02 , 0x01 , 0x06 , 0x01 , 0
x05 , 0x00 } ;

63

64 /*Object I d e n t i f i e r s */
65

66 const Byte phase min green encoded o id [] = {0x2b , 0x06 , 0x01 , 0
x04 , 0x01 , 0x89 , 0x36 , 0x04 , 0x02 , 0x01 , 0x01 , 0x02 , 0x01 , 0
x04 } ;

67

68 const Byte phase pas sage encoded o id [] = 0x2b , 0x06 , 0x01 , 0
x04 , 0x01 , 0x89 , 0x36 , 0x04 , 0x02 , 0x01 , 0x01 , 0x02 , 0x01 , 0
x05 } ;

69

70 const Byte phase max1 encoded oid [] = {0x2b , 0x06 , 0x01 , 0x04 ,
0x01 , 0x89 , 0x36 , 0x04 , 0x02 , 0x01 , 0x01 , 0x02 , 0x01 , 0x06 } ;

71

72 const Byte phase max2 encoded oid [] = {0x2b , 0x06 , 0x01 , 0x04 ,
0x01 , 0x89 , 0x36 , 0x04 , 0x02 , 0x01 , 0x01 , 0x02 , 0x01 , 0x07 } ;

73

74 const Byte r e d c l e a r [] = {0x2b , 0x06 , 0x01 , 0x04 , 0x01 , 0x89 , 0
x36 , 0x04 , 0x02 , 0x01 , 0x01 , 0x02 , 0x01 , 0x09 } ;

75

76 const Byte phas e ye l l ow encoded o id [] = {0x2b , 0x06 , 0x01 , 0x04
, 0x01 , 0x89 , 0x36 , 0x04 , 0x02 , 0x01 , 0x01 , 0x02 , 0x01 , 0x08
} ;

77

78 const Byte phase t imeToReduce encoded oid [] = {0x2b , 0x06 , 0x01
, 0x04 , 0x01 , 0x89 , 0x36 , 0x04 , 0x02 , 0x01 , 0x01 , 0x02 , 0x01 ,
0 x0f } ;

79

80 const Byte phase stats group number [] = {0x2b , 0x06 , 0x01 , 0x04 ,
0x01 , 0x89 , 0x36 , 0x04 , 0x02 , 0x01 , 0x01 , 0x04 , 0x01 , 0x01 } ;

81

82 const Byte p h a s e s t a t u s g r o u p r e d s [] = {0x2b , 0x06 , 0x01 , 0x04 ,
0x01 , 0x89 , 0x36 , 0x04 , 0x02 , 0x01 , 0x01 , 0x04 , 0x01 , 0x02 } ;

83

76

84 const Byte p h a s e s t a t u s g r o u p y e l l o w s [] = {0x2b , 0x06 , 0x01 , 0
x04 , 0x01 , 0x89 , 0x36 , 0x04 , 0x02 , 0x01 , 0x01 , 0x04 , 0x01 , 0
x03 } ;

85

86 const Byte p ha s e s t a t u s g r o u p g r e e n s [] = {0x2b , 0x06 , 0x01 , 0x04
, 0x01 , 0x89 , 0x36 , 0x04 , 0x02 , 0x01 , 0x01 , 0x04 , 0x01 , 0x04
} ;

87
88

89 //DATA STRUCTURES
. .

90

91 // From Document NTCIP 9001 (Page 93)
92 //SNMP MESSAGE FIELDS , S e t R e q i e s t PDU, V a r i b l e Bindings ,

Bindings
93 typedef struct {
94 //SNMP MESSAGE FIELDS
95 Byte seqTag ;
96 Byte seqLen ;
97 Byte vers ionTag ;
98 Byte vers ionLen ;
99 Byte ver s ionVa l ;

100 Byte communityNameTag ;
101 Byte communityNameLen ;
102 Byte communityNameVal [6] ;
103 //SET REQUEST PDU NUMBER
104 Byte pduType ;
105 Byte pduLen ;
106 Byte requestIdTag ;
107 Byte r e q u e s t I d l e n ;
108 Byte request IdVal ;
109 Byte errorStatusTag ;
110 Byte er rorStatusLen ;
111 Byte e r ro rS ta tusVa l ;
112 Byte errorIndexTag ;
113 Byte errorIndexLen ;
114 Byte error IndexVal ;
115 //VARIABLE BINDINGS
116 Byte seqVarBinding ;
117 Byte seqVarBindingLen ;
118 //BINDING
119 Byte seqBinding ;
120 Byte seqLenOrId ;
121 Byte varTag ;
122 Byte varLen ;
123 Byte varId [1 5] ;
124 Byte varValueTag ;
125 Byte varValueLen ;
126 Byte varValueVal ;
127 } SnmpMsgPublicOidSizeOXOF ;
128 typedef struct {
129 //SNMP MESSAGE FIELDS
130 Byte seqTag ;
131 Byte seqLen ;
132 Byte vers ionTag ;
133 Byte vers ionLen ;
134 Byte ver s ionVa l ;
135 Byte communityNameTag ;
136 Byte communityNameLen ;

77

137 Byte communityNameVal [6] ;
138 //SET REQUEST PDU NUMBER
139 Byte pduType ;
140 Byte pduLen ;
141 Byte requestIdTag ;
142 Byte r e q u e s t I d l e n ;
143 Byte request IdVal ;
144 Byte errorStatusTag ;
145 Byte er rorStatusLen ;
146 Byte e r ro rS ta tusVa l ;
147 Byte errorIndexTag ;
148 Byte errorIndexLen ;
149 Byte error IndexVal ;
150 //VARIABLE BINDINGS
151 Byte seqVarBinding ;
152 Byte seqVarBindingLen ;
153 //BINDING
154 Byte seqBinding ;
155 Byte seqLenOrId ;
156 Byte varTag ;
157 Byte varLen ;
158 Byte varId [1 5] ;
159 Byte varValueTag ;
160 Byte varValueLen ;
161 } SnmpMsgPublicOidGet ;
162 union {
163 SnmpMsgPublicOidGet snmpMsg ;
164 char bu f f [SNMP MSG SIZE Get] ;
165 } SnmpMsgGet ;
166 union {
167 SnmpMsgPublicOidSizeOXOF snmpMsg ;
168 char bu f f [SNMP MSG POID15 SIZE] ;
169 } SnmpMsgPOXOF;
170 union {
171 SnmpMsgPublicOidSizeOXOF snmpMsgResp ;
172 char b u f f e r [SNMP MSG POID15 SIZE] ;
173 } SnmpMsgPOXOFresp ;
174

175 //DYNAMIC OBJECT NUMBER DEFINATIONS −− c u r r e n t l y us ing only one
dynamic o b j e c t

176 //*********************************
177 #define MAX GREEN 0x28
178 #define MAX PHASES 0x08
179

180 //DEFINATIONS FOR FAILURE FLAGS −− c f f l a g s and g a p o u t f l a g s
181 /* No f a i l u r e was d e t e c t e d f o r a g iven phase /FM */
182 #define DSC CODE0 0x00
183

184 /* F a i l u r e d e t e c t e d f o r a g iven phase /PM */
185 #define DSC CODE1 0x01
186

187 /* Feedback a d j u s t e d the TC parameter based on FM */
188 #define DSC CODE2 0x02

78

A.3 Controller Access Utility

This utility file is mainly responsible for creating the sockets. It also provides a framework for

accessing the traffic controller in order to send get and set requests.

