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Abstract

A number of key processes in evolution are driven by individuals preferring mates

with particular phenotypes. However, despite longstanding interest, it is difficult to quan-

tify the strength of mate preference from phenotypic observations in nature in a way that

connects directly to key parameters in theoretical models. To bridge the gap between

mathematical models and empirical data, we develop a novel maximum likelihood-based

method to estimate the strength and form of mate preference, where preference depends

on traits expressed in both males and females. Using simulated data, we demonstrate that

our method accurately infers model parameters, including the strength of mate preference

and the optimal offset match between trait values in mated pairs, when model assump-

tions are satisfied. Applying our method to two previous studies of assortative mating

in marine gastropods and the European common frog, we support previous findings, but

also give additional insight into the role of mate preference in each system. Our method

can be generalized to a variety of plant and animal taxa that exhibit mating preferences

to facilitate the testing of evolutionary hypotheses and link empirical data to theoretical

models of assortative mating, sexual selection, and speciation.
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CHAPTER 1

Introduction

In many species, individuals prefer and choose mates with particular characteristics.

Mate preference, the propensity for individuals to select mates on the basis of phenotypes,

is a pervasive, highly complex, and very important driver of evolution. For instance, mat-

ing preferences can generate assortative mating, produce persistent selection on mating

success (Lande 1981; Kirkpatrick and Ravigné 2002), and lead to speciation even in the

face of gene flow (Pinho and Hey 2010; Dieckmann and Doebeli 1999; Kirkpatrick and Rav-

igné 2002). In general, there are two predominant types of mate preference rules that can

give rise to assortative mating but may otherwise produce different evolutionary outcomes:

(i) preference for a mate with a certain trait value regardless of the chooser’s trait value

(preference/trait), and (ii) preference for a mate on the basis of a match with their own

phenotype (matching) (Kopp et al. 2018). Although both types of mate preference rules

generate sexual selection and have important evolutionary consequences, matching rules

are more commonly assumed in theoretical models of sympatric speciation and divergence

with gene flow (Kopp et al. 2018). This is because matching rules can generate assort-

ment under a “one-allele” model (Felsenstein 1981), and are therefore more conducive to

speciation than preference/trait rules that require a minimum of two alleles or sets of loci

(Otto et al. 2008; Kopp et al. 2018). Matching rules can also facilitate many different, and

even opposing evolutionary processes depending on conditions. For example, local adap-

tation can generate selection against offspring with intermediate phenotypes and lead to

the evolution of matching preferences which decreases gene flow between sympatric groups
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(Servedio 2004; Otto et al. 2008; Doebeli and Dieckmann 2000). Conversely, trait matching

preferences can also act as a strong force of stabilizing sexual selection that stymies diver-

gence (Kirkpatrick and Nuismer 2004; Servedio and Kopp 2012), or these preferences can

lead to the evolution of sexual dimorphism instead of diversification (Bolnick and Doebeli

2003). The evolution of preferences themselves may also be idiosyncratic or system-specific.

For example, Heliconius butterflies have mimetic color patterns that are under frequency-

dependent selection (Chamberlain et al. 2009) and mate preferences evolve adaptively to

produce the most fit offspring (see Jiang et al. 2013). Similarly, mate preference for a phe-

notypically or genetically similar mate may evolve due to outbreeding depression (Epinat

and Lenormand 2009) and may contribute to population structure in small populations

that may be of conservation interest (e.g., Langin et al. 2015). Henceforth, we consider

the specific case of the trait matching rule and define mate preference as the preference for

a mate conditioned upon the individual chooser’s own phenotype where phenotypic traits

can be measured in both sexes.

Mate preference is fundamental to biological questions linking ecology, phenotypic evo-

lution, and the genetic basis for mating traits, yet our capacity to measure mate preference

and study its consequences in natural systems is highly limited. Much of what we know and

the predictions we are able to make about evolutionary processes involving mate prefer-

ence stem from theoretical models, laboratory studies, and simulations, with less emphasis

on field studies to test hypotheses (Turelli et al. 2001; Kirkpatrick and Ravigné 2002;

Gavrilets 2004; Carvajal-Rodriguez and Rolán-Alvarez 2014). This is because in most,

if not all cases, it is impossible to directly measure mate preference in the wild. Exper-

imentally, mate preferences can be studied using mate-choice trials, but such trials are
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accompanied by assumptions and confounding effects not found in nature and are not fea-

sible in many study organisms (Dougherty 2020; Johnson and Marzluff 1990). Simulation

studies connect a mathematical framework to the sampling process and allow us to study

the effects of specific parameters on evolutionary outcomes given a set of assumptions.