1 /*
2 * C o n t r o l l e r A c c e s s U t i l i t y . h
3 *

4 * Created on : May 18 , 2015
5 * Author : roo t
6 */
7
8 #ifndef CONTROLLERACCESSUTILITY H
9 #define CONTROLLERACCESSUTILITY H

10 #endif /* CONTROLLERACCESSUTILITY H */
11

12 #include <sys / socket . h>
13
14 #ifndef DTC GLOBAL DEFS H
15 #include ”DTC GLOBAL DEFS. h”
16 #endif
17
18 #ifndef DYNAMIC SIGNAL CONTROL C H
19 #include ”DYNAMIC SIGNAL CONTROL S. h”
20 #endif
21

22 Byte t c g e t g r o u p s (const unsigned char * o id) ;
23 Byte t c g e t (const unsigned char * oid , Byte phase) ;
24 Byte t c s e t (const unsigned char * oid , Byte phase , Byte value) ;
25

26 int getValue () ;
27 void d s c i n i t (void) ;
28 void d s c i n i t g l o b a l v a r s (void) ;
29

30 #define ACTIVE PHASES 8 //must be s e q u e n t i a l , eg in t h i s case p1
:8 are on

31
32 int fd , c , n , p ;
33 struct d s c t c d s o c k e t ;
34 int s l e n ;
35

36 Byte t c g e t g r o u p s (const unsigned char * o id) {
37 Byte r e t v a l ;
38 r e t v a l = DSC CODE1;
39 i f (s e t s o c k s t a t u s f l a g == TC SETRES MSG RECV &&
40 g e t s o c k s t a t u s f l a g == TC GETRES MSG RECV) {
41 memcpy(SnmpMsgGet . snmpMsg . varId , oid , (OID SZ − 1)) ;
42 i f (sendto (fd , SnmpMsgGet . buf f , SNMP MSG SIZE Get , 0 ,
43 (struct sockaddr *) & d s c t c d s o c k e t , s l e n) > 0) {
44 r e t v a l = DSC CODE2;
45 }
46

47 // Receive a r e p l y from the s e r v e r
48 i f (recv (fd , SnmpMsgPOXOFresp . bu f f e r , SNMP MSG POID15 SIZE ,

0) < 0) {
49 puts (” recv f a i l e d ”) ;
50 e x i t (1) ;
51 }
52 }

79

53 return r e t v a l ;
54 }
55

56 Byte t c g e t (const unsigned char * oid , Byte phase) {
57 Byte r e t v a l ;
58 r e t v a l = DSC CODE1;
59 i f (s e t s o c k s t a t u s f l a g == TC SETRES MSG RECV &&
60 g e t s o c k s t a t u s f l a g == TC GETRES MSG RECV) {
61 memcpy(SnmpMsgGet . snmpMsg . varId , oid , (OID SZ − 1)) ;
62 SnmpMsgGet . snmpMsg . varId [OID SZ − 1] = phase + 1 ;
63 i f (sendto (fd , SnmpMsgGet . buf f , SNMP MSG SIZE Get , 0 ,
64 (struct sockaddr *) & d s c t c d s o c k e t , s l e n) > 0) {
65 r e t v a l = DSC CODE2;
66 }
67

68 // Receive a r e p l y from the s e r v e r
69 i f (recv (fd , SnmpMsgPOXOFresp . bu f f e r , SNMP MSG POID15 SIZE ,

0) < 0) {
70 puts (” recv f a i l e d ”) ;
71 e x i t (1) ;
72 }
73 }
74 return r e t v a l ;
75 }
76

77 /* START FUNCTION DESCRIPTION
−−

78 t c s e t <DYNAMIC SIGNAL CONTROL. LIB>
79 SYNTAX: Byte t c s e t (cons t char * oid , Byte phase , Byte

v a l u e)
80 DESCRIPTION: sends snmp s e t messages to the t r a f f i c c o n t r o l l e r
81 PARAMETER1: o b j e c t id o f the TC parameter to s e t
82 PARAMETER2: Phase number− 1:16
83 PARAMETER3: v a l u e to be w r i t t e n to the TC parameter
84 RETURN VALUE: DSC CODE1 f o r f a i l u r e , or DSC CODE2 f o r s u c c e s s
85 END DESCRIPTION

−−
*/

86 Byte t c s e t (const unsigned char * oid , Byte phase , Byte value) {
87 Byte r e t v a l ;
88 r e t v a l = DSC CODE1;
89 i f (s e t s o c k s t a t u s f l a g == TC SETRES MSG RECV &&
90 g e t s o c k s t a t u s f l a g == TC GETRES MSG RECV) {
91 memcpy(SnmpMsgPOXOF. snmpMsg . varId , oid , (OID SZ − 1)) ;
92 SnmpMsgPOXOF. snmpMsg . varId [OID SZ − 1] = phase ;
93 SnmpMsgPOXOF. snmpMsg . varValueVal = value ;
94

95 i f (sendto (fd , SnmpMsgPOXOF. buf f , SNMP MSG POID15 SIZE , 0 ,
96 (struct sockaddr *) & d s c t c d s o c k e t , s l e n) > 0) {
97 r e t v a l = DSC CODE2;
98 }
99 }

100 return r e t v a l ;
101 }
102

103 int getValue () {
104 return (int) SnmpMsgPOXOFresp . snmpMsgResp . varValueVal ;
105 }
106

80

107 void d s c i n i t (void) {
108 d s c i n i t g l o b a l v a r s () ; // I n i t i a l i z e s a l l s t o r a g e e lements in

t h i s l i b r a r y
109

110 i f ((fd = socket (AF INET , SOCK DGRAM, 0)) == −1)
111 p r i n t f (” socke t c r ea ted \n”) ;
112 s l e n = s izeof (d s c t c d s o c k e t) ;
113 char * s e r v e r = TC IP ; /* change t h i s to use a d i f f e r e n t s e r v e r

*/
114 memset ((char *) & d s c t c d s o c k e t , 0 , s izeof (d s c t c d s o c k e t)) ;
115 d s c t c d s o c k e t . s i n f a m i l y = AF INET ;
116 d s c t c d s o c k e t . s i n p o r t = htons (TC PORT) ;
117 i f (i n e t a t o n (se rver , & d s c t c d s o c k e t . s i n addr) == 0) {
118 f p r i n t f (s tde r r , ” i n e t a t o n () f a i l e d \n”) ;
119 e x i t (1) ;
120 }
121 }
122

123 void d s c i n i t g l o b a l v a r s (void) {
124 g e t s o c k s t a t u s f l a g = TC GETRES MSG RECV;
125 s e t s o c k s t a t u s f l a g = TC SETRES MSG RECV;
126 memcpy(SnmpMsgPOXOF. buf f , in i t snmp set msg ,

SNMP MSG POID15 SIZE) ;
127 memcpy(SnmpMsgGet . buf f , in i t snmp get msg , SNMP MSG SIZE Get)

;
128 }

81

A.4 Phase Information

This file is required in order to query the current status of traffic lights at any phases in the

intersection. This utility has the capability to query any light (green, yellow, or red) in the

intersection. However, ETSS queries only the status of the green light.

1 /*
2 * PhaseInformation . h
3 *

4 * Created on : May 18 , 2015
5 * Author : Anup Chi t rakar
6 */
7
8 #ifndef PHASEINFORMATION H
9 #define PHASEINFORMATION H

10 #endif /* PHASEINFORMATION H */
11
12 #ifndef DYNAMIC SIGNAL CONTROL C H
13 #include ”DYNAMIC SIGNAL CONTROL S. h”
14 #endif
15
16 #define TRUE 1
17 #define FALSE 0
18
19 #define SUCCESS 1
20 #define FAIL 0
21

22 typedef struct {
23 int phaseNumber ; //1 to 8 (MAXPHASE)
24 char phaseColor ; //R, Y, G
25 int phaseStat ; //1 f o r on and 0 f o r o f f
26 } PhaseStatus ;
27

28 int * decimalToBinary (int) ;
29

30 void pr intBinaryValue (int *x) ;
31

32 void getPhaseInformat ion (int *x , char c o l o r) ;
33

34 void pr intPhaseIn format ion (char l i g h t) ;
35

36 int i sLightOn (int phaseNum , char c o l o r) ;
37

38 int queryForLight (int phase , char c o l o r) ;
39

40 int isGreenLightOn (int phase) ;
41

42 int setGreenPhaseExtension (Byte phase , Byte va lue) ;
43

44 PhaseStatus greenLight In format ion [MAX PHASES] ;
45 PhaseStatus ye l l owLight In fo rmat ion [MAX PHASES] ;
46 PhaseStatus redLight In format ion [MAX PHASES] ;
47