However, mathematical models go noticeably untested with field data, leaving a lacuna

between theory and the natural world. One tractable approach in studies of natural popu-

lations is to infer mate preference with a Pearson correlation coefficient calculated between

quantitative traits measured within known mated pairs (Jiang et al. 2013). This is valu-

able because it has allowed us to observe presence or absence of asssortative mating across

a variety of taxa (Jiang et al. 2013; de Cara et al. 2008). A correlation can be used as

evidence that assortative mating may be occurring in a population, however, a correlation

cannot accurately measure the strength of mate preference directly, nor can correlations

help distinguish between mate preference rules. Furthermore, correlation coefficients do

not appear as parameters in analytical or simulation-based models of sexual selection or

divergence with gene flow (de Cara et al. 2008). To provide a link between theory and

data, the strength of mate preference must be directly estimated as a parameter value.

Here we develop a likelihood-based method adapted from the mathematical framework

given in Kirkpatrick and Nuismer (2004) to infer the strength of mate preference from

observational data collected in the wild. Our method requires observations of phenotypes

of males and females in mated pairs, as well as phenotypes of randomly sampled individ-

uals of reproductive capacity in a population. We know of one other family of methods

to estimate mate preference from similar data (Rolán-Alvarez et al. 2015; Estévez et al.

2018; Fernández-Meirama et al. 2017). These approaches are based on fitting a strength
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parameter to indices of assortative mating for each pair that are scaled to approximate

probabilities. We take a more direct statistical approach by estimating all parameters via

maximum likelihood, which also provides for the calculation of standard errors or profile

likelihood functions to gauge the (im)precision in the estimation, as well as formal infer-

ences such as statistical tests and confidence intervals. This approach is also easily extended

to generalizations of the model. We also include a parameter that allows for offset matching

between male and female phenotypes instead of restricting the model to only trait match-

ing, as is common in most mating functions (e.g., Lande and Arnold 1983; Arnqvist et al.

1996; Dieckmann and Doebeli 1999; Thibert-Plante and Hendry 2009). In the sections

below, we (i) present the mathematical framework from which we build a likelihood-based

method to estimate parameter values. Using the mathematical framework in (i), we (ii)

demonstrate why using a correlation to measure the strength of mate preference is insuf-

ficient and can generate spurious results. Then, we (iii) evaluate the performance of the

maximum likelihood estimates with simulated data, and (iv) analyze and interpret data

from two previously published studies on assortative mating using our methodology that

we have made publicly available in an package called matepref (Clancey and Johnson

2021) for R (R Core Team 2021).
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CHAPTER 2

Statistical Model, Model Evaluation, and Application

2.1 The Statistical Model

2.1.1 Mate Preference Model

Our model is designed to estimate the strength of mate preference when individuals

prefer a phenotypically similar mate (i.e., trait matching) or a mate with a larger or smaller

trait value relative to themselves (i.e., offset matching) on a continuous scale. We rely on

having a single quantitative trait that can be measured in both sexes, or in certain cases it

may be appropriate to have two quantitative traits, one that is measured in males and one

that is measured in females, where each trait is important in the context of mating. Specif-

ically, our model is a statistical application of a theoretical model proposed by Kirkpatrick

and Nuismer (2004), which we adapt for the purpose of estimating parameters pertaining

to mate preference from observations of trait values in mated pairs of organisms in the

wild.

We assume individuals can move freely in space and come into contact with potential

mates at random. In diecious species, male and female traits, or in hermaphroditic species,

traits of donors and recipients, hereafter X and Y , are assumed to be independently sam-

pled from a homogeneous population. To give a general formulation of the model, we

can decompose the joint distribution of traits in (X, Y ) mated pairs of organisms into the

unspecified marginal density functions fX(x) and fY (y), a mating function describing the

probability of mating between individuals with X and Y trait values, and a normalizing
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constant. Assuming observations within X, Y , and (X, Y ) mated pairs are independent,

the joint distribution of X and Y trait values given that the organisms are in a mated pair

can be written using Bayes’ theorem as

M(x, y | S = 1) =
fX(x)fY (y)P (S = 1 | x, y)

P (S = 1)
, (2.1)

where S denotes an indicator variable for a successfully mated pair and the denominator,

P (S = 1), is the marginal probability of mating. The mating function we propose builds

upon a Gaussian mating function from Lande (1983) and Kirkpatrick and Nuismer (2004),

but we include additional parameters such that

P (S = 1 | x, y) = γe−α(x−y−δ)
2

, (2.2)

where α ≥ 0 is a parameter describing the strength of mate preference as a function of

the difference between the trait values, δ is the value of x− y that maximizes the mating

probability, and γ is a parameter that equals the probability of mating when x−y = δ (i.e.,

the probability of mating with the perfect matching or offset matching of trait values).

Now we assume the distributions fX(x) and fY (y) to be normal density functions, or

approximately normal, such that X iid∼ N (µx, σx) and Y
iid∼ N (µy, σy). These distributions,

combined with the mating function in Equation 2.2, give us the fully-specified conditional

distribution of mated pairs as

M(x, y | S = 1) =
f(x;µx, σ

2
x)f(y;µy, σ

2
y)e
−α(x−y−δ)2∫∫

f(x;µx, σ
2
x)f(y;µy, σ

2
y)e
−α(x−y−δ)2 dx dy

. (2.3)
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Note this distribution is not dependent on the parameter γ. The denominator of Equation

2.3 is equal to the marginal probability of mating and for computational purposes can be

written in closed-form. The double integral here is equal to the expectation

E
[
e−α(X−Y−δ)

2
]
= E

[
etZ

2
]
, (2.4)

where t = −α(σ2
x+σ

2
y) and Z = (X−Y −δ)/

√
σ2
x + σ2

y . Since Z is a normal random variable

with mean (µx−µy− δ)/
√
σ2
x + σ2

y and unit variance, Z2 has a non-central χ2 distribution

with one degree of freedom and non-centrality parameter λ = (µx − µy − δ)2/(σ2
x + σ2

y),

and thus Equation 2.4 is the moment-generating function of a non-central χ2 distribution.

This can be written as

E
[
etZ

2
]
=
eλt/(1−2t)√
1− 2t

, (2.5)

(see Johnson et al. 1995) giving a fully specified statistical model to formulate the likelihood

function in the following section.

2.1.2 Likelihood Function

We now consider the problem of the estimation of the parameters of Equation 2.3 with

empirical data. We envision a scenario where field biologists are able to randomly sample

individuals of reproductive capacity to measure a quantitative trait of interest and observe

mated pairs in their study population. The data then consist of paired observations of trait

values within mated pairs, (xi, yi), and additional unpaired observations of trait values of
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females (xi) and males (yi) that are not observed as part of a mated pair. Assuming mutual

independence across paired and unpaired observations, from Equations 2.3 and 2.5 we have

the likelihood function

L(θ) =
∏
i∈Sp

f(xi;µx, σ
2
x)f(yi;µy, σ

2
y)e
−α(xi−yi−δ)2

eλt/(1−2t)/
√
1− 2t

×
∏
i∈Sx

f(xi;µx, σ
2
x)×

∏
i∈Sy

f(yi;µy, σ
2
y),

(2.6)

where θ = (α, δ, µx, µy, σx, σy)
′, Sp is the set of indices of ordered (x, y) mated pairs, and Sx

and Sy are the sets of indices of observations x and y, respectively, that are not observed

as members of a mated pair. The maximum likelihood estimate of θ can be obtained

numerically by maximization of Equation 2.6 with respect to θ. Either or both Sx and

Sy can be empty, in which case the corresponding terms are omitted from the likelihood

function. However, it should be noted that µx, µy, and δ are not identified if Sx and/or Sy

are empty. But if δ is assumed to be zero, as is sometimes the case, this parameter can be

fixed at zero and then this is no longer an issue and all the other parameters are identified

even without data on single males and females.

2.1.3 Interpreting the Mating Function

To interpret an estimated value of α as the strength of mate preference, it is helpful

to understand the mating function. The mating function in Equation 2.2 describes the

probability of mating as a function of trait differences and the parameters α, δ, and γ. It

is very unlikely that the probability of mating is equal to one even in a perfectly matched
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pair. Therefore, we use the parameter γ as the maximum probability of mating when

x−y = δ. Figure 2.1 depicts how the mating function depends on the trait difference x−y

and the parameters α, δ, and γ. The parameter γ can be viewed as the composite effect of

all factors independent of x and y on the probability of mating such as other independent

traits conferring a mating advantage, availability of resources, or territories that may affect

the probability of mating, or other factors that are system specific. To facilitate the

interpretation of α, we can use the mating function to express an interval around δ in terms

of x−y where the probability of mating is within p% of the maximum probability of mating

of γ. For any p% we can define the values of x− y such that P (S = 1|x, y) ≥ (1−p/100)γ.

The interval δ ±
√
− log(1− p/100)/α defines trait differences x − y leading to a mating

probability that is within p% of the maximum probability of γ. Since α is the “strength"

of mate preference, larger values of α will reduce the interval width, while the value of δ

defines the center of the interval. The value of p is arbitrary, but can be specified as a

biologically meaningful value in terms of the impact of the trait difference on the reduction

in the mating probability.
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0

(1− p/100)γ

γ

δ −
√
− log(1− p/100)/α δ δ +

√
− log(1− p/100)/α

x− y

Figure 2.1: Mating probability as a function of trait differences (x − y), α, δ, and γ.

The maximum probability of mating (γ) occurs when x − y = δ. A reduction of mating

probability of p% can be visualized as the interval around this point.