48 int queryForLight (int phase , char c o l o r) {
49 i f (c o l o r == 'G ') {
50 /*Check i f Green l i g h t i s on in a p a r t i c u l a r phase */
51 i f (isLightOn (phase , 'G ')) {
52 return TRUE;
53 } else {

82

54 return FALSE;
55 }
56 } else i f (c o l o r == 'Y ') {
57 /*Check i f Y e l l o l i g h t i s on in a p a r t i c u l a r phase */
58 i f (isLightOn (phase , 'Y ')) {
59 return TRUE;
60 } else {
61 return FALSE;
62 }
63 } else i f (c o l o r == 'R ') {
64 /*Check i f Red l i g h t i s on in a p a r t i c u l a r phase */
65 i f (isLightOn (phase , 'R ')) {
66 return TRUE;
67 } else {
68 return FALSE;
69 }
70 }
71 return FALSE;
72 }
73

74 /**
75 * This i s a suppor t f u n c t i o n f u n c t i o n f o r ” i n t queryForLight (

i n t phase , char c o l o r) ” .
76 */
77 int i sLightOn (int phaseNum , char c o l o r) {
78 int i ;
79 for (i = 0 ; i < MAX PHASES; i++) {
80 i f (c o l o r == 'G ') {
81 i f (greenLight In format ion [i] . phaseNumber == phaseNum
82 && greenLight In format ion [i] . phaseColor == c o l o r
83 && greenLight In format ion [i] . phaseStat == 1) {
84 return TRUE;
85 }
86

87 } else i f (c o l o r == 'Y ') {
88 i f (ye l l owLight In fo rmat ion [i] . phaseNumber == phaseNum
89 && ye l l owLight In fo rmat ion [i] . phaseColor == c o l o r
90 && ye l l owLight In fo rmat ion [i] . phaseStat == 1) {
91 return TRUE;
92 }
93 } else i f (c o l o r == 'R ') {
94 i f (redLight In format ion [i] . phaseNumber == phaseNum
95 && redLight In format ion [i] . phaseColor == c o l o r
96 && redLight In format ion [i] . phaseStat == 1) {
97 return TRUE;
98 }
99 }

100 }
101 return FALSE;
102 }
103

104 void pr intPhaseIn format ion (char c o l o r) {
105 int i = 0 ;
106 for (i = 0 ; i < MAX PHASES; i++) {
107 i f (c o l o r == 'G ') {
108 p r i n t f (”\nPhase %d : %d , Color : %c” ,
109 greenLight In format ion [i] . phaseNumber ,
110 greenLight In format ion [i] . phaseStat ,

83

111 greenLight In format ion [i] . phaseColor) ;
112 } else i f (c o l o r == 'Y ') {
113 p r i n t f (”\nPhase %d : %d , Color : %c” ,
114 ye l l owLight In fo rmat ion [i] . phaseNumber ,
115 ye l l owLight In fo rmat ion [i] . phaseStat ,
116 ye l l owLight In fo rmat ion [i] . phaseColor) ;
117 } else i f (c o l o r == 'R ') {
118 p r i n t f (”\nPhase %d : %d , Color : %c” ,
119 redLight In format ion [i] . phaseNumber ,
120 redLight In format ion [i] . phaseStat ,
121 redLight In format ion [i] . phaseColor) ;
122 } else {
123 p r i n t f (”\ nInva l id T r a f f i c S i gna l Color \n”) ;
124 }
125 }
126 p r i n t f (”\n”) ;
127 }
128

129 /**
130 * This i s a suppor t f u n c t i o n f u n c t i o n f o r ” i n t isLightOn (i n t

phaseNum , char c o l o r) ” .
131 * This f u n c t i o n g a t h e r s in format ion about a l l c o l o r (i . e . ,

Green , Yel lo , and Red) f o r a l l phases .
132 */
133 void getPhaseInformat ion (int *x , char c o l o r) {
134 int i ;
135
136 int phaseNumber = 0 ;
137

138 d s c i n i t () ;
139 t c g e t g r o u p s (phase stats group number) ;
140 int phaseStatusGroupNumber = getValue () ;
141

142 for (i = 0 ; i < MAX PHASES; i++) {
143 phaseNumber = (phaseStatusGroupNumber * 8) − i ;
144 i f (c o l o r == 'G ') {
145 greenLight In format ion [i] . phaseNumber = phaseNumber ;
146 greenLight In format ion [i] . phaseColor = c o l o r ;
147 greenLight In format ion [i] . phaseStat = x [i] ;
148 } else i f (c o l o r == 'Y ') {
149 ye l l owLight In fo rmat ion [i] . phaseNumber = phaseNumber ;
150 ye l l owLight In fo rmat ion [i] . phaseColor = c o l o r ;
151 ye l l owLight In fo rmat ion [i] . phaseStat = x [i] ;
152 } else i f (c o l o r == 'R ') {
153 redLight In format ion [i] . phaseNumber = phaseNumber ;
154 redLight In format ion [i] . phaseColor = c o l o r ;
155 redLight In format ion [i] . phaseStat = x [i] ;
156 }
157 }
158 }
159

160 void pr intBinaryValue (int *x) {
161 int i ;
162 for (i = 0 ; i < 8 ; i++) {
163 p r i n t f (”%d” , x [i]) ;
164 }
165 }
166

84

167 /**
168 * This f u n c t i o n convers a decimal i n t e g e r i n t o b inary b i t s and

s t o r e s t h o s e b i t s i n t o an array .
169 */
170 int * decimalToBinary (int num) {
171 int i = 0 ;
172 int c , k ;
173 stat ic int s t a t u s [8] ;
174 stat ic int e r r o r [8] = { −1 } ;
175 i f (num < 0 | | num > 255) {
176 p r i n t f (”\nNot Val id Data\n”) ;
177 return e r r o r ;
178 }
179

180 for (c = 7 ; c >= 0 ; c−−) {
181 k = num >> c ;
182 i f (k & 1) {
183 s t a t u s [i] = 1 ;
184 } else {
185 s t a t u s [i] = 0 ;
186 }
187 i ++;
188 }
189 return s t a t u s ;
190 }
191

192 /**
193 * Phase shou ld be from 1 through MAX PHASE (8/16) , and the

v a l u e shou ld be from 0−255
194 */
195 int setGreenPhaseExtension (Byte phase , Byte va lue) {
196 i f (phase < 0 | | phase > MAX PHASES | | value < 0 | | value >

255) {
197 return FAIL ;
198 } else {
199 d s c i n i t () ;
200 t c s e t (phase pas sage encoded o id , phase , va lue) ;
201 return SUCCESS;
202 }
203 }
204

205 int isGreenLightOn (int phase) {
206 p r i n t f (” I n i t i a l i z i n g TCP/IP stack . . . \ n”) ;
207
208 int * greenLightBinary = NULL;
209 int * ye l lowLightBinary = NULL;
210
211 int greenLightVal ;
212 int ye l lowLightVal ;
213 int redLightVal ;
214

215 d s c i n i t () ;
216 t c g e t g r o u p s (p h a s e s t a t u s g r o u p r e d s) ;
217 redLightVal = getValue () ;
218

219 d s c i n i t () ;
220 t c g e t g r o u p s (p h a s e s t a t u s g r o u p g r e e n s) ;
221 greenLightVal = getValue () ;
222

85

223 d s c i n i t () ;
224 t c g e t g r o u p s (p h a s e s t a t u s g r o u p y e l l o w s) ;
225 ye l lowLightVal = getValue () ;
226

227 i f (ye l lowLightVal != 0) {
228 greenLightBinary = decimalToBinary (0) ;
229 getPhaseInformat ion (greenLightBinary , 'G ') ;
230