2.1.4 Limitations of the Correlation Coefficient as a Metric of

Mate Preference

The Pearson correlation coefficient is a common metric used by empiricists to infer the

existence and strength of preference-driven assortative mating in a particular population

(Jiang et al. 2013) where mate preference is assumed to be the biological process generating

a correlation between traits within mated pairs. Even though mate preference does in fact

generate a correlation, a sample correlation coefficient cannot be used to estimate the

parameter α, the strength of mate preference. This is because the correlation of X and
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Y in mated pairs is a function of both α and the variances of X and Y . To observe the

mathematical relationship between a correlation (ρ) and α as a function of a common

standard deviation, σx = σy = σ, we numerically computed the correlation between X

and Y from the conditional distribution given in Equation 2.3 as a function of α and

several fixed values of σ (Figure 2.2). Whenever mate preference generates a non-zero

correlation between traits within mated pairs, we can see that ρ increases monotonically

with respect to α, but the relationship is not linear and varies as a function of σ. More

specifically, as α increases, ρ increases faster with larger values of σ until leveling off. As

the variance of X−Y increases, more of the distribution of X−Y will fall outside a region

of high probability of mating as defined using Figure 2.1. Overall, for the same given value

of α, different values of ρ can be generated depending on the variability of traits in the

population, and therefore, a correlation coefficient is not a direct estimate of α and will be

misleading if used to infer the strength of mate preference.
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Figure 2.2: The correlation coefficient (ρ) as a function of mate preference (α) and trait

standard deviations (σx = σy = σ).

2.2 Evaluation of Performance with Simulated Data

To validate our method, we evaluate the performance of the maximum likelihood

estimates with simulated data. Males and females composing a breeding population are

generated as a random sample from normal distributions (except in simulations designed

to purposefully violate the normality assumption) with constant means (female: µx =
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10; male: µy = 12) and standard deviations (σ = 2 for both sexes). Mated pairs are

simulated with Equation 2.2 under different fixed values α and δ, while holding γ = 1

constant. Sample sizes, np is the number of mated pairs and ns is the total number of

single individuals of both sexes where the number of males is equal to the number of

females, vary to demonstrate their influence on the estimates or are fixed at np = 100

and ns = 100. We simulate 1, 000 replicate datasets for each value of α and δ. Parameter

estimates are obtained by maximizing the likelihood function using the R function optim()

with the L-BFGS-B algorthim (R Core Team 2021).
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np = 50 np = 100 np = 200
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Figure 2.3: The relationship between true and estimated parameter values under different

sample sizes of mated pairs, np, and single individuals, ns (male and female sample size

combined). Boxplots show the median and 2.5th and 97.5th percentiles, and colored dots

show means of the difference in estimates vs. true values. Panel A shows results for set

values of α, the strength of mate preference, and constant δ = 1. Panel B shows results

for set values of δ, the match offset, and constant α = 0.5.
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Figure 2.3 shows the distance between estimated and true values of α and δ for set values

of each parameter under different sample sizes of mated pairs and single individuals. We

expect the error around the estimates, α̂, to be proportional to the mean of α̂ because α has

a lower bound very near zero. This is not the case with δ̂, because δ can be any real number.

At larger values of α and smaller sample sizes, there is a tendency for estimated values

(α̂) to be larger than true values. The bias and error around α̂, not surprisingly, decreases

with larger samples sizes, particularly when the number of mated pairs is increased. The

estimates of δ have little bias, although sample sizes of mated pairs also appears to influence

the error surrounding δ̂.

We find that including δ in the model is very important to estimate α without bias

whenever the true value of δ is non-zero. If the true value of δ is zero and then not

estimated in the model, an accurate estimate of α̂ can still be obtained. If the true value

of δ is not zero and then not included in the model, α̂ becomes less accurate as α and δ

increase (Figure 2.4). This is because when δ is nonzero, males and females within mated

pairs differ from each other, and this difference corresponds to an actual preference. If δ

is incorrectly designated as zero, the phenotypic difference between mates then incorrectly

estimates a low preference.
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δ = 0 δ = 0.5 δ = 1

0.1 0.5 1 0.1 0.5 1 0.1 0.5 1
-0.75

-0.50

-0.25

0.00

0.25

α

α̂
−
α

Figure 2.4: The strength of mate preference, α, is misestimated when the offset parameter,

δ, is excluded from the model. This figure shows simulation results comparing true values

of α to the model estimates when the parameter δ is not included as a term in Equation

2.2 but is, in fact, non-zero. Boxplots show the median and 2.5th and 97.5th percentiles,

and black dots show means of the difference in estimates vs. true values.