231 ye l lowLightBinary = decimalToBinary (ye l lowLightVal) ;
232 getPhaseInformat ion (ye l lowLightBinary , 'Y ') ;
233
234 int phase ;
235 for (phase = 1 ; phase <= MAX PHASES; phase++) {
236 i f (queryForLight (phase , 'Y ') == TRUE) {
237 p r i n t f (”Phase %d : : Yellow IS ON\n” , phase) ;
238 } else {
239 continue ;
240 }
241 }
242

243 } else {
244 i f (redLightVal > 0 && greenLightVal == 0) {
245 int temp = 255 − redLightVal ;
246 greenLightBinary = decimalToBinary (temp) ;
247 getPhaseInformat ion (greenLightBinary , 'G ') ;
248 } else {
249 greenLightBinary = decimalToBinary (greenLightVal) ;
250 getPhaseInformat ion (greenLightBinary , 'G ') ;
251 }
252 i f (queryForLight (phase , 'G ') == TRUE) {
253 return TRUE;
254 } else {
255 return FALSE;
256 }
257 }
258
259 return 0 ;
260 }

86

A.5 Main Program

This is a sample program that verifies if the communication with a traffic controller was suc-

cessful. In this main program the status of a green light in a particular phase is queried.

1 /*
2 * c l i e n t−send . c
3 *

4 * Created on : Apr 1 , 2015
5 * Author : Anup Chi t rakar
6 *

7 * D e s c r i p t i o n :
8 * udp−send : a s imple udp c l i e n t
9 * send udp messages

10 * sends a sequence o f messages (the # of messages i s
d e f i n e d in MSGS)

11 * The messages are se n t to a por t d e f i n e d in SERVICE PORT
a v a i l a b l e a t DTC GLOBAL DEFS. h

12 *

13 * usage : udp−send
14 *

15 */
16
17 #include <s t d l i b . h>
18 #include <s t d i o . h>
19 #include <s t r i n g . h>
20 #include <netdb . h>
21 #include <n e t i n e t / in . h>
22 #include <arpa / i n e t . h>
23
24 #include <uni s td . h>
25
26 #include ” C o n t r o l l e r A c c e s s U t i l i t y . h”
27 #include ” PhaseInformation . h”
28

29 int isGreenLightOn (int) ;
30

31 int main () {
32 int phase = 4 ;
33 i f (isGreenLightOn (phase)) {
34 p r i n t f (”\nGreen Light in phase %d i s ON\n” , phase) ;
35 } else {
36 p r i n t f (”\nGreen Light in phase %d i s OFF\n” , phase) ;
37 }
38 return 1 ;
39 }

87

Appendix B

Toolchain Setup

As a software developer, one needs to have a development platform ready before starting to

write code. In our case, we will need a machine (Linux machine preferred), where the Mi-

croprocessor without Interlocked Pipeline Stages (MIPS) [39] SDK will be installed. Setting

up the development environment depends on the machine configuration. Steps to setup the

development environment in both 64 bit and 32 bit machines are explained below.

B.1 Linux 64 bit Version

Listed below are the procedures to install the mips sdk into 64 bit Linux machine:

1. Download toolchain[LocoMate Toolchain_2013 [Posted Jan/31/2015]]from

http://support.aradasystems.com/file.php?tab=files&file=3849.

Note: For Username and password, Arada customer service center needs to be contacted.

2. Download mips sdk [Locomate-mips Source (Version 1.90) [Posted Jan/31/2015]] from

http://support.aradasystems.com/file.php?tab=files&file=3850

3. Execute: sudo tar -Pjxvf latest_2013_locomate-toolchain.tar.bz2

4. Execute: sudo tar -Pjxvf locomate 1.90-mips.tar.bz2

5. Go to: cd /usr/src/locomate-release/mips/src/

6. Execute: make

If no error messages are displayed in console, then the 32 bit libraries were already installed.

Otherwise one might end up with an error message saying, “mips-linux-gcc -I //usr/src/locomate-

release/mips/src/../incs -I //usr/src/locomate-release/mips/src/../src -c -DLOCOMATE -DSDK_-

NEW -o wsmpdemo.o wsmpdemo.c make: mips-linux-gcc: Command not found make: *** [wsm-

pdemo.o] Error 127”. In this case refer to the steps described in Subsection B.1.1.

B.1.1 Resolution

Install some 32 bit libraries.

http://support.aradasystems.com/file.php?tab=files&file=3849
http://support.aradasystems.com/file.php?tab=files&file=3850

88

Before starting to compile, one needs to make sure that the lib32z1, lib32ncurses5 and

lib32z2-1.0 libraries are installed on your host system. Else install it by following commands

on command line:

� sudo apt-get install lib32z1

� sudo apt-get install lib32ncurses5

� sudo apt-get install lib32bz2-1.0

B.2 Linux 32 bit Version

Listed below are the procedures to install the mips sdk into 32 bit Linux machine:

1. Download toolchain[LocoMate Toolchain_2013 [Posted Jan/31/2015]]from http://support.

aradasystems.com/file.php?tab=files&file=3849

2. Download mips sdk [Locomate-mips Source (Version 1.90) [Posted Jan/31/2015]] from

http://support.aradasystems.com/file.php?tab=files&file=3850

3. Execute: sudo tar -Pjxvf latest_2013_locomate-toolchain.tar.bz2

4. Execute: sudo tar -Pjxvf locomate 1.90-mips.tar.bz2

5. Go to: cd /usr/src/locomate-release/mips/src/

6. Execute: sudo -s

7. Execute: make

B.2.1 Install WinSCP

To run WinSCP under Linux (Ubuntu 12.04), follow these steps:

1. Run sudo apt-get install wine (run this one time only, to get ’wine’ in your system, if you

haven’t it)

2. Download http://winscp.net/download/winscp553.zip

3. Make a folder and put the content of zip file in this folder

4. Open a terminal

http://support.aradasystems.com/file.php?tab=files&file=3849
http://support.aradasystems.com/file.php?tab=files&file=3849
http://support.aradasystems.com/file.php?tab=files&file=3850
http://winscp.net/download/winscp553.zip

89

5. Type sudo su

6. Type wine WinSCP.exe Done! WinSCP will run like in Windows environment!

Alternatively, for transferring the executable from host machine to the remote locomate

device, following scp command can be used:

sudo sshpass -p ’password’ scp myRx root@192.168.1.40:/var/arada locomate

Here, root@192.168.1.40:/var/arada locomate is the destination and myRx is the name of the

executable that needs to be transferred.

90

Appendix C

Setup Development Environment

Before setting up a development platform, following assumptions are made:

1. Assumption 1 - Using Linux Environment : The developer is supposed to be installing

a Linux platform in one’s computer or laptop.

2. Assumption 2 - Eclipse IDE : It is recommended to use an Integrated Development

Environment (IDE) for writing and debugging code. Therefore, Eclipse IDE is preferred

to be used. Eclipse is primarily used for developing Java applications, it may also be

used to develop applications in other programming languages via the use of plugins. The

C/C++ Development Tooling (CDT) provides a fully functional C and C++ Integrated

Development Environment based on the Eclipse platform.

C.1 Import Arada Locomate source codes into Eclipse IDE

1. Open Eclipse using root.

2. File → New → Other → Makefile Project with Existing Code.

3. Click Next.

4. Put project Name: DSRCProject

5. For Existing Code Location, enter following path:

/usr/src/locomate-release/mips/src

6. Project → properties → C/C++ General → Indexer

Build configuration for the indexer → Use active build configuration

7. Project → Properties → C/C++ General → Paths and Symbols

In Includes Tab:, Select GNU C and Click Add... button

� /usr/src/locomate-release/mips/incs

� /usr/include

� /usr/include linux

91

� /opt/buildroot-2013.11/output/host/usr/mips-buildroot-linux-uclibc/sysroot/

usr/include

� /opt/buildroot-2013.11/output/host/usr/mips-buildroot-linux-uclibc/sysroot/

usr/include/linux

In Libraries Tab:, Click Add... button

� /usr/src/locomate-release/mips/lib

In Libraries Paths:, Click Add... button

� /usr/src/locomate-release/mips/lib

8. Build the project and there you go !!!

C.2 Import ASC-3 source codes into Eclipse IDE

1. Open Eclipse using root.

2. File → New → C Project.

3. Put Project Name: ASC-3.

4. Uncheck “Use default location”.

5. Provide the source location, in my case it is:

“/home/traffic/Anup/Research/TrafficController/trunk”

6. Click Next → Next → Finish.

7. Right click Project ASC-3 and go to Properties.

8. In C/C++ General, go to Paths and Symbols.

9. In Includes tab → GNU, click Add... button.

/home/traffic/Anup/Research/TrafficController/trunk/incl

10. Click Ok and then a dialog box appears asking if you want to rebuild it now. Click Yes.

92

Appendix D

NTCIP Object Identifiers

Table D.1: List of NTCIP Global Objects

NTCIP 1201 OID Object Name

1.3.6.1.4.1.1206.4.2.6.3 globalTimeManagement

1.3.6.1.4.1.1206.4.2.6.3.1 global.Time

1.3.6.1.4.1.1206.4.2.6.3.2 globalDaylightSaving

1.3.6.1.4.1.1206.4.2.6.3.3 timebase

1.3.6.1.4.1.1206.4.2.6.3.3.1 maxTimeBaseScheduleEntries

1.3.6.1.4.1.1206.4.2.6.3.3.2 timeBaseScheduleTable

1.3.6.1.4.1.1206.4.2.6.3.3.2.1 timeBaseScheduleEntry

1.3.6.1.4.1.1206.4.2.6.3.3.2.1.1 timeBaseScheduleNumber

1.3.6.1.4.1.1206.4.2.6.3.3.2.1.2 timeBaseScheduleMonth

1.3.6.1.4.1.1206.4.2.6.3.3.2.1.3 timeBaseScheduleDay

1.3.6.1.4.1.1206.4.2.6.3.3.2.1.4 timeBaseScheduleDate

1.3.6.1.4.1.1206.4.2.6.3.3.2.1.5 timeBaseScheduleDayPlan

1.3.6.1.4.1.1206.4.2.6.3.3.3 maxDayPlans

1.3.6.1.4.1.1206.4.2.6.3.3.4 maxDayPlanEvents

1.3.6.1.4.1.1206.4.2.6.3.3.5 timeBaseDayPlanTable

1.3.6.1.4.1.1206.4.2.6.3.3.5.1 timeBaseDayPlanEntry

1.3.6.1.4.1.1206.4.2.6.3.3.5.1.1 dayPlanNumber

1.3.6.1.4.1.1206.4.2.6.3.3.5.1.2 dayPlanEventNumber

1.3.6.1.4.1.1206.4.2.6.3.3.5.1.3 dayPlanHour

1.3.6.1.4.1.1206.4.2.6.3.3.5.1.4 dayPlanMinute

1.3.6.1.4.1.1206.4.2.6.3.3.5.1.5 dayPlanActionNumberOID

1.3.6.1.4.1.1206.4.2.6.3.3.6 dayPlanStatus

Table D.2: List of ASC Object Identifiers

NTCIP 1201 OID Object Name

1.3.6.1.4.1.1206.4.2.1.1 phase

1.3.6.1.4.1.1206.4.2.1.1.1 maxPhases

1.3.6.1.4.1.1206.4.2.1.1.2 phaseTable

1.3.6.1.4.1.1206.4.2.1.1.2.1.1 phaseNumber

1.3.6.1.4.1.1206.4.2.1.1.2.1.2 phaseWalk

1.3.6.1.4.1.1206.4.2.1.1.2.1.3 phasePedestrianClear

1.3.6.1.4.1.1206.4.2.1.1.2.1.4 phaseMinimumGreen

continued . . .

93

Table D.2: List of ASC Object Identifiers

. . . continued

NTCIP 1201 OID Object Name

1.3.6.1.4.1.1206.4.2.1.1.2.1.5 phasePassage

1.3.6.1.4.1.1206.4.2.1.1.2.1.6 phaseMaximum1

1.3.6.1.4.1.1206.4.2.1.1.2.1.7 phaseMaximum2

1.3.6.1.4.1.1206.4.2.1.1.2.1.8 phaseYellowChange

1.3.6.1.4.1.1206.4.2.1.1.2.1.9 phaseRedClear

1.3.6.1.4.1.1206.4.2.1.1.2.1.10 phaseRedRevert

1.3.6.1.4.1.1206.4.2.1.1.2.1.11 phaseAddedInitial

1.3.6.1.4.1.1206.4.2.1.1.2.1.12 phaseMaximumInitial

1.3.6.1.4.1.1206.4.2.1.1.2.1.13 phaseTimeBeforeReduction

1.3.6.1.4.1.1206.4.2.1.1.2.1.14 phaseCarsBeforeReduction

1.3.6.1.4.1.1206.4.2.1.1.2.1.15 phaseTimeToReduce

1.3.6.1.4.1.1206.4.2.1.1.2.1.16 phaseReduceBy

1.3.6.1.4.1.1206.4.2.1.1.2.1.17 phaseMinimumGap

1.3.6.1.4.1.1206.4.2.1.1.2.1.18 phaseDynamicMaxLimit

1.3.6.1.4.1.1206.4.2.1.1.2.1.19 phaseDynamicMaxStep

1.3.6.1.4.1.1206.4.2.1.1.2.1.20 phaseStartup

1.3.6.1.4.1.1206.4.2.1.1.2.1.21 phaseOptions

1.3.6.1.4.1.1206.4.2.1.1.2.1.22 phaseRing

1.3.6.1.4.1.1206.4.2.1.1.2.1.23 phaseConcurrency

1.3.6.1.4.1.1206.4.2.1.1.3 maxPhaseGroups

1.3.6.1.4.1.1206.4.2.1.1.4 phaseStatusGroupTable

1.3.6.1.4.1.1206.4.2.1.1.4.1 phaseStatusGroupEntry

1.3.6.1.4.1.1206.4.2.1.1.4.1.1 phaseStatusGroupNumber

1.3.6.1.4.1.1206.4.2.1.1.4.1.2 phaseStatusGroupReds

1.3.6.1.4.1.1206.4.2.1.1.4.1.3 phaseStatusGroupYellows

1.3.6.1.4.1.1206.4.2.1.1.4.1.4 phaseStatusGroupGreens

1.3.6.1.4.1.1206.4.2.1.1.4.1.5 phaseStatusGroupDontWalks

1.3.6.1.4.1.1206.4.2.1.1.4.1.6 phaseStatusGroupPedClears

1.3.6.1.4.1.1206.4.2.1.1.4.1.7 phaseStatusGroupWalks

1.3.6.1.4.1.1206.4.2.1.1.4.1.8 phaseStatusGroupVehCalls

1.3.6.1.4.1.1206.4.2.1.1.4.1.9 phaseStatusGroupPedCalls

1.3.6.1.4.1.1206.4.2.1.1.4.1.10 phaseStatusGroupPhaseOns

1.3.6.1.4.1.1206.4.2.1.1.4.1.11 phaseStatusGroupPhaseNexts

1.3.6.1.4.1.1206.4.2.1.1.5 phaseControlGroupTable

1.3.6.1.4.1.1206.4.2.1.1.5.1 phaseControlGroupEntry

1.3.6.1.4.1.1206.4.2.1.1.5.1.1 phaseControlGroupNumber

1.3.6.1.4.1.1206.4.2.1.1.5.1.2 phaseControlGroupPhaseOmit

continued . . .