Last, we test the model’s performance when we violate two key assumptions: (1) nor-

mality and (2) population homogeneity. Very often quantitative traits are normally dis-

tributed or approximately normal, but situations could arise when phenotypic distributions

are non-normal. A probable and problematic example would be a skewed distribution. In

Figure 2.5, we violate the normality assumption by drawing trait values from a gamma

distribution with three different shape parameters to simulate skewed distributions of vary-

ing degrees. Particularly when the skew is minimal, the parameter estimates for α and δ
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are robust to this normality violation. We also investigated other examples of non-normal

distributions, specifically heavy-tailed distributions. These are even less problematic than

skewed trait distributions, and therefore we do not show the results of these simulations.
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Figure 2.5: The effect of a skewed phenotypic trait distribution on estimates of α (Panel A)

and δ (Panel B). The value of k specifies shape parameter for generating realizations from

a gamma distribution with a scale parameter equal to 4 in all simulations. Boxplots show

the median and 2.5th and 97.5th percentiles, and black dots show means of the difference

in estimates vs. true values.
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Estimates of the two parameters α and δ can also be biased if mating occurs primarily

within unidentified subpopulations, thus violating the assumption that observations are

drawn from a homogeneous population. The effect of population structure increases as the

subpopulation means get further apart or the variance of each subpopulation distribution

decreases. We evaluate the effect of hidden population structure with divergent trait means

on the estimates of α and δ with constant sample sizes and a constant population standard

deviation (values given in Figure 2.6). We simulate three subpopulations with discrete

structure (i.e., mating takes place only within each subpopulation), where the value of ε

dictates the distance between mean trait values in each subpopulation. For each value of

ε (Figure 2.6), population means for pairs and single individuals are µ − ε, µ, and µ + ε.

Subsequently, all pairs and single males and females are combined into one data set to

mimic hidden population structure. Then, α is estimated as if the observer were unaware

of the structure. As expected, the estimate of the strength of mate preference increases as

phenotypic divergence among subpopulations increases (Figure 2.6A), but the estimates

are surprisingly robust, especially at the lower values of ε. The estimate of the offset match

is similarly affected by hidden population structure, as the value of δ̂ underestimates the

true parameter with increasing values of ε (Figure 2.6B). At lower values of ε, this bias is

minimal.
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Figure 2.6: The effect of weak to moderate hidden population structure with phenotypic

divergence on estimates of α (Panel A) and δ (Panel B). The value of ε specifies the di-

vergence among phenotypic means for unidentified subpopulations within a single dataset.

Boxplots show the median and 2.5th and 97.5th percentiles, and black dots show means of

the difference in estimates vs. true values.
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2.3 Appliction to Real Data

Many empirical studies demonstrate the existence of assortative mating by measuring

phenotypes and observing mated pairs in the wild. In this section, we apply our likelihood-

based approach to real data from two published studies of size-assortative mating in three

species of marine gastropods from the genus Echinolittorina (Ng et al. 2019) and two pop-

ulations of the European common frog (Rana temporaria) (Dittrich et al. 2018). Datasets

from both studies are publicly available on Dryad (see Dittrich et al. 2018; Ng et al. 2019).

Each study measured body size (shell length in Echinolittorina and snout-vent length

(SVL) in R. temporaria, both in mm), a trait easily observable in males and females in a

sample of mated pairs and un-mated individuals in each population.

Periwinkles, or marine gastropod molluscs in the family Littorinidae, occur worldwide

in the rocky intertidal and have been the subject of numerous evolutionary studies including

many studies of sexual selection and mate choice (Ng et al. 2019; Perini et al. 2020). In

the genus Echinolittorina, courtship is initiated by a male following a female’s mucus trail;

if this female is deemed an acceptable mate, courtship ends with the male mounting and

copulating (Ng et al. 2013). Males are suspected to exhibit size-dependent mate preference

because larger females likely have higher fecundity, but physically copulating with a very

large female may not be possible for a smaller male or the risk of sperm competition may

be very high and jeopardize paternity if multiple males target the largest females (see Ng

et al. 2019).

We analyzed data from Ng et al. (2019) using our method. Their study followed in-

dividuals throughout the entire mating process in E. malaccana, E. radiata, and E. vidua
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at Cape d’Aguilar Marine Reserve, Hong Kong in June and July 2012. Our resulting pa-

rameter and interval estimates from shell length (mm) measurements for the three species

of Echinolittorina are shown in Table 2.1. We used likelihood ratio tests to determine if

α > 0 and δ 6= 0, mate preference with offset matching, significantly differs from α = δ = 0,

the null expectation of random mating. Results of the likelihood ratio tests are E. malac-

cana: χ2
2 = 20.56, p = 0.000034, E. radiata: χ2

2 = 22.10, p = 0.000016, and E. vidua:

χ2
2 = 31.53, p = 0.00000014 and support the hypothesis that these three species exhibit

mate preference with offset matching, albeit to different degrees. To visualize the impact

of the estimated values of α and δ on the joint distribution of (X, Y ) mated pairs, we

show contour plots depicting the joint distribution of male and female phenotypes under

the null expectation of random mating compared to the estimated distribution under our

model with maximum-likelihood estimates of α̂ and δ̂ (Figure 2.7). We also calculate the

interval δ±
√
− log(1− p/100)/α (section 2.3 above) that defines the range of trait differ-

ences, shell length measured in mm, where the mating probability is within p = 10% of the

maximum probability of γ using the estimates for α and δ for each species, E. malaccana:

(−0.097, 0.92), E. radiata: (0.58, 2.20), and E. vidua: (0.14, 1.00).
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Table 2.1: Parameter and 95% Wald confidence interval estimates from shell length (mm)

measurements in three species in the genus Echinolittorina.