94

Table D.2: List of ASC Object Identifiers

. . . continued

NTCIP 1201 OID Object Name

1.3.6.1.4.1.1206.4.2.1.1.5.1.3 phaseControlGroupPedOmit

1.3.6.1.4.1.1206.4.2.1.1.5.1.4 phaseControlGroupHold

1.3.6.1.4.1.1206.4.2.1.1.5.1.5 phaseControlGroupForceOff

1.3.6.1.4.1.1206.4.2.1.1.5.1.6 phaseControlGroupVehCall

1.3.6.1.4.1.1206.4.2.1.1.5.1.7 phaseControlGroupPedCall

1.3.6.1.4.1.1206.4.2.1.2 detector

1.3.6.1.4.1.1206.4.2.1.2.1 maxVehicleDetectors

1.3.6.1.4.1.1206.4.2.1.2.2 vehicleDetectorTable

1.3.6.1.4.1.1206.4.2.1.2.2.1 vehicleDetectorEntry

1.3.6.1.4.1.1206.4.2.1.2.2.1.1 vehicleDetectorNumber

1.3.6.1.4.1.1206.4.2.1.2.2.1.2 vehicleDetectorOptions

1.3.6.1.4.1.1206.4.2.1.2.2.1.4 vehicleDetectorCallPhase

1.3.6.1.4.1.1206.4.2.1.2.2.1.5 vehicleDetectorSwitchPhase

1.3.6.1.4.1.1206.4.2.1.2.2.1.6 vehicleDetectorDelay

1.3.6.1.4.1.1206.4.2.1.2.2.1.7 vehicleDetectorExtend

1.3.6.1.4.1.1206.4.2.1.2.2.1.8 vehicleDetectorQueueLimit

1.3.6.1.4.1.1206.4.2.1.2.2.1.9 vehicleDetectorNoActivity

1.3.6.1.4.1.1206.4.2.1.2.2.1.10 vehicleDetectorMaxPresence

1.3.6.1.4.1.1206.4.2.1.2.2.1.11 vehicleDetectorErraticCounts

1.3.6.1.4.1.1206.4.2.1.2.2.1.12 vehicleDetectorFailTime

1.3.6.1.4.1.1206.4.2.1.2.2.1.13 vehicleDetectorAlarms

1.3.6.1.4.1.1206.4.2.1.2.2.1.14 vehicleDetectorReportedAlarms

1.3.6.1.4.1.1206.4.2.1.2.2.1.15 vehicleDetectorReset

1.3.6.1.4.1.1206.4.2.1.2.3 maxVehicleDetectorStatusGroups

1.3.6.1.4.1.1206.4.2.1.2.4 vehicleDetectorStatusGroupTable

1.3.6.1.4.1.1206.4.2.1.2.4.1 vehicleDetectorStatusGroupEntry

1.3.6.1.4.1.1206.4.2.1.2.4.1.1 vehicleDetectorStatusGroupNumber

1.3.6.1.4.1.1206.4.2.1.2.4.1.2 vehicleDetectorStatusGroupActive

1.3.6.1.4.1.1206.4.2.1.2.4.1.3 vehicleDetectorStatusGroupAlarms

1.3.6.1.4.1.1206.4.2.1.2.5 volumeOccupancyReport

1.3.6.1.4.1.1206.4.2.1.2.5.1 volumeOccupancySequence

1.3.6.1.4.1.1206.4.2.1.2.5.2 volumeOccupancyPeriod

1.3.6.1.4.1.1206.4.2.1.2.5.3 activeVolumeOccupancyDetectors

1.3.6.1.4.1.1206.4.2.1.2.5.4 volumeOccupancyTable

1.3.6.1.4.1.1206.4.2.1.2.5.4.1 volumeOccupancyEntry

1.3.6.1.4.1.1206.4.2.1.2.5.4.1.1 detectorVolume

1.3.6.1.4.1.1206.4.2.1.2.5.4.1.2 detectorOccupancy

continued . . .

95

Table D.2: List of ASC Object Identifiers

. . . continued

NTCIP 1201 OID Object Name

1.3.6.1.4.1.1206.4.2.1.2.6 maxPedestrianDetectors

1.3.6.1.4.1.1206.4.2.1.2.7 pedestrianDetectorTable

1.3.6.1.4.1.1206.4.2.1.2.7.1 pedestrianDetectorEntry

1.3.6.1.4.1.1206.4.2.1.2.7.1.1 pedestrianDetectorNumber

1.3.6.1.4.1.1206.4.2.1.2.7.1.2 pedestrianDetectorCallPhase

1.3.6.1.4.1.1206.4.2.1.2.7.1.3 pedestrianDetectorNoActivity

1.3.6.1.4.1.1206.4.2.1.2.7.1.4 pedestrianDetectorMaxPresence

1.3.6.1.4.1.1206.4.2.1.2.7.1.5 pedestrianDetectorErraticCounts

1.3.6.1.4.1.1206.4.2.1.2.7.1.6 pedestrianDetectorAlarms

1.3.6.1.4.1.1206.4.2.1.3 unit

1.3.6.1.4.1.1206.4.2.1.3.1 unitStartupFlash

1.3.6.1.4.1.1206.4.2.1.3.2 unitAutoPedestrianClear

1.3.6.1.4.1.1206.4.2.1.3.3 unitBackupTime

1.3.6.1.4.1.1206.4.2.1.3.4 unitRedRevert

1.3.6.1.4.1.1206.4.2.1.3.5 unitControlStatus

1.3.6.1.4.1.1206.4.2.1.3.6 unitFlashStatus

1.3.6.1.4.1.1206.4.2.1.3.7 unitAlarmStatus2

1.3.6.1.4.1.1206.4.2.1.3.8 unitAlarmStatus1

1.3.6.1.4.1.1206.4.2.1.3.9 shortAlarmStatus

1.3.6.1.4.1.1206.4.2.1.3.10 unitControl

1.3.6.1.4.1.1206.4.2.1.3.11 maxAlarmGroups

1.3.6.1.4.1.1206.4.2.1.3.12 alarmGroupTable

1.3.6.1.4.1.1206.4.2.1.3.12.1 alarmGroupEntry

1.3.6.1.4.1.1206.4.2.1.3.12.1.1 alarmGroupNumber

1.3.6.1.4.1.1206.4.2.1.3.12.1.2 alarmGroupState

1.3.6.1.4.1.1206.4.2.1.3.13 maxSpecialFunctionOutputs

1.3.6.1.4.1.1206.4.2.1.3.14 specialFunctionOutputTable

1.3.6.1.4.1.1206.4.2.1.3.14.1 specialFunctionOutputEntry

1.3.6.1.4.1.1206.4.2.1.3.14.1.1 specialFunctionOutputNumber

1.3.6.1.4.1.1206.4.2.1.3.14.1.3 specialFunctionOutputControl

1.3.6.1.4.1.1206.4.2.1.3.14.1.4 specialFunctionOutputStatus

1.3.6.1.4.1.1206.4.2.1.4 coord

1.3.6.1.4.1.1206.4.2.1.4.1 coordOperationalMode

1.3.6.1.4.1.1206.4.2.1.4.2 coordCorrectionMode

1.3.6.1.4.1.1206.4.2.1.4.3 coordMaximumMode

1.3.6.1.4.1.1206.4.2.1.4.4 coordForceMode

1.3.6.1.4.1.1206.4.2.1.4.5 maxPatterns

continued . . .

96

Table D.2: List of ASC Object Identifiers

. . . continued

NTCIP 1201 OID Object Name

1.3.6.1.4.1.1206.4.2.1.4.6 patternTableType

1.3.6.1.4.1.1206.4.2.1.4.7 patternTable

1.3.6.1.4.1.1206.4.2.1.4.7.1 patternEntry

1.3.6.1.4.1.1206.4.2.1.4.7.1.1 patternNumber

1.3.6.1.4.1.1206.4.2.1.4.7.1.2 patternCycleTime

1.3.6.1.4.1.1206.4.2.1.4.7.1.3 patternOffsetTime

1.3.6.1.4.1.1206.4.2.1.4.7.1.4 patternSplitNumber

1.3.6.1.4.1.1206.4.2.1.4.7.1.5 patternSequenceNumber

1.3.6.1.4.1.1206.4.2.1.4.8 maxSplits

1.3.6.1.4.1.1206.4.2.1.4.9 splitTable

1.3.6.1.4.1.1206.4.2.1.4.9.1 splitEntry

1.3.6.1.4.1.1206.4.2.1.4.9.1.1 splitNumber

1.3.6.1.4.1.1206.4.2.1.4.9.1.2 splitPhase

1.3.6.1.4.1.1206.4.2.1.4.9.1.3 splitTime

1.3.6.1.4.1.1206.4.2.1.4.9.1.4 splitMode

1.3.6.1.4.1.1206.4.2.1.4.9.1.5 splitCoordPhase

1.3.6.1.4.1.1206.4.2.1.4.10 coordPatternStatus

1.3.6.1.4.1.1206.4.2.1.4.11 localFreeStatus

1.3.6.1.4.1.1206.4.2.1.4.12 coordCycleStatus

1.3.6.1.4.1.1206.4.2.1.4.13 coordSyncStatus

1.3.6.1.4.1.1206.4.2.1.4.14 systemPatternControl

1.3.6.1.4.1.1206.4.2.1.4.15 systemSyncControl

1.3.6.1.4.1.1206.4.2.1.5 timebaseAsc

1.3.6.1.4.1.1206.4.2.1.5.1 timeBaseAscPatternSync

1.3.6.1.4.1.1206.4.2.1.5.2 maxTimebaseAscActions

1.3.6.1.4.1.1206.4.2.1.5.3 timebaseActionTable

1.3.6.1.4.1.1206.4.2.1.5.3.1 timebaseActionEntry

1.3.6.1.4.1.1206.4.2.1.5.3.1.1 timebaseActionNumber

1.3.6.1.4.1.1206.4.2.1.5.3.1.2 timebaseAscPattern

1.3.6.1.4.1.1206.4.2.1.5.3.1.3 timebaseAscAuxillaryFunction

1.3.6.1.4.1.1206.4.2.1.5.3.1.4 timebaseAscSpecialFunction

1.3.6.1.4.1.1206.4.2.1.5.4 timebaseActionStatus

1.3.6.1.4.1.1206.4.2.1.6 preempt

1.3.6.1.4.1.1206.4.2.1.6.1 maxPreempts

1.3.6.1.4.1.1206.4.2.1.6.2 preemptTable

1.3.6.1.4.1.1206.4.2.1.6.2.1 preemptEntry

1.3.6.1.4.1.1206.4.2.1.6.2.1.1 preemptNumber

continued . . .

97

Table D.2: List of ASC Object Identifiers

. . . continued

NTCIP 1201 OID Object Name

1.3.6.1.4.1.1206.4.2.1.6.2.1.2 preemptControl

1.3.6.1.4.1.1206.4.2.1.6.2.1.3 preemptLink

1.3.6.1.4.1.1206.4.2.1.6.2.1.4 preemptDelay

1.3.6.1.4.1.1206.4.2.1.6.2.1.5 preemptMinimumDuration

1.3.6.1.4.1.1206.4.2.1.6.2.1.6 preemptMinimumGreen

1.3.6.1.4.1.1206.4.2.1.6.2.1.7 preemptMinimumWalk

1.3.6.1.4.1.1206.4.2.1.6.2.1.8 preemptEnterPedClear

1.3.6.1.4.1.1206.4.2.1.6.2.1.9 preemptTrackGreen

1.3.6.1.4.1.1206.4.2.1.6.2.1.10 preemptDwellGreen

1.3.6.1.4.1.1206.4.2.1.6.2.1.11 preemptMaximumPresence

1.3.6.1.4.1.1206.4.2.1.6.2.1.12 preemptTrackPhase

1.3.6.1.4.1.1206.4.2.1.6.2.1.13 preemptDwellPhase

1.3.6.1.4.1.1206.4.2.1.6.2.1.14 preemptDwellPed

1.3.6.1.4.1.1206.4.2.1.6.2.1.15 preemptExitPhase

1.3.6.1.4.1.1206.4.2.1.6.2.1.16 preemptState

1.3.6.1.4.1.1206.4.2.1.6.2.1.17 preemptTrackOverlap

1.3.6.1.4.1.1206.4.2.1.6.2.1.18 preemptDwellOverlap

1.3.6.1.4.1.1206.4.2.1.6.2.1.19 preemptCyclingPhase

1.3.6.1.4.1.1206.4.2.1.6.2.1.20 preemptCyclingPed

1.3.6.1.4.1.1206.4.2.1.6.2.1.21 preemptCyclingOverlap

1.3.6.1.4.1.1206.4.2.1.7 ring

1.3.6.1.4.1.1206.4.2.1.7.1 maxRings

1.3.6.1.4.1.1206.4.2.1.7.2 maxSequences

1.3.6.1.4.1.1206.4.2.1.7.3 sequenceTable

1.3.6.1.4.1.1206.4.2.1.7.3.1 sequenceEntry

1.3.6.1.4.1.1206.4.2.1.7.3.1.1 sequenceNumber

1.3.6.1.4.1.1206.4.2.1.7.3.1.2 sequenceRingNumber

1.3.6.1.4.1.1206.4.2.1.7.3.1.3 sequenceData

1.3.6.1.4.1.1206.4.2.1.7.4 maxRingControlGroups

1.3.6.1.4.1.1206.4.2.1.7.5 ringControlGroupTable

1.3.6.1.4.1.1206.4.2.1.7.5.1 ringControlGroupEntry

1.3.6.1.4.1.1206.4.2.1.7.5.1.1 ringControlGroupNumber

1.3.6.1.4.1.1206.4.2.1.7.5.1.2 ringControlGroupStopTime

1.3.6.1.4.1.1206.4.2.1.7.5.1.3 ringControlGroupForceOff

1.3.6.1.4.1.1206.4.2.1.7.5.1.4 ringControlGroupMax2

1.3.6.1.4.1.1206.4.2.1.7.5.1.5 ringControlGroupMaxInhibit

1.3.6.1.4.1.1206.4.2.1.7.5.1.6 ringControlGroupPedRecycle

continued . . .