Species

Parameter E. malaccana E. radiata E. vidua

α 0.41± 0.24 0.16± 0.09 0.58± 0.31

δ 0.41± 0.39 1.39± 0.61 0.57± 0.35

µx 8.59± 0.18 7.53± 0.27 6.88± 0.29

µy 8.33± 0.17 6.22± 0.31 6.91± 0.27

σx 1.18± 0.13 1.89± 0.20 1.40± 0.22

σy 1.02± 0.12 1.71± 0.22 1.18± 0.02
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Figure 2.7: Contour plots show the joint distributions of (X, Y ) mated pairs under the

null expectation of random mating (grey contours) compared to the joint distribution after

assortative mating (colored contours) for the three species of Echinolittorina. Sample data

from shell length measurements (mm) in mated pairs are represented by the scatter plot.

Similar to the situation in marine gastropods, Dittrich et al. (2018) hypothesize the

pattern of assortative mating in R. temporiana to be driven by larger males preferring larger

and more fecund females. However, under closer investigation this pattern is much more

complex and dynamic. Larger individuals of both sexes arrive at breeding sites earlier than

smaller individuals, and larger males can out-compete smaller males for preferred mates.

In the face of competition from larger males, the alternative tactic of smaller males is to

quickly and indiscriminately mate with any available female, even a small female. Thus,
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the complex mechanisms leading to size-assortative mating in R. temporiana can generate

different outcomes across time and space (Dittrich et al. 2018).

Dittrich et al. (2018) studied two populations of R. temporaria from southern and

central Germany. The first population, Fabrikschleichach (FS), consisted of a network of

140 ponds where R. temporaria typically used between 35 and 40 ponds for reproduction.

In contrast, the second population at the locality Kleiwiesen (KW) also contained a network

of ponds, but according to the authors, almost the entire population bred within one pond

creating strong male-male competition for larger female mates. FS population males tended

to be smaller than their female mates, whereas the KW population showed the opposite

trend, likely due to differences in male densities, in the KW population.

In light of the dynamics of the R. temporaria mating system, the authors assessed

whether mate preference was adaptive and varied between populations due to mate avail-

ability during migration to breeding sites and competition for mates. A summary of the

parameter and interval estimates for SVL measurements (mm) in each population can be

seen in Table 2.2. Here, after re-analyzing the published dataset in our model, we found

no statistical difference in strength of mate preference across the two populations (a 95%

Wald confidence interval for the difference in αFS − αKW is 0.0022 ± 0.0024), but similar

to the authors’ hypothesis, the direction of the offset changed under different conditions

(a 95% Wald confidence interval for the difference in δFS − δKW is 20.21± 10.90) (see Ap-

pendix for the 95% Wald CI calculation and alternatives to analyzing data from multiple

populations). Notice the values of α̂ are small. To compensate for numerical instability

occurring when α is close to zero, we converted all observations of SVL from millimeters

to centimeters. This enlarged the value of α̂, and likewise decreased the value of δ̂, en-
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suring mathematical stability during optimization. These values were converted back to

millimeters after the estimates were obtained. Like the analyses in Echinolittorina, re-

sults of likelihood ratio tests comparing the model of α and δ held constant at zero to the

model allowing these parameters to vary are FS: χ2
2 = 115.22, p ≈ 0 and KW: χ2

2 = 21.12,

p = 0.000026. The strength of mate preference and the difference in the direction of the

phenotypic offset between male and female mates can be visualized in Figure 2.8 for the

FS and KW populations. Again, we also calculate the interval δ ±
√
− log(1− p/100)/α

(section 2.3 above) that defines the range of trait differences (SVL (mm)) where the mating

probability is within p = 10% of the maximum probability of γ using the estimates for α

and δ for each population, FS: (1.38, 10.76) and KW: (−20.40,−7.9).

Table 2.2: Parameter and 95% Wald confidence interval estimates from SVL measurements

(mm) for R. temporaria in the Fabrikschleichach (FS) and Kleiwiesen (KW) populations.

Population

Parameter FS KW

α 0.0048± 0.0011 0.0027± 0.0021

δ 6.07± 1.62 −14.15± 10.78

µx 70.61± 0.94 70.40± 2.00

µy 69.24± 0.43 68.95± 0.65

σx 8.70± 0.59 7.20± 1.04

σy 6.65± 0.27 5.81± 0.39
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Figure 2.8: Contour plots show the joint distributions of (X, Y ) mated pairs under the

null expectation of random mating (grey contours) compared to the joint distribution after

assortative mating (colored contours) for the two populations of R. temporaria. Sample

data of SVL measurements (mm) in mated pairs are represented by the scatter plot.
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CHAPTER 3

Summary and Conclusions

A hurdle to testing evolutionary theory surrounding mate preference is the lack of meth-

ods allowing theoretical models to interface with observational data (Servedio et al. 2014;

Gavrilets 2014). To fill this gap, we have developed a maximum likelihood-based approach

to estimate parameters in a Gaussian mating function from empirical data. Extensive

testing of our model using simulated data demonstrates accurate estimation of the key

parameter, the strength of mate preference, α. In addition, we can estimate the optimal

offset match in mated pairs and the population means and variances in males and females

from maximizing a single likelihood function. We discovered that estimating the offset pa-

rameter δ is highly necessary to obtain a non-biased estimate of α, and this parameter also

provides valuable information about mate choice mechanisms operating in many mating

systems. Best estimation results for both parameters, α and δ, are achieved with larger

sample sizes in a well-mixed population. We also addressed the issue of hidden population

structure. Not surprisingly, hidden population structure can skew results, and therefore

spatial scale should be carefully considered when using this method (see Estévez et al.

2018; Rolán-Alvarez et al. 2015). We anticipate empiricists will be aware of strong popu-

lation structure and be able to use corrected phenotypes (e.g., Langin et al. 2015) in most

circumstances, or else we urge consideration of the possibility of hidden structure. Even

so, parameter estimates appear very robust to undetected weak population structure. As

long as the population is mixing so that local distributions of potential mates are similar to

the overall population, and this will occur especially as trait variances increase, parameter
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estimates will have minimal bias and can still be applied to a variety of biological systems.

Applying our method to two published datasets on size-assortative mating (Ng et al.

2019; Dittrich et al. 2018), we support previous findings and gain additional insight into

each mating system. In species of marine gastropods, sexual size dimorphism, with females

being the larger sex, is common but not ubiquitous (Ng et al. 2019). However, the mecha-

nism by which males choose mates — preferring females slightly larger than themselves —

appears widespread even in species with little to no dimorphism (Saltin et al. 2013; Ng et al.

2019). Ng et al. (2019) investigated the relationship between directional sexual selection

on female size and sexual size dimorphism in marine gastropods by studying the mech-

anisms of male mate choice and patterns of sexual dimorphism in seven different species

of marine gastropods. They uncovered a negative correlation between sexual selection in-

tensity on female body size and sexual size dimorphism, and speculate this relationship is

caused by the existence of a “similarity-like" mate choice mechanism (Fernández-Meirama

et al. 2017), where males preferentially mate with females of the same size plus a specific

value (Ng et al. 2019). Our likelihood-based method directly addresses both components

of this mate choice mechanism by estimating the parameters α and δ. In our re-analysis

of data on three species of Echinolittorina included in the Ng et al. (2019) study, we

also found strong size-assortative mating and males preferring larger females respective to

their own size, confirming the existence of a “similarity-like" mate choice mechanism. With

parameter estimates in hand, our model could be used to further investigate the relation-

ship between mate preferences generating sexual selection on female size and sexual size

dimorphism in these species with simulation.

In the European common frog, mate preferences may be highly labile so that individ-
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uals choose mates adaptively. Dittritch et al. (2018) believe multiple mechanisms, such as

conditions during migration to breeding ponds and the amount of male-male competition

over mates, all generate the observed patterns of assortative mating and make interpre-

tation difficult. These authors found that the correlation between traits in mated pairs

fluctuates across populations. Our re-analysis shows that the strength of mate preference

is not statistically different across populations, but the direction of the offset match dif-

fers, where males preferred females smaller than themselves in one population, but in the

other population, males preferred females larger than themselves. This information is not

apparent from the correlations, but is obtained by estimating these parameters separately

in our model. Thus, it appears that preference for a particular body size is consistently

operating in this species, but local conditions may dictate the optimally sized partner with

respect to oneself.

Although our model follows many previous studies that have collectively developed a

rigorous theoretical framework to understand mate preference and its evolutionary conse-

quences, we rely on key assumptions that can limit application to all situations. First, we

assume phenotypic traits are normally distributed in a homogeneous population. In real-

ity, not all phenotypic trait measurements are independent (e.g., spatial structure would

violate this assumption) and normally distributed. Parameter estimates are robust to weak

violations of these assumptions as long as the trait is continuous. For example, a skewed

distribution such as flowering date (Blionis et al. 2001; Schmitt 1983) can be analyzed

with this method, as can populations with weak structure. On the other hand, categor-

ical phenotypic measurements that are often important in mating, such as song type in

red crossbills (Loxia curvirostra) (Snowberg and Benkman 2007), discrete color polymor-
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phisms in strawberry poison frogs (Oophaga pumilio) (Yang et al. 2016), alternative male

tactics in Trinidadian guppies (Poecilia reticulata) (Reynolds et al. 1993), or polymorhic

structures in diving beetles (Graphoderus zonatus) (Iversen et al. 2019), cannot be handled

by this model.