98

Table D.2: List of ASC Object Identifiers

. . . continued

NTCIP 1201 OID Object Name

1.3.6.1.4.1.1206.4.2.1.7.5.1.7 ringControlGroupRedRest

1.3.6.1.4.1.1206.4.2.1.7.5.1.8 ringControlGroupOmitRedClear

1.3.6.1.4.1.1206.4.2.1.7.6 ringStatusTable

1.3.6.1.4.1.1206.4.2.1.7.6.1 ringStatusEntry

1.3.6.1.4.1.1206.4.2.1.7.6.1.1 ringStatus

1.3.6.1.4.1.1206.4.2.1.8 channel

1.3.6.1.4.1.1206.4.2.1.8.1 maxChannels

1.3.6.1.4.1.1206.4.2.1.8.2 channelTable

1.3.6.1.4.1.1206.4.2.1.8.2.1 channelEntry

1.3.6.1.4.1.1206.4.2.1.8.2.1.1 channelNumber

1.3.6.1.4.1.1206.4.2.1.8.2.1.2 channelControlSource

1.3.6.1.4.1.1206.4.2.1.8.2.1.3 channelControlType

1.3.6.1.4.1.1206.4.2.1.8.2.1.4 channelFlash

1.3.6.1.4.1.1206.4.2.1.8.2.1.5 channelDim

1.3.6.1.4.1.1206.4.2.1.8.3 maxChannelStatusGroups

1.3.6.1.4.1.1206.4.2.1.8.4 channelStatusGroupTable

1.3.6.1.4.1.1206.4.2.1.8.4.1 channelStatusGroupEntry

1.3.6.1.4.1.1206.4.2.1.8.4.1.1 channelStatusGroupNumber

1.3.6.1.4.1.1206.4.2.1.8.4.1.2 channelStatusGroupReds

1.3.6.1.4.1.1206.4.2.1.8.4.1.3 channelStatusGroupYellows

1.3.6.1.4.1.1206.4.2.1.8.4.1.4 channelStatusGroupGreens

1.3.6.1.4.1.1206.4.2.1.9 overlap

1.3.6.1.4.1.1206.4.2.1.9.1 maxOverlaps

1.3.6.1.4.1.1206.4.2.1.9.2 overlapTable

1.3.6.1.4.1.1206.4.2.1.9.2.1 overlapEntry

1.3.6.1.4.1.1206.4.2.1.9.2.1.1 overlapNumber

1.3.6.1.4.1.1206.4.2.1.9.2.1.2 overlapType

1.3.6.1.4.1.1206.4.2.1.9.2.1.3 overlapIncludedPhases

1.3.6.1.4.1.1206.4.2.1.9.2.1.4 overlapModifierPhases

1.3.6.1.4.1.1206.4.2.1.9.2.1.5 overlapTrailGreen

1.3.6.1.4.1.1206.4.2.1.9.2.1.6 overlapTrailYellow

1.3.6.1.4.1.1206.4.2.1.9.2.1.7 overlapTrailRed

1.3.6.1.4.1.1206.4.2.1.9.3 maxOverlapStatusGroups

1.3.6.1.4.1.1206.4.2.1.9.4 overlapStatusGroupTable

1.3.6.1.4.1.1206.4.2.1.9.4.1 overlapStatusGroupEntry

1.3.6.1.4.1.1206.4.2.1.9.4.1.1 overlapStatusGroupNumber

1.3.6.1.4.1.1206.4.2.1.9.4.1.2 overlapStatusGroupReds

continued . . .

99

Table D.2: List of ASC Object Identifiers

. . . continued

NTCIP 1201 OID Object Name

1.3.6.1.4.1.1206.4.2.1.9.4.1.3 overlapStatusGroupYellows

1.3.6.1.4.1.1206.4.2.1.9.4.1.4 overlapStatusGroupGreens

100

Appendix E

Arada Locomate Application Parameter List

Table E.1: Common Options

Parameter Description

-m Mac Address [xx:xx:xx:xx:xx:xx]

-s Service Channel

-b TxPkt Channel

-w Service Type [Provider/User]

-t Message Type [BSM/PVD/RSA/ICA/SPAT/MAP/TIM]

-e Security Type [Plain/Sign/Encrypt]

-D Certificate Attach Interval in millisec should be in multiple of
packet delay

-l Output log filename, (specify path ending with / for pcap for-
mat)

-P Prefex of certificate files)

-o Tx/Rx Options [TXRX/NOTX/NORXALL/NORX/TXRX-
UDP/NOTXRX]

-X Logging Options [TXRXLOG/TXLOG/RXLOG/NOLOG]

-g sign certificate type [certificate/digest 224/digest 256/certifi-
cate chain]

-p BSM Part II Packet interval (n BSM Part I messages)

-v Path history number [2 represents BSM-PH-2, 5 represents
BSM-PH-5]

- Vehicle Type (value as per DE VehicleType)

-y psid value (any decimal value)

-d packet delay in millisec

-q User Priority 0/1/2/3/4/5/6/7

-j txpower in dBm

-M Model Deployment Device ID

-T Temporary ID control (1 = random, 0 = fixed upper two bytes)

-S Safety Supplement (wsmp-s) ¡0:disable / 1:enable¿

-L Vehicle Length in cm

-W Vehicle Width in cm

-r data rate 0.0, 3.0, 4.5, 6.0, 9.0, 12.0, 18.0, 24.0, 27.0, 36.0,
48.0,54.0mbps

-n no argument, and selects no gps device available

-f Type xml or csv for logging in XML or CSV format. Type
pcaphdr for only pcap header logging and pcap for full packet
logging

-F frameType for TIM Packet 0-unknown(default) 1-advisory 2-
roadSignage 3-commercialSignage

continued . . .

101

Table E.1: Common Options

. . . continued

Parameter Description

-A Active Message Status

-B Port Address for RSU receive from UDP Server

-R Repeat rate for WSA frame (Number of WSA per 5 seconds)
Repeatrate is included in WSA-Header only if enabled from
/proc/wsa repeatrate enable

-G Repeat rate for TA frame (Number of TA per 5 seconds) TA is
available only if TA channel [-c option] is given

-I IP service Enable 1= enable 0 = disable

-O Timeout for receiving udp data , in seconds

Table E.2: Provider Options

Parameter Description

-z Service Priority

-a Service Channel Access [1:Alternating, 0:Continuous]

-c Specify Channel Number to Transmit TA

-i TA Channel Interval [1:cch int, 2:sch int]

Table E.3: User Options

Parameter Description

-u User Request Type [1:auto, 2:unconditional(not wait for WSA
from provider), 3:none]

-x Extended Access ¡0:alternate /1:continuous¿

Table E.4: Default Values

Parameter Values

-m Mac Address [00:00:00:00:00:00]

-s Service Channel - 172

-b TxPkt Channel - 172

-w Service Type - User/Provider

-u User Request Type - [1:auto]

-x Extended Access - 0

-c TA disabled - 0

-p BSM Part II Interval - 10 packets

continued . . .

102

Table E.4: Default Values

. . . continued

Parameter Values

-k Vehicle Type - 0 (not available)

-v PathHistory Number - 4 (PathHistory Set 4)

-t Message Type - BSM

-e Security Type - Plain

-l Output log filename, - NULL

-o Tx/Rx Options - TXRX

-X Logging Options - NOLOG

-g Sign Certificate Type - certificate

-y psid value - 32

-d packet delay in millisec - 100

-f Format Type PCAP

-F Frame Type 0

-r data rate(mbps) - 3.0

-A Active Message Status - 0 (Disable)

-C Config File Name for active message - ’/var/activemsg.conf’

-B Port Address for RSU receive from UDP Server - 0

-R Repeat rate for WSA frame - 50

-G Repeat rate for TA frame - 0

-j txpower(dBm) - 14

-q User Priority 2

-S Safety Supplement (wsmp-s) - 0 (disabled)

-E Certificate change request flag -0)

-L Vehicle Length(cm) - 0

-W Vehicle Width(cm) - 0

-D Certificate Attach Interval in millisec - 500

-M Model Deployment Device ID = 1

-T Temporary ID control = 1 (random 4 bytes)

-I IP service Enable = 0

-O Timeout for receiving udp data = 10 seconds

	Authorization to Submit Thesis
	Abstract
	Acknowledgments
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Introduction
	Intelligent Transportation Technologies
	Connected Vehicles
	Motivation
	Contributions
	Thesis Outline

	Background and Overview
	Application Overview
	Dedicated Short Range Communications
	WAVE Protocol Stack
	MAC Protocol
	ETSS Equipment Details
	Basic Safety Message
	National Transportation Communication for ITS Protocol (NTCIP)
	NTCIP Standards Framework
	SNMP, MIBs and OIDs
	Traffic Signal Timing
	Pre-Timed Operation
	Actuated Operation

	System Architecture
	System Hardware Configuration
	Software Architecture and Communications
	Creating a Basic Safety Message
	Transmit Basic Safety Message
	Receive Basic Safety Message

	Communication with Traffic Controller
	NTCIP Objects
	Data Structures
	Important C Functions in ETSS
	ETSS Algorithm

	Arada Locomate Application
	Multi-threaded ETSS Application

	Experimental Validation of ETSS
	Experiment Details
	Results

	Conclusion and Future Work
	Bibliography
	Appendix
	Communicating with the Traffic Controller
	Global Variables
	DYNAMIC_SIGNAL_CONTROL_S
	Controller Access Utility
	Phase Information
	Main Program

	Toolchain Setup
	Linux 64 bit Version
	Resolution

	Linux 32 bit Version
	Install WinSCP

	Setup Development Environment
	Import Arada Locomate source codes into Eclipse IDE
	Import ASC-3 source codes into Eclipse IDE

	NTCIP Object Identifiers
	Arada Locomate Application Parameter List