Next, we assume that the probability of mating decays in a Gaussian fashion as a

function of differences in continuous trait values that can be measured in males and females

(Equation 2.2). This assumption limits the model to matching rules of mate choice and

cannot easily be extended to trait/preference rules, unless preference for a particular trait

in the opposite sex can be measured as an independent psychological trait on a continuous

scale. Sexual selection can also not be biased heavily towards one particular sex (e.g., in

polygynous mating systems when all females mate but not all males), because we assume

the same mate preference function for both sexes (Kirkpatrick and Nuismer 2004).The

preference function we use is unimodal and symmetric and therefore cannot be ascribed

to, for example, a situation where all females in a population prefer the largest males. Even

in cases where mate choice is made via a matching rule, other types of mating functions

that are not be unimodal or symmetric, may be better suited to specific systems (Carvajal-

Rodriguez and Rolán-Alvarez 2014; Lande 1981; Neelon et al. 2019). Models comparable

to ours could potentially be built on alternative preference functions, but it may not be

possible to write the likelihood function (Equation 2.6) in closed form as we were able to

do here, and numerical approximations would need be used in these cases. Nonetheless,

our method also provides the basis for a statistical framework for testing hypotheses about

mate preference functions in future studies.

Last, estimation of the strength of mate preference is based upon measuring one focal
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trait. When the data are collected, we assume we have correctly identified and measured

this key trait. Mate preference in reality could be very strong but we underestimate it

by measuring the wrong trait. Alternatively, we may conclude mate preference is based

on the focal trait, but we have merely measured a correlated or indicator trait (Candolin

2003). Measuring an indicator trait may not be a problem if the goal is to understand a

process that relies on assortative mating, but this will be misleading if the goal is to unlock

key traits involved in mate choice to understand a mating system. Overall, investigators

using this method should carefully consider the assumptions in relation to their research

objectives, and prior evidence for mate preference based on candidate traits.

Even in the face of limitations, our method has broad implications for the study of

mate preference in wild animal and plant populations. Many theoretical models have

been constructed to explain phenotypic evolution and divergence that were motivated by

observations of mating patterns in nature (Lande 1981). With this foundation firmly in

place, it is time for empirical assessment of the role of mate preference in evolutionary

dynamics as predicted by models of divergence with gene flow (Räsänen and Hendry 2008;

Dieckmann and Doebeli 1999), sexual selection (Servedio 2016; Servedio and Bürger 2014),

and the evolution of sexual dimporphism (Bolnick and Doebeli 2003). Our methodology

is unique in the use of a likelihood-based approach to estimate mate preference directly

from observational data, thereby allowing an extensive range of systems in which we can

study these processes. To help facilitate future studies in this area, we have made our

method publicly available and easy to implement in a package called matepref (Clancey

and Johnson 2021) for R (R Core Team 2021) that includes functions to estimate the model

described in this paper, and to simulate data for simulation studies. It is our hope that
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our method answers previous and raises new questions about the role of mate preference

in evolutionary dynamics, and does so efficiently to provide a seamless connection between

theory and data.
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Appendix: Model Parameters Across Multiple Populations

This appendix elaborates on the problem of estimating model parameters across

multiple populations. As demonstrated in the FS and KW populations of R. temporiana,

parameter estimates can be made for each population independently and then compared

using interval estimates. A 95% Wald confidence interval for the difference in estimates of

α in two populations is

(α̂1 − α̂2)± 1.96×
√
V̂(α̂1) + V̂(α̂2), (A.1a)

and a 95% Wald confidence interval for the difference in estimates of δ in two populations

is

(δ̂1 − δ̂2)± 1.96×
√
V̂(δ̂1) + V̂(δ̂2). (A.1b)

Here V̂ indicates the estimated variance of each estimator, which is obtained from the

diagonal elements of the inverse Hessian matrix after the last iteration of the L-BFGS-B al-

gorithm. However, in certain circumstances an investigator may have reason to believe the

means and variances across populations are unique, but the populations share a common

strength of mate preference, α, and degree of offset match, δ. To make this accommoda-

tion, we can expand the likelihood function in Equation 2.6 to accommodate k distinct

populations that share α and δ. The likelihood function for multiple populations becomes
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L(θ) =
K∏
k=1

Lk(θ), (A.2)

where

Lk(θ) =
∏
i∈Spk

f(xik;µxk, σ
2
xk)f(yik;µyk, σ

2
yk)e

−α(xik−yik−δ)2

eλktk/(1−2tk)/
√
1− 2tk

×

∏
i∈Sxk

f(xik;µxk, σ
2
xk)×

∏
i∈Syk

f(yik;µyk, σ
2
yk),

θ = (α, δ, µx1, µy1, σx1, σy1, . . . , µxk, µyk, σxk, σyk)
′,

tk = −α(σ2
xk + σ2

yk),

and λk =
(µxk − µyk − δ)2

(σ2
xk + σ2

yk)
.


